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Notation

a finite group

the derived subgroup of ¢

the direct sum of n copies of G

semidirect product of G; by G,

H is a subgroup of GG

H is a normal subgroup of G

the index of the subgroup H in the group G

the normalizer of the subgroup H in the group G

the largest normal subgroup of the group G contained in H, H < G
the group ring of the group G with coefficients in the ring R

the cardinality of the set S

Euler’s phi-function

the order of ¢ modulo n

the ring of integers

the cyclic group of order n

the group of reduced residue classes modulo n

the symmetric group of degree n

the finite field of order ¢

the algebraic closure of [F,

the set of inequivalent irreducible characters of G over F,

the Galois group of the field extension K/F

the ring of all n X n matrices over the field F

the group of matrices in M,,(F') having determinant 1

the kernel of x, x € Irr(G)

the primitive central idempotent of F,[G] determined by y € Irr(G)
the field obtained by adjoining the character values x(g), g € G, to the field F,
the primitive central idempotent of F[G] determined by x € Irr(G)
Galois group Gal(F,(x)/F,), x € Irr(G)

end (or omission) of proof
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Introduction

Given a group G and a field F, one can define an F-algebra F[G], called the group
algebra of GG over F, whose elements are the formal finite F-linear combinations of
elements of G with addition defined coefficient-wise and multiplication defined via
multiplication in GG and distributivity. Group algebras constitute an important class
of algebras with wide applications. A fundamental problem in the theory of group
algebras is to understand their algebraic structure.

The classical approach to compute the primitive central idempotents of F[G], in
the semisimple case, i.e., when the characteristic of F' does not divide the order of
G, has been via character theory. If x € Irr(G), the set of irreducible characters of
G over F, the algebraic closure of F, then

geG

is a primitive central idempotent of F[G] and x — e(x) is a 1-1 correspondence
between Irr(G) and the set of all primitive central idempotents of F'[G]. The Galois
group Gal(F'/F) acts on Irr(G) by setting

xX=o00y, o€Gal(F/F), x€r(G).

Let orb(x) denote the orbit of x € Irr(G) under this action. Observe that orb(y) is
equal to {7x |0 € Gal(F(x)/F)}, where F(x) is the field obtained by adjoining to
F, all the character values x(g),¢ € G. It is known that, for any y € Irr(G),

er(x):= D eW)= > elx)
Yeorb(x) ceGal(F(x)/F)

is a primitive central idempotent of F[G], called the primitive central idempotent
associated with y, and the map orb(x) — er(x) is a 1-1 correspondence between the
set {orb(x) | x € Irr(G)} of orbits and the primitive central idempotents of F[G].

In recent years the effort has been to carry out the computation of primitive cen-
tral idempotents of F[G] in terms of the subgroup structure of G [JLP03, OdRS06,
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OdRS04, BARO7, GG11]. It is the latter approach that is pursued in this thesis,
which is aimed as a contribution to understand the algebraic structure of semisimple
finite group algebras of metabelian groups. It may be mentioned that the analogous
study of rational group algebras has been carried out in [Her97, OdRS06, BKP13].

We begin our study of non-commutative semisimple finite group algebras F[G]
with the computation, in Chapter 1, of the primitive central idempotents when the
group G is of order pips, where p; and p, are distinct primes [BGP11]. We next
consider the case when G is an arbitrary metacyclic group [BGP] and conclude with
the case when the group is an arbitrary metabelian group. Although, the case of
metabelian groups contains the first two cases, the conclusion in the former cases,
however, are more descriptive from the point of view of application.

In Chapter 2, we apply the preceeding computations of the primitive central
idempotents to derive explicit Wedderburn decomposition and the group of auto-
morphisms of the group algebras considered in Chapter 1.

Finally, in Chapter 3, we give several illustrative examples. In particular, we con-
sider the group algebras of certain indecomposable groups G whose central quotient
is the Klein four-group; thus providing a method for improving results in [FGPM10].



Chapter 1

Primitive Central Idempotents

The main result in this Chapter is the determination of a complete irredundant
set of primitive central idempotents of the semisimple group algebra F,[G],
where G is an arbitrary finite metabelian group.

Commutative group algebras

We begin by recalling the primitive central idempotents of finite commutative
semisimple group algebras. The explicit expressions for primitive central idem-
potents of the semisimple group algebra Fy[Z,], n > 1, have been computed in
[SBDR04, SBDR08, BRS08]. We need the case when n is a prime and the descrip-
tion of primitive central idempotents, in this case, is as follows:

Proposition 1.1 Let (a) be a cyclic group of prime order p and q a prime power,
ptq. Let f =ordy(q), e = (p—1)/f and g a primitive root modulo p. The group
algebra F,[(a)] has exactly the following e+1 distinct primitive (central) idempotents:

S+at--ah),
,lg(f + 22;20 77i+jagj), 0<i<e—1.

where N, = Z;:é Cgkqj, k > 0, and ¢ is a primitive p-th root of unity in Fq; m
particular, if 0 < m, m' < e—1, m # m/, the tuples (M, Mms1s - Dmter1) and
(Minss M1y -+ > Nt ves1) are distinct.

Let H and K be subgroups of G (not necessarily abelian) such that H is normal in
K and K/H is cyclic. Then Irr(K/H) is a (multiplicative) cyclic group isomorphic
to K/H of order coprime to ¢q. The cyclic group (g) contained in L. acts on
Irr(K/H) by setting ¢.x = x4, x € Irr(K/H). Recall that the orbits of this action
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are called the g-cyclotomic cosets in Irr(K/H). It may be pointed out that if y is
generator of Irr(K/H), then so is every element in the orbit of y. Define

C(K/H) ={C|C is an orbit of a generator x € Irr(K/H)}.

For C € C(K/H), x € C, following [BAR07], we set

ec(K, H) = K™y (Tre, e p,(x(@))g (1.1)

geK

where ¢ is a primitive |K/H|™ root of unity in F,, Trp,¢)/r, 18 the trace of the
extension F,(§)/F,, and for g € K, g = gH.

Observe that the group G acts on F [G] by conjugation. Let

ec(G, K, H) = the sum of distinct G-conjugates of e¢(K, H). (1.2)

The following result is due to Broche and Rio [BAR07].

Theorem 1.2 Let Fy be a finite field and G a finite group of order coprime to q.
Let N < G with G/N cyclic and let C € C(G/N). Then

(1) ec(G, N) is a primitive central idempotent of F,[G].

(i1) F,[Glec(G, N) =2 F,((r), where (y is a primitive k-th root of unity in F, and
k=[G : NJ.

(7i1) ec(G, N) =ep(G, N), C, D € C(G/N), if and only if C = D.

Furthermore, in case G is abelian,
{ec(G, N)|N <G, G/N is cyclic and C € C(G/N)}

is a complete set of primitive central idempotents of F,[G].

Irreducible characters of metacyclic groups

Let n,t,r, k be natural numbers with 7* =1 (modn), kr = k (modn) and let G
be the metacyclic group given by the presentation

G={abla"=1,b" =d" b 'ab=a"). (1.3)
Let [n] = {0, 1, ..., n — 1} and o the permutation of [n] defined by
i~ ir (modn).
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The cyclic group (o) acts naturally on [n]. Let [[n]] denote a complete set of repre-
sentatives of the distinct orbits of [n]. For i € [n], let orb(i) denote the orbit of i and
l; = |orb(7)|]. Note that I; is the order of  modulo n/ged(i, n), and hence [; divides
t (asrt =1 (modn)). Let s; = t/l; and ¢ a primitive nt-th root of unity in F,.

Let i € [n] and suppose ged(i,n) = d. For 0 < j < sq — 1, there exists a
representation T; ; : G — GL(ly4, F;) defined by

00 .. 0 (laliktng) T
1 0 0 ... 0

T, j(a) = diag(¢™", ¢7*,....¢T" ), T ) =] 0 0
: 0 0
(00 ... 0 1 0 |

Let ;,; denote the character of 7; ;. For a divisor d of n and a divisor [ of 284,
d, 1 >1, let

Xgui= (i, )10 € [Il), ged(in) = d, 0 < j < sa— 1, ged(5h+ 3j, 4) =1},
(1.4)

Theorem 1.3 [Bas79] The set

{xi;, (i, 7)€ U U Xa1}

dln 1|5 sq
is a complete set of irreducible characters of G over Fq.
We now proceed to compute the primitive central idempotents of F,[G], where G
is a metacyclic group of order nt with presentation given by (1.3). Our objective is

to obtain explicit expressions for the idempotents entirely in terms of the numbers
n, t, k, r and q. We will first consider the special case when n and ¢ are primes.

Groups of order p;ps

Let G be a group of order p;ps, where p;, po are primes. If GG is abelian, the
primitive central idempotents of F,[G] can be computed from Theorem 1.2. For
explicit expressions of the idempotents, see [SBDR04, SBDR0S, BRS08].

We thus assume throughout the rest of this Section that GG is a non-abelian group
of order p;py with p; > pa, say. In this case, we must have p; = 1 (mod ps). Let

G={a,b|a”" =b”=1,b"'ab=a"), (1.5)

5



where the multiplicative order of r modulo p; is ps. Let f; := ordy, (¢) and
fa = ordp,(q) be the multiplicative orders of ¢ modulo p; and p, respectively.
Observe that fi |p; — 1 and fo|pe — 1. Let

_p—1 6,_]?2—1
= 2,— .
fi fa

Let g; be a primitive root modulo p; and ¢;, a primitive p;-th root of unity in
F,, ¢ =1,2. For k > 0, define

€1 .

(1.6)

fi—1 fo—1
=3 =3 (L7)
=0 j=0
Observe that " " o .
1 1 2 2
Mever = M > Mgge, = T "

Set

p2—1
K::FQ<ZGTH|Z':1,2,...,p1—1>. (1.8)
u=0

For a group G of order pyps, Theorem 1.3 yields the following:

Proposition 1.4 IfG is a group given by the presentation (1.5), then it has exactly

p2 + pgl irreducible characters over Fq, of which ps characters are of degree 1 and

p1—1
D2

are of degree po.

The non-trivial irreducible characters, ¥,,, 0 < m < ps —2, of degree 1 are given

by
U (a™0) = G2Y, a®W eG, 0<m<p,—2,

and the irreducible characters ¢,, 0 < n < plp—gl — 1, of degree py over Fq are given
by

0, y#0,
Gn(a®b’) = PL=ljtn

P2

p2—1 ~—Tg; _
Zj:(] 1 , y=0.

We now describe the primitive central idempotents of F,[G] associated with the
irreducible characters of degree 1. Let ¢ : G — I, be the trivial character of G.



Clearly

er, (L) = L Z g. (1.9)

P12 geC

Lemma 1.5 For 0 < m < py — 2,
1 p1—1 p2—2 p1—1 ,
J
er,(m) = —— | oy a"+ > D [ D abn | ),
pip2 2=0 =0 2=0

and ep, (Ym) = e, (Ym) if, and only if, m = m’ (modey).

Proof. Let 0 <m < py — 2.

