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Abstract

Let R be an integrally closed domain with quotient field K and θ be an element

of an integral domain containing R with θ integral over R. Let F (x) be the minimal

polynomial of θ over K and p be a maximal ideal of R. Kummer proved that if

R[θ] is an integrally closed domain, then the maximal ideals of R[θ] which lie over

p can be explicitly determined from the irreducible factors of F (x) modulo p. In

1878, Dedekind gave a criterion to be satisfied by F (x) for R[θ] to be integrally

closed in case R is the localization Z(p) of Z at the nonzero prime ideal pZ of Z.

In 2006, Ershov extended Dedekind Criterion replacing Z(p) by the valuation ring

of any Krull valuation. Using Generalized Dedekind Criterion in this thesis, we

have given explicit necessary and sufficient conditions involving only a, b,m, n for

R[θ] to be integrally closed when θ is a root of an irreducible trinomial F (x) =

xn + axm + b belonging to R[x], R being a valuation ring. As an application, we

have deduced that if K1, K2 are algebraic number fields which are linearly disjoint

over the field of rational numbers and one of them is a quadratic field with the

compositum AK1AK2 integrally closed, AKi
being the ring of algebraic integers of

Ki, then the discriminants of K1, K2 are coprime. In an attempt to extend the

above result to any pair of algebraic number fields linearly disjoint over K1 ∩K2,

we have proved a more general result which deals with the compositum of integral

closures of a given valuation ring R in a pair of finite separable extensions of the

quotient field K of R which are linearly disjoint over K. In the course of its

proof, we have established an analogue for finite extensions of valued fields of the

classical result that the discriminant of an extension of algebraic number fields can

be expressed as a product of local discriminants as well as a generalization of the

weak Approximation Theorem. We have also generalized an extended version of

the classical theorem of factorization of Ore for polynomials with coefficients in

henselian valued fields of arbitrary rank.

iv



v



Declaration

The work presented in this thesis has been carried out by me under the supervision

of Professor Sudesh Kaur Khanduja at Indian Institute of Science Education and

Research Mohali.

This work has not been submitted in part or full for a degree, a diploma, or a

fellowship to any other university or institute. Whenever contributions of others

are involved, every effort is made to indicate this clearly, with due acknowledge-

ment of collaborative research and discussions. This thesis is a bonafide record of

original work done by me and all sources listed within have been detailed in the

bibliography.

Date:

Place: Neeraj

In my capacity as the supervisor of the candidate’s thesis work, I certify that

the above statements by the candidate are true to the best of my knowledge.

Professor Sudesh Kaur Khanduja

(Supervisor)

vi



vii



Acknowledgements

First and foremost I wish to thank my supervisor, Professor Sudesh Kaur Khan-

duja. I am very grateful to her for her most valuable guidance, immense support

and her constant encouragement. Her enthusiasm and love for teaching is conta-

gious. Her hardworking nature has been a continuous source of inspiration for me.

I definitely consider it an honor to have worked with her.

I am thankful to the Director IISER Mohali, Head of the Department of Math-

ematics, and the Mathematics faculty of Indian Institute of Science Education and

Research for providing facilities of the Institute. I also thank Professor I. B. S.

Passi for his guidance. I am thankful to IISER Mohali for providing me financial

support in the form of research fellowship. A special thanks goes to Dr. P. Visakhi,

the librarian IISER Mohali for providing the necessary facilities during the course

of my research work. My sincere thanks to Professor Peter Roquette, Emeritus

Professor Universität Heidelberg for his keen interest and valuable suggestions.

A special acknowledgement goes to Anuj Jakhar who helped me academically

and emotionally through the rough road to finish this thesis. I am also thankful

to Dr. Bablesh Jhorar for her timely help. I especially thank my mom, dad, sister

and other family members for their unconditional love and care. I would not have

made it this far without them.

I thank all my friends Deep Raj, Nishant, Pankaj (too many to list here but

you know who you are!) for providing support and friendship I needed.

Date:

Place: Neeraj

viii



ix



Contents

1 Introduction 1

2 Integrally closed simple extensions of valuation rings 19

2.1 Motivation of the problem and statements of the results. . . . . . . 19

2.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Proof of Theorem 2.1.6 . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Discriminant as a product of local discriminants 35

3.1 Origin of problem and statements of results. . . . . . . . . . . . . . 35

3.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Proof of Theorem 3.1.1. . . . . . . . . . . . . . . . . . . . . . . . . 41

4 On the compositum of integral closures of valuation rings 45

4.1 Motivation of the problem and statements of the results. . . . . . . 45

4.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Proof of Theorem 4.1.1 and Corollary 4.1.2. . . . . . . . . . . . . . 48

5 On factorization of polynomials in henselian valued fields 53

5.1 History of the problem and statements of the results. . . . . . . . . 53

5.2 Proof of Theorem 5.1.1, Corollary 5.1.3. . . . . . . . . . . . . . . . 60

5.3 Preliminary results and Proof of Theorem 5.1.4. . . . . . . . . . . . 62

xi



5.4 Proof of Theorem 5.1.6, Corollary 5.1.8 and examples. . . . . . . . . 73

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xii



xiii



Chapter 1

Introduction

Valuations have been around in mathematics since ancient times. When Euclid

proved the fundamental theorem of arithmetic, then this result permitted to code

the natural numbers by the exponents with which various primes p divide these

numbers; those exponents in fact represent the p-adic valuations used in number

theory. The theory of valuations was started in 1912 by the Hungarian mathemati-

cian Josef Kürchák [Kur]. Kürchák formally introduced the concept of a valuation

of a field K as being a real valued function φ defined on K satisfying the following

axioms for all a, b ∈ K :

(i) φ(a) > 0 for a 6= 0, φ(0) = 0,

(ii) φ(ab) = φ(a)φ(b),

(iii) φ(a+ b) ≤ φ(a) + φ(b).

Such functions are now a days called absolute values. Although the formal defi-

nition of a valuation was given by Kürchák, the ideas which governed valuation

theory in its first phase came from Hensel’s theory of p-adic numbers. As pointed

out by Peter Roquette in his article “A history of valuation theory” (cf. [K-K-M]),

Hensel may be called the grandfather of valuation theory. The development of

valuation theory was motivated by the discovery that it is an important tool to

study algebraic number fields. Later it was Alexander Ostrowski who played a sig-

nificant role in developing the theory further to a considerable degree (cf. [Ost1],

[Ost2], [Ost3], [Ost4]). Ostrowski introduced the terminology of archimedean and
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non-archimedean for absolute values. An absolute value φ of a field K is called

non-archimedean if φ(a + b) ≤ max{φ(a), φ(b)} for all a, b ∈ K. Valuations in

additive form were first used by Ostrowski in his 1918 paper [Ost2]. An additive

valuation v of a field K is a mapping from K into R∪{∞} satisfying the following

axioms for all a, b ∈ K :

(i) v(a) =∞ if and only if a = 0;

(ii) v(ab) = v(a) + v(b);

(iii) v(a+ b) ≥ min{v(a), v(b)}.
It is clear that the additive valuations of K are in one-to-one correspondence with

its non-archimedean absolute values (via the correspondence v −→ φ = exp(−v)).

In 1932, Krull extended the notion of valuation of a field. In this thesis, by a

valuation v of a field K, we mean a Krull valuation, i.e., v is a mapping from K

onto G ∪ {∞}, where G is a totally ordered additive abelian group, such that for

all a, b in K, the following properties are satisfied:

(i) v(a) =∞ if and only if a = 0;

(ii) v(ab) = v(a) + v(b);

(iii) v(a+ b) ≥ min{v(a), v(b)}.
The pair (K, v) is called a valued field and G the value group of v. The subring

Rv = {a ∈ K | v(a) ≥ 0} of K with unique maximal ideal Mv = {a ∈ K | v(a) > 0}
is called the valuation ring of v and Rv/Mv its residue field. As in [En-Pr, §2.1,§3.1],

it can be easily seen that the valuation ring Rv of v is integrally closed and the

collection of all convex subgroups of G is linearly ordered by inclusion. The order

type of the chain of all convex subgroups of the value group G of v distinct from G

is called the rank of v. It is well known that v has rank one if and only if G is order

isomorphic to a non-zero subgroup of the group of all real numbers under addition

(see [En-Pr, Proposition 2.1.1]); that is why rank one valuations are also called real

valuations. A valuation whose value group is isomorphic to the group Z of integers

is called discrete. Indeed the oldest known example of a discrete valuation is the

p-adic valuation (to be denoted by vp) of the field Q of rational numbers which is

defined for any non-zero rational number a = m
n
pr,m, n, r ∈ Z, p - mn as vp(a) = r.

The valuation ring of vp which is the localization of Z at the prime ideal pZ will
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be denoted by Z(p).

If K ′/K is an extension of fields and v is a valuation of K, then a valuation v′ of

K ′ is said to be an extension or a prolongation of v to K ′ if v′ coincides with v on K.

In this situation, the valued field (K ′, v′) is said to be an extension of (K, v). For a

valued field extension (K ′, v′)/(K, v), if G ⊆ G′ and Rv/Mv embedded in Rv′/Mv′

denote respectively the value groups and the residue fields of v, v′, then the index

[G′ : G] and the degree of the field extension Rv′/Mv′ over Rv/Mv are respectively

called the index of ramification and the residual degree of v′/v. Two valued fields

(K, v) and (K1, v1) are said to be isomorphic if there exists an isomorphism λ from

K onto K1 such that v1 ◦ λ = v. A valued field (K, v) or a valuation v of K is

said to be henselian if v has a unique prolongation to the algebraic closure of K.

It is known that henselian valued fields are those valued fields for which one of the

several equivalent versions of Hensel’s Lemma holds (cf. [En-Pr, Theorem 4.1.3]).

It was Kürshák [Kur] who proved in 1913 that every complete rank one valued field

is henselian.

Background of work. Let K = Q(θ) be an algebraic number field with θ an

algebraic integer and AK denote the ring of algebraic integers of K. It is immediate

from Lagrange’s theorem [Her, Theorem 2.4.1] for finite groups that if a prime p

does not divide the index [AK : Z[θ]], then AK ⊆ Z(p)[θ], Z(p) being the localization

of Z at pZ. The converse assertion also holds because if p divides [AK : Z[θ]],

then by Cauchy’s theorem [Her, §2.7], the group AK/Z[θ] has an element ξ + Z[θ]

of order p, in which case the element ξ of AK does not belong to Z(p)[θ]. Thus

p does not divide [AK : Z[θ]] if and only if AK ⊆ Z(p)[θ], which is the same as

requiring that the integral closure of Z(p) in K is Z(p)[θ]. In 1878, Dedekind gave

a necessary and sufficient criterion to be satisfied by the minimal polynomial F (x)

of θ over Q so that p - [AK : Z[θ]]. He proved that if F (x) = ḡ1(x)e1 · · · ḡt(x)et is

the factorization of the polynomial F (x) obtained by replacing coefficients of F (x)

modulo p as a product of powers of distinct irreducible polynomials over Z/pZ with

gi(x) ∈ Z[x] monic, then Z(p)[θ] is integrally closed if and only if for each i, either

ei = 1 or ḡi(x) - M(x), where M(x) = 1
p
(F (x) −

t∏
i=1

gi(x)ei) (see [Coh, Theorem

6.1.4], [Ded]). As Z(p) is the valuation ring of the p-adic valuation of rationals, the
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above criterion gives a motivation to investigate when is a simple ring extension of

a valuation ring integrally closed. In 2006, Ershov generalized the above criterion

replacing Z(p) by the valuation ring of a Krull valuation (cf. [Ers],[Kh-Ku1]) and

proved the following:

Theorem 1.1.A(Generalized Dedekind Criterion). Let v be a Krull valuation

of arbitrary rank of a field with valuation ring Rv having maximal ideal Mv. For

g(x) ∈ Rv[x], let ḡ(x) denote the polynomial obtained on replacing each coefficient

of g(x) by its image under the canonical homomorphism from Rv onto Rv/Mv. Let

F (x) ∈ Rv[x] be a monic irreducible polynomial having a root θ in its splitting field

and F (x) = ḡ1(x)e1 · · · ḡt(x)et be the factorization of F (x) into a product of powers

of distinct irreducible polynomials over Rv/Mv with gi(x) ∈ Rv[x] monic. Then

Rv[θ] is integrally closed if and only if either ei = 1 for each i or some ej > 1,

in which case Mv is a principal ideal say generated by π and ḡj(x) does not divide

M(x) for such an index j, where M(x) = 1
π
(F (x)− g1(x)e1 · · · gt(x)et).

Using the above criterion in Chapter 2, we have given necessary and sufficient

conditions involving a, b,m, n for Rv[θ] to be integrally closed when θ is a root of

an irreducible trinomial F (x) = xn + axm + b belonging to Rv[x]. For an element

α belonging to Rv, ᾱ will denote its image under the canonical homomorphism

from Rv onto Rv/Mv. We shall denote by D the discriminant of the trinomial

F (x) = xn + axm + b. It is known (cf. [Swa]) that

D = (−1)(
n
2)bm−1[bn1−m1nn1 − (−1)n1an1mm1(n−m)n1−m1 ]d0

where d0 = gcd(m,n), n1 = n
d0

, m1 = m
d0

. In Chapter 2, we prove

Theorem 1.1.1. Let v be a Krull valuation of arbitrary rank of a field having

valuation ring Rv, maximal ideal Mv and perfect residue field. Let p denote the

characteristic of the residue field Rv/Mv in case it is positive. Let θ be a root of a

monic irreducible trinomial F (x) = xn+axm+b belonging to Rv[x] and d0,m1, n1, D

be as above. Assume1 that v(D) > 0. Then Rv[θ] is integrally closed if and only

if Mv is a principal ideal say generated by π and one of the following conditions is

1If v(D) = 0, then F (x) has no repeated factor and hence Rv[θ] is integrally closed by Theorem

1.1.A.
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satisfied:

(i) when a, b ∈Mv, then v(b) = v(π);

(ii) when a ∈Mv and b /∈Mv with j ≥ 1 as the highest power of p dividing n, then

either v(a2) ≥ v(π) and v(b1) = 0 or v(a2) = 0 = v((−b)m1an1
2 − (−b1)n1), where

a2 = a
π
, b′ is an element of Rv satisfying (b̄′)p

j
= b̄ and b1 = 1

π
(b+ (−b′)pj);

(iii) when a /∈Mv, b ∈Mv and v(n−m) = 0, then v(b) = v(π);

(iv) when a /∈ Mv, b ∈ Mv and v(n − m) > 0 with l ≥ 1 as the highest power

of p dividing n − m, then either v(a1) ≥ v(π) and v(b2) = 0 or v(a1) = 0 =

v(bm−1
2 [(−a)m1(a1)n1−m1−(−b2)n1−m1 ]), where a1 = 1

π
(a+(−a′)pl), b2 = b

π
, a′ ∈ Rv

satisfies (ā′)p
l

= ā;

(v) when ab /∈Mv and m ∈Mv with n = s′pk, m = spk, p does not divide gcd(s′, s),

then the polynomials xs
′
+ axs + b and 1

π
[axsp

k
+ b + (−a′xs − b′)pk ] are coprime

modulo Mv, where a′, b′ are in Rv satisfying (ā′)p
k

= ā, (b̄′)p
k

= b̄;

(vi) when abm does not belong to Mv, then v(C−E) = v(π), where C = bn1−m1nn1
1

and E = (−1)n1an1mm1
1 (n1 −m1)n1−m1.

In the special case when the characteristic of the residue field of v is zero, we

obtain the following simple result.

Corollary 1.1.2. Let v,Rv,Mv, F (x) and D be as in the above theorem with

v(D) > 0. Assume that the characteristic of Rv/Mv is zero. Then Rv[θ] is in-

tegrally closed if and only if Mv is a principal ideal say generated by π and either

I) v(b) = v(π) or II) v(ab) = 0, v(C − E) = v(π) holds, where C, E are as in

Theorem 1.1.1(vi).

It is well known that if K1, K2 are algebraic number fields with coprime discrim-

inants, then K1, K2 are linearly disjoint over the field Q of rational numbers and

AK1K2 = AK1AK2 , here and elsewhere AL stands for the ring of algebraic integers

of an algebraic number field L (cf. [Nar, Theorem 4.26], [Es-Mu, Exercise 4.5.12]).

The converse of this classical result is already known when both K1, K2 are distinct

quadratic fields (cf. [Mar, Chapter 2, Exercise 42]). As an application of Theorem

1.1.1, we have proved the following theorem which proves the converse when one

of K1 or K2 is a quadratic field not contained in the other.
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Theorem 1.1.3. Let K1 be an algebraic number field and K2 be a quadratic field

not contained in K1. If AK1K2 equals the composite ring AK1AK2, then the discrim-

inants of K1 and K2 are coprime.

Theorems 1.1.1,1.1.3 and some related results of independent interest are proved

in the paper [J-K-S3] which has appeared in Journal of Pure and Applied Algebra

Vol. 222 (2018), 889-899.

The following problem naturally arises from Theorem 1.1.3.

Let K1, K2 be algebraic number fields linearly disjoint over K = K1 ∩ K2. If

AK1AK2 = AK1K2, then is it true that the relative discriminants2 of K1/K and

K2/K are coprime?

We deal with the above problem in a more general situation in the fourth chapter

and deduce that the answer to the foregoing question is in the affirmative. In the

course of its proof, we establish an analogue for finite extensions of valued fields

of the classical result that the discriminant of an extension of algebraic number

fields can be expressed as product of local discriminants (cf. [Ca-Fr, Proposition

5, Chapter I]); the latter result is proved in the third chapter. It will be precisely

stated after introducing some notations.

Definition 1.1.B. Let R be a integral domain and A be a commutative ring with

identity which is a free R-module of finite rank n. Let {β1, · · · , βn} be an R-basis

of A. For an arbitrary element α of A, we can write αβi =
∑n

j=1 cijβj, cij ∈ R.
The trace

∑
i cii of the matrix (cij)ij does not depend upon the choice of R-basis of

A; it is called the trace of α with respect to A/R and will be denoted by TrA/R(α).

The discriminant DA/R(β1, · · · , βn) of the basis {β1, · · · , βn} is defined to be the

determinant of the n × n matrix (TrA/R(βiβj))ij. If {β′1, · · · , β′n} is another R-

basis of A and T is the transition matrix from {β1, · · · , βn} to {β′1, · · · , β′n}, then

DA/R(β′1, · · · , β′n) = (det T )2DA/R(β1, · · · , βn). So DA/R(β1, · · · , βn) is uniquely de-

termined up to the square of a unit of R. The ideal generated by DA/R(β1, · · · , βn)

2As in [Nar], the relative discriminant of an extension L/K of algebraic number fields is the

norm relative to L/K of the inverse of the fractional ideal {λ ∈ L | TrL/K(λAL) ⊆ AK} of the

ring AL of algebraic integers of L.
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in R will be called the discriminant of A/R and will be denoted by d(A/R).

Notation 1.1.C. A henselian valued field (Kh, vh) which is an extension of a valued

field (K, v) and is smallest in the sense that every henselian valued field extension

of (K, v) contains a (K, v)-isomorphic image of (Kh, vh) is called henselization of

(K, v). It is known that every valued field admits a henselization (see [En-Pr,

Proposition 5.2.2.]). The valuation ring of the henselization (Kh, vh) will be de-

noted by Rh
v .

With the above notation, the main result of Chapter 3 can be stated as follows.

Theorem 1.1.4. Let (K, v) be a valued field of arbitrary rank with valuation ring

Rv and (Kh, vh) be its henselization having valuation ring Rh
v . Let L be a finite

separable extension of K and S be the integral closure of Rv in L. Let w1, · · · , ws
be all the prolongations of v to L. Assume that S is a free Rv-module. Then

the valuation ring Rh
wi

of the henselization of (L,wi) is a free Rh
v -module and

d(S/Rv)R
h
v =

s∏
i=1

d(Rh
wi
/Rh

v).

For proving the above theorem, we have proved the result stated below which

extends the weak Approximation Theorem which states that if B1,B2, · · · ,Bk are

non-comparable valuation rings of a field K with maximal idealsM1,M2, · · · ,Mk,

then for any tuple (a1, a2, · · · , ak) ∈ B1 ×B2 × · · · × Bk, there exists an c ∈ ∩ki=1Bi
with c− ai ∈Mi for all i ∈ {1, 2, · · · , k} (cf. [En-Pr, Theorem 3.2.7]).

Theorem 1.1.5. Let B1,B2, · · · ,Bk be non-comparable valuation rings of a field

K with maximal ideals M1,M2, · · · ,Mk and R = ∩ki=1Bi. Then for each tuple

(a1, · · · , ak) belonging to B1×· · ·×Bk such that ak is a unit of BiBk for 1 ≤ i ≤ k−1,

there exists an element c ∈ R such that c− ai ∈Mi for 1 ≤ i ≤ k− 1 and c− ak ∈
akMk.

In Chapter 3, we have also proved the following theorem which has been used

in the proof of Theorem 1.1.4.

Theorem 1.1.6. Let (K, v), Rh
v , L, S, w1, · · · , ws and Rh

wi
be as in Theorem 1.1.4.

Assume that S is a free Rv-module. Then one can choose a suitable Rh
v -basis Bi ⊆ S

of Rh
wi

such that (i) ∪si=1Bi is an Rv-basis of S; (ii) for every Bij ∈ Bi and for each

k 6= i, wk(Bij) ≥ v(a) > 0 for some a in K.
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The paper [J-J-K-S] containing the proofs of Theorems 1.1.4-1.1.6 has been

published in Journal of Algebra and its Applications, Vol. 16 (2017) 1750198 (7

pages).

Using results of the third chapter, we have proved the following theorem in the

fourth chapter.

Theorem 1.1.7. Let (K, v) be a henselian valued field of arbitrary rank with per-

fect residue field and K1, K2 be finite separable extensions of K which are linearly

disjoint over K. Let S1, S2 denote the integral closures of the valuation ring Rv of

v in K1, K2 respectively. If S1, S2 are free Rv-modules and S1S2 is integrally closed,

then either d(S1/Rv) or d(S2/Rv) is the unit ideal.

The corollary stated below has been deduced from the above theorem. It proves

the converse of the well known theorem which says that if discriminants of alge-

braic number fields K1, K2 are coprime, then they are linearly disjoint over Q and

AK1K2 = AK1AK2 (see [Nar, Theorem 4.26]).

Corollary 1.1.8. Let K1, K2 be algebraic number fields which are linearly disjoint

over K = K1 ∩K2 such that AK1K2 = AK1AK2. Then the relative discriminants of

the extensions K1/K and K2/K are coprime.

For proving Theorem 1.1.7, we have proved the following theorem as a prelim-

inary result in Chapter 4. It happens to be of independent interest.

