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Glossary of notations

k : a field.
V : finite dimensional vector space.
C : the field of complex numbers.
Vˇ : dual of a vector space.
dimV : dimension of a vector space.
codimV : codimension of a vector space.
S∗V : symmetric algebra over a vector space.
Kp,q(B, V ) : (p,q)th Koszul cohomology group of a graded module.
γC : Clifford index of a curve.
|D| : linear system of a divisor.
K : canonical line bundle on a curve.
g : genus of a curve.
H i(C,L) : cohomology group.
hi(C,L) : dimension of the cohomology group.
OC(D) : sheaf of holomorphic functions with divisor bounded by D.
degD : degree of a divisor.
[r] : greatest integer part of a real number.
ΦK : canonical map of a curve.
f∗G : pullback of a vector bundle.
f∗G : push forward of a vector bundle.
detG : determinant of a vector bundle.
EK : pullback of universal quotient bundle by the canonical map.
Γ(C,L) : global sections of a line bundle.
∧iG : exterior power of a vector bundle.∑

i : cone of locally decomposable sections.
Pn : projective space of dimension n.
χ(L) : Euler characteristic of a line bundle.
τ : hyperplane section.
grd : a linear system of dimension r and degree d.
βij : graded betti numbers.
Mij : k- vector space of dimβij .

ζb : Eagon-Northcott complex.(
n
r

)
: n choose r.

Γ : graph morphism.
∆ : diagonal morphism.
Sl2(C) : special linear group of order 2 over C.
(L, V ) : generated linear system.

: end (or omission) of proof.





Chapter 1

Green’s conjecture

Introduction

In 1984, M.Green introduced Koszul cohomology in his paper [Gre84]. In this foundational
paper, he introduced Koszul cohomology group Kp,q(C,L) associated to a line bundle L over a
smooth projective variety C. He studied various properties of these groups and established certain
vanishing theorems. In the appendix to this paper [Gre84], the condition of vanishing of Koszul
cohomology group is related to a numerical invariant named as Clifford index of the projective
curve C.
The term Clifford index was defined by H.H. Martens for a smooth projective curve of genus g ≥ 2

with H0(C,L) ≥ 2 and H1(C,L) ≥ 2.
Green [Gre84] stated a conjecture that relate the Koszul cohomology of a smooth projective curve
over C to its Clifford index. This conjecture became an important guideline for future research. A
lot of work has been done on this conjecture. In 1988, K. Paranjape and S. Ramanan [PR88] gave
an equivalent formulation to Green conjecture. In 1992, K. Hulek, K. Paranjape and S. Ramanan
[HPR92] proved stronger version of Green conjecture for curves with Clifford index 1 and in 1998,
A. Hirshowitz and S. Ramanan [HR98] gave new evidence for Green conjecture on syzygies of
canonical curve. Then in 2002, C. Voisin [Voi02] achieved a major breakthrough by proving Green
conjecture for curves of even genus lying on a K3 surface and in 2005, she [Voi05] proved it for
curves of odd genus lying on K3 surface. Then finally in 2011, M. Aprodu and G. Farkas [AF11]
couped with results of Voisin and Hirshowitz - Ramanan provided a complete solution to Green
conjecture for smooth curves on arbitrary K3 surfaces. In 2012, Eusen and Schreyer [ES12] gave
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2 CHAPTER 1. GREEN’S CONJECTURE

a remark on conjecture of K. Paranjape and S. Ramanan.

This chapter is devoted to a review of a number of basic definitions and results on Koszul
cohomology and Clifford index, which are mainly included to fix the notations and to obtain a
self contained presentation. In §1.1, 1.2 and 1.3, Koszul complex, Koszul cohomology group
Kp,q(C,L) in algebraic and geometric context respectively [AN10], [Gre84]are defined. In §1.4,
Clifford index and its various properties are given and in §1.5, Green’s conjecture is stated.

1.1 The Koszul Complex
Let V be a vector space of dimension r + 1 over a field k. Given a nonzero element x ∈ Vˇ, the
corresponding map

〈x, 〉 : V → k

extends uniquely to an antiderivation

ix : ∧∗V → ∧∗V

of the exterior algebra. This derivation is defined inductively by putting ix|V = 〈x, 〉 : V → k and

ix(v ∧ v1 ∧ · · · ∧ vp−1) = 〈x, v〉.v1 ∧ · · · ∧ vp−1 − v ∧ ix(v1 ∧ · · · ∧ vp−1).

The resulting maps

ix : ∧pV → ∧p−1V

are called contraction (or inner product) maps ; they are dual to the exterior product maps

λx : ∧p−1 Vˇ→ ∧p Vˇ

and satisfy ix ◦ ix = 0. Hence we obtain a complex

K•(x) : (0→ ∧r+1V → . . .→ ∧pV ix−−→ ∧p−1V → ∧p−2V → . . .→ k → 0)

called the Koszul complex .

Remark 1.1. For any α ∈ k∗, the complexesK•(x) andK•(αx) are isomorphic. Hence the Koszul
complex K•(x) depends only on the point [x] ∈ P(Vˇ)
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Lemma 1.1.1. Given nonzero elements ξ ∈ V , x ∈ Vˇ, let λξ : ∧p−1V
∧ξ−−→ ∧pV be the map

given by the wedge product with ξ. We have

ix ◦ λξ + λξ ◦ ix = 〈x, ξ〉.id.

Proof: It is sufficient to verify the statement on decomposable elements.

(ix ◦ λξ)(v1 ∧ v2 ∧ · · · ∧ vp) = ix(ξ ∧ v1 ∧ v2 ∧ · · · ∧ vp)

= 〈x, ξ〉.v1 ∧ v2 ∧ · · · ∧ vp +∑
i

(−1)i−1〈x, vi〉.ξ ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vp

(ξ ◦ ix)(v1 ∧ v2 ∧ · · · ∧ vp) =
∑
i

(−1)i〈x, vi〉.ξ ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vp

and the statement follows.

Corollary 1.1.2. For any non zero element x ∈ V ˇ, the Koszul complexK.(x) is an exact complex
of k- vector spaces.

Proof : Choose ξ ∈ V such that 〈x, ξ〉 = 1 and apply lemma 1.1.1.

1.2 Koszul Cohomology in algebraic context
Let B be a graded module over the symmetric algebra S∗V . Let i : ∧pV → ∧p−1V ⊗ V be the
dual of the wedge product map λ : ∧p−1V ˇ⊗V ˇ→ ∧pV ˇ. Since

∧p−1V ⊗ V ∼= Hom(V ˇ, ∧p−1V )

Thus, under this identification, we have

∧pV yi−−→ ∧p−1V ⊗ V

v1 ∧ · · · ∧ vp 7→ (x 7→ ix(v1 ∧ · · · ∧ vp)).

The graded S∗V module structure of B induces maps mq : V ⊗Bq → Bq+1 for all q. Define
a map

dp,q : ∧pV ⊗Bq → ∧p−1V ⊗Bq+1
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by the composition

∧pV ⊗Bq ∧p−1V ⊗ V ⊗Bq

∧p−1V ⊗Bq+1

yi⊗id

dp,q
id⊗mq

Definition 1.2.1. The Koszul cohomology groupKp,q(B, V ) of B is the cohomology at the middle
term of the complex

∧p+1V ⊗Bq−1
dp+1,q−1−−−−−−→ ∧pV ⊗Bq

dp,q−−−→ ∧p−1V ⊗Bq+1

i.e.

Kp,q(B, V ) =
kerdp,q

imdp+1,q−1

Note 1.2. In defining dp,q, we are using the convention ∧pV = 0 if p < 0 or p > dimV

By above convention, we have automatically, Kp,q(B, V ) = 0 if p < 0 or p > dimV

An element x ∈ Vˇinduces a derivation

∂x : S∗V → S∗V

of degree −1 on the symmetric algebra, which is defined inductively by the rule

∂x(v.v1 . . . vp−1) = ∂x(v).v1 . . . vp−1 + v.∂x(v1 . . . vp−1)

If we choose coordinates X0, X1, . . . , Xr ∈ V , with duals xi ∈ Vˇ, the resulting map

∂xk : SpV → Sp−1V

sends a homogeneous polynomial f of degree p to the partial derivative ∂f
∂Xk

.
Using the natural map

Sq+1V
∂−−→ SqV ⊗ V ∼= Hom(V ˇ, SqV )
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which is given by

f 7→ (x 7→ ∂x(f))

and the wedge product map λ : ∧p−1V ⊗ V → ∧pV , we define the map

D : ∧p−1V ⊗ Sq+1V → ∧pV ⊗ SqV

as the composition

∧p−1V ⊗ Sq+1V ∧p−1V ⊗ SqV ⊗ V ∼= ∧p−1V ⊗ V ⊗ SqV

∧pV ⊗ SqV

id⊗∂

D
λ⊗id

Proposition 1.2.2. We have K0,0(S∗V, V ) ∼= k and Kp,q(S∗V, V ) = 0 for all (p, q) 6= (0, 0).

