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Abstract

Let R be an integrally closed domain with quotient field K and 6 be an element
of an integral domain containing R with 6 integral over R. Let F'(x) be the minimal
polynomial of 6 over K and p be a maximal ideal of R. Kummer proved that if
R[f] is an integrally closed domain, then the maximal ideals of R[f] which lie over
p can be explicitly determined from the irreducible factors of F'(x) modulo p. In
1878, Dedekind gave a criterion to be satisfied by F(z) for R[f] to be integrally
closed in case R is the localization Z,) of Z at the nonzero prime ideal pZ of Z.
In 2006, Ershov extended Dedekind Criterion replacing Z,y by the valuation ring
of any Krull valuation. Using Generalized Dedekind Criterion in this thesis, we
have given explicit necessary and sufficient conditions involving only a, b, m,n for
RI[0] to be integrally closed when 6 is a root of an irreducible trinomial F(z) =
™ + az™ + b belonging to R[z], R being a valuation ring. As an application, we
have deduced that if K7, Ky are algebraic number fields which are linearly disjoint
over the field of rational numbers and one of them is a quadratic field with the
compositum Ay, Ak, integrally closed, Ak, being the ring of algebraic integers of
K;, then the discriminants of K, Ky are coprime. In an attempt to extend the
above result to any pair of algebraic number fields linearly disjoint over K; N K,
we have proved a more general result which deals with the compositum of integral
closures of a given valuation ring R in a pair of finite separable extensions of the
quotient field K of R which are linearly disjoint over K. In the course of its
proof, we have established an analogue for finite extensions of valued fields of the
classical result that the discriminant of an extension of algebraic number fields can
be expressed as a product of local discriminants as well as a generalization of the
weak Approximation Theorem. We have also generalized an extended version of
the classical theorem of factorization of Ore for polynomials with coefficients in

henselian valued fields of arbitrary rank.
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Chapter 1

Introduction

Valuations have been around in mathematics since ancient times. When Fuclid
proved the fundamental theorem of arithmetic, then this result permitted to code
the natural numbers by the exponents with which various primes p divide these
numbers; those exponents in fact represent the p-adic valuations used in number
theory. The theory of valuations was started in 1912 by the Hungarian mathemati-
cian Josef Kiirchdk [Kur]. Kiirchdk formally introduced the concept of a valuation
of a field K as being a real valued function ¢ defined on K satisfying the following
axioms for all a,b € K :

(i) ¢(a) > 0 for a # 0,¢(0) =0,

(i2) ¢(ab) = ¢(a)o(b),

(iii) ¢(a+b) < ¢(a) + ¢ (b).

Such functions are now a days called absolute values. Although the formal defi-
nition of a valuation was given by Kirchak, the ideas which governed valuation
theory in its first phase came from Hensel’s theory of p-adic numbers. As pointed
out by Peter Roquette in his article “A history of valuation theory” (cf. [K-K-M]),
Hensel may be called the grandfather of valuation theory. The development of
valuation theory was motivated by the discovery that it is an important tool to
study algebraic number fields. Later it was Alexander Ostrowski who played a sig-
nificant role in developing the theory further to a considerable degree (cf. [Ostl],

[Ost2], [Ost3], [Ostd]). Ostrowski introduced the terminology of archimedean and
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non-archimedean for absolute values. An absolute value ¢ of a field K is called
non-archimedean if ¢(a + b) < max{¢(a),p(b)} for all a,b € K. Valuations in
additive form were first used by Ostrowski in his 1918 paper [Ost2]. An additive
valuation v of a field K is a mapping from K into RU {oo} satisfying the following
axioms for all a,b € K :

(i) v(a) = oo if and only if a = 0;

(1) v(ab) = v(a) + v(b);

(i77) v(a + b) > min{v(a),v(b)}.

It is clear that the additive valuations of K are in one-to-one correspondence with
its non-archimedean absolute values (via the correspondence v — ¢ = exp(—v)).
In 1932, Krull extended the notion of valuation of a field. In this thesis, by a
valuation v of a field K, we mean a Krull valuation, i.e., v is a mapping from K
onto G U {oo}, where G is a totally ordered additive abelian group, such that for
all a, b in K, the following properties are satisfied:

(i) v(a) = oo if and only if a = 0;

(1) v(ab) = v(a) + v(b);

(173) v(a + b) > min{v(a),v(b)}.

The pair (K,v) is called a valued field and G the value group of v. The subring
R, ={a € K |v(a) > 0} of K with unique maximal ideal M, = {a € K | v(a) > 0}
is called the valuation ring of v and R, /M, its residue field. Asin [En-Prl §2.1,83.1],
it can be easily seen that the valuation ring R, of v is integrally closed and the
collection of all convex subgroups of G is linearly ordered by inclusion. The order
type of the chain of all convex subgroups of the value group G of v distinct from G
is called the rank of v. It is well known that v has rank one if and only if G is order
isomorphic to a non-zero subgroup of the group of all real numbers under addition
(see [En-Pr|, Proposition 2.1.1]); that is why rank one valuations are also called real
valuations. A valuation whose value group is isomorphic to the group Z of integers
is called discrete. Indeed the oldest known example of a discrete valuation is the
p-adic valuation (to be denoted by v,) of the field Q of rational numbers which is
defined for any non-zero rational number a = Zp", m,n,r € Z,p{ mn as v,(a) = 7.

The valuation ring of v, which is the localization of Z at the prime ideal pZ will



be denoted by Z,).

If K’/K is an extension of fields and v is a valuation of K, then a valuation v’ of
K’ is said to be an extension or a prolongation of v to K if v’ coincides with v on K.
In this situation, the valued field (K’,v") is said to be an extension of (K, v). For a
valued field extension (K’,v")/(K,v), ift G C G" and R, /M, embedded in R, /M,
denote respectively the value groups and the residue fields of v, v’, then the index
[G' : G] and the degree of the field extension R, /M, over R,/M, are respectively
called the index of ramification and the residual degree of v'/v. Two valued fields
(K, v) and (Kj,v;) are said to be isomorphic if there exists an isomorphism A from
K onto Kj such that v; o A = v. A valued field (K,v) or a valuation v of K is
said to be henselian if v has a unique prolongation to the algebraic closure of K.
It is known that henselian valued fields are those valued fields for which one of the
several equivalent versions of Hensel’s Lemma holds (cf. [En-Pr, Theorem 4.1.3]).
It was Kiirshak [Kur] who proved in 1913 that every complete rank one valued field
is henselian.

Background of work. Let K = Q(f) be an algebraic number field with 6 an
algebraic integer and A denote the ring of algebraic integers of K. It is immediate
from Lagrange’s theorem [Her, Theorem 2.4.1] for finite groups that if a prime p
does not divide the index [Ag : Z[0]], then Ax C Z)[0], Z(y) being the localization
of Z at pZ. The converse assertion also holds because if p divides [Ax : Z[d]],
then by Cauchy’s theorem [Her, §2.7], the group Ax/Z[f] has an element & + Z[0]
of order p, in which case the element & of Ax does not belong to Z,)[0]. Thus
p does not divide [Ag : Z[f]] if and only if Ax C Z,[0], which is the same as
requiring that the integral closure of Z, in K is Z,)[0]. In 1878, Dedekind gave
a necessary and sufficient criterion to be satisfied by the minimal polynomial F(x)
of § over Q so that p{ [Ax : Z[0]]. He proved that if F(z) = gi(x)% --- g, (x)* is
the factorization of the polynomial F(x) obtained by replacing coefficients of F(x)
modulo p as a product of powers of distinct irreducible polynomials over Z/pZ with
gi(x) € Z[zx] monic, then Z,)[0] is integrally closed if and only if for each 7, either
e; = 1 or gi(z) t M(x), where M(z) = I%(F(:L’) - Z1_2[1 gi(z)%) (see [Cohl, Theorem
6.1.4], [Dedl). As Z,) is the valuation ring of the p-adic valuation of rationals, the
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above criterion gives a motivation to investigate when is a simple ring extension of
a valuation ring integrally closed. In 2006, Ershov generalized the above criterion
replacing Z, by the valuation ring of a Krull valuation (cf. [Ers],[Kh-Kul]) and
proved the following:

Theorem 1.1.A(Generalized Dedekind Criterion). Let v be a Krull valuation
of arbitrary rank of a field with valuation ring R, having maximal ideal M,. For
g(x) € Ry[z], let g(x) denote the polynomial obtained on replacing each coefficient
of g(x) by its image under the canonical homomorphism from R, onto R,/M,. Let
F(x) € Ry[z] be a monic irreducible polynomial having a root 6 in its splitting field
and F(x) = gi(x)® - - - g,(x)* be the factorization of F(x) into a product of powers
of distinct irreducible polynomials over R,/M, with g;(x) € R,[z] monic. Then
R,[0] is integrally closed if and only if either e; = 1 for each i or some e; > 1,
in which case M, is a principal ideal say generated by m and g;(x) does not divide
M(z) for such an index j, where M(x) = L(F(z) — g1(z)* - - - g (2)*).

Using the above criterion in Chapter 2, we have given necessary and sufficient
conditions involving a, b, m,n for R,[0] to be integrally closed when 6 is a root of
an irreducible trinomial F'(z) = 2™ 4+ az™ + b belonging to R,[z]. For an element
a belonging to R,, @ will denote its image under the canonical homomorphism
from R, onto R,/M,. We shall denote by D the discriminant of the trinomial

F(z) =a™ + ax™ +b. It is known (cf. [Swal) that

D — (_1)(g>bmfl[bnlfm1nn1 _ (_1)n1an1mm1 (n _ m)nlfml]do

n

where dy = ged(m, n), ny = do°

my = Zl”—o. In Chapter 2, we prove

Theorem 1.1.1. Let v be a Krull valuation of arbitrary rank of a field having
valuation ring R,, maximal ideal M, and perfect residue field. Let p denote the
characteristic of the residue field R,/M, in case it is positive. Let 6 be a root of a
monic irreducible trinomial F(x) = 2" +ax™+0b belonging to R,[x] and dy, mq,n1, D
be as above. Assumd| that v(D) > 0. Then R,[0] is integrally closed if and only

if M, is a principal ideal say generated by m and one of the following conditions is

f v(D) = 0, then F(x) has no repeated factor and hence R, [¢] is integrally closed by Theorem
1.1.A.



satisfied:

(1) when a,b € M,, then v(b) = v(rm);

(17) when a € M, and b ¢ M, with j > 1 as the highest power of p dividing n, then
either v(ag) > v(m) and v(by) = 0 or v(az) = 0 = v((=b)™a3" — (=by)™), where
ag = %, V' is an element of R, satisfying () =b and by = L(b+ (=b)");

(1ii) when a ¢ M,, b € M, and v(n —m) =0, then v(b) = v(n);

(iv) when a ¢ M,, b € M, and v(n —m) > 0 with | > 1 as the highest power
of p dividing n — m, then either v(a;) > v(mw) and v(by) = 0 or v(a;) = 0 =
o(by T (—a)™ (ar)" ™ — (—by)™ ™)), where a; = L(a+(—d')?'), by =L, a’ € R,
satisfies (/)P = a;

(v) when ab ¢ M, andm € M, withn = s'pF, m = sp¥, p does not divide gcd(s', s),
then the polynomials x* + ax® + b and %[a:ﬁpk + b+ (—d'z® — V)] are coprime
modulo M,, where o/, are in R, satisfying (a')*" = a, ()" =b;

(vi) when abm does not belong to M, then v(C' — E) = v(w), where C = b™~"™n!

and E = (=1)"a™m[" (ng —my)™ ™.

In the special case when the characteristic of the residue field of v is zero, we

obtain the following simple result.

Corollary 1.1.2. Let v, R,, M,,, F(x) and D be as in the above theorem with
v(D) > 0. Assume that the characteristic of R,/M, is zero. Then R,[0] is in-
tegrally closed if and only if M, is a principal ideal say generated by w and either
I) v(b) = v(m) or II) v(ab) = 0, v(C' — E) = v(mw) holds, where C, E are as in
Theorem [1.1.1{(vi).

It is well known that if K7, K5 are algebraic number fields with coprime discrim-
inants, then K, Ky are linearly disjoint over the field Q of rational numbers and
Ak, k, = Ak, Ak,, here and elsewhere Aj, stands for the ring of algebraic integers
of an algebraic number field L (cf. [Nar, Theorem 4.26], [Es-Mul, Exercise 4.5.12]).
The converse of this classical result is already known when both K7, K5 are distinct
quadratic fields (cf. [Mar, Chapter 2, Exercise 42]). As an application of Theorem
1.1.1} we have proved the following theorem which proves the converse when one

of K or K is a quadratic field not contained in the other.
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Theorem 1.1.3. Let Ky be an algebraic number field and Ko be a quadratic field
not contained in K. If Ak, k, equals the composite ring A, Ak, , then the discrim-

wmants of K1 and Ky are coprime.

Theorems|1.1.1 and some related results of independent interest are proved
in the paper [J-K-S3| which has appeared in Journal of Pure and Applied Algebra
Vol. 222 (2018), 889-899.

The following problem naturally arises from Theorem [1.1.3]

Let Ky, Ky be algebraic number fields linearly disjoint over K = K; N Ky. If
Ar,Ar, = Arii,, then is it true that the relative discriminantf] of Ki/K and
Ky /K are coprime?

We deal with the above problem in a more general situation in the fourth chapter
and deduce that the answer to the foregoing question is in the affirmative. In the
course of its proof, we establish an analogue for finite extensions of valued fields
of the classical result that the discriminant of an extension of algebraic number
fields can be expressed as product of local discriminants (cf. [Ca-Fr, Proposition
5, Chapter I]); the latter result is proved in the third chapter. It will be precisely
stated after introducing some notations.

Definition 1.1.B. Let R be a integral domain and A be a commutative ring with
identity which is a free R-module of finite rank n. Let {f;,--- , 8,} be an R-basis
of A. For an arbitrary element a of A, we can write af; = Z?Zl ¢iiBj, cij € R.
The trace ), ¢;; of the matrix (¢;;);; does not depend upon the choice of R-basis of
A; it is called the trace of o with respect to A/R and will be denoted by T4/ (c).
The discriminant Dy p(f1,- -+, Bn) of the basis {f1,---, 8.} is defined to be the
determinant of the n x n matrix (Tra/r(8:5;))i. If {B1, -+, 0,} is another R-
basis of A and T is the transition matrix from {fy,---, 5.} to {f1,---, 5.}, then
Dar(By,-++,B) = (det T)*Dayr(Bi,- -+, Bn). S0 Dayr(Ba,- -+, Bn) is uniquely de-
termined up to the square of a unit of R. The ideal generated by D (51, , )

2As in [Nai], the relative discriminant of an extension L/K of algebraic number fields is the
norm relative to L/K of the inverse of the fractional ideal {\ € L | Trp x(MAAL) C Ak} of the

ring Ay, of algebraic integers of L.



in R will be called the discriminant of A/R and will be denoted by d(A/R).
Notation 1.1.C. A henselian valued field (K", v") which is an extension of a valued
field (K, v) and is smallest in the sense that every henselian valued field extension
of (K,v) contains a (K,v)-isomorphic image of (K", v") is called henselization of
(K,v). It is known that every valued field admits a henselization (see [En-Pr,
Proposition 5.2.2.]). The valuation ring of the henselization (K" v") will be de-
noted by R".

With the above notation, the main result of Chapter 3 can be stated as follows.

Theorem 1.1.4. Let (K,v) be a valued field of arbitrary rank with valuation ring
R, and (K", v") be its henselization having valuation ring R". Let L be a finite
separable extension of K and S be the integral closure of R, in L. Let wy,--- ,w;
be all the prolongations of v to L. Assume that S is a free R,-module. Then
the wvaluation ring Rfvi of the henselization of (L,w;) is a free R'-module and

A(S/R)RY = TL d(Rl, /RL).

For proving the above theorem, we have proved the result stated below which
extends the weak Approximation Theorem which states that if By, Bs,--- , B, are
non-comparable valuation rings of a field K with maximal ideals My, My, --- , My,
then for any tuple (ay, as, -+ ,ax) € By X By X - -+ X By, there exists an ¢ € ﬂleBi
with ¢ —a; € M, for all i € {1,2,--- |k} (cf. [En-P1l Theorem 3.2.7]).

Theorem 1.1.5. Let By, By, -+ , By be non-comparable valuation rings of a field
K with mazimal ideals My, M, -+ My, and R = NE_B;. Then for each tuple
(a1, ,ag) belonging to By X - - - X By, such that ay, is a unit of B;By, for1 <i < k—1,
there exists an element ¢ € R such that c—a; € M; for1 <i:<k—1 andc—ay €
apMy.

In Chapter 3, we have also proved the following theorem which has been used

in the proof of Theorem |1.1.4]

Theorem 1.1.6. Let (K,v), Rt L, S,wy, -+, w, and RZ)Z, be as in Theorem m
Assume that S is a free R,-module. Then one can choose a suitable Rﬁ—basis B;CS
of R}, such that (i) Ui_,B; is an R,-basis of S; (ii) for every By; € B; and for each
k # 1, wy(B;j) > v(a) > 0 for some a in K.
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The paper [J-J-K-S] containing the proofs of Theorems has been
published in Journal of Algebra and its Applications, Vol. 16 (2017) 1750198 (7

pages).

Using results of the third chapter, we have proved the following theorem in the
fourth chapter.

Theorem 1.1.7. Let (K,v) be a henselian valued field of arbitrary rank with per-
fect residue field and K1, Ky be finite separable extensions of K which are linearly
disjoint over K. Let S1, Sy denote the integral closures of the valuation ring R, of
v in Ky, Ky respectively. If S1, Sy are free R,-modules and S155 is integrally closed,
then either d(S1/R,) or d(Se/R,) is the unit ideal.

The corollary stated below has been deduced from the above theorem. It proves
the converse of the well known theorem which says that if discriminants of alge-

braic number fields K, Ky are coprime, then they are linearly disjoint over @Q and

Ak, i, = Ak, Ak, (see [Nar, Theorem 4.26]).

Corollary 1.1.8. Let K1, Ky be algebraic number fields which are linearly disjoint
over K = K1 N Ky such that Ak, k, = Ak, Ak,. Then the relative discriminants of

the extensions K,/K and Ko/ K are coprime.

For proving Theorem [1.1.7], we have proved the following theorem as a prelim-

inary result in Chapter 4. It happens to be of independent interest.

Theorem 1.1.9. Let (K,v), Ky, K5, 51,55 be as in Theor’em without the as-
sumption that the residue field of v is perfect. Assume that Si,Ss are free R,-
modules and 5155 is integrally closed. If r,s,t denote respectively the number of

prolongations of v to K1, Ky and KK, thent =rs.

Theorems and their applications are proved in the paper entitled “On
the compositum of integral closures of valuation rings” which has been accepted
for publication in Journal of Pure and Applied Algebra.