€F, (Vm) = Z e(“Ym)

oeGal(Fq(vm)/Fq)

= Y ) (Fo(tm) =Fy(()

ceGal(Fq(¢2)/Fq)

p1—1p2—1

- (T2 T e

=0 y=0 \ o€Gal(F,((2)/Fy)

p1—1 p2—1 [fa—1 o p1—1
- (2 S () (S ev))
=0 y=1 =0 =0

p1—1 p2—2 [f2a—1 mti p1—1 ;
- (B S () (S o))
=0 7=0 =0

—0

p1—1 p2—2 @) p1—1 _
x 2 z10°
= pllpz (f2za + anﬂ» (Za b92>) :
Since n? = n? ¢ 114 > 0, it foll that
M, = Niie, 10r all ¢ > 0, 1t follows tha
€F, (Um) = €F, (Vmtey)-

Furthermore, in view of Proposition 1.1, er_(¢,), for 0 < m < e;—1, are distinct. [

In the next Lemma, we describe the primitive central idempotents e, (¢n),
0<n< plp—;l — 1, associated with non-linear irreducible characters.



Lemma 1.6 (i) If po| f1, then, for 0 <n < plp_;l - L

p1—2

_ P2 1) gk
qu((bn) - pl[Fq(Cl) : K] (fl + kzg nn+ka’g )
and er,(¢n) = er,(dn) if, and only if, n =n' (mode;).

g o
(i) If p2 1 f1, then, for 0 <n < B— —1,

B 1 p1—2 [p2—1 @ 5
6Fq(¢n) - [Fq(C1) : K]pl (f1p2+ lz:; (jz:; nn+i+j% a

and eg,(¢n) = er,(On) if, and only if, n = n’ (mod ;—;)

Proof. Observe that F,(¢,) = K for all n > 0, where K is as defined in equation
(1.8). Therefore,

[Fy(C1) : Klew,(6n) = [Fo(G): K] > e(“¢n)

o€Gal(K/Fy)

= Z e(“dn)

o€Gal(Fq(C1)/Fq)

= 2 (& 0(¢n<a_$)>az>

oeGal(Fq(¢1)/Fq)

p1—1p2—1 PL=Lj+n
—  _p2 E E E o 91 a®
P1p2 1
)/Fq)

=0 j=0 oeGal(Fq({1

p1—2p2—1fi—1 plpglj-‘—n-&-i K )
= | fip2+ T a’l ] (1.10)



CaseI: po| fi.

p1—1 .

In this case, ¢, = (@) € Z; for all j, 0 < j < pa — 1. Therefore,

fl 1 P1—2 ]+n+1 q fl_l . l
9, 2 g\ 9 (1) . o
E : = : = N,; for 0 < j < p — 1. Substituting in

1=0 1=0
equation (1.10), we get

p1—2p2—1
[Fy(C1) : Kler,(¢n) = o1 <f1p2 + Z Z 7IS+ZCLQI>

=0 j5=0

p1—2
_ 1 1) _gi
= <f1p2 + P2 Z 7]n+iagl>

i=0
p1—2
= 2(hi+ Y mlat).
i=0
Since the right side of the above equation is non-zero, it follows that
[F,(¢1) : K] is invertible in F, and, consequently,
p1—2

. _ L . (1).ag% .
Fq(¢n> [Fy(&1) - K]py (f " ; b )

Since 77( ) = 171(_1261 for all ¢ > 0, we have

€F, (fn) = €r, (Pnten)-

Also, in view of Proposition 1.1, ep, (¢,), 0 <n < ey — 1, are all distinct.

Case II : py 1 f1.

For 1 < j < ps—1, let j' be the remainder obtained on dividing f1j by p,. We ob-

pi=t; e\ fi eq fy 1157
serve that (gl P2 op2 ) = g 7 = 1 (modp). This gives

! l

Pl e fiml AN il nti\ ¢
p2 7 P2 * 91 _ 91° —
0 € (¢) € Z; . Hence, g . = g . = T 21

1=0
Note that as j runs through 1 to p, — 1, so does j'. Therefore,

p2—1 fi—1 janti p2—1
Z Z < ) Z nn+z+—] (111)

j=1 =0

9



From equations (1.10) and (1.11), we obtain

1

p1—2p2—1 fi—1 J+nti _
o) Kery(60) = 2 f1p2+zzz< )

i=0 j=0 1=0

-2 /fi—1 i p2—1 f1—1 p;—;lﬂnﬂ z ,
g g i
= = | fip2 + (G )"+ (¢ )" ) af

p1
i=0 \ I=0 j=1 1=0
p1—2 p2—1

_ 1 1) (1) g

= o Jip2 + Mpti T 77n+i+%j a
i=0 j=1

Il
[=
/N
S
=
=3
[ V]
+
S NS
I ‘
o no
VRS
i
o L
3
1=
T
<
‘)—‘
~_—
)
i}
~_

p1
(1.12)
We next see that the right side of equation (1.12) is non-zero. Suppose not, then
(1) 1) (1) 1)
Mo+ + Tln—l—i—‘r:—; + nn+i+2.;—; +o Tt ,r]n—l—z—s—(pg D3 61 =0

for 0 <14 < p; — 2. In particular,
(1)

1 1 1
,',]( ) + 77(871) _'_ 7/’;271 + e _|_ n(p271)671 - 0
P2 P2 P2
(1) (1) (1 1) =
Th + T]l el + 7]1+2 61 + + 771-‘(-(])2—1)% - 0
(1) (1) (1) (\) =
Moy T M 142 + Mg _142.2 Tt M9 14-ng = 0

On adding the above system of equations, we get 77(()1) + 779) +ee+ 779-1 = 0, which

is a contradiction, since 37" 771( ) = —1. Consequently, [F,(¢1) : K] is invertible in

F, and
qu((bn) - [ (Cl) . <f1p2 + Z (Z 77n+1+] > ) :

It is clear from the above expression that
€Fq(¢n) = ewq(¢(n+;—;))-
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That the idempotents ep, (¢n), 0 < n < 6

< p—; — 1 are all distinct is a consequence of
the following:

Lemma 1.7 For0<n, n' < ;—; —1,n#n', there exists i, 0 < 1 < p; — 2, such that

p2—1 p2—1

1) (1)
Z nn+z‘+j;—1 7 Z Mg
j=0 > =0 "

Proof. Let 6, := pil(fl + ],0 nl(}r)jagl) 0 <17 <e; — 1 be the primitive central
idempotents of F,[(a)] as given in Proposition 1.1. Suppose the Lemma is not true,

i.e., we have
p2—1 p2—1

Z nn-‘rH—j Z nn +z+j—

for 0 <i < p; — 2. It then follows that

p2—1 p2—1

9 ;€1 — 9 ’ 2 €1
E k+j5 E : k+n —ntig,
J=0 J=0

for0 <k < ;—; — 1. Therefore,

p2—1 p2—1 2
9 .61 pu— 9 .81
z : k’+]5 k+]5
Jj=0
p2—1 p2—1
E k—H § ek—i—n n+]
—0
- Qk—H ek—‘rn n—i—]—

i=0 j=0

However, for 0 < i, j < po — 1, n # n/, the idempotent 6, ;e is orthogonal to
P2
9k+n,_n+j%. Thus we have

p2—1

€1
I <k<—-1
Z: ekﬂ% 0, 0=ks D2
Adding these equations, we get
p2 “Lpp1
Z Orts a =0
k=0 7=0

11



Now the left hand side of the above equation is equal to Y 7' 19,. We thus have a

contradiction, since
e1—1 p1—1

Nz —1——2 P£0. O

i=0 R

As a result of the foregoing Lemmas, we have the following:

Theorem 1.8 [BGP11] Let G be a group given by the presentation (1.5).

(2) If p2 | f1, then F,[G] has exactly the following 1 +ex+1 distinct primitive central
idempotents:

p1p2 Zg’

p1—1 p2—2 p1—1 .
x 2 2102
mé(faza+zn;>ﬂ(zabgg)), D ement

=0

p1—2
W<f1+znn+kagl>7 0<n<e —1.

1) 1 P2 1, then ¥ G has exactly the 0llOU)iTLg fL + e9 + 1 distinct pm’mitive
q y D2
central i(:lempotents.'

p1p2 Zg’

geG

p1—1 p2—2 - p1—1 _
T 2 z10°
p11172 (fQZa"‘Z"?erj(Zang))a 0<m<e —1,
x=0 i=0 =0

p1—2 [p2—1
1 (1) i e
21 Fa(C) K] (flp? + Z (Z 77n+¢+j;;> agl) , 0<n< e 1.0
i=0 \j=0

Metacyclic groups
Let GG be a metacyclic group given by the presentation

G=(a,bla"=1,b" =d* b lab=a"),

12



where n, t,r, k are natural numbers with r* = 1 (modn), kr = k (modn). Let ¢ be
a prime power coprime to nt. The cyclic group (¢q) contained in Z} acts on [n] by
setting ¢.i = ¢i (modn), i € [n]. Let C(q, i, n) denote the orbit of ¢ € [n].

For d|n and 1|4 sy, define

fa:=1C(q, d, n)|.

ha,i = |C(q,1, 554)|.
9a,1 ‘= ng(fd; hd,z)-
Ca 1 :=lem(fa, ha,1)-

o kg ;= the smallest positive integer m such that r™ = (¢%!)" (mod %) for some
integer x.
® VS )

For d|n, l|5s4, (i, j) € Xa,1, where Xy is as defined in equation (1.4), 0 <z <
n—1and 0 <y <s;—1, define

e g, (i, j) := the solution of the congruence 4z = —géj&r%j) (mod %).
e Cy,(i, 7) := the g-cyclotomic coset of the character in Irr((a,b')/(ad, a%b'"))

given by
a -+ {a¥, a V) oy (7 (o atplet) o (a0,

where u = ug (i, j), v = vy and ( is a primitive nt-th root of unity in F,.

Aglis j, x, y) = u
i\ s T Y) = g O )y nsa) IO 8 i)

L4 O5d,l(i7 ju X, y) =

k 1 gd,1—1 B l B
ATty S >y 2. (@) ) where
Zec(qu’l , 1T, TL) wEC(quvl , (ik+nj)y, nsq)

A= Ad,l@? j7 Z, y)

Given d|n, I|%sq and (i, j), (i, j') € Xa1, we say that (i, ') ~ (i, j) if there
exists an integer A\ such that

(i) i'k +nj’ = (ik +nj)g* (modnsy),
(ii) orb(i') = orb(iq"), i.e., i’ = ig*r* (modn), for some y > 0.

13



It is easy to see that the relation ~ defined above on Xj; is an equivalence
relation. Let [X, ;] denote a set of representatives of distinct equivalence classes of
Xg4,; under the above equivalence relation.

With the group G and the notation as above, the following result gives a com-
plete set of primitive central idempotents of F,[G].

