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Abstract

This thesis deals with the generation, estimation and preservation of novel quantum
states of two and three qubits on an NMR quantum information processor. Using the
maximum likelihood ansatz, a method has been developed for state estimation such that
the reconstructed density matrix does not have negative eigenvalues and the errors are
within the space of valid density operators. Due to interactions with the environment,
unwanted changes occur in the system, leading to decoherence. Controlling decoher-
ence is one of the biggest challenges to be overcome to build quantum computers. To
decouple the quantum system from its environment, several experimental strategies
have been used. These strategies are based on our knowledge of system-environment
interaction and states that need to be preserved. Considering the first case, where the
system state is known but there is no knowledge about its interaction with the envi-
ronment. To tackle decoherence in this case, the super-Zeno scheme is used and its
efficacy to preserve quantum states is demonstrated. The next situation considered is
that where only the subspace to which the system state belongs is known. To address
such a situation, the nested Uhrig dynamical decoupling scheme has been used. The
later part of the thesis deals with situations where the state of the system as well as its
interaction with the environment is known. In such situations, since the noise model
is known, decoupling strategies can be explicitly designed to cancel this noise. Using
these decoupling strategies, the lifetime of time-invariant discord of two-qubit Bell-
diagonal states has been experimentally extended. The decay of three-qubit entangled
states namely the GHZ state, the W state and the WW̄ state are studied, and the noise
model is constructed for the spin system. The experimentally observed and theoretical
expected entanglement decay rates of these states are compared. Then, the dynamical
decoupling scheme is applied to these states and remarkable protection is observed in
the case of the GHZ state and the WW̄ state.

The contents of the thesis have been divided into seven chapters whose brief ac-
count is sketched below:
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0. Abstract

Chapter 1

This chapter provides an introduction to the field of NMR quantum computation and
quantum information as well as the motivation for the present thesis. In addition to the
basics of NMR and quantum computation, recent developments in the field of quantum
computation and quantum information are discussed.

Chapter 2

This chapter describes the utility of the maximum likelihood (ML) estimation scheme
to estimate quantum states on an NMR quantum information processor. Various sep-
arable and entangled states of two and three qubits are experimentally prepared, and
the density matrices are reconstructed using both the ML estimation scheme as well
as standard quantum state tomography (QST). Further, an entanglement parameter is
defined to quantify multiqubit entanglement and entanglement is estimated using both
the QST and the ML estimation schemes.

Chapter 3

This chapter experimentally demonstrates the freezing of evolution of quantum states
in one- and two-dimensional subspaces of two qubits on an NMR quantum informa-
tion processor. The state evolution is frozen and leakage of the state from its subspace
to an orthogonal subspace is successfully prevented using super-Zeno sequences. The
super-Zeno scheme comprises a set of radio frequency (rf) pulses, punctuated by pre-
selected time intervals. The efficacy of the scheme is demonstrated by preserving
different types of states, including separable and maximally entangled states in one-
and two-dimensional subspaces of a two-qubit system. The changes in the experi-
mental density matrices are tracked by carrying out full state tomography at several
time points. For the one-dimensional case, the fidelity measure is used and for the
two-dimensional case, the leakage (fraction) into the orthogonal subspace is used as a
qualitative indicator to estimate the resemblance of the density matrix at a later time
to the initially prepared density matrix. For the case of entangled states, an entangle-
ment parameter is computed additionally to indicate the presence of entanglement in
the state at different times. The experiments demonstrate that the super-Zeno scheme
is able to successfully confine state evolution to the one- or two-dimensional subspace
being protected.
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Chapter 4

In this chapter, the efficacy of a three-layer nested Uhrig dynamical decoupling (NUDD)
sequence to preserve arbitrary quantum states in a two-dimensional subspace of the
four-dimensional two-qubit Hilbert space is experimentally demonstrated on an NMR
quantum information processor. The effect of the state preservation is studied first
on four known states, including two product states and two maximally entangled Bell
states. Next, to evaluate the preservation capacity of the NUDD scheme, it is ap-
plied to eight randomly generated states in the subspace. Although, the preservation
of different states varies, the scheme on the average performs very well. The complete
tomographs of the states at different time points are used to compute fidelity. The state
fidelities using NUDD protection are compared with those obtained without using any
protection.

Chapter 5

The discovery of the intriguing phenomenon that certain kinds of quantum correlations
remain impervious to noise up to a specific point in time and then suddenly decay, has
generated immense recent interest. In this chapter, dynamical decoupling sequences
are exploited to prolong the persistence of time-invariant quantum discord in a system
of two NMR qubits decohering in independent dephasing environments. Noise chan-
nels affecting the considered spin system of the molecule are characterized and each
spin of the spin system is mainly affected by the independent phase damping channel.
Bell-diagonal quantum states are experimentally prepared on a two-qubit NMR pro-
cessor, and robust dynamical decoupling schemes are applied for state preservation.
It is demonstrated that these schemes are able to successfully extend the lifetime of
time-invariant quantum discord.

Chapter 6

This chapter demonstrates the experimental protection of different classes of tripartite
entangled states, namely the maximally entangled GHZ and W states and the WW̄
state, using dynamical decoupling. The states are created on a three-qubit NMR quan-
tum information processor and allowed to evolve in the naturally noisy NMR envi-
ronment. The tripartite entanglement is monitored at each time instant during state
evolution, using negativity as an entanglement measure. It is observed that the W state
is the most robust while the GHZ-type states are the most fragile against the natural de-
coherence present in the NMR system. The WW̄ state which is in the GHZ-class, yet
stores entanglement in a manner akin to the W state, surprisingly turns out to be more
robust than the GHZ state. The experimental data are best modeled by considering the
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0. Abstract

main noise channel to be an uncorrelated phase damping channel acting independently
on each qubit, along with a generalized amplitude damping channel. Using dynam-
ical decoupling, a significant protection of entanglement for GHZ state is achieved.
There is a marginal improvement in the state fidelity for the W state (which is already
robust against natural system decoherence), while the WW̄ state shows a significant
improvement in fidelity and protection against decoherence.

Chapter 7

This chapter provides some general remarks on the problems covered in the thesis.
Possible future applications of the state protection techniques used in this thesis and
the new avenues of research they open up are described. The overall contribution of
this thesis in the context of the study of decoherence and state preservation techniques
in quantum information processing, is summarized.
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Chapter 1

Introduction

Quantum computing and quantum information is an area which has grown tremen-
dously over the past two decades; it comprises the study and implementation of the in-
formation processing tasks that can be efficiently performed using a quantum mechan-
ical system. Quantum computers are able to accomplish computational tasks which
are not possible to carry out on classical computers. The encoding of n bits of classical
information requires at least n bits of classical resources. However, because of the
quantum superposition principle, quantum mechanical systems can in principle have
a better encoding efficiency than classical systems [1, 2]. In 1981, R. Feynman pro-
posed the idea of a ‘quantum computer’ and showed that a classical computer would
experience an exponential slowdown while simulating a quantum phenomenon, while
a quantum computer would not [3]. In 1985, D. Deutsch, took Feynman’s ideas further
and defined two models of quantum computation; he also devised the first quantum
algorithm. One of Deutsch’s ideas is that quantum computers could take advantage
of the computational power present in many “parallel universes” and thus outperform
conventional classical algorithms [4]. In 1994, P. Shor demonstrated two important
problems; the problem of finding the prime factors of an integer, and the so-called
‘discrete logarithm’ problem, both of which could be solved efficiently on a quantum
computer [1, 5]. Shor’s results clearly indicate the power of quantum computers. Fur-
ther in 1996, L. Grover showed that a search algorithm for an unsorted database on a
quantum computer is quadratically faster then its classical counterpart [6]. The most
popular model of a quantum computer is based on qubits which are two-level quan-
tum systems, with a qubit being a basic unit of quantum information. In 2000, D. P.
DiVincenzo proposed a list of requirements for the realization of an actual quantum
computer [7]: a scalable physical system, ability to initialize the system to any quan-
tum state, a universal set of quantum gates that can be implemented, qubit-specific
measurement and sufficiently long coherence times (relative to the gate implementa-
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1. Introduction

tion times).

Till date, no quantum hardware completely fulfills these criteria. Several quantum
computing experiments have been performed using optical photons [8], optical cav-
ity [9], ion traps[10], superconducting qubits [11] nitrogen-vacancy centers [12] and
nuclear magnetic resonance (NMR) techniques [13]. In an optical photon quantum
computer, the qubits are represented by the polarization of a photon. The initial state
is prepared by creating single photon states by attenuating light. Quantum gates are
applied using beam-splitters, phase shifters and nonlinear Kerr media. Measurement
is done by detecting single photons using a photomultiplier tube [1]. In an optical
cavity, qubits are represented by the polarizations of a photon and initial state prepa-
ration is similar to that of an optical photon quantum computer. Quantum gates are
applied using beam-splitters, phase shifters and a cavity QED system, comprised of a
Fabry-Perot cavity containing a few atoms, to which the field is coupled. In trapped
ion quantum computers, ions are allowed to be cooled down to the extent that their vi-
brational state is sufficiently close to having zero photons and a qubit is realized by the
hyperfine state of an atom and lowest level vibrational modes of the trapped atoms [14].
Quantum gates here are constructed by applying laser pulses. Measurement is done by
measuring populations of hyperfine states [15]. In superconducting quantum comput-
ers, qubits are represented by the phase, charge and flux qubits. In the charge qubit,
different energy levels correspond to an integer number of Cooper pairs on a supercon-
ducting island [16]. In the flux qubit, the energy levels correspond to different integer
numbers of magnetic flux quanta trapped in a superconducting ring. In the case of a
phase qubit, the energy levels correspond to different quantum charge oscillation am-
plitudes across a Josephson junction, where the charge and the phase are analogous
to momentum and position correspondingly of a quantum harmonic oscillator [17].
Quantum gates are implemented using microwave pulses. The nitrogen-vacancy cen-
ter is a point defect in a diamond which offers access to an isolated quantum system
that can be controlled at room temperature. A qubit here can be represented by the 13C
nuclear spin. Resonant microwave pulses allow full quantum control of the state of the
center. Measurement can be done using optical and electrical detection methods [18].

This thesis uses NMR as a tool for performing quantum information processing
tasks. NMR quantum computing has provided a good testbed for implementing var-
ious quantum information processing protocols. In NMR, the chemical shifts of dif-
ferent spins are used to address the spins individually in frequency space and external
radio frequency pulses are used for quantum control [19, 20]. For quantum informa-
tion processing we require pure quantum states. However, an NMR spin system at
room temperature is far from pure, since the separation between the spin energy levels
is ~ω which much less than kBT . Therefore the initial state of an ensemble of nuclear
spins is nearly random. However, for performing computational tasks we can initial-

2



ize the system into a pseudopure state [21] which mimics a pure state. Using radio
frequency pulses and the couplings between the spins any unitary operator can be im-
plemented. Further, the compensations of errors due to pulse imperfections and offset
error can be performed via numerically optimized pulses using GRAPE and genetic
algorithms [22, 23, 24, 25] which make the NMR technique an excellent test bed for
the implementation of quantum algorithms [26, 27, 28, 29, 30, 31], quantum simula-
tions [32, 33, 34, 35, 36, 37], the study of decoherence [38, 39, 40] and many other
quantum information processing applications [41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

In this thesis, we first tackle the problem of negative eigenvalues occurring during
the reconstruction of density matrix from the experimental data. We experimentally
prepared quantum states relevant for quantum information processing and reconstruct
valid state density matrices on an NMR quantum information processor of two and
three qubits. In NMR quantum information processing [1, 19], information is encoded
in the quantum state of an ensemble of nuclei. Theoretically, reconstruction of the
state density matrix is possible if we have infinite copies of the spin system. However,
only a finite but large number of copies of the spin system are available. Furthermore,
due to experimental errors such as detection pulse errors and temperature fluctuations,
copies of the spin system are slightly different [51]. If not properly handled, it can lead
to a situation where the standard state tomography may give rise to an unphysical state.
To tackle this problem, we use the maximum likelihood method [52, 53, 54, 55] which
always gives a valid state density matrix close to the experimental data and resolves
this issue of unphysical states [56]. In the rest of the thesis, we focus on the different
strategies to cancel out system-environment interactions. First we deal with a situation
where we are aware of the system state but have no knowledge about its interaction
with the environment. It is then required to consider all the possible interactions by
which system in a given state can interact with the environment. We use the super-
Zeno scheme for state protection [57, 58, 59, 60], In this scheme, we construct an
inverting pulse which has information about the state and use a train of these inverting
pulses punctuated by unequal intervals of time to protect the system state. Then we
consider a situation where only the subspace is known to which system state belongs
instead of the exact state and its interaction with the environment, and to resolve this
problem we use nested Uhrig dynamical decoupling (NUDD) schemes [61, 62, 63].
The NUDD scheme consists of nesting of protection layers to cancel all the possible
interactions that the state can have with the environment. We next move on to situa-
tions where we have knowledge of the state of the system as well as its interaction with
the environment. We study the evolution of the state of the system in the presence of
intrinsic NMR noise and then fit its decay to a noise model to characterize the noise.
In the two- and three-qubit systems studied, each qubit of the system is modeled as be-
ing affected by an independent phase and amplitude damping noise channel [64], with
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the noise being dominated by the phase damping channel. We use the Knill dynami-
cal decoupling (KDDxy ) scheme and XY16 [65, 66] dynamical decoupling scheme to
tackle the dephasing noise. These pulse sequences are robust against pulse angle errors
and offsets errors. We apply KDDxy and XY16 sequences on experimentally prepared
two-qubit Bell-diagonal states and see the effect on the lifetime of time-invariant dis-
cord [67, 68]. We also apply these sequences on experimentally prepared three-qubit
GHZ, W and WW̄ states and observe the decay of entanglement and its subsequent
suppressing using dynamical decoupling.

1.1 Quantum computing and quantum information pro-
cessing

Although computational algorithms are conceived mathematically, a computer which
executes these algorithms has to be a physical device. The most common model of
quantum computation is a generalization of the classical circuit model known as quan-
tum circuit model. A quantum circuit is an instruction for carrying out the preparation
of an input state, applying a set of quantum gates which cause a unitary evolution and
measuring the output state. The input state is prepared on a quantum register, which
is the quantum analog of the classical processor register. A classical register of size
of n comprises of n flip flops which can have 2n possible classical states. A quantum
register of size n comprises of n two-level quantum systems which are interacting with
each other and due to superposition can have infinite possible states.

1.1.1 Quantum bit

The basic unit of classical information is a bit. Classical digital computers process
information in a discrete form. It operates on data that are expressed in binary code i.e.
0 and 1. A bit can have two states either 0 or 1 and therefore it can be easily physically
realized on a two-state device. Quantum computing and quantum information are built
upon an analogous concept, the qubit i.e. quantum bit [1]. The two possible logical
states for a qubit can be |0〉 and |1〉 states. However, the most general qubit state is
given by:

|ψ〉 = α|0〉+ β|1〉 (1.1)

The state of a qubit is a vector in a two-dimensional complex vector space; |0〉 and
|1〉 form the orthogonal basis for this vector space. The complex numbers α and β are
such that |α|2 + |β|2 = 1. We cannot determine the values of α and β by measurements
on a single qubit.
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1.1 Quantum computing and quantum information processing

We can rewrite Eq 1.1 as

|ψ〉 = eiγ(cos
θ

2
|0〉+ eiφsin

θ

2
|1〉) (1.2)

|1〉

|0〉
b

b

b
|ψ〉

x

y

z

θ

φ

Figure 1.1: Bloch sphere representation of a qubit.

with new real variables θ, φ, and γ. Global phase eiγ can be ignored because it has no
observable effects and we can write

|ψ〉 = cos
θ

2
|0〉+ eiφsin

θ

2
|1〉 (1.3)

where θ and φ define a point on the unit three-dimensional sphere, known as the Bloch
sphere, as shown in Fig.[1.1]. Each of the infinite points on the surface of the sphere
corresponds to a state of the qubit.

1.1.2 N -qubit quantum register
A quantum register of size n comprises of n qubits which are interacting with each
other. The most general state of such a register is a superposition of 2n basis elements
which is given by,

|φ〉 =
∑
j

αj|φ1
j〉 ⊗ |φ2

j〉 ⊗ · · · ⊗ |φnj 〉 (1.4)

5



1. Introduction

where |φij〉 refers to ith qubit in jth term of the superposition, |φij〉 ∈ {|0〉, |1〉} and αj
are the complex coefficients such that

∑
j |αj|2 = 1. If a state |ψ〉 can be expressed as

|ψ1〉⊗|ψ2〉⊗· · ·⊗|ψn〉where |ψi〉 = αi|0〉+βi|1〉, then the state is called separable and
if not then it is entangled. Entanglement is an intrinsically quantum mechanical phe-
nomenon and it plays a crucial role in various QIP protocols. Experimental realization
of quantum registers is one of the biggest challenges in building a quantum computer.
Up to now only a few qubit quantum registers have been physically realized. For in-
stance in linear optics ten qubits, in trapped ion fourteen qubits and in NMR twelve
qubits have been realized.

1.1.3 Density matrix representation
The state of the system can not be reconstructed if we have a single copy of a qubit. On
a measurement of a qubit with state |ψ〉 = α|0〉+ |1〉 possible outcomes will be 0 or 1
with probability |α|2 and |β|2, respectively. To compute probabilities |α|2 and |β|2, we
need either a large number of measurements on a qubit with repeated state preparation
as is done in single-photon quantum computing or a simultaneous measurement of
a large number of copies of the qubit as done in NMR quantum computing. In an
ensemble it may be possible that all the spins are in same state |ψ〉 and this type of
ensemble is called pure ensemble. It may be possible that with p1 probability spins are
in |ψ1〉, with p2 probability spins are in |ψ2〉 and so on, this type of ensemble is called a
mixed ensemble. The density matrix formulation is very useful in describing the state
of an ensemble quantum system such as an ensemble of spins in NMR [69].

For an ensemble with the pi probability to be in |ψi〉 state, the density operator is
given as

ρ =
∑
i

pi|ψi〉〈ψi| (1.5)

where
∑

i pi = 1. If all the members of an ensemble are in the same state |ψ〉 or for a
pure ensemble, the density operator is given as

ρpure = |ψ〉〈ψ| (1.6)

A density operator ρ has to satisfy three important properties: ρ is Hermitian, i.e.,
ρ = ρ†, all the eigenvalues of the ρ is positive, and Tr[ρ] = 1. For a pure state
ensemble Tr[ρ2] = 1 and for a mixed state ensemble Tr[ρ2] < 1. The most general
state of a single qubit can be written as,

ρ =
I + ~r.~σ

2
(1.7)

where I is a identity matrix, ~r is a three-dimensional Bloch vector with |~r| ≤ 1, ~σ =
σxx̂+ σyŷ + σz ẑ and σis are the Pauli matrices. All the pure states can be represented

6



1.1 Quantum computing and quantum information processing

as points on the surface of the Bloch sphere and mixed states are represented by points
inside the Bloch sphere.

1.1.4 Quantum gates
The building block of a digital circuit of a classical computer are the logic gates for
e.g. NOT, OR, NOR and NAND. The analogous building blocks of a quantum circuit
are quantum gates. Quantum gates being unitary, are reversible, as opposed to the
classical logic gates which may be irreversible and hence dissipative. The action of
quantum gates can be realized by a unitary operator U (UU† = I). It has been shown
that a set of gates that consists of all one-qubit quantum gates [U(2)] and the two-qubit
exclusive-OR gate is universal in the sense that all unitary operations can be expressed
as compositions of such gates [70]. One such set of universal quantum gates is the
Hadamard gate (H), a phase rotation gate R(cos−1(3

5
)) and a two-qubit controlled-

NOT gate. Once a basis is chosen, quantum gates are represented as matrices. The
following are some of the important quantum gates:

Hadamard gate
The Hadamard gate is a single-qubit gate and it maps the basis state |0〉 to |+〉 = |0〉+|1〉√

2

and |1〉 to |−〉 = |0〉−|1〉√
2

. It creates a superposition, which means that a measurement
will have equal probability to become either 1 or 0. The matrix representation of
Hadamard gate is:

H =
1√
2

(
1 1
1 −1

)
(1.8)

Pauli-X gate (NOT gate)
The Pauli-X gate maps the basis state |0〉 to |1〉 and |1〉 to |0〉. The matrix representation
of Pauli-X gate is:

X =

(
0 1
1 0

)
(1.9)

Pauli-Y gate
The Pauli-Y gate maps the basis state |0〉 to i|1〉 and |1〉 to −i|0〉. The matrix repre-
sentation of Pauli-Y gate is:

Y =

(
0 −i
i 0

)
(1.10)

Pauli-Z gate
The Pauli-Z gate leaves the basis state |0〉 unchanged and maps |1〉 to−|1〉. The matrix
representation of Pauli-Z gate is:

Z =

(
1 0
0 −1

)
(1.11)
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Square root of NOT gate (
√

NOT)
The
√

NOT gate maps the basis state |0〉 to 1
2

((1 + i)|0〉+ (1− i)|1〉) and |1〉 to
1
2

((1− i)|0〉+ (1 + i)|1〉). The matrix representation of square root of NOT gate is:

√
NOT =

1

2

(
1 + i 1− i
1− i 1 + i

)
(1.12)

Phase shift gate
The phase shift gate leaves the basis state |0〉 unchanged and maps |1〉 to eiφ|1〉. The
matrix representation of the phase shift gate is:

Rφ =

(
1 0
0 eiφ

)
(1.13)

SWAP gate
The SWAP gate is a two-qubit gate which leaves the basis states |00〉 and |11〉 un-
changed. It maps |01〉 to |10〉 and |10〉 to |01〉. The matrix representation of the SWAP
gate is:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (1.14)

Controlled NOT gate
The controlled NOT (CNOT) gate is two-qubit gate which leave the basis state |00〉
and |01〉 unchanged. It maps |10〉 to |11〉 and |11〉 to |10〉. The matrix representation
of CNOT gate is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.15)

1.1.5 Quantum measurement
The standard measurement schemes in quantum information and quantum computation
use projective measurements which is described below. Later we will take up the issue
of ensemble measurements on an NMR quantum information processor, which are
non-projective in nature.

Consider a quantum system in a pure state specified by a vector |ψ〉 in an n-
dimensional Hilbert space. Let us suppose that one performs a projective measure-
ment of an observable M on it. In the formalism of quantum mechanics, associated
with the observable M is a Hermitian operator M̂ , where |m1〉, |m2〉, . . . , |mn〉 denote

8



1.2 Nuclear Magnetic Resonance

the eigenvectors of the operator M̂ with m1, m2,. . . , mn as the respective eigenvalues.
If the eigenvalue spectrum of the observable M is nondegenerate then

|ψ〉 = c1|m1〉+ c2|m2〉+ · · ·+ cn|mn〉 with
∑
i

|ci|2 = 1 (1.16)

where c1, c2, . . . , cn are complex numbers. Upon a projective measurement of the
observable M on such a system, an outcome mi is obtained with a probability |ci|2 and
the state of the system collapses to the corresponding eigenvector |mi〉.

A projective measurement is described by a complete set of projectors {Π̂n} where
Π̂n = |mn〉〈mn| with

∑
n Π̂†nΠ̂n = 1. If the state of the quantum system is |ψ〉

immediately before the measurement then the probability that m occurs is given by

p(n) = 〈ψ|Π̂†nΠ̂n|ψ〉, (1.17)

and the state of the system after measurement is

Π̂n|ψ〉√
〈ψ|Π̂†nΠ̂n|ψ〉

. (1.18)

For instance, consider the measurement of a qubit with state |φ〉 = α|0〉 + β|1〉
in the computational basis. The measurement is defined by the two measurement op-
erators Π̂0 = |0〉〈0| and Π̂1 = |1〉〈1|. The measurement operators are Hermitian i.e.
Π̂†1 = Π̂1 and Π̂†2 = Π̂2. The probability of obtaining the measurement outcome 0 is

p(0) = 〈φ|Π̂†0Π̂0|φ〉 = 〈φ|0〉〈0|0〉〈0|φ〉 = |α|2 (1.19)

and the qubit state will collapse to |0〉. Similarly, the probability of obtaining the
measurement outcome 1 is p(1)=|β|2 and the qubit state will collapse to |1〉.

1.2 Nuclear Magnetic Resonance
Nuclear magnetic resonance (NMR) describes a phenomenon wherein, an ensemble
of nuclear spins precessing in a static magnetic field, absorb and emit radiation in the
radiofrequency range in resonance with their Larmor frequencies [19]. In the quantum
mechanical formalism, the spin magnetization is a vector operator represented by ~I
where I is a dimensionless operator representing the total angular momentum of the
nuclear spin. Atomic nuclei with non-zero spin also possess a magnetic dipole moment
µ which is given as

µ = γn~I, (1.20)

where γn is called the gyromagnetic ratio of the nucleus, which is a fundamental prop-
erty of the nucleus.
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Figure 1.2: (a) NMR tube with sample oriented in a strong static magnetic field B0 along
the z-axis and time-dependent magnetic field B1(t) along the x-axis. (b) The number
of spins precessing around the direction parallel to the field are more than the number
antiparallel to the field direction, which creates a bulk magnetization M0.

A nuclear spin with I 6= 0 when placed in a magnetic field of strength B0 applied
along the z-axis precesses as shown in Fig. 1.2(a). The Hamiltonian of interaction
between the spin and the magnetic field is given by,

H = −µ.B0ẑ = −γn~B0Iz = −~ωnIz (1.21)

The spins precess about the z-axis with a characteristic frequency called Larmor fre-
quency ωn = −γnB0 (in rad s−1) as shown in Fig. 1.2(b). The magnetic field B0 is
applied along the z-direction and all the quantum operators act in the subspace spanned
by the magnetic quantum number |m〉 where m = −I,−I + 1, . . . , I − 1, I . Under
the action of the Hamiltonian H , the expectation values of the angular momentum op-
erators in the plane perpendicular to the z-direction i.e. 〈Ix〉 and 〈Iy〉 show oscillatory
behavior with time, with a frequency ωn, whereas 〈Iz〉 is stationary. The eigenvalues
of the Hamiltonian H are given by:

Em = −m~ωn (1.22)

For a nucleus with spin I , there are (2I+1) energy levels equally spaced by the amount
~ωn.

10



1.2 Nuclear Magnetic Resonance

For an ensemble of identical nuclei in thermal equilibrium, the population of each
energy level is given by the Boltzmann distribution. For a two-level system I = 1

2
,

with the population n− and n+ of the m = −1
2

and m = 1
2

levels, respectively

n−
n+

= e−~ωn/kBT (1.23)

where kB is the Boltzmann constant and T is the absolute temperature of the ensemble.
The Boltzmann factor e−~ωn/kBT for protons (1H) in a magnetic field of 14.1 Tesla at
room temperature is very close to unity. The fractional difference of populations is
about 1 part in 105. This slight difference in the populations of m = −1

2
and m = 1

2

levels cause the net magnetization along the z-direction. For n spin-1/2 nuclei the
thermal equilibrium magnetization is given by:

M0 =
µ0γ

2
n~2B0

4kBT
(1.24)

Since the Larmor frequency depends on the gyromagnetic ratio γn, each nucleus has
its own characteristic Larmor frequency. Nuclear spins in a molecule are surrounded
by the electronic environment, which leads to shielding of the magnetic field, the so
called “chemical shift”, with the effective magnetic field being given by

Beff = B0(1− σ0) (1.25)

where σ0 is the isotropic chemical shift tensor.
There are several terms in the nuclear spin Hamiltonian which encompass different

spin-spin interactions such as the scalar coupling term HJ , the dipolar coupling term
HDD, and the quadrupolar coupling termHQ. The scalar coupling interactionHJ arise
from the hyperfine interactions between the nuclei and local electrons. A pair of nuclei
exhibit dipole-dipole interaction HDD by inducing local magnetic fields at the site of
each other through space. In an isotropic liquid at room temperature, molecules tumble
very fast, thus averaging the intramolecular dipolar coupling to zero. The quadrupolar
coupling HQ is exhibited by nuclei with spin > 1/2 which possess an asymmetric
charge distribution [71].
Radio frequency field interaction and the resonance phenomenon:- The Larmor
frequencies of the nuclear spins in a static magnetic field of a few Tesla are of the
order of MHz. The transition between the different spin states can be induced by a
radio frequency (rf) oscillating magnetic field [2].

~Brf = 2B1cos(ωrf t+ φ)x̂, (1.26)

where ωrf is the frequency of the magnetic field and φ is the phase.

Hrf = −µ. ~Brf = −γn~Ix (2B1cos(ωrf t+ φ)) (1.27)

11
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We can rewrite ~Brf as a superposition of two fields rotating in opposite directions.

~Brf = B1(cos(ωrf t+φ)x̂+ sin(ωrf t+φ)ŷ) +B1(cos(ωrf t+φ)x̂− sin(ωrf t+φ)ŷ),
(1.28)

For the simplicity, we assume φ = 0 and analyze Eq. 1.28 in a coordinate system that
rotates around the static magnetic field at the frequency ωrf . In this rotating frame

~Brot
rf = B1x̂+B1(cos(2ωrf t)x̂− sin(2ωrf t)ŷ) (1.29)

We can observe that one of the two components is now static and the other is rotating
at twice the rf field frequency (which can be neglected) [72]. We can transform Hrf

into rotating frame using the unitary operator

U(t) = eiωntIz/~, (1.30)

Hrot
rf = U−1HrfU + i~U̇−1U = −~(ωn − ωrf )Iz − ~ω1Ix

where ω1 = γnB1. If the phase φ 6= 0 then

Hrot
rf = −~(ωn − ωrf )Iz − ~ω1{Ixcosφ+ Iysinφ}. (1.31)

The evolution of the quantum ensemble under the effective field in the rotating frame
is described by

ρrot(t) = e−iH
rot
rf tρrot(0)eiH

rot
rf t, (1.32)

where ρrot(0) is density matrix of state at time t.

1.3 NMR quantum computing
In 1997, D. G. Cory and I. L. Chuang independently proposed a NMR quantum com-
puter that can be programmed much like a quantum computer [73, 74]. Their compu-
tational model uses an ensemble quantum computer wherein the results of a measure-
ment are the expectation values of the observables. This computational model can be
realized by NMR spectroscopy on macroscopic ensembles of nuclear spins. Several
quantum algorithms have been implemented on an NMR quantum computer such as
the Grover search algorithm [27], realization of Shor algorithm [75], implementation
of the Deutsch-Jozsa algorithm using noncommuting selective pulses [28] and many
more till date. A qubit in an NMR quantum computer is realized by a spin-1/2 nucleus.