Factorization of polynomials having integral coefficients into irreducible factors

over the ring Z, of p-adic integers is an important problem in algebraic number
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theory. In 1894, Hensel developed a powerful approach by showing that the prime
ideals of the ring A of algebraic integers of an algebraic number field K = Q(6)
with 0 an algebraic integer having minimal polynomial F'(x) over Q, occurring in
the factorization of pAg for any prime p are in one-to-one correspondence with the
monic irreducible factors of F'(x) over Z, and that the ramification index together
with the residual degree of a prime ideal of Ax lying over p are same as those of
a simple extension of the field Q, of p-adic numbers obtained by adjoining a root
of the corresponding irreducible factor of F'(x) belonging to Z,[z] (see [Hen], [Nar,
Proposition 6.1]). If the factorization of F(x) modulo p is given by

Fla) = 61(2)" - o (a)" (L.1.1)

as a product of powers of distinct irreducible polynomials over Z/pZ with ¢;(x)
monic polynomials belonging to Z[x], then by Hensel’s Lemma [Endl Theorem 16.7]
F(x) = Fi(z)--- F.(z), where Fi(z) is a polynomial over Z, with Fj(z) = ¢;(x)*
mod p. If p divides [Af : Z[#]], then these factors F;(x) need not be irreducible
over Q,. In 1928, Ore in a series of papers [Orel], [Ore2], [Ore3] described a
method to further split F;(x) into a product of irreducible factors over Z,. For this
purpose, he considered the ¢;-Newton polygon of F;(x) (as defined in the paragraph
preceding Definition 1.1.K) for each i , having k; sides with positive slope which
leads to a factorization of Fj(x) into k; factors, say Fi(z) = Fj(x)--- Fi,(x) in
Zy|x]. Moreover to each side S of the ¢;-Newton polygon of F;(z), he associated
a polynomial (F})s(y) over the finite field F,,, ¢ = p?8%(®) in an indeterminate y.
The factorization of the associated polynomial (F;)s(y) over Fy, provides a further
factorization of the factor of F;(x) corresponding to the side S. Finally, Ore showed
that if for some ¢, all these polynomials (F;)g.(y) corresponding to various sides

J

Sj,1 < j < k;, of the ¢;-Newton polygon of F;(z) have no multiple factor, say
k;

(Fi)s,(y) splits into n;; distinct irreducible factors over Fy,, then all the Znij
j=1

factors of F;(x) obtained in this way are irreducible over Q,. Further, the slopes

of the sides of the ¢;-Newton polygon of F;(x) and the degrees of the irreducible
factors of (F;)s(y) over F,, for S ranging over all the sides of such a polygon lead

to the explicit determination of the residual degrees and the ramification indices
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of all those prime ideals of Ax lying over p which correspond to the irreducible
factors of Fj(z) (see [G-M-N| Theorem 1.19, Corollary 1.20], [Kh-Ku3]).

In 1934, Ostrowski established a deep connection between valuations of an
algebraic number field K and the prime ideals of Ax. He proved that the prime
ideals of Ag dividing pAgk are in one-to-one correspondence with the valuations of
K extending the p-adic valuation of Q (see |Ost4], [Nar, Theorem 3.3]). Keeping
this in mind, the following well known theorem [End, Theorem 17.17] extends

Hensel’s approach (stated in the opening lines of the previous paragraph) to general
valued fields.

Theorem 1.1.D. Let v be a valuation of arbitrary rank of a field K and K(6)
be a finite separable extension of K. Let F(x) be the minimal polynomial of 0

over K and Hfz(x) be the factorization of F(x) into a product of distinct monic
i=1

irreducible polynomials over the henselization (K", v") of (K,v). Let ¥y, denote the
unique prolongation of v to the algebraic closure of K. Then there are exactly s
prolongations of v to K(0). Let 0; be a root of fi(x). The valuations wy,--- ,ws of
K(0) defined by

wi(Yat?) =" _a;6]),0; € K (1.1.2)

j j

are all the distinct prolongations of v to K(0).
The above theorem gives rise to the following problem :

Given an irreducible polynomial F(x) with coefficients in a valued field (K, v)
of arbitrary rank, how to extend the method of Ore to obtain information about the
irreducible factors of F(z) over (K" v").

It may be pointed out that Ore’s technique was extended by Cohen et al. in 2000
for polynomials over complete discrete valued fields and was further extended to
more general henselian valued fields by Jhorar, Khanduja and Kumar (see [C-M-9],
[Kh-Ku3], [Jh-Khi]). All these generalizations of Ore’s results for factorization are
proved using ¢-Newton polygons which later came to be known as Newton polygons
of order one (see Definition 1.1.K). In 2012, Guardia, Montes and Nart |G-M-N]
introduced the notion of Newton polygons of higher order to extend the method of

factorization of Ore in a different direction for polynomials with coefficients in Z,

10



when the polynomial (F)s,(y) mentioned above has repeated irreducible factors
over F,. In the fifth chapter, we extend the notion of Newton polygons of higher
order to polynomials with coefficients in henselian valued fields of arbitrary rank
(see Definition 1.1.K) and use higher order Newton polygons to give a factorization
for such polynomials. Our approach involves prolongations of a valuation V; of
a field K to a simple transcendental extension K (x) of K whose residue fields
are transcendental over the residue field of Vj; such prolongations of V; to K(x)
are called residually transcendental. In 1988, Alexandru, Popescu and Zaharescu
[A-P-Z1] proved that residually transcendental prolongations are given by means
of minimal pairs which are defined after introducing some notations.

Notation 1.1.E. In what follows, 1} is a henselian valuation of arbitrary rank of
a field K with value group G, whose valuation ring will be denoted by R, having
unique maximal ideal M,. We shall denote by K an algebraic closure of K and by
‘70 a fixed prolongation of the valuation V} of K to K ; éo will stand for the value
group of Vo. For an element o belonging to the valuation ring of ‘70, a will denote
its %—residue, i.e., the image of a under the canonical homomorphism from the
valuation ring of V onto its residue field. When f(z) € Ro[z], f(x) will stand for
the polynomial over Ry/M, obtained by replacing each coefficient of f(z) by its
Vo-residue. For any subfield L of K ,L,G(L) will denote respectively the residue
field and the value group of the valuation of L which is the restriction of \N/O.
Definition 1.1.F. A pair (o,8) € K x Gy is said to be a minimal pair (more
precisely a (K, Vp)-minimal pair) if whenever 3 belongs to K with [K(8) : K] <
[K(a) : K], then V(o — 8) < 6, i.e., o has least degree over K in the closed ball
B(a,0) = {8 € K | Vo(a — B) > d}.

Example. If ¢(z) belonging to Ro[z] is a monic polynomial of degree m > 1
with ¢(x) irreducible over the residue field of V4 and «a is a root of ¢(x) in the
algebraic closure K of K, then (a,0) is a (K, Vp)-minimal pair for each positive
§ in Gy, because whenever 3 belongs to K with degree [K(3) : K] < m, then
%(a — ) <0, for otherwise @ = /3, which in view of the Fundamental Inequality

([En-Pr, Theorem 3.3.4]) would imply that [K(3) : K| > [K(B) : K] = m leading

to a contradiction.
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Note that to the minimal pair (0,0) belonging to K x éo, one can associate
in a natural way, the Gaussian prolongation V{ of Vj to a simple transcendental

extension K (z) of K defined on Klx] by

VSE(Zaixi) = miin{Vo(ai)}, a; € K. (1.1.3)

In the same manner, for a (K, Vj)-minimal pair («,d), we can define a valuation
Was of K(z) by

{Da,(;(Zci(:c —a)') = miin {(Vole;) +i0}, ¢ € K; (1.1.4)

its restriction to K (x) will be denoted by wgs. It is known that a prolongation
W of Vy to K(x) is residually transcendental if and only if W = w,s for some
(K, Vp)-minimal pair («, ) (cf. [A-P-Z2l Theorem 2.2]). With Notation 1.1.E, the
valuation w, s and its residue field are described by the following basic theorem
proved in [A-P-Z1l, Theorem 2.1].

Theorem 1.1.G. Let (K,Vy), (K,Vy) be as in Notation 1.1.E. Let (a,6) be a
(K, Vo) -minimal pair and was be as defined by equation . Let f(x) be the
minimal polynomial of o over K of degree m with was(f(x)) = p. Let K (o),
G(K(«)) denote respectively the residue field and the value group of the valuation

obtained by restricting Vo to K(«). Then the following hold:
(1) For any polynomial g(x) belonging to K[z] with f—expansio Zgz(x)f(x)z,

deg gi(x) < m, one has wa,s(g(z)) = min {Vo(gi(a)) +ip}.

(13) If c(x) belonging to K|x] is a non-zero polynomial of degree less than m, then
the W, s-residue of c(x)/c(a) equals 1.

(1ii) Let e be the smallest positive integer such that ey € G(K(«)) and h(z) be-
longing to K|z] be a polynomial of degree less than m with Vo(h()) = ep. Then

the wq s-residue z of f(x)¢/h(x) is transcendental over K (o) and the residue field

of was 1s K(a)(z).

30n dividing by successive powers of f(z), every polynomial g(x) € K|x] can be uniquely

written as a finite sum ), gi(x) f(x)* with deg(g;(z)) < deg(f(z)), called the f-expansion of
9(@).
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Using the canonical homomorphism from the valuation ring Ry of Vj onto its
residue field Ry/My, as usual one can lift any monic polynomial 2™ + @, 12"~ +
-+ + @y with coefficients in Ry/Mj to yield a monic polynomial 2" + a,_ 12"~ +
-+ ag over Ry. In 1995, Popescu and Zaharescu [Po-Zal extended this notion

using (K, Vp)-minimal pairs as follows:

Definition 1.1.H. For a (K, Vj)-minimal pair («,d), let f(z), m, u,e and h(x) be
as in Theorem 1.1.G. A monic polynomial F(z) belonging to K{z| is said to be
a lifting of a monic polynomial T'(y) in an indeterminate y belonging to K (a)[y]
having degree t > 1 with respect to («,d) if the following three conditions are

satisfied:
(1) deg F'(z) = etm,
(1) Wa,s(F(2)) = was(h()") = etp,
(

iii) the w,sresidue of F(x)/h(x)" is T(z), where z is the w, s-residue of
Py ().
To be more precise, this lifting will be referred to as the one with respect to (a, J)
and h(z). Keeping in mind that the valuation w, s is uniquely determined by f(z)
and pt = was(f(z)) in view of Theorem 1.1.G(7), sometimes we avoid referring to
the minimal pair (a, §) and say that the above lifting is with respect to f(z), 4 and
h(z) or more briefly with respect to f(x), 1. It may be pointed out that this notion
of lifting extends the usual one because a usual lifting of a polynomial belonging to
K[x] is its lifting with respect to the minimal pair (0,0) € K x Gy with h(z) =

In 1936, Maclane [Mad| introduced the notion of key polynomials (defined be-
low) in order to construct residually transcendental prolongations.
Definition 1.1.1. Let W be a Krull valuation of K(z). Two polynomials f and g
belonging to K[z] are said to be equivalent in W if W (f — g) > W(f); f is said
to be equivalence divisible by h belonging to K|[z] in W if there exists ¢ € K|x]
such that f is equivalent to gh in W. A monic polynomial ¢ = ¢(z) € K|[z] is
said to be a key polynomial over W if it satisfies the following two conditions: ()
¢ is equivalence irreducible in W, i.e., whenever a product of two polynomials is

equivalence divisible by ¢ in W, then one of the factors is equivalence divisible
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by ¢ in W; (ii) any non-zero polynomial of K[z] equivalence divisible by ¢ in W

has degree in x not less than the degree of ¢(z). A key polynomial ¢(z) over a
W)

of a valued field (K, V) is called

nontrivial if there exists a (K, Vj)-minimal pair (aq,d;) such that W = w,, 5, and

residually transcendental prolongation (K (z),

the minimal polynomial of o over K is not equivalent to ¢(z) in W.

L. Popescu and N. Popescu in [Po-Pol, Theorem 4.6] gave a connection between

key polynomials over any residually transcendental prolongation w,, s, of V, and
liftings of polynomials. They proved that if a monic polynomial ¢(x) € K|[z| has
degree strictly greater than that of the the minimal polynomial of oy over K, then
¢(z) is a key polynomial over w,, s, if and only if ¢(z) is a lifting of an irreducible
polynomial different from y belonging to K (a)[y] with respect to the minimal pair
(av1,07) -
Example 1.1.J. Let ¢(x) € Ry[r] be a monic polynomial with ¢(z) irreducible
over K. We show that ¢(z) is a key polynomial over the Gaussian valuation
Vi defined by (L.1.3). If Vi'(gh — ¢q) > V{(gh) for some polynomials g, h,q €
K[z], then Vi (¢q) = Vi'(gh) = —Vio(ed), where ¢,d € K are such that Vi¥(g) =
—Vole), ViE(h) = =Vo(d); so (cdq) ¢ = (cg) (dh). Since ¢ is irreducible over K, ¢
divides either g or dh, say ¢ divides ¢g. So there exists ¢, (x) € Ry[x] such that ¢g =
#¢, and hence V(g —c1oq) > —Vy(c) = ViF(g) which shows that g is equivalence
divisible by ¢ in V;*. This proves that ¢ is equivalence irreducible in V. To
verify the second property of key polynomials, let g, ¢ € K[z]| be such that V(g —
#q) > VE(g). So there exists ¢; € K such that 0 # (¢1q)¢ = ¢1g. Consequently
deg(g) = deg(c1g) > deg(crg) > deg(¢) = deg(¢). This completes the verification
that ¢ is a key polynomial over V. By definition, this key polynomial is nontrivial
if ¢(z) # .

Newton polygon is a simple, yet powerful tool in Valuation Theory for studying
irreducible factors of polynomials over valued fields (see [Duml]). The notion of
a Newton polygon originally due to Dumas was extended to ¢-Newton polygon
by Ore in his 1923 thesis. Recall that if Vj is a real valuation of K and ¢(x)
belonging to Ry[z] is a monic polynomial with ¢(z) irreducible over K, then as in

[Kh-Ku3, Definition 1.C], the ¢-Newton polygon (with underlying valuation V;) of
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any polynomial F'(x) € K|z] not divisible by ¢(z) with ¢-expansion ZS: Ai(z)o(x),
As(x) # 0 is the lower convex hull of the points {(j, V(f(AS,j(a:)Z)jl] 0<j<
s, As_j(x) # 0}, where V¥ is the Gaussian prolongation of V{ to K(xz) defined
by (L.1.3). In the next definition, we extend the notion of ¢-Newton polygon
replacing V¥ by a residually transcendental prolongation W of V; and ¢(z) by a
key polynomial over W.
Definition 1.1.K. Let W be a residually transcendental extension of V; to K (x)
and ¢(z) be a key polynomial over W. Let F'(z) belonging to K[z]| be a polynomial
not divisible by ¢(x) with ¢-expansion Y ;_ A;(x)¢(x)", As(x) # 0. Let P; stand
for the pair (i, W(As_;(x)¢p(x)*™") when A, ;(x) # 0,0 < i < s. For distinct pairs
P, P;, let p1;; denote the element of the divisible closure of Gg defined by
_ WA (@)p(2)"7) — W(Ai(x)d(2)"™")
Jj—1

Let 47 denote the largest index 0 < 7; < s such that

poi, = min{ g | 0 < j <5, Ag_j(x) # 0}.
If 71 < s, let 75 be the largest index such that i; < iy < s and

Hivip = mm{ Hiy 5 ‘ i <J< s, AS*J'(x> 7é O}

ij

Proceeding in this way if 7, = s, then the ¢-Newton polygon of F(x) with re-
spect to W is said to have r sides whose slopes are defined to be A\; = pg;,, A2 =
Pirias* > Ar = Hi, i, Which are in strictly increasing order. The interval [i;_1, ;]
will be referred to as the interval of horizontal projection of the j-th side, 1 < 7 <r
with i = 0.

Example. Let V be a henselian discrete valuation of a field K of characteris-
tic zero having value group Z. Let a,b be elements of Ry with Vj(a) > 0 and
Vo(b) = 1. Take V} = w1 corresponding to the minimal pair (0,1) defined by
(1.1.4) and ¢(z) = 2* + ax + b. In view of Theorem 4.6 of [Po-Pd| (stated in the
paragraph following Definition 1.1.1), ¢(x) is a key polynomial over V. Let F(x)
be (¢())? + bad(x) + b*(box + by) with Vo(b;) > i for ¢ = 1,2 and Vp(by) = 0. It
follows that the ¢-Newton polygon of F'(x) with respect to V; consists of a single
side joining the point (0,2) to (2, g) having slope i.

With notations as in 1.1.E, the theorem stated below is the main result of the
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fifth chapter .

Theorem 1.1.10. Let (K, V) be a henselian valued field of arbitrary rank with
value group Gy and residue field K. Let K be a fized algebraic closure of K and
170 be the unique prolongation of Vy to K. Let W be a residually transcendental
extension of Vo to K(x) and ¢(x) be a nontrivial key polynomial of degree m over
W having a root o € K. Let F(z) belonging to K[z] be a monic polynomial not
divisible by ¢(x) with ¢-expansion iAZ(:r)gb(x)Z, As(z) = 1. Suppose that the

=0
¢-Newton polygon of F(x) with respect to W consists of r sides Sy, ..., S, having

positive slopes A1, ..., \.. Then the following hold:

(1) F(x) = Fy(x)--- F.(x), where each F;(z) belonging to Klx| is a monic poly-
nomial of degree ml; whose ¢-Newton polygon with respect to W has a single side
which is a translate of S; and l; is the length of the horizontal projection of S;.
(1) 176, is a root of Fy(x), then T(6(6:)) = W(p(x))+A: = g (s0y) and G(K (@) C
G(K(0;)). Theindex [G(K(0;)) : G(K(«))] is divisible by e;, where e; is the smallest
positive integer such that ey, € G(K(a)). The degree [K(6;) : K] is divisible by
K(a) : F).

(1ii) Fi(z) is a lifting of a monic polynomial T;(y) € m[y] not divisible by y of
degree l;/e; with respect to ¢(x), ;.

() If Uy (y)® - - Ui, (y) % is the factorization of T;(y) into powers of distinct
monic irreducible polynomials over K(a), then Fi(z) factors as Fiy(z)--- Fy ()
over K, each Fj;j(x) is a lifting of U;(y)* with respect to ¢(x), i, with degree
me;a;; deg U;; and 170(¢(9ij)) = ;. If some a;; = 1, then Fj;(x) is irreducible over
K and for any root 0;; of Fj;j(x), the index [G(K(0;;)) : G(K(a))] = e; and the

degree [K (0;;) : K] = deg U;;(y)[K () : K] in this case.

The following result which is already known in the particular case when W is
the Gaussian prolongation Vi (cf. [Jh-Kh4, Theorem 1.5]), has been deduced from
Theorem [LITI0
Corollary 1.1.11. Let (K,Vp),¢(x),m,W and « be as in Theorem |1.1.1(] Let

F(z) belonging to Klx] be a polynomial having ¢-expansion ZAZ(az:)qb(x)z with
i=0
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Ay(z) = 1, Ai(xz) # 0 for some i < s and assume that all the sides in the

¢-Newton polygon of F(x) with respect to W have positive slopes. If 1 1is the
W (Ai(z)p(x)") — W(cb(x)s)} _

s —1

smallest non-negative integer for which min {

0<i<s—1
W(A(2)o(x)) = W(g(x)')  W(A(2))
s—1 o d
number d > 1 dividing s — [, then for any factorization G(x)H (z) of F(x) over K,

min{deg G(z),deg H(x)} < Im.

does not belong to G(K(«)) for any

The above corollary immediately yields Generalized Schonemann Irreducibility
Criterion (cf. [Bro|, [Kh-Kh|) which can be stated as follows.
Theorem 1.1.L(Generalized Schénemann Irreducibility Criterion.) Let Vj
be a Krull valuation of arbitrary rank of a field K with value group Gy, valuation
ring Ry having maximal ideal My. Let ¢p(x) € Ro[x] be a monic polynomial of degree

m with ¢(x) irreducible over Ry/My. Let F(x) belonging to Ry|x] be a polynomial
having ¢(z)-expansion ZA,(x)gzﬁ(x)z with As(x) =1, Ag(x) # 0. Assume that (i)
=0

Vox(ﬁi(x)) > Vox(io(@) >0 for 0 < i < s—1 and (ii) V§(Ao(x)) ¢ dGq for any
number d > 1 dividing s. Then F(z) is irreducible over K.