Theorem 1.9 [BGP] (i) Let d|n, I|5sq and (i, j) € Xq1. Letu = uq (i, j), v = vq,1,
and C = Cy,(i, j). Then

i
A
w
A

a—

1

€F, (Xi}j) = eC’(G7 <CL, bld>’ <CL%, aubldv>> - nsy

ad,l(iv j7 X, y) a“xbyld' (113)
y=0

Il
=)

T

(#) {er,(xi,5) | (4, 7) € Uyn ngsd[Xd,l]} is a complete set of primitive central
idempotents of F,[G].

We will prove the above result in a number of steps.

Let GG be a finite group of order coprime to ¢ and N < G. Let ¢ be a linear
character on N and let C be the g-cyclotomic coset of 1 € Irr(N/ker 1)), where v is
the corresponding character of N/ker ¢ given by § = g+ker ) — 1(g). Let x = ¢°.
With this notation we have the following:

Theorem 1.10 If x € Irr(G), then

(i) er, (V)= ec(N, ker).
(”) €r, (X) = eC(G7 N, ker 1/})

14



Proof. (i) Let n be a primitive | N/ ker¢|” root of unity in F,. We have

G]Fq(%b) = ‘Z Z

gEN TG (3

- |ZZ

geEN T7eG (¢

- WX X @@ e (G(0) = CallF,(n)/F,)

gEN rEGal(Fy(n)/Fy)

= |N|ZTrFq /Fq ((g)—l))g’

geN
= (N, ker ).
This proves ().
(17) Let {z1, z2,..., xy} be a transversal of N in G. We have
X(D)[F,(
. (0) : Fy (s, 00 — X |Gr s s«

9€G 1€G(x)

9€G 7eG ()

=%zzz el

geN TeG(y) =1

fj@«( TS )x

9EN 7€G(3)
m
= Y wer,()a;
i=1

= Z ziec(N, ker )y,
i=1

= [Ceng(ec(N, kerv))) Zy]&tc (N, ker¢p)y; ",

7=1

where Ceng(ec(V, kerv))) denotes the centralizer of e¢(N, ker ) in GG, and

!

{v1, y2, ..., ym } is a transversal of Ceng(ec (N, ker¢)) in G. As Zyjac(N, ker ih)y; ',
=1
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being a sum of distinct primitive central idempotents of F,[/V], is a non-zero idem-
potent, it follows that,

[F,(¢) : Fy(x)] = [Ceng(ec(N, ker)) : N, (1.14)
and
er,(X) = Zyjec(N, kerzﬂ)yj_l =ec(G, N, ker).

This completes the proof of (iz). O

Let d|n, {|%sq and (i, j) € Xq. Let ¢y ; : (a, b'?) — F, be the linear character
of (a, b'*) given by ¢; j(a) = ¢~ and 1, ;(b'4) = (- ld(””"]) It is easy to see that
Xi,j 1s induced from the linear character @/JZ, ; of {a, b'd).

Lemma 1.11 Let d|n, I|%sq and (i, j) € Xq. Then

3
—
—_

—1 84—

1

ex, (V1) = o((a, ), (@) = — By, (L9
d =0 y=0
where
9d,1—1 5 5
Bx,y = Ad,l(ia ja z, y) Z (Ctz)q Z (Cldw)q
B8=0 260 (¢4 iz, n) weC(q%4: 1, (ik+nj)y, nsq)

u, v, Ag1(i, j, , y) and the gq-cyclotomic coset C' are as in the statement of
Theorem 1.9.

Proof. The first equality of equation (1.15) follows from Theorem 1.10, if we show
that
ker(v; ;) = (ad,a"blv), (1.16)

where u and v are as in the statement. Now, 1/Ji,j(a%) = (Ttat = §_”5t = 1.
Also ¥y j(avblav) = ¢~Ht(~lav@k+ni) = 1 Thus a4 and a“b'“’ belong to ker(¢; ;).
Therefore, (ad,a"b'”) C  ker(¢y ;). As (a, b'9)/ker(¢y ;) = (¢*, (') and

(¢, Cldld>‘ = lem(3, 5) = Gaaey = 40, it follows that |ker(v; ;)| = L Also

note that |(ad,a"b'’)| = ¢, Thus the equality in (1.16) follows.

We now prove the second equality of equation (1.15). We have

er, (¥i,5) Z Z 7 (Wi, 4(

g€la,bld) TEG (s, ;)
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Since F,(v; ) = Fy (¢, ¢lalk+ni) =T, (¢%, ¢!4), it follows that

[Fq(i,5) : Fg) = lem(fa, ha1) = La,1, (1.17)
and
1 n—1 sq—1
er, (Vi) =— Y > 7t By ,a®b,  (1.18)
ge<a bla)y T€G (i, 5) z=0 y=0
where

Bay = om0 a))

TeGal(F 0y l/Fq)
g
_ itx Alq(ik+ng)y
= > r(Clti)
T€Gal(F 4, ,/Fq)
q'd
Zdylfl

_ § Citﬂcq”gld(ikJrnj)yq”
v=0

—14£q,1/hay —14+ha;

= Z Z gitxq“vhdvl Cld(ik-&—nj)yqﬁvhd’l
v=0 6=0

—1+4hgy [—1+Lq,1/ha,

itwq @ 14(ik+nj)yq®
- Z Z (¢itwa™ Cd( +nj)yq ’

0=0 =0

as ly(ik + nj)q "t = ly(ik + nj) (modnt),
—1+hg;

- vt tz\a’ la(ik+nj)yq®
— hag|Cghe, iz, ) > DD (SR e

6=0 zEC’(qhd’l iz, n)

We now show that
C(q" iz, n) = C(¢%, iz, n). (1.19)

As g4 divides hg;, we clearly have C(g"et iz,n) C C(¢% ! iz,n). In order to see
that the right hand side of (1.19) is contained in its left hand side, we write gq4; =
xofa + Yohay, where zy and yo integers, and note that for any integer zo > 0,

Z'quc)gd,z — Z'xqzmﬁoquzoyohd,z = ixqzoyohd,l (mod n) (1.20)
Since the left hand side of (1.20) is an arbitrary element of C'(¢%!,ixz,n) and the

right hand side of (1.20) belongs to C(g"#t, iz, n), it follows that C(q%, iz,n) C
C(q" iz, n) and hence (1.19) is proved.
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In view of (1.19), 8,,, now becomes

—1+hq
_ gd,l Z Z (Ctz)qé Cld(ik+nj)yq6
hd,l |C(qu L, n)| 5=0 2€C(g% 1 jiz,n)

—1+ha,1/9a,1 9a,1—1

B la
© hay|C(g9, iz, n))| #2:% [32:%

—1+ha,1/9a,1 9a,1—1

(Cld(ik+nj)yq“gd’ ! )qB

—
I
&
b
W
T
<
sa.
SN—
)

2€C (g% iz,n)

" (Cld(ikJrnj)yq“gd’l)q/B

(Ctz>q

I

>

a

=2
D~

RN

-~

8

S

2€C(¢% 1 iz, n) u=0

0
14 94,11 5 —14+ha,1/94,1
o z 7 nj H9d, 1\ o8B
T ha Clgt, iz, )] > ) Yttty

gd,1—1
_ Ad,l(ia j, y) ( Z (Ctz)qﬁ Z (Cldw>qﬂ 7

B=0 2€C0(q% 1 iz, n) weC (g%, (ik+nj)y,nsq)

where A4 (7, j, , y) is as in the statement. Now substituting the above expression
of B, 4 in (1.18), we obtain the second equality of equation (1.15). O

Lemma 1.12 Let d|n, I|%sq and (i, j) € Xq,1.

(i) Fors>0, let j, = j+ * ") (mod sy). Then (ir*,j,) € X4, and

b e, (i, ;)b = er, (Yirs,j,)-
(i) Ceng(er,(vs,;)) = (a, b*1y and {1, b, ..., bF171} is a transversal of Ceng (ex, (¢4, ;)
in G.

Proof. (i) Since ged(r, n) = 1, we have ged(ir®, n) = ged(i, n) = d and

ir® n. e n,. ik(l—r°) n
71@‘ + 7 = 7747 + E(‘? + ——) (mod ESd)
i n. n
= c_ik + 27 (mod Esd).

Thus ged(Zk + 2j,, 2sq) = ged(2k + 25, 2s4) = I. Hence (ir*, j;) € Xq4,,. Now, by
Lemma 1.11, we get that the coefficient of a®b'#¥ in the expression of er, (Vs j,) is

gd,1—1

Aaiiy 4, =, ) S @) S ()™ |

B=0 2€C (¢4 irsx,n) weC (g1, (ik+nj)y, nsq)
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which is same as the coefficient of a”b'¥ in the expression of b*er, (1;, ;)b*. Thus (7)
is proved.

(¢4) Since ex, (;, ;) is a central idempotent of Fy[(a, b'¢)], we have (a, b') C Ceng(er, (¢;,;)).
Let b* € Ceng(er,(¥i,;)). Then b%er, (¢ ;)b~° = er, (¢, ;). Therefore, by (i),

qu <¢i7’5,js) = qu (¢27])7 (121)
which, by Lemma 1.11, gives that
50’(<a’7 bld)? ker(¢irs,js>> = €C(<a’ bld>7 ker(wz}j))’ (1'22)

where C” is the g-cyclotomic coset of Irr(({a,b')/ker(¢y- ;,)) containing . ;. .
Also equation (1.21) implies that .« j, = T o 1, ;, for some 7 € G(1); ;). This
gives that ker(¢;,s ;,) = ker(¢); ;). Consequently, we get from equation (1.22), that
eor({a,b'e), ker(¢; ;) = ec({a,b'a), ker(¢); ;)). This gives, by Theorem 1.2(iii), that
C=0C1e, Vs j, = wch, for some integer ¢ > 1. Now evaluating both ;s ;, and
¥; ;7 at a and bla, we obtain that

ik +nj = (ik +nj)q¢° (modnsy),

and

ir® = iq¢° (modn).

The first congruence implies that hy ;| c and consequently, the second congruence
yields kg, |s. However, it is easily seen that b*! € Ceng(er, (¢, ;)). Therefore, we
obtain that {1, b, ..., b*17'} is a transversal of Ceng (e, (¢ ;) in G. O

Proof of Theorem 1.9. (i) It follows from Theorem 1.10 and Lemmas 1.11, 1.12
that

kd,l_l kd,l_l
er,(Xij) = Y Vex, (i )07 = > ex, (Vs 1,)- (1.23)
s=0 s=0

Now substituting the expression of ep, (¢irs, j,) obtained from Lemma 1.11, we get
the required expression of er_(x;,;)-

(i) Let dln, l|5sq, (4, j), (i, ) € Xg1 be such that (7', j') ~ (i, 7). Then it
follows immediately from the expressions of ep, (x; ;) and eg,(xi, ;) given by (i)
that er, (xi.;) = e, (Xi.57)-

Conversely, let (i, j), (¢, J') € Uy, U”%Sd Xa,; be such that

er, (Xi,j) = er, (X, j)- (1.24)
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In order to prove (ii), we need to show that there exist integers d, [ > 1, d|n, 1554
such that (4, 5), (¢, j') € Xa, and (¢, j') ~ (i, j). Equation (1.24) implies

Xi', i = T O Xi, j, (1-25)

for some 7 € G(x;,;). This gives that x; ; and x;, ; have the same degrees, i.e.,
l; = ly. Also it follows from equation (1.25) that ker(x; ;) = ker(x;, ;), which implies
that (a™/ &40 ") = ker(yy ;) N (a) = ker(x, ;) N (a) = (a®/#40™). Consequently,
ged(, n) = ged(i, n) = d, say.