Theorem 1.1.9. Let (K, v), K1, K2, S1, S2 be as in Theorem 1.1.7 without the as-

sumption that the residue field of v is perfect. Assume that S1, S2 are free Rv-

modules and S1S2 is integrally closed. If r, s, t denote respectively the number of

prolongations of v to K1, K2 and K1K2, then t = rs.

Theorems 1.1.7,1.1.9 and their applications are proved in the paper entitled “On

the compositum of integral closures of valuation rings” which has been accepted

for publication in Journal of Pure and Applied Algebra.

Factorization of polynomials having integral coefficients into irreducible factors

over the ring Zp of p-adic integers is an important problem in algebraic number
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theory. In 1894, Hensel developed a powerful approach by showing that the prime

ideals of the ring AK of algebraic integers of an algebraic number field K = Q(θ)

with θ an algebraic integer having minimal polynomial F (x) over Q, occurring in

the factorization of pAK for any prime p are in one-to-one correspondence with the

monic irreducible factors of F (x) over Zp and that the ramification index together

with the residual degree of a prime ideal of AK lying over p are same as those of

a simple extension of the field Qp of p-adic numbers obtained by adjoining a root

of the corresponding irreducible factor of F (x) belonging to Zp[x] (see [Hen], [Nar,

Proposition 6.1]). If the factorization of F (x) modulo p is given by

F (x) = φ1(x)e1 · · ·φr(x)er (1.1.1)

as a product of powers of distinct irreducible polynomials over Z/pZ with φi(x)

monic polynomials belonging to Z[x], then by Hensel’s Lemma [End, Theorem 16.7]

F (x) = F1(x) · · ·Fr(x), where Fi(x) is a polynomial over Zp with Fi(x) ≡ φi(x)ei

mod p. If p divides [AK : Z[θ]], then these factors Fi(x) need not be irreducible

over Qp. In 1928, Ore in a series of papers [Ore1], [Ore2], [Ore3] described a

method to further split Fi(x) into a product of irreducible factors over Zp. For this

purpose, he considered the φi-Newton polygon of Fi(x) (as defined in the paragraph

preceding Definition 1.1.K) for each i , having ki sides with positive slope which

leads to a factorization of Fi(x) into ki factors, say Fi(x) = Fi1(x) · · ·Fiki(x) in

Zp[x]. Moreover to each side S of the φi-Newton polygon of Fi(x), he associated

a polynomial (Fi)S(y) over the finite field Fqi , qi = pdeg φi(x) in an indeterminate y.

The factorization of the associated polynomial (Fi)S(y) over Fqi provides a further

factorization of the factor of Fi(x) corresponding to the side S. Finally, Ore showed

that if for some i, all these polynomials (Fi)Sj
(y) corresponding to various sides

Sj, 1 ≤ j ≤ ki, of the φi-Newton polygon of Fi(x) have no multiple factor, say

(Fi)Sj
(y) splits into nij distinct irreducible factors over Fqi , then all the

ki∑
j=1

nij

factors of Fi(x) obtained in this way are irreducible over Qp. Further, the slopes

of the sides of the φi-Newton polygon of Fi(x) and the degrees of the irreducible

factors of (Fi)S(y) over Fqi for S ranging over all the sides of such a polygon lead

to the explicit determination of the residual degrees and the ramification indices
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of all those prime ideals of AK lying over p which correspond to the irreducible

factors of Fi(x) (see [G-M-N, Theorem 1.19, Corollary 1.20], [Kh-Ku3]).

In 1934, Ostrowski established a deep connection between valuations of an

algebraic number field K and the prime ideals of AK . He proved that the prime

ideals of AK dividing pAK are in one-to-one correspondence with the valuations of

K extending the p-adic valuation of Q (see [Ost4], [Nar, Theorem 3.3]). Keeping

this in mind, the following well known theorem [End, Theorem 17.17] extends

Hensel’s approach (stated in the opening lines of the previous paragraph) to general

valued fields.

Theorem 1.1.D. Let v be a valuation of arbitrary rank of a field K and K(θ)

be a finite separable extension of K. Let F (x) be the minimal polynomial of θ

over K and
s∏
i=1

fi(x) be the factorization of F (x) into a product of distinct monic

irreducible polynomials over the henselization (Kh, vh) of (K, v). Let ṽh denote the

unique prolongation of vh to the algebraic closure of Kh. Then there are exactly s

prolongations of v to K(θ). Let θi be a root of fi(x). The valuations w1, · · · , ws of

K(θ) defined by

wi(
∑
j

ajθ
j) = ṽh(

∑
j

ajθ
j
i ), aj ∈ K (1.1.2)

are all the distinct prolongations of v to K(θ).

The above theorem gives rise to the following problem :

Given an irreducible polynomial F (x) with coefficients in a valued field (K, v)

of arbitrary rank, how to extend the method of Ore to obtain information about the

irreducible factors of F (x) over (Kh, vh).

It may be pointed out that Ore’s technique was extended by Cohen et al. in 2000

for polynomials over complete discrete valued fields and was further extended to

more general henselian valued fields by Jhorar, Khanduja and Kumar (see [C-M-S],

[Kh-Ku3], [Jh-Kh1]). All these generalizations of Ore’s results for factorization are

proved using φ-Newton polygons which later came to be known as Newton polygons

of order one (see Definition 1.1.K). In 2012, Guàrdia, Montes and Nart [G-M-N]

introduced the notion of Newton polygons of higher order to extend the method of

factorization of Ore in a different direction for polynomials with coefficients in Zp
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when the polynomial (Fi)Sj
(y) mentioned above has repeated irreducible factors

over Fq. In the fifth chapter, we extend the notion of Newton polygons of higher

order to polynomials with coefficients in henselian valued fields of arbitrary rank

(see Definition 1.1.K) and use higher order Newton polygons to give a factorization

for such polynomials. Our approach involves prolongations of a valuation V0 of

a field K to a simple transcendental extension K(x) of K whose residue fields

are transcendental over the residue field of V0; such prolongations of V0 to K(x)

are called residually transcendental. In 1988, Alexandru, Popescu and Zaharescu

[A-P-Z1] proved that residually transcendental prolongations are given by means

of minimal pairs which are defined after introducing some notations.

Notation 1.1.E. In what follows, V0 is a henselian valuation of arbitrary rank of

a field K with value group G0 whose valuation ring will be denoted by R0 having

unique maximal ideal M0. We shall denote by K̃ an algebraic closure of K and by

Ṽ0 a fixed prolongation of the valuation V0 of K to K̃; G̃0 will stand for the value

group of Ṽ0. For an element α belonging to the valuation ring of Ṽ0, α will denote

its Ṽ0-residue, i.e., the image of α under the canonical homomorphism from the

valuation ring of Ṽ0 onto its residue field. When f(x) ∈ R0[x], f̄(x) will stand for

the polynomial over R0/M0 obtained by replacing each coefficient of f(x) by its

V0-residue. For any subfield L of K̃, L,G(L) will denote respectively the residue

field and the value group of the valuation of L which is the restriction of Ṽ0.

Definition 1.1.F. A pair (α, δ) ∈ K̃ × G̃0 is said to be a minimal pair (more

precisely a (K,V0)-minimal pair) if whenever β belongs to K̃ with [K(β) : K] <

[K(α) : K], then Ṽ0(α − β) < δ, i.e., α has least degree over K in the closed ball

B(α, δ) = {β ∈ K̃ | Ṽ0(α− β) ≥ δ}.

Example. If φ(x) belonging to R0[x] is a monic polynomial of degree m ≥ 1

with φ(x) irreducible over the residue field of V0 and α is a root of φ(x) in the

algebraic closure K̃ of K, then (α, δ) is a (K,V0)-minimal pair for each positive

δ in G0, because whenever β belongs to K̃ with degree [K(β) : K] < m, then

Ṽ0(α − β) ≤ 0, for otherwise α = β, which in view of the Fundamental Inequality

([En-Pr, Theorem 3.3.4]) would imply that [K(β) : K] ≥ [K(β) : K] = m leading

to a contradiction.
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Note that to the minimal pair (0, 0) belonging to K̃ × G̃0, one can associate

in a natural way, the Gaussian prolongation V x
0 of V0 to a simple transcendental

extension K(x) of K defined on K[x] by

V x
0

(∑
i

aix
i
)

= min
i
{V0(ai)}, ai ∈ K. (1.1.3)

In the same manner, for a (K,V0)-minimal pair (α, δ), we can define a valuation

w̃α,δ of K̃(x) by

w̃α,δ
(∑

i

ci(x− α)i
)

= min
i
{Ṽ0(ci) + iδ}, ci ∈ K̃; (1.1.4)

its restriction to K(x) will be denoted by wα,δ. It is known that a prolongation

W of V0 to K(x) is residually transcendental if and only if W = wα,δ for some

(K,V0)-minimal pair (α, δ) (cf. [A-P-Z2, Theorem 2.2]). With Notation 1.1.E, the

valuation wα,δ and its residue field are described by the following basic theorem

proved in [A-P-Z1, Theorem 2.1].

Theorem 1.1.G. Let (K,V0), (K̃, Ṽ0) be as in Notation 1.1.E. Let (α, δ) be a

(K,V0)-minimal pair and w̃α,δ be as defined by equation (1.1.4). Let f(x) be the

minimal polynomial of α over K of degree m with wα,δ(f(x)) = µ. Let K(α),

G(K(α)) denote respectively the residue field and the value group of the valuation

obtained by restricting Ṽ0 to K(α). Then the following hold:

(i) For any polynomial g(x) belonging to K[x] with f -expansion3
∑
i

gi(x)f(x)i,

deg gi(x) < m, one has wα,δ(g(x)) = min
i
{Ṽ0(gi(α)) + iµ}.

(ii) If c(x) belonging to K[x] is a non-zero polynomial of degree less than m, then

the w̃α,δ-residue of c(x)/c(α) equals 1.

(iii) Let e be the smallest positive integer such that eµ ∈ G(K(α)) and h(x) be-

longing to K[x] be a polynomial of degree less than m with Ṽ0(h(α)) = eµ. Then

the wα,δ-residue z of f(x)e/h(x) is transcendental over K(α) and the residue field

of wα,δ is K(α)(z).

3On dividing by successive powers of f(x), every polynomial g(x) ∈ K[x] can be uniquely

written as a finite sum
∑

i≥0 gi(x)f(x)i with deg(gi(x)) < deg(f(x)), called the f -expansion of

g(x).
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Using the canonical homomorphism from the valuation ring R0 of V0 onto its

residue field R0/M0, as usual one can lift any monic polynomial xn + an−1x
n−1 +

· · · + a0 with coefficients in R0/M0 to yield a monic polynomial xn + an−1x
n−1 +

· · · + a0 over R0. In 1995, Popescu and Zaharescu [Po-Za] extended this notion

using (K,V0)-minimal pairs as follows:

Definition 1.1.H. For a (K,V0)-minimal pair (α, δ), let f(x),m, µ, e and h(x) be

as in Theorem 1.1.G. A monic polynomial F (x) belonging to K[x] is said to be

a lifting of a monic polynomial T (y) in an indeterminate y belonging to K(α)[y]

having degree t ≥ 1 with respect to (α, δ) if the following three conditions are

satisfied:

(i) degF (x) = etm,

(ii) wα,δ(F (x)) = wα,δ(h(x)t) = etµ,

(iii) the wα,δ-residue of F (x)/h(x)t is T (z), where z is the wα,δ-residue of

f(x)e/h(x).

To be more precise, this lifting will be referred to as the one with respect to (α, δ)

and h(x). Keeping in mind that the valuation wα,δ is uniquely determined by f(x)

and µ = wα,δ(f(x)) in view of Theorem 1.1.G(i), sometimes we avoid referring to

the minimal pair (α, δ) and say that the above lifting is with respect to f(x), µ and

h(x) or more briefly with respect to f(x), µ. It may be pointed out that this notion

of lifting extends the usual one because a usual lifting of a polynomial belonging to

K[x] is its lifting with respect to the minimal pair (0, 0) ∈ K ×G0 with h(x) = 1.

In 1936, Maclane [Mac] introduced the notion of key polynomials (defined be-

low) in order to construct residually transcendental prolongations.

Definition 1.1.I. Let W be a Krull valuation of K(x). Two polynomials f and g

belonging to K[x] are said to be equivalent in W if W (f − g) > W (f); f is said

to be equivalence divisible by h belonging to K[x] in W if there exists q ∈ K[x]

such that f is equivalent to qh in W . A monic polynomial φ = φ(x) ∈ K[x] is

said to be a key polynomial over W if it satisfies the following two conditions: (i)

φ is equivalence irreducible in W , i.e., whenever a product of two polynomials is

equivalence divisible by φ in W , then one of the factors is equivalence divisible
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by φ in W ; (ii) any non-zero polynomial of K[x] equivalence divisible by φ in W

has degree in x not less than the degree of φ(x). A key polynomial φ(x) over a

residually transcendental prolongation (K(x),W ) of a valued field (K,V0) is called

nontrivial if there exists a (K,V0)-minimal pair (α1, δ1) such that W = wα1,δ1 and

the minimal polynomial of α1 over K is not equivalent to φ(x) in W .

L. Popescu and N. Popescu in [Po-Po, Theorem 4.6] gave a connection between

key polynomials over any residually transcendental prolongation wα1,δ1 of V0 and

liftings of polynomials. They proved that if a monic polynomial φ(x) ∈ K[x] has

degree strictly greater than that of the the minimal polynomial of α1 over K, then

φ(x) is a key polynomial over wα1,δ1 if and only if φ(x) is a lifting of an irreducible

polynomial different from y belonging to K(α1)[y] with respect to the minimal pair

(α1, δ1) .

Example 1.1.J. Let φ(x) ∈ R0[x] be a monic polynomial with φ̄(x) irreducible

over K. We show that φ(x) is a key polynomial over the Gaussian valuation

V x
0 defined by (1.1.3). If V x

0 (gh − φq) > V x
0 (gh) for some polynomials g, h, q ∈

K[x], then V x
0 (φq) = V x

0 (gh) = −V0(cd), where c, d ∈ K are such that V x
0 (g) =

−V0(c), V x
0 (h) = −V0(d); so

(
cdq
)
φ̄ = (cg)

(
dh
)
. Since φ̄ is irreducible over K, φ̄

divides either cg or dh, say φ̄ divides cg. So there exists q1(x) ∈ R0[x] such that cg =

φ̄q̄1 and hence V x
0 (g− c−1φq1) > −V0(c) = V x

0 (g) which shows that g is equivalence

divisible by φ in V x
0 . This proves that φ is equivalence irreducible in V x

0 . To

verify the second property of key polynomials, let g, q ∈ K[x] be such that V x
0 (g−

φq) > V x
0 (g). So there exists c1 ∈ K such that 0̄ 6= (c1q)φ̄ = c1g. Consequently

deg(g) = deg(c1g) ≥ deg(c1g) ≥ deg(φ̄) = deg(φ). This completes the verification

that φ is a key polynomial over V x
0 . By definition, this key polynomial is nontrivial

if φ̄(x) 6= x.

Newton polygon is a simple, yet powerful tool in Valuation Theory for studying

irreducible factors of polynomials over valued fields (see [Dum]). The notion of

a Newton polygon originally due to Dumas was extended to φ-Newton polygon

by Ore in his 1923 thesis. Recall that if V0 is a real valuation of K and φ(x)

belonging to R0[x] is a monic polynomial with φ̄(x) irreducible over K, then as in

[Kh-Ku3, Definition 1.C], the φ-Newton polygon (with underlying valuation V0) of
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any polynomial F (x) ∈ K[x] not divisible by φ(x) with φ-expansion
s∑
i=1

Ai(x)φ(x)i,

As(x) 6= 0 is the lower convex hull of the points {(j, V x
0 (As−j(x))) | 0 ≤ j ≤

s, As−j(x) 6= 0}, where V x
0 is the Gaussian prolongation of V0 to K(x) defined

by (1.1.3). In the next definition, we extend the notion of φ-Newton polygon

replacing V x
0 by a residually transcendental prolongation W of V0 and φ(x) by a

key polynomial over W .

Definition 1.1.K. Let W be a residually transcendental extension of V0 to K(x)

and φ(x) be a key polynomial over W . Let F (x) belonging to K[x] be a polynomial

not divisible by φ(x) with φ-expansion
∑s

i=0Ai(x)φ(x)i, As(x) 6= 0. Let Pi stand

for the pair (i,W (As−i(x)φ(x)s−i) when As−i(x) 6= 0, 0 ≤ i ≤ s. For distinct pairs

Pi, Pj, let µij denote the element of the divisible closure of G0 defined by

µij =
W (As−j(x)φ(x)s−j)−W (As−i(x)φ(x)s−i)

j − i
.

Let i1 denote the largest index 0 < i1 ≤ s such that

µ0i1 = min{ µ0j | 0 < j ≤ s, As−j(x) 6= 0}.

If i1 < s, let i2 be the largest index such that i1 < i2 ≤ s and

µi1i2 = min{ µi1j | i1 < j ≤ s, As−j(x) 6= 0}.

Proceeding in this way if ir = s, then the φ-Newton polygon of F (x) with re-

spect to W is said to have r sides whose slopes are defined to be λ1 = µ0i1 , λ2 =

µi1i2 , · · · , λr = µir−1ir which are in strictly increasing order. The interval [ij−1, ij]

will be referred to as the interval of horizontal projection of the j-th side, 1 ≤ j ≤ r

with i0 = 0.

Example. Let V0 be a henselian discrete valuation of a field K of characteris-

tic zero having value group Z. Let a, b be elements of R0 with V0(a) > 0 and

V0(b) = 1. Take V1 = w0, 1
2

corresponding to the minimal pair (0, 1
2
) defined by

(1.1.4) and φ(x) = x2 + ax + b. In view of Theorem 4.6 of [Po-Po] (stated in the

paragraph following Definition 1.1.I), φ(x) is a key polynomial over V1. Let F (x)

be (φ(x))2 + b2φ(x) + b2(b0x + b1) with V0(bi) ≥ i for i = 1, 2 and V0(b0) = 0. It

follows that the φ-Newton polygon of F (x) with respect to V1 consists of a single

side joining the point (0, 2) to (2, 5
2
) having slope 1

4
.

With notations as in 1.1.E, the theorem stated below is the main result of the
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fifth chapter .

Theorem 1.1.10. Let (K,V0) be a henselian valued field of arbitrary rank with

value group G0 and residue field K. Let K̃ be a fixed algebraic closure of K and

Ṽ0 be the unique prolongation of V0 to K̃. Let W be a residually transcendental

extension of V0 to K(x) and φ(x) be a nontrivial key polynomial of degree m over

W having a root α ∈ K̃. Let F (x) belonging to K[x] be a monic polynomial not

divisible by φ(x) with φ-expansion
s∑
i=0

Ai(x)φ(x)i, As(x) = 1. Suppose that the

φ-Newton polygon of F (x) with respect to W consists of r sides S1, . . . , Sr having

positive slopes λ1, . . . , λr. Then the following hold:

(i) F (x) = F1(x) · · ·Fr(x), where each Fi(x) belonging to K[x] is a monic poly-

nomial of degree mli whose φ-Newton polygon with respect to W has a single side

which is a translate of Si and li is the length of the horizontal projection of Si.

(ii) If θi is a root of Fi(x), then Ṽ0(φ(θi)) = W (φ(x))+λi = µ′i (say) and G(K(α)) ⊆
G(K(θi)). The index [G(K(θi)) : G(K(α))] is divisible by ei, where ei is the smallest

positive integer such that eiµ
′
i ∈ G(K(α)). The degree [K(θi) : K] is divisible by

[K(α) : K].

(iii) Fi(x) is a lifting of a monic polynomial Ti(y) ∈ K(α)[y] not divisible by y of

degree li/ei with respect to φ(x), µ′i.

(iv) If Ui1(y)ai1 · · ·Uini
(y)aini is the factorization of Ti(y) into powers of distinct

monic irreducible polynomials over K(α), then Fi(x) factors as Fi1(x) · · ·Fini
(x)

over K, each Fij(x) is a lifting of Uij(y)aij with respect to φ(x), µ′i with degree

meiaij degUij and Ṽ0(φ(θij)) = µ′i. If some aij = 1, then Fij(x) is irreducible over

K and for any root θij of Fij(x), the index [G(K(θij)) : G(K(α))] = ei and the

degree [K(θij) : K] = degUij(y)[K(α) : K] in this case.

The following result which is already known in the particular case when W is

the Gaussian prolongation V x
0 (cf. [Jh-Kh4, Theorem 1.5]), has been deduced from

Theorem 1.1.10.

Corollary 1.1.11. Let (K,V0), φ(x),m,W and α be as in Theorem 1.1.10. Let

F (x) belonging to K[x] be a polynomial having φ-expansion
s∑
i=0

Ai(x)φ(x)i with
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As(x) = 1, Ai(x) 6= 0 for some i < s and assume that all the sides in the

φ-Newton polygon of F (x) with respect to W have positive slopes. If l is the

smallest non-negative integer for which min
0≤i≤s−1

{W (Ai(x)φ(x)i)−W (φ(x)s)

s− i

}
=

W (Al(x)φ(x)l)−W (φ(x)s)

s− l
and

W (Al(x))

d
does not belong to G(K(α)) for any

number d > 1 dividing s− l, then for any factorization G(x)H(x) of F (x) over K,

min{degG(x), degH(x)} ≤ lm.

The above corollary immediately yields Generalized Schönemann Irreducibility

Criterion (cf. [Bro], [Kh-Kh]) which can be stated as follows.

Theorem 1.1.L(Generalized Schönemann Irreducibility Criterion.) Let V0

be a Krull valuation of arbitrary rank of a field K with value group G0, valuation

ring R0 having maximal ideal M0. Let φ(x) ∈ R0[x] be a monic polynomial of degree

m with φ(x) irreducible over R0/M0. Let F (x) belonging to R0[x] be a polynomial

having φ(x)-expansion
s∑
i=0

Ai(x)φ(x)i with As(x) = 1, A0(x) 6= 0. Assume that (i)

V x
0 (Ai(x))

s−i > V x
0 (A0(x))

s
> 0 for 0 6 i 6 s − 1 and (ii) V x

0 (A0(x)) /∈ dG0 for any

number d > 1 dividing s. Then F (x) is irreducible over K.

Theorem 1.1.10 together with its applications and several preliminary results

which are of independent interest as well are proved in the paper entitled “On

factorization of polynomials in henselian valued fields” which has been accepted

for publication in Communications in Algebra.
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Chapter 2

Integrally closed simple

extensions of valuation rings

2.1 Motivation of the problem and statements of

the results.