Proof : K0,0(S∗V, V ) ∼= k follows from the definition.
To prove the second part, choose coordinates X0, X1, . . . , Xr on V and note that

D : ∧pV ⊗ Sq+1V → ∧p+1V ⊗ SqV

is given by

Xi1 ∧ . . . ∧Xip ⊗ f 7→
r∑

k=0

Xk ∧Xi1 ∧ . . . ∧Xip ⊗
∂f

∂Xk

and

dp,q : ∧p+1V ⊗ SqV → ∧pV ⊗ Sq+1V

is given by

Xi1 ∧ . . . ∧Xip+1 ⊗ f 7→
p+1∑
k=1

Xi1 ∧ . . . ∧ X̂ik ∧ . . . ∧Xip+1 ⊗Xikf

The Euler formula
r∑

k=0

Xk
∂f

∂Xk
= q.f

implies that

D ◦ dp,q + dp,q ◦D = (p+ q).id,

hence the Koszul complex is exact.
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1.3 Definitions in the geometric context
The above construction will be of interest to us primarily in the case

C a projective curve over C,
L→ C a holomorphic line bundle,
V = H0(C,L) a finite dimensional vector space

Definition 1.3.1. The Koszul cohomology group Kp,q(C,L) is the Koszul cohomology of the
graded S∗V - module

B =
⊕
q∈Z

H0(C,Lq)

i.e. Kp,q(C,L) is the cohomology at the middle term of the complex

∧p+1V ⊗H0(C,Lq−1)
dp+1,q−1−−−−−−→ ∧pV ⊗H0(C,Lq)

dp,q−−−→ ∧p−1V ⊗H0(C,Lq+1)

where the differential

∧pV ⊗H0(C,Lq)
dp,q−−−→ ∧p−1V ⊗H0(C,Lq+1)

is given by

dp,q(v1 ∧ . . . ∧ vp ⊗ s) =
∑
i

(−1)iv1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp ⊗ (vi.s).

Denote Kp,q(C,L) = Kp,q(B, V )

1.4 Clifford Index
The Clifford index is a numerical invariant associated with a curve of genus greater than or equal
to 2. In this section we will give the definition and some elementary properties of this invariant.
Let C be a smooth projective curve over a field k. Let K be the canonical line bundle on C. The
origin of this notion of Clifford index is in the proof of Clifford’s Theorem.

Theorem 1.3. Clifford Theorem [Nar92]: Let D be an effective special divisor on C (so that
h0(K −D) > 0). Let d be the degree of D. Then
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dim |D| ≤ 1
2d = 1

2 degD.

Moreover, if equality holds, then D must be 0, or D ∼ K, or C must be hyperelliptic.

Definition 1.4.1. Let C be a smooth projective curve of genus g ≥ 2 over a field k.
H.H.Martens has defined the Clifford index γC of C as

γC = min{deg(D)− 2 dim |D|}

where D runs over all divisors of C such that h0(C,OC(D)) ≥ 2 and h1(C,OC(D)) ≥ 2.

Proposition 1.4.2. Let 0 ≤ i ≤ g − 2 (i ∈ Z). Consider the following generalized Clifford
Inequality,

dimH0(C,L) ≤ deg(L)−i
2 + 1 (Ci)

Then the following are equivalent:

1. If h0(C,L) ≥ 2 and h1(C,L) ≥ 2 then (Ci) holds.

2. If i ≤ deg(L) ≤ 2g − 2− i then (Ci) holds.

3. If i < deg(L) < 2g − 2− i then (Ci) holds.

The largest integer i such that every line bundle L satisfies the condition (1)(or(2)or(3)) of the
proposition is called the Clifford Index of C.

Proof: By Riemann-Roch theorem, we have

h0(C,L)− h1(C,L) = 1− g + degL (1.1)

and by Serre’ duality theorem, we have

h0(C,K ⊗ L−1) = h1(C,L)

Applying Riemann-Roch theorem on line bundle (K ⊗L−1) and subtracting it from (1.1), we get

h0(C,L)− degL

2
= h0(C,K ⊗ L−1)− deg(K ⊗ L−1)

2

Thus the inequality (Ci) for L is equivalent to the same inequality for K ⊗ L−1.
The same is true for the hypothesis (1) − (3). Thus we may confine ourselves to the study of L
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such that 0 ≤ degL ≤ g − 1.
Assuming (1), we see that we need to check (2) only when dimH0(C,L) ≥ 2. But then, using
0 ≤ deg(L) ≤ (g − 1), we have dimH1(C,L) ≥ 2. Hence, in this case (1) implies (2). Since
(2) implies (3) is obvious we only need to check (3) implies (1). By (3) any line bundle of degree
(i+1) has at most one section up to scalar multiples. Since any line bundle Lwith deg(L) ≤ i is a
subsheaf of some line bundleM with deg(M) = (i+1), such an L cannot have 2 or more linearly
independent sections, hence does not come under the preview of (1). Thus, the assumption that
dimH0(C,L) ≥ 2 implies that deg(L) > i. Since deg(L) ≤ (g − 1) < g ≤ (2g − 2 − i) by
assumption we have the required inequality (Ci) for any such L.

Lemma 1.4.3. : Let d be the least integer with (γ + 1) ≤ d ≤ (g − 1) such that there is a divisor
D of degree d with dim |D| = d−γ

2 . Then d ≤ (3γ + 2), or what is the same dim |D| ≤ (γ + 1).

Proof: Suppose the assertion is false. Then we have dim |D| ≥ γ + 2 and we have dim |K −
D| ≥ γ + 2 as well. Choose any effective divisor D′ of degree γ + 1 in D.
Then we can find effective divisors D1 and D2 containing D′ which are linearly equivalent to D
and K −D respectively with D1 6= D2.
Let

D′′ = gcd(D1, D2)

D′′(a) = min(D1(a), D2(a))

Now consider the exact sequence

0→ O(D′′)→ O(D1)
⊕
O(D2)→ O(D1 +D2 −D′′)→ 0

Exact cohomology sequence gives

0→ H0(C,OD′′)→ H0(C,OD1)
⊕

H0(C,OD2)→ H0(C,OD1+D2−D′′)→ . . .

We have

dim |D′′|+ dim |D1 +D2 −D′′| ≥ dim |D1|+ dim |D2|

Since OC(D1 +D2) ∼= K, we have

degD′′ − 2 dim |D′′| ≤ degD1 − 2 dim |D1| = γ
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Hence degD′′−2 dim |D′′| = γ and degD′′ is strictly less than d. This contradicts the assumption
that dim |D| ≥ γ + 2.

As an easy consequence of the lemma, we have

Corollary 1.4. 1. γC = 0 iff C is a hyperelliptic curve.

2. γC = 1 iff C is either a trigonal curve (C is a degree 3 cover of P1) or a plane curve of
degree 5 (and g=6).

From the solution of the Brill-Noether problem on the existence of special divisors [ACGH85],
we have

Lemma 1.4.4. : γC ≤ [g−1
2 ] for all curves C and equality holds for the general curve.

Proof: The existence theorems [ACGH85] say that

1. Every curve of genus g has a divisor D with deg(D) = d and dim |D| = r, whenever
g ≥ (r + 1)(g + r − d). If d = [g+3

2 ] and r = 1, then this inequality is satisfied. Thus
d− 2r = [g−1

2 ], which shows the first part.

2. If the general curve of genus g has a divisor D with deg(D) = d and dim |D| = r, then
g ≥ (r + 1)(g + r − d), so that d − 2r ≥ rg

r+1 − r. Since γC = minimum of d − 2r over
all divisors of degree d ≤ g − 1 with r ≥ 1, we may assume that 2r ≤ g − 1; but then it is
easily checked that rg

r+1 − r ≥ [g−1
2 ], thus proving the second part of the lemma.

