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Notation

I Identity Operator

B(X, Y ) Set of compact operators from X into Y .

B(X) Compact operators from X to X.

X, Y Banach spaces

L(X, Y ) Banach space of all continuous bounded operators from X to Y .

F(X, Y ) Set of all Fredholm operators between X and Y .

w(φ) Winding number of the symbol of a Toeplitz operator

Z Set of integers

S1 Circle in a complex plane
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Abstract

In this thesis, I have discussed different types of operators and their indices. Begin-

ning with basics of compact operators and their properties, I gave an exposition on

Fredholm operators between Banach spaces. I have also shown that compact oper-

ators are the furthest from Fredholm operators in infinite dimensional space. And

finally, I studied Toeplitz operators which are Fredholm operators with an invertible

symbol.

.
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Chapter 1

Compact Operators

1.1 Introduction

Operator theory deals with operators on Banach spaces and its connection with other

mathematical subjects. The class of compact operators is resulted directly from the

study of the integral equations. The integral operators are the most classical examples

of compact operators. The main characteristic of these operators, is that they show

similar behaviour with the operators in finite dimensional spaces and thus they can

be easily analyzed. Let us now begin with some basic definitions and results about

compact operators.

1.2 Preliminaries

Definition 1.1 (Relatively Compact)

A relatively compact subspace Y of a metric space X is a subset whose closure is

compact.

Definition 1.2 (Precompact)

Let X be a metric space, Y ⊆ X is said to be precompact or totally bounded if for

every ε > 0 there exists finitely many points (x1, x2, x3, ...xN) such that
⋃N
i=1B(xi, ε)

contains Y .

For a complete metric space the notion of relatively compact and precompact are
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the same since if Y is a precompact subset of a complete metric space X, then Y

is also totally bounded and it is complete because it is closed in X which makes it

compact/relatively compact.

1.2.1 Compact Operator

X and Y are Banach spaces. If a linear operator T is such that image of any bounded

subset of X under T is relatively compact subset of Y , then T is said to be compact.

Equivalently, a linear operator T : X → Y is compact if and only if any of the

following is true:

• Image of the closed unit ball in X under T is relatively compact in Y .

• For any sequence (xn)n∈N in the unit ball in X, the sequence (Txn)n∈N contains

a Cauchy subsequence.

1.2.2 Examples

• The identity operator is a compact operator if and only if the space is finite

dimensional.

• Every m× n matrix corresponds to a compact operator.

• Every bounded finite rank operator is compact.

Proof Let T : X → Y be a bounded finite rank operator that means im(T)

is finite-dimensional. And for any bounded sequence {xn} in X, the sequence

{Txn} is bounded in the image, so this sequence must contain a convergent

subsequence by Bolzano-Weierstrass theorem[Sim15]. Hence T is compact.

1.3 Important remarks about compact operators

• Let T1, T2 : X → Y be compact operators then T1 + T2 is compact.

Proof: Let {xn} ⊆ X be a bounded sequence. Since T1 is compact, {T1xn} has

a subsequence {T1xnk
} which is convergent and it converges to y. Also {xnk

}
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is a bounded sequence. Since T2 is compact, there exists a subsequence {xnkl
}

of {xnk
} such that {T2xnkl

} is convergent. So we can say {T1xnk
+ T2xnkl

} is

convergent. Hence T1 + T2 is compact.

• The scalar multiple of a compact operator is compact.

Proof: Let T is a compact operator on X and k be a scalar. Assume {xn} ⊆ X

is a bounded sequence. Since T is compact, let {xn} ⊆ X be a bounded sequence

means that {Txn} has a subsequence {Txnk
} which converges to y. As sequence

{kTxn} for the operator kT also converges, kT is compact.

• If T is compact, then T is bounded.

Proof: Assume that T is not bounded such that ||T (vn)|| 7→ ∞, where vn is a

sequence of bounded vectors in some vector space V with ||vn|| < 1 and hence

{Tvn} may not have a convergent subsequence which implies T is not compact.

• The converse to the above statement need not be true. For example consider

the identity operator:

I : X → X

If X is not finite dimensional then basis of unit vector with unit norm is linear

independent and do not converge. So we establish that I is compact if and only

if dimension of X is finite.

• Let X be a Banach space and T and S be in B(X). If T is compact then so are

ST and TS.