Theorem together with its applications and several preliminary results
which are of independent interest as well are proved in the paper entitled “On
factorization of polynomials in henselian valued fields” which has been accepted

for publication in Communications in Algebra.
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Chapter 2

Integrally closed simple

extensions of valuation rings

2.1 Motivation of the problem and statements of
the results.

Let R be an integrally closed domain and 6 be an element of an integral domain
containing R with 6 integral over R. The question “when is R[f] integrally closed”
has inspired many mathematicians (cf. |Ch-De|, [Jh-Kh2], [Kh-Kul], [Uch]). It
was answered by K. Uchida when R is a Dedekind domain. He proved that R][f] is
integrally closed if and only if the minimal polynomial F'(x) of 6 over the quotient
field of R does not belong to M? for any maximal ideal M of the polynomial ring
R|z]. This problem is closely related with the existence of a power basis of an
algebraic number field. Recall that a power basis of an algebraic number field K
is a Z-basis of the ring of algebraic integers Ax of K consisting of powers of a
single element; indeed 6 would be such an element if and only if Z[f)] is integrally
closed in its quotient field K. As pointed out on page 3, a prime p does not divide
[Ag : Z[0]] if and only if Z,)[0] is integrally closed where Z, is the localization of
Z at the prime ideal pZ. Dedekind gave a criterion to be satisfied by the minimal
polynomial F'(z) of # over Q so that p 1 [Ak : Z[f]] which can be stated as follows :
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Theorem 2.1.A. Let F(x) be the minimal polynomial of § over Q and p be a
prime number. If F(z) = g(z)¢ --- g,(x)* is the factorization of the polynomial
F(x) obtained by replacing coefficients of F(x) modulo p as a product of powers
of distinct irreducible polynomials over Z/pZ with g;(x) monic, then Z,)[0] is in-
tegrally closed if and only if for each i, 1 < i < t, either e; = 1 or g;(z) { M(x),
where M (x) = %(F(m) - Zﬁl gi(z)e).

As Zy) is the valuation ring of the p-adic valuation of rationals, the above
criterion gives a motivation to investigate the question “When is a simple ring
extension of a valuation ring R, integrally closed ?”. In this chapter, we use a
generalized version of the Dedekind criterion (see Theorem 1.1.A) to give necessary
and sufficient conditions involving a, b, m,n for R,[0] to be integrally closed when
6 is a root of an irreducible trinomial F(z) = 2™ + az™ + b belonging to R,[z]. In
what follows, v, R,,, M, are as in Theorem 1.1.A. For an element o belonging to R,,
a will denote its image under the canonical homomorphism from R, onto R,/M,.
When a polynomial g(x) belongs to R,[z], g(x) will have the same meaning as in
Theorem 1.1.A.

We shall denote by D the discriminant of the trinomial F'(z) = 2™ + ax™ + b.
It is known (cf. [Swal]) that

D = (=1)Epm=1[pr=mipm _ (1) gMp™ (5 — )™, (2.1.1)

n

where dy = ged(m, n), ny = o

my =g In this chapter, we prove

Theorem 2.1.1. Let v be a Krull valuation of arbitrary rank of a field having
valuation ring R,, maximal ideal M, and perfect residue field. Let p denote the
characteristic of the residue field R,/M, in case it is positive. Let 6 be a root of a
monic irreducible trinomial F(x) = 2" +ax™+0b belonging to R,[x] and dy, mq,n1, D
be as above. Assum(ﬂ that v(D) > 0. Then R,[0] is integrally closed if and only

if M, is a principal ideal say generated by m and one of the following conditions is

f v(D) = 0, then F(x) has no repeated factor and hence R, [¢] is integrally closed by Theorem
1.1.A.
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satisfied:

(1) when a,b belong to M, then v(b) = v(m);

(17) when a € M, and b & M, with j > 1 as the highest power of p dividing n, then
either v(ag) > v(m) and v(by) = 0 or v(az) = 0 = v((=b)™a3" — (=by)™), where
ag = %, V' is an element of R, satisfying () =b and by = L(b+ (=b)");

(1ii) when a ¢ M,, b € M, and v(n —m) =0, then v(b) = v(n);

(iv) when a ¢ M,, b € M, and v(n —m) > 0 with | > 1 as the highest power
of p dividing n — m, then either v(a;) > v(mw) and v(by) = 0 or v(a;) = 0 =
o(by M (—a)™ (ar) ™ = (=by)™ ™)), where a; = L(a + (—d)'), by = L, o
belonging to R, satisfies (a')?' = a;

(v) when ab ¢ M, andm € M, withn = s'pF, m = sp¥, p does not divide gcd(s', s),
then the polynomials x° + ax® + b and %[a:ﬁpk + b+ (—d'z® — V)] are coprime
modulo M,, where o/, are in R, satisfying (a')*" = a, ()" =b;

(vi) when abm does not belong to M, then v(C' — E) = v(w), where C = b™~"™n!

and E = (=1)"a™m[" (ng —my)™ ™.

In the special case when the characteristic of the residue field of v is zero, we

obtain the following simple result.

Corollary 2.1.2. Let v, R,, M,,, F(x) and D be as in the above theorem with
v(D) > 0. Assume that the characteristic of R,/M, is zero. Then R,[0] is in-
tegrally closed if and only if M, is a principal ideal say generated by w and either
I) v(b) = v(m) or II) v(ab) = 0, v(C — E) = v(m) holds, where C, E are as in
Theorem [2.1.1{(vi).

Taking v to be the p-adic valuation of rationals, on applying Theorem to
the irreducible polynomial F'(x) = 2" 4+ az™ + b belonging to Z[z]| having a root ¢
and keeping in mind Fermat’s little theorem, we see that Z,[0] is integrally closed
in K = Q(0) if and only if one of the five conditions mentioned in the following
Corollary is satisfied. Using the fact (stated in the opening paragraph of the
chapter) that Z,)[0] is integrally closed if and only if p { [Ax : Z[60]], the corollary
stated below follows at once. This corollary gives the main results of [J-K-S1] and

[1-K-52].
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Corollary 2.1.3. Let K = Q(0) be an algebraic number field with 0 in the ring
Ak of algebraic integers of K having minimal polynomial F(z) = 2" + ax™ + b
over Q, where ged(m,n) = dy with m = mydy, n = nidy. A prime factor p of the
discriminant D of F(x) does not divide [Af : Z[0)] if and only if p satisfies one of
the following conditions:

(i) when p | a and p | b, then p* tb;

(17) when p | a and p does not divide b with j > 1 as the highest power of p dividing
n, then either p | ay and p1 by or p does not divide as[(—b)"™ ay* — (—by)™], where
ar =%, by = b+ (=b)");

(1ii) when p does not divide a and p|b, with | > 0 as the highest power of p dividing
n —m, then either p | a1 and p 1 by or p does not divide a by *[(—a)™a}' ™™ —
(=by)™ =], where ay = la+ (—a)?'] and by = %;

(iv) when p does not divide ab and p|m with n = s'p*, m = sp*, p does not divide
ged(s', s), then the polynomials x* + ax® + b and }%[aﬁpk + b+ (—az® — b)P"] are
coprime modulo p;

(v) when p does not divide abm, then p* does not divide (C — E), where C' =

b—minlt and E = (—1)"a™mi" (ng — myq)™ .

The following corollary is an immediate consequence of the above corollary.
It extends the main result of [Jh-Kh3] which is proved for trinomials of the type
" 4+ ax + b.

Corollary 2.1.4. Let K = Q(0), F(x) and D be as in the above corollary. Then
Ak = Z[0] if and only if each prime p dividing D satisfies one of the conditions
(i) — (v) of Corollary[2.1.5,

As a quick application of assertions (i) and (ii) of Theorem [2.1.1] we obtain

Corollary 2.1.5. Let v, R,, M,, F(x),0 and D be as in Theorem 1.1 with a =
0, R,/M, perfect and v(D) > 0. Let the prime p denote the characteristic of
R,/M, in case it is positive. Then R,[0] is integrally closed if and only if M, is a
principal ideal generated by an element m and either I) v(b) = v(w) or I1) v(b) = 0,
v(b+ (=V)?") = v(n), where j > 1 is the highest power of p dividing n and V' is an
element of R, with (0" = b.
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It is well known that if K, L are algebraic number fields with coprime discrim-
inants, then Ax;, = AgAp (cf. [Narl Theorem 4.26, p. 159]), where Ay, stands
for the ring of algebraic integers of an algebraic number field K. The converse of
this classical result is already known when both K, L are distinct quadratic fields
(cf. [Mar, Chapter 2, Exercise 42]). As an application of Theorem [2.1.1 we have
proved the following theorem which proves the converse when one of K or L is a

quadratic field not contained in the other.

Theorem 2.1.6. Let K be an algebraic number field and L be a quadratic field not
contained in K. Then AxAp = Ak if and only if the discriminants of K and L

are coprime.

In the course of proving the above theorem, we prove the following propositions
which are of independent interest as well. Proposition quickly yields Theorem

5.1 of [Ch-Del; moreover it also proves the converse of the latter.

Proposition 2.1.7. Let R be a Dedekind domain of characteristic different from
2 and by be an element of R such that 2=t € R. Let F(z) = 2> — 2 + 2 be an
irreducible polynomial over R with a root 6. Then R[0] is integrally closed if and

only if boR is not divisible by the square of any maximal ideal of R.

Proposition 2.1.8. Let R be a Dedekind domain and 0 be a root of an irreducible
polynomial F(z) = 2> + b € R[z]. Assume that for each mazimal ideal p of R
containing 2, R/¢ is a perfect field. Then R[0] is integrally closed if and only if
for every mazimal ideal o dividing 4bR either I) b € p\ p* or II) 2 € p, b ¢ o and
b+ () € o\ g?, where b € R is such that (V) = b(mod p).

2.2 Preliminary results

Lemma 2.2.1. Let F(z) = 2" + az™ + b and h(x) = z° + a’z* + b belonging to
R,[x] be monic polynomials of degree n and s' respectively with n = p*s’, m = p*s,

k € N where p is a prime number. Then
F(l’) = h(x)pk +ph($)M1<I> + (—CL/!L'S . b/)pk + (CLISpk I b)
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for some polynomial M;(x) € R,[x].

Proof. We first show that

(2 — h(z))"" = 2" — ph(z)My(z) — (h(z))? (2.2.1)

for some M;(z) € R,[z]. When p is odd, on applying Binomial theorem, (2.2.1])

can be easily seen. When p = 2, write

/

(2% = h(2))* =2 — (h(z))* + Ni(z),

where Ny (z) = (3)2¥ @ D (=h(z))+- -+ (2 )2 (=h(2))* " 4+2h(2)2" = —2h(x) Ny(z)
with Ny(x) € R,[x] and follows.

Since (z* — h(x)) = —a’z® — ¥, on taking p“th power and then using (2.2.1)),
we see that 7" — ph(z)My(z) — (h(x))?" = (—d'z* — V')?" which gives

(h(x))pk _ xs’pk . ph(:p)Ml(:L’) . (—CL/[ES . b/)pk
On subtracting the above equation from h(z?") = 2*7" + o/z**" + I/, we have
(@) — d'z? =1 = h(z)” + ph(z) My (2) + (—d'z® — 1", (2.2.2)

On writing F(z) as (h(z?") — a'z*?" — V') + az®" + b and using (2.2.2) we obtain
the desired equality.

Corollary 2.2.2. Let 2" + ¢ and z° + ¢ be polynomials with c¢,c € R, \ M, and
n = p*s’, k € N where p is a prime number. If gi(z)---gi(x) is the factorization
of z° 4+ ¢ into a product of irreducible polynomials over R, /M, with g;(z) € R,[x],
then

k

w+C—(ng ) + BH(x ) +pT(x ng )+ pBU(z) + (=) +c

for some polynomials H(x),T(z),U(x) € R,[x] and 5 € M,.
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Proof. The corollary follows on applying Lemma to the polynomials 2" + ¢,
2* 4 ¢ and then substituting g, (x) - - - g,(z) + BH(x) for ¥ + ¢ with 8 € M,,.

Lemma 2.2.3. Let v, R,, M, F(x) and D be as in Theorem without the
hypothesis R, /M, perfect. Suppose that v(D) > 0 and v(abm) = 0. Then there
exists d € R,\M, satisfying a(m — n)d = bn (mod M?). Moreover for any d &
R,\M, satisfying the last congruence, all the repeated roots of F(x) in the algebraic
closure of R,/M, are roots of 2™ — d and any common root of F(x), 2™ —d is a

repeated root of F(x).

Proof. Since v(D) > 0 and v(abm) = 0, it follows from ([2.1.1)) that v(n(n—m)) =
0. Let & be a repeated root of F(x) in the algebraic closure of R,/M,. Then

F)=¢+a"+b=0; F(&)=n"" +ame" " =0. (2.2.3)

—am
On substituting "™ = —— in the first equation of (2.2.3)) and keeping in mind
n
that v(a(n —m)) = 0, we see that

Since a(m — n)bn is a unit of R,, we can choose d € R, \ M, satisfying
a(m —n)d = bn (mod M?). (2.2.5)

It follows from (2.2.4) and (2.2.5) that ¢ is a root of 2™ — d. Conversely if £ is a
root of 2™ — d and of F'(x), then it follows from equations (2.2.3) — (2.2.5) that ¢

is a root of F/(x) and hence the lemma is proved.

Lemma 2.2.4. Let v, R,, M, be as in the above lemma and oy, oo be elements of

R,. Suppose that m,n,mq,ny are positive integers with ged(m,n) = dy, ny = ;—O

and my = 2”—0. Then the polynomials " — &y and x™ — gy are coprime if and only

if o™ # agt, de, v(af" —agyt) = 0.
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Proof. It is enough to prove that the polynomials 2" — &; and 2™ — @y have a
common root in the algebraic closure of R,/M, if and only if ai"* = aj*. The
lemma needs to be proved when both aq, as are units of R,. Suppose first that
" — @ and 2™ — @y have a common root . Then a™ = (£*)™ = (™)™ = ay*
as desired. Conversely suppose that aj"' = a;*. Choose positive integers 7, s such
that sm;—rn; = 1. Let £ be a root of the polynomial 2% — (a;)~"a&;3 in the algebraic
closure of R, /M,. We show that £ is a common root of " —a@; and 2™ —ay. Keeping
in mind & = aj', we have £" = (£0)™ = (a;) "™"ah'® = (ap)™* ™" = @, and

EM = () ™" an™® = (ap)™* ™" = @y as desired.

2.3 Proof of Theorem 2.1.1]

Since v(D) > 0, the polynomial F(z) is divisible by the square of an irreducible
polynomial belonging to (R,/M,)[z]. Hence in view of Theorem 1.1.A, the con-
dition of M, being a principal ideal is necessary for R,[f] to be integrally closed.
Thus for proving Theorem [2.1.1, we may assume that M, is a principal ideal gen-
erated by an element 7.

Consider first the case when a,b belong to M,. Then F(z) = 2™ (mod M,).
Taking ¢g1(z) = 2z and applying Theorem 1.1.A, we see that R,[f] is integrally
closed if and only if z does not divide M(z), where M (z) = 22™ + 2. Thus R,[6]
is integrally closed in this case if and only if (7TT) #0, i.e., v(b) = v(m).

Consider now the case when a € M, and b ¢ M,. As v(D) > 0, it is clear from
that v(n) > 0. So the characteristic p of R, /M, is positive and divides n.
Write n = p/s’,p1s’. Since R,/M, is a perfect field, there exists V' € R, such that

(') = b. Therefore
F(z)=a"+b= (2 + V)" (mod M,). (2.3.1)

Let g (z)--- g,(x) be the factorization of z¥ + b over R,/M,, where g;(x) € R,[z]

are monic polynomials which are distinct and irreducible modulo M,. Applying
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Corollary to the polynomials " + b, * + b', we see that

t

(ng )+ BH(x ) +pT(w)ng-(x>+p6U(:r)+(—b’)Pj+b+axm

(2.3.2)
for some polynomials H(z),T(z),U(x and S € M,. Denote = b+( b/)pj b
poly

t

as, by respectively. In view of (2.3.1)), F(z) = H (). Write F(z) as H gi(z)? +

7M(z), M(z) € R,[z]. Keeping in mind that_ > 1, it is immediate from (2.3.2)
that

N t

M(z) = §>T(x) [Taia) + 5 +-aza. (2.3.3)

In view of Theorem 1.1.A, R,[0] is integrally closed if and only if M(x) is coprime

t _
to [ gi(z), which by virtue of (2.3.3) holds if and only if asxz™ + by is coprime
i=1

¢ ¢ , _ _ -
to [[ gi(z). Recall that [] gi(z)? = 2" +b. Now axax™ + by and 2" + b are
i=1 i=1

copal_ne if and only if cither I) @, = 0 and by # 0 or II) @y # 0 and the polynomials

:Bm—l—l_)—l, 2"+b are coprime. In view of Lemma|2.2.4} 1T) holds if and only if v(as) = 0

and 1?(2(—6)’”1(1’2“ — (=b1)™) = 0. So R,[#] is integrally closed if and only if either

I) v(agy) > v(w) and v(by) = 0 or II) v(az) = 0 and v((—b)" ay* — (—by)™) = 0.
We now deal with the case when a ¢ M,, b € M, and v(n —m) = 0. In

this case keeping in mind that v(D) > 0, it follows from (2.1.1)) that m > 2.

Since v(n —m) = 0, 2" ™ 4 a does not have any repeated root and hence the
only irreducible repeated factor of F(x) = ™(z"™ + a) is #. So we can write
F(z) as x (ng( )+ 7T (x)) + b, where T'(x) € R,[z] and g;(x) € R,[z] are
monic polynomlals which are distinct and irreducible modulo M,. Consequently

the polynomial

t
b
0= [l =T +
is not divisible by  modulo M, if and only if v(b) = v(7). So the result is proved
in this case by virtue of Theorem 1.1.A.
Now consider the case when a ¢ M,, b € M, and v(n —m) > 0. Here the

characteristic p of R,/M, is positive and divides n — m. Let [ > 1 denote the
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highest power of p dividing n — m; write n — m = p's’. Since R,/M, is perfect,
choose @’ € R, such that ()" = a. Let gi(x)---gi(z) be the factorization of
z* +a over R,/M,, where g;(x) € R,[z] are monic polynomials which are distinct
and irreducible modulo M,. Applying Corollary to the polynomials 2" ™ +a,

r* 4 d/, we can write F(z) = 2™(2" ™ 4 a) + b as

t

F(z) =2" (H gi(w) + 5H(I))pl + pT' () Hgl(x) + ppU(x) + (—a')pl +al| +0b,

=1

a+(—a)? b
where 5 € M, and H(z),T(x),U(z) belong to R,[x]. Denote —————, — by
7r

™

_ ¢
ay, by respectively. Since F(z) = 2™ [] gi(z)? and [ > 1, it follows on applying
i=1

t
Theorem 1.1.A that R,[6] is integrally closed if and only if z™~! [] g;(z) is coprime
i=1

- t
to M(z), where M(z) = £(F(z) — 2™ [] gi(z)?"). Tt is clear from (2.3.4) that
i=1

t —
Keeping in mind that [ gi(z)?" = "™ + a, the above equation shows that M (z)
i=1

¢ _

is coprime to ™! [] g;(z) if and only if a;2™ + by is coprime to ™ 1 (2"~™ + a).
i=1 L _

The last statement is true if and only if either I) @, = 0, by # 0 or II) a@; # 0 and

the polynomials ™ + 2—?, ™ Y (2"™™ 4 a) are coprime. Applying Lemma [2.2.4] to

the polynomials 2™ + %, "™ + a, it can be easily seen that II) holds if and only
if v(a;) = 0,v(b5 1) = 0 and v((—a)™a* =™ — (—by)™ ™) = 0,

We now deal with case (v) when ab ¢ M, and m € M,. Keeping in mind
that v(D) > 0, it follows from that v(n) > 0. So the characteristic p of
R,/M, divides both m,n. Write n = s'p*, m = sp* and p t ged(s’,s). Choose
@',V € R, such that (/)?" = @ and (¥')*" = b and denote z* + a’z* + V' by h(x).
Let h(z) = g1(z)% - - - g,(x)% be the factorization of h(z) into a product of powers
of irreducible polynomials over R, /M, with ¢g;(x) € R,[x] monic, d; > 0. Applying
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Lemma to the polynomials F'(z), h(z), we see that
F(z) = h(z)"" + ph(z) M (z) + (az?" +b) + (—a'z® — b)?"

for some M;(x) € R,[x]. Substituting h(x) = g;(z)% - g(x)* + SN(x) with
N(z) € R,[z] and § € M, in the above equation, it follows that there exists
Ni(z) € R,[z] such that

F(x) = Hgi(x)d"pk + BpNi(x) + ph(x) M () + (axspk +b)+ (—d'z® — b')pk.

