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Notation

G a finite group
G′ the derived subgroup of G
G(n) the direct sum of n copies of G
G1 oG2 semidirect product of G1 by G2

H ≤ G H is a subgroup of G
H EG H is a normal subgroup of G
[G : H] the index of the subgroup H in the group G
NG(H) the normalizer of the subgroup H in the group G
core(H) the largest normal subgroup of the group G contained in H, H ≤ G
R[G] the group ring of the group G with coefficients in the ring R
|S| the cardinality of the set S
ϕ Euler’s phi-function
ordn(q) the order of q modulo n
Z the ring of integers
Zn the cyclic group of order n
Z∗n the group of reduced residue classes modulo n
Sn the symmetric group of degree n
Fq the finite field of order q

Fq the algebraic closure of Fq
Irr(G) the set of inequivalent irreducible characters of G over Fq
Gal(K/F ) the Galois group of the field extension K/F
Mn(F ) the ring of all n× n matrices over the field F
SLn(F ) the group of matrices in Mn(F ) having determinant 1
ker(χ) the kernel of χ, χ ∈ Irr(G)

e(χ) the primitive central idempotent of Fq[G] determined by χ ∈ Irr(G)
Fq(χ) the field obtained by adjoining the character values χ(g), g ∈ G, to the field Fq
eFq(χ) the primitive central idempotent of Fq[G] determined by χ ∈ Irr(G)
G(χ) Galois group Gal(Fq(χ)/Fq), χ ∈ Irr(G)
� end (or omission) of proof
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Introduction

Given a group G and a field F, one can define an F -algebra F [G], called the group
algebra of G over F, whose elements are the formal finite F -linear combinations of
elements of G with addition defined coefficient-wise and multiplication defined via
multiplication in G and distributivity. Group algebras constitute an important class
of algebras with wide applications. A fundamental problem in the theory of group
algebras is to understand their algebraic structure.

The classical approach to compute the primitive central idempotents of F [G], in
the semisimple case, i.e., when the characteristic of F does not divide the order of
G, has been via character theory. If χ ∈ Irr(G), the set of irreducible characters of
G over F , the algebraic closure of F, then

e(χ) :=
χ(1)

|G|
∑
g∈G

χ(g)g−1

is a primitive central idempotent of F [G] and χ 7→ e(χ) is a 1-1 correspondence
between Irr(G) and the set of all primitive central idempotents of F [G]. The Galois
group Gal(F/F ) acts on Irr(G) by setting

σχ = σ ◦ χ, σ ∈ Gal(F/F ), χ ∈ Irr(G).

Let orb(χ) denote the orbit of χ ∈ Irr(G) under this action. Observe that orb(χ) is
equal to {σχ |σ ∈ Gal(F (χ)/F )}, where F (χ) is the field obtained by adjoining to
F , all the character values χ(g), g ∈ G. It is known that, for any χ ∈ Irr(G),

eF (χ) :=
∑

ψ∈orb(χ)

e(ψ) =
∑

σ∈Gal(F (χ)/F )

e(σχ)

is a primitive central idempotent of F [G], called the primitive central idempotent
associated with χ, and the map orb(χ) 7→ eF (χ) is a 1-1 correspondence between the
set {orb(χ) |χ ∈ Irr(G)} of orbits and the primitive central idempotents of F [G].

In recent years the effort has been to carry out the computation of primitive cen-
tral idempotents of F [G] in terms of the subgroup structure of G [JLP03, OdRS06,
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OdRS04, BdR07, GG11]. It is the latter approach that is pursued in this thesis,
which is aimed as a contribution to understand the algebraic structure of semisimple
finite group algebras of metabelian groups. It may be mentioned that the analogous
study of rational group algebras has been carried out in [Her97, OdRS06, BKP13].

We begin our study of non-commutative semisimple finite group algebras F [G]
with the computation, in Chapter 1, of the primitive central idempotents when the
group G is of order p1p2, where p1 and p2 are distinct primes [BGP11]. We next
consider the case when G is an arbitrary metacyclic group [BGP] and conclude with
the case when the group is an arbitrary metabelian group. Although, the case of
metabelian groups contains the first two cases, the conclusion in the former cases,
however, are more descriptive from the point of view of application.

In Chapter 2, we apply the preceeding computations of the primitive central
idempotents to derive explicit Wedderburn decomposition and the group of auto-
morphisms of the group algebras considered in Chapter 1.