The NMR spectrometer consists of a superconducting magnet which applies a high
magnetic field in the z-direction and rf coils for exciting the spins and receiving the
NMR signal from the relaxing spin ensemble. When the sample is placed in the mag-
netic field, the spins interact with the magnetic field, and energy levels split depending
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1.3 NMR quantum computing

upon the size of the spin system. At room temperature, these energy levels are popu-
lated according to the Boltzmann distribution and thus the system is in a mixed state
at thermal equilibrium. This poses a difficult challenge for quantum computing, which
requires pure states as initial quantum states. This difficulty is circumvented in NMR
quantum computing by creating a “pseudopure” state as an initial state, which mimics
a pure state. Using the rf pulses and interaction between the spins, quantum gates are
implemented and as a result of the computation the NMR signal was recorded which is
an average magnetization the in x and y directions. This signal is directly proportional
to the expectation values of some elements of the basis set of the qubits. With the
application of rf pulses rotating individual spins, the expectation of all the elements in
the basis set can be calculated. From these expectation values, we can reconstruct the
density matrix. Further, recent developments in NMR in the area of control of spin dy-
namics via rf pulses makes it possible to implement quantum gates for NMR quantum
computing with high fidelities. A nuclear spin is well separated from its environment
due to which it exhibits long coherence times. Even with all these merits, one ma-
jor limitation of liquid state NMR quantum computers is scalability. The realization
of quantum register with a large number of qubits is difficult. In the following sec-
tions, state initialization, implementation of quantum gates and measurement in NMR
quantum computing are discussed.

1.3.1 NMR qubits
Consider an ensemble of N spin-1/2 nuclei tumbling in a liquid and placed in a mag-
netic field B0. The Hamiltonian H of this system is given as

H = −ω0Iz (1.33)

where Iz = σz/2. The eigenstate and eigenvalues ofH are {|0〉, |1〉} and {ω0/2,−ω0/2}
respectively. The energy difference between the two levels is given by ∆E = ~ω0

Hence such a two-level system acts as a single NMR qubit. For a system of n interact-
ing spins-1/2 in a magnetic field the Hamiltonian is given by:

H0 =
n∑
i=1

ωiI
i
z + 2π

n∑
i<j

JijI
i.Ij (1.34)

where Jij is the scalar coupling between the spins and ωi is the Larmor frequency. If
|ωi − ωj| >> 2π|jij| then the NMR qubits are weakly coupled and the Hamiltonian
for such a system is

H0 =
n∑
i=1

ωiI
i
z + 2π

n∑
i<j

JijI
i
z.I

j
z (1.35)
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1.3.2 Initialization
Any QIP task begins by initializing the system into a pure state. In NMR QIP, an N -
qubit ensemble of spins at room temperature has a population distribution of energy
levels given by the Boltzmann distribution [1]. All the energy levels are almost equally
populated and the initial state is mixed. Under the high temperature approximation the
initial state of the system is given by:

ρeq ≈
1

2N
(I + ε∆ρeq) (1.36)

where I is an identity matrix of 2N × 2N, ε(≈ 10−5) is a purity factor and ∆ρeq is a
deviation density matrix. The problem of pure states in NMR can be overcome by
preparing a pseudopure state which is isomorphic to a pure state [73]. An ensemble
of a pure state is given by ρpure = |ψ〉〈ψ| and the corresponding pseudopure state is
given by

ρeq =
1− ε
2N

I + ε|ψ〉〈ψ| (1.37)

|11〉

|10〉|01〉

|00〉

|10〉|01〉

|11〉

|00〉

(a) (b)

Figure 1.3: Populations of energy levels of a two-qubit system of a (a) thermal equilibrium
state and (b) a pseudopure state.

A pseudopure state in NMR can be prepared by several methods such as spatial averag-
ing, temporal averaging and logical labelling; all based on the idea of preparing 2N−1
energy levels with equal population and with one energy level being more populated
than the other energy levels as shown for two qubits in Fig.1.3.
Temporal averaging technique is based on the fact that quantum operations are linear
and the observables measured in NMR are traceless. Experimentally, the temporal av-
eraging scheme relies on adding the computational results of multiple experiments,
where each experiment starts off with a different state preparation pulse sequence
which permutes the populations [19]. For a two-spin system this technique begins
with the density matrix
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ρ1 =


p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4


where p1, p2, p3 and p4 are populations of the normalized density operator ρ1, with∑4

i=1 pi = 1. U1 and U2 are operators constructed from controlled-NOT gates to
obtain a state with the permuted populations:

ρ2 = U1.ρ1.U
†
1 =


p1 0 0 0
0 p3 0 0
0 0 p4 0
0 0 0 p2


and

ρ3 = U2.ρ1.U
†
2 =


p1 0 0 0
0 p4 0 0
0 0 p2 0
0 0 0 p3


Since the readout is linear with respect to the initial state, all three permuted density
matrices are added to realize the pseudopure state ρ = ρ1 + ρ2 + ρ2.

ρ =


3p1 0 0 0
0 p2 + p3 + p4 0 0
0 0 p2 + p3 + p4 0
0 0 0 p2 + p3 + p4


Rewriting ρ

ρ = p2+p3+p4
3

I + 1
3


4p1 − 1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


ρ =

1

3
{(1− p1)I + (4p1 − 1)|00〉〈00|} (1.38)

where ρ is the effective pure state corresponding to |00〉.
Spatial averaging technique uses rf pulses and pulsed field gradients (PFG) to pre-
pare pseudopure states. The PFG kills the magnetization in the plane perpendicular
to its applied direction by randomizing the spin magnetization in that plane and spin
magnetization is retained only in the direction along which the PFGs are applied. For
a two-qubit homonuclear system (homonuclear meaning spins belonging to the same
species) the pseudopure state ρ00 can be prepared from an initial thermal state using
the following steps:
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where I1
i = 1

2
σi ⊗ I , I2

i = 1
2
I ⊗ σi, σi with i = x, y, z are Pauli matrices, J12 is the

scalar coupling constant between two spins and Gz is a PFG along the z-axis which
kills all the magnetization in the xy-plane.
Logical labeling technique uses one qubit of n-qubits to label the state while the
other n − 1 qubits are placed in a pseudopure configuration [74]. To illustrate the
logical labeling technique, let us consider a homonuclear three-qubit system at thermal
equilibrium with its deviation density matrix

∆ρeq =



3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −3


The relative population of the eigenstates are:

State |000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉
Relative population 6 4 4 2 4 2 2 0

Assuming the first qubit as a label, the first four eigenstates can be perceived as a two-
qubit system with the label qubit in the state |0〉 and the other four eigenstates can be
considered as a two-qubit system with the label qubit in the state |1〉. First a CNOT21

gate is applied (the second qubit being a control qubit and the first qubit being the
target qubit) and then a CNOT31 gate is applied (the third qubit being the control qubit
and the first qubit as the target qubit). The action of these two gates results in a final
relative state population:

State |000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉
Relative population 6 2 2 2 4 4 4 0

The deviation part of the pseudopure state density matrix of the two qubits corre-
sponding to label 0 is ∆ρ0 = 4|00〉〈00| − I and corresponding to label 1 is ∆ρ1 =
I − 4|11〉〈11|. In this thesis we will use the spatial averaging technique throughout for
pseudopure state preparation.
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1.3.3 Quantum gate implementation in NMR

Section 1.1.4 dealt with the mathematical description of quantum gates. This section
will explain the physical implementation of unitary gates on an NMR quantum com-
puter. In traditional NMR techniques, spin states are manipulated by using rf pulses
or by free evolution under the internal nuclear spin interactions. It was shown in Sec-
tion 1.2 that a spin which satisfies the resonance condition can be rotated about the
φ̂ axis by applying an rf pulse along the φ̂ axis with high precession. Due to this,
any quantum gate can be implemented in NMR with high fidelity using rf excitation
pulses and interaction between the spins. The action of an on-resonance rf pulse with
arbitrary phase φ̂ and duration tp is given by

(θ)Iφ = exp(−iω1tpIφ) = exp(−iθIφ) (1.39)

where Iφ = Ixcos(φ) + Iysin(φ) and θ = ω1tp. The rf excitation pulse rotates a
spin on-resonance with an angle θ along the φ̂ axis. A single-qubit gate can hence be
implemented using this set of rotations. Some examples of NMR implementations of
single-qubit gates are:

• Hadamard gate (H) can be implemented by a spin-selective pulse π pulse along
the x-axis and a π

2
pulse along the y-axis.

H

π
2π
π
2π

xy

• Pauli-X gate (NOT gate) can be implemented by a single spin-selective π pulse
along the x-axis.

X

ππ
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Rφ

φ
π
2

π
2

yx −x

• Phase shift gate (Rφ) can be implemented by a single spin-selective φ pulse along
the z-axis. However in NMR we can only apply rf pulses along an axis in the xy
plane, so a φ rotation along the z-axis is typically decomposed as a pulse cascade
(π

2
)x(φ)y(

π
2
)−x.

For the implementation of multi-qubit gates, we use the spin-spin interaction term in
the Hamiltonian along with single-qubit gates. An NMR pulse sequence for the two-
qubit CNOT gate is (π

2
)2
−y(

π
2
)1,2
−z

1
4J12

(π)1,2
y

1
4J12

(π)1
y(
π
2
)y; where 1

J12
denotes an evolu-

tion period under the coupling Hamiltonian.

Control

Target

π π
π
2

y y−z

−y−z y y

1/4j 1/4j

1.3.4 Numerical techniques for quantum gate optimization
NMR quantum gates can be realized by the application of rf pulses and interactions
between the spins. For heteronuclear coupled spins (where the spins under considera-
tion belong to different nuclear species), due to the large Larmor frequency difference
between the spins and the availability of multi-channel rf coils in the spectrometer
hardware, it is easy to experimentally implement individual spin-selective rotations.
However, for homonuclear spins (where the spins under consideration belong to the
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1.3 NMR quantum computing

same nuclear species), it is difficult to selectively manipulate an individual spin, due
to much smaller differences in the chemical shifts of the spins. The traditional way
of exciting individual spins in NMR is by using a shaped pulse which is usually of
long duration and results in a low experimental gate fidelity. To tackle this problem,
one possible solution is optimization of quantum gates using numerical techniques.
The most commonly used numerical optimization techniques are strongly modulated
pulses, genetic algorithms and the gradient ascent pulse engineering (GRAPE) algo-
rithm. This thesis mainly uses the GRAPE algorithm for gate optimization so it is
discussed in detail, while the other techniques are discussed briefly.
Strongly modulated pulses (SMPs) is a procedure for finding high-power pulses that
strongly modulate the dynamics of the system to precisely craft a desired unitary op-
eration [76]. It uses the knowledge of the internal Hamiltonian and the form of the
external Hamiltonian to generate the parameter values to determine the desired gate.
SMPs make use of the Nelder-Mead Simplex algorithm [77] to minimize the quality
factor by searching through the mathematical parameter space. It generates a control
sequence as a cascade of rf pulses with fixed power, transmitter frequency, initial phase
and pulse duration.
Genetic algorithms (GAs): These are stochastic search algorithms based on the con-
cept of natural selection, a process which drives the biological evolution [78]. GAs
modify the population of the individual solution at each step using the biological in-
spired operations such as selection, mutation, crossover etc. to evolve towards an
optimal solution. At each step, the algorithm calculates the fitness of every individual
solution and the algorithm runs until the desired fitness is achieved. In quantum infor-
mation processing, GAs have been used to optimize quantum algorithms [79, 80, 81],
for quantum entanglement [82] and for optical dynamical decoupling [83]. GAs have
also been used to optimize the pulse sequences for unitary transformations on an NMR
quantum information processor [24, 25].
Gradient ascent pulse engineering: To construct the desired unitary quantum gate
Utgt using the GRAPE algorithm [84], we assume a closed system, with the propagator
U evolving under the Hamiltonian H according to

d

dt
U = −iHU. (1.40)

Solving this equation leads to

Uopt =
N∏
j=1

Uj (1.41)

and

Uj = exp

{
−i∆t

(
H0 +

m∑
k=1

uk(j)Hk

)}
(1.42)
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where H0 is the system Hamiltonian, Hk is the rf control Hamiltonian and the control
amplitudes uk are constant, i.e., during the jth step the amplitude uk(j) of the kth
control Hamiltonian is given by uk(j). If T is the total pulse duration of the unitary
gate then for simplicity the total time T is discretized in N equal steps and ∆t = T/N .
So, the problem is to find the optimal amplitudes uk(j) of the rf fields. The actual
propagator Uopt is identical to the desired operator UD when ||Uopt − Utrg||2 = 0 and
in an optimization we will search for its minimum. Expanding further

||U − UD||2 = Tr{(Uopt − Utgt)†(Uopt − Utgt)†}
= 2Tr{I} − 2Re{Tr{U †tgtUopt}}, (1.43)

Hence our task is equivalent to maximization of

Φ = Re{Tr{U †tgtUopt}}. (1.44)

Further it is not necessary to exactly reproduce Utgt. It serves equally well to reproduce
the target operator up to a global phase factor eiφUtgt. Thus the task is equivalent to
the maximization of

Φ0 = |Tr{U †tgtUopt}|2 (1.45)

This performance function increases if we choose

uk(j) -> uk(j) + ε δΦ0

δuk(j)

where δΦ0

δuk(j)
= 2∆tIm{Tr{U †tgtUN . . . Uj+1HkUj . . . U1}Tr{U †optUtgt}} and ε is a

small step size.
The basic GRAPE algorithm consist of the following steps:

1. Guess initial controls uk(j).

2. Evaluate Φ0.

3. Evaluate δΦ0

δuk(j)
and update the m×N control amplitudes uk(j).

4. With these as the new controls, iterate to step 2.

The algorithm is terminated if the change in the performance index Φ0 is smaller than
a chosen threshold value.

In Fig. 1.4, plot of rf pulse amplitude and phase with time for GRAPE optimized
CSWAP gate is shown with fidelity 0.9995. We used the three 19F spins of the trifluo-
roiodoethylene (C2F3I) molecule as NMR sample. With GRAPE we can tackle errors
due to rf inhomogeneity, off-set and flip angle by optimization.
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Figure 1.4: Plot of rf pulse amplitude and phase with time, optimized with GRAPE for
CSWAP gate.

1.3.5 Measurement in NMR
A conventional detection of the NMR signal is a so-called ensemble weak measure-
ment, as the weak interaction of spins with radio-frequency coil does not change sig-
nificantly the quantum states of the spins in the process of measuring the total spin
magnetization. A direct projective measurement is not possible on NMR quantum
computer. However, some experiments have been done to simulate projective mea-
surements in NMR [85, 86].

z
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x

z

y

x

M0

Mxy

t

90o
-x

ω
FT

FID Signal NMR Spectrum

Figure 1.5: Rotation of Bulk magnetization using resonance. B1(t) applied in -x-direction
for duration such that total rotation is 90◦

As described in Section 1.2, when the nuclear spins are placed in the magnetic field B0

along the z-axis, the average of the the magnetic moments µ of the nuclei at thermal
equilibrium produces a bulk magnetization. With the application of rf pulses, this bulk
magnetization is rotated from the z-axis to the xy plane, where this rotated bulk mag-
netization precesses about the z-axis with a Larmor frequency ω0. The precessing bulk
magnetization causes a change in magnetic flux in the rf coil which in turn produces
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a signal voltage as shown in Fig. 1.5. The recorded signal is proportional to the time
rate of change of the magnetic flux linking an inductor that is a part of a tuned circuit.
Due to relaxation processes with time the magnetization in the xy plane decays and
the resultant signal also decays with time (called free induction decay (FID)) as shown
in Fig 1.5. If the quality factor of the coil is not too high, the recorded signal may be
regarded as a time record of the instantaneous bulk magnetization that is transverse (in
the xy-plane ) to the applied static field (which is in the z-axis). This rf signal is mixed
down with a phase-sensitive detector, and the signal has both real (x) and imaginary
(y) components. The time-domain signal of the transverse magnetization is given as

S(t) ∝ Tr

{
ρ(t)

∑
k

(σkx + iσky)

}
(1.46)

where
∑

k(σkx − iσky is the detection operator, σkx and σky are Pauli spin operators
proportional to the x and y components of the magnetization due to kth spin and ρ(t) is
a reduced density operator which represents the average state of a single molecule [87].
The Fourier transform of Eq.1.46 gives the signal in the frequency domain which rep-
resent spectral lines at well-defined frequencies. These spectral lines are characteristic
of the spin system used.

The state density matrix ρ, at any instant t, can be reconstructed by systematically
measuring the NMR signal. This process of state reconstruction is called quantum state
tomography (QST) [87, 88]. Any general normalized state state density matrix can be
written as

ρ =

(
a1 a2 + ia3

a2 − ia3 1− a1

)
The NMR signal is proportional to ρ12 = a2 + ia3 and can be measured by measuring
the intensity of the peaks from the real and imaginary parts of the spectra. The real
intensity is proportional to a2 and the imaginary intensity is proportional to a3. For
measuring a1, a π/2 pulse along the y axis is applied and the real intensity of the peak
of spectra is proportional to a1 [88]. The reconstruction of density matrix is discussed
in detail in Chapter 2.

1.4 Evolution of quantum systems
Quantum systems which do not interact with the outside world are called closed sys-
tems. In reality however, no physical system is an entirely closed system, except per-
haps the universe as a whole. Real systems suffer from unwanted interactions with
their environment. These adverse interactions show up as noise in the quantum sys-
tem. So, it is important to understand and control such a noise process in order to build
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1.4 Evolution of quantum systems

realistic quantum information processors. The tools traditionally used by physicists for
the description of open quantum systems are master equations, Langevin equations and
stochastic differential equations. Another potent tool, which simultaneously addresses
a broad range of physical scenarios is the mathematical formalism of quantum opera-
tions. With this formalism not only nearly closed systems which are weakly coupled
to their environments but also the systems which are strongly coupled to their envi-
ronments can be modeled. Quantum operations formalism is well adapted to describe
discrete state change, that is, transformations between an initial state ρ to final state ρ′,
without explicit reference to the passage of time [1].

Figure 1.6: (a) Representation of a closed system; the circle around the system depicts no
interaction between the system and environment. (b) Representation of an open system;
the dashed circle around the system shows that the system and environment are interacting.

1.4.1 Closed quantum systems

The dynamics of a closed quantum system in a pure state is governed by the Schrödinger
equation

i~
∂

∂t
|ψ(x, t)〉 = Hsys|ψ(x, t)〉 (1.47)

where ψ(x, t) is the wave function, Hsys the Hamiltonian, and ~ is Planck’s constant.
In NMR closed systems, unitary evolution is governed by the Liouville-von Neumann
equation

ρ̇(t) = − i
~

[ Hsys, ρ(t)] (1.48)

The solution to Eq. (1.47) and Eq. (1.48) is given by

|ψ(t)〉 = U(t)|ψ(0)〉 (1.49)
ρ(t) = U(t)ρ(0)U(t)† (1.50)
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where |ψ(0)〉 and ρ(0) is a state of the system at time t=0 and

U(t) = Texp

[
− i
~

∫ t

0

Hsysdt

]
(1.51)

is a unitary operator. The dynamics of a closed quantum system can be described by a
unitary transformation.

Uρ ρU U †

Figure 1.7: Model of closed quantum systems.

A model of a closed system is presented in Fig. 1.7 where the unitary transforma-
tion is represented as a box into which the input state ρ enters and from which the
output state ρ′ = U.ρ.U † exits.

1.4.2 Open systems
The standard approach for deriving the equations of motion for a system interacting
with its environment is to expand the scope of the system to include the environment.
The combined quantum system is then closed, and its evolution is governed by the Von
Neumann equation.

ρ̇tot(t) = − i
~

[ Htot, ρtot(t)] (1.52)

Here, we assume that the initial state of the total system can be written as a separable
state ρtot = ρsys⊗ ρenv and Htot = Hsys +Henv +Hint is the total Hamiltonian, which
includes the original system Hsys, the environment Henv, and interaction between the
system and its environment Hamiltonian Hint. The solution to Eq.(1.52) is given by

ρtot(t) = U(t)ρtot(0)U(t)† (1.53)

Since we are interested in the dynamics of the principal system ρsys, we can extract the
information about the system by taking the partial trace over the environment

ρsys = Trenv[U(t)(ρsys ⊗ ρevn)U(t)†] (1.54)

The most general trace-preserving and completely positive form of this evolution Eq.(1.52)
is the Lindblad master equation for the reduced density matrix ρsys = Trenv[ ρtot] . The
Lindblad equation is the most general form for a Markovian master equation, and it is
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ρenv

ρsys

U

E(ρsys)

Figure 1.8: Model of open quantum system consisting of two parts: the principal system
and its environment.

very important for the treatment of irreversible and non-unitary processes, from dissi-
pation and decoherence to the quantum measurement process.

˙ρsys(t) = − i
~

[ Hsys, ρtot(t)] +
∑
i,α

(Li,αρL
†
i,α +

1

2
{L†i,αLi,α, ρ}) (1.55)

where the Lindblad operator Li,α =
√
ki,ασ

(i)
α acts on the ith qubit and describes

decoherence, and σ(i)
α denotes the Pauli matrix of the ith qubit with α= x, y, z. The

constant ki,α is approximately equal to the inverse of decoherence time.
If we consider only the first term on the right hand side of Eq.(1.55), we obtain

the Liouville-von Neumann equation. This term is the Liouvillian and describes the
unitary evolution of the density operator. The second term on the right hand side of
the Eq.(1.55) is the Lindbladian and it emerges when we take the partial trace (a non-
unitary operation) over the degrees of freedom of the environment. The Lindbladian
describes the non-unitary evolution of the density operator and the Lindblad opera-
tors can be understood to represent the system contribution to the system-environment
interaction.

In Fig. 1.8, we have a system in state ρsys and environment in state ρenv which together
form a closed system and sent into a box which represents the unitary operator on total
system with the final state exiting the box being E(ρ). It is to be noted that E(ρ) may
not be related by unitary transformation to the initial system state ρsys. The reduced
state of the system alone can be obtained by taking a partial trace over the environment

E(ρsys) = Trevn[U(ρsys ⊗ ρevn)U †] (1.56)

Now, let us consider {|ek〉} to be an orthonormal basis for the state space of the en-
vironment and the initial state of the environment can be written as ρevn = |e0〉〈e0|.
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Using Eq.(1.56), we get

E(ρ) =
∑
k

〈ek|U [ρ⊗ |e0〉〈e0|]U †|ek〉

=
∑
k

EkρE
†
k, (1.57)

where Ek = 〈ek|U |e0〉 is the Kraus operator. Eq.(1.57) is known as the operator-
sum representation of E. The operators {Ek} are known as operation elements for the
quantum operation E, which satisfy∑

k

E†kEk = I (1.58)

1.4.3 Quantum noise channels
Quantum channels are convex-linear and completely positive trace preserving maps E
which transform the initial state ρ of a quantum system to another state E(ρ).

E : ρ → E(ρ)

E(ρ) =
∑
k

EkρE
†
k (1.59)

where Ek’s are the Kraus operators. Quantum channels can be used to describe the
transformation occurring in the state of a system due to the system-environment inter-
action. The interaction of a single qubit with its environment can be described by three
quantum noise channels which are: phase damping, generalized amplitude damping
and depolarizing channel.

1.4.3.1 Generalized amplitude damping channel

The generalized amplitude damping channel describes the dissipative interactions be-
tween the system and its environment which cause interconversions of populations
from ground state to excited states and vice versa at finite temperature [1]. For a single
qubit, the Kraus operators for this channel are given by:

E1 =
√
p

(
1 0
0
√

1− a

)
(1.60)

E2 =
√
p

(
0
√
a

0 0

)
(1.61)

E3 =
√

1− p
( √

1− a 0
0 1

)
(1.62)

E4 =
√

1− p
(

0 0√
a 0

)
(1.63)
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1.4 Evolution of quantum systems

where E1 and E2 operators are responsible for the process by which the population
from its excited state will decay to its ground state, E3 and E4 operators are responsi-
ble for the reverse process in which populations convert from the ground state to the
excited state, p is the probability of finding population in the ground state at thermal
equilibrium and a = 1 − e−γt where ‘γ’ is the decay constant. The action of these
Kraus operators on the density matrix ρ is given by:

E(ρ) = E1ρE
†
1 + E2ρE

†
2,

ρ → E(ρ),(
ρ11 ρ12

ρ21 ρ22

)
→

(
ρ
′
11 ρ

′
12

ρ
′
21 ρ

′
22

)
,

(1.64)

where

ρ
′
11 = e−γt + p(1− e−γt)ρ11 + p(1− e−γt)ρ22,

ρ
′
22 = (1− p)(1− e−γt)ρ11 + pe−γtρ22,

ρ
′
12 = e−γt/2ρ12,

ρ
′
21 = e−γt/2ρ21.

(1.65)

The Lindblad operator corresponding to the generalized amplitude damping chan-
nel is given as

LGD =

√
γ

2

(
0

√
p√

(1− p) 0

)
(1.66)

In NMR, γ=1/ T1 where T1 is longitudinal relaxation time (explained in Section 1.4.5).
The calculation becomes simple by assuming a high temperature approximation where
p = 1/2.

1.4.3.2 Phase damping channel

Phase damping (PD) channel is a non-dissipative channel, which mainly describes the
loss of coherence without loss of energy. In this channel, the relative phase between
|0〉 and |1〉 remains unchanged with some probability p or is inverted (φ → φ + π)
with probability 1 − p. If the system is in state |0〉 or |1〉, it will be unaffected by this
channel. However, if it is in |ψ〉 = α|0〉+ β|1〉 it gets entangled with the environment
which destroys all the coherences but the probability of finding the qubit in state |0〉 or
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|1〉 does not change. The Kraus operators are given by:

E1 =
√
p

(
1 0
0 1

)
(1.67)

E2 =
√

1− p
(

1 0
0 −1

)
(1.68)

where p = 1 − exp(−λt) and λ is the decay rate. The action of these operators
transform the initial state ρ to the final state E(ρ)

E(ρ) = E1ρE
†
1 + E2ρE

†
2, (1.69)

ρ → E(ρ), (1.70)(
ρ11 ρ12

ρ21 ρ22

)
→

(
ρ11 exp(−λt)ρ12

exp(−λt)ρ21 ρ22

)
, (1.71)

Under the action of the phase damping channel, the off-diagonal elements decay and
diagonal elements remain unaffected.

The Lindblad operator corresponding to the phase damping channel is given as

Lph =

√
λ

2

(
1 0
0 −1

)
(1.72)

In NMR, λ=1/T2 where T2 is the transverse relaxation time (explained in Section 1.4.6).

1.4.3.3 Depolarizing channel

Under the action of the depolarizing channel, the qubit remains intact with probability
1− p while with probability p an identity type of noise occurs. The Kraus operator for
the depolarizing channel is given by:

E1 =
√

1− p
(

1 0
0 1

)
,

E2 =

√
p

3

(
0 1
1 0

)
,

E3 =

√
p

3

(
0 −i
i 0

)
,

E4 =

√
p

3

(
1 0
0 −1

)
,
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where p = 1− exp(−dt) and d is the decay rate. The action of these Kraus operators
change the initial state ρ to the final state E(ρ),

ρ → E(ρ),

E(ρ) = E1ρE
†
1 + E2ρE

†
2 + E3ρE

†
3 + E4ρE

†
4,(

ρ11 ρ12

ρ21 ρ22

)
→

(
(2p

3
+ (1− 4p

3
))ρ11 (1− 4p

3
)ρ12

(1− 4p
3

)ρ21 (2p
3

+ (1− 4p
3

))ρ22

)
, (1.73)

(1.74)

We can further simplify Eq.(1.74) to

E(ρ) =
λ

2
I + (1− λ)ρ (1.75)

where λ = 4p
3

and I is identity matrix.
The Lindblad operator corresponding to the depolarizing channel is

LD =

√
δ

3
(σx + σy + σz) (1.76)

1.4.4 Nuclear spin relaxation
The bulk spin magnetization which is along the z-axis at thermal equilibrium, can be
rotated to some other direction by the application of rf pulses. Over time the magne-
tization returns to the z-axis due to relaxation processes, which are explained by the
famous Bloch equations, describing T1 and T2 relaxation processes.

1.4.5 Longitudinal relaxation
Longitudinal relaxation is the process by which the longitudinal component of spin
magnetization returns to its equilibrium value, after a perturbation. In this process,
energy is exchanged between the system of nuclear spins and its environment, which
is called the lattice. This process is also known as spin-lattice relaxation. The phe-
nomenological equation describing this process is of the form:

dMz

dt
=

M0 −Mz

T1

(1.77)

where T1 is known as the longitudinal or the spin-lattice relaxation time and M0 is the
thermal equilibrium magnetization. The solution of the above equation is

Mz = M0(1− e−t/T1),
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when the M0 is tilted to the xy plane, then Mz(0) = 0.
For measuring T1, the inversion recovery experiment is commonly used, where the

spin magnetization is first inverted such that Mz(0)=-M0:

Mz = M0(1− 2e−t/T1). (1.78)

1.4.6 Transverse relaxation
Transverse relaxation is the process that leads to the disappearance of the coherences
namely the xy-magnetization. The phenomenological equation describing the decay
of the transverse magnetization in the rotating frame can be written as:

dMx,y

dt
= −Mx,y

T2

(1.79)

where T2 is called the transverse relaxation time. The solution of this equation is

Mx,y = M0(1− e−t/T2) (1.80)

where M0 is the initial value of the transverse magnetization after the application of a
90◦ rf pulse.

1.4.7 Bloch-Wangness-Redfield relaxation theory
This relaxation model uses a quantum mechanical approach to describe the system
parameters while the surrounding environment is described classically. The main lim-
itation of this approximation is that at equilibrium the energy levels are predicted to
be equally populated. The theory is formally valid only in the high-temperature limit.
For finite temperatures, corrections are required to ensure that the correct equilibrium
populations are reached. However these corrections are significant only in the case of
very low temperatures [71, 89, 90, 91].

The von Neumann-Liouville equation, which describes the time evolution of the
magnetic resonance phenomenon using spin density matrix ρ(t) is given by

dρ(t)

dt
= −i[H0 +H1(t), ρ(t)] (1.81)

where H0 is the time-independent part of the Hamiltonian which contains the spin
Hamiltonian and H1(t) describes the time-dependent perturbations.