Let | = ged(4k + 2j,%s4) and I = gcd(%k + %j',%5s4). By Lemma 1.11 and

ka,1—1 kg =1
equations (1.23), (1.24), we have Z er, (Virs, j,) = Z er, (Yirs, 51 ), which holds
s=0 s=0
if, and only if,
€r, (wi,j) = €F, (wi’rs,jg)7 (1-26)
for some s > 0, i.e.,
ec({a, '), ker(v; ;) = ecr({a, b, ker(y,s jr)). (1.27)
Also equation (1.26) implies that
VYirps j1 = T 0y 4, (1.28)

for some 7 € G(v; ), which gives that ker(i;,s j;) = ker(4); ;). Consequently, equa-
tion (1.27) and Theorem 1.2(iii) gives that C' = C". Therefore, 1y, ;; = 1; ;7 for
some ¢ > 0 which yields, by evaluating ¥, _j, ¥, jqc at a and b, that [ = I’ and
(7', j') ~ (i, 7). This completes the proof of (i7). O

Metabelian groups

Let GG be a finite group and H a subgroup of G. We set
. 1
H=— h
] 2
and let

M(G/H) = the set of minimal normal subgroups of G containing H properly.

Let e(K, H) be the element of the rational group algebra Q[G] given by

€(K> H) =
K, ifH=K.
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Definition 1.13 A strongly Shoda pair of G is a pair (K, H) of subgroups of G
with the properties that

(1) H<K<Ng(H),

(17) K/H is cyclic and a mazimal abelian subgroup of No(H)/H,

(131) the different G-conjugates of (K, H) are mutually orthogonal.

Let H<QK < G besuch that K/H is cyclic. Let g € G. For a character ¢ of K, let
19 denote the character of K9 := g7 K g defined by ¢ (z) = ¢(gzg™"). Clearly
ker(y) = H if, and only if, ker(:)(9)) = H9 . Therefore, the map 7 given by ¢ + (%)
defines a bijection between the generators of Irr(K/H) and those of Irr(K(9) /H(9)).
Note that if C' is the g-cyclotomic coset of ¢ then C9) := 7(C) is the g-cyclotomic
coset of ¥, Thus 7 in turn induces a bijection 79 : C(K/H) — C(K9/HWY))
given by C +— C9).

Let N = Ng(H) N Ng(K). Define an action of N on C(K/H) as follows:
gC=CY geN, CeC(K/H).

Note that under this action the stabilizer of any C' € C(K/H) remains the same.
For C € C(K/H), let Orb(C) denote the orbit of C' and

Eq(K/H) = the stablizer of C.
Let
R(K/H) = the set of representatives of distinct orbits of C(K/H).

Define
ordx.m)(q)

[Ec(K/H) : K]

o(K, H) = (1.29)

The following result is due to Broche and Rio [BAR07].
Theorem 1.14 Let F, be a finite field of order ¢ and G a finite group of order
coprime to q. Let (K, H) be a strongly Shoda pair of G and C' € C(K/H). Then
(i) Ceng(ec(K, H)) = Eq(K/H).
(it) ec(G, K, H) is a primitive central idempotent of F,[G].
(ZZZ) Fq[G]GC(G, K, H) = M[G:K] (]qu(K,H)).

Furthermore, if G is an abelian-by-supersolvable group, the every primitive cen-
tral idempotent of F,[G] is of the form ec(G, K, H), for a strongly Shoda pair
(K, H) of G and C € C(K/H).

Let G be a finite metabelian group of order coprime to q. Let
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e A:= a fixed maximal abelian subgroup of G containing G'.
e 7 := the set of all subgroups D of G with D < A and A/D cyclic.

For Dy, Dy € T, we say that D; is equivalent to D if there exists g € G such that
Dy =g 'D;g. Let

e 7o:= a set of representatives of the distinct equivalence classes of T.
For D € T, let
e Kp := a fixed maximal element of {K | A < K <G, K' < D}.

e R(D) := the set of those linear representations of Kp over F, whose restriction
to A has kernel D.

e Ro(D) := a complete set of those representations in R(D) which are not

mutually G-conjugate.

The following result is proved in [BKP13] for complex irreducible representations.
However, the analogous proof works for the irreducible representations of G over F,.

Theorem 1.15 [BKP13| Let G be a finite metabelian group with A and To as
defined above. Then
Q={p" peRe(D), DeTs},

is a complete set of inequivalent irreducible representations of G over Fq.
Furthermore, p® € Q) is faithful if, and only if, D is core-free.

For N < G with
Ay/N = a maximal abelian subgroup of G/N containing (G/N)’,
define
Se/Nn ={(D/N, Ax/N)|D/N € Tg/n, D/N core-free in G/N}.
Let

S = {<N7 D/N7 AN/N)’NS]Gv SG/N#Q (D/N7 AN/N) ESG/N}

The following is our main result on the primitive central idempotents of a semisimple

finite group algebra of a metabelian group.
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Theorem 1.16 Let I, be a finite field with q elements and G a finite metabelian
group of order coprime to q. Then

{ec(G, .AN, D) | (N, D/N, AN/N) €S, Ce R(.AN/D)}

is a complete set of primitive central idempotents of F,[G].

Proof. Let
S = {((N, D/N, Ay/N), C)| (N, D/N, Ay/N) € S, C € R(Ax/D)}. (1.30)

If (N, D/N, Ay/N), C) € &, then, by ([BKP13], Lemma 6), (Ay, D) is a strongly
Shoda pair in GG, and therefore, by Theorem 1.14 (ii), ec(G, Ay, D) is a primitive
central idempotent of F,[G]. Thus we have a map

T ((N, D/N, AN/N), C) — ec(G, .AN, D)

from & to a complete set of primitive central idempotents of F,[G]. In order to prove
the Theorem, we need to prove that 7 is 1-1 and onto.

To show that 7 is onto, let e be a primitive central idempotent of F,[G]. We have
e = e, (x), for some x € Irr(G). Let 7 be a representation affording x and NV = ker 7.
Let T be the corresponding faithful representation of G/N. By Theorem 1.15, it
follows that there exists a unique pair (D/N, Ax/N) € Sy and a representation
p of Ay/N with kernel D/N such that 7 = 5/, This yields y = ¢, where ¢ is
the character afforded by p : Ay — F, given by p(x) = p(xzN). Since kert) = D, by
Theorem 1.10, we have
er,(X) = ec(G, An, D), (1.31)

where C' € R(Ax/D) is the g-cyclotomic coset of 1 and consequently 7 is onto.
To  show that 7 is 1-1, let¢  ((N, D/N, Ay/N),C)  and
(N, D/N, Agz/N), C) € & be such that
ec(G, Ay, D) = ex(G, Ag, D). (1.32)

Let p € Ro(D), p € Ra(D) and x and ¥ be the character afforded by p& and 5% Te-
spectively. By Theorem 1.10, er,(x) = ec(G, Ay, D) and ep,(X) = ea(G, Ay, D).
Therefore, equation (1.32) implies that eg, (x) = er,(X), which, in turn, implies that

X=00x, 0€G(x) (1.33)

Consequently, N = ker(y) = ker(x) = N. Also, by going modulo N, it follows
from equation (1.33) and Theorem 1.15, that D/N and D/N are conjugate in G/N.
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This gives D/N = D/N, i.e., D = D. Next, if {z1, z2, ..., 2k} is a transversal of
E¢(An/D) in G, then, by Theorem 1.14(i) and equation (1.32), we have

K K
ch(zj)(AN, DGy = Z€é<2j>(«4N, D). (1.34)
=1 =1

Since both the sides of the above equation are primitive central idempotents in
F,[An], it follows that, for some j, 1 < j <k,

5()(./4]\7, D) = Eé(z]-)<./4]v, D(zj)>. (135)
However, by Theorem 1.2, ec(An, D) = er,(p), and e4¢) (An, D)y = eyq(ﬁ(zﬂ')).

Therefore, we have by equation (1.35), er, (p) = er,(p*)), which, as before, gives
D = kerp = ker p%) = D) = D@) ie. 2 € Ng(D). Consequently, Orb(C) =

Orb(C). This proves that 7 is 1-1. O

We now illustrate Theorem 1.16 with its application to metacyclic groups; thus
obtaining an alternative set of primitive central idempotents of F,[G] with G given
by presentation (1.3).

For a divisor v of n, let

e 0, = ord,(r).

o G, = (a, b°).

o B,, ={(w,i,¢) €Z*|w > 0, w|n, w|r* —1, 0,c > 0,0,c|t, w|k+iz}.
Let

t
N={(v,i,c)€Z® | v>0,v|n, c>0,clt,0<i<v-1,v|k+i-, o,|cand v |i(r—1)}.
c

For (v, i, ¢) € M, define
o H, ;.= (a’, a'b").

e Xpio = {(,0,8)|B0, | ¢,az= = i (modv), s = <=l

Boy VO0y

ged(v, a, B) =1 and (v, a, B) € B,,}.

Define a relation, denoted ~, on X, ; . as follows:

For (v, ay, ﬁl), (v, (g, Ba) € X ic, we say that (v, aq, 51) ~ (v, ag, f2) < b1 = Po
and a; = a1’ (modv) for some j. It is easy to see that ~ is an equivalence relation
on X, ;.. Let X, ; . denote the set of distinct equivalence classes of X, ; . under the
equivalence relation ~ .
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Theorem 1.17 Let F, be a finite field with q elements and G the group given by
the presentation (1.3). If ged(q, nt) = 1, then

U {60(07 Gov’ Hvya,ﬁov)’ ’ <U7 Oé, /8) S %’U,Z’,C7 C € R(GOU/H’U,Q,,BOU)}

(v,4,c)eEN

is a complete set of primitive central idempotents of the group algebra F,[G].
We prove it in a number of steps.

Lemma 1.18 H, ; ., (v, 4, ¢) € N, are all the distinct normal subgroups of G.

Proof. Let N < G. Suppose N N (a) = (a),v|n, v > 0. Now, if N/N N (a), as a
subgroup of G/(a), is generated by (b°(a)), ¢ > 0, ¢|t, then clearly,

N = {(a”, a't°) for some i, 0 <i < v — 1. (1.36)

Now N being a normal subgroup of G, we must have b~ 'a’b°b, a 'a’b‘a and
(aibc)t/c all belong to N. This gives

t
v|i(r—1), o,]c, v|k+i-. (1.37)
c

Consequently, equations (1.36) and (1.37) yield that (v, i, ¢) € Mand N = H, ; .