Finally, in Chapter 3, we give several illustrative examples. In particular, we con-
sider the group algebras of certain indecomposable groups G whose central quotient
is the Klein four-group; thus providing a method for improving results in [FGPM10].
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Chapter 1

Primitive Central Idempotents

The main result in this Chapter is the determination of a complete irredundant

set of primitive central idempotents of the semisimple group algebra Fq[G],

where G is an arbitrary finite metabelian group.

Commutative group algebras

We begin by recalling the primitive central idempotents of finite commutative
semisimple group algebras. The explicit expressions for primitive central idem-
potents of the semisimple group algebra Fq[Zn], n ≥ 1, have been computed in
[SBDR04, SBDR08, BRS08]. We need the case when n is a prime and the descrip-
tion of primitive central idempotents, in this case, is as follows:

Proposition 1.1 Let 〈a〉 be a cyclic group of prime order p and q a prime power,
p - q. Let f = ordp(q), e = (p − 1)/f and g a primitive root modulo p. The group
algebra Fq[〈a〉] has exactly the following e+1 distinct primitive (central) idempotents:

1
p
(1 + a+ · · · ap−1),

1
p
(f +

∑p−2
j=0 ηi+ja

gj), 0 ≤ i ≤ e− 1.

where ηk =
∑f−1

j=0 ζ
gkqj , k ≥ 0, and ζ is a primitive p-th root of unity in Fq; in

particular, if 0 ≤ m, m′ ≤ e − 1, m 6= m′, the tuples (ηm, ηm+1, . . . , ηm+e+1) and
(ηm′ , ηm′+1, . . . , ηm′+e+1) are distinct.

LetH andK be subgroups ofG (not necessarily abelian) such thatH is normal in
K and K/H is cyclic. Then Irr(K/H) is a (multiplicative) cyclic group isomorphic
to K/H of order coprime to q. The cyclic group 〈q〉 contained in Z∗[K:H] acts on

Irr(K/H) by setting q.χ = χq, χ ∈ Irr(K/H). Recall that the orbits of this action

3



are called the q-cyclotomic cosets in Irr(K/H). It may be pointed out that if χ is
generator of Irr(K/H), then so is every element in the orbit of χ. Define

C(K/H) = {C |C is an orbit of a generator χ ∈ Irr(K/H)}.

For C ∈ C(K/H), χ ∈ C, following [BdR07], we set

εC(K,H) = |K|−1
∑
g∈K

(TrFq(ξ)/Fq(χ(g)))g−1, (1.1)

where ξ is a primitive |K/H|th root of unity in Fq, TrFq(ξ)/Fq is the trace of the
extension Fq(ξ)/Fq, and for g ∈ K, g = gH.

Observe that the group G acts on Fq[G] by conjugation. Let

eC(G, K, H) = the sum of distinct G-conjugates of εC(K,H). (1.2)

The following result is due to Broche and Rio [BdR07].

Theorem 1.2 Let Fq be a finite field and G a finite group of order coprime to q.
Let N EG with G/N cyclic and let C ∈ C(G/N). Then

(i) εC(G, N) is a primitive central idempotent of Fq[G].

(ii) Fq[G]εC(G, N) ∼= Fq(ζk), where ζk is a primitive k-th root of unity in Fq and
k = [G : N ].

(iii) εC(G, N) = εD(G, N), C, D ∈ C(G/N), if and only if C = D.

Furthermore, in case G is abelian,

{εC(G, N) |N ≤ G, G/N is cyclic and C ∈ C(G/N)}

is a complete set of primitive central idempotents of Fq[G].

Irreducible characters of metacyclic groups

Let n, t, r, k be natural numbers with rt ≡ 1 (modn), kr ≡ k (modn) and let G
be the metacyclic group given by the presentation

G = 〈a, b | an = 1, bt = ak, b−1ab = ar〉. (1.3)

Let [n] = {0, 1, . . . , n− 1} and σ the permutation of [n] defined by

i 7→ ir (modn).

4



The cyclic group 〈σ〉 acts naturally on [n]. Let [[n]] denote a complete set of repre-
sentatives of the distinct orbits of [n]. For i ∈ [n], let orb(i) denote the orbit of i and
li = | orb(i)|. Note that li is the order of r modulo n/gcd(i, n), and hence li divides
t (as rt ≡ 1 (modn)). Let si = t/li and ζ a primitive nt-th root of unity in Fq.