It is convenient to remove the explicit dependence on H0 by rewriting the density
operator ρ(t) in a new reference frame, called the interaction frame:

ρ∗ = exp(iH0(t))ρ(t)exp(−iH0(t)) (1.82)
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It is possible to rewrite Eq.(1.81) in the interaction frame:

dρ∗(t)

dt
= −i[H∗1 (t), ρ∗(t)] (1.83)

To solve Eq.(1.83) the following assumptions are required:

1. The ensemble average of H∗1 (t) is zero.

2. ρ∗(t) and H∗1 (t) are not correlated, with this assumption it is possible to take
the ensemble average of the fluctuations of the Hamiltonian and quantum states
independently.

3. τc << t << 2/R, where τc is the correction time relevant for H∗1 (t) and R is
the relevant relaxation rate constant.

4. For the system to relax towards the thermal equilibrium, ρ∗(t) has to be replaced
by ρ∗(t)− ρ0, where ρ0 is the density operator at equilibrium.

Using these assumption, the R.H.S in Eq.(1.83) can be replaced by an integral:

dρ∗(t)

dt
= −

∫ ∞
0

[H∗1 (t), [H∗1 (t− τ), ρ∗(t)− ρ0]]dτ (1.84)

where the overbar represents the ensemble average. The third assumption allows the
integral to run to infinity and with the assumption that the fluctuations of the Hamilto-
nian are not correlated with the density matrix, we can calculate the ensemble average
over the stochastic Hamiltonian independently from ρ∗(t).

For transforming Eq.(1.84) back in the lab frame, the stochastic HamiltonianH∗1 (t)
has to be decomposed as the sum of the random functions of the spatial variable F q

k (t)
and tensor spin operators Aqk:

H1(t) =
k∑

q=−k
(−1)qF−qk (t)Aqk (1.85)

The tensor spin operators are chosen to be spherical tensor operators because of their
transformations properties under rotations. For the Hamiltonians of interest in NMR
spectroscopy, the rank of the tensor k is one or two. These operators can be further
decomposed as a sum of basis operators:

Aqk =
∑
p

Aqkp (1.86)
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where the components Aqkp satisfy [H0, A
q
kp] = ωqpA

q
kp. The transformation of Aqk in

the interaction frame:

Aq∗k = exp(iH0t)A
q
kexp(−iH0t) =

∑
p

Aqkpexp(iω
q
pt) (1.87)

Using Eq.(1.85) and Eq.(1.87) we can rewrite Eq.(1.84)

dρ∗(t)

dt
= −

∑
q,q′

∑
p,p′

(−1)q+q
′
exp{i(ωqp + ωq

′

p′)t}[Aq
′

kp′ , [A
q
kp, ρ

∗(t)− ρ0]]∫ ∞
0

F−qk (t)F−qk (t− τ)dτ (1.88)

If q 6= −q, the two random processes F−q
′

k (t) and F−q
′

k (t) are assumed to be statisti-
cally independent, due to which the ensemble average vanishes, unless q′ = −q.

dρ∗(t)

dt
= −

k∑
q=−k′

∑
p,p′

exp{i(ωqp − ωq
′

p′)t}[Aqkp′ , [Aqkp, ρ∗(t)− ρ0]]∫ ∞
0

F−qk (t)F−qk (t− τ)exp(iωqpτ)dτ (1.89)

Further it is to be noted that terms in which |ωqp − ωqp| >> 0 oscillate much faster than
the typical time scales of the relaxation phenomena will not affect the evolution. In the
absence of degenerate eigenfrequencies, terms in Eq.(1.89) do not vanish when p = p′.
Hence

dρ∗(t)

dt
= −

k∑
q=−k′

∑
p

[Aqkp, [A
q
kp, ρ

∗(t)− ρ0]]∫ ∞
0

F−qk (t)F−qk (t− τ)exp(iωqpτ)dτ (1.90)

The terms F−qk (t)F−qk (t− τ) are correlation functions. The real part of the integral in
Eq.( 1.90) is the power spectral density function

jq(ω) = 2Re

{∫ ∞
0

F−qk (t)F−qk (t− τ)exp(iωτ)

}
The imaginary part of the integral in Eq.( 1.90) is the power spectral density function

kq(ω) = Im

{∫ ∞
0

F−qk (t)F−qk (t− τ)exp(iωτ)

}
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1.4 Evolution of quantum systems

In the high-temperature limit, the equilibrium density matrix is proportional to H0.
Thus, using Eq. (1.87), the double commutator [[A−qkp , A

q
kp], ρ0]] = 0

dρ∗(t)

dt
= −1

2

k∑
q=−k

∑
p

[A−qkp , [A
q
kp, ρ

∗(t)−ρ0]]jq(ωqp)+i
k∑
q=0

∑
p

[[A−qkp , A
q
kp], ρ

∗(t)]kq(ωqp)

(1.91)
By transforming the above equation in lab frame

dρ(t)

dt
= −i[H0, ρ(t)]− i[∆, ρ(t)]− Γ̂(ρ(t)− ρ0) (1.92)

where the relaxation superoperator is

Γ̂ = −1

2

k∑
q=−k

∑
p

[A−qkp , [A
q
kp, ]]j

q(ωqp) (1.93)

∆ is the dynamic frequency shift operator that accounts for second-order frequency
shifts of the resonance lines

∆ = −
k∑
q=0

∑
p

[A−qkp , A
q
kp]k

q(ωqp) (1.94)

This term can be incorporated into the Hamiltonian to obtain the final result, known as
master equation:

dρ(t)

dt
= −i[H0, ρ(t)]− Γ̂(ρ(t)− ρ0) (1.95)

In the calculation of relaxation rates it is often convenient to expand Eq.(1.95) in terms
of the basis operators used to expand the density operator

dbr(t)

dt
=
∑
s

{−iΩrsbs(t)− Γrs[bs(t)− bs0]} (1.96)

where Ωrs are characteristic frequencies defined as

Ωrs =
〈Br|[H0,Bs]〉
〈Br|Bs〉

(1.97)

Γrs are the rate constant for relaxation between the operator Bs and Br

Γrs =
〈Br|Γ̂Bs〉
〈Br|Bs〉

= −1

2

k∑
q=−k

∑
p

{
〈Br|[A−qkp , [Aqkp,Bs]]〉

〈Br|Bs〉

}
jq(ωqp) (1.98)
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and

br(t) =
〈Br|ρ(t)〉
〈Br|Bs〉

(1.99)

The diagonal elements Γrr are auto-relaxation, while off-diagonal elements Γrs, are
cross-relaxation rates.Because it is assumed that only terms satisfying q = −q give
non-zero contributions to Eq.(1.88), cross-relaxation can occur only between operators
with the same coherence order. In addition, because of the secular approximation in
Eq.(1.90), cross-relaxation between off-diagonal terms is forbidden in the absence of
degenerate transitions. These two features give rise to a characteristic block shape in
the relaxation superoperator, known as Redfield kite.

1.5 Decoherence suppression
Preserving quantum coherence is an important task in quantum information and dif-
ferent techniques have been developed to suppress decoherence. These techniques are
broadly categorized as quantum error correction [92], decoherence free subspaces [93,
94] and dynamical decoupling (DD) methods [95, 96]. In particular, the DD tech-
nique is an important technique which suppresses the decoherence by eliminating the
system-bath coupling. The idea comes from spin-echo pulses in NMR where static
but nonuniform couplings can be compensated for perfectly by a single π pulse in
the middle of the time interval [97]. The idea of the spin echo was expanded to sup-
press dynamic interactions with the environment by using periodic π pulses or by pe-
riodic Carr-Purcell cycles. The Carr-Purcell sequence was further modified to com-
pensate errors due to π pulses and Carr-Purcell-Meiboom-Gill sequence (CPMG) was
devised [98]. A more sophisticated technique namely the Uhrig dynamical decoupling
sequence was devised and it was shown that instead of applying π pulses at equal in-
tervals of time if π pulses are applied at unequal intervals of time then the sequence
shows better preservation [99]. One of the advantages of the DD technique is that no
extra qubits are required unlike other techniques. Most DD preserving sequences are
constructed to take care of dephasing type noise. In NMR language, T2 type relaxation
is considered and noise due to T1 relaxation is ignored.

1.5.1 Hahn echo
This technique was constructed by E. L. Hahn for suppressing time-independent noise
in a system of isolated spins [97]. In an NMR setup, the static magnetic field B0 along
the z axis has a spatial inhomogeneity due to which different spins in the ensemble
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Figure 1.9: Evolution of the bulk magnetization under Hahn echo sequence. (a) Initially
thermal equilibrium bulk magnetization in z direction is represented by an arrow. (b) Bulk
magnetization rotated to−y axis using 90◦ pulse, (c) A delay of time t is given and arrows
represent different spins, (d) 180◦ is applied to spins due to which a spin precessing fast
will fall behind a spin precessing slowly, and (e) after time t, all the spins are in the same
direction.

experience different magnetic field and hence precess with different Larmor frequen-
cies (which cause spin dephasing). To tackle this problem Hahn devised the spin-echo
sequence as shown in Fig. 1.9. Initially at thermal equilibrium the bulk magnetization
is in the z direction. With the application of an rf pulse, a (π/2)x rotation is applied to
the bulk magnetization. After time t a spin experiencing a greater magnetic field will
be ahead of a spin which experiences a smaller magnetic field as shown in Fig. 1.9(c).
Then, a π pulse is applied due to which the slow moving spins come close to and the
fast moving spins move away from the y axis. After time t all the spins precess in the
same direction as shown in Fig. 1.9(e).
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1.5.2 CPMG DD sequence
In the Carr-Purcell sequence a series of rf pulses are applied, the first pulse flips the
magnetization through π

2
with a π

2
pulse, and the following pulses flip the magnetization

through π with a π pulse. In the actual application of the Carr and Purcell method for
the measurement of long relaxation times, it was found that the amplitude adjustment
of the π pulses was very critical. This is because a small deviation from the exact π
value gives a cumulative error in the results. In 1958, S. Meiboom and D. Gill proposed
the pulse sequence which was identical to the one proposed by Carr and Purcell, but
the rf of the successive pulses was coherent, and a phase shift of π

2
was introduced

in the first pulse. This sequence was named as Carr-Purcell-Meiboom-Gill (CPMG)
sequence, which was able to suppress the time-dependent noise.

0 τ
2

3τ
2

5τ
2

7τ
2

9τ
2

11τ
2

13τ
2

15τ
2

T

Figure 1.10: Pulse sequence of CPMG DD sequence for a cycle of duration T and in one
cycle eight pulses are applied; filled bars represent π rotation pulses and τ is the duration
between two consecutive π pulses.

In the CPMG sequence a train of equidistant π pulses are applied on a qubit. In
Fig. 1.10 a train of eight pulses are applied in one cycle of duration T . The more
the number of pulses in a cycle, the better is the decoherence suppression.

1.5.3 Uhrig DD sequence
The Uhrig DD (UDD) sequence is an optimal DD scheme and was first constructed by
Uhrig for a pure dephasing spin-boson model [99], which uses N π pulses applied at
time intervals Tj

Tj = Tsin2 jπ

2(N + 1)
for j = 1, 2, . . . N, (1.100)

to eliminate the dephasing up to order O(TN+1); hence the UDD technique suppresses
low-frequency noise. The CPMG sequence is a UDD sequence of order N = 2. If for
an interval of duration T , two π pulses are applied the CPMG sequence, it will elim-
inate dephasing up to order O(T 3). Further, the proof of the universality of the UDD
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1.5 Decoherence suppression

in suppressing the pure dephasing or the longitudinal relaxation of a qubit coupled to
a generic bath has been given [100].

0 T1 T2 T3 T4 T5 T6 T7 T8 T

Figure 1.11: Pulse sequence for UDD sequence for a cycle time of T and the number of
π pulses in one cycle of sequence is eight. Filled bars represent π rotation pulses.

Yang and Liu considered ideal UDD pulse sequences for a Hamiltonian of the form

Ĥ = Ĉ + σ̂z ⊗ Ẑ, (1.101)

where σ̂z is the qubit Pauli matrix along the z-direction, and Ĉ and Ẑ are bath oper-
ators. This Hamiltonian describes a pure dephasing model as it contains no qubit flip
processes and therefore leads to no longitudinal relaxation but only transverse dephas-
ing. Defining two unitary operator U (N)

± as follows:

U
(N)
± (T ) = e−i[C±(−1)NZ](T−TN )

× e−i[C±(−1)(N−1)Z](TN−TN−1) · · ·
× e−i[C∓Z](T2−T1)e−i[C±Z]T1 (1.102)

Yang and Liu proved that for Tj satisfying Eq. (1.100), we must have(
U

(N)
−

)†
U

(N)
+ = 1 +O(TN+1), (1.103)

i.e., the product of
(
U

(N)
−

)†
and U (N)

+ differs from unity only by the order of O(TN+1)

for sufficiently small T [100]. In Fig.1.11, eight π pulses are applied with UDD tim-
ing preserving qubit coherence up to order O(T 9), whereas the CPMG sequence in
Fig.1.10 is able to preserve coherences up to order O(T 3).

1.5.4 Super-Zeno Scheme
The super-Zeno scheme is an algorithm for suppressing the transitions of a quantum
mechanical system, initially prepared in a subspace P of the full Hilbert space of the
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system, to outside this subspace by subjecting it to a sequence of unequally spaced
short-duration pulses [57]. These durations were calculated numerically the leakage
probability from subspace P to its orthogonal subspace was minimized, and surpris-
ingly the durations matched with Eq.(1.100). This scheme is experimentally imple-
mented in Chapter3. This scheme efficiently cancels all the noise affecting the state,
and the preservation is up to the order O(TN+1), where N denotes the number of in-
verting pulses J which are applied. The construction of this inverting pulse J depends
the on subspace P.

1.5.5 Nested Uhrig dynamical decoupling

The nested Uhrig dynamical decoupling (NUDD) scheme is an extension of the super-
Zeno scheme for the case where instead of a state, only the subspace to which the
state belongs is known [61]. For protecting an unknown state in a known subspace,
nesting of UDD protecting sequences are done in a a smart way such that these nesting
of layers cancels all the possible interactions which affect states belonging to the P

subspace. The inverting pulses of each layer are constructed on the basis of subspace
to be protected, and these inverting pulses are applied at the UDD time points given by
Eq.(1.100). The NUDD scheme is very sensitive to the nesting of layers, and for the
time interval T with N pulses in each layer, protection is achieved of O(TN+1). The
NUDD scheme is discussed in detail in Chapter 4.

1.6 Organization of the thesis

This thesis deals with the estimation of experimentally prepared quantum states and
protection of these states using different decoupling strategies. The thesis is organized
as follows: Chapter 2 demonstrates the utility of the Maximum Likelihood (ML) esti-
mation scheme to estimate quantum states on an NMR quantum information processor.
We experimentally prepare separable and entangled states of two and three qubits, and
reconstruct the density matrices using both the ML estimation scheme as well as stan-
dard quantum state tomography (QST). Further, we define an entanglement parameter
to quantify multiqubit entanglement and estimate entanglement using both the QST
and the ML estimation schemes. Chapter 3 demonstrates the efficacy of the super-Zeno
scheme for the preservation of a state by freezing state evolution (one-dimensional sub-
space protection) and subspace preservation by preventing leakage of population to an
orthogonal subspace (two-dimensional subspace protection). Both kinds of protection
schemes are experimentally demonstrated on separable as well as on maximally entan-
gled two-qubit states. Chapter 4 demonstrates the efficacy of NUDD scheme for the
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1.6 Organization of the thesis

protection of arbitrary states of the known subspace. Chapter 5 focuses on extending
the lifetime of time-invariant discord using dynamical decoupling schemes. Chapter
6 is based on modeling the noise and experimental protection of a three-qubit system
using dynamical decoupling. Chapter 7 summarizes the work done in this thesis and
discusses the future prospects.
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Chapter 2

State tomography on an NMR
quantum information processor via
maximum likelihood estimation

2.1 Introduction

Classically, a state is assigned to a physical system by determining the phase space
point corresponding to the configuration of the system and measuring the relevant sys-
tem parameters in a non-invasive manner. For quantum systems, non-invasive mea-
surements are not possible and therefore an ensemble of identically prepared systems
are required for state estimation. The quantum state cannot be known from a sin-
gle measurement and the ‘no-cloning’ theorem renders impossible the possibility of
making several copies of the state and using them to make different measurements
on the same state. Quantum state estimation is hence intrinsically a statistical pro-
cess [101, 102]. In quantum information and experimental quantum computing, the
complete estimation of a quantum state from a set of measurements on a finite ensem-
ble is a hot topic of research. Several schemes have been proposed and implemented for
quantum state estimation [103, 104, 105]. Due to the finite size of ensembles, a phys-
ical situation may even have two different candidate states and there is always some
ambiguity associated with the estimated state. Such uncertainties and ambiguities, if
not treated properly can lead to a self-contradictory estimation, where the estimated
state is not even a valid quantum state. The density operator provides a convenient
way to describe a quantum system whose state is not a pure state. It is a positive, Her-
mitian operator with Tr[ρ] = 1 and Tr[ρ2] ≤ 1. For a pure ensemble Tr[ρ2] = 1 and
for a mixed ensemble Tr[ρ2] < 1. In NMR, the quantum state tomography (QST) of n
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likelihood estimation

coupled spins is carried out by measuring free induction decays (FIDs) after applying
a set of preparatory pulses and applying a Fourier transformation to obtain spectral
lines [87, 88, 106, 107]. Fitting these spectral lines, yields complex amplitudes at well
defined frequencies which are characteristic of the spin system. These complex ampli-
tudes are measured experimentally for each pulse in the preparatory pulse set. Using
this experimental data a state density matrix is reconstructed. However, the QST aver-
aging procedure leads to fluctuations which could result in significant statistical errors
as well as an unphysical density matrix i.e., some eigenvalues could turn out to be neg-
ative. This unphysical density matrix makes no sense, as even if there are experimental
errors they should be within the space of allowed density operators. An ad hoc way to
circumvent this problem is to add a multiple of identity to this density matrix so that
the eigenvalues are positive. A scheme that redresses this issue of reconstructed den-
sity matrices that are unphysical, is the maximum-likelihood (ML) estimation scheme,
which obtains a positive definite estimate for the density matrix by optimizing a like-
lihood functional that links experimental data to the estimated density matrix along
with the constraint that the density matrix should be positive at every point of opti-
mization [54, 55, 108]. The ML estimation scheme begins with a guess quantum state
and improves the estimate based on the measurements made; the more the number of
measurements, the better is the state estimate.

This issue of unphysical density matrices was first pointed out in quantum optics
where state reconstruction based on the inversion of measured data could not guaran-
tee the positive definiteness of the reconstructed density matrix. Hence an algorithm
for quantum-state estimation based on the maximum-likelihood (ML) estimation was
proposed [53, 109]. A general method proposed for quantum state estimation based
on the ML approach can be applied to multi-mode radiation fields as well as to spin
systems [52]. An ensemble of spin-1

2
particles was observed repeatedly using Stern-

Gerlach devices with varying orientations and the state of an ensemble was recon-
structed via ML estimation [110] . A simple iterative algorithm for ML estimation of
the quantum state was derived [111]. A tomographic protocol for a two-qubit system
was recently constructed based on the measurement of 16 generalized Pauli operators
which is maximally robust against errors [112]. A refined iterative ML algorithm was
also proposed to reconstruct a quantum state and applied to the tomography of optical
states and entangled spin states of trapped ions [113]. Other quantum state estimation
algorithms include Bayesian mean estimation [114], least-squares inversion [115], nu-
merical strategies for state estimation [115] and linear regression estimation [116]. If
the size of the ensemble is infinite, the estimation procedure will yield the unique true
quantum state of the system. However, such an ensemble is never achievable in any
laboratory setting, as one can only perform measurements on a finite ensemble. As
a result, the estimated state will be different from the true state and depends on the
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details of the estimation procedure. Quantum state reconstruction on a finite number
of copies of a quantum system with informationally incomplete measurements, as a
rule, does not yield a unique result. A reconstruction scheme was derived where both
the likelihood and the von Neumann entropy functionals were maximized (MLME) in
order to systematically select the most-likely estimator with the largest entropy, that
is, the least-bias estimator, was consistent with a given set of measurement data. This
MLME estimation protocol was applied to time-multiplexed detection tomography and
light-beam tomography [117, 118].

In this chapter, the utility of the ML estimation scheme has been demonstrated to
perform quantum state estimation on an NMR quantum information processor. Sepa-
rable and entangled states of two and three qubits are experimentally prepared, and the
density matrices are reconstructed using both the standard QST and the ML estimation
schemes. For the quantification of entanglement in multiqubit systems an entangle-
ment parameter is defined and it is shown that the standard QST method overestimates
the residual state entanglement at a given time, while the ML estimation method gives
a correct estimate of the amount of entanglement present in the state.

2.1.1 NMR quantum state tomography
The basic aim of quantum state tomography (QST) is to completely reconstruct an un-
known state via a set of measurements on an ensemble of identically prepared states.
Any density matrix ρ of n qubits in a 2n-dimensional Hilbert space can be uniquely
determined using 4n − 1 independent measurements and the state of the system as de-
scribed by its density operator ρ can be reconstructed by performing a set of projective
measurements on multiple copies of the state [26, 119]. Determining all the elements
of ρ would involve making repeated measurements of the same state in different mea-
surement bases, until all the elements of ρ are determined [108, 120, 121].

In NMR we cannot perform projective measurements and instead measure the ex-
pectation values of certain fixed operators over the entire ensemble. Therefore, we
rotate the state via different unitary transformations before performing the measure-
ment to collect information about different elements of the density matrix [26]. The
standard tomographic protocol for NMR uses the Pauli basis to expand an n qubit ρ,

ρ =
3∑
i=0

3∑
j=0

...
3∑

k=0

cij...kσi ⊗ σj ⊗ ....σk (2.1)

where c00...0 = 1/2n and σ0 denotes the 2 × 2 identity matrix while σ1, σ2 and σ3

are standard Pauli matrices. The measurements of expectation values allowed in an
NMR experiment combined with unitary rotations leads to the determination of the
coefficients cij..k.
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In an NMR experiment, we measure the signal induced in the detection coils while
the nuclear spins precess freely in a strong applied magnetic field. This signal is called
the free induction decay (FID) and is proportional to the time rate of change of mag-
netic flux. This time-domain signal can be expressed in terms of the expectation values
of the transverse magnetization [87]:

S(t) ∝ Tr

{
ρ(t)

∑
k

(σkx − iσky)
}

(2.2)

where σkx and σky are the Pauli spin operators proportional to the x and y components
of the magnetization of the kth spin and ρ(t) is the instantaneous density operator at
time t during the FID. The recorded signal represents an average over a large number
of identical molecules of the sample.

The transformation of an initial density operator ρ0 under applied pulses UP and
under free-evolution Hamiltonian H for time t is given by:

ρ(t) = e−iHtUPρ0U
†
P e

iHt. (2.3)

Then Eq.(2.2) reduces to

Sp(t) ∝ Tr

{
e−iHtUPρ0U

†
P e

iHt
∑
k

(σkx − iσky)
}
, (2.4)

using the linearity of the trace and its invariance with respect to cyclic permutation of
the operators, we can write

Sp(t) ∝ Tr

{
ρ0U

†
P e

iHt
∑
k

(σkx − iσky)e−iHtUP
}

(2.5)

In NMR spectroscopy, the initial density operator ρ0 is known and it represents
the thermal equilibrium state then from the signal we can determine the Hamiltonian.
However in state tomography the reverse is true i.e. the Hamiltonian is known and the
state ρ0 is unknown. The Hamiltonian of n weakly coupled spins-1

2
is given by,

H = −
n∑
k=1

ωkIkz + 2π
n∑
k=2

k−1∑
j=1

JjkIjzIkz (2.6)

where ωk/2π is the Larmor frequency of the kth spin, and Jjk is the spin-spin coupling
constant between jth and kth spins.
For a single spin system, the Hamiltonian H1 consists of a Zeeman term only, which
can be written as

H1 =
1

2
ωσz (2.7)
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where ω is the Larmor frequency of the nuclear spin in the external magnetic field.
Then, the NMR signal can be written as

S1
p(t) ∝ Tr

{
ρ0U

†
P e

i 1
2
ωσzt

∑
k

(σkx − iσky)e−i
1
2
ωσztUP

}
(2.8)

Without applying any pulse i.e. Up = I , the NMR signal is

S1
I (t) ∝ {Tr[ρ0σx]− iTr[ρ0σy]} eiωt. (2.9)

after applying 90o pulse along x i.e. Up = 90ox, the NMR signal is

S1
X(t) ∝ {Tr[ρ0σx]− iTr[ρ0σz]} eiωt. (2.10)

after applying 90o pulse along y i.e. Up = 90oy, the NMR signal can be written as

S1
Y (t) ∝ {Tr[ρ0σz]− iTr[ρ0σy]} eiωt. (2.11)

Applying a Fourier transformation on Eq.(2.9, 2.10 and 2.11) then the ensemble
average of operators σx, σy and σz can be obtained

〈σx〉 = c avg(Re[SI(ω)],Re[SX(ω)]), (2.12)
〈σy〉 = c avg(−Im[SI(ω)],−ImSY (ω)]), (2.13)
〈σz〉 = c avg(−Im[SX(ω)],Re[SY (ω)]). (2.14)

Where avg(a, b) means an average of a and b. The factor c depends on the experi-
mental details such as the receiver gain and the number of spins. After determining the
factor c, the density operator of a single spin can be estimated as

ρ =
1

2
I + 〈σx〉σx + 〈σy〉σy + 〈σz〉σz (2.15)

For a two-spin system, the Hamiltonian can be written as

H2 =
1

2
ω1σ1z +

1

2
ω2σ2z +

π

2
J12σ1zσ2z (2.16)

where J12 is the scalar coupling constant. After inserting H2 in Eq.(2.5) and solving
few steps the NMR signal due to spin 1 can be written as

SP,1(t) ∝ 1

2
(ei(ω1−πJ12)t, ei(ω1+πJ12)t)×

(
1 1
1 −1

)(
Tr{ρ0σ̃1−}

Tr{ρ0σ̃1−σ̃2z}

)
(2.17)
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Where σ̃1− = U †P (σ1x − iσ1y)UP . Fourier transformation of SP,1(t) leads to,(
S̄P,1(ω1 − πJ12)
S̄P,1(ω1 + πJ12)

)
∝ 1

2

(
1 1
1 −1

)(
Tr{ρ0σ̃1−}

Tr{ρ0σ̃1−σ̃2z}

)
(2.18)

Similarly for spin 2,(
S̄P,2(ω2 − πJ12)
S̄P,2(ω2 + πJ12)

)
∝ 1

2

(
1 1
1 −1

)(
Tr{ρ0ω̃2−}

Tr{ρ02ω̃1zω̃2−}

)
(2.19)

The density matrix of a two-spin system can be expanded in terms of Pauli basis
operators I1 ⊗ I2 . . . σ1z ⊗ σ2z, as follows:

ρ =
1

4
(I1 ⊗ I2 + 〈σ1x ⊗ I2〉σ1x ⊗ I2 + . . .

+〈σ1z ⊗ σ2y〉σ1z ⊗ σ2y + 〈σ1z ⊗ σ2z〉σ1z ⊗ σ2z) (2.20)

and for the estimation of ρ we need to calculate the expectation values 〈σ1x ⊗ I2〉,. . . ,
〈σ1z⊗σ2z〉. From the NMR spectra we can calculate the peaks intensities i.e. S̄P,1 and
S̄P,2 and rewriting the Eq.(2.18), and Eq.(2.19)

(
Tr{ρ0Ĩ1−}

Tr{ρ02Ĩ1−Ĩ2z}

)
∝
(

1 1
1 −1

)(
S̄P,1(ω1 − πJ12)
S̄P,1(ω1 + πJ12)

)
(2.21)

(
Tr{ρ0Ĩ2−}

Tr{ρ02Ĩ1z Ĩ2−}

)
∝
(

1 1
1 −1

)(
S̄P,2(ω2 − πJ12)
S̄P,2(ω2 + πJ12)

)
(2.22)

we can calculate the expectation values. Taking UP = II and inserting the experimen-
tally measured peak intensities of spin 1 in Eq.(2.21), we get the expectation values
〈σ1x ⊗ I2〉, 〈σ1y ⊗ I2〉, 〈σ1x ⊗ σ2z〉, and 〈σ1y ⊗ σ2z〉. On inserting the peak intensities
of spin 2 in Eq.(2.22) we get the expectation values 〈I1⊗σ2x〉, 〈I1⊗σ2y〉, 〈σ1z⊗σ2x〉,
and 〈σ1z ⊗ σ2y〉. Similarly we can measure other expectation values by changing the
preparatory pulse. With the set UP = {II, IX, IY,XX}, we can measure all the ex-
pectation values required to reconstruct the density matrix, where II corresponds to
“no operation” on both spins, IX(Y ) corresponds to a “no operation” on the first spin
and a 90◦ rf pulse of phase X(Y ) on the second spin, and XX corresponds to a 90◦ rf
pulse of phase X on both spins.

As an example for a two-qubit system, we created the quantum state 1√
2
(|00〉 +

|01〉) and reconstructed it using standard QST. We experimentally generated twenty-
five density matrices for this state, and computed the mean and the variance. The
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reconstructed density matrix ρ
QST

turned out to be

ρ
QST

=


0.484 0.508 + i0.028 −0.025− i0.029 −0.025 + i0.019

0.508− i0.027 0.516 0.025 + i0.003 0.009 + i0.030
−0.025 + i0.029 0.025− i0.003 −0.039 + i0.000 −0.025− i0.011
−0.025− i0.019 0.009− i0.030 −0.025 + i0.011 0.039 + i0.000


(2.23)

The above density matrix ρ
QST

, reconstructed using the standard QST protocol, is
normalized and Hermitian and its eigenvalues are {1.011±0.008, 0.052±0.025, 0.016±
0.008,−0.079± 0.018}. The errors in the reconstructed density matrix using the QST
method show up in the third decimal place. As is evident from the eigenvalues, the re-
constructed density matrix is not positive, and furthermore, Tr(ρ2

QST
) = 1.031±0.009.

