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Abstract

Carnot in 1824, set up the cornerstone for the classical heat engines by giving the
maximum possible efficiency, which is well known as the Carnot efficiency

ηc = 1− TC
TH

But one can not obtain the Carnot efficiency in reality because the power produc-
tion in the Carnot engine is zero due to infeasibly large cycle times. The bound
for the heat engine at non-zero power was set up by Curzon and Ahlborn in 1975,
given by

ηCA = 1−
√
TC
TH

For it, Curzon and Ahlborn consider Carnot-like engine cycling for finite time , in
which the heat flux transfer from the reservoirs was assumed to follow linear law
(Newton law) of the heat flux transfer. But one can take any valid form of the
heat flux transfer law for same model which can change the results. De Vos and
N. V. Orlov have set up upper and lower bounds to the efficiency by considering
the inverse law of heat flux transfer, given by

ηC
2
≤ η ≤ ηC

2− ηC

In this work, we included Maxwell-Cattaneo equation to generalize the model
taken by Curzon and Ahlborn, by using two heat flux transfer laws, Newton law
and inverse law. We have done analytical and numerical calculations for two heat
transfer laws. For analytical calculations, we have included an assumption that
the relaxation time of the working substance is larger than the operational time
of the heat engine. The assumption helped us to study the cases in short time
regime(with respect to relaxation time). And for numerical calculations, we have
used ”Mathematica”.
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Chapter 1

Introduction

Background

Heat engines are the devices which convert heat energy into mechanical work. The
first theory which explains the working of these heat engines is classical equilib-
rium thermodynamics. Classical equilibrium thermodynamics has been developed
in 19th century. It basically gives the macroscopic description of systems in equi-
librium. For a system to remain in equilibrium the processes it undergoes should
be quasi-static and reversible in nature. Which means processes under classical
equilibrium thermodynamics take infinitely long time to occur. In thermodynam-
ics theory, there are mainly four types of processes which are isothermal process,
isochoric process, adiabatic process and isobaric process. Depending upon types
of processes a heat engine undergoes, they have different names.

The most common among all the heat engines is the Carnot heat engine [13]
whose stages are combination of isothermal and adiabatic processes. The working
substance in Carnot heat engine undergoes a cyclic process from higher tempera-
ture to lower temperature. It takes heat from an infinite hot bath at temperature
TH , then convert the heat energy into useful work and rejects extra heat to an infi-
nite cold sink at temperature TC . The working of the Carnot heat engine is based
on main assumption that all the processes are reversible and quasi-static. Also
there is no dissipation in the system. So all the processes in Carnot heat engine
take infinitely long time to occur and the engine stay in equilibrium through out
the cycle. By using mentioned assumption Carnot in 1824, set up cornerstone for
classical heat engines by giving maximum possible efficiency, which is well known
as Carnot efficiency

ηc = 1− TC
TH

(1.1)

But the Carnot heat engine is unrealistic. Because practically one can not make
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an engine which takes infinite long time for its cycle and has no dissipation in the
system. Moreover power (defined as work output per cycle time) production in
case of the Carnot heat engine is zero due to infinite long cycle time but in reality
heat engines operate at finite rates and produce finite power. Secondly, operation
of the real heat engines always entails some dissipation in the system. Also the
real processes are irreversible in nature. The working of the real heat engines
can be explained by the theory of finite-time thermodynamics, which mainly get
developed after 1975.

The study of flow of energy and entropy in the systems operating irreversibly
and in the finite time has been termed ” finite-time thermodynamics”. Study
of the heat engines operating under this regime is one of the leading research
interests in the thermodynamics. A major objective of finite-time thermodynamics
is to understand irreversible, finite-time processes and to establish the general,
natural bounds on the efficiency, basically efficiency at maximum power for such
processes. Over the years there have been many attempts to develop models for the
explanation of the working of the heat engines under finite-time thermodynamics.
Low dissipation model, Onsager theory, linear irreversible thermodynamics and
endoreversible thermodynamics are some of the examples. My work deals with
the ” Endoreversible thermodynamics”.

Endoreversible thermodynamics is one of the fields under finite-time thermo-
dynamics. Its name was given by Rubin [10], [11] in 1979 . He defined an ” endore-
versible engine to be an engine such that during its operation its working fluid goes
reversible transformations.” Endoreversible thermodynamics is a non-equilibrium
approach for the study of the heat engines which consider system(engine) as net-
work of internally reversible(endo-reversible) subsystems. So endoreversible heat
engine is an internally reversible and externally irreversible cyclic devices which
exchange energy with its surroundings. The most important example of such heat
engines is the Curzon-Ahlborn heat engine.