The following result of E. Ballico [Bal86] which was conjectured by M. Green and R. Lazars-
feld [GL85] follows from the theory of Limit Linear Series of D. Eisenbud and J. Harris [EH86]

Lemma 1.4.5. : Every integer γ in the range [0, g−1
2 ] is the Clifford Index of some curve of genus

g. In fact, if X is a general curve with a morphism to P1 of degree γ + 2, then its Clifford Index is
γ.
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1.5 Green’s Conjecture
Let C be a smooth projective curve of genus g ≥ 2 over C and K be the canonical line bundle on
C.

Proposition 1.5.1. [Gre84] Let L be a line bundle such that h0(C,L) ≥ 2, h1(C,L) ≥ 2. Then

Kp,1(C,K) 6= 0 for all p ≤ g − γL − 2.

Proof: Put L1 = L, L2 = K ⊗ L∗, ri = r(Li)(i = 1, 2), d = deg(L). By Riemann-Roch we
have r2− r1 = g− d− 1, hence r1 + r2− 1 = g− d+ 2r(L)− 2 = g− γL− 2. Using Theorem
and Corollary given in appendix [Gre84], we obtain

Kp,1(C,K) 6= 0 for all p ≤ g − γL − 2.

The strongest non vanishing result of this type is obtained by taking the minimal value of γL.
This gives the implication

p ≤ g − γC − 2 =⇒ Kp,1(C,K) 6= 0. (1.2)

Green [Gre84] conjectures that the converse of (1.2) holds.

Conjecture 1.5.1. [Gre84] Let C be a smooth projective curve. Then

Kp,1(C,K) = 0⇔ p ≥ g − γC − 1.



Chapter 2

Results for complete linear systems

Introduction
Let C be a smooth projective curve of genus g ≥ 2 over a field k. Let K be the canonical
line bundle on C. As explained in §(1.5), chapter 1, In [Gre84], Green made a conjecture
which relates two aspects Koszul cohomology (an algebraic aspect) and Clifford Index γC (a
geometric aspect) of a curve. Paranjape and Ramanan [PR88] made an effort to understand
Green’s conjecture. They studied the vector bundle EK , where EK is given by the pullback
of the universal quotient bundle on Pg−1 by the canonical map ΦK : C → Pg−1. They gave an
equivalent formulation to Green’s conjecture: To prove Green’s conjecture is equivalent to prove
that the map ∧iΓ(C,EK)→ Γ(C,∧iEK) is surjective ∀ i ≤ γC .
Paranjape and Ramanan [PR88] also studied the stability properties of vector bundle EK . EK is
semi stable (even stable if C is not hyperelliptic). The main result of [PR88] is that all sections
of ∧iEK which are locally decomposable are in the image of ∧iΓ(EK) ∀ i ≤ γC . Thus, if
locally decomposable sections of ∧iEK spans the space Γ(∧iEK) then the map ∧iΓ(C,EK) →
Γ(C,∧iEK) is clearly surjective.
Let

∑
i,K be the cone of locally decomposable sections of ∧iEK . Then, in view of all above

observations and results, Hulek, Paranjape and Ramanan [HPR92] stated a conjecture.

Conjecture 2.0.1.
∑

i,K spans Γ(∧iEK) ∀ i and for all curves.

This is stronger than Green’s conjecture. They proved it for curves with Clifford index 1

(trigonal curves and plane quintics). Conjecture 2.0.1 is trivial in case of hyperelliptic curves,
since EK is the (g − 1)- fold direct sum of the hyperelliptic line bundle.

11
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In a remark to conjecture 2.0.1 Eusen and Schreyer [ES12] asked a more general question, that if
N is a stable globally generated vector bundle onC and

∑
i,N be the cone of locally decomposable

sections of ∧iN then

Conjecture 2.0.2.
∑

i,N spans Γ(∧iN) ∀ i and for all curves.

They gave counter examples to this more general conjecture [ES12].
In this chapter, we study conjecture 2.0.2 in the context of general linear systems on a hyperelliptic
curve C.

Theorem 2.1. [Ana] Let C be a smooth hyperelliptic curve of genus g ≥ 2 and let L be a globally
generated line bundle on C of degree d ≥ 2g + 1 such that H1(L ⊗ T−2) = 0, where T is the
hyperelliptic line bundle on C. The evaluation map gives rise to an exact sequence

0→ E∗ → Γ(L)C → L→ 0 (2.1)

where E∗ is locally free of rankh0(L)− 1. Let
∑

i be the cone of locally decomposable sections
of ∧iE. Then

∑
i spans Γ(∧iE) ∀ i.

From now onwards, throughout this chapter, C is a smooth hyperelliptic curve of genus g ≥ 2

and L is a globally generated line bundle on C of degree d ≥ 2g+ 1 satisfying H1(L⊗T−2) = 0

and K is the canonical line bundle on C.
Hyperelliptic curves have 2:1 map to P1. The bundle E and its exterior powers are the main object
of above stated theorem. So, taking advantage of this special feature of hyperelliptic curves,
sections of ∧iE on C will be related to sections of some suitable vector bundle on P1.
In §(2.1), we study the geometry of hyperelliptic curves and obtain a suitable vector bundle on P1

to which the sections of ∧iE are related.
In §(2.2), syzygies of the curve C are computed and are used to compute the dimension of the
space of sections of ∧iE on C. Also the dimension of the corresponding space of sections on P1

are computed.
Since

∑
i, the set of locally decomposable sections of ∧iE is a scheme defined by requiring that at

each point the sections satisfy the equations of the Grassmannian cone in its Plucker embedding.
They are obtained in the following way: Let F be a subbundle of rank i of E and s ∈ Γ(detF ).
Then s can be treated as a section of ∧iE as well, where it is locally decomposable. In §(2.3), we
construct such a subbundle F .
In §(2.4), we provide the proof of the main theorem.
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2.1 Geometry of the hyperelliptic curve
Consider the following proposition

Proposition 2.2. [Har77] Let C be a hyperelliptic curve of genus g ≥ 2. Then C has a unique
g1

2 . If f0 : C → P1 is the corresponding morphism of degree 2 then the canonical morphism
f : C → Pg−1 consists of f0 followed by the (g− 1)-uple embedding of P1 in Pg−1. In particular,
the image C ′ = f(C) is a rational normal curve of degree g − 1, and f is a morphism of degree
2 onto C ′. Finally, every effective canonical divisor on C is a sum of g − 1 divisors in the unique
g1

2 , so we write |K| =
∑g−1

1 g1
2

In our case, since C is hyperelliptic of genus g ≥ 2. Thus by proposition 2.2 g1
2 on C is

unique. Let π : C → P1 be the corresponding morphism of degree 2, T := π∗OP1(1) is the
unique g1

2 and canonical line bundle on C is given by T g−1

Consider the rank 2 vector bundle W on P1, where W := π∗L.
Since,

χ(L) = χ(π∗L)

So,

d+ 1− g = rk(W )(
degW

rkW
+ 1− gP1) = 2(

degW

2
+ 1)

which gives
degW = d− g − 1

Thus,

detW ∼= OP1(d− g − 1)

W ∼= W ∗(d− g − 1)

Since degW = d− g − 1, thus there is a unique integer x ≤ d−g−1
2 such that

W ∼= OP1(x)
⊕
OP1(d− g − 1− x) (2.2)

Remark 2.3. 1. x is the least integer such that

H1(W (−2− x)) = H1(π∗L(−2− x)) = H1(L⊗ T−2−x) 6= 0
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In particular, this implies that deg(L⊗ T−2−x) ≤ 2g − 2 and thus we have

d− 2g − 2

2
≤ x ≤ d− g − 1

2

2. Since H1(L⊗ T−2) = 0, thus x > 0, so we have

max.{1, d− 2g − 2

2
} ≤ x ≤ d− g − 1

2

which implies both W and W (−1) is globally generated.