Conversely, it is easy to see that for any (v, ¢, ¢) € M, H, ; . is normal subgroup

of GG. Furthermore,
nt

H, ;. |=—. 1.38
Hoed = 2 (1.38)

In order to complete the proof of the Lemma, we need to show that
H, i (v,i,¢) € M, are distinct. Let (vy, i1, ¢1), (v2, 2, c2) € I be such that
Hvl,il,cl = Hv27i2762' Then <a’vl> = Hvl,il,cl N <CL> = Hv27i2702 N <CL> = <a’v2>
implies that v, = vy = v, say. Also, in view of equation (1.38), |H, .o /(a")| =
|Hy iy, e,/ {a”)] implies that ¢; = ¢ = ¢, say. Further, a2b® € H, 4, o, a0 € H, ;.
and H, ;, . = H, i, . gives that a"*~2 € H, ;, .M (a) = (a”). Hence iy = i; (modv,),
i.e., 11 = 19. This proves the Lemma. []

Lemma 1.19 Let (v, 4, ¢) € N and N = H, ; .. Then

(i) Go,/N is a mazimal abelian subgroup of G/N containing (G/N)
(17) H/N is a subgroup of G,, /N with cyclic quotient and H/N core-free in G/N <
H = H"%%BOUJ (U7 «a, ﬁ) € Xv,i,c'

’
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Proof. (i) By ([CR06], p.336), G, = (a""~'). Since v|r> — 1, we have
G, < (a") < N and therefore G,,/N is abelian. Furthermore G, /N contains
(G/N) as G' = (a"') < {a, b*) = G,,. Thus G,,/N is an abelian subgroup of
G/N containing (G/N)/.

If o, = 1, then clearly, G,,/N = G/N is a maximal abelian subgroup of G/N
containing (G/N)/. Let o, > 1. Suppose that K/N is an abelian subgroup of G/N
with G,, /N < K/N < G/N. Since o, > 1, G/N is not abelian. Thus K/N < G/N.
Now K N (a) = (a) implies that K = (a, t’) for some j|o,. However, K’ < N
implies that (a™~') < N, which gives that v|r? — 1, i.e., 0,]j. Thus j = o, and
K/N = G,,/N. This proves (7).

(it) Let H/N be a subgroup of G,,/N with cyclic quotient. By ([OdRS06],
Lemma 2.2), we have

H = Hu7avﬁov7 (U, «, 6) S Bov and ng(u7 «, B) =1.

Since N < H, we must have ¥ € H and a‘b° € H, which holds, if, and only if,

=1 (modu). (1.39)

ulv, Bo,|cand « ¢
v

We claim that

5 Buo
H = u a ov 8 = v .
core(H) = (a“, a“Fov %), & sed(a(r — 1), 1)

Let K = (a“, aa%b‘” with 0 as above. Since (u, a%, 0) € M, by Lemma 1.18,

it follows that K is a normal subgroup of G. Since ab®a~1b=% € (a’), we have
5
aa%b‘s(aabﬁ"“) oo € (a"). Thus K is a subgroup of Hy 4 g0, = H.

In order to show that core(H) = K, we need to show that K is the largest
normal subgroup of G contained in H = H, o g0,- Let L be a normal subgroup of
G contained in H, 4 go,- By Lemma 1.18, L = H,, ., ; for some (w, 7, f) € M.
Since (a) = LN {a) < Hya po, N {a) = (a"), it follows that u|w. Next ob-
serve that an arbitray element of H, , o, is of the type a/b% with So,|s and
j = ag,: (mod u). Therefore, L = H,, -, s is a subgroup of H,_ q, g, if, and only if,
Bo,|f and ~ = aﬂ% (modw). Since v(r — 1) = 0 (modw), we have

aﬁ—iv(r — 1) = 0 (modu). This gives that 0| f and consequently L = H, - s is

)
contained in K = (a“, a®7vb°). This proves that K is the largest normal subgroup
of G contained in H,_ , g,,, which proves the claim.

It is now immediate from the claim that H/N is core-free in G/N if, and only
if, u = v and § = ¢. This proves (iz). O
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Lemma 1.20 Let (v, i, ¢) € M and (v, aq, 51), (v, ag, B2) € Xy ic. Then Hy oy 10,
and H, o, gy0, 0re conjugate in G if, and only if, 1 = P2 and oy = asr? (modw),
for some j.

Proof. Suppose
Hy oo pro0 = 9 "Hy o pro,9, g =a'tl €G. (1.40)

Then, in particular, in view of equation (1.38), we have

nt nt

y _ =
| v,a1,ﬁ10v| V310, v 330,

= |HU70427,3201;|7

i.e.,

p1 = Pa.
Further equation (1.40) holds, if, and only if,
(aibj)_lao‘Qbﬁlo”aibj € Hy o1, roy-

Since ab®a~'b™% € (a"), we have (aibj)_laa2bﬁlovaibj(ao‘2rjb510“)_1 € (a”) C Hy a1, proys
which yields that .
a; = agr? (modw)

and proves the Lemma. []

Proof of Theorem 1.17. By Lemma 1.18, H, ; ., (v, i, ¢) € 9, are all the distinct
normal subgroups of G. For (v, i, ¢) € M, and N = H, ; ., Lemma 1.19 implies that

SG/N = {(Hv,a,ﬂov/N7 GOU/N) | (U7 «, 5) € %U,i»C}'

Therefore, we have

S= |J {(Huie Huapo,/N, Go/N)| (v, @, B) € Xuic}
(v,4,c)EN

and consequently, Theorem 1.16 yields the required result. [J
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Chapter 2

Wedderburn Decomposition and
Automorphism Group

Let F, be a finite field with ¢ elements. In this Chapter, we compute the
Wedderburn decomposition and the group of automorphisms of F,[G], where
G is a finite metabelian group of order coprime to q. We compute the explicit
Wedderburn decomposition. The standard results on automorphisms of finite
dimensional algebras yield the corresponding group of automorphisms and we
omit the details.

We continue with the notation introduced in Chapter 1. We denote by Aut(F,[G]),
the group of F -automorphisms of Fy[G]. For x € Irr(G), let A(x) := Fy[Gler, (x)-

Groups of order pp,

Theorem 2.1 [BGP11] Let G = {(a,b|a?* = b2 = 1, b 'ab = a") be a group of
order p1ps, where p; and py are primes, py | p1 — 1, and v is an element of order ps
in Z . Suppose ged(q, pipe) = 1. Then

i g [FrOE @ MuE) ) palfi
g es e1
! FQ@F( )@Mp2(qul)(p2)a p2jff17

q/2

where u = L.
P2
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( e e1
(Z;Qz) X S,,) ® (H1< )« Se.), | fi, fo# 1,

i) AuEj) = e ® (Hy 2 S5). pol i, fo=1,
17 u = es (%)
! <Z§”2) NSG?)EB(HZ ? xlsel/m)’ pQJ(fla f27é17
(1)
\Se2+1 ® (H2 X 561/172)7 pQJ(fla fa=1,

where Hy = SLy,(Fpu) X Zy,, u = 1% and Hy = SLy, (F ) % Zy, .

Proof. Let

€ 9 Y
o= 1, p2lf (2.1)
6_17 b2 "/ fl'
p2
By Theorem 1.8, er,(¢), er,(¥m), er,(¢n), 0 <m < ey —1,0 <n < é— 1 constitute
a complete set of distinct primitive central idempotents of F,[G]. Therefore,

Fo[G1 = AW © A(0) @ -+ @ A(Ye, 1) © Al¢o) D - - S A¢e1)-

We have er, (1) = 1#102 Y gec g and A(, Fy) = F[Gler, (1) = F,.
For 0 < m < ey — 1, 9, being a linear character, A(1,,) is commutative and so
A(1),,) is equal to its centre. But, in view of ([Yam74], Proposition 1.4) , the centre of

A(tyy,) is isomorphic to F,(¢.,) = Fy(¢2). Hence A(¢),,) = Fy((2) for 0 < m < ey —1.

For 0 < i < é— 1, by Wedderburn structure theorem, A(¢;) = M,,(D;), where
D; is a finite field containing F,, and n; > 1. By ([Yam74], Proposition 1.4), the
centre of A(¢;) is isomorphic to F,(¢;), therefore, we have D; = F,(¢;). However,
for 1 <i <n, Fy(¢;) = K, where K is as defined in equation (1.8). Observe that
A(¢;), 0 < i < é— 1, are all isomorphic as F,-vector spaces. Therefore, it follows

that ng = ny = --- = nz = n, say. Consequently, A(¢p;) = M;(K) for 0 <i<é—1
and )

Fy[G] = Fy @ Fy () @ Ma(K)"©. (2.2)
Furthermore, ~

Z(F,[G]) = F, ©F,(6) ™ & K, (23)

where Z(IF,[G]) is the centre of F [G].

Observe that [F,((2) : Fy] = ord,,(q) = f2, thus on comparing the dimension
over F, on both sides of (2.3), we obtain that

p1—1
b2

p2 + =1+eyfo+e[K : F,l,
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which gives that

ﬂ) p2|f1
K :F,|=<P 2.4
| d {fh P2t fi- (24)

and now comparing the dimension over F, on both sides of (2.2), we obtain that
pip2 = 1+ exfo + n?e[K : Fl,
which gives that 7 = py. Thus (i) is proved.

(i) follows from (i) and the standard results on automorphisms of finite dimen-
sional algebras [Lam01]. OJ

Metacyclic groups

The following Theorem follows from Theorems 1.9(ii) and 1.14(iii). However,
we give a simpler proof, in this case, using the ideas contained in ([OdRS04],
Theorem 2.1).

Theorem 2.2 [BGP] Let n,t,r, k be natural numbers with v = 1(modn), kr =
k(modn) and let G be a metacyclic group given by presentation

G={a,bla"=1,b" =d" b 'ab=a").

Suppose that ged(q, nt) = 1. Then

F, (Gl = D P M, (Ky )"0,

din 1|5 sq
where Ky is the field extension of Fy of degree Z‘i’;% and ng,; = |[Xa,]|-
Proof. By Wedderburn theorem,
FQ[G]qu(Xi,j) = MH(K)7 (25)

where K is a finite field containing IF,. Comparing the centre of the algebras on
both sides of (2.5), it follows that K is isomorphic to the centre of Fy[Gler, (X, ;)-
However, by ([Yam74], Proposition 1.4), the centre of F,[Gler,(x;, ;) is isomorphic
to Fy(x;, ). Therefore

[K:Fo] = [Fqe(xs,5) : Fol-
By equations (1.14), (1.17) and Lemma 1.12(ii), we have

[Fy(¢i,5) : Fyl _ laika,
[Ceng(ex, (¥i,5)) = (a, b')] la

30

[Fq(xi,5) : Fol =




and hence,

0y ik
K:F,] = d’; Loand K2 Ky,
d

Since by equation (1.17), the dimension of F,[(a, b')ler, (i, ;) over Fy,
dimg, (F,[(a, b')er, (i, j,)), equals Ly, it follows from equation (1.23) that
dimp, (IF,[Gler,(xi,5)) = ka,ilala,;. Therefore, comparing the dimension of the al-
gebras over I, on both sides of (2.5), we obtain that

2
K fd,lkd,z

la

kd7lld€d7l = /432 dim]Fq K=

Y

which gives k = [; and the Theorem is thus proved. [J

Metabelian groups

Let G be a metabelian group of order coprime to ¢ and let £ be a primitive |G|-th

root of unity in Fq- We use the notation introduced in Section 1.5 of Chapter 1. Let

(N, D/N, Ax/N) € §. Then Ayx/D is a cyclic group generated by aD, say. Let

x1, g, ..., Ty be a transversal of Ay in G, and r;, 1 < i < ¢, be integers such that

v tax;D = a"D. Let ¢ = ¢IGVANPl and (N, D/N, Ay/N) be the subfield of F,
t

obtained by adjoining the t elements Z ri1<j<t—1toF q- 1t is easily seen

i=1
that the field (N, D/N, Ay/N) is independent of the choice of transversal of Ay
in G.