It is clear from the above data that the negativity of the eigen value is statistically sig-
nificant and is due to the way we have carried out state estimation. Density matrices
that represent physical quantum states must have the property of positive definiteness
which, in conjunction with the properties of normalization and Hermiticity, implies
that all the eigenvalues must lie in the interval [0,1] and sum to 1 i.e. 0 ≤ Tr(ρ2) ≤ 1.
Clearly, the above density matrix which is reconstructed by the standard QST protocol
violates these conditions. Due to its negative eigenvalues it has as a strange feature that
Tr(ρ2) > Tr(ρ). The obvious reasons for this problem are experimental inaccuracies,
which implies that the actual magnetization values recorded in an NMR experiment
differ from those that can be obtained from the Eq. (2.20). However, in a correct
estimation scheme the experimental inaccuracies should lead to an error in the state
estimation by giving a state which is close to the actual state with some confidence
level and should not give a non-state! An ad hoc way to circumvent this problem is
to add a multiple of identity to this density matrix so that the eigenvalues are positive.
However, this kind of addition is completely ad hoc, and leads to non-optimal esti-
mates and one should be able to do better. We turn to this issue in the next section via
the maximum likelihood estimation method.

2.1.2 Maximum likelihood estimation

The example in the previous section illustrates that density matrices which are to-
mographed using standard QST may not correspond to a physical quantum state. To
address this problem, the maximum likelihood (ML) estimation method was developed
to ensure that the reconstructed density matrix is always positive and normalized [108].
The ML estimation method estimates the entire quantum state, by finding the param-
eters that are most likely to match the experimentally generated data and maximizing
a specific target function; a priori knowledge of the density matrix can also be incor-
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porated into the method. The main advantage of this method is that at every stage of
the estimation process the density matrix is positive and normalized and therefore rep-
resents a valid physical situation. The construction of a valid density operator through
maximum likelihood estimation consists of the following steps:

1. The density operator is first obtained from a lower triangular matrix T such that
ρ = T †T , here T is a function of real variables {t1, t2, t3, . . . , t4n} and n is the
number of qubits. With this ρ(t1, t2, t3, . . . , t4n) will be always Hermitian and
positive.

2. A “likelihood function” is then constructed which quantifies how close the den-
sity operator ρ(t1, t2, t3, . . . , t4n) is with respect to the experimental data. This
likelihood function is a function of ti and experimental data ni and can be written
as L(t1, t2, . . . , t4n ;n1, n2, . . . , n4n).

3. Using standard numerical optimization techniques, the optimum set of variables
{t(opt)1 , t

(opt)
2 , t

(opt)
3 , . . . , t

(opt)
4n } is obtained, for which the function L(t1, t2, . . . , t4n ;n1, n2

, . . . , n16) has the maximum value. The best estimated density operator is ρ(t
(opt)
1 , t

(opt)
2 ,

t
(opt)
3 , . . . , t

(opt)
4n ).

For a system of two qubits, the density matrix can be written in a compact form
following Eq. (2.1):

ρ =
3∑
j=0

3∑
k=0

njkσj ⊗ σk (2.24)

where njk are real coefficients determining the state.
A physical density matrix ρ has to be Hermitian, positive and must have trace equal

to unity. Such a density matrix can be written in terms of a lower triangular matrix
T [108]

ρ(t1, t2, . . . , t16) = T †T Tr(T †T ) = 1 (2.25)

For a two-qubit system the lower triangular matrix T from which we obtain ρ has
15 independent real parameters (one parameter from the 16 is eliminated due to the
trace condition), and can be written as

T =


t1 0 0 0

t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4

 (2.26)
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Given a valid density matrix as described in [108], it is possible to invert Eq. (2.25)
to obtain the matrix T

T =



√
∆

M
(1)
11

0 0 0

M
(1)
12√

M
(1)
11 M

(2)
11,22

√
M

(1)
11

M
(2)
11,22

0 0

M
(2)
12,23

√
ρ44

√
M

(2)
11,23

M
(2)
11,22

√
ρ44

√
M

(2)
11,22

√
M

(2)
11,22

ρ44
0

ρ41√
ρ44

ρ42√
ρ44

ρ43√
ρ44

√
ρ44


(2.27)

where ∆ = Det(ρ), M(1)
ij is the first minor of ρ (the determinant of the 3 × 3 matrix

formed by deleting the ith and jth columns of the ρ matrix), M(2)
ij,kl is the second minor

of ρ (the determinant of the 2 × 2 matrix formed by deleting the ith and kth rows and
jth and lth columns of the ρ matrix with i 6= j and k 6= l). From the experimental data
we obtain a set of expectation values n̄jk = 〈σj ⊗ σk〉 = Tr((σj ⊗ σk)ρ).

The noise in a complex NMR signal acquired from a single receiving coil using
quadrature detection is uncorrelated (white) and Gaussian [122]. So, it is assumed that
the experimental noise has a Gaussian probability distribution and the probability of
obtaining a set of measurement results for the set of expectation values {njk} is

P (n11, · · ·n33) = A

3,3∏
j=0,k=0

exp

[
−(njk − n̄jk)2

2σ2
jk

]
(2.28)

where A is a normalization constant and σjk is the standard deviation of the measured
variable njk (approximately given by

√
n̄jk).

The next step in the ML estimation method is to maximize the likelihood that the
physical density matrix ρ will give rise to the experimental data {njk}. Since ln(x) is
an increasing function, the maxima of the likelihood and the log of the likelihood co-
incide. Rather than finding the maximum value of the probability P , the optimization
problem gets simplified by finding the maximum of its logarithm. Here we neglect the
dependence of the normalization constant on t1, t2, . . . , t16 , which only weakly affects
the solution for the most likely state. So, we need to maximize

−∑3,3
j=0,k=0

(njk(t1,···t16)−n̄jk(t1,···t16))
2

2σ̄2
jk

.

Mathematically, if x0 is a maxima of function f then max(f(x0)) = min(−f(x0)),
thus the optimization problem is reduced to finding the minimum of a “likelihood
function”

L(t1, · · · t16) =

3,3∑
j=0,k=0

(njk(t1, · · · t16)− n̄jk(t1, · · · t16))2

2σ̄2
jk

(2.29)
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Strictly speaking, for a system of NMR coupled qubits, the functional defined in
Eq. (2.29) is not a “likelihood” since the NMR experiment measures expectation values
but can be considered to be a Gaussian approximation of likelihood [108].

For a system of two qubits, the optimum set of variables {topt1 , topt2 , . . . , topt16 } which
minimizes this likelihood function can be determined using numerical optimization
techniques. We used the MATLAB routine “lsqnonlin” [123] to find the minimum
of the likelihood function. To execute this routine, one requires the initial estimation
of the value of t1, t2, . . . , t16. Since a sixteen parameter optimization can be tricky,
it is important to use a good initial guess for parameters. A reasonable way is to
first estimate the state using the standard method, and obtain the values of t′is using
the Eq. (2.27). Since the state may not be a physically allowed state, the parameters
obtained in this manner are not necessarily real. Thus for our initial guess we drop
the imaginary part and use the real parts of each of the t′is as the initial estimate to go
into the optimization routine. We used the same experimentally generated 1√

2
(|00〉 +

|01〉) state (as a mean of twenty-five experimental density matrices as described in
the example given in the earlier subsection), and re-computed the density matrix now
using the ML estimation method, and obtained:

ρ
ML

=


0.488 0.487 + i0.001 0.002− i0.012 −0.002 + i0.012

0.487− i0.001 0.487 0.002− i0.012 −0.002 + i0.012
0.002 + i0.012 0.002 + i0.012 0.013 −0.013 + i0.000
−0.002− i0.012 −0.002− i0.012 −0.013− i0.000 0.013


(2.30)

The eigen values of this matrix are {0.975±0.001, 0.025±0.001, 0.001±0.000, 0.000
±0.000} and are all positive and furthermore Tr(ρ2

ML) = 0.950± 0.004. The errors in
the reconstructed density matrix using the ML estimation method show up in the third
decimal place. While the density matrix reconstructed using QST was unphysical, the
ML reconstruction led to a valid density matrix.

2.2 Comparison of quantum state estimation via ML
estimation and standard QST schemes

We performed state estimation of several different quantum states of two and three
qubits, constructed on an NMR quantum information processor, using the ML esti-
mation method. The results were compared every time with the results obtained by
reconstruction using the standard QST protocol.
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Figure 2.1: Real (left) and imaginary (right) parts of the experimental tomographs of the
(a) |00〉 state, with a computed fidelity of 0.9937 using standard QST and a computed
fidelity of 0.9992 using ML method for state estimation. (b) 1√

2
(|00〉+ |01〉) state, with a

computed fidelity of 0.9928 using standard QST and a computed fidelity of 0.9991 using
ML method for state estimation. The rows and columns are labeled in the computational
basis ordered from |00〉 to |11〉.

2.2.0.1 Fidelity measure and state estimation

The fidelity measures commonly used in NMR quantum computing are:

1. The fidelity measure F1 is computed by measuring the overlap between theoret-
ically expected and experimentally measured states [124]:

F1 =
Tr(ρtheoryρexpt)√

(Tr(ρ2
theory))

√
(Tr(ρ2

expt))
(2.31)

2. The fidelity measure F2 is computed by measuring the projection between the
theoretically expected and experimentally measured states using the Uhlmann-
Jozsa fidelity measure [125, 126]:

F2 =
(
Tr
(√√

ρtheoryρexpt
√
ρtheory

))2

(2.32)

where ρtheory and ρexpt denote the theoretically expected and experimentally recon-
structed density matrices, respectively.
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Figure 2.2: Real (left) and imaginary (right) parts of the experimental tomographs of the
entangled state 1√

2
(|01〉 + |10〉) reconstructed (a) using standard QST and (b) using ML

estimation. The fidelities computed using standard QST and using ML method for state
estimation are 0.9933 and 0.9999 respectively. The rows and columns are labeled in the
computational basis ordered from |00〉 to |11〉.

2.2.1 Comparison of separable states estimation

On a system of two qubits, we began by tomographing a pure state |00〉, as well as
a superposition state 1√

2
(|00〉 + |01〉) (which can be written as a tensor product of

the first qubit in the |0〉 state and the second qubit in a coherent superposition of the
|0〉 and |1〉 states). The mean of ten to twenty-five experimentally determined data
matrices were considered, and the reconstructed density matrices using the ML es-
timation method and using the standard QST method are shown as bar tomographs
in Figure 2.1, with the states labeled in the computational basis in the order |00〉
to |11〉. Using standard QST, the reconstructed |00〉 state had negative eigenvalues:
{0.994 ± 0.000, 0.073 ± 0.006,−0.001 ± 0.002,−0.066 ± 0.005}, and state fidelity
was computed with measure F1 to be 0.9937 and with measure F2 to be 0.9940.
Reconstructing the state using ML estimation, we obtained all positive eigenvalues:
{0.965± 0.001, 0.035± 0.001, 0.000± 0.000, 0.000± 0.000}, while state fidelity was
computed with measure F1 to be 0.9992 and with measure F2 to be 0.9652. For the su-
perposition state 1√

2
(|00〉+ |01〉), state reconstruction using standard QST led to some
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negative eigenvalues: {1.011± 0.002, 0.052± 0.005, 0.016± 0.002,−0.079± 0.004}
with the fidelity measures F1 and F2 are 0.9928 and 1.0110 respectively. Using ML
estimation on the other hand, led to all positive eigenvalues: {0.975 ± 0.001, 0.025 ±
0.001, 0.001 ± 0.000, 0.000 ± 0.000} with a state fidelity with measures F1 and F2

are 0.9991 and 0.9745. While state fidelities with F1 measure are nearly the same (or
slightly better when calculated after ML reconstruction of the density matrix), we find
that by using the ML estimation method for state estimation, we always obtain a ρ
which is physically valid.

2.2.2 Comparison of entangled states estimation

It has been previously noted [108] that the standard QST protocol frequently leads to
unphysical density matrices for entangled multiqubit states. Since entanglement has
been posited to lie at the heart of quantum computational speedup, their construction
and estimation is of prime importance. We used the ML estimation method to re-
construct two-qubit and three-qubit entangled states and evaluated the efficacy of this
scheme to construct valid density matrices.

The state estimation of a two-qubit entangled Bell state 1√
2
(|01〉+ |10〉) is shown in

Figure 2.2, using both QST and ML methods for density matrix reconstruction. Using
the QST protocol for tomography, we obtain the eigenvalues: {0.996± 0.002, 0.018±
0.001, 0.005 ± 0.001,−0.019 ± 0.002} with the first eigenvalue being negative, and
with a computed fidelity with measure F1 and F2 are 0.9933 and 0.9964 respectively.
Using ML method for state estimation leads to all positive eigenvalues: {0.993 ±
0.002, 0.006±0.001, 0.001±0.000, 0.001±0.000} with a computed state fidelity with
measures F1 and F2 are 0.9999 and 0.9926 respectively.

Recently, schemes to construct maximally entangled three-qubit states from a generic
state have been implemented on an NMR quantum information processor [127, 128].
We used these schemes to construct the maximally entangled W state on a system
of three qubits |W 〉 = 1√

3
(i|001〉 + |010〉 + |100〉), and thereafter performed state

estimation using both the standard QST and the ML methods. The experimentally re-
constructed tomographs are depicted in Figure 2.3, with the states being labeled in the
computational basis ordered from |000〉 to |111〉. After QST tomography on this three-
qubit state, we obtained the eigenvalues: {0.939, 0.104, 0.078, 0.054, -0.002, -0.042,
-0.061, -0.071}, and a calculated state fidelity F1 is 0.9759 and F2 is 0.9399. After
performing state estimation using the ML method, the eigenvalues turned out to be all
positive: {0.919, 0.036, 0.027, 0.008, 0.006, 0.002, 0.002, 0.000}, with a calculated
state fidelity with F1 is 0.9968 and with F2 is 0.9191.

A topic of much research focus here is the accurate measurement of the decay of
multiqubit entanglement with time. To study this, we performed state estimation of the
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Figure 2.3: Real (left) and imaginary (right) parts of the experimental tomographs of the
three-qubit maximally entangled state |W 〉 = 1√

3
(i|001〉+ |010〉+ |100〉), reconstructed

(a) using standard QST with a computed fidelity of 0.9833 and (b) using ML estimation
with a computed fidelity of 0.9968. The rows and columns are labeled in the computational
basis ordered from |000〉 to |111〉.

entangled two-qubit state 1√
2
(|00〉+ |11〉) using both QST and ML protocols. The bar

tomographs of the reconstructed density matrices at different times (T=0, 0.04, 0.08,
0.12, 0.16 sec) are shown in Figure 2.4.

The amount of entanglement that remains in the state after a certain time can be
quantified by an entanglement parameter denoted by η [60]. Since we are dealing
with mixed bipartite states of two-qubit, all entangled states will be negative under
partial transpose (NPT). For such NPT states, a reasonable measure of entanglement
is the minimum eigenvalue of the partially transposed density operator. For a given
experimentally tomographed density operator ρ, we obtain ρPT by taking a partial
transpose with respect to one of the qubits. The entanglement parameter η for the state
ρ in terms of the smallest eigenvalue Eρ

Min of ρPT is defined as [60]

η =


−Eρ

Min if Eρ
Min < 0

0 if Eρ
Min > 0

(2.33)

A plot of the entanglement parameter η with time is depicted in Figure 2.5, for the
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Figure 2.4: Real (left) and imaginary (right) parts of the experimental tomographs
of the (a) 1√

2
(|00〉 + |11〉) state. Tomographs (b)-(e) depict the state at T =

0.04, 0.08, 0.12, 0.16s, with the tomographs on the left and the right representing the
state estimated using standard QST and using ML estimation, respectively. The rows and
columns are labeled in the computational basis ordered from |00〉 to |11〉.
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two-qubit maximally entangled Bell state 1√
2
(|00〉 + |11〉), estimated using both stan-

dard QST and the ML method. As can be seen from Figure 2.5, the QST method led
to negative eigenvalues in the reconstructed (unphysical) density matrix and hence an
overestimation of the entanglement parameter quantifying the residual entanglement
in the state. The ML estimation method on the other hand, by virtue of its leading to
a physical density matrix reconstruction every time, gives us a true measure of resid-
ual entanglement, and hence can be used to quantitatively study the decoherence of
multiqubit entanglement. The difference between the two methods is statistically sig-
nificant, as is evident from the graph, where the error bars are shown on each data
point. The error is in fact very small, compared to the anomaly in the estimation of the
entanglement.

✻

η
(E

n
ta
g
le
m
en

t)

Time(s) ✲

0

0.1

0.2

0.3

0.4

0.5 Using QST
Using ML

0 0.1 0.2 0.3 0.4

Figure 2.5: Plot of the entanglement parameter η with time, using standard QST and ML
protocols for state reconstruction, computed for the 1√

2
(|00〉+ |11〉) state.

2.3 Conclusions

We used the maximum likelihood estimation method for state estimation on an NMR
quantum information processor, to circumvent the problem of unphysical density ma-
trices that occur due to statistical errors while using the standard QST protocol. It
has been previously shown that state reconstruction using QST, of entangled states
and other fragile quantum states are particularly susceptible to errors, and can lead to
unphysical density matrices for such states. We showed that the experimental den-
sity matrices reconstructed for entangled states of two and three qubits using the ML
estimation method are always positive, definite and normalized. The state fidelities
computed using fidelity measure F1 are comparable for standard QST and using ML
estimation. However if we use the fidelity measure F2, the obtained state fidelity with
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2.3 Conclusions

ML estimation is less than the standard QST. The advantage of the ML estimation
method is that it always leads to a valid density matrix and hence is a better estimator
of the state of the quantum system. In the rest of this thesis we will use the ML esti-
mation method for quantum state tomography and F2 as the measure for state fidelity.
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Chapter 3

Experimental protection of quantum
states via a super-Zeno scheme

3.1 Introduction

Unwanted changes occur in quantum systems due to their interaction with the envi-
ronment which leads to state degradation. This process, where quantum coherence
is lost, is known as decoherence. Decoherence is a major obstacle in implementing
quantum computing and quantum information processing schemes. In order to tackle
this problem a number of techniques have been developed. The dynamical decou-
pling (DD) approach can be used to effectively decouple the system from its envi-
ronment and thus decoherence can be suppressed [129, 130]. The idea that frequent
measurements which project a quantum system back to its initial state can be used to
not let the state evolve is known as the quantum Zeno effect [131, 132, 133, 134]. If
the measurements project the system back into a finite-dimensional subspace that in-
cludes the initial state, the state evolution remains confined within this subspace and
the subspace can be protected against leakage of population using a quantum Zeno
strategy [135, 136]. Zeno-like schemes have been used for error prevention [137], and
to enhance the entanglement of a state and bring it to a Bell state, even after entan-
glement sudden death [138, 139]. It has been shown that under certain assumptions,
the Zeno effect can be realized with weak measurements and can protect an unknown
encoded state against environmental effects [140]. All these strategies are based on
our knowledge of the system-environment interaction and the state that needs to be
preserved.

In a situation where the system state is known but there is no knowledge about
its interaction with the environment, decoherence can be tackled by an interesting
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quantum Zeno-type strategy for state preservation. This is achieved by using a se-
quence of non-periodic short duration pulses and is called the super-Zeno scheme [57].
The super-Zeno scheme does not assume any Hamiltonian symmetry, does not involve
projective quantum measurements and achieves a significant reduction of the leakage
probability as compared to standard Zeno-based preservation schemes. The super-
Zeno scheme for state protection is similar to universal dynamical decoupling schemes
for multi-qubit states [58]. The only difference in the super-Zeno scheme is that non-
periodic short duration between the unitary kicks are optimized numerically by mini-
mizing the leakage probability. Similar schemes involving dynamical decoupling have
been devised to suppress qubit pure dephasing and relaxation [100, 141]. Another
scheme to preserve entanglement in a two-qubit spin-coupled system has been con-
structed, which unlike the super-Zeno scheme, is based on a sequence of operations
performed periodically on the system in a given time interval [142].

There are several experimental implementations of the quantum Zeno phenomenon,
including suppressing unitary evolution driven by external fields between the two states
of a trapped ion [143], in atomic systems [144] and suppressing failure events in a lin-
ear optics quantum computing scheme [145]. Decoherence control in a superconduct-
ing qubit system has been proposed using the quantum Zeno effect [146]. Unlike the
super-Zeno and dynamical decoupling schemes that are based on unitary pulses, the
quantum Zeno effect achieves suppression of state evolution using projective measure-
ments. The quantum Zeno effect was first demonstrated in NMR by a set of symmetric
π pulses [147], wherein pulsed magnetic field gradients and controlled-NOT gates
were used to mimic projective measurements. The entanglement preservation of a Bell
state in a two-spin system in the presence of anisotropy was demonstrated using a
preservation procedure involving free evolution and unitary operations [25]. An NMR
scheme to preserve a separable state was constructed using the super-Zeno scheme and
the state preservation was found to be more efficient as compared to the standard Zeno
scheme [59]. The quantum Zeno effect was used to stabilize superpositions of states
of NMR qubits against dephasing, using an ancilla to perform the measurement [148].
Entanglement preservation based on a dynamic quantum Zeno effect was demonstrated
using NMR wherein frequent measurements were implemented through entangling the
target and measuring qubits [149].

In this chapter we demonstrate the use of the super-Zeno scheme, while the im-
plementation of dynamical decoupling schemes will be taken up in later chapters of
the thesis. Two applications of the super-Zeno scheme are described in this chap-
ter: (i) Preservation of a state by freezing state evolution (one-dimensional subspace
protection) and (ii) Subspace preservation by preventing leakage of population to an
orthogonal subspace (two-dimensional subspace protection). Both kinds of protection
schemes are experimentally demonstrated on separable as well as on maximally en-
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tangled two-qubit state. One-dimensional subspace protection is demonstrated on the
separable |11〉 state and on the maximally entangled 1√

2
(|01〉 − |10〉) (singlet) state.

Two-dimensional subspace preservation is demonstrated by choosing the {|01〉, |10〉}
subspace in the four-dimensional Hilbert space of two qubits, and implementing the
super-Zeno subspace preservation protocol on three different states, namely |01〉, |10〉
and 1√

2
(|01〉 − |10〉) (singlet) states. Complete state tomography via maximally likeli-

hood estimation as described in Chapter 2 is utilized to compute experimental density
matrices at several time points. State fidelities at these time points were computed to
evaluate how closely the states resemble the initially prepared states, with and with-
out super-Zeno protection. The success of the super-Zeno scheme in protecting states
in the two-dimensional subspace spanned by {|01〉, |10〉} is evaluated by computing
a leakage parameter, which computes leakage to the orthogonal subspace spanned by
{|00〉, |11〉}. For entangled states, an additional entanglement parameter is constructed
to quantify the residual entanglement in the state over time. State fidelities, the leakage
parameter and the entanglement parameter are plotted as a function of time, to quantify
the performance of the super-Zeno scheme.

3.2 The super-Zeno scheme
The super-Zeno algorithm to preserve quantum states has been developed along lines
similar to bang-bang control schemes, and limits the quantum system’s evolution to
a desired subspace using a series of unitary kicks [57]. A finite-dimensional Hilbert
space H can be written as a direct sum of two orthogonal subspaces P and Q. The
super-Zeno scheme involves a unitary kick J, which can be constructed as

J = Q−P (3.1)

where P,Q are the projection operators onto the subspaces P,Q respectively. The
action of this specially crafted pulse J on a state |ψ〉 ∈ H is as follows:

J|ψ〉 = −|ψ〉, |ψ〉 ∈ P

J|ψ〉 = |ψ〉, |ψ〉 ∈ Q (3.2)

where P is the subspace being preserved [57].
The basic aim of this scheme is to design a sequence of appropriately spaced in-

verting pulses, such that if the system is initially in a state |ψ〉 ∈ P, then the leakage
of the system state over time to Q after this pulse sequence is minimum. The invert-
ing pulse J produces destructive interference of quantum amplitudes and reduces the
transition rate from the P subspace to Q. Let the system be prepared in a general state

61



3. Experimental protection of quantum states via a super-Zeno scheme

|ψ(0)〉 = |p〉 ∈ P, the system Hamiltonian H is bounded and the unitary operator
corresponding to the evolution for a time interval t is given by

U(t) = e−ιHt/~. (3.3)

For simplicity we use natural units and ~ = 1. Then, the state |ψ(0)〉 after time t is

|ψ(t)〉 = e−ιHt|ψ(0)〉 (3.4)

The amplitude of the system to be in a state |q〉 ∈ Q after a time interval t is given by

〈q|e−ιHt|ψ(0)〉 (3.5)

However, if we evolve the system for the half interval t/2, subject the system to an
inverting pulse J, and then further evolve by a time t/2, the above amplitude turns out
to be

〈q|e−ιHt/2Je−ιHt/2|ψ(0)〉 (3.6)

For a small time interval t and the unitary operator U(t) satisfying U(t) = I + O(t)

〈q|
(
I +
−ιHt

2

)
J

(
I +
−ιHt

2

)
|ψ(0)〉 (3.7)

= 〈q|J|p〉+ 〈q|J−ιHt

2
+
−ιHt

2
J|p〉+ O(t2)

= 〈q|J−ιHt

2
|p〉+ 〈q|−ιHt

2
J|p〉+ O(t2)

= 〈q|−ιHt

2
|p〉 − 〈q|−ιHt

2
|p〉+ O(t2)

Due to the action of J, destructive interference takes place between the two amplitudes
of O(t) in Eq.(3.7) and we are left with terms of O(t2) term and higher, which are
negligible for a small time interval t. In general, if the matrix elements of U(t) i.e
Uqp and Upq are of O(t(r)) then the transition amplitude

〈q|U(t).J.U(t)|p〉 = −
∑
p′∈P

Uqp′Up′p +
∑
q′∈Q

Uqq′Uq′p −UqpUpp −UqqUqp

= O(tr+1)−UqpUpp −UqqUqp = O(tr+1) (3.8)

where a precise cancellation of the amplitude of O(tr) term occurs [57].
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It is important to note that V(t) = U(t).J.U(t) tends to J as t → 0 but V(t)2

tends to I and if V(t) = J + O(t) and V(t)qp = O(tr)

〈q|V(t)2|p〉 = −
∑
p′′∈P

V(t)qp′V(t)p′p +
∑
q′∈Q

V(t)qq′V(t)q′p

−V(t)qpV(t)pp −V(t)qqV(t)qp

= O(tr+1) + V(t)qp(V(t)qq + V(t)pp)

〈q|V(t)2|p〉 = O(tr+1) (3.9)

Hence, if for U0(t) the transition amplitude to an orthogonal state is proportional
to t, then for the operator U1(t) = U0(t).J.U0(t) from Eq. (3.8), the transition am-
plitude is O(t2). For U2

1 using Eq. (3.9), the transition amplitude is O(t3) [57]. Using
this result, it is straight forward to construct a pulse sequence where the transition am-
plitude is O(tr) for any positive integer r by recursion. Defining operators Um by the
recursion relations

Um+1(t) = Um(t/2) J Um(t/2), for m even

= Um(t/2) Um(t/2), for m odd (3.10)

with U0 = U0(t). Then, by induction, it follows that the transition amplitude 〈q|Um|p〉
is of order O(tm+1).

Um(t) can be written explicitly as a product of U0(t/2m)’s and J’s. For example

U1(t) = U0(t/2)JU0(t/2),

U2(t) = [U0(t/4)JU0(t/4)]2,

U3(t) = [U0(t/8)JU0(t/8)]2J[U0(t/8)JU0(t/8)]2. (3.11)

If Nm are the number of pulses used in the sequence Um, then it is easily verified
that

Nm = (2m+1 − 2)/3, for m even,

= (2m+1 − 1)/3, for m odd. (3.12)

The leakage probability Lm from subspace P to subspace Q for operator Um ap-
plied for a total time T is

Lm =
∑
q∈Q
|〈q|Um|p〉|2 ≤ 2−m(m+1)[ET ]2m+2 (3.13)
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where E = |H| is the norm of the Hamiltonian as defined by

|H| = sup

ψ
||H|ψ〉|| / || |ψ〉|| (3.14)

where the sup notation is defined as (for any function f and constraint set X)

sup

x ∈ X
f(x) ≥ f(v) ∀ v ∈ X (3.15)

The total number of inverting pulses Nm required to keep the leakage probability
less than ε up to time T grows as 2

3
ET 2log2(E2T 2/ε)

1/2

[57]. It is possible to decrease the
required number of pulses significantly by allowing the intervals between the inverting
pulses to be varied continuously independent of each other.

For a givenN , further improvements are possible and one can express 〈q|WN(t)|p〉
as a Taylor series in powers of t. The coefficients of different powers of t are sums of
matrix-elements of the type 〈q|Hn1JHn2J..|p〉, with coefficients that are polynomials
of {xj}. Thus, the total super-Zeno sequence for N pulses is given by

WN(t) = U(xN+1t)J . . .JU(x2t)JU(x1t) (3.16)

where U denotes unitary evolution under the system Hamiltonian and xit is the time
interval between the ith and (i + 1)th pulse. The sequence {xit} of time intervals
between pulses is optimized such that if the system starts out in the subspace P, after
measurement the probability of finding the system in the orthogonal subspace Q is
minimized. In this work we used four inverting pulses interspersed with five unequal
time intervals in each repetition of the preserving super-Zeno sequence. The optimized
sequence is given by {xi} = {β, 1/4, 1/2 − 2β, 1/4, β} with β = (3 −

√
5)/8, i =

1 . . . 5 and t is a fixed time interval (we used the xi as worked out in Ref. [57]).
The explicit form of the unitary kick J depends on the subspace that needs to be

preserved, and in the following section, we implement several illustrative examples for
both separable and entangled states embedded in one- and two-dimensional subspaces
of two qubits.

3.3 Experimental implementations of super-Zeno scheme

3.3.1 NMR system details

The two protons of the molecule cytosine encode the two qubits. The two-qubit molec-
ular structure, system parameters and NMR spectra of the pseudopure and thermal ini-
tial states are shown in Figs. 3.1(a)-(c). The Hamiltonian of a two-qubit system in the
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Figure 3.1: (a) Molecular structure of cytosine with the two qubits labeled as H1 and
H2 and tabulated system parameters with chemical shifts νi and scalar coupling J12 (in
Hz) and relaxation times T1 and T2 (in seconds) (b) NMR spectrum obtained after a π/2
readout pulse on the thermal equilibrium state. The resonance lines of each qubit are
labeled by the corresponding logical states of the other qubit and (c) NMR spectrum of the
pseudopure |00〉 state.

rotating frame is given by

H = −(ω1 − ωrf )I1z − (ω2 − ωrf )I2z + 2πJ12I1zI2z (3.17)

where ωi = 2πνi are the chemical shift of the spins in rad s−1, ωrf reference chemical
shift of rotating frame, and J12 is the spin-spin coupling constant. An average longitu-
dinal T1 relaxation time of 7.4 s and an average transverse T2 relaxation time of 3.25 s
was experimentally measured for both the qubits. The experiments were performed at
an ambient temperature of 298 K on a Bruker Avance III 600 MHz NMR spectrometer
equipped with a QXI probe. The two-qubit system was initialized into the pseudopure
state |00〉 using the spatial averaging technique [21], with the density operator given
by

ρ00 =
1− ε

4
I + ε|00〉〈00| (3.18)

with a thermal polarization ε ≈ 10−5 and I being a 4 × 4 identity operator. The ex-
perimentally created pseudopure state |00〉 was tomographed with a fidelity of 0.99.
The pulse propagators for selective excitation were constructed using the GRAPE al-
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gorithm [22] to design the amplitude and phase modulated rf profiles. Selective ex-
citation was typically achieved with pulses of duration 1 ms. Numerically generated
GRAPE pulse profiles were optimized to be robust against rf inhomogeneity and had
an average fidelity of ≥ 0.99. All experimental density matrices were reconstructed
using a quantum state tomography via maximum likelihood protocol (Chapter 2). The
fidelity of an experimental density matrix was computed using Eq. (2.32).