Curzon-Ahlborn heat engine [1] is the Carnot-like heat engine , which is irre-
versibly coupled to the infinite hot bath at temperature TH and the infinite cold
bath at temperature TC . In this, Curzon and Ahlborn have taken the linear heat
flux law known as the Newton law as the only source of the irreversibility. Their
model gives efficiency at maximum power which is given by

ηCA = 1−
√
TC
TH

(1.2)

This is known as the Curzon-Ahlborn efficiency and like the Carnot efficiency,
it depends only the temperature of the heat baths, but does not depend upon the
heat transfer coefficient. This result is a very good approximation for efficiencies
of the real power plants.
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The problem with the Curzon-Ahlborn efficiency is that it is not general like
the Carnot efficiency. The main reason for its non generality is that the model
considers only the Newton law for heat flux transfer. But what happens when
we change the form of the heat flux transfer law? Does the result remain same?
Many authors ([14],[16],[23]) have tried to study the Curzon-Ahlborn heat engine
by taking different heat flux transfer laws which includes inverse law, radiation
law, general law etc. Among all these, the work of De Vos [6] and Orlov [7] is
very attractive. They have taken the inverse law for heat flux transfer in the
Curzon-Ahlborn heat engine and have derived upper and lower bounds, for the
efficiency

ηC
2
≤ η ≤ ηC

2− ηC
(1.3)

where ηC is Carnot efficiency.
The form of all heat flux transfer laws mentioned above, is actually based on

an assumption that the rate of transfer of heat from hotter body to colder body
is time independent. Which means the hotter particles from the hotter body get
transfer to the colder body at the infinite speed when they come in contact with
each other. But speed of any particle can not be more than the speed of light. So
to overcome this problem Maxwell and Cattaneo have derived an equation known
as the Maxwell-Cattaneo equation. The main result of this equation is that it gives
the time of contact and the relaxation time dependent form of the heat fluxes and
thus remove the problem of the infinite speed of particles.

In this work, we include the Maxwell-Cattaneo equation [4] to generalize the
endoreversible model under finite time regime, by using two heat flux transfer
laws, Newton law and inverse law. In order to obtain the analytical solutions,
we have assumed that the relaxation time of the working substance is larger than
the operational time of the heat engine. So we have studied the heat engines in
the short time regime(with respect to relaxation time) using two types heat flux
transfer laws and by using the Maxwell-Cattaneo equation.

Document structure

In chapter 2, all of the basics required for our work is given. In chapter 3, detail
analytical calculations in short time regime for Newton law case and its numerical
calculation for general case is given. In chapter 4, detail analytical calculations in
short time regime for inverse law case and its numerical calculation for short time
regime only is given. Chapter 5, includes short conclusion of our work, together
with an outlook about the further improvements of work.

3



Chapter 2

Basics

Description

The aim of this chapter is to describe all the basics which I have used for my
thesis work. It includes the description of the, Carnot cycle, endoreversible ther-
modynamics, Curzon-Ahlborn model of heat engine, inverse law calculation and
Maxwell-Cattaneo equation.

2.1 Carnot cycle

Carnot cycle is the most common used cycle for the study of the heat engines. It
is an four stage cycle. Each stage belongs to a process as shown in [Fig(2.1)]. All
the processes in Carnot cycle are reversible and quasi-static.
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Figure 2.1: Carnot cycle

2.2 Endoreversible Thermodynamics

Endoreversible thermodynamics is a field of finite time thermodynamics which
helps to study the real heat engines by making some realistic assumptions. The
real heat engines are always irreversible in nature and this field consider only
external irreversibility in a engine but do not consider any internal irreversibility.
It mainly aims at making an more realistic assumptions about the heat flux transfer
between the working substance and the reservoirs in finite time. If a Carnot-like
engine is considered then this field makes following assumptions:

1. Isothermal stages are of finite time and the only source of irreversibility
during these stages is the heat flux transfer from the reservoirs.

2. Adiabatic stages are of very short time and are reversible. So there is no
irreversibility during these stages.

The model which follows ”Endoreversible thermodynamics” assumptions can be
named as the endoreversible model. The results of this model depend upon the
type of heat flux transfer law used. Following is the description for some of the
heat flux transfer laws.

1. Newton Law - This law states that the form of heat flux transfer between
two connected contacts depends linearly on temperature difference between
them.

qN = k(T1 − T2) (2.1)

Here k is thermal conductivity between two contacts, T1 is temperature of
hotter body and T2 is temperature of colder body. This law is mainly applied
to the solids for the conduction but it can be also applied for the convection
for small temperature differences. Newton law is the most interesting and
widely used law for the study of the endoreversible model.