Let R be an integrally closed domain and θ be an element of an integral domain

containing R with θ integral over R. The question “when is R[θ] integrally closed”

has inspired many mathematicians (cf. [Ch-De], [Jh-Kh2], [Kh-Ku1], [Uch]). It

was answered by K. Uchida when R is a Dedekind domain. He proved that R[θ] is

integrally closed if and only if the minimal polynomial F (x) of θ over the quotient

field of R does not belong toM2 for any maximal idealM of the polynomial ring

R[x]. This problem is closely related with the existence of a power basis of an

algebraic number field. Recall that a power basis of an algebraic number field K

is a Z-basis of the ring of algebraic integers AK of K consisting of powers of a

single element; indeed θ would be such an element if and only if Z[θ] is integrally

closed in its quotient field K. As pointed out on page 3, a prime p does not divide

[AK : Z[θ]] if and only if Z(p)[θ] is integrally closed where Z(p) is the localization of

Z at the prime ideal pZ. Dedekind gave a criterion to be satisfied by the minimal

polynomial F (x) of θ over Q so that p - [AK : Z[θ]] which can be stated as follows :

19



Theorem 2.1.A. Let F (x) be the minimal polynomial of θ over Q and p be a

prime number. If F (x) = ḡ1(x)e1 · · · ḡt(x)et is the factorization of the polynomial

F (x) obtained by replacing coefficients of F (x) modulo p as a product of powers

of distinct irreducible polynomials over Z/pZ with gi(x) monic, then Z(p)[θ] is in-

tegrally closed if and only if for each i, 1 ≤ i ≤ t, either ei = 1 or ḡi(x) - M(x),

where M(x) = 1
p
(F (x)−

t∏
i=1

gi(x)ei).

As Z(p) is the valuation ring of the p-adic valuation of rationals, the above

criterion gives a motivation to investigate the question “When is a simple ring

extension of a valuation ring Rv integrally closed ?”. In this chapter, we use a

generalized version of the Dedekind criterion (see Theorem 1.1.A) to give necessary

and sufficient conditions involving a, b,m, n for Rv[θ] to be integrally closed when

θ is a root of an irreducible trinomial F (x) = xn + axm + b belonging to Rv[x]. In

what follows, v,Rv,Mv are as in Theorem 1.1.A. For an element α belonging to Rv,

ᾱ will denote its image under the canonical homomorphism from Rv onto Rv/Mv.

When a polynomial g(x) belongs to Rv[x], ḡ(x) will have the same meaning as in

Theorem 1.1.A.

We shall denote by D the discriminant of the trinomial F (x) = xn + axm + b.

It is known (cf. [Swa]) that

D = (−1)(
n
2)bm−1[bn1−m1nn1 − (−1)n1an1mm1(n−m)n1−m1 ]d0 , (2.1.1)

where d0 = gcd(m,n), n1 = n
d0

, m1 = m
d0

. In this chapter, we prove

Theorem 2.1.1. Let v be a Krull valuation of arbitrary rank of a field having

valuation ring Rv, maximal ideal Mv and perfect residue field. Let p denote the

characteristic of the residue field Rv/Mv in case it is positive. Let θ be a root of a

monic irreducible trinomial F (x) = xn+axm+b belonging to Rv[x] and d0,m1, n1, D

be as above. Assume1 that v(D) > 0. Then Rv[θ] is integrally closed if and only

if Mv is a principal ideal say generated by π and one of the following conditions is

1If v(D) = 0, then F (x) has no repeated factor and hence Rv[θ] is integrally closed by Theorem

1.1.A.
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satisfied:

(i) when a, b belong to Mv, then v(b) = v(π);

(ii) when a ∈Mv and b 6∈Mv with j ≥ 1 as the highest power of p dividing n, then

either v(a2) ≥ v(π) and v(b1) = 0 or v(a2) = 0 = v((−b)m1an1
2 − (−b1)n1), where

a2 = a
π
, b′ is an element of Rv satisfying (b̄′)p

j
= b̄ and b1 = 1

π
(b+ (−b′)pj);

(iii) when a /∈Mv, b ∈Mv and v(n−m) = 0, then v(b) = v(π);

(iv) when a /∈ Mv, b ∈ Mv and v(n − m) > 0 with l ≥ 1 as the highest power

of p dividing n − m, then either v(a1) ≥ v(π) and v(b2) = 0 or v(a1) = 0 =

v(bm−1
2 [(−a)m1(a1)n1−m1 − (−b2)n1−m1 ]), where a1 = 1

π
(a + (−a′)pl), b2 = b

π
, a′

belonging to Rv satisfies (ā′)p
l

= ā;

(v) when ab /∈Mv and m ∈Mv with n = s′pk, m = spk, p does not divide gcd(s′, s),

then the polynomials xs
′
+ axs + b and 1

π
[axsp

k
+ b + (−a′xs − b′)pk ] are coprime

modulo Mv, where a′, b′ are in Rv satisfying (ā′)p
k

= ā, (b̄′)p
k

= b̄;

(vi) when abm does not belong to Mv, then v(C−E) = v(π), where C = bn1−m1nn1
1

and E = (−1)n1an1mm1
1 (n1 −m1)n1−m1.

In the special case when the characteristic of the residue field of v is zero, we

obtain the following simple result.

Corollary 2.1.2. Let v,Rv,Mv, F (x) and D be as in the above theorem with

v(D) > 0. Assume that the characteristic of Rv/Mv is zero. Then Rv[θ] is in-

tegrally closed if and only if Mv is a principal ideal say generated by π and either

I) v(b) = v(π) or II) v(ab) = 0, v(C − E) = v(π) holds, where C, E are as in

Theorem 2.1.1(vi).

Taking v to be the p-adic valuation of rationals, on applying Theorem 2.1.1 to

the irreducible polynomial F (x) = xn + axm + b belonging to Z[x] having a root θ

and keeping in mind Fermat’s little theorem, we see that Z(p)[θ] is integrally closed

in K = Q(θ) if and only if one of the five conditions mentioned in the following

Corollary 2.1.3 is satisfied. Using the fact (stated in the opening paragraph of the

chapter) that Z(p)[θ] is integrally closed if and only if p - [AK : Z[θ]], the corollary

stated below follows at once. This corollary gives the main results of [J-K-S1] and

[J-K-S2].
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Corollary 2.1.3. Let K = Q(θ) be an algebraic number field with θ in the ring

AK of algebraic integers of K having minimal polynomial F (x) = xn + axm + b

over Q, where gcd(m,n) = d0 with m = m1d0, n = n1d0. A prime factor p of the

discriminant D of F (x) does not divide [AK : Z[θ]] if and only if p satisfies one of

the following conditions:

(i) when p | a and p | b, then p2 - b;
(ii) when p | a and p does not divide b with j ≥ 1 as the highest power of p dividing

n, then either p | a2 and p - b1 or p does not divide a2[(−b)m1an1
2 − (−b1)n1 ], where

a2 = a
p
, b1 = 1

p
[b+ (−b)pj ];

(iii) when p does not divide a and p|b, with l ≥ 0 as the highest power of p dividing

n −m, then either p | a1 and p - b2 or p does not divide a1b
m−1
2 [(−a)m1an1−m1

1 −
(−b2)n1−m1 ], where a1 = 1

p
[a+ (−a)p

l
] and b2 = b

p
;

(iv) when p does not divide ab and p|m with n = s′pk, m = spk, p does not divide

gcd(s′, s), then the polynomials xs
′
+ axs + b and 1

p
[axsp

k
+ b + (−axs − b)pk ] are

coprime modulo p;

(v) when p does not divide abm, then p2 does not divide (C − E), where C =

bn1−m1nn1
1 and E = (−1)n1an1mm1

1 (n1 −m1)n1−m1.

The following corollary is an immediate consequence of the above corollary.

It extends the main result of [Jh-Kh3] which is proved for trinomials of the type

xn + ax+ b.

Corollary 2.1.4. Let K = Q(θ), F (x) and D be as in the above corollary. Then

AK = Z[θ] if and only if each prime p dividing D satisfies one of the conditions

(i)− (v) of Corollary 2.1.3.

As a quick application of assertions (i) and (ii) of Theorem 2.1.1, we obtain

Corollary 2.1.5. Let v,Rv,Mv, F (x), θ and D be as in Theorem 1.1 with a =

0, Rv/Mv perfect and v(D) > 0. Let the prime p denote the characteristic of

Rv/Mv in case it is positive. Then Rv[θ] is integrally closed if and only if Mv is a

principal ideal generated by an element π and either I) v(b) = v(π) or II) v(b) = 0,

v(b+ (−b′)pj) = v(π), where j ≥ 1 is the highest power of p dividing n and b′ is an

element of Rv with (b̄′)p
j

= b̄.
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It is well known that if K,L are algebraic number fields with coprime discrim-

inants, then AKL = AKAL (cf. [Nar, Theorem 4.26, p. 159]), where AK0 stands

for the ring of algebraic integers of an algebraic number field K0. The converse of

this classical result is already known when both K,L are distinct quadratic fields

(cf. [Mar, Chapter 2, Exercise 42]). As an application of Theorem 2.1.1, we have

proved the following theorem which proves the converse when one of K or L is a

quadratic field not contained in the other.

Theorem 2.1.6. Let K be an algebraic number field and L be a quadratic field not

contained in K. Then AKAL = AKL if and only if the discriminants of K and L

are coprime.

In the course of proving the above theorem, we prove the following propositions

which are of independent interest as well. Proposition 2.1.7 quickly yields Theorem

5.1 of [Ch-De]; moreover it also proves the converse of the latter.

Proposition 2.1.7. Let R be a Dedekind domain of characteristic different from

2 and b0 be an element of R such that b0−1
4
∈ R. Let F (x) = x2 − x + 1−b0

4
be an

irreducible polynomial over R with a root θ. Then R[θ] is integrally closed if and

only if b0R is not divisible by the square of any maximal ideal of R.

Proposition 2.1.8. Let R be a Dedekind domain and θ be a root of an irreducible

polynomial F (x) = x2 + b ∈ R[x]. Assume that for each maximal ideal ℘ of R

containing 2, R/℘ is a perfect field. Then R[θ] is integrally closed if and only if

for every maximal ideal ℘ dividing 4bR either I) b ∈ ℘ \℘2 or II) 2 ∈ ℘, b /∈ ℘ and

b+ (b′)2 ∈ ℘ \ ℘2, where b′ ∈ R is such that (b′)2 ≡ b(mod ℘).

2.2 Preliminary results

Lemma 2.2.1. Let F (x) = xn + axm + b and h(x) = xs
′
+ a′xs + b′ belonging to

Rv[x] be monic polynomials of degree n and s′ respectively with n = pks′, m = pks,

k ∈ N where p is a prime number. Then

F (x) = h(x)p
k

+ ph(x)M1(x) + (−a′xs − b′)pk + (axsp
k

+ b)
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for some polynomial M1(x) ∈ Rv[x].

Proof. We first show that

(xs
′ − h(x))p

k

= xs
′pk − ph(x)M1(x)− (h(x))p

k

(2.2.1)

for some M1(x) ∈ Rv[x]. When p is odd, on applying Binomial theorem, (2.2.1)

can be easily seen. When p = 2, write

(xs
′ − h(x))2k = xs

′2k − (h(x))2k +N1(x),

whereN1(x) =
(

2k

1

)
xs
′(2k−1)(−h(x))+· · ·+

(
2k

2k−1

)
xs
′
(−h(x))2k−1+2h(x)2k = −2h(x)N2(x)

with N2(x) ∈ Rv[x] and (2.2.1) follows.

Since (xs
′ − h(x)) = −a′xs − b′, on taking pkth power and then using (2.2.1),

we see that xs
′pk − ph(x)M1(x)− (h(x))p

k
= (−a′xs − b′)pk which gives

(h(x))p
k

= xs
′pk − ph(x)M1(x)− (−a′xs − b′)pk .

On subtracting the above equation from h(xp
k
) = xs

′pk + a′xsp
k

+ b′, we have

h(xp
k

)− a′xspk − b′ = h(x)p
k

+ ph(x)M1(x) + (−a′xs − b′)pk . (2.2.2)

On writing F (x) as (h(xp
k
) − a′xspk − b′) + axsp

k
+ b and using (2.2.2) we obtain

the desired equality.

Corollary 2.2.2. Let xn + c and xs
′
+ c′ be polynomials with c, c′ ∈ Rv \Mv and

n = pks′, k ∈ N where p is a prime number. If ḡ1(x) · · · ḡt(x) is the factorization

of xs
′
+ c̄′ into a product of irreducible polynomials over Rv/Mv with gi(x) ∈ Rv[x],

then

xn + c =

( t∏
i=1

gi(x) + βH(x)

)pk
+ pT (x)

t∏
i=1

gi(x) + pβU(x) + (−c′)pk + c

for some polynomials H(x), T (x), U(x) ∈ Rv[x] and β ∈Mv.
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Proof. The corollary follows on applying Lemma 2.2.1 to the polynomials xn+ c,

xs
′
+ c′ and then substituting g1(x) · · · gt(x) + βH(x) for xs

′
+ c′ with β ∈Mv.

Lemma 2.2.3. Let v,Rv,Mv, F (x) and D be as in Theorem 2.1.1 without the

hypothesis Rv/Mv perfect. Suppose that v(D) > 0 and v(abm) = 0. Then there

exists d ∈ Rv\Mv satisfying a(m − n)d ≡ bn (mod M2
v ). Moreover for any d ∈

Rv\Mv satisfying the last congruence, all the repeated roots of F (x) in the algebraic

closure of Rv/Mv are roots of xm − d̄ and any common root of F (x), xm − d̄ is a

repeated root of F (x).

Proof. Since v(D) > 0 and v(abm) = 0, it follows from (2.1.1) that v(n(n−m)) =

0. Let ξ be a repeated root of F (x) in the algebraic closure of Rv/Mv. Then

F (ξ) = ξn + āξm + b̄ = 0̄; F
′
(ξ) = n̄ξn−1 + ām̄ξm−1 = 0̄. (2.2.3)

On substituting ξn−m =
−ām̄
n̄

in the first equation of (2.2.3) and keeping in mind

that v(a(n−m)) = 0, we see that

ξm =
b̄n̄

ā(m̄− n̄)
. (2.2.4)

Since a(m− n)bn is a unit of Rv, we can choose d ∈ Rv \Mv satisfying

a(m− n)d ≡ bn (mod M2
v ). (2.2.5)

It follows from (2.2.4) and (2.2.5) that ξ is a root of xm − d̄. Conversely if ξ is a

root of xm − d̄ and of F (x), then it follows from equations (2.2.3)− (2.2.5) that ξ

is a root of F
′
(x) and hence the lemma is proved.

Lemma 2.2.4. Let v,Rv,Mv be as in the above lemma and α1, α2 be elements of

Rv. Suppose that m,n,m1, n1 are positive integers with gcd(m,n) = d0, n1 = n
d0

and m1 = m
d0

. Then the polynomials xn − ᾱ1 and xm − ᾱ2 are coprime if and only

if ᾱm1
1 6= ᾱn1

2 , i.e., v(αm1
1 − αn1

2 ) = 0.
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Proof. It is enough to prove that the polynomials xn − ᾱ1 and xm − ᾱ2 have a

common root in the algebraic closure of Rv/Mv if and only if ᾱm1
1 = ᾱn1

2 . The

lemma needs to be proved when both α1, α2 are units of Rv. Suppose first that

xn − ᾱ1 and xm − ᾱ2 have a common root ξ. Then ᾱm1
1 = (ξn)m1 = (ξm)n1 = ᾱn1

2

as desired. Conversely suppose that ᾱm1
1 = ᾱn1

2 . Choose positive integers r, s such

that sm1−rn1 = 1. Let ξ be a root of the polynomial xd0−(ᾱ1)−rᾱs2 in the algebraic

closure of Rv/Mv. We show that ξ is a common root of xn−ᾱ1 and xm−ᾱ2. Keeping

in mind ᾱm1
1 = ᾱn1

2 , we have ξn = (ξd0)n1 = (ᾱ1)−n1rᾱn1s
2 = (ᾱ1)m1s−n1r = ᾱ1 and

ξm = (ᾱ1)−m1rᾱm1s
2 = (ᾱ2)m1s−n1r = ᾱ2 as desired.

2.3 Proof of Theorem 2.1.1

Since v(D) > 0, the polynomial F (x) is divisible by the square of an irreducible

polynomial belonging to (Rv/Mv)[x]. Hence in view of Theorem 1.1.A, the con-

dition of Mv being a principal ideal is necessary for Rv[θ] to be integrally closed.

Thus for proving Theorem 2.1.1, we may assume that Mv is a principal ideal gen-

erated by an element π.

Consider first the case when a, b belong to Mv. Then F (x) ≡ xn (mod Mv).

Taking g1(x) = x and applying Theorem 1.1.A, we see that Rv[θ] is integrally

closed if and only if x does not divide M(x), where M(x) = a
π
xm + b

π
. Thus Rv[θ]

is integrally closed in this case if and only if ( b
π
) 6= 0̄, i.e., v(b) = v(π).

Consider now the case when a ∈Mv and b /∈Mv. As v(D) > 0, it is clear from

(2.1.1) that v(n) > 0. So the characteristic p of Rv/Mv is positive and divides n.

Write n = pjs′, p - s′. Since Rv/Mv is a perfect field, there exists b′ ∈ Rv such that

(b̄′)p
j

= b̄. Therefore

F (x) ≡ xn + b ≡ (xs
′
+ b′)p

j

(mod Mv). (2.3.1)

Let ḡ1(x) · · · ḡt(x) be the factorization of xs
′
+ b̄′ over Rv/Mv, where gi(x) ∈ Rv[x]

are monic polynomials which are distinct and irreducible modulo Mv. Applying
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Corollary 2.2.2 to the polynomials xn + b, xs
′
+ b′, we see that

F (x) =

(
t∏
i=1

gi(x) + βH(x)

)pj

+ pT (x)
t∏
i=1

gi(x) + pβU(x) + (−b′)pj + b+ axm

(2.3.2)

for some polynomials H(x), T (x), U(x) ∈ Rv[x] and β ∈Mv. Denote a
π
, b+(−b′)pj

π
by

a2, b1 respectively. In view of (2.3.1), F (x) =
t∏
i=1

ḡi(x)p
j
. Write F (x) as

t∏
i=1

gi(x)p
j
+

πM(x), M(x) ∈ Rv[x]. Keeping in mind that j ≥ 1, it is immediate from (2.3.2)

that

M(x) =
( p
π

)
T (x)

t∏
i=1

ḡi(x) + b̄1 + ā2x
m. (2.3.3)

In view of Theorem 1.1.A, Rv[θ] is integrally closed if and only if M(x) is coprime

to
t∏
i=1

ḡi(x), which by virtue of (2.3.3) holds if and only if ā2x
m + b̄1 is coprime

to
t∏
i=1

ḡi(x). Recall that
t∏
i=1

ḡi(x)p
j

= xn + b̄. Now ā2x
m + b̄1 and xn + b̄ are

coprime if and only if either I) ā2 = 0̄ and b̄1 6= 0̄ or II) ā2 6= 0̄ and the polynomials

xm+
b̄1

ā2

, xn+b̄ are coprime. In view of Lemma 2.2.4, II) holds if and only if v(a2) = 0

and v((−b)m1an1
2 − (−b1)n1) = 0. So Rv[θ] is integrally closed if and only if either

I) v(a2) ≥ v(π) and v(b1) = 0 or II) v(a2) = 0 and v((−b)m1an1
2 − (−b1)n1) = 0.

We now deal with the case when a /∈ Mv, b ∈ Mv and v(n − m) = 0. In

this case keeping in mind that v(D) > 0, it follows from (2.1.1) that m ≥ 2.

Since v(n − m) = 0, xn−m + ā does not have any repeated root and hence the

only irreducible repeated factor of F (x) = xm(xn−m + ā) is x. So we can write

F (x) as xm(
t∏
i=1

gi(x) + πT (x)) + b, where T (x) ∈ Rv[x] and gi(x) ∈ Rv[x] are

monic polynomials which are distinct and irreducible modulo Mv. Consequently

the polynomial

1

π
(F (x)− xm

t∏
i=1

gi(x)) = xmT (x) +
b

π

is not divisible by x modulo Mv if and only if v(b) = v(π). So the result is proved

in this case by virtue of Theorem 1.1.A.

Now consider the case when a /∈ Mv, b ∈ Mv and v(n − m) > 0. Here the

characteristic p of Rv/Mv is positive and divides n − m. Let l ≥ 1 denote the
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highest power of p dividing n − m; write n − m = pls′. Since Rv/Mv is perfect,

choose a′ ∈ Rv such that (ā′)p
l

= ā. Let ḡ1(x) · · · ḡt(x) be the factorization of

xs
′
+ ā′ over Rv/Mv, where gi(x) ∈ Rv[x] are monic polynomials which are distinct

and irreducible modulo Mv. Applying Corollary 2.2.2 to the polynomials xn−m+a,

xs
′
+ a′, we can write F (x) = xm(xn−m + a) + b as

F (x) = xm

[
(
t∏
i=1

gi(x) + βH(x))p
l

+ pT (x)
t∏
i=1

gi(x) + pβU(x) + (−a′)pl + a

]
+ b,

(2.3.4)

where β ∈ Mv and H(x), T (x), U(x) belong to Rv[x]. Denote
a+ (−a′)pl

π
,
b

π
by

a1, b2 respectively. Since F (x) = xm
t∏
i=1

ḡi(x)p
l

and l ≥ 1, it follows on applying

Theorem 1.1.A that Rv[θ] is integrally closed if and only if xm−1
t∏
i=1

ḡi(x) is coprime

to M(x), where M(x) = 1
π
(F (x)− xm

t∏
i=1

gi(x)p
l
). It is clear from (2.3.4) that

M(x) =
( p
π

)
xmT (x)

t∏
i=1

ḡi(x) + ā1x
m + b̄2.

Keeping in mind that
t∏
i=1

ḡi(x)p
l

= xn−m + ā, the above equation shows that M(x)

is coprime to xm−1
t∏
i=1

ḡi(x) if and only if ā1x
m + b̄2 is coprime to xm−1(xn−m + ā).

The last statement is true if and only if either I) ā1 = 0̄, b̄2 6= 0̄ or II) ā1 6= 0̄ and

the polynomials xm + b̄2
ā1

, xm−1(xn−m + ā) are coprime. Applying Lemma 2.2.4 to

the polynomials xm + b̄2
ā1

, xn−m + ā, it can be easily seen that II) holds if and only

if v(a1) = 0, v(bm−1
2 ) = 0 and v((−a)m1an1−m1

1 − (−b2)n1−m1) = 0.

We now deal with case (v) when ab /∈ Mv and m ∈ Mv. Keeping in mind

that v(D) > 0, it follows from (2.1.1) that v(n) > 0. So the characteristic p of

Rv/Mv divides both m,n. Write n = s′pk, m = spk and p - gcd(s′, s). Choose

a′, b′ ∈ Rv such that (ā′)p
k

= ā and (b̄′)p
k

= b̄ and denote xs
′
+ a′xs + b′ by h(x).