3.3.2 Super-Zeno scheme for state preservation

When the subspace P is a one-dimensional subspace, and hence consists of a single
state, the super-Zeno scheme becomes a state preservation scheme.

3.3.2.1 Preservation of product states:

We begin by implementing the super-Zeno scheme on the product state |11〉 of two
qubits, where the Hilbert space can be decomposed as a direct sum of the subspaces
P = {|11〉} and Q = {|00〉, |01〉, |10〉)}. The super-Zeno pulse J to protect the state
|11〉 ∈ P is given by Eqn. (3.1):

J = I − 2|11〉〈11| (3.19)

with the corresponding matrix form

J =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (3.20)

The super-Zeno circuit to preserve the |11〉 state, and the corresponding NMR pulse
sequence is given in Fig. 3.2. The controlled-phase gate (Z) in Fig. 3.2(a) which
replicates the unitary kick J for preservation of the |11〉 state is implemented using a
set of three sequential gates: two Hadamard gates on the second qubit sandwiching
a controlled-NOT gate (CNOT12), with the first qubit as the control and the second
qubit as the target. The ∆i time interval in Fig. 3.2(a) is given by ∆i = xit, with xi as
defined in Eq. (3.16). The five ∆i time intervals were worked to be 0.095 ms, 0.25 ms,
0.3 ms, 0.25 ms, and 0.095 ms respectively, for t = 1 ms. One run of the super-Zeno
circuit (with four inverting Js and five ∆i time evolution periods) takes approximately
300 ms and the entire preserving sequence WN(t) in Eq. (3.16) was applied 30 times.
The final state of the system was reconstructed using state tomography and the real
and imaginary parts of the tomographed experimental density matrices without any

66



3.3 Experimental implementations of super-Zeno scheme

|0〉

|0〉
∆1 ∆2 ∆3 ∆4 ∆5

∆5∆1

|1
1
〉

Z Z Z Z

s s s s N

N

|0〉 . . .

. . .|0〉

x x -x
-x

-x

-x

y

x

-y

τ12

x -x
-x

-x

-x

y

x

-y

τ12

G

(a)

(b)

T

O

M

O

G

R

A

P

H

Y

Figure 3.2: (a) Quantum circuit for preservation of the state |11〉 using the super-Zeno
scheme. ∆i = xit, (i = 1...5) denote time intervals punctuating the unitary operation
blocks. Each unitary operation block contains a controlled-phase gate (Z), with the first
(top) qubit as the control and the second (bottom) qubit as the target. The entire scheme
is repeated N times before measurement (for our experiments N = 30). (b) Block-wise
depiction of the corresponding NMR pulse sequence. A z-gradient is applied just before
the super-Zeno pulses, to clean up undesired residual magnetization. The unfilled and
black rectangles represent hard 1800 and 900 pulses respectively, while the unfilled and
gray-shaded conical shapes represent 1800 and 900 pulses (numerically optimized using
GRAPE) respectively; τ12 is the evolution period under the J12 coupling. Pulses are la-
beled with their respective phases and unless explicitly labeled, the phase of the pulses on
the second (bottom) qubit are the same as those on the first (top) qubit.
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Figure 3.3: Real (left) and imaginary (right) parts of the experimental tomographs of
the (a) |11〉 state, with a computed fidelity of 0.99. (b)-(e) depict the state at T =

0.61, 3.03, 5.46, 7.28 s, with the tomographs on the left and the right representing the
state without and after applying the super-Zeno preserving scheme, respectively. The rows
and columns are labeled in the computational basis ordered from |00〉 to |11〉.
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preservation and after applying the super-Zeno scheme, are shown in Fig. 3.3. The
initial |11〉 state (at time T = 0 s) was created (using the spatial averaging scheme)
with a fidelity of 0.99. The tomographs (on the right in Fig. 3.3) clearly show that state
evolution has been frozen with the super-Zeno scheme.

3.3.2.2 Preservation of entangled states

We next apply the super-Zeno scheme to preserve an entangled state in our system of
two qubits. We chose the singlet state 1√

2
(|01〉 − |10〉) as the entangled state to be

preserved. It is well known that entanglement is an important but fragile resource for
quantum information processing and constructing schemes to protect entangled states
from evolving into other states, is of considerable interest in quantum information
processing [1].

We again write the Hilbert space as a direct sum of two subspaces: the subspace
being protected and the subspace orthogonal to it. In this case, the one-dimensional
subspace P being protected is

P =

{
1√
2

(|01〉 − |10〉)
}

(3.21)

and the orthogonal subspace Q into which one would like to prevent leakage is

Q =

{
1√
2

(|01〉+ |10〉), |00〉, |11〉
}

(3.22)

The super-Zeno pulse to protect the singlet state as constructed using Eq. (3.1) is:

J = I − (|01〉〈01|+ |10〉〈10| − |01〉〈10| − |10〉〈01|) (3.23)

with the corresponding matrix form:

J =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.24)

The quantum circuit and the NMR pulse sequence for preservation of the singlet
state using the super-Zeno scheme are given in Fig. 3.4. Each J inverting pulse in
the unitary block in the circuit is decomposed as a sequential operation of three non-
commuting controlled-NOT gates: CNOT12-CNOT21-CNOT12, where CNOTij denotes
a controlled-NOT with i as the control and j as the target qubit. The five ∆i time in-
tervals were worked to be 0.95 ms, 2.5 ms, 3 ms, 2.5 ms, and 0.95 ms respectively, for
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Figure 3.4: (a) Quantum circuit for preservation of the singlet state using the super-Zeno
scheme. ∆i, (i = 1...5) denote time intervals punctuating the unitary operation blocks.
The entire scheme is repeatedN times before measurement (for our experimentsN = 10).
(b) NMR pulse sequence corresponding to one unitary block of the circuit in (a). A z-
gradient is applied just before the super-Zeno pulses, to clean up undesired residual mag-
netization. The unfilled rectangles represent hard 1800 pulses, the black filled rectangles
representing hard 900 pulses, while the shaded shapes represent numerically optimized
(using GRAPE) pulses and the gray-shaded shapes representing 900 pulses respectively;
τ12 is the evolution period under the J12 coupling. Pulses are labeled with their respective
phases and unless explicitly labeled, the phase of the pulses on the second (bottom) qubit
are the same as those on the first (top) qubit.
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Figure 3.5: Real (left) and imaginary (right) parts of the experimental tomographs of the
(a) 1√

2
(|01〉−|10〉) (singlet) state, with a computed fidelity of 0.99. (b)-(e) depict the state

at T = 0.85, 2.54, 4.24, 5.93 s, with the tomographs on the left and the right representing
the state without and after applying the super-Zeno preserving scheme, respectively. The
rows and columns are labeled in the computational basis ordered from |00〉 to |11〉.
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t = 10 ms. One run of the super-Zeno circuit (with four inverting Js and five ∆i time
evolution periods) takes approximately 847 ms and the entire super-Zeno preserving
sequence WN(t) in Eq. (3.16), is applied 10 times.

The singlet state was prepared from an initial pseudopure state |00〉 by a sequence
of three gates: a non-selective NOT gate (hard πx pulse) on both qubits, a Hadamard
gate and a CNOT12 gate. The singlet state thus prepared was computed to have a
fidelity of 0.99. The effect of chemical shift evolution during the delays was compen-
sated for with refocusing pulses. The final singlet state has been reconstructed using
state tomography, and the real and imaginary parts of the tomographed experimental
density matrices without any preservation and after applying the super-Zeno scheme,
are shown in Fig. 3.5. As can be seen from the experimental tomographs in Fig. 3.5, the
evolution of the singlet state is almost completely frozen by the super-Zeno sequence
upto nearly 6 s, while without any preservation the state has leaked into the orthogonal
subspace within 2 s.
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Figure 3.6: Plot of fidelity versus time of (a) the |11〉 state and (b) the 1√
2
(|01〉−|10〉) (sin-

glet) state, without any preserving scheme and after the super-Zeno preserving sequence.
The fidelity of the state with the super-Zeno preservation remains close to 1.

3.3.2.3 Estimation of state fidelity

The plots of state fidelity versus time are shown in Fig. 3.6 for the state |11〉 and the
singlet state, with and without the super-Zeno preserving sequence. The deviation den-
sity matrix is renormalized at every point and the state fidelity is estimated using the
definition in Eq. (2.32). Renormalization is performed since our focus here is on the

72



3.3 Experimental implementations of super-Zeno scheme

quantum state of the spins contributing to the signal and not on the number per se of
participating spins [150]. The norm of deviation density matrix is proportional to the
intensity of the tomographed spectra and is proportional to the number of spins con-
tributing to the signal intensity. Due to super-Zeno preserving pulses, an attenuation in
signal intensity takes place and we renormalize the intensity of the of the tomographed
spectra in order to compensate for this attenuation. The plot of signal intensity versus
time is shown in Fig. 3.7 for the state |11〉 and the singlet state, with the super-Zeno
preserving sequence. The exponential intensity decay constant is 0.136±0.006 s−1 for
the |11〉 state and 0.393± 0.013 s−1 for the singlet state.

The plots in Fig. 3.6 and the tomographs in Fig. 3.3 and Fig. 3.5 show that with
super-Zeno protection, the state remains confined to the |11〉 (singlet) part of the den-
sity matrix, while without the protection scheme, the state leaks into the orthogonal
subspace. As seen from both plots in Fig. 3.6, the state evolution of specific states can
be arrested for quite a long time using the super-Zeno preservation scheme, while leak-
age probability of the state to other states in the orthogonal subspace spanned by Q is
minimized. A similar renormalization procedure is adopted in the subsequent sections
where we plot the leak fraction and entanglement parameters (Fig. 3.12 and Fig. 3.13).
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(singlet) state, after the super-Zeno preserving sequence.
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Figure 3.8: (a) Quantum circuit for preservation of the {01, 10} subspace using the super-
Zeno scheme. ∆i, (i = 1...5) denote time intervals punctuating the unitary operation
blocks. The entire scheme is repeated N times before measurement (for our experiments
N = 30). (b) NMR pulse sequence corresponding to the circuit in (a). A z-gradient is
applied just before the super-Zeno pulses, to clean up undesired residual magnetization.
The unfilled rectangles represent hard 1800 pulses; τ12 is the evolution period under the
J12 coupling. Pulses are labeled with their respective phases.
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3.3.3 Super-Zeno for subspace preservation
While in the previous subsection, the super-Zeno scheme was shown to be effective
in arresting the evolution of a one-dimensional subspace (as applied to the cases of a
product and an entangled state), the scheme is in fact more general. For example, if
we choose a two-dimensional subspace in the state space of two qubits and protect it
by the super-Zeno scheme, then any state in this subspace is expected to remain within
this subspace and not leak into the orthogonal subspace. While the state can meander
within this subspace, its evolution out of the subspace is frozen.

We now turn to implementing the super-Zeno scheme for subspace preservation, by
constructing the J operator to preserve a general state embedded in a two-dimensional
subspace. We choose the subspace spanned by P = {|01〉, |10〉} as the subspace to be
preserved, with its orthogonal subspace now being Q = {|00〉, |11〉}. It is worth noting
that within the subspace being protected, we have product as well as entangled states.

The super-Zeno pulse J to protect a general state |ψ〉 ∈ P can be constructed as:

J = I − 2 (|01〉〈01|+ |10〉〈10|) (3.25)

with the corresponding matrix form

J =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (3.26)

The quantum circuit and corresponding NMR pulse sequence to preserve a general
state in the {|01〉, |10〉} subspace is given in Fig. 3.8. The unitary kick (denoted as Uzz
in the unitary operation block in Fig. 3.8(a)) is implemented by tailoring the gate time
to the J-coupling evolution interval of the system Hamiltonian, sandwiched by non-
selective π pulses (NOT gates), to refocus undesired chemical shift evolution during
the action of the gate. The five ∆i intervals were worked to be 0.95 ms, 2.5 ms, 3 ms,
2.5 ms and 0.95 ms respectively, for t = 10 ms. One run of the super-Zeno circuit
(with four inverting Js and five ∆i time evolution periods) takes approximately 288
ms and the entire super-Zeno preserving sequence WN(t) in Eqn. (3.16), is applied 30
times.

3.3.3.1 Preservation of product states in the subspace

We implemented the subspace-preserving scheme on two different (separable) states
|01〉 and |10〉 in the subspace P. The efficacy of the preserving unitary is verified by
tomographing the experimental density matrices at different time points and computing
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00

01
10

11

00
01
10

11

00
01

10
11

00
01

10
1100

01 10

11

00
01

10
11

00
01

10
11

00
01

10
11

00
01

10
11

00
01
10

11

00

01
10
11

00
01

10
1100

01
10

11

00
01

10
11

00
01

10
11

00
01

10
11

00
01

10
11

00
01

10
11

00
01

10
11

00
01

10
1100

01
10

11

00
01

10
11

00
01

10
11

00
01

10
11

00
01

10
11

00
01

10
11

00

01
10

11

00

01
10

1100
01

10
11

00
01

10
11

00
01

10
11

00
01

10
11

00

01

10
11

00
01

10
11

00
01

10
11

00
01

10
11

(a)

(b)

(c)

(d)

(e)

Initial State (T = 0s)

T = 1.15s

T = 3.45s

T = 5.75s

T = 7.48s

No Super Zeno With Super Zeno

Figure 3.9: Real (left) and imaginary (right) parts of the experimental tomographs of the
(a) |10〉 state in the two-dimensional subspace {01, 10}, with a computed fidelity of 0.98.
(b)-(e) depict the state at T = 1.15, 3.45, 5.75, 7.48 s, with the tomographs on the left
and the right representing the state without and after applying the super-Zeno preserving
scheme, respectively. The rows and columns are labeled in the computational basis ordered
from |00〉 to |11〉.
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No Super Zeno With Super Zeno

Figure 3.10: Real (left) and imaginary (right) parts of the experimental tomographs of the
(a) |01〉 state in the two-dimensional subspace {01, 10}, with a computed fidelity of 0.99.
(b)-(e) depict the state at T = 1.15, 3.45, 5.75, 7.48 s, with the tomographs on the left
and the right representing the state without and after applying the super-Zeno preserving
scheme, respectively. The rows and columns are labeled in the computational basis ordered
from |00〉 to |11〉.
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Figure 3.11: Real (left) and imaginary (right) parts of the experimental tomographs of
the (a) 1√

2
(|01〉 − |10〉) (singlet) state in the two-dimensional subspace {01, 10}, with a

computed fidelity of 0.98. (b)-(e) depict the state at T = 1.15, 3.46, 5.77, 7.50 s, with
the tomographs on the left and the right representing the state without and after applying
the super-Zeno preserving scheme, respectively. The rows and columns are labeled in the
computational basis ordered from |00〉 to |11〉.
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the state fidelity. Both the |01〉 and |10〉 states remain within the subspace P and do
not leak out to the orthogonal subspace Q = {|00〉, |11〉}.

The final |10〉 state has been reconstructed using state tomography, and the real
and imaginary parts of the experimental density matrices without any preservation and
after applying the super-Zeno scheme, tomographed at different time points, are shown
in Fig. 3.9. As can be seen from the experimental tomographs, the evolution of the |10〉
state out of the subspace is almost completely frozen by the super-Zeno sequence upto
nearly 7.5 s, while without any preservation the state has leaked into the orthogonal
subspace within 3.5 s. The tomographs showed in Fig. 3.10 for the |01〉 state, show a
similar level of preservation.

3.3.3.2 Preservation of an entangled state in the subspace

We now prepare an entangled state (the singlet state) embedded in the two-dimensional
P = {|01〉, |10〉} subspace, and used the subspace-preserving scheme described in
Fig. 3.8 to protect P. The singlet state was reconstructed using state tomography, and
the real and imaginary parts of the tomographed experimental density matrices without
any preservation and after applying the super-Zeno scheme, are shown in Fig. 3.11. As
can be seen from the experimental tomographs, the state evolution remains within the
P subspace but the state itself does not remain maximally entangled.

3.3.3.3 Estimating leakage outside subspace

An ensemble of spins initially prepared in a state belonging to the subspace P =
{|01〉, |10〉}, can evolve to the orthogonal subspace Q = {|00〉, |11〉} due to unwanted
interactions with its environment. This evolution of the state to the orthogonal sub-
space is called leakage. We applied super-Zeno scheme to protect leakage of a state
from subspace P to subspace Q. The subspace-preserving capability of the circuit given
in Fig. 3.8 was quantified by computing a leakage parameter that defines the amount
of leakage of the state to the orthogonal Q = {|00〉, |11〉} subspace.

For a given density operator ρ the “leak (fraction)” δ, into the subspace Q is defined
as

δ = 〈00|ρ|00〉+ 〈11|ρ|11〉 (3.27)

The leak (fraction) δ represents the number of spins of the ensemble that have migrated
to the subspace Q divided by the total number of spins in the ensemble; δ is equal to one
when all the states remain in the subspace P and is equal to zero if all the states have
leaked to the subspace Q. The leak (fraction) δ versus time is plotted in Figs. 3.12(a)
and (b), for the |10〉 and the singlet state respectively, with and without applying the
super-Zeno subspace-preserving sequence. The leakage parameter remains close to
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Figure 3.12: Plot of leakage fraction from the {|01〉, |10〉} subspace to its orthogonal
subspace {|00〉, |11〉} of (a) the |10〉 state and (b) the 1√

2
(|01〉 − |10〉) (singlet) state,

without any preservation and after applying the super-Zeno sequence. The leakage to
the orthogonal subspace is minimal (remains close to zero) after applying the super-Zeno
scheme.

zero for both kinds of states, proving the success and the generality of the super-Zeno
scheme.

3.3.4 Preservation of entanglement
The amount of entanglement that remains in the state after a certain time is quantified
by an entanglement parameter denoted by η. Since we are dealing with mixed bipar-
tite states of two qubits, all entangled states will be negative under partial transpose
(NPT). For such NPT states, a reasonable measure of entanglement is the minimum
eigen value of the partially transposed density operator. For a given experimentally
tomographed density operator ρ, we obtain ρPT by taking a partial transpose with re-
spect to one of the qubits. The entanglement parameter η for the state ρ in terms of the
smallest eigen value Eρ

Min of ρPT is defined as

η =


−Eρ

Min if Eρ
Min < 0

0 if Eρ
Min > 0

(3.28)

We will use this entanglement parameter η to quantify the amount of entanglement at
different times.
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3.3 Experimental implementations of super-Zeno scheme

The maximally entangled singlet state was created and its evolution studied in two
different scenarios. In the first scenario described in Sec. 3.3.2, the singlet state was
protected against evolution by the application of the super-Zeno scheme. In the second
scenario described in Sec. 3.3.3, a two-dimensional subspace containing the singlet
state was protected using the super-Zeno scheme. For the former case, one expects
that the state will remain a singlet state, while in the latter case, it can evolve within
the protected two-dimensional subspace. Since in the second case, the protected sub-
space contains entangled as well as separable states, one does not expect preserva-
tion of entanglement to the same extent as expected in the first case, where the one-
dimensional subspace defined by the singlet state itself is protected. The experimental
tomographs at different times and fidelity for the case of state protection and the leak-
age fraction for the case of subspace protection have been discussed in detail in the
previous subsections. Here we focus our attention on the entanglement present in the
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Figure 3.13: Plot of entanglement parameter η with time, with and without applying the
super-Zeno sequence, computed for (a) the 1√

2
(|01〉 − |10〉) (singlet) state, and (b) the

same singlet state when embedded in the subspace {|01〉, |10〉} being preserved.

state at different times. The entanglement parameter η for the evolved singlet state
is plotted as a function of time and is shown in Figs. 3.13(a) and (b), after applying
the state-preserving and the subspace-preserving super-Zeno sequence respectively. In
both cases, the state becomes disentangled very quickly (after approximately 2 s) if
no super-Zeno preservation is performed. After applying the state-preserving super-
Zeno sequence (Fig. 3.13(a)), the amount of entanglement in the state remains close
to maximum for a long time (upto 8 s). After applying the subspace-preserving super-
Zeno sequence (Fig. 3.13(b)), the state shows some residual entanglement over long
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3. Experimental protection of quantum states via a super-Zeno scheme

times but it is clear that the state is no longer maximally entangled. This implies that
the subspace-preserving sequence does not completely preserve the entanglement of
the singlet state, as expected. However, while the singlet state becomes mixed over
time, its evolution remains confined to states within the two-dimensional subspace
(P = {|01〉, |10〉}) being preserved as is shown in Fig. 3.12, where we calculate the
leak (fraction).

3.4 Conclusions
In this chapter it was experimentally demonstrated that the super-Zeno scheme can ef-
ficiently preserve states in one and two-dimensional subspaces, by preventing leakage
to a subspace orthogonal to the subspace being preserved. The super-Zeno sequence
was implemented on product as well as on entangled states, embedded in one- and
two-dimensional subspaces of a two-qubit NMR quantum information processor. The
advantage of the super-Zeno protection lies in its ability to preserve the state such
that while the number of spins in that particular state reduces with time, the state re-
mains the same. Without the super-Zeno protection, the number of spins in the state
reduces with time and the state itself migrates towards a thermal state, reducing the fi-
delity. This work adds to the arsenal of real-life attempts to protect against evolution of
states in quantum computers and points the way to the possibility of developing hybrid
strategies (combining the super-Zeno scheme with other schemes such as dynamical
decoupling sequences) to tackle preservation of fragile computational resources such
as entangled states.
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Chapter 4

Experimental protection of unknown
states using nested Uhrig dynamical
decoupling sequences

4.1 Introduction

Different decoupling strategies can be used to decouple a quantum system from its
environment, thus controlling the effect of undesired changes. In Chapter 3, we pro-
tected a known state of the system and also prevented leakage from a known subspace
of the system via the super-Zeno scheme. While protecting against leakage from the
subspace, the state was not leaking out to the orthogonal subspace but was evolving
within the subspace. Hence, the obvious question comes to mind: can one freeze this
evolution within the subspace? The answer is yes; an unknown state in a known sub-
space can be frozen using nested Uhrig dynamical decoupling sequences. DD schemes
rely on the repeated application of control pulses and delays to remove the unwanted
contributions due to system-environment interaction [95]. For a quantum system cou-
pled to a bath, the DD sequence decouples the system and bath by adding a suitable
decoupling interaction, periodic with cycle time Tc to the overall system-bath Hamilto-
nian [96]. After N applications of the cycle for a time NTc, the system is governed by
a stroboscopic evolution under an effective average Hamiltonian, in which system-bath
interaction terms are no longer present.

More sophisticated DD schemes are of the Uhrig dynamical decoupling (UDD)
type, wherein the pulse timing in the DD sequence is tailored to produce higher-order
cancellations in the Magnus expansion of the effective average Hamiltonian, thereby
achieving system-bath decoupling to a higher order and hence stronger noise protec-
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tion [141, 151, 152, 153, 154]. A UDD sequence can suppress decoherence up to
O(TN+1) with only N pulses. In a UDD sequence, the kth control pulse is applied at
the time

Tk = T sin2

(
kπ

2N + 2

)
; k = 1, 2, . . . , N. (4.1)

UDD schemes are applicable when the control pulses can be considered as ideal
(i.e. instantaneous) and when the environment noise has a sharp frequency cutoff [57,
100, 155, 156]. These initial UDD schemes dealt with protecting a single qubit against
different types of noise, and were later expanded to a whole host of optimized se-
quences involving nonlocal control operators, to protect multi-qubit systems against
decoherence [58, 157, 158, 159, 160, 161].

While UDD schemes can well protect states against single- and two-axis noise
(i.e. pure dephasing and/or pure bit-flip), they are not able to protect against general
three-axis decoherence [162]. Nested UDD (NUDD) schemes were hence proposed
to protect multiqubit systems in generic quantum baths to arbitrary decoupling orders,
by nesting several UDD layers. The structure of the Hamiltonian was exploited and an
appropriate set of mutually orthogonal operation set (MOOS) was designed. On the
basis of commutation and anticommutation property of operators in an MOOS with
Hamiltonian, the NUDD scheme was constructed such that after nesting of operator
layers only those terms remained in the generating algebra of Hamiltonian which did
not affect the state. It was shown that the NUDD scheme can preserve a set of uni-
tary Hermitian system operators (and hence all operators in the Lie algebra generated
from this set of operators) that mutually either commute or anticommute [163, 164].
Furthermore, it was proved that the NUDD scheme is universal i.e. it can preserve the
coherence ofm coupled qubits by suppressing decoherence upto orderN , independent
of the nature of the system-environment coupling [165].

The efficiency of NUDD schemes in protecting unknown randomly generated two-
qubit states was shown to be a powerful approach for protecting quantum states against
decoherence [61]. Numerical simulations on a five-spin system were carried out in this
context. Two of the five spins were identified as a two-qubit system and the other three
spins were regarded as the bath. To show the efficacy of the NUDD scheme, it was
applied on ten arbitrary states belonging to a known subspace. For the correct nesting
of UDD layers a remarkably high fidelity was achieved in locking the initial unknown
superposition state [61].

In this chapter, the efficacy of protection of the NUDD scheme is first evaluated by
applying it on four specific states of the subspace P = {|01〉, |10〉} i.e. two separa-
ble states: |01〉 and |10〉, and two maximally entangled singlet and triplet Bell states:

1√
2
(|01〉 − |10〉) and 1√

2
(|01〉 + |01〉) in a four-dimensional two-qubit Hilbert space.

Next, to evaluate the effectiveness of the NUDD scheme on the entire subspace, ran-
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domly states are generated in the subspace P (considered as a superposition of the
known basis states |01〉, |10〉) and protected them using NUDD scheme. Eight states in
the two-qubit subspace randomly generated and protected using a three-layer NUDD
sequence. Full state tomography is used to compute the experimental density matri-
ces. Each state is allowed to decohere, and the state fidelity is computed at each time
point without protection and after NUDD protection. The results are presented as a
histogram and showed that while NUDD is always able to provide some protection,
the degree of protection varies from state to state.

4.2 The NUDD scheme
Consider a two-qubit quantum system with its state space spanned by the states {|00〉,
|01〉, |10〉, |11〉}, the eigenstates of the Pauli operator σ1

z⊗σ2
z . Our interest is in protect-

ing states in the subspace P spanned by states {|01〉, |10〉}, against decoherence. The
density matrix corresponding to an arbitrary pure state |ψ〉 = α|01〉+β|10〉 belonging
to the subspace P is given by

ρ(t) =


0 0 0 0
0 |α|2 αβ∗ 0
0 βα∗ |β|2 0
0 0 0 0

 (4.2)

with the coefficients α and β satisfying |α|2 + |β|2 = 1 at time t = 0. We describe here
the theoretical construction of a three-layer NUDD scheme to protect arbitrary states
in the two-qubit subspace P [58, 61].

The general total Hamiltonian of a two-qubit system interacting with an arbitrary
bath can be written as

Htotal = HS +HB +HjB +H12 (4.3)

whereHS is the system Hamiltonian,HB is the bath Hamiltonian,HjB is qubit-bath in-
teraction Hamiltonian andH12 is the qubit-qubit interaction Hamiltonian (which can be
bath-dependent). Our interest here is in bath-dependent terms and their control, which
can be expressed using a special basis set for the two-qubit system as follows [58, 61]:

H = HB +HjB +H12

=
16∑
j=1

WjYj (4.4)

where the coefficients Wj contain arbitrary bath operators. Y are the special ba-
sis computed from the perspective of preserving the subspace spanned by the states
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{|01〉, |10〉} in the two-qubit space [58, 61]:

Y1 = I, Y2 = |01〉〈01|+ |10〉〈10|,
Y3 = |00〉〈11|, Y4 = |00〉〈00| − |11〉〈11|,
Y5 = |11〉〈00|, Y6 = |01〉〈01| − |10〉〈10|,
Y7 = |10〉〈00|, Y8 = |00〉〈10|,
Y9 = |10〉〈11|, Y10 = |11〉〈10|,
Y11 = |01〉〈00|, Y12 = |00〉〈01|,
Y13 = |01〉〈11|, Y14 = |11〉〈01|,
Y15 = |01〉〈10|+ |10〉〈01|,
Y16 = −i(|10〉〈01| − |01〉〈10|). (4.5)

To protect a general two-qubit state |ψ〉 ∈ P against decoherence using NUDD,
we are required to protect diagonal populations |α|2, |β|2 and off-diagonal coherences
αβ∗. Hence the locking scheme requires the nesting of three layers of UDD sequences.
• Innermost UDD layer: The diagonal populations Tr[ρ(t)|01〉〈01|] ≈ |α|2 are locked
by this UDD layer with the control operator

X0 = I − 2|01〉〈01|. (4.6)

We can write the total Hamiltonian,

H = H0 +H1,

H0 =
10∑
i=1

WiYi,

H1 =
16∑
i=11

WiYi, (4.7)

such that the X0 commute with H0, i.e. [X0, H0] = 0 and anti-commute with H1, i.e.
{X0, H1}+ = 0. An inverting pulse with control Hamiltonian,

Hc =
N∑
j=1

πδ(t− Tj)
X0

2
, (4.8)

applied with the UDD timing Tj , defined as :

Tj = T sin2(
jπ

2N + 2
), j = 1, 2 · · · , N. (4.9)
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The unitary evolution operator of the system for time period t = 0 to t = T is given
by (~ = 1) :

UN(T ) = XN
0 e
−i[H0+H1](T−TN )(−iX0)

× e−i[H0+H1](TN−TN−1)(−iX0)

· · ·
× e−i[H0+H1](T3−T2)(−iX0)

× e−i[H0+H1](T2−T1)(−iX0)

× e−i[H0+H1]T1 . (4.10)

Using the UDD universality proof [58] and the fact that H0 and H1 commute and
anticommute respectively with X0, it can be shown that

UN(T ) = U even
N +O(TN+1), (4.11)

where

U even
N = exp(−iH0T )

+∞∑
k=0

(−i)2k∆2k, (4.12)

with ∆2k containing only even powers of HI
1 (t), defined by

HI
1 (t) ≡ exp(iH0t)H1 exp(−iH0t).