2. Radiation law - If very high temperature source is used, then the form of the
heat flux transfer between two bodies follows the radiation law. Typically it
is described by the Steafen-Boltzman law for black body radiation

qR = k1(T
4
1 − T 4

2 ) (2.2)

Where k1 is Steafen-Boltzman constant, T1 and T2 have same meaning as
above.
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3. Inverse law- According to this law, the heat flux transfer between two bodies
is inversely proportional to the temperature difference between them

qI = k(
1

T2
− 1

T1
) (2.3)

Like Newton law, this law also can be used for the conduction or convection
phenomenon.

4. General Law- A general heat transfer law can be written as

qG = K1(T
n
1 − T n2 ) (2.4)

this includes the Newton law for (K1 = k, n = 1) , the radiation law for
(K1 = k1 , n = 4) and the inverse law for (K1 = k, n = −1).

2.3 Curzon-Ahlborn heat engine

Curzon-Ahlborn heat engine [Fig.(2.2)] is an best example of the endoreversible
model. Its an regular heat engine, which converts heat energy into mechanical
work. The working substance in this heat engine follows Carnot cycle [Fig(2.1)]
which is irreversibly coupled to the infinite hot bath at temperature TH and the
infinite cold sink at temperature TC . Two isothermal stages operate for finite
time and two adiabatic stages operate for very short time. During isothermal
expansion stage the temperature of working substance remains T1w which is higher
than the temperature of working substance in the isothermal compression stage
T2w as shown in [Fig.(2.2)]. This engine is assumed to avoid any heat leaks, heat
friction etc. The other main assumption is that the heat flux transfer between the
infinite heat bath or sink, and working substance follows the Newton law of heat
flux transfer (qN).
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Figure 2.2: Curzon-Ahlborn heat engine.

So, the heat flux transfer forms during the isothermal expansion and the
isothermal compression stages are

q1 = α(TH − T1w) q2 = β(T2w − TC) (2.5)

By using Q1 =
∫ t1
0
q1dt and Q2 =

∫ t2
0
q2dt , total heat transfer for the isothermal

expansion stage (Q1) and total heat transfer for the isothermal compression stage
(Q2) are given by

Q1 = α(TH − T1w)t1 Q2 = β(T2w − TC)t2 (2.6)

Here t1 is the time of contact of the heat bath with the working substance during
the isothermal expansion stage and t2 is the time of contact of the cold sink with
the working substance during the isothermal compression stage. The adiabatic
expansion stage and the adiabatic compression stage are of negligible time. One
can get the entropy balance equation, which is also known as the endoreversiblity
condition from two adiabatic stages, given by

Q1

T1w
=

Q2

T2w
(2.7)

Using (2.6) and (2.7),the relation between t1 and t2 is

t1 = t2
βyT1w
αxT2w

(2.8)
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where x = TH − T1w and y = T2w − TC . Now by using (2.8) and by using Ptot =
Wtot/ttot, where Wtot = Q1 − Q2 is total work per cycle and ttot = t1 + t2 is total
time per cycle, the expression for total power (Ptot) is obtained

Ptot =
αβxy

(
TH − TC − x− y

)
βy
(
TH − x

)
+ αx

(
TC + y

) (2.9)

Next step is to maximize (2.9) with respect to x and y by using

dPtot
dx

= 0 ,
dPtot
dy

= 0 (2.10)

By solving two equations obtained from (2.10), relation between x and y is

y =

√
αTC
βTH

x (2.11)

By inserting (2.11) into one of the equation obtained from (2.10), optimal value of
x, xmax and then by inserting xmax into (2.10), ymax is calculated. The expressions
for xmax and ymax are

xmax =
1−
√
THTC

1 +
√
α/β

(2.12)

ymax =

√
THTC − 1

1 +
√
β/α

(2.13)

Next step is to calculate the efficiency at the maximum power. In general efficiency
is defined as

η =
Q1 −Q2

Q1

(2.14)

On solving (2.14) and by using (2.6), the expression for maximum efficiency can
be written as

ηmax = 1− TC + ymax
TH − xmax

(2.15)

By inserting xmax and ymax expressions from (2.12) and (2.13) respectively into
(2.15), efficiency at maximum power is,

ηCA = 1−
√
TC
TH

(2.16)

This is known as the Curzon-Ahlborn efficiency, because of which it is denoted as
ηCA. It can also be written in terms of the Carnot efficiency as

ηCA = 1−
√

1− ηC (2.17)

The plot of ηC v/s ηCA is shown in fig(2.3)
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Figure 2.3: X axis represents the Carnot efficiency and Y axis represent the Curzon-
Ahlborn efficiency.