Let h̄(x) = ḡ1(x)d1 · · · ḡt(x)dt be the factorization of h̄(x) into a product of powers

of irreducible polynomials over Rv/Mv with gi(x) ∈ Rv[x] monic, di > 0. Applying
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Lemma 2.2.1 to the polynomials F (x), h(x), we see that

F (x) = h(x)p
k

+ ph(x)M1(x) + (axsp
k

+ b) + (−a′xs − b′)pk

for some M1(x) ∈ Rv[x]. Substituting h(x) = g1(x)d1 · · · gt(x)dt + βN(x) with

N(x) ∈ Rv[x] and β ∈ Mv in the above equation, it follows that there exists

N1(x) ∈ Rv[x] such that

F (x) =
t∏
i=1

gi(x)dip
k

+ βpN1(x) + ph(x)M1(x) + (axsp
k

+ b) + (−a′xs − b′)pk .

(2.3.5)

As axsp
k
+b+(−a′xs−b′)pk belongs to Mv[x] in view of the choice of a′, b′, it is clear

from (2.3.5) that F (x) =
t∏
i=1

ḡi(x)dip
k
. Since k > 0, applying Theorem 1.1.A, we

see that Rv[θ] is integrally closed if and only if
t∏
i=1

ḡi(x) is coprime to M(x), where

M(x) = 1
π
(F (x) − g1(x)d1p

k · · · gt(x)dtp
k
). Keeping in mind the equality h̄(x) =

t∏
i=1

ḡi(x)di , it is immediate from (2.3.5) that M(x) is coprime to h̄(x) =
t∏
i=1

ḡi(x)di

if and only if 1
π
[axsp

k
+ b + (−a′xs − b′)pk ] is coprime to h(x) modulo Mv. Hence

the theorem is proved in the present case.

Finally consider case (vi) when abm /∈Mv. By Lemma 2.2.3, ξ is a repeated root

of F (x) if and only if ξ is a common root of F (x) and xm − d̄ where d ∈ Rv \Mv

satisfies (2.2.5). Choose positive integers r, s such that m1s − n1r = 1. Also

(ad + b) /∈ Mv because (m − n)(ad + b) ≡ bm (mod M2
v ) in view of (2.2.5) and

bm 6∈Mv. Therefore we can choose c ∈ Rv satisfying the congruence

c ≡ ds(−(ad+ b))−r (mod M2
v ). (2.3.6)

Claim is that xd0 − c̄ = gcd(F (x), xm − d̄). Since mcd 6∈ Mv, the polynomials

xd0 − c̄, xm− d̄ have all their roots simple, to prove the claim it is enough to show

that any root of xd0 − c̄ is a common root of xm− d̄, F (x) and vice versa. Let ξ be

a root of xd0 − c̄. Keeping in mind (2.3.6), we see that

ξm = ξm1d0 = (c̄)m1 = d̄m1s(−(ād̄+ b̄))−m1r;
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consequently using equation (2.3.11) of the following lemma, we have

ξm = d̄m1s(d̄)−n1r = d̄. (2.3.7)

So ξ is a root of xm − d̄. Further again using (2.3.6) and (2.3.11), we see that

ξn = ξn1d0 = (c̄)n1 = d̄n1s(−(ād̄+ b̄))−n1r = (−(ād̄+ b̄))m1s−n1r = −(ād̄+ b̄).

Therefore keeping in mind (2.3.7), we have ξn + āξm + b̄ = 0̄ and hence ξ is a root

of F (x). Conversely let ξ is a common root of F (x), xm− d̄. Then ξm = d̄ and ξn =

−(ād̄+ b̄); consequently using (2.3.6), we have ξd0 = ξms−nr = d̄s(−(ād̄+ b̄))−r = c̄

as desired. Hence the claim is proved.

By division algorithm, write F (x) = (xd0)n1 + a(xd0)m1 + b as

F (x) = (xd0 − c)q(x) + cn1 + acm1 + b (2.3.8)

for some q(x) ∈ Rv[x
d0 ]. In view of the claim proved above, F (x) = (xd0 − c̄)q̄(x).

Let F (x) = ḡ1(x)e1 · · · ḡt(x)et be the factorization of F (x) into a product of powers

of distinct irreducible polynomials over Rv/Mv with each gi(x) ∈ Rv[x] monic.

If necessary, after renaming assume that ei > 1 for 1 ≤ i ≤ t1 and ei = 1 for

t1 < i ≤ t. Keeping in mind the claim, Lemma 2.2.3 and the fact that xd0 − c̄ has

simple roots, it follows that the polynomial xd0 − c̄ is the product of all distinct

monic repeated irreducible factors of F (x). Therefore we can write

xd0 − c =

t1∏
i=1

gi(x) + β1h1(x), q(x) =

t1∏
i=1

gi(x)ei−1

t∏
i=t1+1

gi(x) + β2h2(x)

for some h1(x), h2(x) ∈ Rv[x] and β1, β2 ∈ Mv. Substituting for xd0 − c and q(x)

from the above equation in (2.3.8), we see that

F (x) =
t∏
i=1

gi(x)ei + β1h1(x)

t1∏
i=1

gi(x)ei−1

t∏
i=t1+1

gi(x) + β2h2(x)

t1∏
i=1

gi(x)

+ β1β2h1(x)h2(x) + cn1 + acm1 + b.

Denote cn1 + acm1 + b by c0. Write F (x) =
t∏
i=1

gi(x)ei + πM(x), M(x) ∈ Rv[x]. It

is immediate from the above equation that

M(x) =

(
β1

π

)
h̄1(x)

t1∏
i=1

ḡi(x)ei−1

t∏
i=t1+1

ḡi(x)+

(
β2

π

)
h̄2(x)

t1∏
i=1

ḡi(x)+
(c0

π

)
. (2.3.9)
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Applying Theorem 1.1.A, we see that Rv[θ] is integrally closed in this case if and

only if M(x) is coprime to
t1∏
i=1

ḡi(x), which by virtue of (2.3.9) holds if and only if(
c0
π

)
6= 0̄. In view of the following Lemma 2.3.1,

(
c0
π

)
6= 0̄ if and only if C−E 6∈M2

v .

Hence in this case, Rv[θ] is integrally closed if and only if C − E 6∈M2
v .

Lemma 2.3.1. Let v,Rv,Mv, F (x), d0,m1, n1 and D be as in Theorem 2.1.1 with-

out the hypothesis Rv/Mv perfect. Assume that v(D) > 0 and v(abm) = 0. Let

c, d, r, s be as in the first paragraph of the proof of case (vi). Then cn1 + acm1 + b ≡
0 (mod M2

v ) if and only if C ≡ E (mod M2
v ), where C,E are as in Theorem

2.1.1(vi).

Proof. We first show that

(a(m− n))n1(dn1 − (−ad− b)m1) ≡ bm1dn1
0 (C − E) (mod M2

v ). (2.3.10)

Denote the expression on the left hand side of the above congruence by L, which

we rewrite as (a(m− n)d)n1 − an1(m− n)n1−m1(−a(m− n)d− b(m− n))m1 . Using

(2.2.5), we obtain

L ≡ (bn)n1 − an1(m− n)n1−m1(−bm)m1 (mod M2
v ).

Substituting n = n1d0, m = m1d0 in the right hand side of the above congruence,

(2.3.10) is proved.

Recall that by virtue of the hypothesis ab(m−n) 6∈Mv and D = ±bm−1dn0 (C−
E)d0 belongs to Mv. Therefore C − E ∈Mv. It now follows from (2.3.10) that

d̄n1 = (−1)m1(ād̄+ b̄)m1 . (2.3.11)

Further keeping in mind (2.3.10), the lemma is proved as soon as we prove that

cn1 +acm1 + b ≡ 0 (mod M2
v ) if and only if dn1 ≡ (−ad− b)m1 (mod M2

v ). (2.3.12)

Since (m − n)(ad + b) ≡ bm (mod M2
v ) in view of (2.2.5), we have ad + b 6∈ Mv

and hence we can choose Z ∈ Rv such that Z ≡ dn1(−(ad+ b))−m1 (mod M2
v ). By

virtue of (2.3.11), we have

Z ≡ 1 (mod Mv). (2.3.13)
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Thus (2.3.12) and hence the lemma is proved once we show that

cn1 + acm1 + b ≡ 0 (mod M2
v ) if and only if Z ≡ 1 (mod M2

v ). (2.3.14)

Recall that by (2.3.6), we have c ≡ ds(−ad− b)−r (mod M2
v ); consequently

cn1 + acm1 + b ≡ dn1s(−ad− b)−n1r + adm1s(−ad− b)−m1r + b (mod M2
v ). (2.3.15)

Using m1s− n1r = 1, the right hand side of the above congruence equals

(dn1(−ad− b)−m1)s(−ad− b) + ad(dn1(−ad− b)−m1)r + b,

which in view of the choice of Z is congruent modulo M2
v to (−ad−b)Zs+adZr+b.

So (2.3.15) can be rewritten as

cn1 + acm1 + b ≡ ad(Zr − Zs) + b(1− Zs) (mod M2
v ).

Note that s > r, for otherwise 1 = m1s− n1r ≤ r(m1 − n1) < 0. On arranging the

terms on the right hand side, we rewrite the last congruence as

cn1 + acm1 + b ≡ (1− Z)

[
adZr

(
s−r−1∑
i=0

Zi

)
+ b

(
s−1∑
i=0

Zi

)]
(mod M2

v ).

Denote the right hand side of the above congruence by (1− Z)A. It is clear from

this congruence that (2.3.14) is proved as soon as we show that A does not belong

to Mv. By virtue of (2.3.13), we see that A ≡ (ad(s− r) + bs) (mod Mv); so using

(2.2.5), we have (m−n)A ≡ bd0 (mod Mv). Since bd0 /∈Mv, it follows that A /∈Mv

as desired.

Remark 2.3.2. It may be pointed out that Theorem 2.1.1 is true in cases (i), (iii)

and (vi) without the hypothesis “Rv/Mv perfect” as this condition is not used in

the proof of these cases.

2.4 Proof of Theorem 2.1.6

Proof of Proposition 2.1.7. As is well known, R[θ] is integrally closed if and only

if so is R℘[θ] for each maximal ideal ℘ of R, where R℘ stands for the localization
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of R at ℘. If the discriminant b0 of F (x) belongs to a maximal ideal ℘ of R, then

R℘[θ] is integrally closed if and only if b0 ∈ ℘ \ ℘2 in view of Theorem 2.1.1 (vi),

because 1−b0
4

/∈ ℘. In case b0 /∈ ℘, F (x) has no repeated factor modulo ℘ and hence

R℘[θ] is integrally closed by Theorem 1.1.A in this case. So we conclude that R[θ]

is integrally closed if and only if b0R is not divisible by the square of any maximal

ideal of R.

Proof of Proposition 2.1.8. As pointed out in the proof of the above proposition,

R[θ] is integrally closed if and only if so is R℘[θ] for any maximal ideal ℘ of R

containing the discriminant −4b of F (x). Using assertion (i) of Theorem 2.1.1

and Remark 2.3.2, it follows that for a maximal ideal ℘ of R containing b, R℘[θ] is

integrally closed if and only if b ∈ ℘\℘2. Further by assertion (ii) of Theorem 2.1.1,

for a maximal ideal ℘ of R containing 2 and not containing b, R℘[θ] is integrally

closed if and only if b+ (−b′)2 ∈ ℘\℘2, where b′ ∈ R is such that (b′)2 ≡ b(mod ℘).

Hence the proposition is proved.

Proof of Theorem 2.1.6. Let L = Q(
√
d), where d is a squarefree integer and

β = 1+
√
d

2
or
√
d according as d ≡ 1 (mod 4) or not. Denote the Dedekind domain

AK by R. Then AKAL = R[β]. To prove the theorem, it is enough to prove that

R[β] is integrally closed if and only if the discriminants of K and L are coprime.

The proof is split into two cases. First consider the case when d ≡ 1(mod 4).

Since L 6⊆ K, the minimal polynomial of β = 1+
√
d

2
over the quotient field K of R

is x2−x+ 1−d
4

. Applying Proposition 2.1.7, we see that R[β] is integrally closed in

this case if and only if d 6∈ ℘2 for any maximal ideal ℘ of R, i.e., R[β] is integrally

closed if and only if each prime number dividing d (which is the discriminant of

Q(
√
d) in this case) is unramified in K; this is same as requiring that each prime

dividing the discriminant of L is coprime to the discriminant of K in view of the well

known Dedekind’s theorem which states that a prime p is ramified in an algebraic

number field K0 if and only if it divides the discriminant of K0 (cf. [Ded, Corollary

3, p. 158]). Hence the theorem is proved in this case.

Now consider the case when d ≡ 2 or 3 (mod 4), the minimal polynomial of

β =
√
d over K is x2 − d. Applying Proposition 2.1.8, R[β] is integrally closed if
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and only if for each maximal ideal ℘ dividing 4dR either I) d ∈ ℘ \℘2 or II) 2 ∈ ℘,

d /∈ ℘ and −d+ (d′)2 ∈ ℘ \℘2 where d′ can be chosen to be d. Note that condition

II) is vacuous when d ≡ 2 (mod 4). When d ≡ 3 (mod 4), then II) holds if and

only if d(d− 1) ∈ ℘ \℘2 for every maximal ideal ℘ of R containing 2, which clearly

is true if and only if the prime 2 is unramified in K. Hence R[β] is integrally closed

if and only if each prime dividing 4d is unramified in K and the desired result in

the present case follows from Dedekind’s theorem quoted above.
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Chapter 3

Discriminant as a product of local

discriminants

3.1 Origin of problem and statements of results.

Discriminant of an extension of algebraic number fields is an important tool for

studying such extensions. One of the basic properties of discriminant is that it

can be expressed as a product of local discriminants (cf. [Ca-Fr, Proposition 5,

Chapter I]). There is a similar property for discrete valuation rings. Let R be a

discrete valuation ring with maximal ideal p and S be the integral closure of R in

a finite separable extension L of K. For a maximal ideal P of S, let R̂p, ŜP denote

respectively the valuation rings of the completions of K,L with respect to p,P. The

discriminant satisfies disc(S/R)R̂p =
∏
P|p
disc(ŜP/R̂p). In this chapter, we extend

the above equality on replacing R by the valuation ring of a Krull valuation of

arbitrary rank and completion by henselization.

In what follows, for a valuation v of a field K, Rv will denote its valuation ring

and Mv the maximal ideal of Rv. (Kh, vh) will denote the henselization of (K, v)

whose valuation ring will be denoted by Rh
v . As in Definition 1.1.B, d(S/Rv) will

stand for the discriminant of S/Rv with S a free Rv-module of finite rank. In this

chapter, our main aim is to prove the following theorem.
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Theorem 3.1.1. Let (K, v) be a valued field of arbitrary rank with valuation ring

Rv and (Kh, vh) be its henselization having valuation ring Rh
v . Let L be a finite

separable extension of K and S be the integral closure of Rv in L. Let w1, · · · , ws
be all the prolongations of v to L. Assume that S is a free Rv-module. Then

the valuation ring Rh
wi

of the henselization of (L,wi) is a free Rh
v -module and

d(S/Rv)R
h
v =

s∏
i=1

d(Rh
wi
/Rh

v).

The above theorem plays a crucial role in extending the well known theorem of

Index of Ore [Kh-Ku4] to polynomials with coefficients in arbitrary valued fields (see

[Jh-Kh5, Lemma 3.2]). While proving Theorem 3.1.1, we prove a generalization of

the weak Approximation Theorem ([En-Pr, Theorem 3.2.7]) which is of independent

interest as well.

3.2 Preliminary Results

The following theorem will be needed in the sequel.

Theorem 3.2.1. Let B1,B2, · · · ,Bk be non-comparable valuation rings of a field

K with maximal ideals M1,M2, · · · ,Mk and R = ∩ki=1Bi. Then for each tuple

(a1, · · · , ak) belonging to B1×· · ·×Bk such that ak is a unit of BiBk for 1 ≤ i ≤ k−1,

there exists an element c ∈ R such that c− ai ∈Mi for 1 ≤ i ≤ k− 1 and c− ak ∈
akMk.

Proof. Denote R ∩ Mi by pi. By Lemma 3.2.6 of [En-Pr], pi is a maximal

ideal of R and Bi = Rpi . Since Bi/Mi
∼= R/pi, there exists bi ∈ R such that

ai − bi ∈ Mi, 1 ≤ i ≤ k − 1. Write ak = rk
sk

with rk ∈ R, sk ∈ R\pk. As pk is a

maximal ideal of R, pk+skR = R, so there exists tk ∈ R such that sktk+pk = 1 for

some pk ∈ pk. Denote rktk by bk. Then bk = aksktk and ak−bk = ak(1−sktk) = akpk

belongs to akMk. So it is enough to find c ∈ R such that

c− bi ∈Mi for 1 ≤ i ≤ k − 1 and c− bk ∈ bkMk ⊆ akMk. (3.2.1)

Since Mi ∩ R are distinct maximal ideals of R, the existence of an element c ∈ R
satisfying (3.2.1) is proved in view of Chinese Remainder Theorem once we show
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that

Mi ∩R + (bkMk) ∩R = R for 1 ≤ i ≤ k − 1. (3.2.2)

For simplicity of notation, we verify (3.2.2) for i = 1. Suppose to the contrary it is

false, then

M1 ∩R ⊇ (bkMk) ∩R. (3.2.3)

Define B′ =
{
a
b
|a ∈ Bk, b ∈ R \M1

}
. Then B′ is a ring containing B1Bk. Let M1k

denote the maximal ideal of B1Bk. As B1,Bk are not comparable, it follows that

Bk $ B1Bk. Fix z ∈ Mk \M1k. Claim is that 1
zbk

/∈ B′. If 1
zbk
∈ B′, then 1

zbk
= a

b
,

where a ∈ Bk, b ∈ R \M1 which implies that b = bkza ∈ bkMk ∩ R ⊆ M1 ∩ R in

view of (3.2.3). This is a contradiction as b 6∈ M1 and hence the claim is proved.

Since ak is a unit of B1Bk by hypothesis and bk = aksktk with sktk a unit of Bk,
it follows that bk is a unit of B1Bk. So b−1

k ∈ B1Bk. By choice z ∈ Mk \ M1k;

consequently z−1 ∈ B1Bk. Thus 1
zbk
∈ B1Bk ⊆ B′, which contradicts the claim and

hence (3.2.2) is proved.

Remark 3.2.A. It may be pointed out that the above theorem yields the weak

Approximation Theorem ([En-Pr, Theorem 3.2.7]) because if (a1, · · · , ak) is any

tuple belonging to B1 × · · · × Bk, then applying Theorem 3.2.1 to the tuples

(a1, · · · , ak−1, 1) ∈ B1 × · · · × Bk and (ak, 1, · · · , 1) ∈ Bk × B1 × · · · × Bk−1, we

see that there exist c, c′ ∈ R such that c− ai ∈ Mi for 1 ≤ i ≤ k − 1, c− 1 ∈ Mk

and c′ − ak ∈ Mk, c
′ − 1 ∈ Mi for 1 ≤ i ≤ k − 1; consequently cc′ − ai ∈ Mi for

1 ≤ i ≤ k.

We now deduce the following corollary (to be used in the proof of Theorem 3.2.3)

from Theorem 3.2.1.

Corollary 3.2.2. Let (K, v), L and S be as in Theorem 3.1.1 without the assump-

tion that L/K is separable. If wj is a prolongation of v to L with value group Gwj

which has a smallest positive element µ, then there exists an element c ∈ S such

that wj(c) = µ.
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Proof. Let w1, · · · , ws be all the prolongations of v to L. Let Rwi
denote the

valuation ring of wi for 1 ≤ i ≤ s. Let πj be an element of K such that wj(πj) is the

smallest positive element of Gwj
. Note that πj is a unit of Rwi

Rwj
, 1 ≤ i ≤ s, i 6= j,

because otherwise πj belongs to the maximal ideal Mij of Rwi
Rwj

which implies

that the maximal ideal of Rwj
generated by πj is contained in Mij; this in turn

implies that Rwi
Rwj

is contained in Rwj
, which is impossible as the rings Rwi

and Rwj
are not comparable for i 6= j. Applying Theorem 3.2.1 to the valuation

rings Rw1 , · · · , Rws , taking ai = 1 for 1 ≤ i ≤ s, i 6= j and aj = πj, we see that

there exists c belonging to ∩si=1Rwi
= S such that wj(c − πj) > wj(πj) and hence

wj(c) = wj(πj).

The following lemma is an immediate consequence of Theorems 18.2,18.6 of

[End]. For the sake of completeness we prove it here using the notion of initial

index defined below.

Definition 3.2.B. If H is a subgroup of finite index of a abelian group G, then

the initial index of H in G which will be denoted by E(G : H) is defined to be the

cardinality of the set

EG,H = {ε ∈ G|0 ≤ ε < δ for all positive δ ∈ H}.

Clearly distinct elements of EG,H lie in different cosets of H in G; consequently

E(G : H) ≤ [G : H].

Lemma 3.2.C. Let (K, v), Rh
v , L, S, w1, · · · , ws and Rh

wi
be as in Theorem 3.1.1.

If S is a free Rv-module, then Rh
wi

is a free Rh
v -module for 1 ≤ i ≤ s.

Proof. Write L = K(θ) where θ is an element of S and F (x) ∈ Rv[x] is the

minimal polynomial of θ over K. Let
s∏
i=1

Gi(x) be the factorization of F (x) into

a product of distinct monic irreducible factors over the henselization (Kh, vh) of

(K, v). Let θi be a root of Gi(x). Let wi denote the prolongation of v to K(θ)

defined by

wi(
∑
j

ajθ
j) = ṽh(

∑
j

ajθ
j
i ), aj ∈ K, (3.2.4)
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ṽh being unique prolongation of vh to algebraic closure of Kh. Then in view of

Theorem 1.1.D, w1, · · · , ws are all the distinct prolongations of v to K(θ). Let ei, fi

denote the index of ramification and the residual degree respectively of wi/v and

Gv, Gwi
the value groups of v, wi. Since S is a free Rv-module, in view of Theorems

18.2, 18.6 of [End], eifi = [Kh(θi) : Kh] and the initial index E(Gwi
: Gv) =

[Gwi
: Gv] = ei for 1 ≤ i ≤ s. Note that by virtue of (3.2.4), Kh(θi) is Kh-

isomorphic (as a valued field) to the henselization of K(θ) with respect to wi.

Hence Rh
wi

is a free Rh
v -module of rank eifi by [End, Theorem 18.6].

Using the above lemma and Corollary 3.2.2, we shall prove the following theorem

which is needed for proving Theorem 3.1.1.

Theorem 3.2.3. Let (K, v), Rh
v , L, S, w1, · · · , ws and Rh

wi
be as in Theorem 3.1.1.

Assume that S is a free Rv-module. Then one can choose a suitable Rh
v -basis Bi ⊆ S

of Rh
wi

such that (i) ∪si=1Bi is an Rv-basis of S; (ii) for every Bij ∈ Bi and for each

k 6= i, wk(Bij) ≥ v(a) > 0 for some a in K.