(2.3.5)

As az?" +b+(—d'z* —V)?" belongs to M,[z] in view of the choice of a’, V', it is clear
¢

from (2.3.5) that F(z) = [] gi(z)%*". Since k > 0, applying Theorem 1.1.A, we
i=1

t —
see that R,[0] is integrally closed if and only if [] g:(z) is coprime to M (z), where
i=1

M(z) = L(F(z) — gi(x)m7" - g, (2)#?"). Keeping in mind the equality h(z) =

t - _ t
[T gi(x)%, it is immediate from ([2.3.5) that M(z) is coprime to h(z) = [] gi(x)%
i=1 i=1

if and only if %[aﬁpk + b+ (—d'z® — V)¥"] is coprime to h(z) modulo M,. Hence
the theorem is proved in the present case.

Finally consider case (vi) when abm ¢ M,. By Lemma[2.2.3] £ is a repeated root
of F(z) if and only if ¢ is a common root of F(x) and 2™ — d where d € R, \ M,
satisfies . Choose positive integers r, s such that m;s — nyr = 1. Also
(ad + b) ¢ M, because (m — n)(ad + b) = bm (mod M?) in view of and

bm & M,. Therefore we can choose ¢ € R, satisfying the congruence
c=d*(—(ad+b))"" (mod M?). (2.3.6)

Claim is that 2% — ¢ = ged(F(z),2™ — d). Since med ¢ M, the polynomials
z% — ¢, 2™ — d have all their roots simple, to prove the claim it is enough to show
that any root of 2% — ¢ is a common root of 2™ — d, F(x) and vice versa. Let ¢ be

a root of % — ¢. Keeping in mind (2.3.6]), we see that
g = i = (&)™ = A (—(ad + B) ™"
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consequently using equation (2.3.11]) of the following lemma, we have
€M = d™s(d)"™" = d. (2.3.7)
So £ is a root of ™ — d. Further again using and (2.3.11]), we see that
g = £ = (o) = d(—(ad + 5) ™" = (~(ad + B)™* ™" = —(ad +b).
Therefore keeping in mind (2.3.7)), we have £ 4+ a¢™ + b = 0 and hence ¢ is a root
of F(z). Conversely let ¢ is a common root of F(z), 2™ —d. Then ™ = d and £" =
—(ad + b); consequently using (2.3.6)), we have £¢% = ¢ms="" = d*(—(ad + b)) " =¢

as desired. Hence the claim is proved.

By division algorithm, write F'(z) = (%)™ + a(x%)™ + b as
F(z) = (z% — c)g(x) + " + ac™ +b (2.3.8)

for some g(z) € R,[z%]. In view of the claim proved above, F(z) = (z% — &)q(x).
Let F(z) = g1 () - - - g¢(2)® be the factorization of F(z) into a product of powers
of distinct irreducible polynomials over R,/M, with each g;(z) € R,[x] monic.
If necessary, after renaming assume that e, > 1 for 1 < ¢ < t; and ¢; = 1 for
t; < i <t. Keeping in mind the claim, Lemma and the fact that 2% — ¢ has
simple roots, it follows that the polynomial % — ¢ is the product of all distinct

monic repeated irreducible factors of F(z). Therefore we can write

—C_ng ) + Biha(z), (w):ng H 9i(x) + B2ha(z)
=1

i=t1+1
for some hy(z), ha(z) € R,[z] and B, B2 € M,. Substituting for 2% — ¢ and ¢(x)
from the above equation in (2.3.8]), we see that
t1
F(z) =] gi(@) + pima(a ng H g:(x) + Baha() [ [ 9i(w)
i=1 i=t1+1 i=1

+ (1 Bohi(x)ha(z) + " + ac™ + b.

t
Denote ¢ + ac™ + b by c¢o. Write F(z) = [] gi(x)® + M (z), M(x) € R,[z]. Tt
=1

is immediate from the above equation that




Applying Theorem 1.1.A4, we see that R,[f] is integrally closed in this case if and

— ¢

only if M(x) is coprime to 1_1[ gi(z), which by virtue of (2.3.9)) holds if and only if
i=1

() # 0. In view of the following Lemma|2.3.1) (£) # 0if and only if C— E & M?2.

Hence in this case, R,[f] is integrally closed if and only if C — E & M2.

Lemma 2.3.1. Let v, R,, M,, F(z),dy, m1,n; and D be as in Theorem with-
out the hypothesis R,/M, perfect. Assume that v(D) > 0 and v(abm) = 0. Let
c,d,r, s be as in the first paragraph of the proof of case (vi). Then ™ +ac™ +b =
0 (mod M?) if and only if C = E (mod M?), where C,E are as in Theorem

Bad(v).

Proof. We first show that
(a(m —n))" (d"™ — (—ad — b)™) = b™dy* (C — E) (mod M?). (2.3.10)

Denote the expression on the left hand side of the above congruence by L, which
we rewrite as (a(m —n)d)™ —a™ (m —n)" "™ (—a(m —n)d — b(m —n))"™. Using

(2.2.5]), we obtain
L= (n)" —a™(m—n)"""(=bm)™ (mod Mg)

Substituting n = n1dy, m = mydy in the right hand side of the above congruence,
(2.3.10)) is proved.

Recall that by virtue of the hypothesis ab(m —n) € M, and D = +b™1d3(C —
E)% belongs to M,. Therefore C' — E € M,. It now follows from that

d™ = (=1)™(ad + b)™. (2.3.11)

Further keeping in mind (2.3.10f), the lemma is proved as soon as we prove that

" +ac™ +b =0 (mod M?) if and only if d"* = (—ad—b)"™ (mod M?). (2.3.12)

Since (m — n)(ad +b) = bm (mod M?) in view of (2.2.5), we have ad + b € M,
and hence we can choose Z € R, such that Z = d™(—(ad +b))™™ (mod M?). By

virtue of (2.3.11)), we have
Z =1 (mod M,). (2.3.13)

31



Thus and hence the lemma is proved once we show that
™ +ac™ +b=0 (mod M?) if and only if Z =1 (mod M?2). (2.3.14)
Recall that by (2.3.6), we have ¢ = d*(—ad — b)™" (mod M2); consequently
™ +ac™ +b=d"(—ad —b)"™" + ad™*(—ad — b)"™" +b (mod M?). (2.3.15)
Using my1s — nyr = 1, the right hand side of the above congruence equals
(d™(—ad — b)"™)*(—ad — b) + ad(d™ (—ad — b)"™)" + b,

which in view of the choice of Z is congruent modulo M? to (—ad—b)Z*+adZ" +b.

So (2.3.15]) can be rewritten as
"M 4 ac™ +b=ad(Z" — Z%) +b(1 — Z%) (mod M?).

Note that s > r, for otherwise 1 = mys — nyr < r(m; —n;) < 0. On arranging the

terms on the right hand side, we rewrite the last congruence as

s—r—1 s—1
adZ" ( Z Zi> +b( ZZ'>
1=0 1=0

Denote the right hand side of the above congruence by (1 — Z)A. It is clear from
this congruence that is proved as soon as we show that A does not belong
to M,. By virtue of (2.3.13), we see that A = (ad(s —r) + bs) (mod M,); so using
(2.2.5)), we have (m—n)A = bdy (mod M,). Since bdy ¢ M,, it follows that A ¢ M,

as desired.

M 4ac™+b=(1-2) (mod M?).

Remark 2.3.2. It may be pointed out that Theorem is true in cases (1), (1i1)
and (vi) without the hypothesis “R,/M, perfect” as this condition is not used in

the proof of these cases.

2.4 Proof of Theorem 2.1.6

Proof of Proposition[2.1.7. As is well known, R[f] is integrally closed if and only

if so is R[] for each maximal ideal p of R, where R,, stands for the localization
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of R at p. If the discriminant by of F'(z) belongs to a maximal ideal p of R, then

R,[0] is integrally closed if and only if by € p \ ¢? in view of Theorem [2.1.1] (vi),

1—bg
4

R, 0] is integrally closed by Theorem 1.1.A in this case. So we conclude that R[¢]

because ¢ . In case by ¢ p, F(x) has no repeated factor modulo g and hence
is integrally closed if and only if by R is not divisible by the square of any maximal

ideal of R.

Proof of Proposition[2.1.8. As pointed out in the proof of the above proposition,
R[0] is integrally closed if and only if so is R[] for any maximal ideal p of R
containing the discriminant —4b of F(z). Using assertion (i) of Theorem [2.1.1]
and Remark [2.3.2] it follows that for a maximal ideal p of R containing b, R,[6] is
integrally closed if and only if b € p\ p?. Further by assertion (i7) of Theorem ,
for a maximal ideal p of R containing 2 and not containing b, R, [f] is integrally
closed if and only if b+ (—=¥')? € o\ p?, where b’ € R is such that (')? = b(mod ).

Hence the proposition is proved.

Proof of Theorem . Let L = Q(\/E), where d is a squarefree integer and
B = %ﬁ or v d according as d = 1 (mod 4) or not. Denote the Dedekind domain
Ak by R. Then AxA; = R[f5]. To prove the theorem, it is enough to prove that
R[5] is integrally closed if and only if the discriminants of K and L are coprime.
The proof is split into two cases. First consider the case when d = 1(mod 4).

Since L € K, the minimal polynomial of 5 = 1+2*/3 over the quotient field K of R

is 22—z + 1%‘1. Applying Proposition , we see that R[f] is integrally closed in

this case if and only if d € p? for any maximal ideal  of R, i.e., R[] is integrally
closed if and only if each prime number dividing d (which is the discriminant of
Q(\/;l) in this case) is unramified in K; this is same as requiring that each prime
dividing the discriminant of L is coprime to the discriminant of K in view of the well
known Dedekind’s theorem which states that a prime p is ramified in an algebraic
number field K if and only if it divides the discriminant of K (cf. [Ded, Corollary
3, p. 158]). Hence the theorem is proved in this case.

Now consider the case when d = 2 or 3 (mod 4), the minimal polynomial of

B = +/d over K is 22 — d. Applying Proposition m R[5] is integrally closed if
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and only if for each maximal ideal g dividing 4dR either I) d € o\ p* or II) 2 € p,
d ¢ pand —d+ (d')* € p\ p? where d’ can be chosen to be d. Note that condition
IT) is vacuous when d = 2 (mod 4). When d = 3 (mod 4), then II) holds if and
only if d(d—1) € g\ p? for every maximal ideal p of R containing 2, which clearly
is true if and only if the prime 2 is unramified in K. Hence R[] is integrally closed
if and only if each prime dividing 4d is unramified in K and the desired result in

the present case follows from Dedekind’s theorem quoted above.

34



Chapter 3

Discriminant as a product of local

discriminants

3.1 Origin of problem and statements of results.

Discriminant of an extension of algebraic number fields is an important tool for
studying such extensions. One of the basic properties of discriminant is that it
can be expressed as a product of local discriminants (cf. [Ca-Fr, Proposition 5,
Chapter I]). There is a similar property for discrete valuation rings. Let R be a
discrete valuation ring with maximal ideal p and S be the integral closure of R in
a finite separable extension L of K. For a maximal ideal 8 of .S, let }?p, S”m denote
respectively the valuation rings of the completions of K, L with respect to p,*. The

discriminant satisfies disc(S/R)R, = ] disc(Sy/R,). In this chapter, we extend
PBlp
the above equality on replacing R by the valuation ring of a Krull valuation of

arbitrary rank and completion by henselization.

In what follows, for a valuation v of a field K, R, will denote its valuation ring
and M, the maximal ideal of R,. (K" v") will denote the henselization of (K,v)
whose valuation ring will be denoted by R". As in Definition 1.1.B, d(S/R,) will
stand for the discriminant of S/R, with S a free R,-module of finite rank. In this

chapter, our main aim is to prove the following theorem.
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Theorem 3.1.1. Let (K,v) be a valued field of arbitrary rank with valuation ring
R, and (K",v") be its henselization having valuation ring R. Let L be a finite
separable extension of K and S be the integral closure of R, in L. Let wy,--- ,ws
be all the prolongations of v to L. Assume that S is a free R,-module. Then

the wvaluation ring Rl of the henselization of (L,w;) is a free RI-module and

A(S/R.)RE = TLd(Rl, /RY).

The above theorem plays a crucial role in extending the well known theorem of
Index of Ore [Kh-Kud] to polynomials with coefficients in arbitrary valued fields (see
[Jh-Kh5|, Lemma 3.2]). While proving Theorem [3.1.1] we prove a generalization of
the weak Approximation Theorem ([En-Pr, Theorem 3.2.7]) which is of independent

interest as well.

3.2 Preliminary Results

The following theorem will be needed in the sequel.

Theorem 3.2.1. Let By, By, - , By be non-comparable valuation rings of a field
K with mazimal ideals My, Mo, -+ My, and R = NE_B;. Then for each tuple
(ay,--- ,ax) belonging to By X- - -x By such that ay, is a unit of B;By, for 1 <i < k—1,
there exists an element ¢ € R such that c —a; € M; for1 <i<k—1 andc—ay €
apM,,.

Proof. Denote R N M, by p;. By Lemma 3.2.6 of [En-Pr], p; is a maximal
ideal of R and B; = R,,. Since B;/M; = R/p;, there exists b; € R such that
a; —b; € M;,1 <1 < k—1. Write a, = Z—’; with 7, € R, sp € R\pr. As pi is a
maximal ideal of R, p; + s R = R, so there exists t;, € R such that sgt+pp = 1 for
some pg € pi. Denote rity by by. Then by = agsity and ar—by, = ap(1—skty) = arps

belongs to ax M. So it is enough to find ¢ € R such that
c—be M;forl1<i<k-—1andc—b, € bM; Ca,M,;. (3.2.1)

Since M; N R are distinct maximal ideals of R, the existence of an element ¢ € R

satisfying (3.2.1]) is proved in view of Chinese Remainder Theorem once we show
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that

MiNR+ (bpMp)NR=Rfor1 <i<k-—1 (3.2.2)

For simplicity of notation, we verify (3.2.2)) for i = 1. Suppose to the contrary it is

false, then

MiNR D (bpMy)NR. (3.2.3)

Define B’ = {%|a € Br,be R\ ./\/ll}. Then B’ is a ring containing B,B;. Let My
denote the maximal ideal of B1B,. As By, By are not comparable, it follows that
B ; B1By. Fix z € M;, \ M. Claim is that i ¢ B.If i € B, then % =2,
where a € By, b € R\ M; which implies that b = byza € My N R C M; N R in
view of . This is a contradiction as b ¢ M; and hence the claim is proved.
Since ay is a unit of B1By by hypothesis and by = ai sty with st a unit of By,
it follows that by is a unit of B1B;. So b;l € B1Bi. By choice z € My \ Myy;

consequently 2! € B;B;. Thus i € BB, C B, which contradicts the claim and

hence ((3.2.2)) is proved.

Remark 3.2.A. It may be pointed out that the above theorem yields the weak

Approximation Theorem ([En-Prl Theorem 3.2.7]) because if (aq,--- ,a) is any
tuple belonging to By X --- X By, then applying Theorem to the tuples
(al,'-- ,ak,l,l) S Bl X - X Bk and (CLk,l,"' ,1) € Bk X Bl X - X kal, we

see that there exist ¢, € R such that c—a; e M; for 1 <i<k—1,c—1¢€ M,
and ¢ —ap, € My, —1 € M, for 1 <i <k —1; consequently ¢’ — a; € M; for
1<i<k.

We now deduce the following corollary (to be used in the proof of Theorem [3.2.3))
from Theorem [B3.2.1]

Corollary 3.2.2. Let (K,v),L and S be as in Theorem without the assump-
tion that L/K is separable. If w; is a prolongation of v to L with value group G,
which has a smallest positive element ., then there exists an element ¢ € S such

that w;(c) = p.
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Proof. Let wy,--- ,ws be all the prolongations of v to L. Let R,, denote the
valuation ring of w; for 1 < i < s. Let 7; be an element of K such that w;(r;) is the
smallest positive element of G,,. Note that 7; is a unit of Ry, Ry, 1 <1 < 5,1 # j,
because otherwise 7; belongs to the maximal ideal M;; of Ry, Ry, which implies
that the maximal ideal of R, generated by ; is contained in M;;; this in turn
implies that R,, R, is contained in R,;, which is impossible as the rings R,,
and R, are not comparable for ¢ # j. Applying Theorem to the valuation
rings Ry, -, Ry,, taking a; = 1 for 1 < i < 5,0 # j and a; = 7;, we see that
there exists ¢ belonging to N{_, R,,, = S such that w;(c — 7;) > w;(w;) and hence
wj(c) = w;(;).

The following lemma is an immediate consequence of Theorems 18.2,18.6 of
[End]. For the sake of completeness we prove it here using the notion of initial
index defined below.

Definition 3.2.B. If H is a subgroup of finite index of a abelian group G, then
the initial index of H in G which will be denoted by £(G : H) is defined to be the
cardinality of the set

Ecn ={c€ G|0 <e < ¢ for all positive 6 € H}.

Clearly distinct elements of Eq g lie in different cosets of H in G; consequently
E(G:H)<I|G:H].

Lemma 3.2.C. Let (K,v),Rf},L, S, wy, -, ws and RZ,Z_ be as in Theorem m
If S is a free R,-module, then szi is a free RM-module for 1 <i <s.

Proof. Write L = K(0) where 6 is an element of S and F(z) € R,[z] is the
minimal polynomial of § over K. Let f[ Gi(z) be the factorization of F'(z) into
a product of distinct monic irreduciblelzf;(:tors over the henselization (K", v") of
(K,v). Let 0; be a root of G;(z). Let w; denote the prolongation of v to K(0)

defined by

wl(z &j(gj) = 1~}h(z ajef), Q4 € K, (324)
J J
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o" being unique prolongation of v" to algebraic closure of K. Then in view of
Theorem 1.1.D, wy, - - - , w; are all the distinct prolongations of v to K (6). Let e, f;
denote the index of ramification and the residual degree respectively of w;/v and
Gy, Gy, the value groups of v, w;. Since S is a free R,-module, in view of Theorems
18.2, 18.6 of [End], e;fi = [K"(#;) : K"] and the initial index (G, : G,) =
Gw, : G| = €; for 1 < i < s. Note that by virtue of , K"#;) is Kh-
isomorphic (as a valued field) to the henselization of K(#) with respect to w;.
Hence R} is a free RI'-module of rank e; f; by [End, Theorem 18.6].

Using the above lemma and Corollary [3.2.2], we shall prove the following theorem

which is needed for proving Theorem [3.1.1}

Theorem 3.2.3. Let (K,v), R L, S,wy, -+ ,w, and Rfjji be as in Theorem .
Assume that S is a free R,-module. Then one can choose a suitable Rfj—basz’s B;CS
of R}, such that (i) Ui_,B; is an R,-basis of S; (ii) for every By; € B; and for each
k # i, wi(Byj) > v(a) > 0 for some a in K.

Proof. Let ¢, fi,G,, Gy, and the initial index £(G,, : G,) be as in the proof
of Lemma 3.2.C. Let M,,, denote the maximal ideal of the valuation ring R,, of
w;. Set m; = SN M,,. Then my,--- ,m, are distinct maximal ideals of S. Let
i + My, -, i, + My, be a basis of R,/ M,, over R,/M,. Fix one pair (i, j).
By weak Approximation Theorem, there exists o}; € L such that w;(a; —aj;) > 0

and wg(aj;) > 0 for k # i. Then aj; € 5. Since m; + [] m* = S5, on

j
k=1,k#i
applying Chinese Remainder Theorem we see that there exists 3;; € S satisfying

oz;j — Bij € m; and f3;; € k];[ m;*. Thus there exists a € K such that
T

wy(Bij) > v(a) > 0 for k # . (3.2.5)

If G, has a smallest positive element j;, then by Corollary [3.2.2 we can choose
m; € S such that w;(m;) = p;. In case G, does not have a smallest positive element,
then by [End, Theorem 18.3] £(G,, : G,) = 1; consequently G,,, = G, by virtue
of the hypothesis that S is a free R,-module and Theorem 18.6 of [End]. In this
situation we take m; = 1. It will be shown that B; = {ﬂiﬂrf 11 <j<fi,1<k<
e; — 1} is an R}-basis of R}, and U;_,B; is an R,-basis of S.
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ei—1 fi
Denote the R,-submodule Y > R,8;;7F of S by N;. We first show that

k=0 j=1

S=> Ni+M,S. (3.2.6)
i=1

In view of Nakayama’s Lemma and the hypothesis that S is a free R,-module of
finite rank, the above equation will imply that S = zs: N; and hence U;_, B; would
be an R,-basis of S. Applying the above result Wzlall R,, S replaced by R, RZZ,
respectively and keeping in mind that Ri‘vi is a free R"-module by Lemma 3.2.C,

we shall conclude that B; is an RI-basis of R .
To verify , let £ be any element of S. We show that for each i, 1 <i <'s,

there exists & € N; such that
w;(§ — &) > v(a;) >0 (3.2.7)

for some a; € K. In view of (3.2.5) and the fact that m; € S, we have for every
n € N; and | # i, wi(n) > v(a) > 0 for some a € K. So (3.2.7) will imply that

foreach I, 1 <1 <s, w (& — > &) > v(b) > 0 for some b € K, which shows that
i=1

(S ZS: &) € S and consequently & belongs to the right hand side of (3.2.6]). Thus
3.2.6:\71\7111 be proved and hence the theorem.