For d|[G : G'] and |[F,(§) : F,], let S4; be the set of those (N, D/N, Ay/N) € S
such that
(Z) [G : AN] = d,

(it) [C(N, D/N, Any/N) :Fj] =L
Clearly Sy, d|[G : G'], U|[F,(§) : F,], are disjoint and S = | S

d|[G:G’]
U [Fq(€):Fq]
Theorem 2.3 With the above notation,
(i) F[G1= @ My(F,),
d|[G:G"]
”[Fq(ﬁ)iﬁ“q]
(i) Aut(F[G) = @ Ky Sa,
d][G:G"]
1| [Fq(€):Fq]
where Kq; = SLa(Fy) x Zy and og = Z |R(An/D)].

(N, D/N,.AN/N)ESdVZ

31



Proof. (i) It follows from Theorems 1.14(iii) and 1.16 that for ((N, D/N, Ax/N),C)
€ 6, where & is as defined in equation (1.30),

F,[Glec(G, An, D) = Mig.ay)(F oan. )
Thus we have,

oG]

1%

) F,[Glec(G, Ay, D)

((N,D/N,An/N),C)e&

D P FGlec(G, Ay, D)

(N,D/N, AN /N)eS CeR(An/D)

@ @ M[GZAN](FqO(AN»D))

(N,D/N, AN /N)eS CeR(An/D)

D D B Mioan(Fpuyn)

d|[G:G’] (N,D/N,ANn/N)eSy,; CER(AN/D)
U|[Fq(&):Fq]

@ @ M[G:‘AN](]FqO(AN,D))('R(’AN/D)l)

d|[G:G’] (N,D/N, An/N)ESq,,
1[Fq(€):Fq]

Ford|[G: G, L] [F,(&) :F,], and (N, D/N, Ay/N) € S4,1, we show that

1%

I

12

14

o(Ay, D) = [K(N, D/N, Ax/N):F,] = 1. (2.6)

If p € Re(D) and  is the character afforded by p®, then, by Theorem 1.14(i)
and equation (1.14),

[Ec(An/D) = An] = [Fy(C) - Fy(X)]-

However, note that

Fq(x) = K(N, D/N, Ayx/N).
Therefore, we have,
[K(N, D/N, Ax/N) : Fo] = [Fq(C) : Fol/[Ec(An/D) : Ax] = o( Ay, D).
This proves (2.6) and we thus have

RG] =~ @D P My(F,)1RAN/DD

d|[G:G'] (N,D/N,An/N)€ESq,;
|[Fq(€):Fq]

@ Md(]qu)(ad’l),

d|[G:G"]
l\[ﬁ“q(ﬁ)iﬁ“q]

2
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where ag ; = Z |R(An/D)|. This proves (7).
(N,D/N,AN/N)ESd’l

(17) It follows immediately from (7). OJ
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Chapter 3

Misc. Examples

In this Chapter, we give several examples of the computation of primitive
central idempotents, Wedderburn decomposition and the group of automor-
phisms of semisimple finite group algebras.

We continue with the notation used in Chapters 1 and 2.

3.1 G:={(abla® =0>=1,b"lab=a> 1), m>2.

Let A be the highest power of 2 dividing ¢ — 1 (resp. ¢+ 1) if ¢ =1 (mod 4)
(resp. ¢ = —1 (mod 4)). Observe that for any integer v > 2, orda«(q), the order of
q modulo 2% is given by

2072 a>A+1, ¢g=1or —1(mod4),
ordaa(q) = {1, 2<a<) ¢=1(mod4),
2, 2<a<) ¢g=-1(mod4).

Let T = {B €Z|0<B<m—2, ¢ =2"1—1 (mod 2™ ¥) for some integer u > 1}.

For 0 < 3 <m —2, let Ty C Z3,,_, be such that Tp (resp. T U (2m-t — 1)T}) is a

left transversal of (¢) in Zj,,_; according as 3 € T' (resp. 3 ¢ T).

By Theorems 1.9, 2.2 and 2.3, we have the following:

Primitive central idempotents

Case I: ¢ =1 (mod4)
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m>AN+1;

€r, (Xo,o), equ(Xo,l);
€F, (X2m*1,0)7 €r, (X2m*1,1); .
er,(X26s5.0)s 5 € Tp, (|15 = min(m=F5,0-2) 0 < 3 < m — 2.

3<m< A\

qu(X0,0); e]Fq(XO,l)7 €1Fq(X2m—1,0)7 €1Fq(X2m—1,1);
er,(X2ss.0), 5 € Tp, (|Ts| =22, 0<B<m—2.

m=2;

qu(X0,0>; equ(Xo,1)7 €1Fq(X2m71,0)7 qu(XQ"L*1,1>;
qu(Xl,o), equ(XS,O)7 BFQ(X1,1), GFQ(X3,1)-

Case IT: ¢ = —1 (mod4)

m=A+1;

eJFq(Xo,o), equ(Xo,l)7 e]Fq(XT"*l,O)a qu(XT’Fl,l);
e]Fq(X2ﬂs,0)v ERS T,Ba (’Tﬁ’ = 2m—6—2), 0 S 6 S m — 2.

m>A+1;

€r, (Xo,o), €r, (X0,1)7 e]Fq(XT"*l.,O)a €r, (X2m71,1);
er, (X205,0), 8 € T, (|Tp| = 2mnm=P0=2) 0 < f <m —2.

3<m <\
qu(XQO)a equ(Xo,l)7 emq(wal,o), €r, (X2m71,1);

er,(X27,0), 8 € T, (ITs] = 27777%), 1< B <m—2,

m=2;

e]Fq(X0,0)a equ(Xo,l)> equ(Xzo), €JFq<X2,1)7 qu(Xl,O)a eJFq(Xl,l)-
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Wedderburn decomposition

Case I: ¢ =1 (mod4)

m>A+1;

m—A—1
A—2 A—1_
FO P Ma(F ns-2) ) @ My(F ) 0.
8=0
3<m< A\
Fi) @ Ma(F,)*" Y.
m=2;

Case II: ¢ = —1 (mod4)

m=A+1;
B @) ()
m>A+1;
moA-l A—2 A—1
F,® Mp(F om--2)® ) @D Ma(F)* Y
B8=0
3<m <)\
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F,% PrF?.

Automorphism group
Case I: ¢ =1 (mod4)
m>A+1;

-1

m—A—1
-1
) X SQA_I—l)v

S @ (Hs® ™ % Spr2) P(SLa(F)®

8=0
where Hg = SLy(F ym-p-x) X Zym-p-x.

3<m<\;
St @P(SLa(F) "™ ™ %1 Syumi_y).

Ss.

Case IT: ¢ = —1 (mod4)

m=A+1;
SiE@D(SLa(Fg) ™'Y 51 Symay).
m>A+1;
m—A—1 s
Sy (Hs®™ %1 Sop2) (S La(F)* ™ 7 % Spray),
B=0

where Hg = SLy(F ym-p-x) X Zym-p-x.
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P <(SL2(IE‘qz) x 7)) ngfg) EP(SLy(F) "7V %1 Symoa_y).

S4 @ (ZQ(Q) X SQ)

3.2 G:=(ab|la® =0>=1,b"lab=0a?""T), m >2.

Let U={B€Z|0<B<m—2,¢"=2""1+1 (mod 2™ ) for some integer u >
1}. For 0 < 8 <m —2, let Us C Z3,,_, be such that Us (resp. Ug U (2™ + 1)Up)
is a left transversal of (¢) in Z3, _; according as § € U (resp. § ¢ U). Let A be as
in Example 3.1.

By Theorems 1.9, 2.2 and 2.3, we have the following:

Primitive central idempotents
Case I: ¢ =1 (mod4)
m>A+1;
er,(X0,0): er,(X0,1); er,(Xan-10), er,(Xam-1,1);

e]Fg(XS,U)? ERS U07 (‘U0| = 2>\_1); )
qu(X25570)7 e]Fq(XQBSJ), S € UB, (|U5| = 2n’lln(’m—5,)\)_l)7 1 S ﬁ S m — 2.

2<m <\

qu(XO’O)’ qu(XO,l)v 6Fq<X2m—1,0)a e]Fq(X2m—1’1);
er,(Xs.0), 5 € Up, (|Uo] = 2m72);
er, (X285,0); €r,(Xoss.1), s € Ug, (|Us| =277P71), 1< <m—2.

Case I1: ¢ = —1 (mod 4)

m>\+1;

qu(X0,0)> €1Fq(Xo,1), €JFq(X2m—1,o), equ(sz—l,l);
e]Fq(XS,O)? S UOJ (|U0| = 2>\_1); )
qu(X25570)7 e]P‘q(XQ,BSJ),S € Uﬁ, (|U,8| = 2m1n(m—,3,>\)—1)’ 1 S 6 S m — 2.
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3<m<A+1;

er,(Xo0,0), er,(Xo0,1), er,(Xam-10), er,(Xom-1,1);
eJFq(Xs,O), s € Uy, (|Uy| = 2m73);
qu(XWs,o)a qu(XzﬂSJ), s € Ug, (|Us| = 2m—ﬁ_2>’ 1 <B<m-2.

m:2;

er,(X0,0), er,(Xo0,1); €r,(X2,0); er,(X2,1), er,(X1,0)-

Wedderburn decomposition

Case I: ¢ =1 (mod4)

m=Ai+l;
Fq(2m) @ MQ(IFq)(Qm—Q)‘

m>A+l;

m—A-1 N

a A—1
F,2 @@ FGL s @@ Ma(F pmr ).

B=1

2sms A

m m—2
R ) (R

Case IT: ¢ = —1 (mod 4)
m>A+l;

m—A—1

’ A A—1
RO @D O DEE Ml ),
p=1
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3<m<A+1;

m—1__ m—
B @ e

3
I
™

F) €D Ma(F,).

Automorphism group

Case I: ¢ =1 (mod4)

m=A+1;
Son @D (SLa(Fy) ™™ %1 Sym-z).
m>A+1;
m—A—1
Sors1 @ (ngfafx(”) 9 SQA)@U__](QAJ) X Soro1),
B=1

where H = SLy(F om-x-1) X Zym-r-1.