Proof. Let ei, fi, Gv, Gwi
and the initial index E(Gwi

: Gv) be as in the proof

of Lemma 3.2.C. Let Mwi
denote the maximal ideal of the valuation ring Rwi

of

wi. Set mi = S ∩Mwi
. Then m1, · · · ,ms are distinct maximal ideals of S. Let

αi1 +Mwi
, · · · , αifi +Mwi

be a basis of Rwi
/Mwi

over Rv/Mv. Fix one pair (i, j).

By weak Approximation Theorem, there exists α′ij ∈ L such that wi(αij −α′ij) > 0

and wk(α
′
ij) ≥ 0 for k 6= i. Then α′ij ∈ S. Since mi +

s∏
k=1,k 6=i

mek
k = S, on

applying Chinese Remainder Theorem we see that there exists βij ∈ S satisfying

α′ij − βij ∈mi and βij ∈
∏
k 6=i

mek
k . Thus there exists a ∈ K such that

wk(βij) ≥ v(a) > 0 for k 6= i. (3.2.5)

If Gwi
has a smallest positive element µi, then by Corollary 3.2.2, we can choose

πi ∈ S such that wi(πi) = µi. In case Gwi
does not have a smallest positive element,

then by [End, Theorem 18.3] E(Gwi
: Gv) = 1; consequently Gwi

= Gv by virtue

of the hypothesis that S is a free Rv-module and Theorem 18.6 of [End]. In this

situation we take πi = 1. It will be shown that Bi = {βijπki | 1 ≤ j ≤ fi, 1 ≤ k ≤
ei − 1} is an Rh

v -basis of Rh
wi

and ∪si=1Bi is an Rv-basis of S.
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Denote the Rv-submodule
ei−1∑
k=0

fi∑
j=1

Rvβijπ
k
i of S by Ni. We first show that

S =
s∑
i=1

Ni +MvS. (3.2.6)

In view of Nakayama’s Lemma and the hypothesis that S is a free Rv-module of

finite rank, the above equation will imply that S =
s∑
i=1

Ni and hence ∪si=1Bi would

be an Rv-basis of S. Applying the above result with Rv, S replaced by Rh
v , R

h
wi

respectively and keeping in mind that Rh
wi

is a free Rh
v -module by Lemma 3.2.C,

we shall conclude that Bi is an Rh
v -basis of Rh

wi
.

To verify (3.2.6), let ξ be any element of S. We show that for each i, 1 ≤ i ≤ s,

there exists ξi ∈ Ni such that

wi(ξ − ξi) ≥ v(ai) > 0 (3.2.7)

for some ai ∈ K. In view of (3.2.5) and the fact that πi ∈ S, we have for every

η ∈ Ni and l 6= i, wl(η) ≥ v(a) > 0 for some a ∈ K. So (3.2.7) will imply that

for each l, 1 ≤ l ≤ s, wl(ξ −
s∑
i=1

ξi) ≥ v(b) > 0 for some b ∈ K, which shows that

1
b
(ξ−

s∑
i=1

ξi) ∈ S and consequently ξ belongs to the right hand side of (3.2.6). Thus

(3.2.6) will be proved and hence the theorem.

It only remains to verify (3.2.7). For simplicity of notation, we verify it for

i = 1. Since β11 +Mw1 , · · · , β1f1 +Mw1 form a basis of Rw1/Mw1 over Rv/Mv,

there exist a1j ∈ Rv such that

ξ ≡
f1∑
j=1

a1jβ1j (modMw1). (3.2.8)

We distinguish two cases. Consider first the case when Gw1 = Gv. In this case

Mw1 = MvRw1 . On taking ξ1 =
f1∑
j=1

a1jβ1j, it now follows from (3.2.8) that ξ −

ξ1 ∈ MvRw1 and hence (3.2.7) is verified in this case. Consider now the case

when [Gw1 : Gv] = e1 > 1. Then E(Gw1 : Gv) = [Gw1 : Gv] > 1 and hence by

Theorem 18.3 of [End], Gw1 has a smallest positive element which we denote by

w1(π1), π1 ∈ S. In this case, (3.2.8) implies that
1

π1

(
ξ −

f1∑
j=1

a1jβ1j

)
belongs to

Rw1 . So there exist b1j ∈ Rv such that
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ξ −
f1∑
j=1

a1jβ1j

π1

≡
f1∑
j=1

b1jβ1j (mod π1) in Rw1 .

Thus we obtain

ξ ≡
f1∑
j=1

a1jβ1j +

f1∑
j=1

b1jβ1jπ1 (mod π2
1).

Repeating the above process e1-times, we see that

ξ ≡
f1∑
j=1

a1jβ1j +

f1∑
j=1

b1jβ1jπ1 + · · ·+
f1∑
j=1

u1jβ1jπ
e1−1
1 (mod πe11 )

in Rw1 . Denote the right hand side of the above congruence by ξ1. Since 0 <

w1(πe11 ) ∈ Gv, the above congruence implies that ξ− ξ1 ∈MvRw1 and hence (3.2.7)

is verified. This completes the proof of the theorem.

The following remarks will be used in the next section.

Remark 3.2.D. Let R be an integral domain and A be a commutative ring which

is a free R-module of finite rank. If Λ : A 7−→ A′ is an isomorphism of R-modules

as well as of rings from A onto A′, then clearly for any α ∈ A, TrA/R(α) =

TrA′/R(Λ(α)), where Tr stands for the trace map as introduced in Definition 1.1.B.

Remark 3.2.E. Let R be an integral domain and A1, A2 be commutative rings with

identity which are free as R-modules with basis {B11, · · · , B1n1}, {B21, · · · , B2n2}
respectively. Consider the R-basis {(B11, 0), · · · , (B1n1 , 0), (0, B21), · · · , (0, B2n2)}
of A1 × A2. With notation as in Definition 1.1.B, it can be easily verified that

DA1×A2/R((B11, 0), · · · , (0, B2n2)) = DA1/R(B11, · · · , B1n1)DA2/R(B21, · · · , B2n2)

.

3.3 Proof of Theorem 3.1.1.

The proof of the theorem is divided into three steps.

Step I. Let Bi be as in Theorem 3.2.3. We take S ⊆ Rwi
⊆ Rh

wi
. Denote the

elements of Bi by {Bij|1 ≤ j ≤ ni}. Let Bij denote the element of
s∏
i=1

Rh
wi

whose i-

th co-ordinate is Bij and rest all co-ordinates are zero. By elementary ring theory,
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the family B = {Bij | 1 ≤ i ≤ s, 1 ≤ j ≤ ni} is an Rh
v -basis of

s∏
i=1

Rh
wi

. Let

Cij denote the element of
s∏
i=1

Rh
wi

whose each co-ordinate is Bij. Claim is that

C = {Cij | 1 ≤ i ≤ s, 1 ≤ j ≤ ni} is an Rh
v -basis of

s∏
i=1

Rh
wi

. Keeping in mind

that the elements Bij satisfy property (ii) of Theorem 3.2.3, it can be easily seen

that the transition matrix T from B to C (both sets arranged in lexicographic order

with respect to the subscripts i, j) is congruent to the identity matrix modulo the

maximal ideal of Rh
v . So T is unimodular and the claim is proved.

Step II. Consider the mapping

Rh
v × S −→

s∏
i=1

Rh
wi

(r, α) 7−→ (rα, · · · , rα), r ∈ Rh
v , α ∈ S.

This Rv-bilinear map gives rise to a homomorphism

Λ : Rh
v ⊗Rv S −→

s∏
i=1

Rh
wi

which is a homomorphism of rings as well as of Rh
v -modules. Clearly Λ maps

(1 ⊗ Bij) to Cij and hence maps the Rh
v -basis {1 ⊗ Bij | 1 ≤ i ≤ s, 1 ≤ j ≤ ni}

of Rh
v ⊗Rv S = Sh (say) onto C. Since C is Rh

v -basis of
s∏
i=1

Rh
wi

in view of the claim

proved in Step I, it follows that Λ is an isomorphism of Sh with
s∏
i=1

Rh
wi

.

Step III. Arrange the elements {Bij | 1 ≤ i ≤ s, 1 ≤ j ≤ ni} in lexicographic

order and label these as {β1, · · · , βn}. By Definition 1.1.B, we have d(S/Rv) =

DS/Rv(β1, · · · , βn)Rv. It can be easily seen that

DS/Rv(β1, · · · , βn) = DSh/Rh
v
(1⊗ β1, · · · , 1⊗ βn). (3.3.1)

Since Λ maps the Rh
v -basis {1⊗βi | 1 ≤ i ≤ n} of Sh onto C, it follows from Remark

3.2.D that the right hand side of (3.3.1) equalsD s∏
i=1

Rh
wi
/Rh

v

(C11, · · · , C1n1 , C21, · · · , Csns).

Since both C and B are Rh
v -basis of

s∏
i=1

Rh
wi

, it is now immediate from (3.3.1) that

DS/Rv(β1, · · · , βn) = u2D s∏
i=1

Rh
wi
/Rh

v

(B11, · · · , B1n1 , · · · , Bsns), (3.3.2)
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where u is a unit of Rh
v . Keeping in mind Remark 3.2.E, we see that

D s∏
i=1

Rh
wi
/Rh

v

(B11, · · · , B1n1 , B21, · · · , Bsns) =
s∏
i=1

DRh
wi
/Rh

v
(Bi1, · · · , Bini

).

The theorem now follows from (3.3.2).
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Chapter 4

On the compositum of integral

closures of valuation rings

4.1 Motivation of the problem and statements of

the results.

As before, AK will denote the ring of its algebraic integers of an algebraic number

field K. It is well known that if K1, K2 are algebraic number fields with coprime

discriminants, then the composite ring AK1AK2 is integrally closed and K1, K2 are

linearly disjoint over the field Q of rational numbers (cf. [Nar, Theorem 4.26],

[Es-Mu, Exercise 4.5.12]). This gives rise to the following natural question :

If K1, K2 are algebraic number fields linearly disjoint over Q for which AK1AK2

is integrally closed, then is it true that the discriminants of K1 and K2 are coprime?

We proved in Theorem 2.1.6 that the answer to the above question is in the

affirmative when one of K1 or K2 is a quadratic field. In the present chapter, we

prove that the answer to the above question is always “yes”. Indeed we prove the

following more general result.

Theorem 4.1.1. Let (K, v) be a valued field of arbitrary rank with perfect residue

field and K1, K2 be finite separable extensions of K which are linearly disjoint over
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K. Let S1, S2 denote the integral closures of the valuation ring Rv of v in K1, K2

respectively. If S1, S2 are free Rv-modules and S1S2 is integrally closed, then the

discriminant of one of S1/Rv or S2/Rv is the unit ideal.

The following corollary will be quickly deduced from the above theorem.

Corollary 4.1.2. Let K1, K2 be algebraic number fields which are linearly disjoint

over K = K1 ∩K2 such that AK1K2 = AK1AK2. Then the relative discriminants of

the extensions K1/K and K2/K are coprime.

For proving Theorem 4.1.1, we shall prove the following theorem as a prelimi-

nary result. It is of independent interest as well.

Theorem 4.1.3. Let (K, v), K1, K2, S1, S2 be as in Theorem 4.1.1 without the as-

sumption that the residue field of v is perfect. Assume that S1, S2 are free Rv-

modules and S1S2 is integrally closed. If r, s, t denote respectively the number of

prolongations of v to K1, K2 and K1K2, then t = rs.

4.2 Preliminary results

As in Chapter 3, for a valued field (K, v), (Kh, vh) will denote its henselization

whose valuation ring will be denoted by Rh
v and d(S/Rv) will stand for the discrim-

inant of S/Rv with S a free Rv-module of finite rank.

The proof of the following lemma is contained in the proof of Theorem 3.1.1.

We omit its proof.

Lemma 4.2.A. Let (K, v) be a valued field of arbitrary rank with valuation ring

Rv and (Kh, vh) be its henselization having valuation ring Rh
v . Let L be a finite

separable extension of K and S be the integral closure of Rv in L. Let w1, · · · , wt
be all the prolongations of v to L. Assume that S is a free Rv-module. Then the

Rv-bilinear map from Rh
v ×S into

∏t
i=1R

h
wi

mapping (a, α) to (aα, aα, · · · , aα) for

a ∈ Rh
v , α ∈ S, gives rise to an Rh

v -module isomorphism Λ from Rh
v ⊗Rv S onto

t∏
i=1

Rh
wi

.

We prove a simple lemma needed for the proof of Theorem 4.1.3.
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Lemma 4.2.B. Let (K, v) be a valued field and K1, K2 be finite separable exten-

sions of K which are linearly disjoint over K. Let v1, v2 be prolongations of v to

K1, K2 respectively. Then there exists a prolongation v′ of v to K1K2 such that v′

coincides with vi on Ki for i = 1, 2.

Proof. Let w denote the unique prolongation of vh to an algebraic closure Ω

of Kh. By Theorem 1.1.D, there exists a K-isomorphism σi of Ki into Ω such that

the valuation vi is defined on Ki by vi(αi) = w(σi(αi)), αi ∈ Ki, i = 1, 2. Since

K1, K2 are linearly disjoint over K, there exists a K-isomorphism σ of K1K2 into

Ω such that σ |Ki
= σi. So v′ = w ◦ σ is a prolongation of v extending both v1, v2.

Using the above results, we now prove Theorem 4.1.3.

Proof of Theorem 4.1.3. Let {w1i | 1 ≤ i ≤ r}, {w2j | 1 ≤ j ≤ s}, {wk | 1 ≤ k ≤ t}
denote all the prolongations of v to K1, K2, K1K2 respectively. It will be assumed

that the henselizations under consideration are contained in a fixed algebraic clo-

sure of Kh. The degrees of the extensions Kh
w1i
/Kh, Kh

w2j
/Kh will be denoted by

n1i, n2j respectively and the degree of the henselization of K1K2 with respect to

wk over Kh will be denoted by mk. Fix a pair (i, j), 1 ≤ i ≤ r, 1 ≤ j ≤ s. Let wk

be a valuation of K1K2 extending the valuations w1i, w2j of K1, K2 respectively;

such a prolongation exists in view of Lemma 4.2.B. Consider the Rh
v -bilinear map

from Rh
w1i
× Rh

w2j
to Rh

wk
defined by (ξ, η) 7→ ξη which gives rise to an Rh

v -module

homomorphism Φij : Rh
w1i
⊗Rh

v
Rh
w2j
−→ Rh

wk
. We first prove that Φij is one-one. By

Theorem 3.2.3, there exists an Rh
v -basis Bi = {ξl | 1 ≤ l ≤ n1i} of Rh

w1i
contained in

an Rv-basis of S1. Similarly choose an Rh
v -basis Cj = {ηm | 1 ≤ m ≤ n2j} of Rh

w2j

contained in an Rv-basis of S2. Let alm ∈ Rh
v be such that Φij(

∑
l,m alm(ξl⊗ηm)) =∑

l,m almξlηm = 0. We have to prove that alm = 0 for each l,m. Let S denote the

integral closure of Rv in K1K2. Since S1S2 is integrally closed, we have S = S1S2.

If Λ denotes the Rh
v -module isomorphism as in Theorem 3.2.3 from Rh

v ⊗Rv S onto∏t
i=1R

h
wi

, then

Λ(
∑
l,m

alm ⊗ ξlηm) = (
∑
l,m

almξlηm,
∑
l,m

almξlηm, · · · ,
∑
l,m

almξlηm) = (0, 0, · · · , 0).
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Since Λ is one-one, we see that ∑
l,m

alm ⊗ ξlηm = 0. (4.2.1)

As K1, K2 are linearly disjoint over K, it follows from the choice of Bi, Cj that

{ξlηm | 1 ≤ l ≤ n1i, 1 ≤ m ≤ n2j} is contained in an Rv-basis of S1S2 = S. Thus

{1 ⊗ ξlηm | 1 ≤ l ≤ n1i, 1 ≤ m ≤ n2j} is contained in an Rh
v -basis of Rh

v ⊗Rv S. It

now follows from (4.2.1) that alm = 0 for all l,m. So Φij is one-one. Consequently

taking into consideration the ranks of the domain and range of Φij, it follows that

n1in2j ≤ mk. (4.2.2)

Since the composite field Kh
w1i
Kh
w2j

being a finite extension of Kh is henselian, we

see that

mk ≤ [Kh
w1i
Kh
w2j

: Kh] ≤ n1in2j. (4.2.3)

Comparing (4.2.2) and (4.2.3), we have

mk = [Kh
w1i
Kh
w2j

: Kh] = n1in2j. (4.2.4)

The above equation implies that t = rs keeping in mind Theorem 1.1.D and the

fact that

t∑
k=1

mk = [K1K2 : K] = [K1 : K][K2 : K] = (
r∑
i=1

n1i)(
s∑
j=1

n2j).

Remark 4.2.C. It may be pointed out that in view of equation (4.2.4), Kh
w1i

and

Kh
w2j

are linearly disjoint over Kh for 1 ≤ i ≤ r, 1 ≤ j ≤ s.

4.3 Proof of Theorem 4.1.1 and Corollary 4.1.2.

In the proof of the theorem, we shall use the following notation.

If λi : Mi −→ Ni is a homomorphism of R-modules for i = 1, 2 with R a

commutative ring with identity, then as usual λ1 ⊗ λ2 : M1 ⊗M2 −→ N1 ⊗N2 will

denote the R-module homomorphism satisfying λ1⊗λ2(m1⊗m2) = λ1(m1)⊗λ2(m2)
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for all m1 ∈M1,m2 ∈M2.

If λi : Mi −→ Ni is a mapping of sets for 1 ≤ i ≤ t, then
∏t

i=1 λi will stand

for the map from
∏t

i=1Mi into
∏t

i=1Ni defined by (
∏t

i=1 λi)(m1,m2, · · · ,mt) =

(λ1(m1), λ2(m2), · · · , λt(mt)), mi ∈Mi.

The proof of the theorem is divided into three steps.

Step I. In this step, we prove the theorem assuming that (K, v) is henselian. Keep-

ing in mind this assumption, the hypothesis Rv/Mv perfect and Si a free Rv-module

together with Theorem 18.6 of [End], it follows from Theorem 1.2 of [Kh-Ku1] that

Si is a simple ring extension of Rv for i = 1, 2, say S1 = Rv[α1], S2 = Rv[β2].

Let F1(x), F2(x) denote the minimal polynomials of α1, β2 respectively over K.

For g(x) ∈ Rv[x], ḡ(x) has the same meaning as in Theorem 1.1.A. Suppose that

d(S1/Rv) is not the unit ideal of Rv, i.e., the discriminant of F1(x) is not a unit

of Rv. We have to prove that the discriminant of F2(x) is a unit of Rv. Since

(K, v) is henselian, there exists a monic polynomial g1(x) belonging to Rv[x] with

ḡ1(x) irreducible over Rv/Mv such that F 1(x) = ḡ1(x)e1 . Note that e1 > 1, because

otherwise the polynomial F 1(x) would be irreducible over the perfect field Rv/Mv

and hence its discriminant would be nonzero contrary to our supposition. There-

fore keeping in mind that S1 = Rv[α1] is integrally closed, it follows from Theorem

1.1.A that the value group Gv of v has a smallest positive element say v(π), π ∈ K
and

F1(x) = g1(x)e1 + πM1(x), ḡ1(x) -M1(x). (4.3.1)

Let w1 with valuation ring S1 denote the unique prolongation of the henselian

valuation v to K1. Claim is that the value group Gw1 of w1 has a smallest positive

element which is strictly less than v(π). If Gw1 does not have a smallest positive

element, then by [End, Theorem 18.3] the initial index1 E(Gw1 : Gv) would be 1

and hence Gw1 = Gv by virtue of the hypothesis that S1 is a free Rv-module and

Theorem 18.6 of [End]; this is not possible as Gv has a smallest positive element. So

Gw1 has a smallest positive element say w1(π1), π1 ∈ K1. Recall that F1(α1) = 0;

therefore it follows from (4.3.1) that w1(g1(α1)) = v(π)
e1

+ w1(M1(α1))
e1

. As e1 > 1, the

1Recall that in Definition 3.2.B, the initial index E(Gwi
: Gv) is defined to be the cardinality

of the set {ε ∈ Gwi
| 0 ≤ ε < δ for all positive δ ∈ Gv}.
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claim follows from the last equation as soon as we show that w1(M1(α1)) = 0. If

w1(M1(α1)) > 0, i.e., M1(ᾱ1) = 0̄, then the minimal polynomial ḡ1(x) of ᾱ1 over

Rv/Mv would divide M1(x) which contradicts (4.3.1). So w1(M1(α1)) = 0 and the

claim is proved.

Arguing as for (4.3.1), we can write

F2(x) = g2(x)e2 + πM2(x), (4.3.2)

where g2(x) belongs to Rv[x] with ḡ2(x) irreducible over Rv/Mv, e2 ≥ 1 and M2(x)

belongs to Rv[x]. Observe that ḡ2(x) is irreducible over the residue field of w1, for

otherwise in view of Hensel’s Lemma, F2(x) would be reducible over the valuation

ring S1 of w1 which is not so as the degree [K(β2) : K] = [K1(β2) : K1] by

virtue of K1, K2 being linearly disjoint over K. Therefore on rewriting (4.3.2) as

F2(x) = g2(x)e2 + π1N2(x) where N2(x) = π
π1
M2(x) and keeping in mind the claim

proved above together with the fact that S1[β2] = S1S2 is integrally closed, it follows

from Theorem 1.1.A that e2 = 1; consequently discr(F 2(x)) = discr(ḡ2(x)) 6= 0̄.

Hence d(S2/Rv) (which is the ideal generated by discriminant of F2(x)) is the unit

ideal. This proves the theorem when (K, v) is henselian.

Step II. In this step, we prove that the composite ring Rh
w1i
Rh
w2j

is integrally closed

for 1 ≤ i ≤ r, 1 ≤ j ≤ s. Let S denote the integral closure of Rv in K1K2. As S1S2

is integrally closed, we have S = S1S2. By Lemma 4.2.A, there exist Rh
v -module

(onto) isomorphisms

Λ1 : Rh
v⊗RvS1 −→

r∏
i=1

Rh
w1i

; Λ2 : Rh
v⊗RvS2 −→

s∏
j=1

Rh
w2j

; Λ : Rh
v⊗RvS −→

t∏
k=1

Rh
wk

such that for a ∈ Rh
v , α ∈ S1, β ∈ S2 and γ ∈ S, we have

Λ1(a⊗α) = (aα, aα, · · · , aα); Λ2(a⊗β) = (aβ, aβ, · · · , aβ); Λ(a⊗γ) = (aγ, aγ, · · · , aγ).