It only remains to verify . For simplicity of notation, we verify it for
i = 1. Since 11 + My, -+, b1y + My, form a basis of R, /M,, over R,/M,,

there exist a;; € R, such that

f1
£= ayfy (mod My,). (3.2.8)
j=1
We distinguish two cases. Consider first the case when G,,, = G,. In this case
f1
My, = M,R,,. On taking & = > ay;5;, it now follows from (3.2.8) that £ —
j=1

& € MyR,, and hence (3.2.7) is verified in this case. Consider now the case
when [Gy, : Gy] = e > 1. Then £(G,, : G,) = [Gy, : G,] > 1 and hence by

Theorem 18.3 of [End|, G,, has a smallest positive element which we denote by

1 f1
wi(m),m € S. In this case, (3.2.8)) implies that — (f -> a1j51j> belongs to
bt j=1

R, . So there exist by; € R, such that
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f1
=2 aby g
=1 = Zbljﬁu (TTLOd 7T1) in Rw1-

™
1 =1

Thus we obtain

f1 fi
f = Z aljﬂlj + Zbljﬁljﬂ'l (mod W%)
i=1 g=1
Repeating the above process e;-times, we see that

fi fi f1
5 = Zaljﬂlj + Z bljﬁljﬂ'l + -+ Zuljﬁljﬂ—flil (mOd ﬂ-fl)

in R,,. Denote the right hand side of the above congruence by &. Since 0 <
wy(77') € Gy, the above congruence implies that £ — & € M, R,, and hence
is verified. This completes the proof of the theorem.
The following remarks will be used in the next section.

Remark 3.2.D. Let R be an integral domain and A be a commutative ring which
is a free R-module of finite rank. If A : A —— A’ is an isomorphism of R-modules
as well as of rings from A onto A’, then clearly for any a € A, Tra/r(a) =
Trar(A(a)), where T'r stands for the trace map as introduced in Definition 1.1.B.
Remark 3.2.E. Let R be an integral domain and A;, A be commutative rings with
identity which are free as R-modules with basis {Bi1, -+, Bin, }, {B21, " , Bany }
respectively. Consider the R-basis {(B11,0),- -, (Bin,,0), (0, Ba1),- -, (0, Bay,)}
of Ay x As. With notation as in Definition 1.1.B, it can be easily verified that

D, scasr((B11,0), -+, (0, Bapy)) = Dy yr(Bui, -+, Bing ) Dagr(Bar, -+, Bon,)

3.3 Proof of Theorem [3.1.1l

The proof of the theorem is divided into three steps.
Step I. Let B; be as in Theorem [3.2.3 “ We take S C R,, C R . Denote the
elements of B; by {B;;|1 < j < n;}. Let B;; denote the element of H R! whose i-

th co-ordinate is B;; and rest all co-ordinates are zero. By elementary ring theory,
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the family B = {B;; | 1 < i < s,1 < j < n;} is an R)-basis of [[ R, . Let

=1

— S
C'i; denote the element of H R! whose each co-ordinate is B;;. Claim is that

C={Cy|1<i<s1<j<mn}isan R'-basis of HRh . Keeping in mind
=1

that the elements B;; satisfy property (i) of Theorem m, it can be easily seen

that the transition matrix 7" from B to C (both sets arranged in lexicographic order

with respect to the subscripts 4, j) is congruent to the identity matrix modulo the

maximal ideal of R". So T is unimodular and the claim is proved.

Step I1. Consider the mapping
Rl x S — ] Rh,

(r,a) — (ra,--- ,ra),r € R" a € S.

This R,-bilinear map gives rise to a homomorphism

A: Ry &g, S — [ R
i=1
which is a homomorphism of rings as well as of RP-modules. Clearly A maps
(1 ® Byj) to Cy; and hence maps the R'-basis {1® B;; | 1 <i < 5,1 < j < ny;}
of R @, S = S (say) onto C. Since C is R'-basis of H R in view of the claim

=1

proved in Step I, it follows that A is an isomorphism of S* with H Rh

Step III. Arrange the elements {B;; | 1 < i < 5,1 < j < nz} in lexicographic
order and label these as {f, -, 3,}. By Definition 1.1.B, we have d(S/R,) =
Dg/g,(B1,- -+, Bn)Ry. It can be easily seen that

Ds/r, (81, Bn) = Donypp(1® By, ,1® By). (3.3.1)

Since A maps the R'-basis {1®3; | 1 <i < n} of S" onto C, it follows from Remark

3.2.D that the right hand side of (3.3.1)) equals D i R, /R (Ci1, ,Cipy, Copy oo+, Clpl).

i=1

Since both C and B are R'-basis of [] R . it is now immediate from (3.3.1)) that
i=1

DS/Ru(ﬁla"' aﬂn) = U2D1§[ Rgi/Rq’}(EH’“. 7§1n17"' aEsns)a (3'3'2)

i=1
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where u is a unit of R. Keeping in mind Remark 3.2.E, we see that

lil Rh /Rh(Ella"' 7§1n17§217"' 7§sns) = HDRLLJZ/RLL(BZD 7Bml)
=1 Y =1

The theorem now follows from (3.3.2)).
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Chapter 4

On the compositum of integral

closures of valuation rings

4.1 Motivation of the problem and statements of
the results.

As before, Ax will denote the ring of its algebraic integers of an algebraic number
field K. It is well known that if K, Ky are algebraic number fields with coprime
discriminants, then the composite ring Ay, Ak, is integrally closed and K, K, are
linearly disjoint over the field @ of rational numbers (cf. [Nar, Theorem 4.26],
[Es-Mul, Exercise 4.5.12]). This gives rise to the following natural question :

If Ky, Ky are algebraic number fields linearly disjoint over Q for which Ak, Ak,
1s integrally closed, then is it true that the discriminants of K1 and Ky are coprime?

We proved in Theorem that the answer to the above question is in the
affirmative when one of K; or K, is a quadratic field. In the present chapter, we
prove that the answer to the above question is always “yes”. Indeed we prove the

following more general result.

Theorem 4.1.1. Let (K, v) be a valued field of arbitrary rank with perfect residue

field and K1, Ky be finite separable extensions of K which are linearly disjoint over
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K. Let S1,55 denote the integral closures of the valuation ring R, of v in K1, K»
respectively. If S1, Sy are free R,-modules and S1Sy is integrally closed, then the
discriminant of one of S1/R, or Sa/R, is the unit ideal.

The following corollary will be quickly deduced from the above theorem.

Corollary 4.1.2. Let Ky, Ky be algebraic number fields which are linearly disjoint
over K = K1 N Ky such that Ak, ik, = Ak, Ak,. Then the relative discriminants of
the extensions K1 /K and Ko/ K are coprime.

For proving Theorem [4.1.1], we shall prove the following theorem as a prelimi-

nary result. It is of independent interest as well.

Theorem 4.1.3. Let (K,v), Ky, K3, 51,2 be as in Theorem without the as-
sumption that the residue field of v is perfect. Assume that Syi,S, are free R,-
modules and S1Ss is integrally closed. If r,s,t denote respectively the number of

prolongations of v to Ky, Ky and K1K,, thent = rs.

4.2 Preliminary results

As in Chapter 3, for a valued field (K,v), (K", v") will denote its henselization
whose valuation ring will be denoted by R and d(S/R,) will stand for the discrim-
inant of S/R, with S a free R,-module of finite rank.

The proof of the following lemma is contained in the proof of Theorem |3.1.1]
We omit its proof.
Lemma 4.2.A. Let (K,v) be a valued field of arbitrary rank with valuation ring
R, and (K", v") be its henselization having valuation ring R. Let L be a finite
separable extension of K and S be the integral closure of R, in L. Let wy,--- ,wy
be all the prolongations of v to L. Assume that S is a free R,-module. Then the
R,-bilinear map from R x S into H:i:l RZ,Z_ mapping (a,«) to (aa, aq, -+ ,ax) for
a € R a € S, gives rise to an R'-module isomorphism A from RM @p, S onto
f[l Rl

We prove a simple lemma needed for the proof of Theorem [4.1.3]
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Lemma 4.2.B. Let (K,v) be a valued field and Ky, Ky be finite separable exten-
sions of K which are linearly disjoint over K. Let vy,vy be prolongations of v to
K1, Ky respectively. Then there exists a prolongation v' of v to K1Ky such that v’

coincides with v; on K; fori=1,2.

Proof. Let w denote the unique prolongation of v" to an algebraic closure
of K". By Theorem 1.1.D, there exists a K-isomorphism o, of K; into €2 such that
the valuation v; is defined on K; by v;(a;) = w(oi(ay)),; € K;,i = 1,2. Since
Ky, K5 are linearly disjoint over K, there exists a K-isomorphism ¢ of K; K into

Q) such that o |k,= 0;. So v = w oo is a prolongation of v extending both vy, vs.

Using the above results, we now prove Theorem [4.1.3

Proof of Theorem[§.1.5 Let {wy; |1 <i <7} {wy |1 <) <s}{wp|1<k<t}
denote all the prolongations of v to Ky, Ky, K1K> respectively. It will be assumed
that the henselizations under consideration are contained in a fixed algebraic clo-
sure of K". The degrees of the extensions Kq’;u /K", Kfj}% /K" will be denoted by
n1;, g, respectively and the degree of the henselization of KK, with respect to
wy, over K" will be denoted by my,. Fix a pair (i,7), 1 <i <r,1<j <s. Let wy
be a valuation of KK, extending the valuations wy;, wy; of Ky, Ky respectively;
such a prolongation exists in view of Lemma 4.2.B. Consider the RI-bilinear map
from R} =~ x R?UQJ_ to R defined by (£,n) — &n which gives rise to an Rl-module
homomorphism ®;; : R L @R Ri‘uzj — Rq’j}k. We first prove that ®;; is one-one. By
Theorem m, there exists an Rl-basis B; = {§ | 1 <1< ny;} of R contained in
an R,-basis of S;. Similarly choose an Rl-basis C; = {n,, | 1 < m < ng;} of RZJ%,
contained in an R,-basis of Sy. Let ay,, € R be such that (I)ij(Zl,m A (§RNm)) =
Zl,m apm&mm = 0. We have to prove that a;,, = 0 for each I,m. Let S denote the
integral closure of R, in K;Ks. Since S1.5; is integrally closed, we have S = 515;.
If A denotes the R"-module isomorphism as in Theorem from R ®@g, S onto
[1,_, R.., then

A(Z Ay, & flnm) = (Z almflnrm Z almglnma ) Z almflnm) = (Oa 07 e 70)
lm lm I,m I,m
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Since A is one-one, we see that
> i @ & = 0. (4.2.1)
l,m

As K, K, are linearly disjoint over K, it follows from the choice of B;,C; that
{&nm | 1 <1< ny;, 1 <m < ny,} is contained in an R,-basis of S15, = S. Thus
{1®@&nm | 1 <1< ny,1<m < ny}is contained in an RI-basis of R ®z, S. It
now follows from that ay, = 0 for all [, m. So ®;; is one-one. Consequently

taking into consideration the ranks of the domain and range of ®;;, it follows that
n1iNaj S mg. (422)

Since the composite field K} K}, being a finite extension of K™ is henselian, we
see that
my < [K) K)o K" < nyng;. (4.2.3)

wiqT W2

Comparing (4.2.2)) and (4.2.3), we have

my, = [K! K" 0 K" = nyng;. (4.2.4)

wi; " W2y

The above equation implies that ¢ = rs keeping in mind Theorem 1.1.D and the

fact that

D mp =K1Ky K] = K : K|[Ky: K] = (Z nu)(z Ny ).

Remark 4.2.C. It may be pointed out that in view of equation 1’ Kfjli and

K{}&j are linearly disjoint over K" for 1 <i<r,1<j <s.

4.3 Proof of Theorem and Corollary 4.1.2|

In the proof of the theorem, we shall use the following notation.

If \; : M; — N; is a homomorphism of R-modules for ¢ = 1,2 with R a
commutative ring with identity, then as usual A\ ® A\g : M} ® My — N1 ® Ny will
denote the R-module homomorphism satisfying Ay @Az (m;®@ma) = A1 (mq)®@A2(ms)
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for all m; € My, mqy € M.

If \; : M; — N; is a mapping of sets for 1 < i < ¢, then []'_, A; will stand
for the map from [[_, M; into [['_, N; defined by ([T, \i)(my, ma,--- ,my) =
(A1(ma), Aa(ma), -+, Ae(my)), my € M,.

The proof of the theorem is divided into three steps.

Step I. In this step, we prove the theorem assuming that (K, v) is henselian. Keep-
ing in mind this assumption, the hypothesis R, /M, perfect and S; a free R,-module
together with Theorem 18.6 of [End], it follows from Theorem 1.2 of [Kh-Kul] that
S; is a simple ring extension of R, for i = 1,2, say S; = R,[a1],S2 = R,[fa].
Let Fi(z), F5(z) denote the minimal polynomials of «y, 3y respectively over K.
For g(z) € R,[z], g(z) has the same meaning as in Theorem 1.1.A. Suppose that
d(S1/R,) is not the unit ideal of R,, i.e., the discriminant of Fi(z) is not a unit
of R,. We have to prove that the discriminant of Fy(z) is a unit of R,. Since
(K, v) is henselian, there exists a monic polynomial ¢;(x) belonging to R,[z] with
g1(z) irreducible over R, /M, such that F(x) = g,(z)°*. Note that e; > 1, because
otherwise the polynomial F';(x) would be irreducible over the perfect field R, /M,
and hence its discriminant would be nonzero contrary to our supposition. There-
fore keeping in mind that S; = R,[aq] is integrally closed, it follows from Theorem
1.1.A that the value group G, of v has a smallest positive element say v(w), 7 € K
and

Fi(z) = gi(2)" + 7My(x),  gi(z) { Mi(z). (4.3.1)
Let w; with valuation ring S; denote the unique prolongation of the henselian
valuation v to K. Claim is that the value group G,, of w; has a smallest positive
element which is strictly less than v(w). If G, does not have a smallest positive
clement, then by [End, Theorem 18.3] the initial indeq] £(G., : G,) would be 1
and hence G, = G, by virtue of the hypothesis that S is a free R,-module and
Theorem 18.6 of [End]; this is not possible as GG, has a smallest positive element. So
G, has a smallest positive element say w;(m ), ™ € K;. Recall that Fi(a;) = 0;

therefore it follows from (4.3.1)) that wi(g1(ay)) = %r) 4+ w@he)) Ag e, > 1, the

€1

1Recall that in Definition 3.2.B, the initial index £(G., : G,) is defined to be the cardinality
of the set {e € G, | 0 < € < § for all positive § € G, }.
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claim follows from the last equation as soon as we show that wy(M;(«y)) = 0. If
wy(My(ay)) > 0, ie., My(@;) = 0, then the minimal polynomial g;(z) of &; over
R,/M, would divide M (z) which contradicts . So w1 (M;i(ay)) = 0 and the
claim is proved.

Arguing as for (4.3.1), we can write
Fy(z) = go(2)® + mMa(2), (4.3.2)

where go(z) belongs to R, [x] with ga(x) irreducible over R, /M,, e > 1 and Ms(x)
belongs to R,[z]|. Observe that go(z) is irreducible over the residue field of wy, for
otherwise in view of Hensel’s Lemma, F5(x) would be reducible over the valuation
ring S; of w; which is not so as the degree [K(f) : K] = [Ki(B2) : Ki] by
virtue of K, K5 being linearly disjoint over K. Therefore on rewriting as
Fy(x) = ga(2)® + m No(x) where Na(x) = Z-Ma(x) and keeping in mind the claim
proved above together with the fact that S;[32] = 5152 is integrally closed, it follows
from Theorem 1.1.A that ey = 1; consequently discr(Fy(z)) = discr(ga(z)) # 0.
Hence d(S2/R,) (which is the ideal generated by discriminant of Fy(z)) is the unit
ideal. This proves the theorem when (/K v) is henselian.

Step II. In this step, we prove that the composite ring R" MRZJ% is integrally closed
for 1 <i<r1<j<s. Let S denote the integral closure of R, in K;K5. As 5155
is integrally closed, we have S = S;S,. By Lemma 4.2.A, there exist R-module
(onto) isomorphisms

s S i
Ay : Rh'®g, S, — HRh . Ay : R'®p, Sy — HRh . A:R'®p S — HRZk

w1’ w2
i=1 j=1 k=1

such that for a € R, a € S1,3 € Sy and v € S, we have
Al(a®a) = (CLO(,CLO{, T ,CLO./); AQ(G®B) = (aﬁvaﬁa' o aa'ﬁ); A(CL@’}/) = (a’%a’%' o ,CL’}/).

The R,-bilinear map from S; x Sy into S defined by (o, 8) — af8 gives rise to
a homomorphism V¥ : S} ®g, So — S. Note that ¥ is one-one and onto because
for an R,-basis {a; | 1 <i <mny} of S; and an R,-basis {#; | 1 < j < ng} of Sy, the
set {U(o,; ®6;) | 1<i<mny,1<j<ny}isan R,-basis of S1.5; =S in view of the
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hypothesis K, K> linearly disjoint over K. Consequently we have an R-module
isomorphism A o (Id ® ¥) of R ®p, (S ®gr, S2) onto [[_, Rl . Also there is a
natural isomorphism from R ®@p, S ®p, S» onto (R} ®@g, S1) Qgn (R} @, Ss)
mapping a ® (o ® §) to (a ® a) ® (1 ® ). Composing it with A; ® Ay and
identifying [T,_, Rl . @y [1}2, RY,, with [Ti_, TT5_, (R, @y RY,.), we obtain an
isomorphism ®(say) from R ®pg, (51 ®g, S2) with [];_, szl( N Qrn Rl ,;) which
maps a ® (a® ) to (aa ® B,aa ® 5, ,aa ® (). For a fixed pair (i,j),1 <1i <
r,1 < j < s, in view of Lemma 4.2.B and Theorem [£.1.3] there exists a unique
valuation wy, of KK, which extends both wy;, wa;. Let ®;; : RZM ® RZQJ, — Rﬁ,k
be the homomorphism as in the proof of Theorem . Now (sz P;;) o ® gives a
homomorphism from R ®p, (S; ®@g, Ss) into f[ Rﬁjk which clearly agrees with the
(onto) isomorphism Ao (Id ® ¥). So ([, ; (IDZ»];)ZIO ® is also an (onto) isomorphism.
Since ® is one-one and onto, we conclude that []; ; ®i; is onto and hence so is each
®;;. Consequently R, Ri = ®;;(Rl, @R}, ) is the valuation ring R}, and hence
is integrally closed.