3. Also, H1(L⊗ T−2) = 0 implies H1(L) = 0, thus by Riemann- Roch theorem, we have

h0(L) = d− g + 1 (2.3)

and rank(E) = h0(L)− 1 = d− g ≥ 3 (since d ≥ 2g + 1 and g ≥ 2)

4. We have

Γ(W (−1)) ∼= Γ(π∗(L⊗ T−1))

∼= Γ(L⊗ T−1)

H1(L⊗ T−2) = 0 gives H1(L⊗ T−1) = 0

Thus, by Riemann-Roch theorem, we have

h0(L⊗ T−1) = d− g − 1

i.e., we have
h0(W (−1)) = d− g − 1 (2.4)

Since W (−1) is globally generated and Γ(W ) ∼= Γ(L), so we have a surjection

Γ(L)P1 →W → 0,

which is an isomorphism for sections. Since W (−1) is globally generated bundle on P1, W is
very ample, i.e., we get an inclusion

P(W ∗) ↪→ P(Γ(L)∗)) =: P. (2.5)
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Also we have a surjection

π∗W → L→ 0

In other words, we have a subbundle of π∗(W ∗) that is isomorphic to L−1. This gives a morphism
from C to P(W ∗) with the property that the pullback of OW (1) to C is L. Also the composite of
this morphism with the projection p : P(W ∗)→ P1 is π. Since the induced map

Γ(P(W ∗),OW (1)) ∼= Γ(P1,W )→ Γ(C,L)

is an isomorphism. Thus C is actually embedded in P(W ∗). Let us denote the image of P(W ∗)

in P by S. We return to the ruled surface p : P(W ∗) → P1. By (2.5), there is an embedding
P(W ∗) ⊂ P = P(Γ(L)∗) with hyperplane section τ = OW (1). Note that τ2 = degW = d−g−1.
SinceC is a secant (2-section) of P(W ∗), its class is of the formOW (2)⊗p∗OP1(m). To compute
m, we note that d = C.τ = 2τ2 +m. Thus m = 2g − d+ 2.
Altogether, we have the following proposition

Proposition 2.4. There are inclusions

C ⊂ S ⊂ P

with the following properties:

1. the restriction of OP(1) to S is OW (1);

2. the restriction of OP(1) to C is L;

3. both restrictions induce isomorphisms of the corresponding linear systems;

4. the divisor class on S defined by C is OW (2)⊗ p∗OP1(−d+ 2g + 2).

Notation: We will use the notation U for the vector space Γ(L⊗ T−1), i.e. we have

Γ(W (−1)) ∼= U (2.6)

and by (2.4), we have

dimU = d− g − 1 (2.7)
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2.2 Computation of dimensions

In order to prove the conjecture, we want to relate the sections of ∧iE to the sections of a suitable
vector bundle on P1

Lemma 2.5. Let F be a vector bundle on P1 that is globally generated. Then the evaluation
sequence is

0→ Γ(F (−1))⊗OP1(−1)→ Γ(F )P1 → F → 0

Proof : F is a sum of line bundles of degree ≥ 0. Thus remains to check for line bundles,
which is easy.

We want to apply this lemma to W .

0→ Γ(W (−1))⊗OP1(−1)→ Γ(W )P1 →W → 0 (2.8)

Pulling back the evaluation sequence forW on P1 to C and using (2.6) and the fact that Γ(π∗L) ∼=
Γ(L), we get

0→ U ⊗ T−1 → Γ(L)C → π∗W → 0 (2.9)

Also, we have a surjective map π∗W → L→ 0, Let Y be the kernel of π∗W → L→ 0

i.e. we have

0→ Y → π∗W → L→ 0

∧2(π∗W ) ∼= Y ⊗ L

π∗(∧2W ) ∼= Y ⊗ L

π∗(OP1(d− g − 1)) ∼= Y ⊗ L

T d−g−1 ∼= Y ⊗ L

Y ∼= L−1 ⊗ T d−g−1

Thus, we have

0→ L−1 ⊗ T d−g−1 → π∗W → L→ 0 (2.10)
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we get a following commutative diagram

0 0

0 U ⊗ T−1 E∗ L−1 ⊗ T d−g−1 0

0 U ⊗ T−1 Γ(L)C π∗W 0

L L

0 0

(2.11)

where the left vertical map is the evaluation map.
Dualise the diagram (2.11), we get

0 0

0 L⊗ T−(d−g−1) E U∗ ⊗ T 0

0 π∗W ∗ Γ(L)∗C U∗ ⊗ T 0

L−1 L−1

0 0

(2.12)

The first line of (2.12) gives rise to an exact sequence

0→ L⊗ T−(d−g−1) ⊗ ∧i−1U∗ ⊗ T i−1 → ∧iE → ∧iU∗ ⊗ T i → 0 (2.13)

Since, π∗W ∗ is a rank 2 bundle we only get a filtration consisting of the following two exact
sequences:

0→ ∧2π∗W ∗ ⊗ ∧i−2U∗ ⊗ T i−2 → ∧iΓ(L)∗C → Li → 0 (2.14)

0→ π∗W ∗ ⊗ ∧i−1U∗ ⊗ T i−1 → Li → ∧iU∗ ⊗ T i → 0 (2.15)
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Since the second horizontal sequence of (2.12) is the pullback via π of the dual of the sequence
(2.8). Thus both the above sequences come from P1, i.e. there exists a vector bundle L′i on P1,
such that Li = π∗L′i and the sequences

0→ ∧2W ∗ ⊗ ∧i−2U∗ ⊗O(i− 2)→ ∧iΓ(L)∗P1 → L′i → 0 (2.16)

0→W ∗ ⊗ ∧i−1U∗ ⊗O(i− 1)→ L′i → ∧iU∗ ⊗O(i)→ 0 (2.17)

are such that (2.14) and(2.15) are pullback of (2.16) and (2.17) respectively.
Dualising (2.1), we have

0→ L−1 → Γ(L)∗C → E → 0

Thus the map ∧iΓ(L)∗C → ∧iE is surjective.
Also we have ∧iΓ(L)∗C → Li → 0. The maps ∧iΓ(L)∗C → ∧iE → 0 factors through Li = π∗L′i.
Thus we get the following commutative diagram with exact rows and columns:

0 0

0 L⊗ T−(d−g−1) ⊗ ∧i−1U∗ ⊗ T i−1 ∧iE ∧iU∗ ⊗ T i 0

0 π∗W ∗ ⊗ ∧i−1U∗ ⊗ T i−1 π∗L′i ∧iU∗ ⊗ T i 0

L−1 ⊗ ∧i−1U∗ ⊗ T i−1 L−1 ⊗ ∧i−1U∗ ⊗ T i−1

0 0
(2.18)

where the top horizontal sequence is (2.13), middle horizontal sequence is (2.15), left vertical
sequence is obtained by dualising (2.10) and tensoring it with ∧i−1U∗ ⊗ T i−1.

Let us compute the dimensions of the spaces Γ(L′i) and Γ(∧iE) for i ≤ d− g (= rankE)

Lemma 2.6. When d ≥ 2g + 1, we have

dim Γ(L′i) =
(
d−g+1

i

)
+
(
d−g−1
i−2

)
(d− i− g)

for i ≤ d− g
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Proof : Consider (2.16)

0→ ∧2W ∗ ⊗ ∧i−2U∗ ⊗O(i− 2)→ ∧iΓ(L)∗P1 → L′i → 0

Since

detW ∼= OP1(d− g − 1).

Thus

detW ∗ ∼= OP1(−(d− g − 1))

Thus, we get

0→ ∧i−2U∗ ⊗O(i− d+ g − 1)→ ∧iΓ(L)∗ → L′i → 0

Since,

i ≤ d− g, h0(O(i− d+ g − 1)) = 0

Therefore,

h0(L′i) = h0(∧iΓ(L)∗) + h1(∧i−2U∗ ⊗O(i− d+ g − 1))

By (2.7), we have

dimU = d− g − 1

and By (2.3)

h0(L) = d− g + 1

h1(O(i− d+ g − 1)) = d− i− g

Thus,

dim Γ(L′i) =
(
d−g+1

i

)
+
(
d−g−1
i−2

)
(d− i− g).

2.2.1 Syzygies of the curve

The syzygies of canonically embedded curves were computed by Schreyer [Sch86]. Based on the
parallel idea, we compute the syzygies of the curve C. For this, let

R =
∞⊕
i=1

Γ(C,Li)
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be the homogeneous coordinate ring of C w.r.t L and

S = SymΓ(C,L) =
⊕
n≥0

Γ(OPd−g(n)).