The Rv-bilinear map from S1×S2 into S defined by (α, β) 7−→ αβ gives rise to

a homomorphism Ψ : S1 ⊗Rv S2 −→ S. Note that Ψ is one-one and onto because

for an Rv-basis {αi | 1 ≤ i ≤ n1} of S1 and an Rv-basis {βj | 1 ≤ j ≤ n2} of S2, the

set {Ψ(αi ⊗ βj) | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} is an Rv-basis of S1S2 = S in view of the
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hypothesis K1, K2 linearly disjoint over K. Consequently we have an Rh
v -module

isomorphism Λ ◦ (Id ⊗ Ψ) of Rh
v ⊗Rv (S1 ⊗Rv S2) onto

∏t
k=1 R

h
wk

. Also there is a

natural isomorphism from Rh
v ⊗Rv S1 ⊗Rv S2 onto (Rh

v ⊗Rv S1) ⊗Rh
v

(Rh
v ⊗Rv S2)

mapping a ⊗ (α ⊗ β) to (a ⊗ α) ⊗ (1 ⊗ β). Composing it with Λ1 ⊗ Λ2 and

identifying
∏r

i=1R
h
w1i
⊗Rh

v

∏s
j=1R

h
w2j

with
∏r

i=1

∏s
j=1(Rh

w1i
⊗Rh

v
Rh
w2j

), we obtain an

isomorphism Φ(say) from Rh
v⊗Rv (S1⊗Rv S2) with

∏r
i=1

∏s
j=1(Rh

w1i
⊗Rh

v
Rh
w2j

) which

maps a⊗ (α ⊗ β) to (aα ⊗ β, aα ⊗ β, · · · , aα ⊗ β). For a fixed pair (i, j), 1 ≤ i ≤
r, 1 ≤ j ≤ s, in view of Lemma 4.2.B and Theorem 4.1.3, there exists a unique

valuation wk of K1K2 which extends both w1i, w2j. Let Φij : Rh
w1i
⊗ Rh

w2j
−→ Rh

wk

be the homomorphism as in the proof of Theorem 4.1.3. Now (
∏

i,j Φij) ◦Φ gives a

homomorphism from Rh
v ⊗Rv (S1⊗Rv S2) into

t∏
k=1

Rh
wk

which clearly agrees with the

(onto) isomorphism Λ ◦ (Id⊗Ψ). So (
∏

i,j Φij) ◦ Φ is also an (onto) isomorphism.

Since Φ is one-one and onto, we conclude that
∏

i,j Φij is onto and hence so is each

Φij. Consequently Rh
w1i
Rh
w2j

= Φij(R
h
w1i
⊗Rh

w2j
) is the valuation ring Rh

wk
and hence

is integrally closed.

Step III. In this step, we show that at least one of d(S1/Rv), d(S2/Rv) is the unit

ideal of Rv. Assume that d(S1/Rv) is not the unit ideal of Rv, then it is contained

in the maximal ideal Mv of Rv. By Theorem 3.1.1, we have

d(S1/Rv)R
h
v =

r∏
i=1

d(Rh
w1i
/Rh

v).

So d(Rh
w1i
/Rh

v) is contained in the maximal ideal Mh
v of Rh

v for some i and hence

d(Rh
w1i
/Rh

v) is not the unit ideal of Rh
v . Keeping in mind that Kh

w1i
and Kh

w2j
are

linearly disjoint over Kh in view of Remark 4.2.C and that the composite ring

Rh
w1i
Rh
w2j

is integrally closed by Step II, it now follows from Step I (applied to

Kh
w1i

and Kh
w2j

) that d(Rh
w2j
/Rh

v) is unit ideal of Rh
v for each j, 1 ≤ j ≤ s. As

d(S2/Rv)R
h
v =

∏s
j=1 d(Rh

w2j
/Rh

v) by Theorem 3.1.1, we see that d(S2/Rv) is the

unit ideal of Rv. This completes the proof of the theorem. �

Proof of Corollary 4.1.2. Fix a maximal ideal p of AK . We shall prove that if

p divides the relative discriminant D(K1/K) of K1/K, then p does not divide
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D(K2/K). Let v denote the valuation of K corresponding to p defined for any

α ∈ AK to be the highest power of p dividing the ideal αAK . Let S1, S2, S denote

the integral closures of the valuation ring Rv of v in K1, K2, K1K2 respectively.

Keeping in view the hypothesis AK1K2 = AK1AK2 and the fact that Rv is the

localization of AK at p, it can be easily seen that S = S1S2 and hence S1S2

is integrally closed. So in view of Theorem 4.1.1, d(S1/Rv) and d(S2/Rv) are

coprime. Thus when the prime ideal p of AK divides the relative discriminant

D(K1/K) which is the same as saying that the maximal ideal pRv of Rv divides

d(S1/Rv), then pRv will not divide d(S2/Rv) and hence p will not divide D(K2/K)

as desired.
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Chapter 5

On factorization of polynomials in

henselian valued fields

5.1 History of the problem and statements of the

results.

Let K = Q(θ) be an algebraic number field with θ in the ring AK of algebraic in-

tegers of K and F (x) be the minimal polynomial of θ over Q. Hensel’s lemma

is a useful tool to give information about the factors of polynomials with in-

tegral coefficients over the ring Zp of p-adic integers. With F (x) as above, if

F (x) ≡ φ1(x)ν1 · · ·φr(x)νr (mod p) where φi(x) belonging to Z[x] are monic poly-

nomials which are distinct as well as irreducible modulo p, then by Hensel’s lemma,

F (x) = F1(x) · · ·Fr(x) where Fi(x) belonging to Zp[x] is congruent to φi(x)νi mod-

ulo p. If p divides the index [AK : Z[θ]], then these polynomials Fi(x) need not be

irreducible over Zp. Ore described a method to determine a further factorization

of Fi(x) over Zp using φi-Newton polygon of Fi(x) (as defined in the paragraph

preceding Definition 1.1.K). For simplicity of notation, fix one i; denote φi(x) by

φ(x), its degree by m and Fi(x) by g(x). Ore proved that if the φ-Newton polygon

of g(x) has k sides S1, · · · , Sk, then g(x) = g1(x) · · · gk(x) where each gj(x) ∈ Zp[x]

is a monic polynomial whose φ-Newton polygon consists of a single side which is
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a translate of Sj and deg(gj(x)) = mlj, lj being the length of horizontal projec-

tion of the side Sj. Corresponding to Sj, he associated a polynomial GSj
(y) in an

indeterminate y over the finite field Fq, q = pdeg φ to the polynomial gj(x). The

factorization of GSj
(y) in Fq[y] leads to a further factorization of gj(x) over Zp. Fi-

nally Ore showed that if each of these polynomials GSj
(y), 1 ≤ j ≤ k, decomposes

into nj distinct monic irreducible factors over Fq, then all the
k∑
j=1

nj factors of g(x)

obtained in this way are irreducible over Zp and their product equals g(x).

In 2000, Cohen, Movahhedi and Salinier generalized Ore’s method of factoriza-

tion for polynomials with coefficients in complete discrete valued fields (see [C-M-S,

Theorem 1.5]). In 2012, its scope was extended to complete valued fields of rank

one (cf. [Kh-Ku3, Theorem 1.1]) and later in 2015, the analogues of Ore’s results

were proved for polynomials with coefficients in henselian valued fields of arbitrary

rank (cf. [Jh-Kh1, Theorem 1.2]). All these generalizations of Ore’s results for

factorization are proved using φ-Newton polygons which later came to be known

as Newton polygons of order one. In 2012, Guàrdia, Montes and Nart [G-M-N]

introduced the notion of Newton polygons of higher order to extend the method of

factorization of Ore in a different direction in the classical case when the polynomial

GSj
(y) mentioned above has repeated irreducible factors over Fq. In this thesis,

we have extended the notion of Newton polygons of higher order to polynomials

with coefficients in henselian valued fields of arbitrary rank (see Definition 1.1.K).

We use k-th order Newton polygons to give a factorization for such polynomials

for each k ≥ 1. In fact the factorization for k = 1 in the classical case corresponds

to the one given by Ore. At the end, we give examples to illustrate our main

results (see Examples 5.4.1-5.4.3). These examples show that factorization of cer-

tain polynomials into irreducible factors can be obtained more quickly using first,

second or third order Newton polygons with respect to residually transcendental

prolongations than applying the method of factorization of Ore (in the generalized

form) given in [Jh-Kh1] (cf. Remark 5.4.4). The main motivation behind this

chapter is [G-M-N]; however our approach is different from [G-M-N] and involves

residually transcendental prolongations of a given valuation V0 of K to a simple
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transcendental extension K(x) of K. For stating the major results of this chapter

we need a few definitions and notations.

Let V0 be a Krull valuation of a field K with value group G0 and µ be an

element of a totally ordered abelian group containing G0 as an ordered subgroup.

Then the function V1 defined on the polynomial ring K[x] by

V1(
∑

cix
i) = min

i
{V0(ci) + iµ}

gives a valuation of K(x) (cf. [En-Pr, Theorem 2.2.1]) and will be denoted by

V1 = [V0, V1x = µ]. As in [Mac], [Moy], it will be referred to as a first stage

valuation of K(x). In 1936, MacLane [Mac] described a method by which any

valuation W of K(x) can be augmented to yield another valuation of K(x) by

means of a key polynomial which is already introduced in Definition 1.1.I.

Let φ(x) be a key polynomial over a valuation W of K(x) having value group

G and µ > W (φ(x)) be an element of a totally ordered abelian group containing G

as an ordered subgroup. Then the function V defined for any f(x) ∈ K[x] having

φ-expansion
n∑
i=0

fi(x)φ(x)i with deg(fi(x)) < deg(φ(x)) by

V (f) = min
i
{W (fi(x)) + iµ}, (5.1.1)

gives a valuation of K(x) (cf. [Mac, Theorem 4.2], [Moy, p. 103]). The valuation V

is called the augmented valuation over W associated with φ, µ and will be denoted

by V = [W,V φ = µ]. With this notation, we now introduce the notion of k-th

stage commensurable inductive valuation.

A k-th stage inductive valuation Vk is a valuation of K(x) obtained by a finite

sequence of valuations V1, V2, · · · , Vk of K(x) where V1 = [V0, V1x = µ1] is a first

stage valuation obtained from a valuation V0 of K and each Vi = [Vi−1, Viφi = µi] is

obtained by augmenting Vi−1 with the key polynomial φi(x) satisfying the following

two conditions for 2 ≤ i ≤ k :

(i) φ1(x) = x, deg(φi(x)) ≥ deg(φi−1(x));

(ii) φi(x) is not equivalent to φi−1(x) in Vi−1.

As in [Mac], the valuation Vk will be symbolized as Vk = [V0, V1x = µ1, V2φ2 =

µ2, · · · , Vkφk = µk]. The above valuation Vk with value group Gk is called commen-

surable if Gk/G0 is a torsion group; G0 being the value group of V0. As shown in
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Corollary 5.1.2, the residue field of a commensurable inductive valuation Vk is a

transcendental extension of the residue field of V0. It is known that (cf. [A-P-Z2,

Theorem 2.2]) residually transcendental prolongations of V0 to K(x) are given by

minimal pairs (see Definition 1.1.F). In what follows, we retain the notations as in

Notation 1.1.E. and introduce some more which shall be used later.

Notation 5.1.A. Let V0 be a henselian valuation of arbitrary rank of a field K.

For a finite extension (K ′, V ′0) of the valued field (K,V0), the (henselian) defect

to be denoted by def(K ′/K) is defined to be [K ′ : K]/e′f ′ where e′, f ′ are the

ramification index and the residual degree of V ′0/V0.

The following theorem which plays a great role in the proof of the main result

of this chapter relates minimal pairs with key polynomials.

Theorem 5.1.1. Let (K,V0), G0, G̃0 be as in Notation 1.1.E. Let W be a valuation

of K(x) extending V0 and φ(x) be a key polynomial over W . Let V = [W,V φ = µ]

with µ ∈ G̃0 be an augmented valuation over W associated with φ, µ. Then V is

a residually transcendental extension of V0 to K(x). Moreover there exists δ ∈ G̃0

such that for any root α of φ(x), (α, δ) is a (K,V0)-minimal pair and V = wα,δ.

The above theorem quickly yields the following corollary.

Corollary 5.1.2. Let (K,V0) be as in Notation 1.1.E and Vk = [V0, V1x = µ1, V2φ2 =

µ2, · · · , Vkφk = µk] be a k-th stage commensurable inductive valuation. Then Vk is

a residually transcendental extension of V0 to K(x). Moreover Vk = wαk,δk where

αk is a root of φk with (αk, δk) a (K,V0)-minimal pair.

The following corollary to be used in the sequel will be deduced from Theorem

5.1.1. It is of independent interest as well.

Corollary 5.1.3. Let Vk be as in the above corollary with value group Gk. Let φ(x)

be a key polynomial for an inductive valuation over Vk having a root α in K̃, then

Gk = G(K(α)).

With α as in Corollary 5.1.3, the following theorem gives the degree of the

extension K(α)/K and quickly implies that the (henselian) defect of K(α)/K is 1.
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Theorem 5.1.4. Let Vk, φ(x), α be as in Corollary 5.1.3. For 1 ≤ j ≤ k, let Vj =

[V0, V1x = µ1, V2φ2 = µ2, · · · , Vjφj = µj] stand for the j-th stage inductive valuation

and τj be the smallest positive integer such that τjµj belongs to the value group Gj−1

of Vj−1. Then degree of the extension K(α)/K equals deg(φ(x))/
∏k

j=1 τj.

It is known that if W = wα′,δ′ is a residually transcendental prolongation of V0

to K(x) defined by a (K,V0)-minimal pair (α′, δ′), then the minimal polynomial of

α′ over K is a key polynomial over W (cf. [Po-Po, Corollary 4.3]). We shall avoid

working with such trivial key polynomials and use nontrivial key polynomials (see

Definition 1.1.I).

Remark 5.1.5. It may be pointed out that in the particular case when Vk is as in

Corollary 5.1.2 and φ(x) is a key polynomial for an inductive valuation over Vk,

then φ(x) is a nontrivial key polynomial because in view of Corollary 5.1.2, we have

Vk = wαk,δk with αk a root of φk(x) and φ(x) is not equivalent to φk(x) in Vk by

the definition of inductive valuation.

In this chapter, our main aim is to prove:

Theorem 5.1.6. Let (K,V0) be a henselian valued field of arbitrary rank with

value group G0, residue field K and (K̃, Ṽ0) be as in Notation 1.1.E. Let W be

a residually transcendental extension of V0 to K(x) and φ(x) be a nontrivial key

polynomial of degree m over W having a root α ∈ K̃. Let F (x) belonging to

K[x] be a monic polynomial not divisible by φ(x) with φ-expansion
s∑
i=0

Ai(x)φ(x)i,

As(x) = 1. Suppose that the φ-Newton polygon of F (x) with respect to W consists

of r sides S1, . . . , Sr having positive slopes λ1, . . . , λr. Then the following hold:

(i) F (x) = F1(x) · · ·Fr(x), where each Fi(x) belonging to K[x] is a monic poly-

nomial of degree mli whose φ-Newton polygon with respect to W has a single side

which is a translate of Si and li is the length of the horizontal projection of Si.

(ii) If θi is a root of Fi(x), then Ṽ0(φ(θi)) = W (φ(x))+λi = µ′i (say) and G(K(α)) ⊆
G(K(θi)). The index [G(K(θi)) : G(K(α))] is divisible by ei, where ei is the smallest

positive integer such that eiµ
′
i ∈ G(K(α)). The degree [K(θi) : K] is divisible by

[K(α) : K].
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(iii) Fi(x) is a lifting of a monic polynomial Ti(y) ∈ K(α)[y] not divisible by y of

degree li/ei with respect to φ(x), µ′i.

(iv) If Ui1(y)ai1 · · ·Uini
(y)aini is the factorization of Ti(y) into powers of distinct

monic irreducible polynomials over K(α), then Fi(x) factors as Fi1(x) · · ·Fini
(x)

over K, each Fij(x) is a lifting of Uij(y)aij with respect to φ(x), µ′i with degree

meiaij degUij and Ṽ0(φ(θij)) = µ′i. If some aij = 1, then Fij(x) is irreducible over

K and for any root θij of Fij(x), the index [G(K(θij)) : G(K(α))] = ei and the

degree [K(θij) : K] = degUij(y)[K(α) : K] in this case.

It may be pointed out that Theorem 1.2 of [Jh-Kh1] is a special case of the

above theorem because in view of Example 1.1.J a monic polynomial φ(x) ∈ R0[x]

with φ̄(x) irreducible over K is a nontrivial key polynomial over the Gaussian pro-

longation V x
0 defined by (1.1.3) when φ̄(x) 6= x; in case φ̄(x) = x, then φ(x) = x−a

(say) is a nontrivial key polynomial over the residually transcendental prolongation

wa+1,0 corresponding to the minimal pair (a+ 1, 0).

Keeping in mind Corollary 5.1.3, Theorem 5.1.4 and Remark 5.1.5, the following

theorem can be easily deduced from the above theorem. It generalizes Theorems

3.1, 3.7 of [G-M-N] which are proved for the polynomials with coefficients in finite

extensions of the field of p-adic numbers. It also extends Corollary 3.8 of [G-M-N]

in view of equation (5.3.7).

Theorem 5.1.7. Let (K,V0) be a henselian valued field of arbitrary rank with value

group G0, residue field K and (K̃, Ṽ0) be as in Notation 1.1.E. Let Vk, φ(x), α, τj

be as in Theorem 5.1.4 and Gk denote the value group of Vk. Let F (x) belonging to

K[x] be a monic polynomial not divisible by φ(x) with φ-expansion
s∑
i=0

Ai(x)φ(x)i,

As(x) = 1. Suppose that the φ-Newton polygon of F (x) with respect to Vk consists

of r sides S1, . . . , Sr having positive slopes λ1, . . . , λr. Then the following hold:

(i) F (x) = F1(x) · · ·Fr(x), where each Fi(x) belonging to K[x] is a monic polyno-

mial of degree li(deg(φ(x)) whose φ-Newton polygon with respect to Vk has a single

side which is a translate of Si and li is the length of the horizontal projection of Si.

(ii) If θi is a root of Fi(x), then Ṽ0(φ(θi)) = Vk(φ(x))+λi and Gk ⊆ G(K(θi)). The
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index [G(K(θi)) : G0] is divisible by ei
k∏
j=1

τj, where ei is the smallest positive integer

such that eiλi ∈ Gk. The degree [K(θi) : K] is divisible by [K(α) : K] = deg(φ(x))∏k
j=1 τj

.

(iii) Fi(x) is a lifting of a monic polynomial Ti(y) ∈ K(α)[y] not divisible by y of

degree li/ei with respect to φ(x), Vk(φ(x)) + λi.

(iv) If Ui1(y)ai1 · · ·Uini
(y)aini is the factorization of Ti(y) into powers of distinct

monic irreducible polynomials over K(α), then Fi(x) factors as Fi1(x) · · ·Fini
(x)

over K, each Fij(x) is a lifting of Uij(y)aij with respect to φ(x), Vk(φ(x)) + λi with

degree eiaij degUij deg φ and Ṽ0(φ(θij)) = Vk(φ(x)) + λi. If some aij = 1, then

Fij(x) is irreducible over K and for any root θij of Fij(x), the index [G(K(θij)) :

G0] = eiτ1τ2 · · · τk and the degree [K(θij) : K] =
deg(Uij(y)) deg(φ(x))

τ1τ2···τk
in this case.

The following result which is already known in the particular case when W is

the Gaussian prolongation V x
0 (cf. [Jh-Kh4, Theorem 1.5]), will be deduced from

Theorem 5.1.6.

Corollary 5.1.8. Let (K,V0), φ(x),m,W and α be as in Theorem 5.1.6. Let F (x)

belonging to K[x] be a polynomial having φ-expansion
s∑
i=0

Ai(x)φ(x)i with As(x) =

1, Ai(x) 6= 0 for some i < s and assume that all the sides in the φ-Newton polygon

of F (x) with respect to W have positive slopes. If l is the smallest non-negative inte-

ger for which min
0≤i≤s−1

{W (Ai(x)φ(x)i)−W (φ(x)s)

s− i

}
=
W (Al(x)φ(x)l)−W (φ(x)s)

s− l
and

W (Al(x))

d
does not belong to G(K(α)) for any number d > 1 dividing s−l, then

for any factorization G(x)H(x) of F (x) over K, min{degG(x), degH(x)} ≤ lm.

Note that in the special case when W = V x
0 and G0 = Z, then it can be

easily seen that for A(x) ∈ K[x], the condition V x
0 (A(x)) 6∈ dG0 for any number

d > 1 dividing s− k is equivalent to saying that V x
0 (A(x)) and s− k are coprime.

So the above corollary yields the following corollary which extends Schönemann

Irreducibility Criterion (cf. [Rib, 3.1.D]).

Corollary 5.1.9. Let V0 be a valuation of a field K with value group Z. Let

φ(x) be a monic polynomial of degree m which is irreducible over K. Let F (x)
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belonging to K[x] be a polynomial having φ-expansion
s∑
i=0

Ai(x)φ(x)i with As(x) = 1,

Ai(x) 6= 0 for some i < s. Let l be the smallest non-negative integer such that

min
0≤i≤s−1

{V x
0 (Ai(x))

s− i

}
=
V x

0 (Al(x))

s− l
> 0 and V x

0 (Al(x)), s− l are coprime, then for

any factorization F (x) = G(x)H(x) of F (x) over K, one has

min{degG(x), degH(x)} ≤ lm.

5.2 Proof of Theorem 5.1.1, Corollary 5.1.3.

Proof of Theorem 5.1.1. Let t be a positive integer such that tµ ∈ G0, say tµ =

V0(a), a ∈ K. Then the V -residue of φ(x)t/a is transcendental over the residue

field of V0, for otherwise there exist a0, a1, · · · , an in the valuation ring R0 of V0

with an a unit in R0 such that V
( n∑
i=0

ai
(φ(x)t

a

)i)
> 0, which is impossible because

by definition of V , we have

V

( n∑
i=0

ai

(
φ(x)t

a

)i)
= min

0≤i≤n
{V0

(
ai
ai

)
+ itµ} = min

0≤i≤n
{V0(ai)} = 0.

This proves that V is a residually transcendental prolongation of V0 to K(x). So

by Theorem 2.1 of [K-P-R], there exists a (K,V0)-minimal pair (β, δ) ∈ K̃ × G̃0

such that V = wβ,δ.

We claim that there exists a root α of φ(x) such that Ṽ0(α − β) ≥ δ. Suppose

to the contrary, the claim is false. Then for each root αi of φ(x), we have

Ṽ0(αi − β) < δ. (5.2.1)

On writing φ(x)/φ(β) as
∏
i

(1+ x−β
β−αi

) and using (5.2.1), we see that the w̃β,δ-residue

of φ(x)/φ(β) equals 1 and hence the wβ,δ-residue, i.e., the V -residue of φ(x)t/a will

be same as the w̃β,δ-residue of φ(β)t/a, which is impossible because as shown above

the former is transcendental over the residue field of V0, whereas the latter is not

so. This contradiction proves the claim.