Proof: Consider the mapping ST. Let {xn} be a bounded sequence in X, then

there exists a subsequence {Txnk
} of {Txn} that converges in X.

Txnk
→ y∗ ∈ X.

Since S is continuous, it follows that {STxnk
} → S(y∗). Hence the sequence

{STxnk
} converges in X and so ST is compact.

To show that TS is compact, take a bounded sequence {xn} in X and note that

{Sxn} is bounded also (since S is continuous). Thus there exists a subsequence

{TSxnk
} which converges in X. Hence TS is compact as well.

• An isometry is compact if and only if it is a finite rank operator.

Proof: An isometry is a linear transformation which preserves length. Having
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said that this statement is equivalent to the one in example 3, page 2. Proof

follows the same.

• Restriction of a compact operator to a closed subspace is again a compact op-

erator. (Proof on page 111,[Sim15])

• Suppose X is a Banach space. If {Tn} is a sequence of compact operators in

B(X) and |Tn − T| converges to 0 for some T ∈ B(X) then T is a compact

operator as well.

Proof: Let B be the unit ball in X. Given any ε > 0, choose n large enough

that |Tn − T | < ε. Since Tn is a sequence of compact operators, Tn(B) can be

covered by a finite number of balls of radii ε of the form B(Txi , ε). Then T(B)

can be covered by balls of radius 2ε of the form B(Txi , 2ε) proving T a compact

operator.

• Let X be a Banach space, K be a bounded linear map from X onto itself. Then

all nearby maps of the form K-A, where |A| < e for e small enough also maps

X onto itself. (Refer to section 20.1, theorem 1 [Lax02] for the proof).

Compact operators, as a generalization of operators in finite dimensional spaces, show

a relatively simple structure. There is another class of operators known as Fredholm

Operators, which we will discuss in detail in next chapter, can be regarded as a kind

of anti-compact operators.

1.4 Compact Operators: Fredholm Alternative

Before moving on to Fredholm operators, there is yet another important property of

compact operators, the Fredholm Alternative. It provides necessary information on

the solvability of a certain category of linear equations.

For finite rank cases it is stated as:

Let K : Rn → Rn, then (I - K)x = 0 or I - K is one-one if and only if (I - K)x− y = 0

or I - K is onto.

For infinite dimensional spaces; (I - K)x is invertible if and only if I - K is onto.

This extends to the existence of solutions of the equations of the type (λK + I)x = y

where λ is a scalar. This known as general Fredholm alternative theorem is similar
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to previous cases. It says that I − λK is one-one if and only if it is onto. Fredholm

alternative theorem helps in understanding that uniqueness yields existence.
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Chapter 2

Index of Fredholm Operators

2.1 Introduction

One of the most fundamental problems in mathematics is to solve linear equations of

the form

Tf = g

say solving equations like Tv = w where v and w belong to two vector spaces, or

like solving Df = g for some suitable differential operator between Banach spaces of

functions. The main goal of index theory is to assign an index, a number to operators,

like to T as above mentioned which encapsulates information about both existence

and uniqueness of solutions simultaneously.

2.2 Index Theory In Finite Dimensions

Let V and W be finite dimensional vector spaces and let T : V → W be a linear

transformation. In order to understand the solutions to equations Tv = w, we look

at these two points:

• Uniqueness of solutions corresponds to the injectivity of T. Since T is injec-

tive exactly when dim ker(T) = 0, the larger the dimension of ker(T), the less

injective T is.
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• Similarly, existence of solutions of Tv = w can be understood by the surjectivity

of T.

coker(T) = W/im(T)

Hence we can measure surjectivity by considering the dimension of coker(T). If

dim coker(T) = 0, then im(T) is all of W and so T is surjective. The larger

dim coker(T) is, the less surjective T is.

Definition:

Let V and W be finite dimensional vector spaces and let T : V → W be linear, then

index of T is

ind(T) = dim ker(T)− dim coker(T)

Proposition 2.1:

Let V and W be finite dimensional vector spaces and let T : V → W be linear, then

ind(T) = dim(V )− dim(W )

Proof: Since

coker(T) = W/im(T)

We have dim coker(T) = dimW − dim(imT)

Hence,

ind(T) = dim ker(T)− dim coker(T)

ind(T) = dim ker(T) + dim(im(T))− dimW

By Rank-Nullity theorem, which states that rank and nullity of a matrix add upto

number of columns of the matrix,

dim ker(T) + dim(im(T)) = dimV

Therefore,

ind(T) = dim(V )− dim(W )

We saw from the above proposition that in finite dimensional space the concept of

index depends on dimensions of domain and codomain. Therefore, we now try to go
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into infinite dimensional spaces.