In final step, by inserting (2.12) and (2.13) into (2.9), maximum power is calculated

Pmax = αβ

[√
TH −

√
TC√

α +
√
β

]2
(2.18)

which can be written in terms of ηC as

Pmax = αβTH

[
1−
√

1− ηC√
α +
√
β

]2
(2.19)

whose plot with respect to ηCA is shown in fig(2.4)
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Figure 2.4: X axis represents the Carnot efficiency and Y axis represents the maximum
power. The graph is plotted for α = 1 , β = 1 and TH = 1000

2.4 Inverse law

The efficiency obtained by the Curzon and Ahlobrn is independent of the thermal
conductivity constants and like the Carnot efficiency, it only depends on the heat
baths temperatures. On one hand, this result is very attractive but on the other
hand this result is not very general. More general result can be obtained by using
the inverse law of heat flux transfer (qI) in the endoreversible model rather than
the Newton law of heat flux transfer.
The model taken in this case is similar to the Curzon-Ahlborn model, with includ-
ing the assumption that there is no heat leaks , heat friction etc. in the system.
By taking notations for temperatures, the time of contacts and the conductivity
constants similar to the section (2.3), the heat flux transfer for the isothermal
expansion stage and for the isothermal compression stage is given by,

q′1 = α
( 1

T1w
− 1

T1

)
, q′2 = β

( 1

T2
− 1

T2w

)
(2.20)

Using Q′1 =
∫ t1
0
q′1dt and Q′2 =

∫ t2
0
q′2dt, the total heat transfer for the isothermal

expansion stage (Q′1) and the total heat transfer for the isothermal compression
stage (Q′2) has been calculated

Q′1 = α
( 1

T1w
− 1

T1

)
t1 , Q′2 = β

( 1

T2
− 1

T2w

)
t2 (2.21)
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Now by using the endoreversibility condition,

Q′1
T1w

=
Q′2
T2w

, (2.22)

relation between t1 and t2 is obtained

t1 =
β
(

1
T2
− 1

T2w

)
α
(

1
T1w
− 1

T1

) T1w
T2w

t2 (2.23)

Now by using the definition of the power and (2.21), (2.22), the expression for the
total power is

P ′tot =
αβ
(

1
T1w
− 1

T1

)(
1
T2
− 1

T2w

)(
T1w − T2w

)
α
(

1
T1w
− 1

T1

)
T2w + β

(
1
T2
− 1

T2w

)
T1w

(2.24)

The equation (2.24) can be written in a little nicer way by using the definition of

the efficiency η = 1− Q′
2

Q′
1

, which on simplifying become

η = 1− T2w
T1w

, (2.25)

⇒ T2w = T1w(1− η) (2.26)

By inserting (2.26) into (2.24) and simplifying it, the expression of the power can
be written as

P ′tot =
αη(

1
T1w
− 1

T1

)−1
+ α

β

(
1
T2
− 1

T2w

)−1(
1− η

) (2.27)

Equation (2.27) has two variables now, η and T1w. Next step is to optimize
(2.27) with respect to T1w and to obtain its expression in terms of η. So by
using dP ′tot/dT1w = 0 , T1w is,

T1w =

[√
α
β

+ (1− η)−1
]
THTC

TH + TC
√

α
β

(2.28)

By inserting (2.28) into (2.27) and simplifying it, expression of power can be
written in terms of η, only

P ′tot =
αη
[
TH(1− η)− TC

]
THTC

[√
α
β

+ 1
]2 (2.29)
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The plot of P ′tot v/s η is given in [Fig.(2.5)]. The plot shows two extreme ends
where the power and the efficiency both are zero and one maximum point, which
is the efficiency at maximum power.

Figure 2.5: X axis represents the general efficiency and Y axis represents the power.
The graph is plotted for α = 2 , β = 2 , TH = 100 and TC = 40

The efficiency at the maximum power is calculated, by using, dP ′tot/dη
′ = 0 ,

η′max =

[
1 +

√
α
β

][
1− TC

TH

]
2 +

√
α
β

[
1 + TC

TH

] (2.30)

which further can be written in terms of the Carnot efficiency (ηC = 1− TC/TH),

η′max =

[
1 +

√
α
β

]
ηC

2 +
√

α
β

[
2− ηC

] (2.31)

Equation (2.30) gives upper and lower bounds to the efficiency at the maximum
power. These bounds are obtained by using the limits α/β → 0 and β/α → 0.
The limit α/β → 0 gives ηC/2 and the limit β/α → 0 gives ηC/(2 − ηC) . This
can be expressed as

ηC
2
≤ η′max ≤

ηC
2− ηC

(2.32)

The other limit is the symmetric limit which is calculated by inserting α = β into
(2.30)