Step III. In this step, we show that at least one of d(S1/R,), d(S2/R,) is the unit
ideal of R,. Assume that d(S;/R,) is not the unit ideal of R,, then it is contained
in the maximal ideal M, of R,. By Theorem |3.1.1, we have

d(Sy/R,)R! = Hd /RN,

So d(R!, /Rl) is contained in the maximal ideal M of R" for some i and hence
d(R% /R&) is not the unit ideal of R}. Keeping in mind that K and K{;Qj are
linearly disjoint over K" in view of Remark 4.2.C and that the composite ring
RZMRZQJ, is integrally closed by Step II, it now follows from Step I (applied to
Kp . and K7 ) that d(R}, /R}) is unit ideal of R} for each j, 1 < j < s. As
d(Ss/R,)R) = [I;_, d(R}, /RY) by Theorem we see that d(Sy/R,) is the
unit ideal of R,. This completes the proof of the theorem. ([l

Proof of Corollary[{.1.9 Fix a maximal ideal p of Ax. We shall prove that if
p divides the relative discriminant D(K;/K) of K;/K, then p does not divide
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D(K,/K). Let v denote the valuation of K corresponding to p defined for any
a € Ak to be the highest power of p dividing the ideal aAgx. Let Sy, S, S denote
the integral closures of the valuation ring R, of v in K;, Ky, K1 K5 respectively.
Keeping in view the hypothesis Ak, x, = Ak, Ak, and the fact that R, is the
localization of Ak at p, it can be easily seen that S = 515 and hence 515
is integrally closed. So in view of Theorem [4.1.1 d(Si/R,) and d(S:/R,) are
coprime. Thus when the prime ideal p of Ax divides the relative discriminant
D(K,/K) which is the same as saying that the maximal ideal pR, of R, divides
d(S1/R,), then pR, will not divide d(Ss/R,) and hence p will not divide D(Ky/K)

as desired.
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Chapter 5

On factorization of polynomials in

henselian valued fields

5.1 History of the problem and statements of the
results.

Let K = Q(#) be an algebraic number field with € in the ring A of algebraic in-
tegers of K and F(x) be the minimal polynomial of 6 over Q. Hensel’s lemma
is a useful tool to give information about the factors of polynomials with in-
tegral coefficients over the ring Z, of p-adic integers. With F(z) as above, if
F(z) = ¢1(x) -+ - ()" (mod p) where ¢;(z) belonging to Z[x] are monic poly-
nomials which are distinct as well as irreducible modulo p, then by Hensel’s lemma,
F(z) = Fy(z) - - - F.(x) where F;(x) belonging to Z,[x] is congruent to ¢;(x)"* mod-
ulo p. If p divides the index [Ak : Z[#]], then these polynomials F;(z) need not be
irreducible over Z,. Ore described a method to determine a further factorization
of Fj(x) over Z, using ¢;-Newton polygon of F;(z) (as defined in the paragraph
preceding Definition 1.1.K). For simplicity of notation, fix one i; denote ¢;(z) by
¢(z), its degree by m and F;(z) by g(x). Ore proved that if the ¢-Newton polygon
of g(x) has k sides Sy, - -+, Sk, then g(z) = g1(x) - - - gr(x) where each g;(x) € Z,|x]

is a monic polynomial whose ¢-Newton polygon consists of a single side which is
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a translate of S; and deg(g;(z)) = ml;, {; being the length of horizontal projec-
tion of the side S;. Corresponding to S;, he associated a polynomial G'g,(y) in an
indeterminate y over the finite field F,, ¢ = p®? to the polynomial g;(x). The
factorization of G's; (y) in Fy[y] leads to a further factorization of g;(x) over Z,. Fi-
nally Ore showed that if each of these polynomials G's;(y),1 < j < k, decomposes
into n; distinct monic irreducible factors over Iy, then all the Zk: n; factors of g(z)
obtained in this way are irreducible over Z, and their product] _elquals g(x).

In 2000, Cohen, Movahhedi and Salinier generalized Ore’s method of factoriza-
tion for polynomials with coefficients in complete discrete valued fields (see [C-M-S,
Theorem 1.5]). In 2012, its scope was extended to complete valued fields of rank
one (cf. [Kh-Ku3, Theorem 1.1]) and later in 2015, the analogues of Ore’s results
were proved for polynomials with coefficients in henselian valued fields of arbitrary
rank (cf. [Jh-Khl, Theorem 1.2]). All these generalizations of Ore’s results for
factorization are proved using ¢-Newton polygons which later came to be known
as Newton polygons of order one. In 2012, Guardia, Montes and Nart |G-M-NJ
introduced the notion of Newton polygons of higher order to extend the method of
factorization of Ore in a different direction in the classical case when the polynomial
Gs,;(y) mentioned above has repeated irreducible factors over F,. In this thesis,
we have extended the notion of Newton polygons of higher order to polynomials
with coefficients in henselian valued fields of arbitrary rank (see Definition 1.1.K).
We use k-th order Newton polygons to give a factorization for such polynomials
for each £ > 1. In fact the factorization for £ = 1 in the classical case corresponds
to the one given by Ore. At the end, we give examples to illustrate our main
results (see Examples [5.4.115.4.3). These examples show that factorization of cer-
tain polynomials into irreducible factors can be obtained more quickly using first,
second or third order Newton polygons with respect to residually transcendental
prolongations than applying the method of factorization of Ore (in the generalized
form) given in [Jh-KhI] (cf. Remark [5.4.4). The main motivation behind this
chapter is [G-M-N]; however our approach is different from [G-M-N] and involves

residually transcendental prolongations of a given valuation Vj of K to a simple
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transcendental extension K (z) of K. For stating the major results of this chapter
we need a few definitions and notations.

Let V4 be a Krull valuation of a field K with value group Gy and g be an
element of a totally ordered abelian group containing Gy as an ordered subgroup.

Then the function V; defined on the polynomial ring K[z]| by

Vl(z cix') = miin{Vo(ci) +ip}

gives a valuation of K(z) (cf. [En-Pil Theorem 2.2.1]) and will be denoted by
Vi = [Vo,Viz = p|. As in [Mad|, [Moy], it will be referred to as a first stage
valuation of K(z). In 1936, MacLane [Mac] described a method by which any
valuation W of K(z) can be augmented to yield another valuation of K(z) by
means of a key polynomial which is already introduced in Definition 1.1.1.

Let ¢(x) be a key polynomial over a valuation W of K(z) having value group
G and p > W (¢p(x)) be an element of a totally ordered abelian group containing G
as an ordered subgroup. Then the function V' defined for any f(z) € K[z] having

¢-expansion§ fi(x)o(x)i with deg(fi(x)) < deg(é(x)) by
V() = min{W (fi(2)) + in}, (5.1.1)

gives a valuation of K (z) (cf. [Mac, Theorem 4.2], [Moy}, p. 103]). The valuation V'
is called the augmented valuation over W associated with ¢, u and will be denoted
by V. = [W,V¢ = p]. With this notation, we now introduce the notion of k-th
stage commensurable inductive valuation.

A k-th stage inductive valuation Vj, is a valuation of K (z) obtained by a finite
sequence of valuations Vi, Vo, -+ | Vi of K(x) where Vi = [Vo, Viz = 1] is a first
stage valuation obtained from a valuation Vj of K and each V; = [V;_1, Vi¢; = ) is
obtained by augmenting V;_; with the key polynomial ¢;(x) satisfying the following
two conditions for 2 < ¢ <k :

(i) ¢1(x) =z, deg(di(r)) > deg(¢i—1(x));

(17) ¢i(x) is not equivalent to ¢;_1(z) in V;_;.

As in [Mac], the valuation Vj will be symbolized as Vi, = [V, Viz = pq, Voo =
fa, -+ 5 Vior = pg]. The above valuation Vi, with value group Gy, is called commen-

surable if G /Gy is a torsion group; Gg being the value group of V5. As shown in
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Corollary [5.1.2] the residue field of a commensurable inductive valuation Vj is a
transcendental extension of the residue field of V4. It is known that (cf. [A-P-Z2|
Theorem 2.2]) residually transcendental prolongations of Vj to K (x) are given by
minimal pairs (see Definition 1.1.F). In what follows, we retain the notations as in
Notation 1.1.E. and introduce some more which shall be used later.
Notation 5.1.A. Let V[ be a henselian valuation of arbitrary rank of a field K.
For a finite extension (K’,V{) of the valued field (K, Vp), the (henselian) defect
to be denoted by def(K'/K) is defined to be [K’ : K]/e'f" where €', f' are the
ramification index and the residual degree of Vj /Vj.

The following theorem which plays a great role in the proof of the main result

of this chapter relates minimal pairs with key polynomials.

Theorem 5.1.1. Let (K, V), Go, éo be as in Notation 1.1.E. Let W be a valuation
of K(x) extending Vo and ¢(x) be a key polynomial over W. Let V = [W, V¢ = y
with p € ég be an augmented valuation over W associated with ¢, . Then V s
a residually transcendental extension of Vi to K(x). Moreover there exists 0 € Go

such that for any root o of ¢(x), (v, 0) is a (K, Vp)-minimal pair and V = wa.
The above theorem quickly yields the following corollary.

Corollary 5.1.2. Let (K, Vy) be as in Notation 1.1.E and Vj, = [Vo, Viz = uq, Vads =
fa, -+ 5 Vidr = k] be a k-th stage commensurable inductive valuation. Then Vi, is
a residually transcendental extension of Vo to K(x). Moreover Vi, = w,, 5, where

ay, is a root of ¢y with (au, 0x) a (K, Vy)-minimal pair.

The following corollary to be used in the sequel will be deduced from Theorem

5.1.1] It is of independent interest as well.

Corollary 5.1.3. Let V}, be as in the above corollary with value group Gy. Let ¢(z)
be a key polynomial for an inductive valuation over Vi having a root o in [?, then
Gr = G(K(a)).

With « as in Corollary [5.1.3] the following theorem gives the degree of the
extension K (a)/K and quickly implies that the (henselian) defect of K (a)/K is 1.
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Theorem 5.1.4. Let Vi, ¢(x), « be as in Corollary . For1<j<k, letV;=
Vo, iz = 1, Vapa = pa, - -+, Vi; = ] stand for the j-th stage inductive valuation
and 7; be the smallest positive integer such that T;p; belongs to the value group G;_;

of Vj_1. Then degree of the extension K(a)/K equals deg(¢(z))/ H;?:l ;.

It is known that if W = wy s is a residually transcendental prolongation of V;
to K(z) defined by a (K, Vj)-minimal pair (¢, '), then the minimal polynomial of
o over K is a key polynomial over W (cf. [Po-Pol Corollary 4.3]). We shall avoid
working with such trivial key polynomials and use nontrivial key polynomials (see
Definition 1.1.1).

Remark 5.1.5. It may be pointed out that in the particular case when Vi is as in
Corollary and ¢(x) is a key polynomial for an inductive valuation over Vi,
then ¢(x) is a nontrivial key polynomial because in view of Corollary we have
Vi = Wa,.s, With oy a root of ¢(x) and ¢(x) is not equivalent to ¢r(x) in Vi by

the definition of inductive valuation.
In this chapter, our main aim is to prove:

Theorem 5.1.6. Let (K, V) be a henselian valued field of arbitrary rank with
value group Gy, residue field K and (I?, %) be as in Notation 1.1.E. Let W be
a residually transcendental extension of Vy to K(z) and ¢(x) be a nontrivial key

polynomial of degree m over W having a root o € K. Let F(x) belonging to

K[x] be a monic polynomial not divisible by ¢(x) with ¢-expansion Z Ai(x)p(x)",
i=0
Ag(x) = 1. Suppose that the ¢p-Newton polygon of F(x) with respect to W consists

of r sides Sy, ..., S, having positive slopes A1, ..., \.. Then the following hold:

(1) F(x) = Fi(x)--- F.(x), where each Fi(z) belonging to Klz| is a monic poly-
nomial of degree ml; whose ¢-Newton polygon with respect to W has a single side
which is a translate of S; and l; is the length of the horizontal projection of S;.
(ii) If 0; is a root of Fy(x), then Vo(¢(6;)) = W (d(x))+A; = it} (say) and G(K (o)) C
G(K(6;)). Theindex [G(K(0;)) : G(K(«))] is divisible by e;, where e; is the smallest
positive integer such that e, € G(K (). The degree [K(6;) : K] is divisible by
[K(a): K].
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(1ii) Fi(z) is a lifting of a monic polynomial T;(y) € K(«)[y] not divisible by y of
degree l;/e; with respect to ¢(x), .

(iv) If Un(y)® - Ui, (y)¥i is the factorization of T;(y) into powers of distinct
monic irreducible polynomials over K (o), then Fi(x) factors as Fy(z)--- Fi, (z)
over K, each Fj;(x) is a lifting of Uy(y)* with respect to ¢(x), p; with degree
me;a;j deg U;; and ‘70((;5(9”)) = ;. If some a;; = 1, then Fj;(x) is irreducible over
K and for any root 0;; of F;j(x), the index [G(K(0;;)) : G(K(a))] = e; and the
degree [K(0;;) : K| = deg U;;(y)[K () : K] in this case.

It may be pointed out that Theorem 1.2 of [Jh-Kh1] is a special case of the
above theorem because in view of Example 1.1.J a monic polynomial ¢(z) € Ry|x]
with ¢(x) irreducible over K is a nontrivial key polynomial over the Gaussian pro-
longation V{¥ defined by when ¢(z) # x; in case ¢(x) = z, then ¢(z) = 2 —a
(say) is a nontrivial key polynomial over the residually transcendental prolongation
Wa+1,0 corresponding to the minimal pair (a + 1,0).

Keeping in mind Corollary[5.1.3] Theorem[5.1.4/and Remark[5.1.5] the following
theorem can be easily deduced from the above theorem. It generalizes Theorems
3.1, 3.7 of [G-M-N| which are proved for the polynomials with coefficients in finite
extensions of the field of p-adic numbers. It also extends Corollary 3.8 of [G-M-N]

in view of equation (5.3.7]).

Theorem 5.1.7. Let (K, V) be a henselian valued field of arbitrary rank with value
group Gy, residue field K and (f(, ‘70) be as in Notation 1.1.E. Let Vi, ¢(z), o, 7;
be as in Theorem and Gy, denote the value group of Vi.. Let F(x) belonging to

K|[z] be a monic polynomial not divisible by ¢(x) with ¢-expansion Z Ai(z)p(),
i=0

As(z) = 1. Suppose that the ¢p-Newton polygon of F(x) with respect to Vi, consists

of r sides Si,...,S, having positive slopes A1, ..., \.. Then the following hold:

(1) F(x) = Fi(x)--- F.(x), where each F;(x) belonging to K[z| is a monic polyno-

mial of degree l;(deg(¢p(x)) whose ¢-Newton polygon with respect to Vi, has a single

side which is a translate of S; and l; is the length of the horizontal projection of S;.

(ii) If 0; is a root of Fy(x), then Vo(¢(6;)) = Vi(d(x))+ N and G, C G(K(0;)). The
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k
index [G(K (6;)) : Go| is divisible by e; [ 7, where e; is the smallest positive integer
j=1

such that e;\; € Gy. The degree [K(6;) : K| is divisible by [K (o) : K| = &)

I 7

(143) Fy(x) is a lifting of a monic polynomial Ty(y) € K(a)[y] not divisible by y of
degree l;/e; with respect to ¢(x), Vi(od(z)) + A;.

() If Ui (y)® - -+ Ui, (y) % is the factorization of T;(y) into powers of distinct
monic irreducible polynomials over K(a), then Fi(z) factors as Fyy(z)--- Fy ()
over K, each Fj;(x) is a lifting of U;;(y)* with respect to ¢(x), Vi(p(x)) + A; with
degree e;a;; deg U;; deg ¢ and %(gb(@ij)) = Vi(o(x)) + Ni. If some a;; = 1, then
F,j(x) is irreducible over K and for any root 0;; of Fj;j(x), the index [G(K(6;5)) :
Go] = eimimy - - -1 and the degree [K(0;;) : K| = deg(Usj (w) deg(é(@) 1, this case.

T17T2 Tk

The following result which is already known in the particular case when W is
the Gaussian prolongation V¥ (cf. [Jh-Kh4l Theorem 1.5]), will be deduced from
Theorem B.1.6

Corollary 5.1.8. Let (K, Vp), ¢(z),m,W and a be as in Theorem[5.1.6, Let F(x)

belonging to K[z| be a polynomial having ¢-expansion Z Ai(2)d(x)" with Ay(z) =
i=0
1, Aj(z) # 0 for some i < s and assume that all the sides in the ¢-Newton polygon

of F'(x) with respect to W have positive slopes. Ifl is the smallest non-negative inte-
{W(Ai(x)cé(x)z) - W(cﬁ(l’)s)} _ W(A(@)o(2)) — W(e(2)°)

s—1

ger for which . min

<i<s—1
ana WA

for any factorization G(x)H (x) of F(z) over K, min{deg G(x),deg H(z)} < Im.

s —1

does not belong to G(K («)) for any number d > 1 dividing s—1, then

Note that in the special case when W = V¥ and Gy = Z, then it can be
easily seen that for A(z) € KJz], the condition V{'(A(x)) € dGy for any number
d > 1 dividing s — k is equivalent to saying that Vi*(A(z)) and s — k are coprime.
So the above corollary yields the following corollary which extends Schonemann

Irreducibility Criterion (cf. [Ribl 3.1.D]).

Corollary 5.1.9. Let Vi be a wvaluation of a field K with value group Z. Let

é(x) be a monic polynomial of degree m which is irreducible over K. Let F(z)
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belonging to K[z] be a polynomial having ¢-expansion > A;(x)o(z)" with Ay(x) = 1,
i=0
Ai(x) # 0 for some i < s. Letl be the smallest non-negative integer such that
i (A V5Ada)
0<i<s—1 s—1 s—1
any factorization F(x) = G(x)H(x) of F(x) over K, one has

>0 and V§F(Ai(x)), s — 1 are coprime, then for

min{deg G(z),deg H(x)} < Im.

5.2 Proof of Theorem [5.1.1 Corollary 5.1.3,

Proof of Theorem |5.1.1. Let t be a positive integer such that tu € Gy, say tu =
Vo(a),a € K. Then the V-residue of ¢(z)"/a is transcendental over the residue

field of V4, for otherwise there exist ag,aq,--- ,a, in the valuation ring Ry of 1
with a, a unit in Ry such that V( > az(%m)t)z) > 0, which is impossible because
i=0

by definition of V', we have

(e (% ))> = gin (%) + it} = gnin (Vi) =0

1=0

This proves that V' is a residually transcendental prolongation of Vj to K(z). So
by Theorem 2.1 of [K-P-R], there exists a (K, Vy)-minimal pair (3,6) € K x Gy
such that V = wg ;.

We claim that there exists a root « of ¢(x) such that %(a — ) > 0. Suppose

to the contrary, the claim is false. Then for each root «; of ¢(x), we have

Vo(ci — B) < 6. (5.2.1)

On writing ¢(z)/¢(8) as [[(1+ g:f) and using ([5.2.1]), we see that the wg s-residue

of ¢(z)/#(B) equals 1 and hence the wg s-residue, i.e., the V-residue of ¢(x)"/a will

be same as the wg s-residue of ¢(5)"/a, which is impossible because as shown above

the former is transcendental over the residue field of 1}, whereas the latter is not
so. This contradiction proves the claim.
It is immediate from the claim and the definition of minimal pair that [K(5) :

K] <[K(a): K] = deg(¢(z)) = m (say). Now we prove that
[K(5) : K] =m. (5.2.2)
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Suppose that is false. Let G(z) be the minimal polynomial of g over
K. By the division algorithm, write ¢(z) = q(z)G(x) — A(z), with deg(A(x)) <
deg(G(x)) < m, so that

q(2)G(z) = ¢(x) + A(x) (5.2.3)
is the ¢-expansion of ¢(2)G(z). Keeping in mind that both ¢(z), G(x) are of degree

less than m and using formula (5.1.1]), we see that

Wi(q(2)G(x)) = V(g(2)G(x)) = min{V(¢(x)), W(A(z))}.

Thus we have W (A(z)) > W(q(x)G(z)). Indeed W(A(x)) = W(q(x)G(x)), for
otherwise W (A(x)) = W(q(z)G(x)—¢(z)) > W(q(x)G(x)) which would imply that
¢(z) is not equivalence irreducible in W, contradicting that ¢(x) is a key polynomial
over W. It now follows from (/5 and the triangle law that W (¢(z)) > W (A(z)).
Keeping in mind that V' = wg s is an augmented valuation associated with ¢, ;1 and

using Theorem 1.1.G(ii), the last inequality can be rewritten as

Vo(A(B)) = wps(Al)) = V(A(z)) = W(A(z)) < W(d(x)) < V(d(x)) = p.
(5.2.4)
Substituting « = 3 in (5.2.3), we obtain ¢(8) = —A(3) as G(8) = 0. So it follows
from (5.2.4) that Vo(¢(8)) < p; this is impossible because if ¢(z) = ﬁ(a: — ),

i=1
then using (1.1.4)), we have

p=wgs(¢ ng(;x a;) Zmln5VOB a;) §Z (B—a;) = (gb(ﬁ))

This contradiction proves (5.2.2)).