2.3 Fredholm Operator In Infinite Dimensional Spaces

In the infinite dimensional space, dimension of kernel or cokernel of an operator may

be infinite and index might not be well defined for all operators.

For instance, take 0 : X → Y ; both kernel and cokernel are infinite dimensional

if Xand Y are infinite dimensional. So we want kernel and cokernel to be finite

dimensional and then comes the concept of Fredholm Operators. In the next section,

we define Fredholm operators acting on Banach spaces, its properties and index of

Fredholm Operators.

2.3.1 Fredholm operator

A Fredholm operator is an operator that arises in the Fredholm theory of integral

equations.

Let T be a bounded linear operator from X to Y , where X and Y are both Banach

spaces.

If dim ker(T)) and dim coker(T) are finite and range is closed, then T is said to be a

Fredholm operator. This operator is almost injective as it has only finite dimensional

kernal.

Dimension of ker(T) provides us the extent to which Tx = y fails to have a unique

solution and dimension of coker(T) provides the extent to which Tx = y fails to have

a solution, same as discussed in the beginning of this chapter.

Remarks

Here T : X → Y , other notations are as above.

• If Tx = y always has a solution for arbitrary y then

im(T) = Y

dim coker(T) = 0
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• If Tx = y always has an unique solution once it has a solution then

dim ker(T) = 0

.

• The adjoint of an operator is obtained by taking the complex conjugate followed

by transposing the operator. In particular, an operator T is Fredholm if and

only if T∗ is Fredholm.

Suppose that T is Fredholm, we know that kerT∗ = (imT)⊥. Since imT is closed

and X = imT
⊕

(imT)⊥, it follows that kerT∗ = (imT)⊥ which is equivalent to

cokerT. Therefore, T is Fredholm if and only if T∗ is Fredholm

• The composition of two Fredholm operators is a Fredholm operator as well.

Example

The shift operator S takes a function f(x) to its translation f(x + a), a being some

scalar. Let

S : L2(Z+)→ L2(Z+)

be the right shift map acting on the elements of L2(Z+) with a = 1. Elements of this

space are the sequences like (c00, c01, ...) of complex numbers with square summable

complex values i.e.
∑
|cn|2 <∞.

If every sequence in L2(Z+) is treated as an element then Scn = cn+a with f(x) = cn

and f(x+ a) = cn+a

dim ker(S) = 0

dim coker(S) = 1

Since both kernel and cokernel have finite dimension and the image is closed, it is a

Fredholm operator.

Another case where shift operator is Fredholm is for the Hilbert spaces. Let {e1, e2, ...}
be an orthonormal basis for H, and let M : H → H be the operator defined by

Mej = ej+1. The image of M is imM = Span{e2, e3, ...}.
Hence, cokerM = H/imM = Span{e1}, and so dim cokerM = 1. Since M is injective,

dim kerM = 0.

Definition (Semi- Fredholm Operator)

Let X and Y be two Banach spaces and let L(X, Y ) denote the Banach space of

all bounded operators from X into Y . An operator T is said to be semi-Fredholm
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operator if TX is closed and at least one of the spaces kerT and cokerT is of finite

dimension.

2.3.2 Properties of Fredholm Operators

Lemma 2.1: Let T: X → Y be a operator such that range admits a finite comple-

mentary subspace. Then the range of T is closed.

Proof: Let C be a complement of the range. Since it is finite dimensional, it is

closed. ker(T) is a closed subspace, so X/ ker(T) is a Banach space. Replacing X by

X/ ker(T) we assume that T is injective.

If we now consider the map S : X
⊕

C → Y by

S(x, c) = T(x) + c

which is a bounded linear isomorphism because

||Tx+ c|| ≤ ||Tx||+ ||c||

||Tx||+ ||c|| ≤ ||T||||x||+ ||c||

. Let K = max{||T||, 1}, then we get

||T||||x||+ ||c|| ≤ K(||x||+ ||c||)

and so S is bounded and hence continuous. Moreover Tx + c = 0 implies (x, c) = 0.