Let i ∈ [n] and suppose gcd(i, n) = d. For 0 ≤ j ≤ sd − 1, there exists a
representation Ti, j : G −→ GL(ld, Fq) defined by

Ti, j(a) = diag(ζ−it, ζ−itr, . . . , ζ−itr
ld−1

), Ti, j(b) =


0 0 . . . 0 ζ−ld(ik+nj)

1 0 0 . . . 0

0
. . . 0

... 0 0
0 0 . . . 0 1 0

 .

Let χi, j denote the character of Ti, j. For a divisor d of n and a divisor l of n
d
sd,

d, l ≥ 1, let

Xd, l := {(i, j) | i ∈ [[n]], gcd(i, n) = d, 0 ≤ j ≤ sd − 1, gcd(
i

d
k +

n

d
j,
n

d
sd) = l}.

(1.4)

Theorem 1.3 [Bas79] The set

{χi, j, (i, j) ∈
⋃
d|n

⋃
l|n
d
sd

Xd, l}

is a complete set of irreducible characters of G over Fq.

We now proceed to compute the primitive central idempotents of Fq[G], where G
is a metacyclic group of order nt with presentation given by (1.3). Our objective is
to obtain explicit expressions for the idempotents entirely in terms of the numbers
n, t, k, r and q. We will first consider the special case when n and t are primes.

Groups of order p1p2

Let G be a group of order p1p2, where p1, p2 are primes. If G is abelian, the
primitive central idempotents of Fq[G] can be computed from Theorem 1.2. For
explicit expressions of the idempotents, see [SBDR04, SBDR08, BRS08].

We thus assume throughout the rest of this Section that G is a non-abelian group
of order p1p2 with p1 > p2, say. In this case, we must have p1 ≡ 1 (mod p2). Let

G = 〈a, b | ap1 = bp2 = 1, b−1ab = ar〉, (1.5)
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where the multiplicative order of r modulo p1 is p2. Let f1 := ordp1(q) and
f2 := ordp2(q) be the multiplicative orders of q modulo p1 and p2 respectively.
Observe that f1 | p1 − 1 and f2 | p2 − 1. Let

e1 :=
p1 − 1

f1
e2 :=

p2 − 1

f2
. (1.6)

Let gi be a primitive root modulo pi and ζi, a primitive pi-th root of unity in
Fq, i = 1, 2. For k ≥ 0, define

η
(1)
k :=

f1−1∑
j=0

ζ
gk1 q

j

1 , η
(2)
k :=

f2−1∑
j=0

ζ
gk2 q

j

2 . (1.7)

Observe that
η
(1)
k+e1

= η
(1)
k , η

(2)
k+e2

= η
(2)
k .

Set

K := Fq

(
p2−1∑
u=0

ζ ir
u

1 | i = 1, 2, . . . , p1 − 1

)
. (1.8)

For a group G of order p1p2, Theorem 1.3 yields the following:

Proposition 1.4 If G is a group given by the presentation (1.5), then it has exactly
p2 + p1−1

p2
irreducible characters over Fq, of which p2 characters are of degree 1 and

p1−1
p2

are of degree p2.

The non-trivial irreducible characters, ψm, 0 ≤ m ≤ p2− 2, of degree 1 are given
by

ψm(axby) = ζ
−gm2 y
2 , axby ∈ G, 0 ≤ m ≤ p2 − 2,

and the irreducible characters φn, 0 ≤ n ≤ p1−1
p2
− 1, of degree p2 over Fq are given

by

φn(axby) =

0, y 6= 0,∑p2−1
j=0 ζ

−xg
p1−1
p2

j+n

1
1 , y = 0.

We now describe the primitive central idempotents of Fq[G] associated with the
irreducible characters of degree 1. Let ι : G→ Fq be the trivial character of G.
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Clearly

eFq(ι) =
1

p1p2

∑
g ∈G

g. (1.9)

Lemma 1.5 For 0 ≤ m ≤ p2 − 2,

eFq(ψm) =
1

p1p2

(
f2

p1−1∑
x=0

ax +

p2−2∑
j=0

η
(2)
m+j

(
p1−1∑
x=0

axbg
j
2

))
,

and eFq(ψm) = eFq(ψm′) if, and only if, m ≡ m′ (mod e2).