Now we show that («a, d) is a (K, Vj)-minimal pair, where « is a root of ¢(z) with
Vo(o—B) > 8. Let  be an element of K with [K(y) : K] < [K(8) : K]. Since (3, 6)
is a (K, Vp)-minimal pair and [K(8) : K] = m by , we have Vo(8 — ) < 0;
consequently by strong triangle law Vo(ow — 7) = min{Vy(ar — 8),Vo(8 — 7)} =
Vo(8 — 7) < &, which proves that («,0) is a (K, Vy)-minimal pair. Since (K, V)
is henselian, it can be easily seen that for any root o of ¢(z), (¢/,9) is a (K, Vp)-
minimal pair; further V' = wg s = was = Wy s by virtue of Theorem 2.1 of [K-P-R].
Proof of Corollary . Fix an element p > Vi(¢(z)) in the divisible closure Go
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of Gyg. Let V denote the augmented valuation V' = [Vi, V¢ = p]. By Theorem
5.1.1 there exists 0 € Gy such that (o, 0) is a (K, Vp)-minimal pair and V = wg,s.
Note that for any polynomial A(z) € K[z] with deg(A(z)) < deg(¢(z)) = m (say),

in view of Theorem 1.1.G(ii), we have
Vo(A(@) = was(A(z)) = V(A(w)) = Vi(A(x)); (5.2.5)

consequently G(K(«)) € Gy. To prove that Gy C G(K(«)), it is enough to
show that Vi (¢r(x)) = i (say) belongs to G(K(«)), because for any polynomial

g(x) € Klz] with ¢y-expansion Y, g;(x)¢x(x)", on using (5.2.5) and the fact that
deg(¢r(x)) < m by definition of inductive valuation, we have

Vi(9(2)) = min{Vi(g:(x)) + ip} = miin{‘N/O(gi(a)) + iy}
If deg(¢r(z)) < m, then again in view of (5.2.5), ux = Vi(é(z)) = Vo(di(a)) €
G(K(«)). So assume that deg(¢x(z)) = m. In this situation, ¢(z) has ¢x-expansion
o¢(x) = ¢r(x)+r(x). By hypothesis ¢(z) is a key polynomial for an inductive valua-
tion over V; and hence ¢(x) is not equivalent to ¢y (x) in Vi, i.e., Vi(o(z) —or(x)) <
Vi(¢r(x)). Indeed Vi(r(z)) = Vi(dx(z)), for otherwise Vi(r(x)) < Vi(or(z)) =
Vi(¢(z) — r(x)) which implies that ¢(x) is equivalent to r(x) in Vj; this is impos-
sible because ¢(x) is a key polynomial over Vj and deg( (x)) < m. Therefore by

)
virtue of , we see that Vi(¢r(z)) = Vi(r(z)) = Vo(r()) belongs to G(K (a)).

5.3 Preliminary results and Proof of Theorem

5.1.4.

In this section, we first prove three preliminary results viz. Theorems [5.3.115.3.3]
which play a crucial role for the proof of Theorem [5.1.6| and are of independent
interest as well. We use Theorem in the proof of Theorem [5.1.4] which is also
proved in this section. At the end of this section, we prove some lemmas needed for
the proof of the main theorem. Throughout this section (K, Vj), («,9), f(x), wa.s,
p are as in Theorem 1.1.G. For a non-zero polynomial F'(z) belonging to K [x] with
f-expansion ZAZ(x)f(x)’, we shall denote by I, 5(F(z)), Sas(F(x)) respectively
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the minimum and the maximum integers belonging to the set {i | w,s(F(z)) =
Vo(A;(a))+ip}. It is known that for any non-zero polynomials F/(z), G(z) belonging
to K[z], one has (cf. [Kh-Ku2l, Lemma 2.1])

Lo s(FG) = 10s(F) + Los(G);  Sas(FG) = Sas(F) + Sas(G). (5.3.1)

With ‘def’ as introduced in Notation 5.1.A, we now prove

Theorem 5.3.1. Let (K,Vp), (o, 0), f(x),m,was, i, e are as in Theorem 1.1.G
and F(z) € K[x] be a lifting of a monic polynomial T'(y) not divisible by y of de-
gree t > 0 belonging to K(a)[y] with respect to (a, ). Let § be any root of F(x).
Then the following hold :

(i) G(K () C G(K(9)) and the degree [K(a) : K| divides [K(6) : K|;

(17) def(K(«)/K) divides def(K(0)/K);

(1ii) In the particular case when T(y) is irreducible over K(«), then F(x) is irre-

ducible over K, [G(K(0)) : G(K(a))] = e and [K(0) : K] = t[K(a) : K].

The theorems stated below are already known (see |[Jh-Kh1l Theorem 2.B] for
Theorem 5.3.A and |[Kh-Sal Theorem 1.1] for Theorem 5.3.B); these will be used

in the proof of the above theorem.

Theorem 5.3.A. Let (K, Vy),(a,0), f(x),m,u, F(x),T(y),e and t be as in the
above theorem and h(z) be as in Theorem 1.1.G(iii). Then (i) Vo(0 — o) < 6 for
each root 0 of F(x). (it) Given any root 0 of F(x), there ezists a K-conjugate 0’
of 0 such that Vo(60' — ) =& and Vo(f(0)) = Vo(f(0)) = p. (i) If ¢ is as in (i),
then the Vy- residue of f(€')¢/h(a) is a root of T'(y).

Theorem 5.3.B. Let (K, V), (K, Vp) be as in Notation 1.1.E. Let o, 8 belonging
to K be such that Vo(a — 8) > Vy(a — B) for every 8 € K satisfying [K(8) : K] <
[K(a) : K]. Then G(K(a)) C G(K(0)), K(a) C K(6) and def(K (a)/K) divides
def(K(0)/K).

Proof of the Theorem . By Theorem 5.3.A(i7), there exists a K-conjugate 6’
of 0 such that Vp(¢' — a) = 8. Since (v, 0) is a (K, Vy)-minimal pair, in view of
Definition 1.1.F we have V(o — 8) < 6 = Vo(f' — a) for every 3 € K satisfying
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[K(B) : K] < [K(a) : K]. Therefore it follows from Theorem 5.3.B and the
henselian property of (K, Vp) that G(K(«)) € G(K(0')) = G(K(0)), K(a) € K(0')
and def(K («)/K) divides def(K(0")/K) = def(K(0)/K). It only remains to prove

the last assertion of the theorem. Assume that T'(y) is irreducible over K (a). We

have

etm = deg(F(z)) > [K(0) : K] = [K(0") : K|[G(K(0)) : Go|def(K(0)/K).

As def(K(«)/K) divides def(K(6)/K) and K(«) C K(0'), the above inequality
implies

etm > [K(0) : K] > [K(0) : K(@)][G(K(0)) : G(K(a))][K(a): K].  (5.3.2)

Recall that [K(a) : K] = m and by Theorem 5.3.A(ii), 1 = Vo(£(0)) € G(K(0));
hence e divides [G(K(0)) : G(K(«))]. Further keeping in mind Theorem 5.3.A(7i7)
and the fact that T'(y) is irreducible over m, we see that the degree of the ex-
tension W/m is at least ¢. It now follows that 1) is possible only when

[K(0) : K] = etm, [G(K(0)) : G(K(a))] = e and [K() : K(a)] = t, which com-
pletes the proof of the theorem.

Now we prove the following theorem to be used in the proof of Theorem [5.3.3|

Theorem 5.3.2. Let ¢(z) be a nontrivial key polynomial of degree m over a resid-
ually transcendental extension W of Vi to K(x). Let F(x) € K[z] be a monic
polynomial of degree sm which is equivalent to ¢(z)® in W. Then each factor of

F(z) over K has degree a multiple of m.

The two theorems stated below will be used in the proof of the above theorem.
Theorem 5.3.C is proved in [Jh-Kh1l, Corollary 2.2]. Theorem 5.3.D is essentially
proved in [Po-Pol Theorem 4.6]; for reader’s convenience, we sketch the proof of

the latter.

Theorem 5.3.C. Let F(z) belonging to K[z| be a monic polynomial which is a

lifting of a monic polynomial 7'(y) not divisible by y belonging to K(«)[y] with
respect to a (K, Vp)-minimal pair («,d). Then any monic polynomial G(z) € K|x|

64



dividing F'(z) is a lifting of a monic polynomial dividing 7'(y) with respect to (a, 9).

Theorem 5.3.D. If ¢(x) is a key polynomial over a residually transcendental
prolongation w,, 5, of Vo to K(x) with (ay,6;) a (K, Vp)-minimal pair such that
¢(z) is not equivalent to the minimal polynomial of a; over K, then ¢(x) is a

lifting of an irreducible polynomial ¥ (y) # y belonging to K («)[y] with respect to
(cv1,01).

Proof of Theorem 5.3.D. Let ny denote the degree of the minimal polynomial f;(z)
of a; over K and W the valuation w,, s,. In view of Proposition 4.1 of [Po-Pd],
deg(o(x)) > ny. When deg(¢(x)) > ny, then by Theorem 4.6 of [Po-Po], ¢(x) is a
lifting of an irreducible polynomial ¥ (y) # y belonging to m[y] with respect to
(cv1,01). So we need to prove the theorem when deg(¢(x)) = ny = deg(fi(z)). In
this case write ¢(x) = fi(z) + ro(x), deg(ro(x)) < ny. In view of Theorem 1.1.G,

we have
W(¢(z)) = min{W(fi(x)), W(ro(x))}- (5.3.3)

As ¢(x) is not equivalent to fi(z) in W, we see that W (ro(z)) = W(o(z)— fi(x)) <
W(fi(z)). It now follows from that W(¢p(x)) = W(re(z)). We show that
W(g(x)) = W(fi(z)). By virtue of (5.3.3), we have W(fi(z)) > W(¢(z)). If
W(fi(x)) > W(o(x)), then W(fi(x)) = W(e(x) — ro(x)) > W(g(x)), which is
impossible because ¢(z) is key polynomial over W and deg(ro(z)) < deg(é(x)).
Therefore we have W(¢(z)) = W(fi(x)) = W(re(x)) which immediately implies
that ¢(x) is a lifting of the linear polynomial y+ 1 with respect to (ay, ;) on taking
h(z) = ro(x). This completes the proof of the theorem.

The converse of Theorem 5.3.D stated below as Theorem 5.3.E is proved in
[Po-Po, Theorem 4.6]. It will be used to construct examples.
Theorem 5.3.E. Let w,, 5, be a residually transcendental prolongation of V{ to
K(x) with (aq,01) a (K, Vp)-minimal pair. If ¢(z) € K[z] is a monic polynomial
which is a lifting of an irreducible polynomial v (y) # y belonging to K (ay)[y] with
respect to (aq,d1) such that deg(¢p(x)) is strictly greater than the degree of the

minimal polynomial of a; over K, then ¢(x) is a key polynomial over w,, s,
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Proof of Theorem [5.5.9, Let g(z) be a monic polynomial in K[z] dividing F(z).
Since ¢(x) is a nontrivial key polynomial over W, there exists a (K, Vj)-minimal
pair (aq,9d1) such that W = w,, 5, where fi(x) is the minimal polynomial of oy
over K of degree n; (say) and ¢(z) is not equivalent to fi(x) in W. By Theorem
5.3.D, ¢(z) is a lifting of an irreducible polynomial ¥ (y) € K (ay)[y] different from
y with respect to (g, 7). As F'(x) is equivalent to ¢(z)® in W, it follows that F'(x)
is a lifting of ¢ (y)® with respect to (ay,d1). By Theorem 5.3.C, g(x) is a lifting of
P (y)? with respect to (ay,d;) for some d < s. If e; denotes the smallest positive
integer such that ejw,, s, (fi(x)) € G(K (o)), then in view of Definition 1.1.H of
lifting, deg(g(z)) = deyny(deg(¥(y)) = ddeg(o(z)) as desired.

The following theorem which we now prove for all residually transcendental

prolongations W is proved in [Jh-Kh1, Theorem 3.1] in the particular case when

W is Vi defined by ((1.1.3]).

Theorem 5.3.3. Let ¢(x) be a nontrivial key polynomial of degree m over a
residually transcendental extension W of Vi to K(x) having a root o € K. Let
V = [W, Ve = X+ W¢| be the augmented valuation over W associated with
O, = N+ Wo and (a,0) be a (K, Vy)-minimal pair such that V = w,s. Let
e be the smallest positive integer such that e € G(K(a)) and F(z) belonging to
K[x] be a monic polynomial of degree sm which is equivalent to ¢(x) in W. If
I,5(F) =0 and S,s5(F) =1 > 0, then F(z) has a monic factor G(x) € K[z] of
degree Im such that S, s5(G) = l. Further G(z) is a lifting of a monic polynomial
of degree /e not divisible by y belonging to K (a)[y] with respect to (a, ).

The following two already known lemmas will be used in the proof of the above

theorem (see [Jh-Khil Lemma 2.3] for Lemma 5.3.F and [Kha, Lemma 2.3] for
Lemma 5.3.G).
Lemma 5.3.F. Let (K, Vp), (o, 9), f(x), u be as in Theorem 1.1.G. If g(z) € K[x] is
a monic polynomial for which I 5(g) = 0 and Sas(g) is positive, then Vo(0—a) < &
for each root 0 of g(x); there exists a root 8 of g(x) with Vo(¢' — a) = & and
Vo(f(0)) =  for such a root 0.
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Lemma 5.3.G. Let g(z) and gi(x) be two monic irreducible polynomials over a
henselian valued field (K, Vy) of degrees n,ny respectively such that g(B) = g1(p1) =
0 for some B, € K. Then nl%(g(ﬂl)) = n%(gl(ﬂ)).

Proof of Theorem[5.3.3, Let gi(x),--- , g-(z) be all the monic irreducible factors
of F(x) over K, counted with multiplicity (if any) for which S,s(g;) > 0, say

Sas(g9i) = 1. Set G(x) = [ 9i(x). By (5.3.1), Sas(G) =Y I = L. Let gi(x) =
=1

i=1

d;
Zgij(x)gzﬁ(x)j be the ¢-expansion of g;(x) with g4, () # 0. Then in view of
=0

]7
Theorem [5.3.2 the degree of g;(x) is a multiple of m and hence deg(g;(z)) = d;m.

Clearly the first assertion of the theorem is proved once we show that

Since I,5(F) = 0, we have I,5(g;) = 0. Also S,s(¢9:) > 0. Applying Lemma
5.3.F, there exists a root 6; of g;(x) such that Vy(¢(6;)) = p. By Lemma 5.3.G,
Vo(gi(@)) = diVo(6(6;)) = d;p1. Therefore keeping in mind that I,5(g9:;) =0, we see
that

Wa5(91(%)) = Wa s (gi0(x)) = Vo(gin(@)) = Vo(gi(a)) = dip,

which shows that S, s(¢;) = d; and is proved. Keeping in view the above
equation, we see that d;u € G(K(«)). So d; = I; is divisible by e and hence g;(x)
is a lifting of a monic polynomial not divisible by y of degree [;/e belonging to
K (a)[y] with respect to (a,d) which implies that G(z) = f[ gi(z) is a lifting of a
polynomial of degree [/e. -

The following generalized version of Hensel’s lemma proved in [Jh-Kh1l Theo-
rem 1.1] will be used in the proof of Theorem |5.1.6]

Theorem 5.3.H. Let (K,Vy) be a henselian valued field of arbitrary rank. Let
(a,9) be a (K, Vy)-minimal pair and h(z) € K[z] be as in Theorem 1.1.G(iii). If a
monic polynomial F(x) € Klz| is a lifting of a product of two coprime polynomials

Ui(y), Ua(y) belonging to K(a)[y] with respect to («,0) and h(x), then there exist
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monic polynomials Fy(x), Fy(x) in Kz| such that F(z) = Fy(z)Fy(z) and Fi(z) is
a lifting of U;(y) with respect to («,d), h(x).

Using Theorems 5.3.D and we now prove Theorem :
Proof of Theorem [5.1.4 Denote ¢(z) by ¢r1(z) and a by agq1. By Corollary
, Vi = wa, 5, where oy is a root of ¢;(x) with (a;,d;) a (K, V)-minimal pair.
In view of Corollary [5.1.3] the value group G; of V; equals G(K (j41)). So 7; is
the smallest positive integer such that 7w, 5,(¢;(z)) = 7;V;(¢;(x)) = 7;p; belongs
to Gj_1 = G(K(o;)). Since ¢j11(x) is a lifting of an irreducible polynomial v;(y)

belonging to K («a;)[y] of degree t; (say) with respect to (o, d;) in view of Theorem
5.3.D, it now follows from Definition 1.1.H that

deg(d;41(2)) = 7;t; deg(¢;(2)). (5.3.5)

Applying the last assertion of Theorem to the polynomial ¢;;1(z), we obtain

Keeping in mind that o = ag,1, oy = 0 and using (5.3.6) for 1 < j < k, we see
that
k

[K(a) : K] = [K(a1) : K] =[] t5- (5.3.7)

J=1

The desired equality is obtained on substituting for ¢; from ([5.3.5)) in (5.3.7)).

In what follows in this section, W is a residually transcendental prolongation
of Vo to K(z), ¢(x) is a key polynomial over W and the ¢-Newton polygon of
any polynomial is taken with respect to W. With notations as in Notation 1.1.F|
the following lemmas establish the close analogy between the concept of ¢p-Newton
polygon with respect to W and the phenomenon of lifting with respect to minimal

pairs corresponding to an augmented valuation over W.

Lemma 5.3.4. Let (K, V}) be a henselian valued field of arbitrary rank. Let W be a
residually transcendental prolongation of Vi to K(z) and ¢(x) be a key polynomial
over W' having a root o € K. Let V = (W, V¢ = ul] be the augmented valuation of
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W with i € Gy and (a, 6) be a (K, Vy)-minimal pair such that V = wy5. Let e be the
smallest positive integer such that ey belongs to G(K(«)) and A = u—W(o(x)). If
F(z) € Klx] is a lifting with respect to («, d) of a monic polynomial T'(y) belonging
to K(a)[y] not divisible by y having degree t, then the ¢-Newton polygon of F(z)
with respect to W consists of a single side which has slope X\ and the length of its

horizontal projection is et.

Proof. Note that if a polynomial A(z) € KJz| has degree strictly less than
deg(o(x)), then keeping in mind Theorem 1.1.G(éi), (5.1.1)) and the fact that

V = w, s, one has
Vo(A(0) = was(A(z)) = V(A(x)) = W(A(x)). (5.3.8)

Let F(z) = ¢(x)* + As_1(z)p(x)*™F + -+ + Ap(x) be the ¢-expansion of F(x).
Since F'(zx) is a lifting of T'(y) of degree t not divisible by y, in view of Definition
1.1.H of lifting, we have s = et and w,s(F(z)) = sp = Vo(Ao(a)). Using ,
we see that w,s(F(z)) = min{W (A4;(z)) + ip} = sp = W(Ay(z)). Substituting
= A+ W(o(x)) in the last Zequation, it follows that

W(Ai()g(2)") = W(b()") _ | _ W(A(z)) - W(e(x))

s—1 s

Y

for 1 < i < s—1, which shows that the ¢-Newton polygon of F'(z) (with respect
to W) has a single side whose slope is A and the length of its horizontal projection
is s = et.

The next result is the converse of the above lemma.