Since the intersection of Tx and c is zero, it is one to one. It is also onto and S is an

invertible isomorphism, so it is a homeomorphism by the Open Mapping theorem (if

T is a bounded operator and is surjective, then T is open).

Therefore im(T) = S(X
⊕
{0}) is closed.

Riesz Lemma: If a unit ball in X is precompact then X is finite dimensional.

Result: If T has closed range then coker(T)∗ = ker(T∗).(For proof [ocw15])

Lemma 2.2: Let K : X → X be a compact operator then I + K is a Fredholm

operator.

Proof: Let B be the unit ball in ker(I + K). Then B = K(B), B is image of a

bounded set under a compact operator, it is precompact. But B is closed, so it is
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compact. By Riesz lemma, a subspace of ker(I + K) is finite dimensional.

To show that im(I + K) is closed we consider that if {xn} is a bounded sequence such

that {xn + K xn} converges to y ∈ Y then there is x ∈ X so that x + Kx = y. Since

{xn} is bounded there is a subsequence {xnm} so that {Kxnm} converges but then

{xnm} converges. Thus the operator I + K is a semi Fredholm operator. Applying the

same arguement to the adjoint I + K∗ and using the result mentioned above, we get

I + K is Fredholm.

2.4 Index Of Fredholm Operator

Definition Let T : X → Y be a Fredholm operator in a Banach space, then the index

of this operator is defined as the finite integer.

indT = dim kerT− dim cokerT

• If indT = 0 this means that existence and uniqueness are equivalent.

• If T is invertible, then dim kerT and dim cokerT are 0 which in turn means that

ind T = 0

So a necessary condition for a Fredholm operator to be invertible is that its index be

0.[Dep01]

Remarks

• The set of all Fredholm operators from X to Y is denoted as F(X, Y ). B(X, Y )

is space of compact operators acting between X and Y as mentioned earlier.

Proposition 2.2

• Compact perturbations do not change Fredholmness and the index. If K ∈
B(X, Y ) and A ∈ F(X, Y ), then A + K ∈ F(X, Y ) and ind(A + K) = ind(A).

• Zero index is achieved only by compact perturbations of invertible operators.

More precisely, if A ∈ F(X, Y ) then ind(A) = 0 if and only if A = A0 + K for

some invertible operator A0 and some compact operator K.
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• If K : X → X is a compact operator, then I− λK is Fredholm for every λ ∈ R.

(Proof is similar to lemma 2.2). This property indicates the fact that Fredholm

operators in infinite space are the furthest from compact operators which will

be proved by Atkinson’s theorem.

Atkinson’s Theorem

Fredholmness is equivalent to invertible modulo compact operators means given a

bounded operator A : X → Y the following are equivalent:

• A is Fredholm.

• A is an invertible modulo compact operator, that means there exists operator

B ∈ L(Y,X) and compact operators K and J such that BA = 1 +K, AB = 1 + J.

Proof: Assume first the existence of B, K and J. Since identity plus compact op-

erator is a Fredholm operator(Lemma 2.2), we deduce that the kernel of A is finite

dimensional (since it is included in the kernel of 1 + K; 1+ K being Fredholm with

finite dimensional kernel) similarly, the cokernel of A is also finite dimensional. Since

cokernel is finite it means range is closed. Hence A is Fredholm.

Assume now that A is Fredholm. Choose a complement E1 of kerA in E and a com-

plement F1 of imA in F . Then A1 = A�E1 is an isomorphism from E1 into imA and

we define B such that B = (A−11 ) on imA and B = 0 on F1. Then the resulting K will

be a projection onto kerA and 1 + J will be a projection onto imA. Hence K and J

have the required properties.

Proposition 2.3

If T : X → Y ; X & Y are finite dimensional spaces, then T is a Fredholm operator

with indT = dimX − dimY .

Operators in a finite dimensional space are Fredholm. For similar proof, refer propo-

sition 2.1.