η′max =
2ηC

4− ηC
(2.33)

The plot of all the efficiencies at the maximum power is shown in [Fig.(2.6)]
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Figure 2.6: X axis represents Carnot efficiency and Y axis represents efficiency at
maximum power for 1) α/β → 0, 2) β/α→ 0 and 3) α = β

2.5 Maxwell-Cattaneo equation

Fourier law of heat conduction linearly relates temperature gradient ∇T to the
heat flux according to the following equation

q = −λ∇T (2.34)

where λ is the heat conductivity, depending generally upon the temperature. If
we put above equation into the energy balance equation, written in absence of the
source term, as

ρ
du

dt
= −∇.q, (2.35)

and relating the specific internal energy u to the temperature by means of du =
cvdT , with cv being the heat capacity per unit mass at the constant volume, one
obtains,

ρcv
dT

dt
= ∇.(λ∇T ) (2.36)

where ρ is the density and t is the contact time between two different temperature
bodies. Above equation is well known equation for heat conduction, whose name is
”Fourier equation”. From mathematical point of view, this equation is a parabolic
equation. Although this equation is well tested for most of the practical problems,
it fails to describe the transient temperature field in situations involving short
times, high frequencies and small wavelengths. The main reason for such failure lies
in the statement of Fourier’s law, according to which when two bodies at different
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temperatures comes in contact with each other, there is instantaneously rise in
the heat flux everywhere in the entire system. In other terms, any temperature
disturbance will propagates at the infinite velocity. But physically, it is expected,
and it is experimentally observed, that a change in temperature gradient should
be felt after some build-up or relaxation time, and that disturbances travel at the
finite velocity. To overcome this problem, Cattaneo in 1948 proposed a damped
version of Fourier’s law by introducing a heat flux relaxation term, given by

q + τ
dq

dt
= −λ∇T

where τ is the heat flux relaxation time term. We can see from above equation that
if τ is very small and is negligible then this equation will be reduced to Fourier’s
law. Because Maxwell have already studied relaxational effects on heat conductors
in 1867, this equation is also known as Maxwell-Cattaneo equation.

Our main interests lies in the general solution of the Maxwell-Cattaneo equation
which gives time dependent heat flux form,

qt = λ∇T + ue−t/τ , (2.37)

where u is the integration constant.
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Chapter 3

Extension of Curzon-Ahlborn
calculations in short time regime

3.1 Introduction

This chapter includes our work of extending the Curzon-Ahlborn calculations in
short time regime. For this we have used general solution of the Maxwell-Cattaneo
equation and applied it to the Curzon-Ahlborn model of the heat engine. To get
analytical calculations in short time regime we have used an assumption whose
details are given in section(3.2). We have also done numerical calculation for the
general case, without taking any assumption, whose details is given in section(3.3).

3.2 Newton law in short time regime

We started by taking the general solution of the Maxwell-Cattaneo equation

qt = λ∇T + ue−t/τ (3.1)

where u is the integration constant and applied it to the Curzon-Ahlborn heat
engine. As mentioned in the section (2.3) the Curzon-Ahlborn heat engine is a
four stage heat engine, which follow the Carnot cycle. Its isothermal expansion
stage lasts for time t1 and its isothermal compression stage lasts for time t2. During
the isothermal expansion stage there is the heat flux transfer from the infinite hot
bath at temperature TH to the working substance at temperature T1w and during
the isothermal compression stage there is release of the heat flux from the working
substance at temperature T2w to the infinite cold sink at temperature TC . The form
of these heat flux transfers have taken to be linear, according to the Newton law.
So when we apply Maxwell-Cattaneo equation for the heat flux on the isothermal
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expansion and the isothermal compression stages we get general form of the heat
fluxes,

qie = αx(1− e−t′1/τ ) , qic = βy(1− e−t′2/τ ) (3.2)

where t′1 ε [0, t1] and t′2 ε [0, t2]and x, y, α, β, τ have same definitions as in the
Curzon-Ahlborn calculations, mentioned in the section (2.3). If we look at the
plot of qie or qic with respect to the contact time t1 or t2, [Fig(3.1)], we can divide
the plot in two segment.

Figure 3.1: This graph is plotted for the heat flux transfer in the isothermal expansion
stage. The plot for the isothermal compression stage will be same. Here X axis represents
the time of contact of the working substance with the infinite heat bath during the
isothermal expansion stage and Y axis represents the heat flux transfer during it. In this
the value of α = 1 , TH = 10 and T1w = 9

In the first segment the heat flux actually starts building up from time zero and
reach at the transition point. In the second segment, after the transition point,
the heat flux becomes constant with respect to time. The form of the heat flux
transfer which Curzon and Ahlborn have taken lies in the second segment which
means, it is constant with respect to time. But we are interested in the form
of the heat flux lies in the first segment. So for it, we have taken an important
assumption for our further calculations.