Let
0→ Ft → · · · → F0 → R→ 0, (2.19)

be a minimal free resolution of the graded S- module R. Then Fi =
⊕

j S(−j)βij =
⊕

jMij ⊗
S(−j), where Mij is a k- vector space of dimβij and S(−j) is the free S- module with one
generator in degree j.
The resolution (2.19) is equivalent to the free resolution of OC as an OPd−g - module:

0→
⊕
j

O(−j)βd−g−1,j → · · · →
⊕
j

O(−j)β0,j → OC → 0

To find this resolution, one starts with the exact sequence

0→ OS(−2τ + (d− 2g − 2)f)→ OS → OC → 0

(see Proposition (2.4)). The idea is to first resolve the sheaves OS and OS(−2τ + (d− 2g− 2)f)

resp. as OPd−g modules and then form a mapping cone . The result turns out to be a minimal
resolution of OC .
Firstly, we will recall from [Eis05] the description of the syzygies of these sheaves.
Let ξ = O(e1)

⊕
O(e2)

⊕
· · ·
⊕
O(es) be a locally free sheaf of rank s on P1, and let pξ :

P(ξ)→ P1 denote the corresponding Ps−1 bundle. A rational normal scrollX of type S(e1, e2, · · · , es)
with e1 ≥ e2 ≥ · · · ≥ es ≥ 0 and

f = e1 + e2 + · · ·+ es ≥ 2

is the image of P(ξ) in Pr = P(H0(P(ξ),OP(ξ)(1))):

j : P(ξ)→ X ⊂ Pr, r = f + s− 1

The Picard group of P(ξ) is generated by the hyperplane class H = [j∗OPr(1)] and the ruling
R = [p∗ξOP1(1)]:

PicP(ξ) = ZH
⊕

ZR,

the intersection product is given by

Hs = f,Hs−1.R = 1, R2 = 0.
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We recall from [Eis05], the description of the syzygies of the sheaves

OX(aH + bR) := j∗OP(ξ)(aH + bR), a, b ∈ Z

regarded as OPr - modules, at least in case b ≥ −1.

Let

Φ : F → G

be a map of locally free sheaves of rank f ′ and g′, f ′ ≥ g′, respectively on a smooth variety V .
We recall from [BE75] the family of complexes ζb, b ≥ −1 of locally free sheaves on V , which
resolve the bth- symmetric power of coker Φ under suitable hypothesis on Φ.
Define the th term in the complex ζb by

ζbj =

{
∧jF ⊗ Sb−jG, for 0 ≤ j ≤ b
∧j+g′−1F ⊗Dj−b−1G

∗ ⊗ ∧g′G∗, for j ≥ b+ 1

and differential

ζbj → ζbj−1

by the multiplication with Φ ∈ H0(V, F ∗ ⊗G) for j 6= b+ 1 and ∧g′Φ ∈ H0(V,∧g′F ∗ ⊗ ∧g′G)

for j = b + 1 in the appropriate term of the exterior (∧F ), symmetric (S.G) or divided power
(D.G) algebra.

Proposition 2.7. [Eis05] ζb(a) for b ≥ −1 is the minimal resolution of OX(aH + bR) as an
OPr - module, where ζb(a) = ζb ⊗OPr(a)

2.2.2 Minimal Resolution of OC
We have

C ⊂ S ⊂ P = P(Γ(C,L)∗)

C is contained in a 2- dimensional rational normal scroll S of type S(e1, e2) and degree f =

e1 + e2 = d− g − 1 ≥ 2.
C is a divisor of class

C ∼ 2H − (f − (g + 1))R on S

The mapping cone [Sch86]

ζf−(g+1)(−2)→ ζ0
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is the minimal resolution of OC as an OPd−g - module.
We consider

Φ : F ⊗OPd−g(−1)→ G⊗OPd−g

be the map of locally free sheaves, where F is a vector space of dimension f = d− g − 1 and G
is a vector space of dimension 2

Firstly, we will compute

ζf−(g+1)(−2) = ζd−2g−2 ⊗O(−2)

Now,

ζd−2g−2
j =

{
∧j(F ⊗O(−1))⊗ Sd−2g−2−j(G⊗O), 0 ≤ j ≤ d− 2g − 2

∧j+1(F ⊗O(−1))⊗Dj−d+2g+2−1(G⊗O)∗ ⊗ ∧2(G⊗O)∗, j ≥ d− 2g − 1

Since j + 1 can be atmost d− g − 1. Thus, we have

ζd−2g−2
j =

{
∧j(F ⊗O(−1))⊗ Sd−2g−2−j(G⊗O), 0 ≤ j ≤ d− 2g − 2

∧j+1(F ⊗O(−1))⊗Dj−d+2g+2−1(G⊗O)∗ ⊗ ∧2(G⊗O)∗, d− 2g − 1 ≤ j ≤ d− g − 2

ζd−2g−2
j =

{
∧j(F ⊗O(−1))⊗ Sd−2g−2−j(G⊗O), 0 ≤ j ≤ d− 2g − 2

∧j(F ⊗O(−1))⊗Dj−d+2g(G⊗O)∗ ⊗ ∧2(G⊗O)∗, d− 2g − 1 ≤ j ≤ d− g − 1

Similarly we can compute ζ0
j ,

ζ0
j =

{
∧j(F ⊗O(−1))⊗ S0−j(G⊗O) j = 0

∧j+1(F ⊗O(−1))⊗Dj−1(G⊗O)∗ ⊗ ∧2(G⊗O)∗ 1 ≤ j ≤ d− g − 2

The minimal free resolution of OC is

0→ O(−(d−g−1))g → · · · → ∧j+1(F⊗O(−1))⊗Dj−d+2g+2−1(G⊗O)∗⊗∧2(G⊗O)∗ → · · · →
(2.20)

∧j(F⊗O(−1))⊗Sd−2g−2−j(G⊗O)→ · · · → ∧j+1(F⊗O(−1))⊗Dj−1(G⊗O)∗⊗∧2(G⊗O)∗

→ · · · → ∧j(F ⊗O(−1))⊗ S0−j(G⊗O)→ OC → 0

We will use this resolution to compute the dim Γ(∧iE). For this, consider (2.19), the minimal
free resolution of R and recall the results from Chapter 1 section 2 of the Ph.D. thesis (1992) of
Prof. Kapil H. Paranjape (University of Bombay, Bombay, India), we have

Mp,p+q = coker(∧p+1V ⊗ Γ(C,K ⊗ Lq−1)→ Γ(C,∧pE∗ ⊗ Lq))
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where Mp,p+q = (TorSp (C, R))p+q

and dim(TorSp (C, R))p+q = βp,p+q.
Since H1(L) = 0, so we have

Mp,p+2 ≈ H1(∧p+1E∗ ⊗ L)

M∗p,p+2 ≈ H0(∧p+1E ⊗ L−1 ⊗K)

Lemma 2.8. When d ≥ 2g + 1, we have

dim Γ(∧iE) =
(
d−g+1

i

)
+
(
d−g−1
i−2

)
(d− i− g)

for i ≤ d− g

Proof : Consider (2.13)

0→ L⊗ T−(d−g−1) ⊗ ∧i−1U∗ ⊗ T i−1 → ∧iE → ∧iU∗ ⊗ T i → 0

i.e.
0→ L⊗ T−(d−g−i) ⊗ ∧i−1U∗ → ∧iE → ∧iU∗ ⊗ T i → 0

Thus,

h0(∧iE) =
[
h0(L⊗ T−(d−g−i))− h1(L⊗ T−(d−g−i))

](
d−g−1
i−1

)
+
(
d−g−1

i

)
h0(T i)

−
(
d−g−1

i

)
h1(T i) + h1(∧iE)

=
(
d−g−1
i−1

)
(g − d+ 2i+ 1) +

(
d−g−1

i

)
(i+ 1)−

(
d−g−1

i

)
(g − i) + h1(∧iE)

Now,

H1(∧iE) = H1(∧d−g−iE∗ ⊗ L) (rankE = d− g)

= H0(∧d−g−iE ⊗ L−1 ⊗K)∗

Thus,
h1(∧iE) = h0(∧d−g−iE ⊗ L−1 ⊗K)

Since
M∗p,p+2 ≈ H0(∧p+1E ⊗ L−1 ⊗K)
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Thus, we have

M∗d−g−i−1,d−g−i+1 = H0(∧d−g−iE ⊗ L−1 ⊗K)

We have d ≥ 2g+1 and i ≤ d−g which implies i ≤ g. Thus, for j = (d−g−1)−i ≥ d−2g−1,
we have from (2.20),

dimM∗d−g−i−1,d−g−i+1 = dim∧d−g−1−i(F⊗O(−1))⊗Dg−1−i(G⊗O)∗⊗∧2(G⊗O)∗ =
(
d−g−1

i

)
(g−i)

i.e.

h1(∧iE) =
(
d−g−1

i

)
(g − i)

Thus

dim Γ(∧iE) =
(
d−g−1
i−1

)
(g − d+ 2i+ 1) +

(
d−g−1

i

)
(i+ 1)

=
(
d−g−1
i−1

)
(g − d+ 2i+ 1) +

(
d−g−1

i

)
(i+ 1) +

(
d−g+1

i

)
−
(
d−g+1

i

)
=

(
d−g+1

i

)
+
(
d−g−1
i−2

)
(d− i− g)

Proposition 2.9. For i ≤ d − g, the map Γ(L′i) → Γ(∧iE) induced by diagram (2.18) is an
isomorphism.