Important results

If T, S are Fredholm operators and K is a compact operator then the following results

holds:

• ind(TS) = indT + ind S. This is known as the multiplicative property of the

index.
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• If T is Fredholm, then so is it’s adjoint and ind(T∗) = − ind(T). Since ind(T) =

dim kerT−dim kerT∗ and ind(T∗) = dim ker(T∗)−dim ker(T∗∗), we get ind(T∗) =

− ind(T)

• ind (T+K) = indT

• If T is an isomorphism then ind(T+K) = 0. Since I is a special case of isomor-

phism, ind(I+K) is zero.

Invariance of index under small perturbations

Let T be a Fredholm operator, if S is such that ||S|| < c for a positive scalar c, then

T+S is a Fredholm operator which satisfies

ind (T+S) = ind(T)

Theorem 2.1: The Fredholm index map ind : F(X) → Z is continuous, and is

locally constant. Also given any Fredholm operator T, there is an open neighborhood

U of Fredholm operators containing T such that ind(S) = ind(T) for all S ∈ U .

Proof

Refer to Lemma 1.4.4 for the proof [Gil74].

One implication of this theorem is that the index is constant on connected components

of F(X). Suppose that T and S are two Fredholm operators which are connected by

a path in F(X). Since the Fredholm index is locally constant, at every point along

the path we can find open neighborhoods of constant index. Since path is a compact

space, we can cover the entire path with a finite number of such open sets. The index

is constant on such open sets and also on the union of any two intersecting neigh-

borhoods. And each neighbourhood intersects with atleast one other neighbourhood

and by connectedness it results into the constant index throughout the path. So to

say the index map is continuous and locally constant, by connectedness is constant

on connected components.

The converse also holds and so in other words, the index partitions the space of Fred-

holm operators into connected components.

Explicitly, in the case of Hilbert space H there arises a bijection between connected

components of F(H) and Z.
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Proposition 2.4

Let A: X → Y and X = M ⊕N , Y = M
′ ⊕N ′

and suppose,

A =

[
A1 X

0 A2

]

relative to the two decompositions of X and Y . If A1 is invertible and N , N
′
are finite

dimensional then A is a Fredholm operator and

indA = dimN − dimN
′
.

2.5 Relations In General Index Theory

Definitions:

• Unilateral shifts The shift operators acting on one-sided infinite sequences are

called unilateral shifts.

• Finite index If the index is a well defined integer, it is known as finite index.

• Degenerate map A degenerate map is the one which has finite range.

• Pseudoinverse map Two bounded linear maps T : U → V and S : V → U are

called pseudo inverse of each other if ST = I+K and TS = I+J where K and J

are compact maps of U and V respectively into themselves.

Example 2: Let S be a unilateral shift of multiplicity α, put A = S ⊕ S∗. A is

Fredholm if α is finite with trivial index.

Theorem 2.2

A bounded linear map T : U → V has finite index if and only if T has a pseudo

inverse.

Proof Refer to [Lax02] Section 27.1, theorem 1.

Remark

Let T : U → V and R : V → W be bounded maps with finite indices then RT has

finite index equal to the sum of indices of R and T.
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ind(RT) = ind(R) + ind(T)

Theorem 2.3

Suppose T : U → V has finite index, L is a compact linear map from U to V . Then

T+L has a finite index and ind (L+T) = ind (T).

Proof: Since T has finite index it has pseudo inverse S.S is also pseudo inverse to

(T+L).

S(T+L) = ST + SL = I +K + SL

Since L is a compact map, so is SL. We have already seen that sum of indices of two

operators which are pseudoinverse to each other is trivial. (A and B are pseudoinverses

to each other, then ind(A) + ind(B) = 0 [Lax02]) we have

ind (T+L) = − ind S = indT

Theorem 2.4 Let T : U → V be a linear map of finite index and G : U → V is a

degenerate linear map, then T + G has finite index and

ind (T+G) = ind(T)

So far, in last two chapters, we presented two important classes of operators, the

compact operators and the Fredholm operators. These operators in infinite dimen-

sional spaces, assist in easily solving linear equations of the form Tf = g. The central

role in this solution plays the concept of the index of a Fredholm operator. Whenever

T is a Fredholm operator with zero index, it can be decomposed directly as a sum

of an invertible and a compact operator, so that the equation could be subsequently

solved via the Fredholm Alternative. Even if the index of T is nonzero, the equations

could be solved and have the same solutions with the initial ones. In the next chap-

ter, we will look at another type of operator called Toeplitz operator and establish a

connection between Fredholm operators and Toeplitz operators.
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Chapter 3

Toeplitz Operators

3.1 Introduction

The theory of index is not only limited to Fredholm operators. There is another class

of operators called Toeplitz operators whose index can be calculated explicitly. In

this chapter we will briefly discuss about Toeplitz operators, its properties and also

when can a Toeplitz operator be a Fredholm operator. We will also establish that

index theory is an important tool connecting analytic(index) and topological proper-

ties(winding number).