We assume that the contact time for the isothermal expansion stage t1 and the
contact time for the isothermal compression stage t2 is very small with respect to
the relaxation time for the heat flux. Mathematically it is,

t1 << τ , t2 << τ (3.3)
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This assumption lead us to study the model in short time regime. Now we can
write the expression for the heat fluxes qie and qic in short time regime. By using
the assumption we can expand the exponential terms in (3.2) upto first order,
which gives

qie =
αxt1
τ

, qic =
βyt2
τ

(3.4)

Now we write the total heat transfer form for the isothermal expansion stage and
for the isothermal compression stage by using Qie =

∫ t1
0
qiedt

′
1 and Qic =

∫ t2
0
qicdt

′
2

and we get,

Qie =
αxt21
2τ

, Qic =
βyt22
2τ

(3.5)

In next step we want relation between the contact times t1 and t2 , for it we used
the endoreversible condition, as mentioned in section(2.3)

Qie

T1w
=
Qic

T2w
, (3.6)

By inserting (3.5) into (3.6) we get

αxt21
2τT1w

=
βyt22

2τT2w
(3.7)

On solving (3.7) for t2 we get relation between t1 and t2,

t2 = t1

√
αxT2w
βyT1w

(3.8)

Next we calculated the power form by using P tot = Wtot/ttot where Wtot = Qie−Qic

and ttot = t1 + t2 and by using (3.5), (3.8) we get

Ptot =
t1αx
√
βy
(
TH − x− y − TC

)
2τ
√
TH − x

[√
βy(TH − x) +

√
αx(y + TC)

] (3.9)

Now task is to maximize (3.9) with respect to x and y by using dP tot/dx = 0
and dP tot/dy = 0 We used ”Mathematica” to get this calculations and obtained
relation between x and y on solving dP tot/dx = 0 and dP tot/dy = 0,

x = TH −
√
TH
TC

(TC + y) (3.10)
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Further we solved for y by inserting (3.10) into equation obtained from dP tot/dy =
0. Finally we obtained an cubic equation with respect to y, given by

4
(β
α

+ 1
)
y3 = 8y2r − 5yr2 + r3 (3.11)

where r is
√
TCTH − TC . On solving (3.11) for y, we get only one valid root. We

then simplified this root in three ways

1. By using limit α/β → 0, that is when the thermal conductivity in the isother-
mal compression stage is much higher than the thermal conductivity in the
isothermal expansion stage. The expressions for ymax and xmax for it are

ymax = 0 , xmax = TH −
√
THTC (3.12)

2. By using limit β/α→ 0, that is when the thermal conductivity in the isother-
mal expansion stage is much higher than the thermal conductivity in the
isothermal compression stage. The expressions for ymax and xmax for it are

ymax =
√
TCTH − TC , xmax = 0 (3.13)

3. And by using α = β , that is the symmetric case. The expressions for ymax
and xmax for it are

ymax = 0.302
(√

TCTH−TC
)
, xmax = TH−

√
TH
TC

(
0.698TC−0.302

√
THTC

)
(3.14)

Now task is to obtain efficiency at maximum power for all cases, by using respective
xmax and ymax values. The basic formula for efficiency is given by

η =
Woutput

Qinput

(3.15)

where Woutput = Qie−Qic and Qinput = Qie, the expressions for Qie and Qic is given
in (3.5). If we simplify (3.15) and write in its maximum form then it becomes

ηmax = 1− TC + ymax
TH − xmax

(3.16)

Now by inserting respective ymax and xmax values for all the cases in (3.16), we
get same result for all cases, given by

ηmax = 1−
√
TC
TH

(3.17)

Which is similar to the Curzon-Ahlborn efficiency (ηCA). The result is quite ex-
citing because two approaches for calculations are very different from each other
but at last both give same result for the efficiency at the maximum power.
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3.3 Numerical calculations

We have used ”Mathematica” for numerical calculations. It has done for two cases,
short time regime case and for the general case. For short time regime case, it is
possible to obtain the analytical solution as shown in section (3.2) but for the
general case, analytical solution is difficult to obtain. So the main aim of these
calculations is to solve the general case.