Proof : We get an exact commutative diagram

0 Γ(L⊗ T−(d−g−1)+(i−1))⊗ ∧i−1U∗ Γ(∧iE) ∧iU∗ ⊗ Γ(T i) . . .

0 Γ(W ∗(i− 1))⊗ ∧i−1U∗ Γ(L′i) ∧iU∗ ⊗ Γ(O(i)) . . .

α1 α2 α3

where α′is are induced by diagram (2.18).

• α1 is injective.
Consider the left vertical sequence of (2.18)

0→ L−1 ⊗ ∧i−1U∗ ⊗ T i−1 → π∗W ∗ ⊗ ∧i−1U∗ ⊗ T i−1

→ L⊗ T−(d−g−1) ⊗ ∧i−1U∗ ⊗ T i−1 → 0
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This gives rise to

0→ Γ(L−1 ⊗ T i−1)⊗ ∧i−1U∗ → Γ(W ∗(i− 1))⊗ ∧i−1U∗

α1−−→ Γ(L⊗ T−(d−g−1)+(i−1))⊗ ∧i−1U∗ → . . .

Since

Γ(W ∗ ⊗OP1(i− 1)) ∼= Γ(W ⊗OP1(−d+ g + i))

∼= Γ(π∗L⊗OP1(−d+ g + i))

∼= Γ(π∗(L⊗ π∗OP1(−d+ g + i)))

∼= Γ(L⊗ π∗OP1(−d+ g + i))

∼= Γ(L⊗ T−d+g+i)

Thus α1 is injective.

• α3 is injective by definition.

Hence α2 is injective and since both the spaces have the same dimension, the map Γ(L′i) →
Γ(∧iE) is an isomorphism.

2.3 Construction of a subbundle of E
We want to prove theorem(2.1). We shall first do this for i = 2. The main point is to construct
sufficiently many locally decomposable sections that are not globally decomposable.
Consider p : P(W ∗) → P1, the natural projection. For every a ∈ P1, the fibre la = p−1(a) is a
secant of the curve C. Let W ∗a be the fibre of W ∗ at a. Since W is globally generated thus we
have Γ(W )P1 → W → 0. W = π∗L and Γ(π∗L) ∼= Γ(L) thus we have Γ(L)P1 → W → 0,
which gives W ∗ → Γ(L)∗P1 and we can identify Γ(L)∗ with Γ(E). Also, we have

0→ E∗ → Γ(L)C → L→ 0,
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which gives Γ(L)∗C → E i.e. a map Γ(E)C → E. Thus we get a map

(Wa)
∗
C → Γ(E)C → E

which is composite of the inclusion of W ∗a in Γ(E) and the evaluation map.
Let F (a) be the subbundle of E generated by the image of W ∗a . A section of Γ(E) is non-zero

at every point of C if it corresponds to a point of P(Γ(L)∗) not on the curve C, while a section
corresponding to a point say x ∈ C vanishes exactly at x.
Hence the map W ∗a → F (a) is an isomorphism outside C

⋂
la but has rank 1 over C

⋂
la.The

induced map ∧2W ∗a → ∧2F (a) has simple zeros exactly over C
⋂
la. Hence F (a) has rank 2 and

∧2F (a) = T .
The vector bundle F (a) has W ∗a as its space of sections i.e. dim Γ(F (a)) = 2. On the other hand
dim Γ(∧2F (a)) = dim Γ(T ) = 2. Thus we get a 2- dimensional subspace of Γ(∧2E) consist-
ing of locally decomposable sections of which only the 1- dimensional subspace ∧2Γ(F (a)) ⊂
Γ(∧2F (a)) consists of globally decomposable sections.
The next step is to globalise this construction, i.e. to vary the point a. We consider the graph
inclusion Γ ⊂ C×P1 given by the map π. This divisor belongs to the line bundle p∗1T⊗p∗2OP1(1),
where p1 and p2 are the natural projections to C, resp. P1. the direct image by p2 of the bundle
morphism p∗2W

∗ → Γ(E)
C×P1 yields the map W ∗ → Γ(E)P1 , and hence a map ∧2W ∗ →

∧2Γ(E)P1 .
On the other hand the bundle homomorphism p∗2W

∗ → Γ(E)
C×P1 → p∗1E fails to be injective

precisely over Γ. Thus, we get a morphism
p∗2(∧2W ∗)⊗O(Γ)→ p∗1(∧2E). Taking direct image by p2 gives a morphism
∧2W ∗ ⊗ Γ(T ) ⊗O(1) → Γ(∧2E)P1 . For every a ∈ P1 this induces a map Γ(T ) → Γ(∧2E)P1

and this gives exactly the space of locally decomposable sections described above.

Altogether, we get a commutative diagram

0 ∧2W ∗ ∧2W ∗ ⊗ Γ(T )⊗OP1(1) ∧2W ∗ ⊗OP1(2) 0

0 ∧2Γ(E)P1 Γ(∧2E)P1 D2

P1 0

(2.21)

where D2

P1 := Γ(∧2E)
∧2Γ(E)
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where the top horizontal row is the evaluation sequence for OP1(1), which is

0→ OP1(−1)→ Γ(OP1(1))⊗OP1 → OP1(1)→ 0

Tensoring with ∧2W ∗ ⊗OP1(1), we get

0→ ∧2W ∗ → ∧2W ∗ ⊗ Γ(T )⊗OP1(1)→ ∧2W ∗ ⊗OP1(2)→ 0

and use Γ(T ) ∼= Γ(OP1).
We have to show that the locally decomposable sections constructed above together with ∧2Γ(E)

generate Γ(∧2E). For this, we consider the map ∧2W ∗ ⊗OP1(2)→ D2

P1 . We want to show that
this map is injective (as a bundle map) and that the resulting rational curve in P(D2) is the rational
normal curve of degree d − g − 3 (recall that dimD2 = d − g − 2). This is sufficient since the
rational normal curve of degree n in Pn spans Pn.

Our aim is to do this by entirely reducing the problem to computations on P1, resp. P1 × P1.

Lemma 2.10. [HPR92] Let OP1(−n) → Γ(OP1(n))∗P1 be a non-zero Sl2(C)- equivariant
morphism. Then this morphism defines an embedding of P1 into P(Γ(OP1(n)∗)) as a rational
normal curve of degree n.

We return to the bundle W . Sequence (2.16) gives for i = 2 the following sequence:

0→ ∧2W ∗ → ∧2Γ(W )∗P1 → L′2 → 0 (2.22)

Consider P1 × P1 together with projections q1 and q2 resp.
Taking pullback of (2.22) via q1 and q2 resp., we get a map q∗2 ∧2W ∗ → q∗1L

′
2 that vanishes along

the diagonal4 ⊂ P1 × P1.
Hence, we get a morphism

q∗2 ∧2 W ∗ ⊗O(4)→ q∗1L
′
2

Applying q2∗, we get a map

∧2W ∗ ⊗ Γ(O(1))⊗O(1)→ Γ(L′2)P1

This gives rise to a commutative diagram
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0 0

∧2W ∗ ∧2Γ(W )∗P1

∧2W ∗ ⊗ Γ(O(1))⊗O(1) Γ(L′2)P1

∧2W ∗ ⊗O(2) H1(∧2W ∗) = Γ(∧2W ⊗O(−2))∗

0 0

(2.23)

where the left hand column is the Euler sequence on P1 twisted by ∧2W ∗ ⊗ O(1), the right
hand column comes from (2.22) and the map ∧2W ∗ → ∧2Γ(W )∗ is the natural one. This diagram
is Sl2(C) equivariant, where Sl2(C) acts on P1 in the usual way and on P1 × P1 by the diagonal
action. In particular the morphism ∧2W ∗ ⊗ O(2) → Γ(∧2W ⊗ O(−2))∗ is Sl2(C) equivariant,
by Lemma(2.11), it defines an embedding of P1 into P(Γ(∧2W ⊗O(−2))∗) as a rational normal
curve of degree d− g − 3 .