3.2 Toeplitz Operator

3.2.1 Basics

A Toeplitz matrix is a matrix that is constant on each line parallel to the main

diagonal. Entries of the matrix are determined as aij = (ai−j).

For example,
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A =


2 9 0 1 0

−1 2 9 0 1

5 −1 2 9 0

2 5 −1 2 9

1 2 5 −1 2


is a Toeplitz matrix.

A Toeplitz operator is essentially an infinite dimensional analogue of Toeplitz matrices.

Toeplitz operator looks like

T =


a0 a−1 a−2 ...

a1 a0 a−1 a−2 .

a2 a1 a0 a−1 ..

.. a2 a1 a0 ..

.. .. .. .. ..


Associated to a Toeplitz operator T is an infinite sequence of complex numbers

{an}+∞−∞. We define φ, the symbol of T as a continuous complex function from S1

to C as

φ(z) =
∞∑

n=−∞

anz
n

The image of φ is a loop in the complex plane.

A Toeplitz operator acts on the space called Hardy space defined as H2 = H2(S1) =

Hilbert subspace of L2(S1) spanned by {eiθn;n ≥ 0}
In other words, the Hardy space H2 is defined to be the closed linear span in L2(S1, σ)

of {zn : 0 ≤ n}. For φ ∈ L∞(S1, σ), the Toeplitz operator with symbol φ, denoted

Tφ , is the operator on H2 defined by Tφh = P(φh), P is the orthogonal projection of

L2(D, σ) onto H2. Also Tφ is a bounded operator on H2.

The operator T is bounded if the entries of the respective Toeplitz matrix are the

fourier coefficients of φ.

3.2.2 Fredholm Toeplitz Operator

In this section, we are going to look how and when is a Toeplitz operator a Fredholm

operator.
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Proposition 3.1:

A Toeplitz operator T is Fredholm if and only if its symbol φ, defined above, is non-

zero everywhere.

Example Consider T with 1’s on the lower diagonal and zero everywhere.

T =


0 0 0 0 ..

1 0 0 0 ...

0 1 0 0 ..

0 0 1 0 ..

.. . .. 1 ..


Here a1 = 1 and an = 0 everywhere else. φ(z) = z is the symbol of this operator.

Since z is never zero on S1 as because image of S1 under z is just S1; the function z

does not do anything to S1. Hence T is a Fredholm Operator.

3.2.3 Index Of Toeplitz Operator

Winding number denoted as w(φ), is the number of times the curves φ(S1) loops

around the origin going counter-clockwise. For instance in the example above, w(z)=1

since image of S1 is S1.

Winding number of the symbol of the Toeplitz operator is a topological invariant,

that is, it is preserved in hoemomorphism. Winding number of φ is related with the

Fredholm index of the Toeplitz operator with symbol φ by the theorem mentioned

below.

Toeplitz Index Theorem

The Toeplitz index theorem gives an explicit index computation of an important class

of number of continuous functions. Stated as, let T be a Toeplitz operator with

non-zero symbol φ. Then

ind(T) = −w(φ)

As we can see, the above theorem exemplifies the connections between analytic and

topological ideas. There is yet another portion in index theory connecting analysis

and topology, namely Atiyah Singer index theorem. It deals with a type of differential

operator

The Atiyah Singer index theorem tells us that how many solutions there are to a

18



system of differential equations, has a concrete answer in topology. Furthermore, it is

safe to say that index theory has many appliactions such as in string theory. I would

like to conclude with the statement of the theorem.

Atiyah Singer Index Theorem Let P(f) = 0 be a system of elliptic differential opera-

tor on an n-dimensional compact smooth C∞ boundaryless manifold. Then analytical

index(P) = topological index(P)
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