Proof. Let 0 ≤ m ≤ p2 − 2.

eFq(ψm) =
∑

σ∈Gal(Fq(ψm)/Fq)

e(σψm)

=
∑

σ∈Gal(Fq(ζ2)/Fq)

e(σψm), (Fq(ψm) = Fq(ζ2))

= 1
p1p2

p1−1∑
x=0

p2−1∑
y=0

 ∑
σ∈Gal(Fq(ζ2)/Fq)

σ(ζ
gm2 y
2 )

 axby



= 1
p1p2

(
f2

p1−1∑
x=0

ax +

p2−1∑
y=1

(
f2−1∑
i=0

(ζ
gm2 y
2 )q

i

)(
p1−1∑
x=0

axby

))

= 1
p1p2

(
f2

p1−1∑
x=0

ax +

p2−2∑
j=0

(
f2−1∑
i=0

(ζ
gm+j
2

2 )q
i

)(
p1−1∑
x=0

axbg
j
2

))

= 1
p1p2

(
f2

p1−1∑
x=0

ax +

p2−2∑
j=0

η
(2)
m+j

(
p1−1∑
x=0

axbg
j
2

))
.

Since η
(2)
i = η

(2)
i+e2

for all i ≥ 0, it follows that

eFq(ψm) = eFq(ψm+e2).

Furthermore, in view of Proposition 1.1, eFq(ψm), for 0 ≤ m ≤ e2−1, are distinct. �

In the next Lemma, we describe the primitive central idempotents eFq(φn),
0 ≤ n ≤ p1−1

p2
− 1, associated with non-linear irreducible characters.
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Lemma 1.6 (i) If p2 | f1, then, for 0 ≤ n ≤ p1−1
p2
− 1,

eFq(φn) =
p2

p1[Fq(ζ1) : K]

(
f1 +

p1−2∑
k=0

η
(1)
n+ka

gk1

)

and eFq(φn) = eFq(φn′) if, and only if, n ≡ n′ (mod e1).

(ii) If p2 - f1, then, for 0 ≤ n ≤ p1−1
p2
− 1,

eFq(φn) =
1

[Fq(ζ1) : K] p1

(
f1p2 +

p1−2∑
i=0

(
p2−1∑
j=0

η
(1)

n+i+j
e1
p2

)
ag

i

)

and eFq(φn) = eFq(φn′) if, and only if, n ≡ n′ (mod e1
p2

).

Proof. Observe that Fq(φn) = K for all n ≥ 0, where K is as defined in equation
(1.8). Therefore,

[Fq(ζ1) : K]eFq(φn) = [Fq(ζ1) : K]
∑

σ∈Gal(K/Fq)

e(σφn)

=
∑

σ∈Gal(Fq(ζ1)/Fq)

e(σφn)

=
∑

σ∈Gal(Fq(ζ1)/Fq)

(
p2
p1p2

p1−1∑
x=0

σ(φn(a−x))ax

)

= p2
p1p2

p1−1∑
x=0

p2−1∑
j=0

∑
σ∈Gal(Fq(ζ1)/Fq)

σ

(
ζ
xg

p1−1
p2

j+n

1
1

)
ax

= 1
p1

p1−1∑
x=0

p2−1∑
j=0

f1−1∑
l=0

(
ζ
xg

p1−1
p2

j+n

1
1

)ql

ax

= 1
p1

f1p2 +

p1−2∑
i=0

p2−1∑
j=0

f1−1∑
l=0

(
ζ
g

p1−1
p2

j+n+i

1
1

)ql

ag
i
1

 . (1.10)
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Case I : p2 | f1.

In this case, g
p1−1
p2

.j

1 ∈ 〈q〉 ⊆ Z∗p1 for all j, 0 ≤ j ≤ p2 − 1. Therefore,

f1−1∑
l=0

(
ζ
g

p1−1
p2

j+n+i

1
1

)ql

=

f1−1∑
l=0

(
ζ
gn+i1
1

)ql
= η

(1)
n+i for 0 ≤ j ≤ p2 − 1. Substituting in

equation (1.10), we get

[Fq(ζ1) : K]eFq(φn) = 1
p1

(
f1p2 +

p1−2∑
i=0

p2−1∑
j=0

η
(1)
n+ia

gi1

)

= 1
p1

(
f1p2 + p2

p1−2∑
i=0

η
(1)
n+ia

gi1

)

= p2
p1

(f1 +

p1−2∑
i=0

η
(1)
n+ia

gi1).