2<m <\
S @B (SLa(Fy) ™ %1 Sym-z).

Case I1: ¢ = —1 (mod 4)
m>A+1;

m—A—2

Si@P(Z®" 7D 50 Sy o) @D (Hs® xS0 ) DHE ) %1 Son),
B=

where Hﬁ = Zmeﬁfk and H = SLQ(Fqufxq) X Zme)\fl.
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3<m<A+1;

St@D (2" 7 1 Symor_o) @HE") 4 Syms),
where H = SLy(F2) X Zs.

3
I

Si @D SLa(F,).

3.3 G =D,,, the dihedral group of order 2n.

We determine the structure of F [G], when G := (a,b|a® =b* =1, b~ lab=1a"")
is dihedral group of order 2n. Suppose that ged(q,2n) = 1. Let

S={d|dln, ¢ = —1 (mod %) for some integer u > 1}.

For a divisor d of n, d > 1, let fq = ord, 4(q) and T, C Z;/d be such that T, (resp.
+Ty) is a left transversal of (¢) in Z;, , if d € S (resp. d ¢ S). Note that

“Dges

fd b )
Ta| =

o(%)

G ggs

Given [ |ord,(q), let S; be the set of those divisors d of n such that
(i) d#n, 3,

1, des
(i) f“_{zz, desS.

Thus Theorems 1.9, 2.2 and 2.3 yield the following:

Primitive central idempotents
n odd;
ewq(Xo,o% eIFq(XO,l)> €Fq<Xdk,0)a din, d#n, k €Ty

41



n even ;

er,(X0,0); €r,(X0,1), €, (X2 0), €r,(X2.1), €r,(Xar,0), d|n, d #n, n/2, k € Ty

Wedderburn decomposition

n odd;
w( ) (%)
FP D Mo(F i) 2o D MaE ) 70
d¢s des, d#n
n even,
o <p( )
(4)@]\42 (F fd)( o @ My (F qfd/2 i)
d¢s des, d#n, 2
Automorphism group
n odd;
Sy B ((SLa(Fy) x )" x S, )
llord, (q)
n even;
Si P ((SLa(Fy) % Z)) ) % S, ) .
llordy (q)
where ag; = Z #.

des;

42



3.4 G = (@4, the quaternion group of order 4n.

We determine the structure of F[G], when G := (a,b|a®" =1, b* = a™, b~ 'ab =
a~') is the quaternion group of order 4n. Suppose that ged(q,4n) = 1. Let

2
V ={d|d|2n, ¢" = —1 (mod En) for some integer u > 1}.

For a divisor d of 2n, d > 1, let 04 = ords,(q) and V; C Z;n/d be such that V; (resp.
+Vy) is a left transversal of (g) in Z3, , according as d € V (resp. d ¢ V). Note
that

2D qev.

Va| =

204

Given [ |orda,(q), let U, be the set of those divisors d of n such that

(1) d # n,2n,
y I, dg¢v,
(i) 04 = {21, deV.

Theorems 1.9, 2.2 and 2.3 yield the following:

Primitive central idempotents

Case I: ¢ =1 (mod 4)

er,(X0,0); €r,(X0,1), €r,(Xn,0)s €r,(Xn,1); €r,(Xdr,0), d|2n, d#n,2n, k€ V.

Case IT: ¢ = —1 (mod 4)

n odd;

€F, (Xo,o), €r, (X0,1)7 equ(Xn,o), eIFq<Xdk,0)u d|2n, d#mn,2n, keVy
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n even;

6FQ(X0,0)7 €Fq(X0,1), qu(Xn,O)a e]Fq(Xn,1>7 qu<Xdk,0)a d|2n, d#mn,2n, keVy

Wedderburn decomposition

Case I: ¢ =1 (mod 4)

<p(2") (%)
@D W) ) @) MfF )
dév diiYQn
Case IT: ¢ = —1 (mod 4)
n odd;
2) Tn (27”))
P F P Ma(Fyea) @ My (F W od
v a3
n even;
@) 2 (b
Fq @MQ(]F %d @ M2 od/2 %d ",
d¢v d;dﬁij/Zn

Automorphism group

Case I: ¢ =1 (mod 4)

St €D ((SLa(Fy) % Z)) %) % S, )

llordan (q)

Case I1: ¢ = —1 (mod 4)
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3.5 G:={(a,bz|a’?=0W=0a'v"tab=2?=12"tav

n odd;

P2 @ ((SLa(Fg) x Z)70 % Sy,

llordan (q)

n even;

Si P ((SLa(Fp) » 2)P) % S, ),

llordan (q)

where (4, = Z 5]

del;

at, x7bxr = b71), p odd prime

Observe that the normal subgroups of G are G = (a, b, z), G' = (a, b),
N; = (a'b), 0 < i <p—1, N, = (a) and (1). Tt is easy to see that

and

Seye = {((1), (1)}, Serer = {({1), G/G")}

Sayv, = {((1), G'/N;)}, 0<i <p.

This gives

S =A{(G, (1), M} U{(&, (1), G/G)} VLN, (1), G'/Ni), 0 <i < p}.

Observe that, R(G/G) and R(G/G’) has precisely one g-cyclotomic coset, call it

C and C', say. For 0 < i < p, R(G'/N;) has 21

f

g-cyclotomic cosets, if —1 €

(q) (modp); and 7”2;]} g-cyclotomic cosets, if —1 ¢ (¢) (modp), where f is the order
of ¢ modulo p. Direct calculations yield that for each (N, D/N,Ax/N) € S, the
corresponding o(Ay, D) and |R(Ay/D)| are as follows:

(N, D/N, Ax/N) o(An, D) |R(An/D)|
(G, (1), (1) 1 1
(G (1), G/G") 1 1

{

f/2,
f?

—1 € (g) (modp),
—1 ¢ (q) (modp).
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Thus Theorems 1.16 and 2.3 yield the following:

Primitive central idempotents

ec(G,G,G), C € R(G/G);
eo(G,G,G"), C' e R(G/G");
ec,(G,G', N;), C; € R(G'/N;),0 < i < p.

Wedderburn decomposition

FP @ My(F,i2) 7, —1 € (g) (modp),
F,[G] =

2

FP @ My(For) 37, —1 ¢ (g) (modp).

Automorphism group

Aut(F,[G]) = S, ) (H™ % S,) |
where H = SLy(Fye) X Z,,

o {f/z, ~1 € (q) (modp),
fi —1¢ (g (modp).

and

o {’”Tl —1 € (g) (modp),
It —1¢ () (modp).

3.6 Groups G of the type G/Z(G) = Zy X Zs.

The groups G of the type G/Z(G) = Zy X Zs, where Z(G) denotes the centre
of group G, arose in the work of Goodaire [Goo83] while studying Moufang loops
and then subsequently appeared in the work of several authors [GPMS09, JRMO5,
JRMO6, LSS09]. It is known ([GJPM96], Chapter 5) that any group with G/Z(G) =
Zs X 75 is the direct product of an indecomposable group (with this property) and an
abelian group. Moreover the finite indecomposable groups with G/Z(G) = Zy X Zs
break into five classes as follows:
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Group | Generators Relations

D, x,y,t 22,2, 12"yt tyxt®™ ¢ central |
m>1

D, x,y,t 22 2 27yt tyat®™ Lt central |
m>1

D5 x,y,t1, t x2,y2t51,t%ml,t§m2,y‘lx_lymt%ml_l, t1,ts central ,
mi,my > 1

D, x,y, t1,ty TR t%ml,t%mQ,yilelya:t%ml_l,tl,tg central ,
mi,mso 2 1

Ds |z, y ty,to, ts | 22t 25 3 137 4370yt lyat?™ Tty by, tg central |
my, Mg, ms > 1

It thus becomes important to investigate the group algebra F,[D;], 1 <i < 5.

3.6.1 Groups G of type D;.

Observe that for m = 1, G is isomorphic to Dg, the dihedral group of order 8,
and the structure of group algebra F,[Dsg] can be read from Example 3.3.

Let m > 2, Define
No:={e}, Ni:=(t, ), No:=(t, y), Ny := (t, ay), N{* = (>, x, y),
N7 o= (8 yt), NG = (B ), N = (e, ),
0<a<m-1,0<pB<m-—2.

Let A be the highest power of 2 dividing ¢ — 1 (resp. ¢ + 1) according as ¢ =
1 (mod4) (resp. ¢ = —1 (mod4)).

Ferraz, Goodaire and Milies ([FGPM10], Theorem 3.1) proved that the Wed-
derburn decomposition of F,[G], G' of type D, contains at least 8m — 10 simple
components. If ¢ = 3 (mod 8), then this number is acheived with 8m — 12 fields and
2 quaternion algebras, each necessarily a ring of 2 x 2 matrices. We improve this
result of Ferraz et.al. by providing a concrete description of F,[G], G of type Dy,
in the following Theorem:

Theorem 3.1 A complete set of primitive central idempotents, Wedderburn decom-
position and the automorphism group of F,[G|, G of type D1, m > 2, is given by :
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(i)

Primitive central idempotents

ec(G, Ny, (x)), C € R(N,/(x));
ec(G, G, N,), C € R(G/N;), 1 <i<3;
ec(G, G, N, OeR(G/N )) 0<a<m-—1;
ec(@, G, Nj/”) CeRGIN),0<B<m—2,5<5<T.
(ii)
Wedderburn decomposition
g=1 (mod4)
F,®"" @ My(F,)*" ), m <A,
F,[G] = {F,*" D @ My(F )" ), m=A+1,
F S @;n:/\lﬂ quaﬂ(zkﬂ) S M2(Fq2m**>(2kl)a m 2> A+ 2.
q=—1 (mod4)
IFq(8) @Fq2(2m_4) SY) M2(Fq2)(2m72)7 2<m< A+,

m—3)
Y

B[] 2§ F,) @ F" ) @ MaF,) ™, oy Mo
8 @F @) @Z;;+2qua—/\(2 ! )@M2(Fq2m—*)(2 )7 m > A+ 3.

(111)
Automorphism group
¢g=1 (mod4)

2m—1)

Soymi1r @(SLa(F) ™) %1 Symn), m < A,
AW(F,[G]) = { Symr @ ((SLg(Iqu) 1 Z5)®" ) sgm_z) . m=A+1,
Sorte @;n;)\l+1 (ZQO{—/\(2A+1) X SQA-H) @ Ha, m> A+ 2,

g=—1 (mod4)
S @(Z®" Y %1 Sym_4) D((SLa(Fpe) % Z)®™ ) %0 Spm-2), m <A+ 1,
Aut(F,[G]) 2 { Ss@P(Zo®" Y %t Sym_s) D((SLa(Fyr) x Zg) ") %t Sgmos), m=\+2,
Sg @(ZQ(QM'_Q*ZL) X 52>\+2_4) @a >\+2(Z2a Y (21 X SQ)\—H) @H)\, m Z A + 3,

where Hy = (SLa(F zn-2) X Zom-2)"" ) 0 Sy
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In order to prove the above Theorem, we first need to compute all the normal
subgroups of G, G of type D;.