It is immediate from the claim and the definition of minimal pair that [K(β) :

K] ≤ [K(α) : K] = deg(φ(x)) = m (say). Now we prove that

[K(β) : K] = m. (5.2.2)
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Suppose that (5.2.2) is false. Let G(x) be the minimal polynomial of β over

K. By the division algorithm, write φ(x) = q(x)G(x) − A(x), with deg(A(x)) <

deg(G(x)) < m, so that

q(x)G(x) = φ(x) + A(x) (5.2.3)

is the φ-expansion of q(x)G(x). Keeping in mind that both q(x), G(x) are of degree

less than m and using formula (5.1.1), we see that

W (q(x)G(x)) = V (q(x)G(x)) = min{V (φ(x)),W (A(x))}.

Thus we have W (A(x)) ≥ W (q(x)G(x)). Indeed W (A(x)) = W (q(x)G(x)), for

otherwise W (A(x)) = W (q(x)G(x)−φ(x)) > W (q(x)G(x)) which would imply that

φ(x) is not equivalence irreducible inW , contradicting that φ(x) is a key polynomial

over W . It now follows from (5.2.3) and the triangle law that W (φ(x)) ≥ W (A(x)).

Keeping in mind that V = wβ,δ is an augmented valuation associated with φ, µ and

using Theorem 1.1.G(ii), the last inequality can be rewritten as

Ṽ0(A(β)) = wβ,δ(A(x)) = V (A(x)) = W (A(x)) ≤ W (φ(x)) < V (φ(x)) = µ.

(5.2.4)

Substituting x = β in (5.2.3), we obtain φ(β) = −A(β) as G(β) = 0. So it follows

from (5.2.4) that Ṽ0(φ(β)) < µ; this is impossible because if φ(x) =
m∏
i=1

(x − αi),

then using (1.1.4), we have

µ = wβ,δ(φ(x)) =
m∑
i=1

w̃β,δ(x−αi) =
m∑
i=1

min(δ, Ṽ0(β−αi)) ≤
m∑
i=1

Ṽ0(β−αi) = Ṽ0(φ(β)).

This contradiction proves (5.2.2).

Now we show that (α, δ) is a (K,V0)-minimal pair, where α is a root of φ(x) with

Ṽ0(α−β) ≥ δ. Let γ be an element of K̃ with [K(γ) : K] < [K(β) : K]. Since (β, δ)

is a (K,V0)-minimal pair and [K(β) : K] = m by (5.2.2), we have Ṽ0(β − γ) < δ;

consequently by strong triangle law Ṽ0(α − γ) = min{Ṽ0(α − β), Ṽ0(β − γ)} =

Ṽ0(β − γ) < δ, which proves that (α, δ) is a (K,V0)-minimal pair. Since (K,V0)

is henselian, it can be easily seen that for any root α′ of φ(x), (α′, δ) is a (K,V0)-

minimal pair; further V = wβ,δ = wα,δ = wα′,δ by virtue of Theorem 2.1 of [K-P-R].

Proof of Corollary 5.1.3. Fix an element µ > Vk(φ(x)) in the divisible closure G̃0
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of G0. Let V denote the augmented valuation V = [Vk, V φ = µ]. By Theorem

5.1.1, there exists δ ∈ G̃0 such that (α, δ) is a (K,V0)-minimal pair and V = wα,δ.

Note that for any polynomial A(x) ∈ K[x] with deg(A(x)) < deg(φ(x)) = m (say),

in view of Theorem 1.1.G(ii), we have

Ṽ0(A(α)) = wα,δ(A(x)) = V (A(x)) = Vk(A(x)); (5.2.5)

consequently G(K(α)) ⊆ Gk. To prove that Gk ⊆ G(K(α)), it is enough to

show that Vk(φk(x)) = µk (say) belongs to G(K(α)), because for any polynomial

g(x) ∈ K[x] with φk-expansion
∑

i gi(x)φk(x)i, on using (5.2.5) and the fact that

deg(φk(x)) ≤ m by definition of inductive valuation, we have

Vk(g(x)) = min
i
{Vk(gi(x)) + iµk} = min

i
{Ṽ0(gi(α)) + iµk}.

If deg(φk(x)) < m, then again in view of (5.2.5), µk = Vk(φk(x)) = Ṽ0(φk(α)) ∈
G(K(α)). So assume that deg(φk(x)) = m. In this situation, φ(x) has φk-expansion

φ(x) = φk(x)+r(x). By hypothesis φ(x) is a key polynomial for an inductive valua-

tion over Vk and hence φ(x) is not equivalent to φk(x) in Vk, i.e., Vk(φ(x)−φk(x)) ≤
Vk(φk(x)). Indeed Vk(r(x)) = Vk(φk(x)), for otherwise Vk(r(x)) < Vk(φk(x)) =

Vk(φ(x)− r(x)) which implies that φ(x) is equivalent to r(x) in Vk; this is impos-

sible because φ(x) is a key polynomial over Vk and deg(r(x)) < m. Therefore by

virtue of (5.2.5), we see that Vk(φk(x)) = Vk(r(x)) = Ṽ0(r(α)) belongs to G(K(α)).

5.3 Preliminary results and Proof of Theorem

5.1.4.

In this section, we first prove three preliminary results viz. Theorems 5.3.1-5.3.3

which play a crucial role for the proof of Theorem 5.1.6 and are of independent

interest as well. We use Theorem 5.3.1 in the proof of Theorem 5.1.4 which is also

proved in this section. At the end of this section, we prove some lemmas needed for

the proof of the main theorem. Throughout this section (K,V0), (α, δ), f(x), wα,δ,

µ are as in Theorem 1.1.G. For a non-zero polynomial F (x) belonging to K[x] with

f -expansion
∑
i

Ai(x)f(x)i, we shall denote by Iα,δ(F (x)), Sα,δ(F (x)) respectively
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the minimum and the maximum integers belonging to the set {i | wα,δ(F (x)) =

Ṽ0(Ai(α))+iµ}. It is known that for any non-zero polynomials F (x), G(x) belonging

to K[x], one has (cf. [Kh-Ku2, Lemma 2.1])

Iα,δ(FG) = Iα,δ(F ) + Iα,δ(G); Sα,δ(FG) = Sα,δ(F ) + Sα,δ(G). (5.3.1)

With ‘def’ as introduced in Notation 5.1.A, we now prove

Theorem 5.3.1. Let (K,V0), (α, δ), f(x),m,wα,δ, µ, e are as in Theorem 1.1.G

and F (x) ∈ K[x] be a lifting of a monic polynomial T (y) not divisible by y of de-

gree t > 0 belonging to K(α)[y] with respect to (α, δ). Let θ be any root of F (x).

Then the following hold :

(i) G(K(α)) ⊆ G(K(θ)) and the degree [K(α) : K] divides [K(θ) : K];

(ii) def(K(α)/K) divides def(K(θ)/K);

(iii) In the particular case when T (y) is irreducible over K(α), then F (x) is irre-

ducible over K, [G(K(θ)) : G(K(α))] = e and [K(θ) : K] = t[K(α) : K].

The theorems stated below are already known (see [Jh-Kh1, Theorem 2.B] for

Theorem 5.3.A and [Kh-Sa, Theorem 1.1] for Theorem 5.3.B); these will be used

in the proof of the above theorem.

Theorem 5.3.A. Let (K,V0), (α, δ), f(x),m, µ, F (x), T (y), e and t be as in the

above theorem and h(x) be as in Theorem 1.1.G(iii). Then (i) Ṽ0(θ − α) ≤ δ for

each root θ of F (x). (ii) Given any root θ of F (x), there exists a K-conjugate θ′

of θ such that Ṽ0(θ′ − α) = δ and Ṽ0(f(θ′)) = Ṽ0(f(θ)) = µ. (iii) If θ′ is as in (ii),

then the Ṽ0- residue of f(θ′)e/h(α) is a root of T (y).

Theorem 5.3.B. Let (K,V0), (K̃, Ṽ0) be as in Notation 1.1.E. Let α, θ belonging

to K̃ be such that Ṽ0(α− θ) > Ṽ0(α− β) for every β ∈ K̃ satisfying [K(β) : K] <

[K(α) : K]. Then G(K(α)) ⊆ G(K(θ)), K(α) ⊆ K(θ) and def(K(α)/K) divides

def(K(θ)/K).

Proof of the Theorem 5.3.1. By Theorem 5.3.A(ii), there exists a K-conjugate θ′

of θ such that Ṽ0(θ′ − α) = δ. Since (α, δ) is a (K,V0)-minimal pair, in view of

Definition 1.1.F we have Ṽ0(α − β) < δ = Ṽ0(θ′ − α) for every β ∈ K̃ satisfying
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[K(β) : K] < [K(α) : K]. Therefore it follows from Theorem 5.3.B and the

henselian property of (K,V0) that G(K(α)) ⊆ G(K(θ′)) = G(K(θ)), K(α) ⊆ K(θ′)

and def(K(α)/K) divides def(K(θ′)/K) = def(K(θ)/K). It only remains to prove

the last assertion of the theorem. Assume that T (y) is irreducible over K(α). We

have

etm = deg(F (x)) ≥ [K(θ) : K] = [K(θ′) : K][G(K(θ)) : G0]def(K(θ)/K).

As def(K(α)/K) divides def(K(θ)/K) and K(α) ⊆ K(θ′), the above inequality

implies

etm ≥ [K(θ) : K] ≥ [K(θ′) : K(α)][G(K(θ)) : G(K(α))][K(α) : K]. (5.3.2)

Recall that [K(α) : K] = m and by Theorem 5.3.A(ii), µ = Ṽ0(f(θ)) ∈ G(K(θ));

hence e divides [G(K(θ)) : G(K(α))]. Further keeping in mind Theorem 5.3.A(iii)

and the fact that T (y) is irreducible over K(α), we see that the degree of the ex-

tension K(θ′)/K(α) is at least t. It now follows that (5.3.2) is possible only when

[K(θ) : K] = etm, [G(K(θ)) : G(K(α))] = e and [K(θ′) : K(α)] = t, which com-

pletes the proof of the theorem.

Now we prove the following theorem to be used in the proof of Theorem 5.3.3.

Theorem 5.3.2. Let φ(x) be a nontrivial key polynomial of degree m over a resid-

ually transcendental extension W of V0 to K(x). Let F (x) ∈ K[x] be a monic

polynomial of degree sm which is equivalent to φ(x)s in W . Then each factor of

F (x) over K has degree a multiple of m.

The two theorems stated below will be used in the proof of the above theorem.

Theorem 5.3.C is proved in [Jh-Kh1, Corollary 2.2]. Theorem 5.3.D is essentially

proved in [Po-Po, Theorem 4.6]; for reader’s convenience, we sketch the proof of

the latter.

Theorem 5.3.C. Let F (x) belonging to K[x] be a monic polynomial which is a

lifting of a monic polynomial T (y) not divisible by y belonging to K(α)[y] with

respect to a (K,V0)-minimal pair (α, δ). Then any monic polynomial G(x) ∈ K[x]
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dividing F (x) is a lifting of a monic polynomial dividing T (y) with respect to (α, δ).

Theorem 5.3.D. If φ(x) is a key polynomial over a residually transcendental

prolongation wα1,δ1 of V0 to K(x) with (α1, δ1) a (K,V0)-minimal pair such that

φ(x) is not equivalent to the minimal polynomial of α1 over K, then φ(x) is a

lifting of an irreducible polynomial ψ(y) 6= y belonging to K(α1)[y] with respect to

(α1, δ1).

Proof of Theorem 5.3.D. Let n1 denote the degree of the minimal polynomial f1(x)

of α1 over K and W the valuation wα1,δ1 . In view of Proposition 4.1 of [Po-Po],

deg(φ(x)) ≥ n1. When deg(φ(x)) > n1, then by Theorem 4.6 of [Po-Po], φ(x) is a

lifting of an irreducible polynomial ψ(y) 6= y belonging to K(α1)[y] with respect to

(α1, δ1). So we need to prove the theorem when deg(φ(x)) = n1 = deg(f1(x)). In

this case write φ(x) = f1(x) + r0(x), deg(r0(x)) < n1. In view of Theorem 1.1.G,

we have

W (φ(x)) = min{W (f1(x)),W (r0(x))}. (5.3.3)

As φ(x) is not equivalent to f1(x) in W , we see that W (r0(x)) = W (φ(x)−f1(x)) ≤
W (f1(x)). It now follows from (5.3.3) that W (φ(x)) = W (r0(x)). We show that

W (φ(x)) = W (f1(x)). By virtue of (5.3.3), we have W (f1(x)) ≥ W (φ(x)). If

W (f1(x)) > W (φ(x)), then W (f1(x)) = W (φ(x) − r0(x)) > W (φ(x)), which is

impossible because φ(x) is key polynomial over W and deg(r0(x)) < deg(φ(x)).

Therefore we have W (φ(x)) = W (f1(x)) = W (r0(x)) which immediately implies

that φ(x) is a lifting of the linear polynomial y+1̄ with respect to (α1, δ1) on taking

h(x) = r0(x). This completes the proof of the theorem.

The converse of Theorem 5.3.D stated below as Theorem 5.3.E is proved in

[Po-Po, Theorem 4.6]. It will be used to construct examples.

Theorem 5.3.E. Let wα1,δ1 be a residually transcendental prolongation of V0 to

K(x) with (α1, δ1) a (K,V0)-minimal pair. If φ(x) ∈ K[x] is a monic polynomial

which is a lifting of an irreducible polynomial ψ(y) 6= y belonging to K(α1)[y] with

respect to (α1, δ1) such that deg(φ(x)) is strictly greater than the degree of the

minimal polynomial of α1 over K, then φ(x) is a key polynomial over wα1,δ1 .
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Proof of Theorem 5.3.2. Let g(x) be a monic polynomial in K[x] dividing F (x).

Since φ(x) is a nontrivial key polynomial over W , there exists a (K,V0)-minimal

pair (α1, δ1) such that W = wα1,δ1 where f1(x) is the minimal polynomial of α1

over K of degree n1 (say) and φ(x) is not equivalent to f1(x) in W . By Theorem

5.3.D, φ(x) is a lifting of an irreducible polynomial ψ(y) ∈ K(α1)[y] different from

y with respect to (α1, δ1). As F (x) is equivalent to φ(x)s in W , it follows that F (x)

is a lifting of ψ(y)s with respect to (α1, δ1). By Theorem 5.3.C, g(x) is a lifting of

ψ(y)d with respect to (α1, δ1) for some d ≤ s. If e1 denotes the smallest positive

integer such that e1wα1,δ1(f1(x)) ∈ G(K(α1)), then in view of Definition 1.1.H of

lifting, deg(g(x)) = de1n1(deg(ψ(y)) = d deg(φ(x)) as desired.

The following theorem which we now prove for all residually transcendental

prolongations W is proved in [Jh-Kh1, Theorem 3.1] in the particular case when

W is V x
0 defined by (1.1.3).

Theorem 5.3.3. Let φ(x) be a nontrivial key polynomial of degree m over a

residually transcendental extension W of V0 to K(x) having a root α ∈ K̃. Let

V = [W,V φ = λ + Wφ] be the augmented valuation over W associated with

φ, µ = λ + Wφ and (α, δ) be a (K,V0)-minimal pair such that V = wα,δ. Let

e be the smallest positive integer such that eµ ∈ G(K(α)) and F (x) belonging to

K[x] be a monic polynomial of degree sm which is equivalent to φ(x)s in W . If

Iα,δ(F ) = 0 and Sα,δ(F ) = l > 0, then F (x) has a monic factor G(x) ∈ K[x] of

degree lm such that Sα,δ(G) = l. Further G(x) is a lifting of a monic polynomial

of degree l/e not divisible by y belonging to K(α)[y] with respect to (α, δ).

The following two already known lemmas will be used in the proof of the above

theorem (see [Jh-Kh1, Lemma 2.3] for Lemma 5.3.F and [Kha, Lemma 2.3] for

Lemma 5.3.G).

Lemma 5.3.F. Let (K,V0), (α, δ), f(x), µ be as in Theorem 1.1.G. If g(x) ∈ K[x] is

a monic polynomial for which Iα,δ(g) = 0 and Sα,δ(g) is positive, then Ṽ0(θ−α) ≤ δ

for each root θ of g(x); there exists a root θ′ of g(x) with Ṽ0(θ′ − α) = δ and

Ṽ0(f(θ′)) = µ for such a root θ′.
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Lemma 5.3.G. Let g(x) and g1(x) be two monic irreducible polynomials over a

henselian valued field (K,V0) of degrees n, n1 respectively such that g(β) = g1(β1) =

0 for some β, β1 ∈ K̃. Then n1Ṽ0(g(β1)) = nṼ0(g1(β)).

Proof of Theorem 5.3.3. Let g1(x), · · · , gr(x) be all the monic irreducible factors

of F (x) over K, counted with multiplicity (if any) for which Sα,δ(gi) > 0, say

Sα,δ(gi) = li. Set G(x) =
r∏
i=1

gi(x). By (5.3.1), Sα,δ(G) =
r∑
i=1

li = l. Let gi(x) =

di∑
j=0

gij(x)φ(x)j be the φ-expansion of gi(x) with gidi(x) 6= 0. Then in view of

Theorem 5.3.2, the degree of gi(x) is a multiple of m and hence deg(gi(x)) = dim.

Clearly the first assertion of the theorem is proved once we show that

di = li, 1 ≤ i ≤ r. (5.3.4)

Since Iα,δ(F ) = 0, we have Iα,δ(gi) = 0. Also Sα,δ(gi) > 0. Applying Lemma

5.3.F, there exists a root θi of gi(x) such that Ṽ0(φ(θi)) = µ. By Lemma 5.3.G,

Ṽ0(gi(α)) = diṼ0(φ(θi)) = diµ. Therefore keeping in mind that Iα,δ(gi) = 0, we see

that

wα,δ(gi(x)) = wα,δ(gi0(x)) = Ṽ0(gi0(α)) = Ṽ0(gi(α)) = diµ,

which shows that Sα,δ(gi) = di and (5.3.4) is proved. Keeping in view the above

equation, we see that diµ ∈ G(K(α)). So di = li is divisible by e and hence gi(x)

is a lifting of a monic polynomial not divisible by y of degree li/e belonging to

K(α)[y] with respect to (α, δ) which implies that G(x) =
r∏
i=1

gi(x) is a lifting of a

polynomial of degree l/e.

The following generalized version of Hensel’s lemma proved in [Jh-Kh1, Theo-

rem 1.1] will be used in the proof of Theorem 5.1.6.

Theorem 5.3.H. Let (K,V0) be a henselian valued field of arbitrary rank. Let

(α, δ) be a (K,V0)-minimal pair and h(x) ∈ K[x] be as in Theorem 1.1.G(iii). If a

monic polynomial F (x) ∈ K[x] is a lifting of a product of two coprime polynomials

U1(y), U2(y) belonging to K(α)[y] with respect to (α, δ) and h(x), then there exist
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monic polynomials F1(x), F2(x) in K[x] such that F (x) = F1(x)F2(x) and Fi(x) is

a lifting of Ui(y) with respect to (α, δ), h(x).

Using Theorems 5.3.D and 5.3.1, we now prove Theorem 5.1.4 :

Proof of Theorem 5.1.4. Denote φ(x) by φk+1(x) and α by αk+1. By Corollary

5.1.2, Vj = wαj ,δj where αj is a root of φj(x) with (αj, δj) a (K,V0)-minimal pair.

In view of Corollary 5.1.3, the value group Gj of Vj equals G(K(αj+1)). So τj is

the smallest positive integer such that τjwαj ,δj(φj(x)) = τjVj(φj(x)) = τjµj belongs

to Gj−1 = G(K(αj)). Since φj+1(x) is a lifting of an irreducible polynomial ψj(y)

belonging to K(αj)[y] of degree tj (say) with respect to (αj, δj) in view of Theorem

5.3.D, it now follows from Definition 1.1.H that

deg(φj+1(x)) = τjtj deg(φj(x)). (5.3.5)

Applying the last assertion of Theorem 5.3.1 to the polynomial φj+1(x), we obtain

[K(αj+1) : K] = tj[K(αj) : K]. (5.3.6)

Keeping in mind that α = αk+1, α1 = 0 and using (5.3.6) for 1 ≤ j ≤ k, we see

that

[K(α) : K] = [K(αk+1) : K] =
k∏
j=1

tj. (5.3.7)

The desired equality is obtained on substituting for tj from (5.3.5) in (5.3.7).

In what follows in this section, W is a residually transcendental prolongation

of V0 to K(x), φ(x) is a key polynomial over W and the φ-Newton polygon of

any polynomial is taken with respect to W . With notations as in Notation 1.1.E,

the following lemmas establish the close analogy between the concept of φ-Newton

polygon with respect to W and the phenomenon of lifting with respect to minimal

pairs corresponding to an augmented valuation over W .

Lemma 5.3.4. Let (K,V0) be a henselian valued field of arbitrary rank. Let W be a

residually transcendental prolongation of V0 to K(x) and φ(x) be a key polynomial

over W having a root α ∈ K̃. Let V = [W,V φ = µ] be the augmented valuation of
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W with µ ∈ G̃0 and (α, δ) be a (K,V0)-minimal pair such that V = wα,δ. Let e be the

smallest positive integer such that eµ belongs to G(K(α)) and λ = µ−W (φ(x)). If

F (x) ∈ K[x] is a lifting with respect to (α, δ) of a monic polynomial T (y) belonging

to K(α)[y] not divisible by y having degree t, then the φ-Newton polygon of F (x)

with respect to W consists of a single side which has slope λ and the length of its

horizontal projection is et.

Proof. Note that if a polynomial A(x) ∈ K[x] has degree strictly less than

deg(φ(x)), then keeping in mind Theorem 1.1.G(ii), (5.1.1) and the fact that

V = wα,δ, one has

Ṽ0(A(α)) = wα,δ(A(x)) = V (A(x)) = W (A(x)). (5.3.8)

Let F (x) = φ(x)s + As−1(x)φ(x)s−1 + · · · + A0(x) be the φ-expansion of F (x).

Since F (x) is a lifting of T (y) of degree t not divisible by y, in view of Definition

1.1.H of lifting, we have s = et and wα,δ(F (x)) = sµ = Ṽ0(A0(α)). Using (5.3.8),

we see that wα,δ(F (x)) = min
i
{W (Ai(x)) + iµ} = sµ = W (A0(x)). Substituting

µ = λ+W (φ(x)) in the last equation, it follows that

W (Ai(x)φ(x)i)−W (φ(x)s)

s− i
≥ λ =

W (A0(x))−W (φ(x)s)

s
,

for 1 ≤ i ≤ s − 1, which shows that the φ-Newton polygon of F (x) (with respect

to W ) has a single side whose slope is λ and the length of its horizontal projection

is s = et.