Since the right side of the above equation is non-zero, it follows that
[Fq(ζ1) : K] is invertible in Fq and, consequently,

eFq(φn) =
p2

[Fq(ζ1) : K] p1

(
f1 +

p1−2∑
i=0

η
(1)
n+ia

gi1

)
.

Since η
(1)
i = η

(1)
i+e1

for all i ≥ 0, we have

eFq(φn) = eFq(φn+e1).

Also, in view of Proposition 1.1, eFq(φn), 0 ≤ n ≤ e1 − 1, are all distinct.

Case II : p2 - f1.

For 1 ≤ j ≤ p2−1, let j′ be the remainder obtained on dividing f1j by p2. We ob-

serve that

(
g
p1−1
p2

j− e1
p2
j′

1

)f1
= g

e1f1
f1j−j

′
p2

1 ≡ 1 (mod p1). This gives

g
p1−1
p2

j− e1
p2
j′

1 ∈ 〈q〉 ⊆ Z∗p1 . Hence,

f1−1∑
l=0

(
ζ
g

p1−1
p2

j+n+i

1
1

)ql

=

f1−1∑
l=0

(
ζ
g

e1
p2
j′+n+i

1
1

)ql

= ηn+i+ e1
p2
j′ .

Note that as j runs through 1 to p2 − 1, so does j′. Therefore,

p2−1∑
j=1

f1−1∑
l=0

(
ζ
g

p1−1
p2

j+n+i

1
1

)ql

=

p2−1∑
j′=1

ηn+i+ e1
p2
j′ . (1.11)
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From equations (1.10) and (1.11), we obtain

[Fq(ζ1) : K]eFq(φn) = 1
p1

f1p2 +

p1−2∑
i=0

p2−1∑
j=0

f1−1∑
l=0

(
ζ
g

p1−1
p2

j+n+i

1
1

)ql

ag
i



= 1
p1

(
f1p2 +

p1−2∑
i=0

(
f1−1∑
l=0

(ζ
gn+i1
1 )q

l

+

p2−1∑
j=1

f1−1∑
l=0

(ζ
g

p1−1
p2

j+n+i

1
1 )q

l

)
ag

i

)

= 1
p1

(
f1p2 +

p1−2∑
i=0

(
η
(1)
n+i +

p2−1∑
j=1

η
(1)

n+i+
e1
p2
j

)
ag

i

)

= 1
p1

(
f1p2 +

p1−2∑
i=0

(
p2−1∑
j=0

η
(1)

n+i+j
e1
p2

)
ag

i

)
.

(1.12)
We next see that the right side of equation (1.12) is non-zero. Suppose not, then

η
(1)
n+i + η

(1)

n+i+
e1
p2

+ η
(1)

n+i+2.
e1
p2

+ · · ·+ η
(1)

n+i+(p2−1) e1p2
= 0

for 0 ≤ i ≤ p1 − 2. In particular,

η
(1)
0 + η

(1)
e1
p2

+ η
(1)

2.
e1
p2

+ · · ·+ η
(1)

(p2−1) e1p2
= 0

η
(1)
1 + η

(1)

1+
e1
p2

+ η
(1)

1+2.
e1
p2

+ · · ·+ η
(1)

1+(p2−1) e1p2
= 0

· · ·

η
(1)
e1
p2
−1 + η

(1)
e1
p2
−1+ e1

p2

+ η
(1)
e1
p2
−1+2.

e1
p2

+ · · ·+ η
(1)
e1
p2
−1+(p2−1) e1p2

= 0.

On adding the above system of equations, we get η
(1)
0 + η

(1)
1 + · · ·+ η

(1)
e1−1 = 0, which

is a contradiction, since
∑e1−1

i=0 η
(1)
i = −1. Consequently, [Fq(ζ1) : K] is invertible in

Fq and

eFq(φn) =
1

[Fq(ζ1) : K] p1

(
f1p2 +

p1−2∑
i=0

(
p2−1∑
j=0

η
(1)

n+i+j
e1
p2

)
ag

i

)
.