Here general case is the case which includes no assumption and takes the gen-
eral form of heat flux transfer for isothermal expansion stage and for isothermal
compression stages, given in (3.2) . Now the general form of the total heat transfer
for two stages can be obtained by using Qie =

∫ t1
0
qiedt

′
1 and Qic =

∫ t2
0
qicdt

′
2. So

we get,

Qie = αx
(
t1 + τ(e−t1/τ − 1)

)
, Qic = βy

(
t2 + τ(e−t2/τ − 1)

)
(3.18)

Next we obtained the general relation between t1 and t2 by using endoreversible
condition

Qie

T1w
=
Qic

T2w
(3.19)

which is further inserted in the power formula P = (Qie − Qic)/(t1 + t2) from
which we obtained the general expression for the power. The expression obtained
depends upon α, β, t1 , τ , x and y. Then we used numerical code to maximize
this power form with respect to x and y .

3.3.1 Result

The first result of this calculation is shown in [Fig.(3.2)]. In this we have plotted
obtained values for the efficiency at the maximum power with respect to the Carnot
efficiency.
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Figure 3.2: Here α = 1, β = 1 , τ = 10, TH = 100 and t1 = 1

The curve obtained from this is similar to the curve ηC v/s ηCA as shown in
[Fig(2.3)]. So in first result, the conclusion is that the solution for the efficiency
at maximum power for general case is the Curzon-Ahlborn efficiency (ηCA).

In the second result, we have plotted obtained maximum power values with
respect to the Carnot efficiency. This is shown in [Fig(3.3)].

Figure 3.3: Here α = 1, β = 1 , τ = 10, TH = 100 and t1 = 1
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The curve is plotted for specific values of t1, τ , α and β and it follows the same
trend as the curve ηCA v/s Pmax, shown in [Fig.(2.4)] for the Curzon-Ahlborn case.

In the third and last result, we have plotted obtained maximum power values
with respect to the relaxation time. The plot is shown in [Fig.(3.4)]

Figure 3.4: Here α = 1, β = 1, TH = 10, TC = 9 and t1 = 10

This plot tells that by increasing the relaxation time, the maximum power de-
creases and reaches to zero after reasonable increase in the relaxation time value.

In the conclusion of this chapter, the results in short time regime and for the
general case are reproduced for the endoreversible model using the Newton law in
finite-time regime and the study of the dependence of the maximum power on the
relaxation time is done.
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Chapter 4

Extension of inverse law
calculations in short time regime

4.1 Introduction

This chapter includes our work of extending the inverse law calculations for the
endoreversible model in short time regime(as mentioned in section (3.2)). The
starting point and the way of the calculations is same as in section (3.2). The
only change is the law of the heat flux transfer taken and the power optimization
parameters. The details of calculation is given in section (4.2). We have also done
numerical calculations of this case whose results are given in section (4.3).

4.2 Inverse law in short time regime

According to the inverse law, the heat flux transfer between two bodies is inversely
proportional to the temperature difference between them. By applying this defi-
nition and eq.(2.37) to the endoreversible model (fig(2.2)), the general expressions
for the heat flux transfer for the isothermal expansion stage and for the isothermal
compression stage are written as

q′ie = α
( 1

T1w
− 1

TH

)(
1−e−t′1/τ

)
, q′ic = β

( 1

TC
− 1

T2w

)(
1−e−t′2/τ

)
(4.1)

where t′1 ε [0, t1] and t′2 ε [0, t2]and α, β, τ have same definitions as in the Curzon-
Ahlborn calculations, mentioned in the section (2.3). To write the expressions of
(4.1) into short time regime we have used the assumption (3.3) and have expanded
the exponentials in (4.1) to first order, which gave,

q̃ie =
α
(

1
T1w
− 1

TH

)
t1

τ
, q̃ic =

β
(

1
TC
− 1

T2w

)
t2

τ
(4.2)
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Next the total heat transfer during two isothermal stages is obtained by using
Q̃ie =

∫ t1
0
q′iedt

′
1 and Q̃ic =

∫ t2
0
q′icdt

′
2.

Q̃ie =
α
(

1
T1w
− 1

TH

)
t21

2τ
, Q̃ic =

β
(

1
TC
− 1

T2w

)
t22

2τ
(4.3)

Now by using the endoreversibility condition,

Q̃ie

T1w
=
Q̃ic

T2w
(4.4)

and by using (4.3), relation between t1 and t2 can be written as

t2 = t1

√√√√√α
(

1
T1w
− 1

TH

)
T2w

β
(

1
TC
− 1

T2w

)
T1w

(4.5)

Next by using (4.5) and the definition of the power(P̃tot = Woutput/ttot) where
Woutput = Q̃ie− Q̃ic and ttot = t1 + t2, we get the expression for the power in short
time regime.