Lemma 5.3.5. Let (K, Vp), W, ¢(x) and a be as in above lemma. Assume that the
¢-Newton polygon with respect to W of a polynomial F(x) € K|x] not divisible by
é(x) having ¢-expansion ¢(x)* + As_1(x)d(x)*~t + -+ + Ag(x) consists of a single
side with slope A > 0. Let V = [W, V¢ = A+ W¢)| be the augmented valuation over
W associated with ¢, = A+ W¢ and (o, ) be a (K, Vy)-minimal pair such that
V = was. Let e be the smallest positive integer such that ey € G(K («)). Then s/e
is an integer and F(x) is a lifting of a monic polynomial T'(y) not divisible by y of

degree s/e belonging to K(«a)[y] with respect to (v, ).
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Proof. In view of the hypothesis regarding the ¢-Newton polygon of F(x), we

have

W(Ai(z)p(x)") — W(d(x)") > ) = WAo(@)) = W@@;)s)j

5—1 s
for 1 <i<s—1,1e, W(Aj(z)p(x)") + 1A > s(W(p(x)) + X) = W(Ap(x)) which
shows that V(F(x)) = min{W (A;(z)) + iu} = W(Ap(z)) = su. Keeping in mind
that V = w, s and W(A;(x)) = Vo(A;(e)), we see that

W s (F(2)) = min{To(4i(a)) + in} = Vo(Ao(a) = sp. (5.3.9)

Since e is the smallest positive integer for which ey € G(K (), say ep = Vo(h(a)),
h(z) € Klz], deg(h(x)) < deg(¢p(x)), it follows from (5.3.9) that s = et for some
integer t and Vy(A;(a))+ip > sp = Vo(h(e)) when i is not divisible by e. Therefore

using Theorem 1.1.G(i7) and denoting the w, s-residue of by z, we see that
the wq s-residue of F(x)/h(z)" equals z* + (e(;b(—ols())zt e (2?6(02) =T(z)

(say). This proves that F(z) is a lifting of T'(y) with respect to («, d).

Lemma 5.3.6. Let (K, Vp), W, ¢(z) and a be as in Lemma(5.5.4 and F(z) belong-
ing to K[z] be a polynomial not divisible by ¢(x) having ¢-expansion A,(x)p(x)® +
Ag q(x) ¢(z)* 1+ -+ Ag(x), Ag(x) # 0. Suppose that a side of the ¢p-Newton poly-
gon of F(x) with respect to W has slope A > 0 with interval of horizontal projection
starting at s —k and ending at s —j. Let V. =[W, V¢ = A+ W ¢| be the augmented
valuation over W associated with ¢, = XA+ Wo and (o, ) be a (K, Vy)-minimal
pair such that V = wqys. Then I, 5(F) =7 and Sy s(F) = k.

Proof. Since V = wa s and W (A;(z)) = Vo(4;()) in view of (5.3.8)), we see that
Was(F(x)) = min{W (A;(x)) +ip}. So the lemma is proved once we show that j, k
are 1"espectivelyZ the smallest and the largest indices at which the minimum of the
set M = {W(A;(z))+ip,0 < i < s} isattained. For the sake of convenience, denote
W (A;(z)p(x)?) by ;. As [s—k,s— j] is the interval of horizontal projection of the
side of the ¢-Newton polygon of F'(z) having slope A, in view of Definition 1.1.K,
it follows that for all indices 7 lying in the interval [f, k] we have A < =& and this

inequality becomes equality when ¢ = j. Substituting for +;, vx and u = W(¢(x))+
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A, the above inequality can be rewritten as W (A;(x)) +ipn > W(Ag(x)) + ku with

equality when ¢ = j. Therefore for proving the lemma, it is enough to prove that
W(A;(z)) +ipn > W(A;(x)) +ju, when i<j (5.3.10)

and

W(Ai(z)) +ipn > W(Ag(z)) + kp, when @ > k. (5.3.11)

Keeping in mind that the slopes of the edges are in increasing order, for any index

i < 7, we have % >\ = pu— W(¢(x)), which immediately gives (5.3.10) when
we substitute for 7;, ;. To prove (5.3.11)), fix an index ¢ > k and let [s — ky, s — ko
denote the interval of horizontal projection of the side of the ¢-Newton polygon of

F(z) which contains s — i. Then by Definition 1.1.K, 7;_11“.1 > A”;Q TEL A simple
1—1 1—

calculation shows that the above inequality is same as saying

Vo — Vi < Vo — Via
i —ky T ky—ky

(5.3.12)

Note that if ko = k, then the slope \ of r-th edge (say) of the ¢-Newton polygon of

vvl

F(z) is strictly greater than the slope of its previous edge. Therefore when

ko = k, the inequality in 1mp11es that =i < )\, which on substituting
for v;, v, and pu = W(gb(m)) + X immediately gives inequality (5.3.11). In general
when ky > k, let ky > ky > --- > k; = k be integers such that each of the interval
[s — k., s — k.11] is an interval of horizontal projection of a side of the ¢-Newton

polygon of F(z). Since the slopes of the respective edges are increasing, we have

by (5.3.12)

Vee — Vi Vks — Vo Ve — Vhi_s
. < <K <A
i — ko ko — ks ke — Ky
which implies that 7’” %< w;t;jktk‘ L < ) in view of a basic inequality (which says
that Whenever < A2 <. < gr with B; > 0, then H < A’") So we have

LB <N =p— W(qb( )) which immediately gives 1. This completes the

proof of the lemma.

Lemma 5.3.7. Let (K,Vy),W and ¢(x) be as in Lemma|5.3.4. Let F(x),G(x)
belonging to K[z| be two monic polynomials not divisible by ¢(x). Suppose that the
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¢-Newton polygons of F(x), G(x) with respect to W consist of k,t sides respectively
having positive slopes A\y < --- < A\g and N} < --- < A,. Let l;,l; denote the lengths
of the horizontal projection of the sides with slopes \;, N, respectively. Then the
distinct elements of the set {\i, N;,1 < i < k,1 < j <t} arranged in ascending
order are all the slopes of the ¢-Newton polygon of F(x)G(x). If Ay = X; for some
pair (i,7), then the length of horizontal projection of the side of the ¢-Newton
polygon of F(x)G(x) with slope Ay will be l; +1;; in case \; # X;, then the length of
horizontal projection of the side of the ¢-Newton polygon of F(x)G(x) with slope
Ai (respectively N;) is l; (respectively I’ ).

Proof. Let F(x ZA Z Bi(x " be the ¢-expansions

of F(z) and G(x) With As(z)By(z) # 0. Let /\ > 0 be the slope of an edge S
of the ¢-Newton polygon of F(x) having horizontal projection [s — k,s — j|. Let
V=WVs=p=\+ ng] be the augmented valuation over W and « be a root
of ¢(x), then by Theorem 1| there exists & € Gy such that (a,d) is a (K, Vj)-
minimal pair and V' = w,s. So by Lemma [5.3.6, I, s(F(x)) = J, Sas(F(x)) = k.
We first show that the ¢-Newton polygon of F(z)G(z) with respect to W has a
side of slope A and also find the length of the horizontal projection of this side.
Two cases arise:

Case I. A is not the slope of any side of the ¢-Newton polygon of G(z).

In this case, in view of Lemma[5.3.6] I, 5(G(z)) = Sa5(G(x)) = (say). By (5.3.1),
I,.s(F(2)G(x)) = Las(F () + Lns(G(z)) = j+1 and S,s(F(x)G(x)) =k + 1.
Therefore the ¢-Newton polygon of F(z)G(z) has a side with slope A having the
length of horizontal projection equal to that of .S.

Case II. X is the slope of some side of the ¢-Newton polygon of G(z).

Suppose that the side S’ of the ¢-Newton polygon of G(x) of slope A has in-
terval of horizontal projection [t — kl,t — j1].  Therefore by virtue of Lemma
B3G, Ls(G(e)) = i1, Sas(C@)) = k. Using B3, Las(F@)G(a)) = j +
J1s Sas(F(x)G(x)) = k + k1. So the (b—Newton polygon of F(x )G( ) has a side
of slope A whose length of horizontal projection is equal to the sum of the lengths

of the horizontal projections of S and S’.
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The proof of the lemma is complete once we show that if A > 0 is the slope of a
side S” of the ¢-Newton polygon of F'(xz)G(x), then either the ¢-Newton polygon
of F(x) or of G(z) has a side with slope \. If [ denotes the length of the horizontal
projection of S”, then by Lemma [5.3.6] S s(F(2)G(x)) — Ios(F(2)G(x)) =1 > 0.
So in view of (5.3.1), either Sos(F(2)) —Ias(F(x)) > 0 0or Su5(G(x))—Ins(G(z)) >
0 which proves that the ¢-Newton polygon of either F(z) or G(z) has a side of
slope A > 0.

5.4 Proof of Theorem [5.1.6, Corollary and

examples.

Proof of Theorem[5.1.6 'We prove assertions (i), (¢), (¢) of the theorem by induc-
tion on r = the number of sides of the ¢-Newton polygon of F(x) (with respect
to W). For r = 1, let A’ > 0 denote the slope of the single side of the ¢-Newton
polygon of F(x). Let V! = [W,V'¢ = N + W¢] be the augmented valuation over
W associated with ¢, ' = X' + W¢. By Theorem m, there exists & € Gy such
that (o, d’) is a (K, Vp)-minimal pair and V' = w, s. Let €’ be the smallest positive
integer such that ¢’y € G(K(a)). By Lemma [5.3.5, F(z) is a lifting of a polyno-
mial not divisible by 3 belonging to K (a)[y] with respect to («,d’) of degree s/¢'.
Therefore by Theorem [5.3.1] for each root 6 of F(z), G(K(a)) C G(K(6)) and the
degree [K(a) : K] divides [K () : K]. Also by Theorem 5.3.A, Vo(¢(6)) = 1. So
€ G(K()); consequently e divides the index [G(K(0)) : G(K(«))]. Thus the

first three assertions of the theorem are proved when r = 1.

Suppose that r > 2 and let 0 < A\; < Ay < --- < A, be the slopes of the
¢-Newton polygon of F(z). Denote A. by A\. Let V = [W, V¢ = X + W¢] be
the augmented valuation over W associated with ¢, u = A + W¢. By Theorem
, there exists 0 € Gy such that (o, ) is a (K, Vp)-minimal pair and V = wg,s.
Let e be the smallest positive integer such that ex € G(K(«)). Let [s — [, 5]
denote the interval of horizontal projection of the side of the ¢-Newton polygon of

F(x) with slope A\, = A. Therefore in view of Lemma we have S, (F) =1,
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I,5(F) = 0. Claim is that F(z) is equivalent to ¢(x)® in W. Since all sides of
the ¢-Newton polygon of F(z) with respect to W have positive slopes, we see that
W (A;(z)p(x)") > W(h(x)®) for 0 < i < s and hence we have

W(F (@) - é(x)?) = W(, Ai(x)¢(x)’) = min{W (A;(z)é(z)")} > W((x)),

which proves the claim. It now follows that Theorem is applicable to F'(x) and
hence F'(x) has a monic factor F,(x) (say) belonging to K|z| of degree Im which
is a lifting of a monic polynomial belonging to K («)[y] not divisible by y of degree
/e with respect to ¢, u. If 6, is a root of F,.(z), then in view of Theorem 5.3.A,
Vo(¢(6,)) = . By Lemma m, the ¢-Newton polygon of F,.(x) with respect to W
consists of single side which has slope A and length of its horizontal projection is
equal to [. Applying Lemma [5.3.7] we see that the ¢-Newton polygon of the polyno-
mial F(x)/F,(x) consists of r — 1 sides with slopes 0 < A\; < -+ < A\,_;. Therefore
by induction hypothesis applied to F'(x)/F,.(z), assertions (i)—(iii) of the theorem
follow. Assertion (iv) is obtained on applying Theorem 5.3.H to polynomials F;(x)

and then using the last assertion of Theorem |5.3.1]

Proof of Corollary[5.1.8 In view of the hypothesis, the side with the smallest slope

of the ¢-Newton polygon of F(z) with respect to W has interval of horizontal pro-

W (A(2)o(x)) — W(9()°)
s—1

by assertions (i), (i) of Theorem [5.1.6] F'(z) has a monic factor Fi(z) belonging

to K|[z] of degree (s —1)m which is a lifting of a monic polynomial T} (y) € K(«)[y]
not divisible by y with respect to ¢(z), p = W(é(x))+ 1. Let 61 be aroot of F(x).
Then by Theorem (ii), Vo(p(61)) = W(¢(x)) + Ar. Substituting for Ay, we see

~ A
that Vo(¢(61)) = W/sz(;f)) Keeping in mind the hypothesis M ¢ G(K(a))

for any number d > 1 dividing s — [, it follows from assertion (ii) of Theorem
that the index [G(K (61)) : G(K(«))] is divisible by s —1; also by the same assertion

jection [0,s — ] and has slope = A\ (say). Therefore

the degree [K(0;) : K] is divisible by [K(a) : K]. Therefore we have

(s =O)m > [K(61) : K] = [G(K(6h)) : Go][K(61) : K]def(K(61)/K)

> (s — D[G(K(a)) : Go][K(«) : K]def(K(01)/K).
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By Theorem [5.3.1}, def(K («)/K) divides def(K(6,)/K); consequently

(s=0)m > [K(6): K] > (s—1)[G(K()) : Go][K(«) : K|def(K(a)/K) = (s—1)m.
Therefore the polynomial Fj(x) of degree (s — I)m is irreducible over K. Conse-
quently for any factorization G(z)H (z) of F(x) over K, Fi(x) will divide at least
one of G(z) or H(z), say Fi(z) divides G(x). Then degG(z) > (s — l)m. Hence
deg H(x) < lm as desired.

We now give examples to illustrate Theorems [5.1.6 [5.1.7. These examples
occur in [J-K-S4]. As pointed out in Remark [5.4.4] in each of the examples the
factorization of the polynomial F'(z) under consideration into irreducible factors

over the base field cannot be obtained by already known results in this direction.

Example 5.4.1. Let Vj be a henselian valuation of arbitrary rank of a field K whose
value group has a smallest positive element \g = Vo(m) for some 7 in the valuation
ring Ry of V. Let ¢(x) € Ry[z] be a monic polynomial with ¢(x) # x irreducible
over the residue field of Vy. We factorize the polynomial F(x) = (¢(z)*+m)*+ap(x)
into irreducible factors over K, where Vo(a) = tAg and t > s > 2 are integers. Let
Vy denote the second stage inductive valuation defined by Vo = [V, Viz = 0, Vo =
Mo/s]. Take ¢p3(x) = ¢(x)* + 7. Keeping in mind Corollary [5.1.2}, it can be easily
verified using Theorem 5.3.E that ¢3(x) is a key polynomial over Vy. Further ¢s(x)
is not equivalent to ¢(x) in Va because Va(gs(x)) = Ao > Va(o(z)) = 22. So ¢3(z) is
a key polynomial for an inductive valuation over Vy. Since F(x) has ¢3-expansion
o3(x)*+ap(x), the p3-Newton polygon of F(x) with respect to Vy consists of a single

side with slope X = @

+ % If e denotes the smallest positive integer such that
e belongs to the value group Gg + % of Vi, then by virtue of the hypothesis that
Ao is the smallest positive element of Gy, we have e = s. Let a be a root of ¢3(x).
Using assertions (i),(iii) of Theorem[p.1.7, we see that F(z) is a lifting of a linear
polynomial T'(y) € K(a)[y] not divisible by y with respect to ¢s(x), A\o+A. Hence in
view of Theorem[5.1.7(iv), F(z) is irreducible over K and for any root 6 of F(z),

[G(K(6)) : Go] = 8%, [K(0) : K| = deg(¢(x)).
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Example 5.4.2. Let wy be the 2-adic valuation of the field Q of rational numbers
defined by wo(2) = 1. Let w, denote the valuation of the field Q(y) of rational
functions with coefficients from Q in an indeterminate y defined for any polynomial
f(y) belonging to Qly| by wy(f(y))= the highest power of the monomial y dividing
f(y). For a nonzero polynomial f(y) € Q[y], let f* denote the constant term of the
polynomial f(y)/y”*Y W), Let w be the mapping from Q[y] into the group 7 x Z
with lexicographic ordering defined for any nonzero polynomial f(y) by w(f(y)) =
(wy(f(y)), wo(f*)) and w(0) = co. It can be easily checked that w satisfies w(fg) =
w(f) +w(g) and w(f + g) > min{w(f),w(g)} for all f,g in Qly]. So w gives a
valuation of Q(y). Let (K,Vy) denote the henselization of (Q(y),w). Then the
value group T of Vi is Z x Z (lexicographically ordered) with smallest positive
element (0,1). Let s > 2 be any integer. Consider the polynomial F(z) = 2% —a
belonging to K(z) with Vo(a —4) > (0,5). We show that F(x) factors into a
product of two irreducible polynomials over K each of degree 2°=1. Let Vi stand for
the first stage valuation defined by Vi = [Vo, Viz = (0, 5=5)]. Applying Theorem
5.3.E, it can be easily checked that the polynomial ¢o(x) = 27— 2 s a key
polynomial over V. Clearly ¢o(x) is not equivalent to x in Vi. Note that the -
expansion of F(xz) is (¢2(x))? + 4¢a(x) + 4 — a. Denote Vo(4 — a) by p and recall
that by hypothesis pn > (0,5). So the ¢o-Newton polygon of F(x) with respect to V3
consists of two edges. The first edge has slope A\; = (0,1); the second edge has slope
Ay = p—(0,3) > (0,2). Let o be a root of ¢pa(x). In view of assertions (i), (iii)
of Theorem [5.1.7, we see that F(z) = Fi(z)Fy(z), where Fi(z) belonging to K|z
having degree 2571 is a lifting of a monic linear polynomial T;(y) # y belonging to
K(a)[y] with respect to ¢o(x),\i+Vi(p2) = \i+(0,1). It now follows from Theorem
5.1.7(iv) that Fi(z) is irreducible over K for i = 1,2 and for any root 0; of F;(z),
(G(K(6;)) : To] = 257, Thus for each root 6 of F(z), K() is a totally ramified
extension of (K, V).

Example 5.4.3. Let Vi be a henselian valuation of arbitrary rank of a field K with

value group T'y. Let a,b be elements of K such that Vo(a) > VOT(I’) > 0 and VOT(I’) ¢ Ty.

Let by, by, by be elements of K with Vo(by) = 0, Vo(b1) > Vo(b) and Vy(be) > 2V4(b).
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We show that the polynomial F(z) = (2% + ax +b)* 4+ by (2 + ax + b) + b*(box + by)
is irreducible over K. Define Vi = [V, Viz = Vy(b)/2] and ¢o(z) = 2% + ax + b.
Observe that ¢o(x) is a lifting of a linear polynomial with respect to the valuation
Vi = wos where 6 = Vy(b)/2. So by Theorem 5.1.E, ¢o(x) is a key polynomial
over Vi. It is indeed a montrivial key polynomial over Vi because ¢o(x) is not
equivalent to x in Vi. Let a be a root of ¢pa(x). Since the ¢o-expansion of F(x) is
(a())? + bagpa(z) + b*(box + by), it can be easily seen that its ¢o-Newton polygon
with respect to Vi consists of a single edge having slope §/2. Keeping in mind
that Vi(¢pa(x)) = 20 = Vo(b) € Ty and 6 ¢ Ty, we conclude on applying Theorem
5.1.6(iii) that F(x) is a lifting of a monic linear polynomial belonging to K (a)[y]
and hence is irreducible over K by Theorem [5.1.¢{(iv).

Remark 5.4.4. It may be pointed out that Theorem 1.2 of [Jh-Khil] does not es-
tablish the irreducibility of F(z) over K in Ezample even when s =t = 2,
for in this situation the ¢-Newton polygon of F(zx) (with underlying valuation Vy)
consists of a single edge having slope % with length of horizontal projection 4. So
by Theorem 1.2 of [Jh-Khil/, F(x) would be a lifting of a second degree polynomial

belonging to K (B)[y] with respect to (), 22, where 3 is a root of ¢(x). As regards
Example ¢(x) = x is the only irreducible factor of F(x) modulo the maximal
ideal My of the valuation ring of Vi and the ¢-Newton polygon of F(x) consists of
a single edge having slope (0, =) with length of horizontal projection 2°. So F(z)
will be a lifting of a square of a linear polynomial belonging to K[y] with K being
the field of two elements. Therefore Theorem 1.2 of [Jh-Khl|] does not give any

information regarding the factorization of F(x) in this situation.
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