∆2k can be expanded as a linear superposition of all possible basis operators that com-
mute with X0. i.e.

∆2k =
10∑
i=1

AiYi (4.13)

where Ai are the expansion coefficients containing bath operators. The N th order,
UN(T ) can be expressed as a combination of Y1, Y2, · · · , Y10 only. Using the closure
of this set of operators, i.e.,(

10∑
i=1

AiYi

)(
10∑
k=1

BkYk

)
=

10∑
l=1

ClYl (4.14)

we further obtain

UN(T ) = exp(−iHUDD-1
eff T ) +O(TN+1), (4.15)

where

HUDD-1
eff =

10∑
i=1

D1,iYi, (4.16)
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whereD1,i refer to the expansion coefficients of this first UDD layer. Terms containing
basis operators Y11 · · ·Y16 are efficiently decoupled.
• Second UDD layer: The diagonal populations Tr[ρ(t)|10〉〈10|] ≈ |β|2 are locked by
this second UDD layer with the control operator

X1 = I − 2|10〉〈10| (4.17)

We can further decompose the effective Hamiltonian after the first layer HUDD-1
eff into

HUDD-1
eff = HUDD-1

eff,0 +HUDD-1
eff,1 , (4.18)

such that [HUDD-1
eff,0 , X1] = 0 and {HUDD-1

eff,1 , X1}+ = 0. where

HUDD-1
eff,0 ≡

6∑
i=1

D1,iYi;

HUDD-1
eff,1 ≡

10∑
i=7

D1,iYi. (4.19)

It is straightforward to see that the operators Yi, i = 1−6 form a closed algebra. Hence
when a second layer of UDD sequence of X1 is applied to the N th order, the dynamics
of HUDD-1

eff reduce to

HUDD-2
eff =

6∑
i=1

D2,iYi, (4.20)

where D2,i refer to the expansion coefficients of this second UDD layer. Terms con-
taining basis operators Y7 · · ·Y10 are efficiently decoupled.
• Outermost UDD layer: The off-diagonal coherences Tr[ρ(t)|01〉〈10|] ≈ αβ∗ are
locked by this final UDD layer with the control operator

Xφ = I − [|01〉+ |10〉][〈01|+ 〈10|]. (4.21)

Again we can write the effective Hamiltonian after the second layer as

HUDD−2
eff = HUDD−2

eff,0 +HUDD−2
eff,1 , (4.22)

such that [HUDD-2
eff,0 , Xφ] = 0 and {HUDD-2

eff,1 , Xφ}+ = 0. In the self-closed set of the
operators that form HUDD−2

eff , the only term D2,6Y6 = D2,6[|01〉〈01| − |10〉〈10|] can
affect |ψ(0)〉, which is effectively decoupled by this third layer. The final reduced
effective Hamiltonian after the three-layer NUDD contains five operators: HUDD−3

eff =∑5
i=1 D3,iYi, where D3,i are the coefficients due to three UDD layers.
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4.2 The NUDD scheme

The innermost UDD control X0 pulses are applied at the time intervals Tj,k,l, the
middle layer UDD control X1 pulses are applied at the time intervals Tj,k and the out-
ermost UDD control Xφ pulses are applied at the time intervals Tj (j, k, l = 1, 2, ...N )
given by:

Tj,k,l = Tj,k + (Tj,k+l − Tj,k) sin2

(
lπ

2N + 2

)
Tj,k = Tj + (Tj+1 − Tj) sin2

(
kπ

2N + 2

)
Tj = T sin2

(
jπ

2N + 2

)
(4.23)

The total time interval in the N th order sequence is (N + 1)3 with the total number of
pulses in one run being given by N((N + 1)2 +N + 2) for even N [61].
Summary of the NUDD scheme:

The recipe to design UDD protection for a two-qubit state (say |χ〉) is given in the
following steps: (i) First a control operator Xc is constructed using Xc = I − 2|χ〉〈χ|
such that X2

c = I , with the commuting relation [Xc, H0] = 0 and the anticommuting
relation {Xc, H1} = 0; (ii) The control UDD Hamiltonian is then applied so that sys-
tem evolution is now under a UDD-reduced effective Hamiltonian thus achieving state
protection upto order N ; (iii) Depending on the explicit commuting or anticommuting
relations ofXc withH0 andH1, the UDD sequence efficiently removes a few operators
Yi from the initial generating algebra ofH and hence suppresses all couplings between
the state |χ〉 and all other states.

Yi, i = 1, 2, · · · , 16

⇓X0, UDD-1

Yi, i = 1, 2, · · · , 10

⇓X1,UDD-2

Yi, i = 1, 2, · · · , 6
⇓Xφ,UDD-3

Yi, i = 1, 2, · · · , 5 .
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Figure 4.1: (a) Circuit diagram for the three-layer NUDD sequence. The innermost UDD
layer consists of X0 control pulses, the middle layer comprises X1 control pulses and the
outermost layer consists of Xφ pulses. The entire NUDD sequence is repeated M times;
∆i are time intervals. (b) NMR pulse sequence to implement the control pulses forX0 and
X1 UDD sequences. The values of the rf pulse phases φ1 and φ2 are set to x and y for the
X0 and to −x and −y for the X1 UDD sequence, respectively. (c) NMR pulse sequence
to implement the control pulses for the Xφ UDD sequence. The filled rectangles denote
π/2 pulses while the unfilled rectangles denote π pulses, respectively. The time period τ12

is set to the value (2J12)−1, where J12 denotes the strength of the scalar coupling between
the two qubits.
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1H
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νC=11814.8Hz

νH=4783.0Hz

J12=214.9Hz

TC
1 =16.6s

TH
1 =7.9s

TC
2 =0.3s

TH
2 =2.9s

ωH(in ppm) ωC(in ppm)

Qubit 1 Qubit 2

|1〉 |0〉 |1〉 |0〉

|0〉 |0〉

(a) (b)

(c)

8.2 8.0 7.8 79.5 78.5 77.5

Figure 4.2: (a) Structure of isotopically enriched chloroform-13C molecule, with the 1H
spin labeling the first qubit and the 13C spin labeling the second qubit. The system pa-
rameters are tabulated alongside with chemical shifts νi and scalar coupling J12 (in Hz)
and NMR spin-lattice and spin-spin relaxation times T1 and T2 (in seconds). (b) NMR
spectrum obtained after a π/2 readout pulse on the thermal equilibrium state and (c) NMR
spectrum of the pseudopure |00〉 state. The resonance lines of each qubit in the spectra are
labeled by the corresponding logical states of the other qubit.

4.3 Experimental protection of two qubits using NUDD

4.3.1 Experimental implementation of the NUDD scheme

We now turn to the NUDD implementation for N = 2 on a two-qubit NMR sys-
tem. The entire NUDD sequence can be written in terms of UDD control operators
X0, X1, Xφ (defined in the previous section) and time evolution U(δit) under the gen-
eral Hamiltonian for time interval fractions δi:

Xc(t) = U(δ1t)X0U(δ2t)X0U(δ3t)X1U(δ4t)X0U(δ5t)X0

U(δ6t)X1U(δ7t)X0U(δ8t)X0U(δ9t)XφU(δ10t)X0

U(δ11t)X0U(δ12t)X1U(δ13t)X0U(δ14t)X0U(δ15t)

X1U(δ16t)X0U(δ17t)X0U(δ18t)XφU(δ19t)

X0U(δ20t)X0U(δ21t)X1U(δ22t)X0U(δ23t)

X0U(δ24t)X1U(δ25t)X0U(δ26t)X0U(δ27t) (4.24)

In our implementation, the number of X0, X1 and Xφ control pulses used in one run of
the three-layer NUDD sequence are 18, 6 and 2, respectively.
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Using the UDD timing intervals defined above and applying the condition
∑
δi =

1, their values are computed to be

{δi} = {β, 2β, β, 2β, 4β, 2β, β, 2β, β, 2β, 4β, 2β, 4β, 8β,
4β, 2β, 4β, 2β, β, 2β, β, 2β, 4β, 2β, β, 2β, β} (4.25)

where the intervals between the X0, X1 and Xφ control pulses turn out to be a multiple
of β = 0.015625 .

The NUDD scheme for state protection and the corresponding NMR pulse se-
quence is given in Fig. 4.1. The unitary gates X0, X1, and Xφ drawn in Fig. 4.1(a)
correspond to the UDD control operators already defined in the previous section. The
∆i time interval in the circuit given in Fig. 4.1(a) is defined by ∆i = δit, using the δi
given in Eqn. (4.25). The pulses on the top line in Figs. 4.1(b) and (c) are applied on
the first qubit (1H spin in Fig. 4.2), while those at the bottom are applied on the second
qubit (13C spin in Fig. 4.2), respectively. All the pulses are spin-selective pulses, with
the 90◦ pulse length being 7.6µs and 15.6µs for the proton and carbon rf channels, re-
spectively. When applying pulses simultaneously on both the carbon and proton spins,
care was taken to ensure that the pulses are centered properly and the delay between
two pulses was measured from the center of the pulse duration time. We note here that
the NUDD schemes are experimentally demanding to implement as they contain long
repetitive cycles of rf pulses applied simultaneously on both qubits and the timings of
the UDD control sequences were matched carefully with the duty cycle of the rf probe
being used.

We chose the chloroform-13C molecule as the two-qubit system to implement the
NUDD sequence (Fig. 4.2 for details of system parameters and average NMR relax-
ation times of both the qubits). The two-qubit system Hamiltonian in the rotating frame
(which includes the Hamiltonians HS and H12 of Eqn. 4.3) is given by

Hrot = 2π[(νH − νrfH )IHz + (νC − νrfC )ICz + J12I
H
z I

C
z ] (4.26)

where νH (νC ) is the chemical shift of the 1H(13C) spin, νrfi is the rotating frame
frequency (νrfi = νi for on-resonance), IHz (ICz ) is the z component of the spin angular
momentum operator for the 1H(13C) spin, and J12 is the spin-spin coupling constant.

The two qubits were initialized into the pseudopure state |00〉 using the spatial
averaging technique [166], with the corresponding density operator given by

ρ00 =
1− ε

4
I + ε|00〉〈00| (4.27)

with a thermal polarization ε ≈ 10−5 and I being a 4 × 4 identity operator. All ex-
perimental density matrices were reconstructed using quantum state tomography via
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Figure 4.3: Plot of fidelity versus time for (a) the |01〉 state and (b) the |10〉) state, without
any protection and after applying NUDD protection. The fidelity of both the states remains
close to 1 for upto long times, after NUDD protection.

a maximum likelihood protocol (Chapter 2). The experimentally created pseudopure
state |00〉 was tomographed with a fidelity of 0.99. The fidelity of an experimental
density matrix was computed using Eq. (2.32).

4.3.2 NUDD protection of known states in the subspace
We begin evaluating the efficiency of the NUDD scheme by first applying it to protect
four known states in the two-dimensional subspace P, namely two separable and two
maximally entangled (Bell) states.
Protecting two-qubit separable states: We experimentally created the two-qubit sep-
arable states |01〉 and |10〉 from the initial state |00〉 by applying a πx on the second
qubit and on the first qubit, respectively. The states were prepared with a fidelity of
0.98 and 0.97, respectively. One run of the NUDD sequence took 0.12756 s which
included the time taken to implement the control operators, and t = 0.05 s (as per
Eqn. (4.24)). The entire NUDD sequence was applied 40 times. The state fidelity was
computed at different time instants, without any protection and after applying NUDD
protection. The state fidelity remains close to 0.9 for long times (upto 5 s) when NUDD
is applied, whereas for no protection the |01〉 state loses its fidelity (fidelity approaches
0.5) after 3 s and the |10〉 state loses its fidelity after 2 s. A plot of state fidelities ver-
sus time is displayed in Fig. 4.3, demonstrating the remarkable efficacy of the NUDD
sequence in protecting separable two-qubit states against decoherence.
Protecting two-qubit Bell states: We next implemented NUDD protection on the
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Figure 4.4: Real (left) and imaginary (right) parts of the experimental tomographs of
the (a) |01〉 state, with a computed fidelity of 0.98. (b)-(e) depict the state at T =

1.02, 2.04, 3.06, 4.08 s, with the tomographs on the left and the right representing the
state without any protection and after applying NUDD protection, respectively. The rows
and columns are labeled in the computational basis ordered from |00〉 to |11〉.
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Figure 4.5: Real (left) and imaginary (right) parts of the experimental tomographs of
the (a) |10〉 state, with a computed fidelity of 0.97. (b)-(e) depict the state at T =

1.02, 2.04, 3.06, 4.08 s, with the tomographs on the left and the right representing the
state without any protection and after applying NUDD protection, respectively. The rows
and columns are labeled in the computational basis ordered from |00〉 to |11〉.
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Figure 4.6: Real (left) and imaginary (right) parts of the experimental tomographs of the
(a) 1√

2
(|01〉 − |10〉) state, with a computed fidelity of 0.99. (b)-(e) depict the state at

T = 0.28, 0.55, 0.83, 1.10 s, with the tomographs on the left and the right representing the
state without any protection and after applying NUDD protection, respectively. The rows
and columns are labeled in the computational basis ordered from |00〉 to |11〉.
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Figure 4.7: Real (left) and imaginary (right) parts of the experimental tomographs of the
(a) 1√

2
(|01〉 + |10〉) state, with a computed fidelity of 0.99. (b)-(e) depict the state at

T = 0.28, 0.55, 0.83, 1.10 s, with the tomographs on the left and the right representing the
state without any protection and after applying NUDD protection, respectively. The rows
and columns are labeled in the computational basis ordered from |00〉 to |11〉.
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Figure 4.8: Plot of fidelity versus time for (a) the Bell singlet state and (b) the Bell triplet
state, without any protection and after applying NUDD protection.

maximally entangled singlet state 1√
2
(|01〉 − |10〉). We experimentally constructed the

singlet state from the initial |00〉 state via the pulse sequence given in Fig. 4.9 with
values of θ = −π

2
and φ = 0. The fidelity of the experimentally constructed singlet

state was computed to be 0.99.
One run of the NUDD sequence took 0.27756 s and t was kept at t = 0.2 s. The

entire NUDD sequence was applied 4 times on the state. The singlet state fidelity at
different time points was computed without any protection and after applying NUDD
protection, and the state tomographs are displayed in Fig. 4.6. The fidelity of the
singlet state remained close to 0.8 for 1 s when NUDD protection was applied, whereas
when no protection is applied the state decoheres (fidelity approaches 0.5) after 0.55
s. We also implemented NUDD protection on the maximally entangled triplet state

1√
2
(|01〉 + |10〉). We experimentally constructed the triplet state from the initial |00〉

state via the pulse sequence given in Fig. 4.9 with values of θ = π
2

and φ = 0. The
fidelity of the experimentally constructed triplet state was computed to be 0.99. The
total NUDD time was kept at t = 0.2 s and one run of the NUDD sequence took
0.27756 s. The entire NUDD sequence was repeated 4 times on the state. The state
fidelity at different time points was computed without any protection and after applying
NUDD protection and the state tomographs are displayed in Fig. 4.7.

The fidelity of the triplet state remained close to 0.71 for 0.28 s when NUDD
protection was applied, whereas when no protection is applied the state decoheres
quite rapidly (fidelity approaches 0.5) after 0.28 s. A plot of state fidelities of both
Bell states versus time is displayed in Fig. 4.8. While the NUDD scheme was able to
protect the singlet state quite well (the time for which the state remains protected is

98



4.3 Experimental protection of two qubits using NUDD

π
3

π
4

π
4

θ

x x x -x-y

x -x

τ12

G

1H

13C

x -y x -x

-y x -x
φ
2

τ12

|ψ
〉ǫ

{|
0
1
〉,
|1

0
〉}

State Initialization

|00〉〈00|

Figure 4.9: NMR pulse sequence for the preparation of arbitrary states. The sequence of
pulses before the vertical dashed line achieve state initialization into the |00〉 state. The
values of flip angles θ and φ of the rf pulses are the same as the θ and φ values describing
a general state in the two-dimensional subspace P = {|01〉, |10〉}. Filled and unfilled
rectangles represent π2 and π pulses respectively, while all other rf pulses are labeled with
their respective flip angles and phases; the interval τ12 is set to (2J12)−1 where J12 is the
scalar coupling.

double as compared to its natural decay time), it is not able to extend the lifetime of
the triplet state to any appreciable extent. What is worth noting here is the fact that
the state fidelity remains considerably higher under NUDD protection compared to no
protection, implying that there is a reduction in the “leakage” to other states.

4.3.3 NUDD protection of unknown states in the subspace
We wanted to carry out an unbiased assessment of the efficacy of the NUDD scheme
for state protection. To this end, we randomly generated several states in the two-
dimensional subspace P, and applied the NUDD sequence on each state. A general
state in the two-qubit subspace P = {|01〉, |10〉} can be written in the form

|ψ〉 = cos
θ

2
|01〉+ e−ιφ sin

θ

2
|10〉 (4.28)

These states were experimentally created by using the values of θ and φ (Eqn. (4.28))
as the flip angles of the rf pulses in the NMR pulse sequence (see Fig. 4.9 for visu-
alization). The eight randomly generated representative two-qubit states are shown in
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Figure 4.10: Geometrical representation of eight randomly generated states on a Bloch
sphere belonging to the two-qubit subspace P = {|01〉, |10〉}. Each vector makes angles
θ, φ with the z and x axes, respectively. The state labels RS-i (i = 1..8) are explained in
the text.

Fig. 4.10. The entire three-layered NUDD sequence was applied 10 times on each
of the eight random states. The time t for the sequence was kept at t = 0.05 s and
one run of the NUDD sequence took 0.12756 s. The plots of fidelity versus time are
shown as bar graphs in Fig. 4.11, with the cross-hatched bars representing state fidelity
without any protection and the solid bars representing state fidelity after NUDD pro-
tection. The final bar plot in Fig. 4.11(i) shows the average fidelity of all the randomly
generated states at each time point. The results of protecting these random states via
three-layered NUDD are tabulated in Table 4.1. Each state has been tagged by a label
RS-i (RS denoting “Random State” and i = 1, ..8), with its θ, φ values displayed in the
next column. The fourth column displays the values of the natural decoherence time
(in seconds) of each state without NUDD protection, estimated by computing the time
upto which state fidelity does not fall below 0.8. The last column in the table displays
the time for which the state remains protected after applying NUDD, estimated by
computing the time upto which state fidelity does not fall below 0.8. While the NUDD
scheme is able to protect specific states in the subspace with varying degrees of success
(as evidenced from the entries in the last column of in Table 4.1), on an average as seen
from the bar plot of the average fidelity in Fig. 4.11(i), the scheme performs quite well.
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Figure 4.11: Bar plots of fidelity versus time of eight randomly generated states (labeled
RS-i, i = 1..8), without any protection (cross-hatched bars) and after applying NUDD
protection (red solid bars): (a) RS-1, (b) RS-2, (c) RS-3, (d) RS-4, (e) RS-5, (f) RS-6, (g)
RS-7 and (h) RS-8. (i) Bar plot showing average fidelity of all eight randomly generated
states, at each time point.
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Table 4.1: Results of applying NUDD protection on eight randomly generated states in
the two-dimensional subspace. Each random state (RS) is tagged with a number for con-
venience, and its corresponding (θ,φ) angles are given in the column alongside. The fourth
column displays the time at which the state fidelity approaches ≈ 0.8 without NUDD pro-
tection and the last column displays the time for which state fidelity approaches ≈ 0.8

after applying NUDD protection.

State Label (θ, φ)(deg) Time (s) Time (s)
(F > 0.8) (F > 0.8)

Without NUDD With NUDD
0.29|01〉+ (0.94 + ι0.18)|10〉 RS-1 (147,57) 0.1s 1.0s
0.15|01〉 − (0.76 + ι0.63)|10〉 RS-2 (163,349) 0.3s 1.1s
0.98|01〉+ (0.11− ι0.17)|10〉 RS-3 (23,345) 0.1s 1.1s
0.14|01〉+ (0.36− ι0.92)|10〉 RS-4 (164,175) 0.3s 1.1s
0.99|01〉+ (0.10 + ι0.11)|10〉 RS-5 (18,51) 0.3s 1.1s
0.91|01〉+ (0.22 + ι0.36)|10〉 RS-6 (50,152) 0.1s 0.9s

0.07|01〉+ (−0.77 + ι0.64)|10〉 RS-7 (172,285) 0.1s 1.1s
0.06|01〉+ (0.99− ι0.16)|10〉 RS-8 (174,346) 0.3s 1.1s

4.4 Conclusions

In this chapter, a three-layer nested UDD sequence was experimentally implemented
on an NMR quantum information processor and explored its efficiency in protecting
arbitrary states in a two-dimensional subspace of two qubits. The nested UDD layers
were applied in a particular sequence, and the full NUDD scheme was able to achieve
second order decoupling of the system and bath. The scheme is sufficiently general
as it does not assume prior information about the explicit form of the system-bath
coupling. The experiments were highly demanding, with the control operations being
complicated and involving manipulations of both qubits simultaneously. However,
our results demonstrate that such systematic NUDD schemes can be experimentally
implemented, and are able to protect multiqubit states in systems that are arbitrarily
coupled to quantum baths.

In addition, to demonstrate that the NUDD scheme does not depend on the actual
form of an initial superposition state. This scheme was applied to arbitrary states with
randomly sampled coefficients and the experimental results shows that advantage of
the NUDD schemes lies in the fact that one is sure that some amount of state protec-
tion will always be achieved. Furthermore, one need not know anything about the state
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to be protected or the nature of the quantum channel responsible for its decoherence.
All one needs to know is the subspace to which the state belongs. In summary, if the
QIP experimentalist has full knowledge of the state to be protected, it is better to use
UDD schemes that are not nested. However, if there is only partial knowledge of the
state, the QIP experimentalist would do better to use these “generic” NUDD schemes.
If we do not know the subspace to which the state belongs, we need to consider the full
space, which increases the number of nesting layers, and experimentally implementa-
tion becomes a difficult task. The study in this chapter points the way to the realistic
protection of fragile quantum states up to high orders and against arbitrary noise.
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Chapter 5

Experimentally preserving
time-invariant discord using
dynamical decoupling

5.1 Introduction

Interaction of quantum systems with their environment causes the destruction of in-
trinsic quantum properties such as quantum superposition, quantum entanglement and
more general quantum correlations [167]. It has been observed that quantum entan-
glement may disappear completely but there still may exist quantum correlations in
a quantum system. Quantum correlations are thus more fundamental than entangle-
ment [168]. The quantification of quantum correlations, distinction from their classi-
cal counterparts, and their behavior under decoherence, is of paramount importance
to quantum information processing [1]. Several measures of nonclassical correlations
have been developed [168] and their signatures experimentally measured on an NMR
setup [169, 170]. Quantum discord is a measure of nonclassical correlations that are
not accounted for by quantum entanglement [171]. While the intimate connection of
quantum entanglement with quantum nonlocality is well understood and entanglement
has long been considered a source of quantum computational speedup [172], the im-
portance of quantum discord, its intrinsic quantumness and its potential use in quantum
information processing protocols, is being explored in a number of contemporary stud-
ies [173].

A surprising recent finding suggests that for certain quantum states up to some time
t̄, quantum correlations are not destroyed by decoherence whereas classical correla-
tions decay. After time t̄ the situation is reversed and the quantum correlations begin
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to decay [67, 174]. This inherent immunity of such quantum correlations to environ-
mental noise throws up new possibilities for the characterization of quantum behavior
and its exploitation for quantum information processing. The peculiar “frozen” behav-
ior of quantum discord in the presence of noise was experimentally investigated using
photonic qubits [175] and NMR qubits [176, 177]. The class of initial quantum states
that exhibit this sudden transition in their decay rates was theoretically studied under
the action of standard noise channels, and it was inferred that the type of states that
display such behavior depends on the nature of the decohering channel being consid-
ered [178]. Dynamical decoupling (DD) methods have been proposed to protect quan-
tum discord from environment-induced errors [[179]] and a recent work showed that
interestingly, DD schemes can also influence the timescale over which time-invariant
quantum discord remains oblivious to decoherence [180].

In this chapter we demonstrate the remarkable preservation of time-invariant quan-
tum discord upon applying time-symmetric DD schemes of the bang-bang variety, on
a two-qubit NMR quantum information processor. We begin by looking at a measure
for quantum and classical correlations for a special class of two-qubit quantum states,
namely, Bell-diagonal (BD) states. Then the noise affecting a spin system is charac-
terized by experimentally measuring the relaxation of the spins. Considering the spin
system used which is a heteronuclear and the experimental results of the relaxation
parameters, a model is proposed that the decoherence channel acting on the two qubits
is mainly a phase damping channel acting independent on each qubit. According to
this model zero quantum coherences and double quantum coherences decay with same
rates which is equal to the sum of single quantum coherences decay rates. Experi-
mental results validate this model. The BD state experimentally prepared, its decay
is observed and found the quantum correlations freeze for a time interval. The results
obtained from the experiments and theoretical noise model are compared. In the final
section of this chapter, several robust DD sequences are applied to the system in the
BD state, resulting in a significantly prolonged freezing time of quantum correlations.

5.2 Measure for correlations of two qubits
Consider a bipartite system made of an system A and B into a Hilbert space HA ⊗
HB with HA and HB is a Hilbert state of system A and B respectively. The total
correlations of a state in a bipartite quantum system are measured by the quantum
mutual information I(ρAB) defined as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB) (5.1)

where S(ρ) = −Tr{ ρ log2 ρ } is the von Neumann entropy.
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Then the quantum discord is defined as

D(ρAB) = I(ρAB)− C(ρAB) (5.2)

where C(ρAB) is a classical correlations of the state [67, 181]. Next we specify the
quantity used for measuring the classical correlations. Such a quantity is based on
the generalization of the concept of conditional entropy. We know that performing
measurements on system B affects our knowledge of system A. How much system A
is modified by a measurement of B depends on the type of measurement performed
on B. Here the measurement is considered of von Neumann type. It is described by
a complete set of orthonormal projectors {Πk} on subsystem B corresponding to the
outcome k. The classical correlations C(ρAB) are then defined as

C(ρAB) = max
{Πk}

[S(ρA)− S(ρρA|{Πk})] (5.3)

where the maximum is taken over the set of the projective measurements {Πk} and
S(ρρA|{Πk}) =

∑
k pkS(ρk) is the conditional entropy of A, given the knowledge of

the state of B, with pk = TrAB(ρABΠk) and ρk = TrB(ΠkρABΠk)/pk.
Consider a two-qubit quantum system with its state space spanned by the states

{|00〉, |01〉, |10〉, |11〉} and the eigenstates of the Pauli operators σ1
z ⊗σ2

z . Any state for
such a system is locally equivalent to

ρ =
1

4

(
I + ~a.~σ ⊗ I + I ⊗~b.~σ +

3∑
j=1

cjσj ⊗ σj
)

(5.4)

where I is the identity operator, ~σ = (σx, σy, σz) with Pauli spin observables in
the x,y,z direction, ~u = (ux, uy, uz) ∈ R3, ~u~σ = uxσx + uyσy + uzσz (u = a, b, c) .
Here we are only interested in the family of BD states which is described by a density
matrix

ρAB =
1

4

(
I +

3∑
j=1

cjσj ⊗ σj
)

(5.5)

where cj are real constants such that ρAB is a valid density operator. The eigenvalues
of the density matrix ρAB are given by
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λ0 =
1

4
(1− c1 − c2 − c3),

λ1 =
1

4
(1− c1 + c2 + c3),

λ2 =
1

4
(1 + c1 − c2 + c3),

λ3 =
1

4
(1 + c1 + c2 − c3).

(5.6)

The reduced density matrices of ρAB as given in Eq. 5.5 are ρA = I
2

and ρB = I
2
. The

total correlations I(ρ) are given by:

I(ρ) = 2 +
3∑
l=0

λl log2 λl (5.7)

The classical correlations for the BD states given as

C[ρAB] =
2∑
j=1

1 + (−1)jχ

2
log2[1 + (−1)jχ], (5.8)

where χ = max{|c1|, |c2|, |c3|}. The maximization procedure with respect to
the projective measurements, present in the definition of the classical correlations of
Eq.(5.3), can be performed explicitly for the system here considered noticing that
the complete set of the orthogonal projectors is given by Πj = |θj〉〈θj|, with j=1,2,
|θ1〉 = cosθ|0〉+ e−iφsinθ|1〉, |θ2〉 = sinθ|0〉+ e−iφcosθ|1〉, and the state of the system
always remains of the form given by Eq.(5.5) during time evolution [67].

5.3 Characterization of noise channels
In high field NMR, the Zeeman interaction causes a splitting of the energy levels ac-
cording to the field direction and the difference between magnetic quantum numbers

∆mrs = mr −ms (5.9)

defines the order of the coherence. If ∆mrs = 0 the coherence is a zero quantum (ZQ)
coherence, if ∆mrs = ±1 the coherence is a single quantum (SQ) coherence, and if
∆mrs = ±2 the coherence is a double quantum (DQ) coherence. In general, a density
matrix element ρrs represents p-quantum coherence (p = mr −ms) [20, 89]. For our
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two-qubit system we use for the experiments, the experimentally measured longitudi-
nal NMR spin relaxation times are TH

1 ≈ 7.9 s and TC
1 ≈ 16.6 s, which are much longer

than the measured effective NMR transverse spin relaxation rates TH
2 = 0.513± 0.01 s

and TC
2 = 0.193±0.005 s. Since we study the decoherence of the state for an evolution

time of approximately 0.5 s, we neglect the effects of the amplitude-damping channel
whose effects are associated with T1 and assume that the main noise channel for our
system is the phase-damping channel. The effective transverse spin relaxation rates
were measured by applying a 90◦ excitation pulse followed by a decay interval (with
no refocusing pulse) and by fitting the resulting decay of the magnetization. The decay
rate of SQ coherence of spin(i) is given by 1/T i2. Our experimental system is heteronu-
clear, with two different nuclear species (proton and carbon), having very different
Larmor resonance frequencies and hence large chemical shift differences. We hence
hypothesize that each spin decoheres in an independent phase damping channel which
is not correlated with that of the other spin. Therefore, we model the phase damping
channel for this system as a homogeneous dephasing channel acting independently on
each qubit [182]. We use the operator-sum representation formalism and the associated
phase-damping Kraus operators [1].The Kraus operators for a two-qubit system under
phase damping channel are:

E1(t) =
1

2
(1 + e−γ1t)

1
2 (1 + e−γ2t)

1
2 I ⊗ I,

E2(t) =
1

2
(1 + e−γ1t)

1
2 (1− e−γ2t) 1

2 I ⊗ σz,

E3(t) =
1

2
(1− e−γ1t) 1

2 (1 + e−γ2t)
1
2σz ⊗ I,

E4(t) =
1

2
(1− e−γ1t) 1

2 (1− e−γ2t) 1
2σz ⊗ σz, (5.10)

where γ1 = 1/T i2 is the decay constant of the ith spin, I is the identity matrix and σz is
a Pauli matrix. ∑

j

Ej(t)Ej(t)
† = 1, (5.11)

ρBD(t) =
∑
j

Ej(t)ρAB(0)Ej(t)
†. (5.12)

Once we fix the model, we can apply it to any state. One of the qualitative predic-
tions of the model is that the DQ and ZQ decay rates are equal. We measured these rates
in two independent experiments and compared them with those predicted by the above
model (whose parameters are completely fixed). The experimentally measured DQ and
ZQ decay rates were γDQ = 6.395±0.23 s−1 and γZQ = 6.138±0.275 s−1 respectively,
and the theoretically predicted common decay was γ1 +γ2 = 1

TH2
+ 1

TC2
= 7.21±0.173

s−1, showing the model works.