P̃tot =

t1α
(

1
T1w
− 1

TH

)√
β
(

1
TC
− 1

T2w

)(
T1w − T2w

)
2τ
√
T1w

[√
β
(

1
TC
− 1

T2w

)
T1w +

√
α
(

1
T1w
− 1

TH

)
T2w

] (4.6)

Next we optimized (4.6) with respect to T1w and T2w by using dP̃tot/dT1w = 0 and
dP̃tot/dT2w = 0. For dP̃tot/dT1w = 0 we get,(

2THT1w − 4THT2w + 2T1wT2w

)√
β
(

1
TC
− 1

T2w

)
T1w +

(
T 2
1w − 2THT2w + T1wT2w

)√
α
(

1
T1w
− 1

TH

)
T2w = 0 (4.7)

and for dP̃tot/dT2w = 0 we get,(
2T 2

2w − 2TCT2w

)√
β
(

1
TC
− 1

T2w

)
T1w +

(
T 2
2w + T1wT2w − 2T1wTC

)√
α
(

1
T1w
− 1

TH

)
T2w = 0 (4.8)

Now by dividing (4.7) with (4.8) and solving, we get relation between T1w and
T2w to be,

T1w =
2

2
T2w

+ 1
TH
− 1

TC

(4.9)

Next by inserting (4.9) into (4.8) and simplifying it, we get√
α

(
− 1

2

(
1
TH

+ 1
TC

)
T2w + 1

)(
− 4TC + 4T2w + T 2

2w

(
1
TH
− 1

TC

))
+ 2

√
2β
(

1
TC
− 1

T2w

)(
1
TH
− 1

TC
+ 2

T2w

)(
− TCT2w + T 2

2w

)
= 0

(4.10)
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Next task is to solve (4.10) for T2w and thus to get optimum value for T2w. We
have solved it by using the limits α/β → 0 and β/α→ 0. The limit α/β → 0 give
one valid solution which is,

T2w = TC (4.11)

and the limit β/α→ 0 gives two valid solutions which are

T2w =
2THTC
TH + TC

(4.12)

and

T2w =
2
(
TH −

√
THTC

)
TH
TC
− 1

(4.13)

Next by inserting (4.11) in (4.9) the optimum value of T1w for α/β → 0 is,

T1w =
2THTC
TH + TC

(4.14)

by inserting (4.12) into (4.9), the first optimum value of T1w for β/α→ 0 is

T1w = TH (4.15)

and by inserting (4.13) into (4.9), the second optimum value of T1w for limit
β/α→ 0 is,

T1w =
2THTC

(
1−

√
TC
TH

)
(
TH − TC

)√
TC
TH

(4.16)

Now by using the definition of efficiency(η = WOutput/Qinput), where WOutput =
Q̃ie−Q̃ic and Qinput = Q̃ie and using (4.3) and (4.5), the expression for the general
efficiency can be written as

η = 1− T2w
T1w

(4.17)

By inserting (4.11) and (4.14) into (4.16), the efficiency at the maximum power(ηmax)
for the limit α/β → 0 is,

ηmax =
ηC
2

(4.18)

by inserting (4.12)(i.e for first solution) and (4.15) into (4.17), the efficiency at the
maximum power(ηmax) for the limit β/α→ 0 is,

ηmax =
ηC

2− ηC
(4.19)
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and by inserting (4.13)(i.e for second solution) and (4.16) into (4.17), the efficiency
at the maximum power(ηmax) for the limit β/α→ 0 is,

ηmax = 1−
√

1− ηC (4.20)

Now as the limit β/α → 0 is giving two optimum values for the efficiency at the
maximum power, so the question is which one among (4.19) or (4.20) is maximum
or minimum. We have tried to answer it analytically and numerically but the
question is still remaining to be get answered properly.

4.3 Further work which can be done

1. One can try to obtain general form for the efficiency at the maximum power
in short time regime.

2. One can numerically maximize the power expression for the short time case
and the general case(i.e without using any assumption) and can study the
behaviour of the maximum power or efficiency at the maximum power with
respect to Carnot efficiency. The other interesting study which can be done
is on the behaviour of the maximum power with respect to the relaxation
time.
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Chapter 5

Conclusion

We have introduced Maxwell-Cattaneo equation into endoreversible model for two
heat flux transfer laws, Newton law and inverse law. For the analytical calculation
of two cases, we have introduced an assumption, which gave results in short time
regime. The analytical results obtained for two cases are similar to the results in
finite time regime(i.e without using Maxwell-Cattaneo equation). We have also
done numerical calculations for both short time cases and we have successfully
obtained numerical solution for general case(i.e without using any assumption) for
Newton law.

In further work, one can apply the Maxwell-Cattaneo equation to the other
models in finite-time thermodynamics like low dissipation model ([2], [15]) etc. or
one can apply Maxwell -Cattaneo equation by taking finite heat sources ([17], [18])
instead of infinite heat sources.
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