Lemma 2.11. [HPR92] Diagram (2.23) gives rise to a commutative and exact diagram

0 Γ(∧2W ⊗O(−2)) Γ(L′2)∗ ∧2Γ(W ) 0

0 Γ(∧2W ⊗O(−2)) Γ(∧2W ⊗O(−1))⊗ Γ(O(1)) Γ(∧2W ) 0

0 0

(2.24)

Proposition 2.12. Γ(∧2E) is generated by locally decomposable sections.

Proof : We have constructed maps p∗2(∧2W ∗)⊗O(Γ)→ p∗1(∧2E) on C×P1 and q∗2 ∧2W ∗⊗
O(4)→ q∗1L

′
2 on P1 × P1. Consider the diagram

C C × P1 P1

P1 P1 × P1 P1

π

p2p1

π×id
q1 q2

(2.25)
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Pulling the morphism q∗2 ∧2W ∗⊗O(4)→ q∗1L
′
2 on P1×P1 back to C ×P1, we get a morphism

p∗2(∧2W ∗)⊗O(Γ)→ p∗1(π∗L′2). By construction the diagram

p∗2(∧2W ∗)⊗O(Γ) p∗1(π∗L′2)

p∗2(∧2W ∗)⊗O(Γ) p∗1(∧2E)

(2.26)

commutes where the map p∗1(π∗L′2) → p∗1 ∧2 E is the pullback via p1 of the corresponding map
in diagram (2.18).Pushing this down via π × id to P1 × P1 leads to the commutative diagram

q∗2 ∧2 W ∗ ⊗O(4) q∗1L
′
2

q∗2 ∧2 W ∗ ⊗O(4) q∗2 ∧2 W ∗ ⊗ (π × id)∗O(Γ) q∗1(π∗π
∗L′2)

q∗2 ∧2 W ∗ ⊗O(4) q∗2 ∧2 W ∗ ⊗ (π × id)∗O(Γ) q∗1(π∗ ∧2 E)

(2.27)

Now taking q2∗ of the outermost square we get

∧2W ∗ ⊗ Γ(OP1(1))⊗OP1(1) Γ(P1, L′2)

∧2W ∗ ⊗ Γ(OP1(1))⊗OP1(1) Γ(C,∧2E)
(2.28)

where the right hand vertical map is an isomorphism from Proposition 2.12.
Thus in order to compute the diagram

∧2W ∗ ∧2Γ(W )∗P1

∧2W ∗ ⊗ Γ(OP1(1))⊗OP1(1) Γ(∧2E)

(2.29)

we can compute

∧2W ∗ ∧2Γ(W )∗P1

∧2W ∗ ⊗ Γ(OP1(1))⊗OP1(1) Γ(L′2)P1

(2.30)

and the result follows from Lemma 2.11.
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2.4 Proof of main result
Main Result (Theorem 2.1) Let C be a smooth hyperelliptic curve of genus g ≥ 2 and let L be a
globally generated line bundle on C of degree d ≥ 2g + 1 such that H1(L⊗ T−2) = 0, where T
is the hyperelliptic line bundle on C. The evaluation map gives rise to an exact sequence

0→ E∗ → Γ(L)C → L→ 0

where E∗ is locally free of rankh0(L)− 1. Let
∑

i be the cone of locally decomposable sections
of ∧iE. Then

∑
i spans Γ(∧iE) ∀ i.

Proof : We shall first show that for 2 ≤ i ≤ d− g, there is a natural epimorphism

∧i−2Γ(W )∗ ⊗ Γ(L′2)P1 → Γ(L′i)P1 → 0

Setting i = 2 in (2.16), we get

0→ ∧2W ∗ → ∧2Γ(L)∗P1 → L′2 → 0

Twisting with ∧i−2Γ(W )∗, we get an exact sequence

0→ ∧i−2Γ(W )∗ ⊗ ∧2W ∗ → ∧i−2Γ(W )∗ ⊗ ∧2Γ(W )∗ → ∧i−2Γ(W )∗ ⊗ L′2 → 0

(since Γ(L) ∼= Γ(W )) Combining this with (2.16), we get a diagram

0 ∧i−2Γ(W )∗ ⊗ ∧2W ∗ ∧i−2Γ(W )∗ ⊗ ∧2Γ(W )∗ ∧i−2Γ(W )∗ ⊗ L′2 0

0 ∧i−2Γ(W (−1))∗ ⊗O(i− 2)⊗ ∧2W ∗ ∧iΓ(W )∗ L′i 0

(2.31)
Here the middle vertical map is the canonical one and the left hand vertical map is given by

taking ∧i−2 of the dual evaluation sequence

0→W ∗ → Γ(W )∗ ⊗OP1 → Γ(W (−1))∗ ⊗OP1(1)→ 0

Taking ∧i−2 of the above sequence, we get

0→ ∧2W ∗ ⊗ ∧i−2Γ(W (−1))∗ ⊗OP1(i− 2)→ ∧i−2Γ(W )∗ → Fi−2 → 0

0→ Fi−2 → ∧i−2Γ(W )∗ ⊗OP1 → ∧i−2Γ(W (−1))∗ ⊗OP1(i− 2)→ 0

Tensoring above sequence with ∧2W ∗, we get

0→ Fi−2⊗∧2W ∗ → ∧i−2Γ(W )∗⊗OP1⊗∧2W ∗ → ∧i−2Γ(W (−1))∗⊗OP1(i−2)⊗∧2W ∗ → 0
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Taking the associated cohomology sequence of (2.31), we get the following commutative
diagram:

0 0

∧i−2Γ(W )∗ ⊗ ∧2Γ(W )∗ ∧iΓ(W )∗

∧i−2Γ(W )∗ ⊗ Γ(L′2) Γ(L′i)

H1(∧i−2Γ(W )∗ ⊗ ∧2W ∗) H1(∧i−2Γ(W (−1))∗ ⊗O(i− 2)⊗ ∧2W ∗)

0
...

(2.32)

Here W is a rank 2 vector bundle on P1 of degree d− g − 1.

detW ∼= O(d− g − 1)

detW ∗ ∼= O(−d+ g + 1)

i.e. ∧2 W ∗ ∼= O(−d+ g + 1)

Since 2 ≤ d− g − 1, thus Γ(∧2W ) = 0.

The top horizontal map is clearly surjective. The bottom horizontal map is surjective sinceH2

vanishes on P1. By standard diagram chasing the middle horizontal map must be surjective thus
giving our first claim.
By construction the natural diagram

∧i−2Γ(W )∗ ⊗ Γ(L′2) ∧i−2Γ(E)⊗ Γ(∧2E)

Γ(L′i) Γ(∧iE)

(2.33)

commutes.

Since Γ(W )∗ ∼= Γ(L)∗ and Γ(L)∗ can be identified with Γ(E). By proposition (2.12), the
horizontal maps are isomorphisms. Hence the natural map ∧i−2Γ(E) ⊗ Γ(∧2E) → Γ(∧iE) is
surjective and our claim follows from Proposition (2.12).
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Chapter 3

Results for sub-linear systems

Introduction

In chapter 2, the conjecture 2.0.2 is studied in context of complete linear systems on a hyperelliptic
curve. In this chapter, we study conjecture 2.0.2 in case of sub-linear systems on a hyperelliptic
curve and some results are obtained in case of sub-linear systems with codimension 1.
I would like to acknowledge Prof. Peter Newstead for suggesting this question.
The main point of this chapter is the following question:

Question 3.1. Let C be a hyperelliptic curve of genus g ≥ 2 and let (L, V ) be a linear system
with L a generated line bundle of degree d ≥ 2g + 1 on C such that H1(L⊗ T−2) = 0, where T
is the hyperelliptic line bundle on C and V ⊂ H0(L) a linear subspace of dimension n+ 1 which
generates L. The evaluation map gives rise to an exact sequence

0→ E∗V → V ⊗OC → L→ 0 (3.1)

where E∗V is locally free of rankn. Let
∑

i be the cone of locally decomposable sections of ∧iEV ,
then

∑
i spans Γ(∧iEV ) for all i.