Lemma 3.2 All the distinct non-identity normal subgroups of G are given by:

() (7, @), (7, y), (7, 2y), (¢, 2z, y);
(it) (), (y), (", P ay), (@, @, 2y, (7, 2w, y), (P, 2y);
(iid) ("),

where 0 <a<m-—1, 0<B<m—-2and 0 <~v<m-—1.

Proof. Observe that all the subgroups listed in the statement are distinct and
normal in G.

Let N be a normal subgroup of G' not contained in (t). If N # (1), then it is
casy to see that (t*""') < N. Therefore N N (t) = (t*),0 < v < m — 1. Since
N/N N (t) is isomorphic to subgroup of G/(t), which is generated by z(t), y(t), it
follows that N/N N (t) is isomorphic to one of the following: (x(t)), (y(t)), (xy(t))
or (z(t), y(t))-

Case I : N/(t*") = (z(t))
In this case, N = (t*', t*'z), for some i, 0 < i < v < m — 1.

If i = v, then N = (t*, z). Since N < G, xt*"" = y'zy € N, implies that
2" e NN (t) = (t*"), which is possible only if v < m — 1.

If i < v, then N = (' t*2) = (t*z) as t*' € (t*'x). Further 2> +?"" =
y~ ¥ zy € N implies that t*" € (t2"). Hence v < m — 1 and i < m — 2. Thus in
this case, either _

N=(@ 2),0<i<m—1 (3.1)

or
N={*2),0<i<m—2. (3.2)

Case II: N/(t*") = (y(t)).
Computation analogous to those in Case I yield that
N={#y),0<i<m—2 (3.3)

or
N=@{ y),0<i<m—1. (3.4)
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Case IIL: N/(t*") = (xy(t)).
In this case N = (%", tQixy> for0<i<ov<m-—1.

If i = v, then N = (t2, zy). Since N is a normal subgroup of G, zyt?" ' =
y~Lazyy € N, implies that 2" € NN (t) = (t*"), which is possible only if v < m —1.

If i < v, then N = (', t*zy), 0 <i < m—2. Since (2", ay) < (2", *'2y)

and .
(tQiL?c’y)2 2" ffu—i=1,
(t2ixy)2v | ifv—i>2

t* =

it follows that (¢2°, t2'zy) = (2", t¥ xy).
Thus in this case, either
N={" ay),0<i<m-—1 (3.5)
or
N=(" 2y, 0<i<m-—2. (3.6)
Case IV: N/(t*") = (x(t), (y(t)).

In this case, N is one of the following forms:

(@) " 2. )
(b) (¢, t*'z, y) for some i, 0 < i < v —1;

(c) (¢*", z, t*'y) for some i, 0 < i < v —1;

(d) (", t*'z, t*'y) for some i, 0 < i < v —1;

(e) (t*", t¥x, t¥y) for some 1 < i, j <wv —1,1i # j.

Observe that for 0 <i<wv—1,
(P, ) = (" e, y),

(2, o, y) = (¢, @, 1),

and
v 7 7 m—1 7 7
@, Fw, y) = ", P, 17y).

Also for 1 <4, <wv—1,1%# 7,

@ 2, gy = By i<,
T (m, t¥y), if j <.

Thus we have proved that any normal subgroup of G not contained in () is one
of the forms given in (i) and (i7) of the statement. This proves the Lemma. [J
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In order to apply Theorem 1.16 to a group G of type Dy, we compute Sg/n for
all normal subgroups N of G.

Clearly if N = (1), Sayv = {((z), {t, z))}.

Suppose N is a non-identity normal subgroup of G, then N is one of the sub-
groups listed in Lemma 3.2. Since G’ = (t*") < N, we have Ay/N = G/N and
the corresponding

[ {{((1>, G/N)}, if G/N is cyclic,
/N =

@, otherwise.

Next we see that among all the normal subgroups N of G stated in Lemma 3.2,
only the following subgroups N satisfy the condition that G /N is cyclic;

Ny N NP 1<i<3,0<a<m=1,5<<T,0<B<m-2.

Therefore S = {(Ny, (x), N)YU{(N;, (1), G/N;) |1 < i < 3JU{(N?, (1), G/N!?)|

0<a<m—1yU{(N", (1), G/NP)|0< B8 < m—2}. This proves (i).

In order to prove (ii) and (iii), we first note that for any integer v > 2,

272 y>A+1, ¢g=1or —1(mod4),
ordsy(q) = < 1, v <A,q=1(mod4),
2, v <A, g=—1(mod4).

Direct calculations yield that for each (N, D/N,Ay/N) € S, the corresponding
o(Ayn, D) and |R(Ax/D)| are as given by the following tables:
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Case I: ¢ =1 (mod4).

(N, D/N, An/N) o(An, D) |[R(An/D)|
1<i<3
(Vi (1), G/N), 1 1
2070 a > +1 AL a>A+1
N(a) 1. G N(a) ) = ) ) = )
(47<>7 /4)7 1’ ag)\ 204_1’ OéS)\
1<a<m-—-1
2017 B>, 27 B>,
(N7, (0, GNP, - ;
; B<A-1 28 B<A-1
F<j<T,0<B<m—2
2m=A M > A+1 221 m > +1
N’ ’N Y — ) ) p Y
(No, (x), N1) {1, m< A {2"“, m< A
Case II: ¢ = —1 (mod4).
(N, D/N, An/N) o(An, D) [R(An/D)|
1<i<3
(N{™, (1), G/N), 1 1
0<a<l1
20°A > A+ 2 AL > A+2
N(a), 1,GNQ), ) = ) ) = )
(NS (1), G/NGT) 2, a<A+1 2072 < A+1
2<a<m-—1
(N7, (1), G/ND), 1 1
5<j<T,
(N(B) <1> G/N@)) 25+1_)\> B>A+1, 2)\_17 6>MN+1,
A 2, B<A 2071 B< A
5<)<7,1<<m~—2
2m=A m > A+ 1, A1 m >N+ 2,
(N07 <ZE>, Nl) )
2, m <A 22 m<A+1

Thus, Theorem 2.3 with the help of above two tables yield (i7) and (7).
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3.6.2 Groups G of type D;.

Observe that for m = 1, Dy is isomorphic to Q)g, the quaternion group of order
8 and the structure of group algebra F [Qs] can be read from Example 3.4.

Let m > 2. Define
Ky :={e}, K7 := (x); s
Ky = (22, 22y, K3 = (2%, 2?71y,
0<a<m,1<pB<m.

Let A be the highest power of 2 dividing ¢ — 1 (resp. ¢ + 1) according as ¢ =
1 (mod4) (resp. ¢ = —1 (mod4)).

Ferraz, Goodaire and Milies proved ([FGPM10], Theorem 3.2) that the Wedder-
burn decomposition of F,[G], G of type D,, contains at least 4m simple components.
If ¢ =3 (mod 8), then this number is acheived with 4m — 2 fields and 2 quaternion
algebras, each necessarily a ring of 2 x 2 matrices. The following Theorem improves
this result of Ferraz et.al.

Theorem 3.3 A complete set of primitive central idempotents, Wedderburn decom-
position and the automorphism group of F,[G|, G of type Dy, m > 2, is given by :

(4)

Primitive central idempotents

GC(G, Kl, K()) C € R(Kl/KO>
ec(G, G, K,), C € R(G/K,);
ec(G, G, K\, C € R(G/K,),0< a <m;
ec(@, G, K\, ¢ e R(G/K), 1< B <m.
(i)
Wedderburn decomposition
¢=1 (mod4)
B { T @ ME), m <,
! N Fq(zHl) @Z:Ml quaﬂ(gx) S M2(Fq2m**)(2kl)a m 2> A+ 1.
g = —1 (mod4)
I E PR PR, R )”m’, 2<m <A+,
! R N > L B My(F o)), m= A +2.
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(117)
Automorphism group

g=1 (mod4)

Syt @(SLa(F,) ") % Symo), m < A,

Aut(F,|G]) =
ut( q[ 1) {S2A+1 @Z}:)\JA(ZP*)‘(%) X S ) @ H, m>A+1,

qg=—1 (mod4)

S @D(Ze" ™ 3 Syn_y) D((SLa(Fye) % Za)*" ) 4 Spa), m < A+1,

Aut(F,|G]) = 1
u ( q[ ]) {S4@(Z2(2)\+ —2) “ SQA-H—Z) @ZZA+2(Z2Q—,\(2’\) X 52/\) @H,\, m> A+ 2,

A—1

where Hy = (SLQ(]qumf)\) X ngf)\)(z ) X SQAA.

Proof. We have

G=(x,y|a®" =102 =22y uy =22").

By Lemma 1.18, the non-identity normal subgroups of G are given by

(i) (2*7), (*, 2" ), 0 < a < m,
(i1) (o2, 2 hy) 1< f<m.

Also, Lemmas 1.19 and 1.20 yield that

S = {(Ko, (1), K1)} U{(Ky, (1), G/EK)} U{(K2', (1), G/K2') |0 < o < m} U
{157, (1), G/EP) [1.< 8 < m.

Therefore, (i) follows from Theorem 1.17.

For each (N,D/N,An/N) € S, the corresponding o(Ay, D) and |R(Ax/D)| in
the case ¢ =1 (mod4) or ¢ = —1 (mod 4) are as follows:
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Case I: ¢ =1 (mod4).

(N, D/N, Ax/N) o(Ay, D) |R(An/D)|
(K1, (1), G/K), 1 1
(K, (1), G/K,"), 1 1
2072 > A+ 1 221 a>A+1
K a)) G/K. (a) : ) = ) ) = ’
(R, (L), GIR™) 1, a <\ 20-1 4 <\
1<a<m
26=A >A+1, A1 >A+1,
(K3(5)7 (1), G/Kg(ﬂ)), i B p=
L, B<A 2071 B <A
1<B8<m
2mA L m>A+1, | |22 m > A+,
(K07 <1>7 Kl) 17 m < A 2m—17 m < A
Case II: ¢ = —1 (mod4).
(N, D/N, Ax/N) o(An, D) |[R(An/D)|
(K17 <1>7 G/Kl)a 1 1
(K5, (1), G/ Ky 1 1
0<a<l1
20=A > 2 A1 > 2
(KL, (1), 6K Sz ez
2, a<A+1 2072 < A+1
2<a<m
(k5" (1), G/KY), 1 1
262 B> N+2, A1 B> A+2,
(Kéﬁ), <1>7 G/Kg(,ﬁ)), B> o B>
2, B<A+1 272 B<A+1
2<pB<m
2m=A L m > A+ 2, AL m >N+ 2,
(K07 <1>7 Kl) )
2, m<A+1 2m=e m < A+1

Thus Theorem 2.3 , with the help of above two tables yield (i) and (4i7).

Remark: The above analysis of the structure of F,[G], G of type Dy, Do, provides
a method for computing the algebraic structure of F,[G], for finite group G whose
central quotient is Klein four-group. It will thus naturally be of interest to compute

the algebraic structure of F,[G], G of type D;, i = 3,4,5.
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