109
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5.3.1 Bell-diagonal states under a dephasing channel
For a two-qubit system where each qubit is affected by an independent local dephasing
channel, to see the evolution under the phase-damping channel acting independently
on each qubit, we use the operator-sum representation formalism and the associated
phase-damping Kraus operators [1]. The evolution in a noisy environment is governed
by the phase-damping channel in Eq. (5.10), and it turns out for Bell-diagonal states
ρAB

c1(t) = c1(0)exp[−(γ1 + γ2)t],

c2(t) = c2(0)exp[−(γ1 + γ2)t],

c3(t) = c3(0). (5.13)

5.4 Time invariant quantum correlations
We now consider a system in the special class of Bell-diagonal states for which c1(0) =
±1 and c2(0) = ∓c3(0), with |c3| < 1 under the dephasing channel as define above in
Eq. (5.10). At time t the total correlations are given by

I[ρAB(t)] =
2∑
j=1

1 + (−1)jc3(t)

2
log2[1 + (−1)jc3(t)] +

2∑
j=1

1 + (−1)jc1(t)

2
log2[1 + (−1)jc1(t)], (5.14)

the classical correlations are given by

C[ρAB(t)] =
2∑
j=1

1 + (−1)jχ(t)

2
log2[1 + (−1)jχ(t)], (5.15)

where χ(t) = max{|c1(t)|, |c2(t)|, |c3(t)|}, and the quantum correlations are given by

D[ρAB(t)] = I[ρAB(t)]− C[ρAB(t)]. (5.16)

We can see that since our system is mainly affected by the phase damping channel,
for

t < t̄ = − ln(|c3|)
2γ

(5.17)

quantum correlations remain constant

D[ρAB(t < t̄)] =
2∑
j=1

1 + (−1)jc3(0)

2
log2[1 + (−1)jc3(0)], (5.18)
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and after t > t̄ the quantum correlations start decreasing towards zero and the classical
correlations of system remain constant which is given by:

C[ρAB(t > t̄)] =
2∑
j=1

1 + (−1)jc3(0)

2
log2[1 + (−1)jc3(0)]. (5.19)

5.5 Experimental realization of time-invariant discord

5.5.1 NMR System
We create and preserve time-invariant discord in a two-qubit NMR system of chloroform-
13C, with the 1H and 13C nuclear spins encoding the two qubits (Fig. 4.2). The ensem-
ble of nuclear spins is placed in a longitudinal strong static magnetic field (B0 ≈
14.1T) oriented along the z direction. The 1H and 13C nuclear spins precess around B0

at Larmor frequencies of ≈ 600 MHz and ≈ 150 MHz, respectively. The evolution of
spin magnetization is controlled by applying rf-field pulses in the x and y directions.
The internal Hamiltonian of the system in the rotating frame is given by Eq.(4.26)

The two-qubit system was initialized into the pseudopure state |00〉 by the spatial
averaging technique [21]. Density matrices were reconstructed from experimental data
by using a reduced set of quantum state tomography (QST) operations combined with
the maximum likelihood method [56] as described in Chapter 2 to avoid any negative
eigen values. The fidelity F of all the experimental density matrices reconstructed in
this work was computed using the Eq.(2.32). The experimentally created pseudopure
state |00〉 was tomographed with a fidelity of 0.99, and the NMR signal of this state
was used as a reference for computation of state fidelity in all subsequent time-invariant
discord experiments.

5.5.2 Observing time-invariant discord
A class of Bell-diagonal (BD) states with maximally mixed marginals defined in terms
of Pauli operators σi are

ρBD =
1

4
( I +

3∑
i=1

ci σi ⊗ σi) (5.20)

where the coefficients ci with 0 ≤ |ci| ≤ 1 determine the state completely and can be
computed as ci = 〈σi ⊗ σi〉.

We aim to prepare an initial BD state with the parameters c1(0) = 1, c2(0) = 0.7,
c3(0) = −0.7. The NMR pulse sequence for the preparation of this state from the |00〉
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Figure 5.1: (a) Quantum circuit for the initial pseudopure state preparation, followed by
the block for BD state preparation. The next block depicts the DD scheme used to preserve
quantum discord. The entire DD sequence is repeated N times before measurement. (b)
NMR pulse sequence corresponding to the quantum circuit. The rf pulse flip angles are set
to α = 46◦ and β = 59.81◦, while all other pulses are labeled with their respective angles
and phases.

pseudopure state is given in Fig. 5.1(b). Preparing the BD state involves manipulation
of NMR multiple-quantum coherences by applying rotations in the zero-quantum and
double-quantum spin magnetization subspaces. Since the molecule is a heteronuclear
spin system, high-power, short-duration rf pulses were used for gate implementation
(with rf pulses of flip angles α = 45.57◦ and β = 59.81◦ in Fig. 5.1 having pulse
lengths of 6.85µs and 5.02µs, respectively). The experimentally achieved ρE

BD (re-
constructed using the maximum likelihood method [56] had parameters c1(0) = 1.0,
c2(0) = 0.680 and c3(0) = −0.680 and a computed fidelity of 0.99. The experimen-
tally reconstructed density matrix (using quantum state tomography and maximum
likelihood) was found to be:

ρE
BD ==


0.080 0.003 + 0.000i 0.003 + 0.000i 0.080 + 0.000i

0.003− 0.000i 0.420 0.420 + 0.001i 0.003 + 0.000i
0.003− 0.000i 0.420− 0.001i 0.420 0.003 + 0.000i
0.080− 0.000i 0.003− 0.000i 0.003− 0.000i 0.080


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Correlation functions for the BD states can be computed readily to give the classical
correlations (C[ρ(t)]), the quantum discord (D[ρ(t)]), and total correlations (I[ρ(t)] [67]:

C[ρ(t)] =
2∑
j=1

1 + (−1)jχ(t)

2
log2[1 + (−1)jχ(t)]

I[ρ(t)] =
2∑
j=1

1 + (−1)jc1(t)

2
log2[1 + (−1)jc1(t)]

+
2∑
j=1

1 + (−1)jc3

2
log2[1 + (−1)jc3]

D(ρ) ≡ I(ρ)− C(ρ) (5.21)

where χ(t) = max{|c1(t)|, |c2(t)|, |c3(t)|}.
For the class of BD states with coefficients c1 = ±1, c2 = ∓c3, |c3| < 1, the evo-

lution under a noisy environment is governed by the noise operators given in Eq.5.10,
and it turns out that c1(t) = c1(0)exp[−(γ1 + γ2)t], c2(t) = c2(0)exp[−(γ1 + γ2)t],
c3(0) ≡ c3, and the quantum discord does not decay up to some finite time t̄ [67].
Initially (t = 0), the computed correlations in the ρE

BD state (taken as an average of
five density matrices initially prepared in the same state) turned out to be C[ρ(0)] =
0.999± 0.169, D[ρ(0)] = 0.366± 0.024 and I[ρ(0)] = 1.366± 0.017. The simulated
and experimental plots of the dynamics of the quantum discord, classical correlations
and total correlations are shown in Fig.5.2 (a) and (b) respectively, and shows a dis-
tinct transition from the classical to the quantum decoherence regimes at t = t̄. The
transition time up to which quantum discord remains constant is t̄ = 1

2γ
ln
∣∣∣ c1(0)
c3(0)

∣∣∣.
We allowed the experimentally prepared state ρE

BD, to evolve freely in time and
determined the parameters ci at each time point. We used these experimentally de-
termined coefficients to compute the classical correlations (C[ρ(t)]), the quantum dis-
cord (D[ρ(t)]), and total correlations (I[ρ(t)]) at each time point. The transition time
up to which quantum discord remains constant was experimentally determined to be
t̄ = 0.052s. The experimental results correlate well with the theoretical noise model
which allows to calculate t̄ and the value comes out to be 0.054 s. The tomographed
density matrix, reconstructed at different time points, shows that state evolution re-
mains confined to the subspace of BD states, as is evident from the experimentally
reconstructed density matrices of the state at different time points displayed in Fig.5.3.
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Figure 5.2: Time evolution of total correlations (triangles), classical correlations (squares)
and quantum discord (circles) of the BD state: (a) Simulation, (b) Experimental plot with-
out applying any preservation.

5.6 Protection of time-invariant discord using dynami-
cal decoupling schemes

DD schemes, consisting of repeated sets of π pulses with tailored inter-pulse delays
and phases, have played an important role in dealing with the debilitating effects of
decoherence [155]. Several NMR QIP experiments have successfully used DD-type
schemes to preserve quantum states [60, 183]. These schemes are expected to provide
an advantage over traditional Carr-Purcell-Meiboom-Gill (CPMG) refocusing schemes
and here we compared the two experimentally.

We first protect these states and their related quantum correlations using standard
CPMG schemes of the type (τ − π − τ − π). The results are shown in Fig.5.4(a) and
(b) for two different values of τ (the time interval between two consecutive π pulses).
It turns out that the CPMG schemes which are based on the traditional Hahn spin echo
are able to provide protection to some extent and the life time of the time invariant
quantum discord grows from 0.05 s to 0.11 s as we increase the number of π pulses.
However, as we try to increase the number of π pulses further the results are counter-
productive as shown in Fig.5.4(b). Therefore, beyond a point we have to give up the
standard Hahn spin echo strategy.

Next we implemented more sophisticated DD sequences to explore if we can fur-
ther protect the BD state, and hence the related quantum correlations typified via the
survival time of the quantum discord t̄. If the π pulses in a DD sequence are non-ideal
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Figure 5.3: Real (left) and imaginary (right) parts of the experimental tomographs of the
(a) Bell Diagonal (BD) state, with a computed fidelity of 0.99. (b)-(e) depict the state at
T = 0.06, 0.12, 0.17, 0.23s, with the tomographs on the left and the right representing the
simulated and experimental state, respectively. The rows and columns are labeled in the
computational basis ordered from |00〉 to |11〉.
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Figure 5.4: Time evolution of total correlations (triangles), classical correlations (squares)
and quantum discord (circles) of the BD state: Experimental plots using CPMG preserving
sequences (a) CPMG with τ = 0.57 ms and (b) CPMG with τ = 0.38 ms.

(either due to finite pulse lengths or flip angle and off-resonant driving errors), it leads
to imperfect system-bath decoupling. Several schemes have been designed to make
DD sequences robust against pulse imperfections by achieving ideal pulse rotations.
Standard CPMG-based DD sequences used π pulses applied along the same rotation
axis, which then preserve coherence along only one spin component. The XY family
of DD sequences applies pulses along two orthogonal (x, y) axes, which preserves co-
herences about both spin rotation axes. The basic XY4(s) DD sequence is a four-pulse
sequence with phases x − y − x − y, with pulses applied at the center of each time
period such that the whole sequence is time-symmetric with respect to its center [65].
The XY8(s) DD sequence uses the XY4(s) sequence as a building block, by combin-
ing the XY4(s) sequence with its time-reversed version, so that the whole eight-pulse
sequence is explicitly time-symmetric. Each cycle of the symmetrized DD sequences
is applied several times to achieve higher-order decoupling [161]. The Knill dynami-
cal decoupling (KDD) sequence combines the rotation pattern of the XY4(s) sequence
with composite pulses, replacing each π pulse in the DD sequence with a composite
sequence of five pulses with different phases [[161]]:

KDDφ = (π)π/6+φ − (π)φ − (π)π/2+φ − (π)φ − (π)π/6+φ. (5.22)

The additional phases in the KDDxy (xy in the subscript denoting pulses applied
along both axes) lead to better compensation for pulse errors, combining two of the
basic five-pulse blocks given in Eq.(5.22) that are shifted in phase by π

2
i.e [KDD0-

KDDπ
2
]. The four symmetrized DD schemes used in our experiments to preserve time-
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Figure 5.5: NMR pulse sequence corresponding to DD schemes (a) XY4(s), (b) XY8(s),
(c) XY16(s), and (d) KDDxy , with time delays between pulses denoted by τ4 , τ8, τ , τk ,
respectively. All the pulses are of flip angle π and are labeled with their respective phases.
The pulses are applied simultaneously on both qubits. The superscript ‘2’ in the KDD xy
sequence denotes that one unit cycle of this sequence contains two blocks of the ten-pulse
block represented schematically, i.e., a total of twenty pulses. The shorter duration proton
pulses and the longer duration carbon pulses are centered on each other and the various
time delays (τ4, τ8 , τ , τk) in all the DD schemes are tailored to the gap between two
consecutive carbon pulses.
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Figure 5.6: Time evolution of total correlations (triangles), classical correlations (squares)
and quantum discord (circles) of the BD state: Experimental plots using (a) XY4(s) with
τ4 = 0.58 ms and (b) XY8(s) with τ8 = 0.29 ms.

invariant discord, namely XY4(s), XY8(s), XY16(s) and KDDxy , are schematically
represented in Fig.5.5. The ‘2’ in the superscript of the KDDxy scheme denotes that
one unit cycle of this scheme contains two of ten-pulse blocks, for a total of twenty
pulses. We applied π pulses simultaneously on both spins, with pulse lengths of 15.1
µs and 26.8 µs for the proton and carbon spins, respectively. The proton and carbon
pulses are centered on each other and the time delay between pulses was set at the gap
between two consecutive carbon pulses. Each DD sequence was applied a repeated
number of times (N being as large as experimentally possible), for good coherence
preservation.

We implemented the symmetrized XY4(s) DD scheme for τ4 = 0.58 ms and an
experimental time for one run of 2.43 ms. The time for which quantum discord persists
using the XY4(s) scheme is t̄ = 0.11 s, which is double the time as compared to ‘no-
preservation’ (Fig. 5.6(a)). We implemented the XY8(s) DD scheme for τ8 = 0.29
ms and an experimental time for one run of 2.52 ms. The time for which quantum
discord persists using the XY8(s) scheme is t̄ = 0.13s, nearly the same as the XY4(s)
scheme (Fig. 5.6(b)). The XY16(s) DD scheme provides even better compensation
than the XY8(s) sequence. We implemented the XY16(s) scheme for τ = 0.145 ms
and an experimental time for one run of 2.75 ms. The time for which quantum discord
persists for the XY16(s) scheme is t̄ = 0.24 s, which is four times the persistence
time of the discord when no preservation is applied (Fig.5.8(a)). We implemented
the KDDxy sequence with τ = 0.116 ms and an experimental time for one run of
2.86 ms. In this case too, the time for which quantum discord persists t̄ = 0.22 s
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Figure 5.7: Real (left) and imaginary (right) parts of the experimental tomographs of the
(a)-(e) depict the BD state at N = 20, 40, 60, 80, 100, with the tomographs on the left and
the right representing the BD state after applying the XY4 and XY8 scheme, respectively.
The rows and columns are labeled in the computational basis ordered from |00〉 to |11〉.
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Figure 5.8: Time evolution of total correlations (triangles), classical correlations (squares)
and quantum discord (circles) of the BD state: Experimental plots using (a) XY16(s) with
τ = 0.145 ms and (b) KDDxy with τk = 0.116 ms.

is quadrupled, as compared to no-preservation (Fig.5.8(b)). The DD sequence was
looped for five times between each time point in Figs.5.4, 5.6 and 5.8, which typically
means repeating a DD sequence 175-200 times during an experiment covering all time
points. The experimental tomographs of the BD state at different instances of time after
using XY4(s), XY8(s), XY16(s) and KDDxy DD preservation schemes to protect time-
invariant discord are given in Fig.5.7 and Fig.5.9. All the experimental tomographs
display excellent preservation of the state, with very little leakage.

In Fig.5.10, we plotted the protection of quantum entanglement in the two-qubit
BD state via CPMG and DD schemes, using negativity as an entanglement measure. It
turns out that the results of entanglement protection are similar to that of discord pro-
tection namely, that CPMG and XY4(s) schemes protect entanglement to some extent
while the more involved DD schemes are able to protect entanglement for relatively
long times up to 0.3 s (as compared to its natural decay time of 0.12 s without any DD
protection). However, the phenomenon of freezing of entanglement is not observed,
unlike the case for quantum discord.

5.6.1 Conclusions

The two-qubit system we used in our experiments is mainly affected by an independent
phase damping channel on each qubit for the experimental time regime under consid-
eration. One of the main sources of relaxation in NMR is dipolar relaxation. Such
noise can be ideally suppressed by the CPMG sequence. The suppression of noise is
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Figure 5.9: Real (left) and imaginary (right) parts of the experimental tomographs in (a)-
(e) depict the Bell Diagonal (BD) state atN = 20, 40, 60, 80, 100, with the tomographs on
the left and the right representing the BD state after applying the XY16 and KDDxy pre-
serving DD schemes, respectively. The rows and columns are labeled in the computational
basis ordered from |00〉 to |11〉.
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Figure 5.10: Plot of time evolution of entanglement without applying any preservation
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(empty rectangle), XY16(s) (filled triangle) and KDDxy (empty triangle),respectively.

expected to increase by reducing the delay between the π pulses, but due to imper-
fect π pulses after a certain time point instead of suppressing noise, starts contributing
to the noise. Also, the CPMG sequence is designed to protect magnetization along
one particular axis, not for a general axis. To mitigate all these problems we used
XY4(s), XY8(s), XY16(s) and KDDxy DD sequences, which are robust against these
imperfections and protect magnetization along the general axis. Our results show that
time-invariant quantum discord, which remains unaffected under certain decoherence
regimes, can be preserved for very long times using DD schemes. Our experiments
have important implications in situations where persistent quantum correlations have
to be maintained to carry out quantum information processing tasks.
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Chapter 6

Dynamics of tripartite entanglement
under decoherence and protection
using dynamical decoupling

6.1 Introduction

In Chapter 5, we considered the situation where we have knowledge of the state of
the system as well as its interaction with the environment. In such situations, since
the noise model is known, decoupling strategies can be designed to cancel this noise.
Using these decoupling strategies, we experimentally extended the lifetime of time in-
variant discord of two-qubit Bell-diagonal states. In this chapter we extend the same
idea for experimental preservation of three-qubit entangled states. Quantum entangle-
ment is considered to lie at the crux of QIP [1] and while two-qubit entanglement can
be completely characterized, multipartite entanglement is more difficult to quantify
and is the subject of much recent research [172]. Entanglement can be rather frag-
ile under decoherence and various multiparty entangled states behave very differently
under the same decohering channel [184]. It is hence of paramount importance to
understand and control the dynamics of multipartite entangled states in multivarious
noisy environments [185, 186, 187]. A three-qubit system is a good model system
to study the diverse response of multipartite entangled states to decoherence and the
entanglement dynamics of three-qubit GHZ and W states have been theoretically well
studied [188, 189]. Under an arbitrary (Markovian) decohering environment, it was
shown that W states are more robust than GHZ states for certain kinds of channels
while the reverse is true for other kinds of channels [190, 191, 192, 193].

On the experimental front, tripartite entanglement was generated using photonic
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6. Dynamics of tripartite entanglement under decoherence and protection using
dynamical decoupling

qubits and the robustness of W state entanglement was studied in optical systems [194,
195, 196, 197]. The dynamics of multi-qubit entanglement under the influence of
decoherence was experimentally characterized using a string of trapped ions [198]
and in superconducting qubits [199]. In the context of NMR quantum information
processing, three-qubit entangled states were experimentally prepared [25, 127, 200,
201], and their decay rates compared with bipartite entangled states [40].

With a view to protecting entanglement, dynamical decoupling (DD) schemes have
been successfully applied to decouple a multiqubit system from both transverse de-
phasing and longitudinal relaxation baths [62, 95, 141, 162]. UDD schemes have been
used in the context of entanglement preservation [202, 203], and it was shown theoret-
ically that Uhrig DD schemes are able to preserve the entanglement of two-qubit Bell
states and three-qubit GHZ states for quite long times [204].

In this chapter, first the Lindblad master equation is solved analytically for the ro-
bustness of three different tripartite entangled states, namely, the GHZ, W and WW̄
states with different noise channels. Then the robustness against decoherence of these
three different tripartite entangled states are experimentally explored. The WW̄ state
is a novel tripartite entangled state which belongs to the GHZ entanglement class in
the sense that it is SLOCC equivalent to the GHZ state, however stores its entangle-
ment in ways very similar to that of the W state [128, 205]. Next, the experimental
data are best modeled by considering the main noise channel to be an uncorrelated
phase damping channel acting independently on each qubit, along with a generalized
amplitude damping channel. Next, the entanglement of these states is protected us-
ing two different DD sequences: the symmetrized XY-16(s) and the Knill dynamical
decoupling (KDD) sequences, and evaluated their efficacy of protection.

6.2 Dynamics of tripartite entanglement

6.2.1 Tripartite entanglement under different noise channels
We considered four different noise channels: phase damping (Pauli σz), amplitude
damping (Pauli σx), bit-phase flip (Pauli σy) and a uniform depolarizing channel along
the lines suggested in Reference [206]. The master equation is given by [207]:

∂ρ

∂t
= −i[Hs, ρ] +

∑
i,α

[
Li,αρL

†
i,α −

1

2
{L†i,αLi,α, ρ}

]
(6.1)

where Hs is the system Hamiltonian, Li,α ≡ √κi,ασ(i)
α is the Lindblad operator acting

on the ith qubit and σ(i)
α is the Pauli operator on the ith qubit, α = x, y, z; the con-

stant κi,α turns out to be the inverse of the decoherence time. This master equation
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6.2 Dynamics of tripartite entanglement

approach has been shown to be equivalent to the standard operator sum representation
method for open quantum systems, where density operator evolution is given in terms
of the standard Kraus operators for various noise channels [1]. For two qubits, all en-
tangled states are negative under partial transpose (NPT) and for such NPT states, the
minimum eigenvalues of the partially transposed density operator is a measure of en-
tanglement [208]. This idea has been extended to three qubits, and entanglement can
be quantified for a three-qubit system using the well-known tripartite negativity N

(3)
123

measure [189, 209]:
N

(3)
123 = [N1N2N3]1/3 (6.2)

where the negativity of a qubit Ni refers to the most negative eigenvalue of the partial
transpose of the density matrix with respect to the qubit i.
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Figure 6.1: Simulation of decay of tripartite entanglement parameter negativity N(3) of
the GHZ state (blue squares), the W state (red circles) and the WW̄ state (green triangles)
under the action of (a) amplitude damping (Pauli σx) channel, (b) bit-phase flip (Pauli
σy) channel (c) phase damping (Pauli σz) channel and (d) isotropic noise (depolarizing)
channel. The κ parameter denotes inverse of the decoherence time.
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The analytical results of the Lindblad equation under the action of the different
noise channels on tripartite entanglement are displayed in Fig. 6.1, where Figs. 6.1(a)-
(d) show the decohering effects of the amplitude damping (Pauli σx) channel, the bit-
phase flip (Pauli σy) channel, the phase damping (Pauli σz) channel and the depolariz-
ing (isotropic noise) channel respectively, on the GHZ, W and WW̄ states. The simu-
lation indicates that the W state is more robust against the phase-damping channel as
compared to the GHZ state, while the reverse is true for the amplitude-damping chan-
nel. Both states decohere to nearly the same extent under the action of the bit-phase flip
channel and the depolarizing channel. The WW̄ state decoheres more rapidly under
the actions of the bit-phase flip channel and the depolarizing channel, as compared to
the other GHZ and the W states. For short timescales its decoherence behavior mim-
ics the W state under the action of the amplitude damping channel while for longer
timescales it decoheres similar to the GHZ state. On the other hand, under the action
of the phase-damping channel the WW̄ state initially decoheres faster than the GHZ
state and later closely follows the GHZ decay behavior.

6.2.2 NMR system
We use the three 19F nuclear spins of the trifluoroiodoethylene (C2F3I) molecule to
encode the three qubits. On an NMR spectrometer operating at 600 MHz, the fluorine
spin resonates at a Larmor frequency of ≈ 564 MHz. The molecular structure of
the three-qubit system with tabulated system parameters and the NMR spectra of the
qubits at thermal equilibrium and prepared in the pseudopure state |000〉 are shown in
Figs. 6.2.2(a), (b), and (c), respectively. The Hamiltonian of a weakly-coupled three-
spin system in a frame rotating at ωrf (the frequency of the electromagnetic field B1(t)
applied to manipulate spins in a static magnetic field B0) is given by [89]:

H = −
3∑
i=1

(ωi − ωrf)Iiz +
3∑

i<j,j=1

2πJijIizIjz (6.3)

where Iiz is the spin angular momentum operator in the z direction for 19F; the first
term in the Hamiltonian denotes the Zeeman interaction between the fluorine spins and
the static magnetic field B0 with ωi = 2πνi being the Larmor frequencies; the second
term represents the spin-spin interaction with Jij being the scalar coupling constants.
The three-qubit equilibrium density matrix (in the high temperature and high field
approximations) is in a highly mixed state given by:

ρeq = 1
8
(I + ε ∆ρeq)

∆ρeq ∝
3∑
i=1

Iiz (6.4)

126



6.2 Dynamics of tripartite entanglement

Figure 6.2: (a) Molecular structure of trifluoroiodoethylene molecule and tabulated sys-
tem parameters with chemical shifts νi and scalar couplings Jij (in Hz), and spin-lattice
relaxation times T1 and spin-spin relaxation times T2 (in seconds). (b) NMR spectrum
obtained after a π/2 readout pulse on the thermal equilibrium state. and (c) NMR spec-
trum of the pseudopure |000〉 state. The resonance lines of each qubit are labeled by the
corresponding logical states of the other qubit.

with a thermal polarization ε ∼ 10−5, I being the 8 × 8 identity operator and ∆ρeq

being the deviation part of the density matrix. The system was first initialized into
the |000〉 pseudopure state using the spatial averaging technique [21], with the density
operator given by

ρ000 =
1− ε

8
I + ε|000〉〈000| (6.5)

The specific sequence of rf pulses, z gradient pulses and time evolution periods we
used to prepare the pseudopure state ρ000 starting from thermal equilibrium is shown
in Fig. 6.3. All the rf pulses used in the pseudopure state preparation scheme were
constructed using the Gradient Ascent Pulse Engineering (GRAPE) technique [22]
and were designed to be robust against rf inhomogeneity, with an average fidelity of
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Figure 6.3: NMR pulse sequence used to prepare pseudopure state ρ000 starting from
thermal equilibrium.The pulses represented by black filled rectangles are of angle π. The
other rf flip angles are set to θ1 = 5π
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4 . The phase of each rf pulse is
written below each pulse bar. The evolution interval τij is set to a multiple of the scalar
coupling strength (Jij).

≥ 0.99. Wherever possible, two independent spin-selective rf pulses were combined
using a specially crafted single GRAPE pulse; for instance the first two rf pulses to be
applied before the first field gradient pulse, were combined into a single pulse specially
crafted pulse (Up1 in Fig. 6.3), of duration 600µs. The combined pulses Up2 , Up3 and
Up4 applied later in the sequence were of a total duration ≈ 20 ms.

All experimental density matrices were reconstructed using a reduced tomographic
protocol and by using maximum likelihood estimation [56, 87] as described in Chap-
ter 2 with the set of operations {III, IIY, IY Y, Y II,XY X,XXY, XXX}; I is the
identity (do-nothing operation) and X(Y ) denotes a single spin operator implemented
by a spin-selective π/2 pulse. We constructed these spin-selective pulses for tomogra-
phy using GRAPE, with the length of each pulse≈ 600µs. The experimentally created
pseudopure state |000〉was tomographed with a fidelity of 0.99 and the total time taken
to prepare the state was ≈ 60 ms. The fidelity of an experimental density matrix was
computed using Eq. (2.32).
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state.

6.2.3 Construction of tripartite entangled states

Tripartite entanglement has been well characterized and it is known that the two differ-
ent classes of tripartite entanglement, namely GHZ-class and W-class, are inequivalent.
While both classes are maximally entangled, there are differences in the their type of
entanglement: the W-class entanglement is more robust against particle loss than the
GHZ-class (which becomes separable if one particle is lost) and it is also known that
the W state has the maximum possible bipartite entanglement in its reduced two-qubit
states [210]. The entanglement in the WW̄ state (which belongs to the GHZ-class

129



6. Dynamics of tripartite entanglement under decoherence and protection using
dynamical decoupling

of entanglement) shows a surprising result, that it is reconstructible from its reduced
two-qubit states (similar to the W-class of states). We now turn to the construction
of tripartite entangled states on the three-qubit NMR system. The quantum circuits to
prepare the three qubits in a GHZ-type state, a W state and a WW̄ state are shown in
Figs. 6.4 (a), (b) and (c), respectively. Several of the quantum gates in these circuits
were optimized using the GRAPE algorithm and we were able to achieve a high gate
fidelity and smaller pulse lengths.
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Figure 6.5: The real (left) and imaginary (right) parts of the experimentally tomographed
(a) GHZ-type state, with a fidelity of 0.97. (b) W state, with a fidelity of 0.96 and (c)
WW̄ state with a fidelity of 0.94. The rows and columns encode the computational basis
in binary order from |000〉 to |111〉.