In this chapter, we discuss question 3.1in case of sub-linear system with codim 1. From now
onwards, throughout this chapter, C is a smooth hyperelliptic curve of genus g ≥ 2 and (L, V ) a
linear system withL a generated line bundle of degree d ≥ 2g+1 onC such thatH1(L⊗T−2) = 0

and V ⊂ H0(L) a linear subspace of dimension n+ 1 which generates L and codimV = 1. K is

33
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the canonical line bundle on C.

The idea of the proof is similar to the case of complete linear systems with minor changes in
computation of the dimensions. In §(3.1), we recall the arguments and results obtained in chapter
2 that holds for sub-linear system too.
In §(3.2), we compute the dimension of the space of sections of the vector bundle on P1 which is
related to the space of sections of the vector bundle ∧iEV on C. In §(3.3), we will see that under
some assumptions, result holds for sub-linear system with codim 1.

3.1 Notations and Results obtained for complete linear
systems

We fix with the following notations of chapter 2
C is a hyperelliptic curve of genus g ≥ 2, π : C → P1 is the associated 2- sheeted covering and
T := π∗OP1(1)

Here (L, V ) is a linear system with L a generated line bundle of degree d ≥ 2g + 1 on C and
W := π∗L.
By repeating the arguments given in §(2.1), we obtain

degW = d− g − 1

and
h0(L) = d− g + 1 (3.2)

Since codimV = 1 which gives n = d− g − 1 Thus,

rank(EV ) = n = d− g − 1 ≥ 2 (3.3)

The following results which are obtained in chapter 2 also holds in case of sub-linear systems.

1. W (−1) is globally generated.

2. There are inclusions
C ⊂ S ⊂ P
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where P := P(V ∗) and S := image of P(W ∗) in P with the following properties:

(a) the restriction of OP(1) to S is OW (1);

(b) the restriction of OP(1) to C is L;

(c) both restrictions induce isomorphisms of the corresponding linear systems.

3.2 Computation of dimensions

Similar to §2.2, we want to relate the sections of ∧iEV to the sections of a suitable vector bundle
on P1.
Since L is generated by V ⊂ H0(L). Thus we have the surjection map

V ⊗OC → L→ 0

Though W is globally generated, but if W is generated by V ⊂ Γ(L) ∼= Γ(W ) then we have,

V ⊗OP1 →W → 0 (3.4)

Let KV be the kernel of (3.4). Thus we have the evaluation sequence for W

0→ KV → V ⊗OP1 →W → 0 (3.5)

Pulling back the evaluation sequence for W on P1 to C, we get

0→ π∗KV → V ⊗OC → π∗W → 0 (3.6)

Working on the parallel lines as for the complete linear system in §(2.2), we obtain the following
sequences of vector bundles involving ∧iEV and M ′i (the corresponding vector bundle on P1)
respectively.

0→ L⊗ T−(d−g−1) ⊗ ∧i−1π∗K∗V → ∧iEV → ∧iπ∗K∗V → 0 (3.7)

0→ ∧2W ∗ ⊗ ∧i−2K∗V → ∧iV ∗P1 →M ′i → 0 (3.8)
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Sequences 3.7 and 3.8 refer to the corresponding sequences 2.13 and 2.16 respectively of the
complete linear system. Also, we get the following commutative diagram

0 0

0 L⊗ T−(d−g−1) ⊗ ∧i−1π∗K∗V ∧iEV ∧iπ∗K∗V 0

0 π∗W ∗ ⊗ ∧i−1π∗K∗V π∗M ′i ∧iπ∗K∗V 0

L−1 ⊗ ∧i−1π∗K∗V L−1 ⊗ ∧i−1π∗K∗V

0 0

(3.9)

which is similar to the diagram (2.18), the vector bundle on P1 is denoted byM ′i corresponding
to the vector bundle ∧iEV on C, which in case of ∧iE is denoted by L′i.

Consider (3.5)

0→ KV → V ⊗OP1 →W → 0

degKV = −degW = −(d− g − 1)

and

rankKV = dimV − rankW = (n+ 1)− 2 = d− g − 2

Thus, KV is a rank d− g − 2 vector bundle on P1 of degree −(d− g − 1)

KV
∼= OP1(a1)

⊕
OP1(a2)

⊕
· · ·
⊕
OP1(ad−g−2)

where

d−g−2∑
i=1

ai = −(d− g − 1)
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and ai ≤ 0 ∀ i which implies

KV
∼= OP1(−1)

⊕
OP1(−1)

⊕
· · ·
⊕
OP1(−1)

⊕
OP1(−2)

∼=
⊕
d−g−3

OP1(−1)
⊕
OP1(−2)

K∗V
∼=

⊕
d−g−3

OP1(1)
⊕
OP1(2)

∧i−2K∗V
∼=

⊕
l

OP1(i− 2)
⊕
m

OP1(i− 1)

where l =
(
d−g−3
i−2

)
and m =

(
d−g−3
i−3

)
Let us compute the dimensions of the space Γ(M ′i) for i ≤ d− g − 1 = rankEV .

Lemma 3.1. When d ≥ 2g + 1, we have

dim Γ(M ′i) =
(
d−g
i

)
+
(
d−g−3
i−2

)
(d− 1− g)−

(
d−g−2
i−2

)
for i ≤ d− g − 1

Proof : Consider (3.8)

0→ ∧2W ∗ ⊗ ∧i−2K∗V → ∧iV ∗P1 →M ′i → 0

Since

detW ∼= OP1(d− g − 1).

Thus

detW ∗ ∼= OP1(−(d− g − 1))

Thus, we get

0→ O(−d+ g + 1)⊗ ∧i−2K∗V → ∧iV ∗ →M ′i → 0
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Denote O(−d+ g + 1)⊗ ∧i−2K∗V by B

B ∼= O(−d+ g + 1)⊗ ∧i−2K∗V
∼= O(−d+ g + 1)⊗ (

⊕
l

OP1(i− 2)
⊕
m

OP1(i− 1))

∼=
⊕
l

OP1(−d+ g + i− 1)
⊕
m

OP1(−d+ g + i)

∼=
⊕
l

OP1(i− (d− g + 1))
⊕
m

OP1(i− (d− g))

Since,
i < d− g, h0(B) = 0

rankB =
(
n−1
i−2

)
=
(
d−g−2
i−2

)
By Riemann- Roch Theorem, we have

h0(B)− h1(B) = rankB(
degB

rankB
+ 1− gP1)

0− h1(B) = degB + rankB

h1(B) = −deg(B)− rank(B)

So,
h1(B) = −[

(
d−g−3
i−2

)
(i− (d− g + 1) +

(
d−g−3
i−3

)
(i− (d− g))]−

(
d−g−2
i−2

)
Therefore,

h0(M ′i) = h0(∧iV ∗) + h1(B)

h0(M ′i) =
(
n+1
i

)
−
(
d−g−3
i−2

)
(i− (d− g + 1)−

(
d−g−3
i−3

)
(i− (d− g))−

(
d−g−2
i−2

)
Thus,

dim Γ(M ′i) =
(
d−g
i

)
+
(
d−g−3
i−2

)
(d− 1− g)−

(
d−g−2
i−2

)
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3.3 Proof of main result
If for d ≥ 2g + 1,

dim Γ(∧iEV ) = dim Γ(M ′i) =
(
d−g
i

)
+
(
d−g−3
i−2

)
(d− 1− g)−

(
d−g−2
i−2

)
for all i ≤ d−g−1, then the map Γ(M ′i)→ Γ(∧iEV ) induced by diagram (3.9) is an isomorphism.
(refer to proposition 2.9)

and we construct a subbundle F of EV . The construction is same as for the case of complete
linear system, all the arguments and results given in §2.3 and 2.4 works for the sub-linear system.
We only make the replacements of vector bundle E by EV , L′i by M ′i and Γ(L) by V . Then the
answer to question 3.1 is affirmative for sub-linear system with codim 1 (refer to §2.4 with above
mentioned replacements).
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