The next result is the converse of the above lemma.

Lemma 5.3.5. Let (K,V0),W, φ(x) and α be as in above lemma. Assume that the

φ-Newton polygon with respect to W of a polynomial F (x) ∈ K[x] not divisible by

φ(x) having φ-expansion φ(x)s +As−1(x)φ(x)s−1 + · · ·+A0(x) consists of a single

side with slope λ > 0. Let V = [W,V φ = λ+Wφ] be the augmented valuation over

W associated with φ, µ = λ + Wφ and (α, δ) be a (K,V0)-minimal pair such that

V = wα,δ. Let e be the smallest positive integer such that eµ ∈ G(K(α)). Then s/e

is an integer and F (x) is a lifting of a monic polynomial T (y) not divisible by y of

degree s/e belonging to K(α)[y] with respect to (α, δ).
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Proof. In view of the hypothesis regarding the φ-Newton polygon of F (x), we

have
W (Ai(x)φ(x)i)−W (φ(x)s)

s− i
≥ λ =

W (A0(x))−W (φ(x)s)

s
,

for 1 ≤ i ≤ s − 1, i.e., W (Ai(x)φ(x)i) + iλ ≥ s(W (φ(x)) + λ) = W (A0(x)) which

shows that V (F (x)) = min
i
{W (Ai(x)) + iµ} = W (A0(x)) = sµ. Keeping in mind

that V = wα,δ and W (Ai(x)) = Ṽ0(Ai(α)), we see that

wα,δ(F (x)) = min
i
{Ṽ0(Ai(α)) + iµ} = Ṽ0(A0(α)) = sµ. (5.3.9)

Since e is the smallest positive integer for which eµ ∈ G(K(α)), say eµ = Ṽ0(h(α)),

h(x) ∈ K[x], deg(h(x)) < deg(φ(x)), it follows from (5.3.9) that s = et for some

integer t and Ṽ0(Ai(α))+iµ > sµ = Ṽ0(h(α)t) when i is not divisible by e. Therefore

using Theorem 1.1.G(ii) and denoting the wα,δ-residue of φ(x)e

h(x)
by z, we see that

the wα,δ-residue of F (x)/h(x)t equals zt +
(Ae(t−1)(α)

h(α)

)
zt−1 + · · · +

(A0(α)
h(α)t

)
= T (z)

(say). This proves that F (x) is a lifting of T (y) with respect to (α, δ).

Lemma 5.3.6. Let (K,V0),W, φ(x) and α be as in Lemma 5.3.4 and F (x) belong-

ing to K[x] be a polynomial not divisible by φ(x) having φ-expansion As(x)φ(x)s +

As−1(x) φ(x)s−1 + · · ·+A0(x), As(x) 6= 0. Suppose that a side of the φ-Newton poly-

gon of F (x) with respect to W has slope λ > 0 with interval of horizontal projection

starting at s−k and ending at s− j. Let V = [W,V φ = λ+Wφ] be the augmented

valuation over W associated with φ, µ = λ + Wφ and (α, δ) be a (K,V0)-minimal

pair such that V = wα,δ. Then Iα,δ(F ) = j and Sα,δ(F ) = k.

Proof. Since V = wα,δ and W (Ai(x)) = Ṽ0(Ai(α)) in view of (5.3.8), we see that

wα,δ(F (x)) = min
i
{W (Ai(x)) + iµ}. So the lemma is proved once we show that j, k

are respectively the smallest and the largest indices at which the minimum of the

set M = {W (Ai(x))+iµ, 0 ≤ i ≤ s} is attained. For the sake of convenience, denote

W (Ai(x)φ(x)i) by γi. As [s− k, s− j] is the interval of horizontal projection of the

side of the φ-Newton polygon of F (x) having slope λ, in view of Definition 1.1.K,

it follows that for all indices i lying in the interval [j, k] we have λ ≤ γi−γk
k−i and this

inequality becomes equality when i = j. Substituting for γi, γk and µ = W (φ(x))+
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λ, the above inequality can be rewritten as W (Ai(x)) + iµ ≥ W (Ak(x)) + kµ with

equality when i = j. Therefore for proving the lemma, it is enough to prove that

W (Ai(x)) + iµ > W (Aj(x)) + jµ, when i < j (5.3.10)

and

W (Ai(x)) + iµ > W (Ak(x)) + kµ, when i > k. (5.3.11)

Keeping in mind that the slopes of the edges are in increasing order, for any index

i < j, we have
γi−γj
j−i > λ = µ −W (φ(x)), which immediately gives (5.3.10) when

we substitute for γi, γj. To prove (5.3.11), fix an index i > k and let [s− k1, s− k2]

denote the interval of horizontal projection of the side of the φ-Newton polygon of

F (x) which contains s − i. Then by Definition 1.1.K,
γi−γk1
k1−i ≥

γk2−γk1
k1−k2 . A simple

calculation shows that the above inequality is same as saying

γk2 − γi
i− k2

≤ γk2 − γk1
k1 − k2

. (5.3.12)

Note that if k2 = k, then the slope λ of r-th edge (say) of the φ-Newton polygon of

F (x) is strictly greater than the slope
γk−γk1
k1−k of its previous edge. Therefore when

k2 = k, the inequality in (5.3.12) implies that γk−γi
i−k < λ, which on substituting

for γi, γk and µ = W (φ(x)) + λ immediately gives inequality (5.3.11). In general

when k2 > k, let k1 > k2 > · · · > kt = k be integers such that each of the interval

[s − kr, s − kr+1] is an interval of horizontal projection of a side of the φ-Newton

polygon of F (x). Since the slopes of the respective edges are increasing, we have

by (5.3.12)
γk2 − γi
i− k2

<
γk3 − γk2
k2 − k3

< · · · <
γkt − γkt−1

kt−1 − kt
< λ

which implies that
γkt−γi
i−kt <

γkt−γkt−1

kt−1−kt < λ in view of a basic inequality (which says

that whenever A1

B1
< A2

B2
< · · · < Ar

Br
with Bi > 0, then A1+···+Ar

B1+···+Br
< Ar

Br
). So we have

γk−γi
i−k < λ = µ −W (φ(x)) which immediately gives (5.3.11). This completes the

proof of the lemma.

Lemma 5.3.7. Let (K,V0),W and φ(x) be as in Lemma 5.3.4. Let F (x), G(x)

belonging to K[x] be two monic polynomials not divisible by φ(x). Suppose that the
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φ-Newton polygons of F (x), G(x) with respect to W consist of k, t sides respectively

having positive slopes λ1 < · · · < λk and λ′1 < · · · < λ′t. Let li, l
′
i denote the lengths

of the horizontal projection of the sides with slopes λi, λ
′
i respectively. Then the

distinct elements of the set {λi, λ′j, 1 ≤ i ≤ k, 1 ≤ j ≤ t} arranged in ascending

order are all the slopes of the φ-Newton polygon of F (x)G(x). If λi = λ′j for some

pair (i, j), then the length of horizontal projection of the side of the φ-Newton

polygon of F (x)G(x) with slope λi will be li + l′j; in case λi 6= λ′j, then the length of

horizontal projection of the side of the φ-Newton polygon of F (x)G(x) with slope

λi (respectively λ′j) is li (respectively l′j).

Proof. Let F (x) =
s∑
i=0

Ai(x)φ(x)i, G(x) =
t∑
i=0

Bi(x)φ(x)i be the φ-expansions

of F (x) and G(x) with As(x)Bt(x) 6= 0. Let λ > 0 be the slope of an edge S

of the φ-Newton polygon of F (x) having horizontal projection [s − k, s − j]. Let

V = [W,V φ = µ = λ + Wφ] be the augmented valuation over W and α be a root

of φ(x), then by Theorem 5.1.1 there exists δ ∈ G̃0 such that (α, δ) is a (K,V0)-

minimal pair and V = wα,δ. So by Lemma 5.3.6, Iα,δ(F (x)) = j, Sα,δ(F (x)) = k.

We first show that the φ-Newton polygon of F (x)G(x) with respect to W has a

side of slope λ and also find the length of the horizontal projection of this side.

Two cases arise:

Case I. λ is not the slope of any side of the φ-Newton polygon of G(x).

In this case, in view of Lemma 5.3.6, Iα,δ(G(x)) = Sα,δ(G(x)) = l (say). By (5.3.1),

Iα,δ(F (x)G(x)) = Iα,δ(F (x)) + Iα,δ(G(x)) = j + l and Sα,δ(F (x)G(x)) = k + l.

Therefore the φ-Newton polygon of F (x)G(x) has a side with slope λ having the

length of horizontal projection equal to that of S.

Case II. λ is the slope of some side of the φ-Newton polygon of G(x).

Suppose that the side S ′ of the φ-Newton polygon of G(x) of slope λ has in-

terval of horizontal projection [t − k1, t − j1]. Therefore by virtue of Lemma

5.3.6, Iα,δ(G(x)) = j1, Sα,δ(G(x)) = k1. Using (5.3.1), Iα,δ(F (x)G(x)) = j +

j1, Sα,δ(F (x)G(x)) = k + k1. So the φ-Newton polygon of F (x)G(x) has a side

of slope λ whose length of horizontal projection is equal to the sum of the lengths

of the horizontal projections of S and S ′.
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The proof of the lemma is complete once we show that if λ > 0 is the slope of a

side S ′′ of the φ-Newton polygon of F (x)G(x), then either the φ-Newton polygon

of F (x) or of G(x) has a side with slope λ. If l denotes the length of the horizontal

projection of S ′′, then by Lemma 5.3.6, Sα,δ(F (x)G(x))− Iα,δ(F (x)G(x)) = l > 0.

So in view of (5.3.1), either Sα,δ(F (x))−Iα,δ(F (x)) > 0 or Sα,δ(G(x))−Iα,δ(G(x)) >

0 which proves that the φ-Newton polygon of either F (x) or G(x) has a side of

slope λ > 0.

5.4 Proof of Theorem 5.1.6, Corollary 5.1.8 and

examples.

Proof of Theorem 5.1.6. We prove assertions (i), (ii), (iii) of the theorem by induc-

tion on r = the number of sides of the φ-Newton polygon of F (x) (with respect

to W ). For r = 1, let λ′ > 0 denote the slope of the single side of the φ-Newton

polygon of F (x). Let V ′ = [W,V ′φ = λ′ + Wφ] be the augmented valuation over

W associated with φ, µ′ = λ′ + Wφ. By Theorem 5.1.1, there exists δ′ ∈ G̃0 such

that (α, δ′) is a (K,V0)-minimal pair and V ′ = wα,δ′ . Let e′ be the smallest positive

integer such that e′µ′ ∈ G(K(α)). By Lemma 5.3.5, F (x) is a lifting of a polyno-

mial not divisible by y belonging to K(α)[y] with respect to (α, δ′) of degree s/e′.

Therefore by Theorem 5.3.1, for each root θ of F (x), G(K(α)) ⊆ G(K(θ)) and the

degree [K(α) : K] divides [K(θ) : K]. Also by Theorem 5.3.A, Ṽ0(φ(θ)) = µ′. So

µ′ ∈ G(K(θ)); consequently e′ divides the index [G(K(θ)) : G(K(α))]. Thus the

first three assertions of the theorem are proved when r = 1.

Suppose that r ≥ 2 and let 0 < λ1 < λ2 < · · · < λr be the slopes of the

φ-Newton polygon of F (x). Denote λr by λ. Let V = [W,V φ = λ + Wφ] be

the augmented valuation over W associated with φ, µ = λ + Wφ. By Theorem

5.1.1, there exists δ ∈ G̃0 such that (α, δ) is a (K,V0)-minimal pair and V = wα,δ.

Let e be the smallest positive integer such that eµ ∈ G(K(α)). Let [s − l, s]

denote the interval of horizontal projection of the side of the φ-Newton polygon of

F (x) with slope λr = λ. Therefore in view of Lemma 5.3.6 we have Sα,δ(F ) = l,
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Iα,δ(F ) = 0. Claim is that F (x) is equivalent to φ(x)s in W . Since all sides of

the φ-Newton polygon of F (x) with respect to W have positive slopes, we see that

W (Ai(x)φ(x)i) > W (φ(x)s) for 0 ≤ i < s and hence we have

W (F (x)− φ(x)s) = W (
s−1∑
i=0

Ai(x)φ(x)i) ≥ min
i
{W (Ai(x)φ(x)i)} > W (φ(x)s),

which proves the claim. It now follows that Theorem 5.3.3 is applicable to F (x) and

hence F (x) has a monic factor Fr(x) (say) belonging to K[x] of degree lm which

is a lifting of a monic polynomial belonging to K(α)[y] not divisible by y of degree

l/e with respect to φ, µ. If θr is a root of Fr(x), then in view of Theorem 5.3.A,

Ṽ0(φ(θr)) = µ. By Lemma 5.3.4, the φ-Newton polygon of Fr(x) with respect to W

consists of single side which has slope λ and length of its horizontal projection is

equal to l. Applying Lemma 5.3.7, we see that the φ-Newton polygon of the polyno-

mial F (x)/Fr(x) consists of r− 1 sides with slopes 0 < λ1 < · · · < λr−1. Therefore

by induction hypothesis applied to F (x)/Fr(x), assertions (i)–(iii) of the theorem

follow. Assertion (iv) is obtained on applying Theorem 5.3.H to polynomials Fi(x)

and then using the last assertion of Theorem 5.3.1.

Proof of Corollary 5.1.8. In view of the hypothesis, the side with the smallest slope

of the φ-Newton polygon of F (x) with respect to W has interval of horizontal pro-

jection [0, s− l] and has slope
W (Al(x)φ(x)l)−W (φ(x)s)

s− l
= λ1 (say). Therefore

by assertions (i), (iii) of Theorem 5.1.6, F (x) has a monic factor F1(x) belonging

to K[x] of degree (s− l)m which is a lifting of a monic polynomial T1(y) ∈ K(α)[y]

not divisible by y with respect to φ(x), µ = W (φ(x))+λ1. Let θ1 be a root of F1(x).

Then by Theorem 5.1.6 (ii), Ṽ0(φ(θ1)) = W (φ(x)) +λ1. Substituting for λ1, we see

that Ṽ0(φ(θ1)) =
W (Al(x))

s− l
. Keeping in mind the hypothesis W (Al(x))

d
6∈ G(K(α))

for any number d > 1 dividing s− l, it follows from assertion (ii) of Theorem 5.1.6

that the index [G(K(θ1)) : G(K(α))] is divisible by s− l; also by the same assertion

the degree [K(θ1) : K] is divisible by [K(α) : K]. Therefore we have

(s− l)m ≥ [K(θ1) : K] = [G(K(θ1)) : G0][K(θ1) : K]def(K(θ1)/K)

≥ (s− l)[G(K(α)) : G0][K(α) : K]def(K(θ1)/K).
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By Theorem 5.3.1, def(K(α)/K) divides def(K(θ1)/K); consequently

(s− l)m ≥ [K(θ1) : K] ≥ (s− l)[G(K(α)) : G0][K(α) : K]def(K(α)/K) = (s− l)m.

Therefore the polynomial F1(x) of degree (s − l)m is irreducible over K. Conse-

quently for any factorization G(x)H(x) of F (x) over K, F1(x) will divide at least

one of G(x) or H(x), say F1(x) divides G(x). Then degG(x) ≥ (s − l)m. Hence

degH(x) ≤ lm as desired.

We now give examples to illustrate Theorems 5.1.6, 5.1.7. These examples

occur in [J-K-S4]. As pointed out in Remark 5.4.4, in each of the examples the

factorization of the polynomial F (x) under consideration into irreducible factors

over the base field cannot be obtained by already known results in this direction.

Example 5.4.1. Let V0 be a henselian valuation of arbitrary rank of a field K whose

value group has a smallest positive element λ0 = V0(π) for some π in the valuation

ring R0 of V0. Let φ(x) ∈ R0[x] be a monic polynomial with φ(x) 6= x irreducible

over the residue field of V0. We factorize the polynomial F (x) = (φ(x)s+π)s+aφ(x)

into irreducible factors over K, where V0(a) = tλ0 and t ≥ s ≥ 2 are integers. Let

V2 denote the second stage inductive valuation defined by V2 = [V0, V1x = 0, V2φ =

λ0/s]. Take φ3(x) = φ(x)s + π. Keeping in mind Corollary 5.1.2, it can be easily

verified using Theorem 5.3.E that φ3(x) is a key polynomial over V2. Further φ3(x)

is not equivalent to φ(x) in V2 because V2(φ3(x)) = λ0 > V2(φ(x)) = λ0
s

. So φ3(x) is

a key polynomial for an inductive valuation over V2. Since F (x) has φ3-expansion

φ3(x)s+aφ(x), the φ3-Newton polygon of F (x) with respect to V2 consists of a single

side with slope λ = (t−s)λ0
s

+ λ0
s2

. If e denotes the smallest positive integer such that

eλ belongs to the value group G0 + λ0Z
s

of V2, then by virtue of the hypothesis that

λ0 is the smallest positive element of G0, we have e = s. Let α be a root of φ3(x).

Using assertions (i),(iii) of Theorem 5.1.7, we see that F (x) is a lifting of a linear

polynomial T (y) ∈ K(α)[y] not divisible by y with respect to φ3(x), λ0+λ. Hence in

view of Theorem 5.1.7(iv), F (x) is irreducible over K and for any root θ of F (x),

[G(K(θ)) : G0] = s2, [K(θ) : K] = deg(φ(x)).
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Example 5.4.2. Let w0 be the 2-adic valuation of the field Q of rational numbers

defined by w0(2) = 1. Let wy denote the valuation of the field Q(y) of rational

functions with coefficients from Q in an indeterminate y defined for any polynomial

f(y) belonging to Q[y] by wy(f(y))= the highest power of the monomial y dividing

f(y). For a nonzero polynomial f(y) ∈ Q[y], let f ∗ denote the constant term of the

polynomial f(y)/ywy(f(y)). Let w be the mapping from Q[y] into the group Z × Z
with lexicographic ordering defined for any nonzero polynomial f(y) by w(f(y)) =

(wy(f(y)), w0(f ∗)) and w(0) =∞. It can be easily checked that w satisfies w(fg) =

w(f) + w(g) and w(f + g) ≥ min{w(f), w(g)} for all f, g in Q[y]. So w gives a

valuation of Q(y). Let (K,V0) denote the henselization of (Q(y), w). Then the

value group Γ0 of V0 is Z × Z (lexicographically ordered) with smallest positive

element (0, 1). Let s ≥ 2 be any integer. Consider the polynomial F (x) = x2s − a
belonging to K(x) with V0(a − 4) ≥ (0, 5). We show that F (x) factors into a

product of two irreducible polynomials over K each of degree 2s−1. Let V1 stand for

the first stage valuation defined by V1 = [V0, V1x = (0, 1
2s−1 )]. Applying Theorem

5.3.E, it can be easily checked that the polynomial φ2(x) = x2s−1 − 2 is a key

polynomial over V1. Clearly φ2(x) is not equivalent to x in V1. Note that the φ2-

expansion of F (x) is (φ2(x))2 + 4φ2(x) + 4 − a. Denote V0(4 − a) by µ and recall

that by hypothesis µ ≥ (0, 5). So the φ2-Newton polygon of F (x) with respect to V1

consists of two edges. The first edge has slope λ1 = (0, 1); the second edge has slope

λ2 = µ − (0, 3) ≥ (0, 2). Let α be a root of φ2(x). In view of assertions (i), (iii)

of Theorem 5.1.7, we see that F (x) = F1(x)F2(x), where Fi(x) belonging to K[x]

having degree 2s−1 is a lifting of a monic linear polynomial Ti(y) 6= y belonging to

K(α)[y] with respect to φ2(x),λi+V1(φ2) = λi+(0, 1). It now follows from Theorem

5.1.7(iv) that Fi(x) is irreducible over K for i = 1, 2 and for any root θi of Fi(x),

[G(K(θi)) : Γ0] = 2s−1. Thus for each root θ of F (x), K(θ) is a totally ramified

extension of (K,V0).

Example 5.4.3. Let V0 be a henselian valuation of arbitrary rank of a field K with

value group Γ0. Let a, b be elements of K such that V0(a) > V0(b)
2

> 0 and V0(b)
2

/∈ Γ0.

Let b0, b1, b2 be elements of K with V0(b0) = 0, V0(b1) ≥ V0(b) and V0(b2) ≥ 2V0(b).
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We show that the polynomial F (x) = (x2 + ax+ b)2 + b2(x2 + ax+ b) + b2(b0x+ b1)

is irreducible over K. Define V1 = [V0, V1x = V0(b)/2] and φ2(x) = x2 + ax + b.

Observe that φ2(x) is a lifting of a linear polynomial with respect to the valuation

V1 = w0,δ where δ = V0(b)/2. So by Theorem 5.1.E, φ2(x) is a key polynomial

over V1. It is indeed a nontrivial key polynomial over V1 because φ2(x) is not

equivalent to x in V1. Let α be a root of φ2(x). Since the φ2-expansion of F (x) is

(φ2(x))2 + b2φ2(x) + b2(b0x + b1), it can be easily seen that its φ2-Newton polygon

with respect to V1 consists of a single edge having slope δ/2. Keeping in mind

that V1(φ2(x)) = 2δ = V0(b) ∈ Γ0 and δ /∈ Γ0, we conclude on applying Theorem

5.1.6(iii) that F (x) is a lifting of a monic linear polynomial belonging to K(α)[y]

and hence is irreducible over K by Theorem 5.1.6(iv).

Remark 5.4.4. It may be pointed out that Theorem 1.2 of [Jh-Kh1] does not es-

tablish the irreducibility of F (x) over K in Example 5.4.1 even when s = t = 2,

for in this situation the φ-Newton polygon of F (x) (with underlying valuation V0)

consists of a single edge having slope λ0
2

with length of horizontal projection 4. So

by Theorem 1.2 of [Jh-Kh1], F (x) would be a lifting of a second degree polynomial

belonging to K(β)[y] with respect to φ(x), λ0
2

, where β is a root of φ(x). As regards

Example 5.4.2, φ(x) = x is the only irreducible factor of F (x) modulo the maximal

ideal M0 of the valuation ring of V0 and the φ-Newton polygon of F (x) consists of

a single edge having slope (0, 1
2s−1 ) with length of horizontal projection 2s. So F (x)

will be a lifting of a square of a linear polynomial belonging to K[y] with K being

the field of two elements. Therefore Theorem 1.2 of [Jh-Kh1] does not give any

information regarding the factorization of F (x) in this situation.
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der Theorie der höheren Kongruenzen, Göttingen Abhandlungen 23 (1878),

1-23.

79



[Dum] G. Dumas, Sur quelques cas d’irréductibilité despolynomes à coefficients
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