The GHZ-type 1√
2
(|000〉 − |111〉) state was prepared from the |000〉 pseudopure

state by a sequence of three quantum gates (labeled as UG1 , UG2 , UG3 in Fig. 6.4(a)):
first a selective rotation of

[
π
2

]
−y on the first qubit, followed by a CNOT12 gate, and
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finally a CNOT13 gate. The step-by-step sequential gate operation leads to:

|000〉
R1(π2 )−y−→ 1√

2
(|000〉 − |100〉)

CNOT12−→ 1√
2

(|000〉 − |110〉)

CNOT13−→ 1√
2

(|000〉 − |111〉) (6.6)

All the pulses for the three gates used for GHZ state construction were designed using
the GRAPE algorithm and had a fidelity ≥ 0.995. The GRAPE pulse duration corre-
sponding to the gate UG1 is 600 µs, while the UG2 and UG3 gates had pulse durations
of 24 ms. The GHZ-type state was prepared with a fidelity of 0.97. The W state was
prepared from the initial |000〉 by a sequence of four unitary operations (labeled as
UW1 , UW2 , UW3 , UW4 in Fig. 6.4(b)) and the sequential gate operation leads to:

|000〉
R1(π)y−→ |100〉

R2(0.39π)y−→
√

2

3
|100〉+

1√
3
|110〉

CNOT21−→
√

2

3
|100〉+

1√
3
|010〉

CR13(π2 )
y−→ 1√

3
[|100〉+ |101〉+ |010〉]

CNOT31−→ 1√
3

[|100〉+ |001〉+ |010〉] (6.7)

The different unitaries were individually optimized using GRAPE and the pulse du-
ration for UW1 , UW2 , UW3 , and UW4 turned out to be 600µs, 24ms, 16ms, and 20ms,
respectively and the fidelity of the final state was estimated to be 0.94.

The WW̄ state was constructed by applying the following sequence of gate opera-
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tions on the |000〉 state:

|000〉
R1(π3 )−y−→

√
3

2
|000〉 − 1

2
|100〉

CR12(0.61π)y−→
√

3

2
|000〉 − 1

2
√

3
|100〉 −

√
1

6
|110〉

CR21(π2 )−y−→ 1

2
(
√

3|000〉 − 1√
3

(|100〉+ |110〉+

|010〉))
CNOT13−→ 1

2
(
√

3|000〉 − 1√
3

(|101〉+ |111〉+

|010〉))
CNOT23−→ 1

2
(
√

3|000〉 − 1√
3

(|101〉+ |110〉+

|011〉))
R123(π2 )

y−→ 1√
6

(|001〉+ |010〉+ |011〉+

|100〉+ |101〉+ |110〉) (6.8)

The unitary operator for the entire preparation sequence (labeled UWW̄ in Fig. 6.4(c))
comprising a spin-selective rotation operator: two controlled-rotation gates, two controlled-
NOT gates and one non-selective rotation by π

2
on all the three qubits, was created by a

specially crafted single GRAPE pulse (of pulse length 48ms) and applied to the initial
state |000〉. The final state had a computed fidelity of 0.95.

6.2.4 Decay of tripartite entanglement
We next turn to the dynamics of tripartite entanglement under decoherence channels
acting on the system. We studied the time evolution of the tripartite negativity N

(3)
123

for the tripartite entangled states, as computed from the experimentally reconstructed
density matrices at each time instant. The experimental results are depicted in Fig 6.6
(a), (b) and (c) for the GHZ state, the WW̄ state, and the W state, respectively. Of
the three entangled states considered in this study, the GHZ and W states are maxi-
mally entangled and hence contain the most amount of tripartite negativity, while the
WW̄ state is not maximally entangled and hence has a lower tripartite negativity value.
The experimentally prepared GHZ state initially has a N

(3)
123 of 0.96 (quite close to its

theoretically expected value of 1.0). The GHZ state decays rapidly, with its negativ-
ity approaching zero in 0.55 s. The experimentally prepared WW̄ state initially has
a N

(3)
123 of 0.68 (close to its theoretically expected value of 0.74), with its negativity
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approaching zero at 0.67 s. The experimentally prepared W state initially has a N
(3)
123

of 0.90 (quite close to its theoretically expected value of 0.94). The W state is quite
long-lived, with its entanglement persisting up to 0.9 s. The tomographs of the exper-
imentally reconstructed density matrices of the GHZ, W and WW̄ states at the time
instances when the tripartite negativity parameter N(3)

123 approaches zero for each state,
are displayed in Fig. 6.7.
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Figure 6.6: Time dependence of the tripartite negativity N(3) for the three-qubit system
initially experimentally prepared in the (a) GHZ state (squares) (b) W state (circles) and (c)
WW̄ state (triangles) (the superscript exp denotes “experimental data”). The fits are the
calculated decay of negativity N(3) of the GHZ state (solid line), the WW̄ state (dashed
line) and the W state (dotted-dashed line), under the action of the modeled NMR noise
channel (the superscript cal denotes “calculated fit”). The W state is most robust against
the NMR noise channel, whereas the GHZ state is most fragile.

We explored the noise channels acting on our three-qubit NMR entangled states
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which best fit our experimental data, by analytically solving a master equation in the
Lindblad form, along the lines suggested in Reference [206]. The master equation is
given by Eq. (6.1).
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Figure 6.7: The real (left) and imaginary (right) parts of the experimentally tomographed
density matrix of the state at the time instances when the tripartite negativity N

(3)
123 ap-

proaches zero for the (a) GHZ state at t = 0.55 s (b) W state at t = 0.90 s and (c) WW̄

state at t = 0.67 s. The rows and columns encode the computational basis in binary order,
from |000〉 to |111〉.

We consider a decoherence model wherein a nuclear spin is acted on by two noise
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channels namely a phase damping channel (described by the T2 relaxation in NMR)
and a generalized amplitude damping channel (described by the T1 relaxation in NMR) [64].
As the fluorine spins in our three-qubit system have widely differing chemical shifts,
we assume that each qubit interacts independently with its own environment. The ex-
perimentally determined T1 NMR relaxation rates are T1F

1 = 5.42 ± 0.07 s, T2F
1 =

5.65 ± 0.05 s and T3F
1 = 4.36 ± 0.05 s, respectively. The T2 relaxation rates were

experimentally measured by first rotating the spin magnetization into the transverse
plane by a 90◦ rf pulse followed by a delay and fitting the resulting magnetization de-
cay. The experimentally determined T2 NMR relaxation rates are T1F

2 = 0.53± 0.02s,
T2F

2 = 0.55 ± 0.02 s, and T3F
2 = 0.52 ± 0.02 s, respectively. We solved the mas-

ter equation (Eq. (6.1)) for the GHZ, W and WW̄ states with the Lindblad operators

Li,x ≡
√

κi,x
2
σ

(i)
x and Li,z ≡

√
κi,z

2
σ

(i)
z , where κi,x = 1

T i1
and κi,z = 1

T i2
.

Under the simultaneous action of all the NMR noise channels, the GHZ state deco-
heres as:

ρGHZ =



α1 0 0 0 0 0 0 β1

0 α2 0 0 0 0 β2 0
0 0 α3 0 0 β3 0 0
0 0 0 α4 β4 0 0 0
0 0 0 β4 α4 0 0 0
0 0 β3 0 0 α3 0 0
0 β2 0 0 0 0 α2 0
β1 0 0 0 0 0 0 α1


(6.9)

where

α1 =
1

8
(1 + e−(κx,1+κx,2)t + e−(κx,1+κx,3)t + e−(κx,2+κx,3)t)

α2 =
1

8
(1 + e−(κx,1+κx,2)t − e−(κx,1+κx,3)t − e−(κx,2+κx,3)t)

α3 =
1

8
(1− e−(κx,1+κx,2)t + e−(κx,1+κx,3)t − e−(κx,2+κx,3)t)

α4 =
1

8
(1− e−(κx,1+κx,2)t − e−(κx,1+κx,3)t + e−(κx,2+κx,3)t)

β1 =
1

8
(e−(κ1,x+κ2,x+κ3,x+κ1,z+κ2,z+κ3,z)t

(eκ1,xt + eκ2,xt + eκ3,xt + e(κ1,x+κ2,x+κ3,x)t)

β2 =
1

8
(e−(κ1,x+κ2,x+κ3,x+κ1,z+κ2,z+κ3,z)t

(−eκ1,xt − eκ2,xt + eκ3,xt + e(κ1,x+κ2,x+κ3,x)t)

(6.10)
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β3 =
1

8
(e−(κ1,x+κ2,x+κ3,x+κ1,z+κ2,z+κ3,z)t

(−eκ1,xt + eκ2,xt − eκ3,xt + e(κ1,x+κ2,x+κ3,x)t)

β4 =
1

8
(e−(κ1,x+κ2,x+κ3,x+κ1,z+κ2,z+κ3,z)t

(eκ1,xt − eκ2,xt − eκ3,xt + e(κ1,x+κ2,x+κ3,x)t)

(6.11)

Under the simultaneous action of all the NMR noise channels, the W state deco-
heres as:

ρW =



α1 0 0 β1 0 β5 β1 0
0 α2 β2 0 β6 0 0 β10

0 β2 α3 0 β11 0 0 β7

β1 0 0 α4 0 β12 β8 0
0 β6 β11 0 α5 0 0 β3

β5 0 0 β12 0 α6 β4 0
β1 0 0 β8 0 β4 α7 0
0 β10 β7 0 β3 0 0 α8


Where

α1 =
1

8
− 1

24
e−(κx,1+κx,2+κx,3)t(3 + eκx,1t + eκx,2t −

e(κx,1+κx,2)t + eκx,3t − e(κx,1+κx,3)t − e(κx,2+κx,3)t)

α2 =
1

8
+

1

24
e−(κx,1+κx,2+κx,3)t(3 + eκx,1t + eκx,2t −

e(κx,1+κx,2)t − eκx,3t + e(κx,1+κx,3)t + e(κx,2+κx,3)t)

α3 =
1

8
+

1

24
e−(κx,1+κx,2+κx,3)t(3 + eκx,1t − eκx,2t

+e(κx,1+κx,2)t + eκx,3t − e(κx,1+κx,3)t + e(κx,2+κx,3)t)

α4 =
1

8
− 1

24
e−(κx,1+κx,2+κx,3)t(3 + eκx,1t − eκx,2t

+e(κx,1+κx,2)t − eκx,3t + e(κx,1+κx,3)t − e(κx,2+κx,3)t)

α5 =
1

8
+

1

24
e−(κx,1+κx,2+κx,3)t(3− eκx,1t + eκx,2t

+e(κx,1+κx,2)t + eκx,3t + e(κx,1+κx,3)t − e(κx,2+κx,3)t)

(6.12)
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α6 =
1

8
+

1

24
e−(κx,1+κx,2+κx,3)t(−3 + eκx,1t − eκx,2t

−e(κx,1+κx,2)t + eκx,3t + e(κx,1+κx,3)t − e(κx,2+κx,3)t)

α7 =
1

8
+

1

24
e−(κx,1+κx,2+κx,3)t(−3 + eκx,1t + eκx,2t

+e(κx,1+κx,2)t − eκx,3t − e(κx,1+κx,3)t − e(κx,2+κx,3)t)

α8 =
1

8
− 1

24
e−(κx,1+κx,2+κx,3)t(−3 + eκx,1t + eκx,2t

+e(κx,1+κx,2)t + eκx,3t + e(κx,1+κx,3)t + e(κx,2+κx,3)t)

β1 =
1

12
(e−(κx,1+κx,2+κx,3+κz,2+κz,3)t

(1 + e(κx,1)t)(−1 + e(κx,2+κx,3)t))

β2 =
1

12
(e−(κx,1+κx,2+κx,3+κz,2+κz,3)t

(1 + e(κx,1)t)(1 + e(κx,2+κx,3)t))

β3 =
1

12
(e−(κx,1+κx,2+κx,3+κz,2+κz,3)t

(−1 + e(κx,1)t)(−1 + e(κx,2+κx,3)t))

β4 =
1

12
(e−(κx,1+κx,2+κx,3+κz,2+κz,3)t

(−1 + e(κx,1)t)(1 + e(κx,2+κx,3)t))

β5 =
1

12
(e−(κx,1+κx,2+κx,3+κz,1+κz,3)t

(1 + e(κx,2)t)(−1 + e(κx,1+κx,3)t))

β6 =
1

12
(e−(κx,1+κx,2+κx,3+κz,1+κz,3)t

(1 + e(κx,2)t)(1 + e(κx,1+κx,3)t))

β7 =
1

12
(e−(κx,1+κx,2+κx,3+κz,1+κz,3)t

(−1 + e(κx,2)t)(−1 + e(κx,1+κx,3)t))

β8 =
1

12
(e−(κx,1+κx,2+κx,3+κz,1+κz,3)t

(−1 + e(κx,2)t)(1 + e(κx,1+κx,3)t))

β9 =
1

12
(e−(κx,1+κx,2+κx,3+κz,1+κz,2)t

(−1 + e(κx,1+κx,2)t)(1 + e(κx,3)t))

(6.13)
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β10 =
1

12
(e−(κx,1+κx,2+κx,3+κz,1+κz,2)t

(−1 + e(κx,1+κx,2)t)(−1 + e(κx,3)t))

β11 =
1

12
(e−(κx,1+κx,2+κx,3+κz,1+κz,2)t

(1 + e(κx,1+κx,2)t)(1 + e(κx,3)t))

β12 =
1

12
(e−(κx,1+κx,2+κx,3+κz,1+κz,2)t

(1 + e(κx,1+κx,2)t)(−1 + e(κx,3)t)) (6.14)

Under the simultaneous action of all the NMR noise channels, the WW̄ state de-
coheres as:

ρWW̄ =



α1 β1 β2 β3 β4 β5 β6 β7

β1 α2 β8 β9 β10 β11 β12 β13

β2 β8 α3 β14 β15 β16 β11 β5

β3 β9 β14 α4 β17 β15 β10 β4

β4 β10 β15 β17 α4 β15 β9 β18

β5 β11 β16 β15 β15 α3 β8 β2

β6 β12 β11 β10 β9 β8 α2 β1

β7 β13 β5 β4 β18 β2 β1 α1


(6.15)

where

α1 =
1

24
(3− e−(κx,1+κx,2)t − e−(κx,1+κx,3)t

−e−(κx,2+κx,3)t)

α2 =
1

24
(3− e−(κx,1+κx,2)t + e−(κx,1+κx,3)t

+e−(κx,2+κx,3)t)

α3 =
1

24
(3 + e−(κx,1+κx,2)t − e−(κx,1+κx,3)t

+e−(κx,2+κx,3)t)

α4 =
1

24
(3 + e−(κx,1+κx,2)t + e−(κx,1+κx,3)t

(6.16)
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−e−(κx,2+κx,3)t)

β1 =
1

12
e−(κx,1+κx,2+2κz,3)t

(e(κx,1+κx,2+κz,3)t − eκz,3t)
β2 =

1

12
e−(κx,1+κx,3+2κz,2)t

(e(κx,1+κx,3+κz,2)t − eκz,2t)
β3 =

1

12
e−(κx,2+κx,3+2(κz,2+κz,3))t

(e(κx,2+κx,3+κz,2+κz,3)t − e(κz,2+κz,3)t)

β4 =
1

12
e−(κx,2+κx,3+2κz,1)t

(−eκz,1t + e(κx,2+κx,3+κz,1)t)

β5 =
1

12
e−(κx,1+κx,3+2(κz,1+κz,3))t

(−e(κz,1+κz,3)t + e(κx,1+κx,3+κz,1+κz,3)t)

(6.17)

β6 =
1

12
e−(κx,1+κx,2+2(κz,1+κz,2))t

(−e(κz,1+κz,2)t + e(κx,1+κx,2+κz,1+κz,2)t)

β7 = − 1

24
e−(κx,1+κx,2+κx,3+κz,1+κz,2+κz,3)t

(eκx,1t + eκx,2t + eκx,3t − 3e(κx,1+κx,2+κx,3)t)

β8 =
1

12
e−(κx,2+κx,3+2(κz,2+κz,3))t

(e(κz,2+κz,3)t + e(κx,2+κx,3+κz,2+κz,3)t)

β9 =
1

12
e−(κx,1+κx,3+2κz,2)t

(eκz,2t + e(κx,1+κx,3+κz,2)t)

β10 =
1

12
e−(κx,1+κx,3+2(κz,1+κz,3))t

(e(κz,1+κz,3)t + e(κx,1+κx,3+κz,1+κz,3)t)

β11 =
1

12
e−(κx,2+κx,3+2κz,1)t(eκz,1t + e(κx,2+κx,3+κz,1)t)

β12 =
1

24
e−(κx,1+κx,2+κx,3+κz,1+κz,2+κz,3)t

(6.18)
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(eκx,1t + eκx,2t − eκx,3t + 3e(κx,1+κx,2+κx,3)t)

β13 =
1

12
e−(κx,1+κx,2+2(κz,1+κz,2))t

(−e(κz,1+κz,2)t + e(κx,1+κx,2+κz,1+κz,2)t)

β14 =
1

12
e−(κx,1+κx,2+2κz,3)t

(eκz,3t + e(κx,1+κx,2+κz,3)t)

β15 =
1

12
e−(κx,1+κx,2+2(κz,1+κz,2))t

(e(κz,1+κz,2)t + e(κx,1+κx,2+κz,1+κz,2)t)

β16 =
1

24
e−(κx,1+κx,2+κx,3+κz,1+κz,2+κz,3)t

(eκx,1t − eκx,2t + eκx,3t + 3e(κx,1+κx,2+κx,3)t)

β17 =
1

24
e−(κx,1+κx,2+κx,3+κz,1+κz,2+κz,3)t

(−eκx,1t + eκx,2t + eκx,3t + 3e(κx,1+κx,2+κx,3)t)

β18 =
1

12
e−(κx,2+κx,3+2(κz,2+κz,3))t

(e(κz,2+κz,3)t + e(κx,2+κx,3+κz,2+κz,3)t) (6.19)

With this model, the GHZ state decays at the rate γalGHZ = 6.33 ± 0.06s−1, and its
entanglement approaches zero in 0.53 s. The WW̄ state decays at the rate γal

WW̄
=

5.90 ± 0.10s−1, and its entanglement approaches zero in 0.50 s. The W state decays
at the rate γalW = 4.84 ± 0.07s−1, and its entanglement approaches zero in 0.62 s.
Solving the master equation (Eq. (6.1)) ensures that the off-diagonal elements of the
corresponding ρ matrices satisfy a set of coupled equations, from which the explicit
values of αs and βs can be computed. The equations are solved in the high-temperature
limit. For an ensemble of NMR spins at room temperature this implies that the energy
E << kBT where kB is the Boltzmann constant and T refers to the temperature,
ensuring a Boltzmann distribution of spin populations at thermal equilibrium. The
results of the analytical calculation and the experimental data match well, as shown in
Fig. 6.6.

6.3 Protecting three-qubit entanglement via dynamical
decoupling

As the tripartite entangled states under investigation are robust against noise to varying
extents, we wanted to discover if either the amount of entanglement in these states
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6.3 Protecting three-qubit entanglement via dynamical decoupling

could be protected or their entanglement could be preserved for longer times, using
dynamical decoupling (DD) protection schemes. While DD sequences are effective in
decoupling system-environment interactions, often errors in their implementation arise
either due to errors in the pulses or errors due to off-resonant driving [51].
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Figure 6.8: NMR pulse sequence corresponding to (a) XY-16(s) and (b) KDDxy DD
schemes (the superscript 2 implies that the set of pulses inside the bracket is applied twice,
to form one cycle of the DD scheme). The pulses represented by black filled rectangles (in
both schemes) are of angle π, and are applied simultaneously on all three qubits (denoted
by F i, i = 1, 2, 3). The angle below each pulse denotes the phase with which it is applied.
Each DD cycle is repeatedN times, withN large to achieve good system-bath decoupling.

Two approaches have been used to design robust DD sequences which are imper-
vious to pulse imperfections: the first approach replaces the π rotation pulses with
composite pulses inside the DD sequence, while the second approach focuses on opti-
mizing phases of the pulses in the DD sequence. In this work, we use DD sequences
that use pulses with phases applied along different rotation axes: the XY-16(s) and the
Knill Dynamical Decoupling (KDD) schemes [66]. In conventional DD schemes the
π pulses are applied along one axis (typically x) and as a consequence, only the coher-
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ence along that axis is well protected. The XY family of DD schemes applies pulses
along two perpendicular (x, y) axes, which protects coherence equally along both these
axes [211]. The XY-16(s) sequence is constructed by combining an XY-8(s) cycle with
its phase-shifted copy, where the (s) denotes the “symmetric” version i.e. the cycle is
time-symmetric with respect to its center. The XY-8 cycle is itself created by combin-
ing a basic XY-4 cycle with its time-reversed copy. One full unit cycle of the XY-16(s)
sequence comprises sixteen π pulses interspersed with free evolution time periods, and
each cycle is repeated N times for better decoupling. The KDD sequence has addi-
tional phases which further symmetrize pulses in the x − y plane and compensate for
pulse errors; each π pulse in a basic XY DD sequence is replaced by five π pulses,
each of a different phase [65, 212]:

KDDφ ≡ (π)π
6

+φ − (π)φ − (π)π
2

+φ − (π)φ − (π)π
6

+φ (6.20)

where φ denotes the phase of the pulse; we set φ = 0 in our experiments. The KDDφ

sequence of five pulses given in Eq. (6.20) protects coherence along only one axis.
To protect coherences along both the (x, y) axes, we use the KDDxy sequence, which
combines two basic five-pulse blocks shifted in phase by π/2 i.e [KDDφ−KDDφ+π/2].
One unit cycle of the KDDxy sequence contains two of these pulse-blocks shifted in
phase, for a total of twenty π pulses. The XY-16(s) and KDDxy DD sequences are
given in Figs. 6.8(a) and (b) respectively, where the black filled rectangles represent π
pulses on all three qubits and τ (τk) indicates a free evolution time period. We note
here that the chemical shifts of the three fluorine qubits in our particular molecule
cover a very large frequency bandwidth, making it difficult to implement an accurate
non-selective pulse simultaneously on all the qubits. To circumvent this problem, we
crafted a special excitation pulse of duration ≈ 400µs consisting of a set of three
Gaussian shaped pulses that are applied at different spin frequency offsets and are
frequency modulated to achieve simultaneous excitation [128].

Figs.6.9(a),(b) and (c) show the results of protecting the GHZ, W and WW̄ states
respectively, using the XY-16(s) and the KDDxy DD sequences.
GHZ state protection: The XY-16(s) protection scheme was implemented on the
GHZ state with an inter-pulse delay of τ = 0.25 ms and one run of the sequence took
10.40 ms (including the length of the sixteen π pulses). The value of the negativity N3

123

remained close to 0.80 and 0.52 for up to 80ms and 240 ms respectively when XY-16
protection was applied, while for the unprotected state the state fidelity is quite low
and N3

123 decayed to a low value of 0.58 and 0.09 at 80ms and 240 ms, respectively
(Fig. 6.9(a)). The KDDxy protection scheme on this state was implemented with an
inter-pulse delay τk = 0.20 ms and one run of the sequence took 12 ms (including
the length of the twenty π pulses). The value of the negativity N3

123 remained close
to 0.80 and 0.72 for up to 140ms and 240 ms when KDDxy protection was applied
(Fig. 6.9(a)).
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Figure 6.9: Plot of the tripartite negativity (N(3)
123) with time, computed for the (a) GHZ-

type state, (b) W state and (c) WW̄ state. The negativity was computed for each state
without applying any protection and after applying the XY-16(s) and KDDxy dynamical
decoupling sequences.Note that the time scale for part (a) is different from (b) and (c)

W state protection: The XY-16(s) protection scheme was implemented on the W
state with an inter-pulse delay τ = 3.12 ms and one run of the sequence took 56.40
ms (including the length of the sixteen π pulses). The value of the negativity N3

123

remained close to 0.30 for up to 0.68 s when XY-16 protection was applied, whereas
N3

123 reduced to 0.1 at 0.68 s when no state protection is applied (Fig. 6.9(b)). The
KDDxy protection scheme was implemented on the W state with an inter-pulse delay
τk = 2.5 ms and one run of the sequence took 58 ms (including the length of the twenty
π pulses). The value of the negativity N3

123 remained close to 0.21 for upto 0.70 s when
KDDxy protection was applied (Fig. 6.9(b)).
WW̄ state protection: The XY-16(s) protection sequence was implemented on the
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WW̄ state with an inter-pulse delay of τ = 3.12 ms and one run of the sequence took
56.40 ms (including the length of the sixteen π pulses). The value of the negativity
N3

123 remained close to 0.5 for upto 0.45 s when XY-16(s) protection was applied,
whereas N3

123 reduced almost to zero (≈ 0.02) at 0.45 s when no protection was applied
(Fig. 6.9(c)). The KDDxy protection sequence was applied with an inter-pulse delay
of τk = 2.5 ms and one run of the sequence took 58 ms (including the length of the
twenty π pulses). The value of the negativity N3

123 remained close to 0.52 for upto 0.46
s when KDDxy protection was applied (Fig. 6.9(c)).

The results of UDD-type of protection summarized above demonstrate that state
protection worked to varying degrees and protected the entanglement of the tripartite
entangled states to different extents, depending on the type of state to be protected. The
GHZ state showed maximum protection and the WW̄ state also showed a significant
amount of protection, while the W state showed a marginal improvement under protec-
tion. We note here that the lifetime of the GHZ state is not significantly enhanced by
using DD state protection; what is noteworthy is that state fidelity remains high (close
to 0.8) under DD protection, whereas the state quickly gets disentangled (fidelity drops
to 0.4) when no protection is applied. This implies that under DD protection, there is
no leakage from the state to other states in the Hilbert space of the three qubits.

6.4 Conclusions

An experimental study of the dynamics of tripartite entangled states in a three-qubit
NMR system was undertaken. The results are relevant in the context of other stud-
ies which showed that different entangled states exhibit varying degrees of robustness
against diverse noise channels. The W state was found to be the most robust against
the decoherence channel acting on the three NMR qubits, the GHZ state was the most
fragile and decayed very quickly, while the WW̄ state was more robust than the GHZ
state but less robust than the W state. For entanglement protection dynamical decou-
pling sequences were implemented on these states. Both DD schemes were able to
achieve a good degree of entanglement protection. The GHZ state was dramatically
protected, with its entanglement persisting for nearly double the time. The W state
showed a marginal improvement, which was to be expected since these DD schemes
are designed to protect mainly against dephasing noise, and the experimental results
indicated that the W state is already robust against this type of decohering channel.
Interestingly, although the WW̄ state belongs to the GHZ entanglement-class, our ex-
periments revealed that its entanglement persists for a longer time than the GHZ state,
while the DD schemes are able to preserve its entanglement to a reasonable extent.
The decoherence characteristics of the WW̄ state hence suggest a way of protecting
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fragile GHZ-type states against noise by transforming the type of entanglement (since
a GHZ-class state can be transformed via local operations to a WW̄ state). These as-
pects of the entanglement dynamics of the WW̄ state require more detailed studies for
a better understanding.

This work has provided new insights into the way entanglement behaves under
decoherence and can be protected from the same. This kind of protection strategies will
provide a benchmark for extension to higher qubit systems and to the study of different
classes of entangled states. The WW̄ state is in the GHZ class, however its dynamics
under decoherence resembles the W state, thereby providing it a certain amount of
immunity under dephasing. This aspect, coupled with the protection schemes, can
lead to new ways of entanglement protection.
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Chapter 7

Summary and future outlook

The first project in this thesis focused on the reconstruction of a density matrix. The
density matrix which was reconstructed using the standard quantum state tomography
(QST) method had a few negative eigenvalues, which makes it an invalid density ma-
trix. The maximum likelihood (ML) estimation method estimates the quantum state
density matrix by determining the parameters that are most likely to match the ex-
perimentally generated data. The evaluation starts with initial parameters based on a
priori knowledge of experimentally reconstructed density matrix. By putting a con-
straint at every stage of the estimation process, the density matrix was obtained to be
positive and normalized. The standard QST method led to negative eigenvalues in the
reconstructed density matrix and hence an overestimation of the entanglement param-
eter quantifying the residual entanglement in the state. The ML estimation method
on the other hand, by virtue of its leading to a physical density matrix reconstruction
every time, gives us a true measure of residual entanglement, and hence can be used to
quantitatively study the decoherence of multiqubit entanglement.

The later part of the thesis focused on mitigating the unwanted effects of system-
environment interaction. The efficacy of different system-environment decoupling
strategies were explored experimentally. These strategies were built depending on our
knowledge about the system-environment interactions and the state to be preserved.

The first situation considered was one where the state of the system was known,
and the system-environment interaction was unknown. The state was protected against
evolution using the super-Zeno scheme. The next situation considered was one where
only the subspace to which the state belongs was known and an arbitrary state belong-
ing to known subspace was protected using the nested Uhrig dynamical decoupling
(NUDD) scheme. The advantage of the NUDD schemes lies in the fact that one is sure
that some amount of state protection will always be achieved.

Next, a system was considered whose state as well as interaction with the environ-
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ment is known. A Bell-diagonal (BD) state was experimentally prepared on a two-
qubit system. The noise model considered was that of each qubit was mainly affected
by an independent phase damping channel, and quantum discord of the system was
observed. Quantum discord remained constant for some time t̄, after which it began to
decay. The Carr-Purcell-Meiboom-Gill (CPMG) preserving sequence was applied on
the BD state and it was found that reducing the delay between the π pulses increased
the lifetime of the time-invariant discord, up to a certain point. After that, the errors
due to pulse imperfections dominated due to which the lifetime of the time-invariant
discord started decreasing. To overcome this problem XY16 and KDDxy dynamical de-
coupling sequences were used which are robust against such errors. These sequences
substantially extended the lifetime of time-invariant discord. These experiments have
important implications in situations where persistent quantum correlations have to be
maintained in order to carry out quantum information processing tasks. Such situa-
tions usually arises when the number of gates are large or quantum gates are compare
to coherence time.

Finally, the decay of tripartite entangled states was studied by experimentally prepar-
ing GHZ, W and WW̄ states on a three-qubit NMR quantum information processor.
The natural decoherence present in the three-spin spin system was best modeled by
considering the main noise channel to be an uncorrelated phase damping channel act-
ing independently on each qubit, with a small contribution from the generalized am-
plitude damping channel. The W state was found to be the most robust against this
type of noise, whereas the GHZ state was the most fragile; the WW̄ state was more
robust than the GHZ state but less robust than the W state. The dynamical decoupling
sequences XY16 and KDDxy were applied on these states and a significant protection
of entanglement for the GHZ and WW̄ states was observed. These quantum state pro-
tection strategies can be explored for higher qubit systems and can be used to optimize
gates such that the effect of the decoherence is minimized.
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