It is clear from the above expression that

eFq(φn) = eFq(φ(n+
e1
p2

)).
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That the idempotents eFq(φn), 0 ≤ n ≤ e1
p2
− 1 are all distinct is a consequence of

the following:

Lemma 1.7 For 0 ≤ n, n′ ≤ e1
p2
−1, n 6= n′, there exists i, 0 ≤ i ≤ p1−2, such that

p2−1∑
j=0

η
(1)

n+i+j
e1
p2

6=
p2−1∑
j=0

η
(1)

n′+i+j
e1
p2

.

Proof. Let θi := 1
p1

(f1 +
∑p1−2

j=0 η
(1)
i+ja

gj1), 0 ≤ i ≤ e1 − 1 be the primitive central

idempotents of Fq[〈a〉] as given in Proposition 1.1. Suppose the Lemma is not true,
i.e., we have

p2−1∑
j=0

η
(1)

n+i+j
e1
p2

=

p2−1∑
j=0

η
(1)

n′+i+j
e1
p2

for 0 ≤ i ≤ p1 − 2. It then follows that

p2−1∑
j=0

θk+j e1
p2

=

p2−1∑
j=0

θk+n′−n+j e1
p2

for 0 ≤ k ≤ e1
p2
− 1. Therefore,

p2−1∑
j=0

θk+j e1
p2

=

(
p2−1∑
j=0

θk+j e1
p2

)2

=

(
p2−1∑
i=0

θk+i. e1
p2

)(
p2−1∑
j=0

θk+n′−n+j e1
p2

)

=

p2−1∑
i=0

p2−1∑
j=0

θk+i e1
p2

θk+n′−n+j e1
p2

.

However, for 0 ≤ i, j ≤ p2 − 1, n 6= n′, the idempotent θk+i e1
p2

is orthogonal to

θk+n′−n+j e1
p2

. Thus we have

p2−1∑
j=0

θk+j e1
p2

= 0, 0 ≤ k ≤ e1
p2
− 1.

Adding these equations, we get

e1
p2
−1∑

k=0

p2−1∑
j=0

θk+j e1
p2

= 0.

11



Now the left hand side of the above equation is equal to
∑e1−1

i=0 θi. We thus have a
contradiction, since

e1−1∑
i=0

θi = 1− 1

p1

p1−1∑
i=0

ai 6= 0. �

As a result of the foregoing Lemmas, we have the following:

Theorem 1.8 [BGP11] Let G be a group given by the presentation (1.5).

(i) If p2 | f1, then Fq[G] has exactly the following e1 +e2 +1 distinct primitive central
idempotents:

1
p1p2

∑
g G

g,

1
p1p2

(
f2

p1−1∑
x=0

ax +

p2−2∑
j=0

η
(2)
m+j

(
p1−1∑
x=0

axbg
j
2

))
, 0 ≤ m ≤ e2 − 1,

p2
p1 [Fq(ζ1):K]

(
f1 +

p1−2∑
k=0

η
(1)
n+ka

gk1

)
, 0 ≤ n ≤ e1 − 1.

(ii) If p2 - f1, then Fq[G] has exactly the following e1
p2

+ e2 + 1 distinct primitive
central idempotents:

1
p1p2

∑
g∈G

g,

1
p1p2

(
f2

p1−1∑
x=0

ax +

p2−2∑
j=0

η
(2)
m+j

(
p1−1∑
x=0

axbg
j
2

))
, 0 ≤ m ≤ e2 − 1,

1
p1 [Fq(ζ1):K]

(
f1p2 +

p1−2∑
i=0

(
p2−1∑
j=0

η
(1)

n+i+j
e1
p2

)
ag

i
1

)
, 0 ≤ n ≤ e1

p2
− 1. �

Metacyclic groups

Let G be a metacyclic group given by the presentation

G = 〈a, b | an = 1, bt = ak, b−1ab = ar〉,
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where n, t, r, k are natural numbers with rt ≡ 1 (modn), kr ≡ k (modn). Let q be
a prime power coprime to nt. The cyclic group 〈q〉 contained in Z∗n acts on [n] by
setting q.i = qi (modn), i ∈ [n]. Let C(q, i, n) denote the orbit of i ∈ [n].

For d|n and l|n
d
sd, define

• fd := |C(q, d, n)|.

• hd, l := |C(q, l, n
d
sd)|.

• gd, l := gcd(fd, hd, l).

• `d, l := lcm(fd, hd, l).

• kd, l:= the smallest positive integer m such that rm ≡ (qgd, l)x (mod n
d
) for some

integer x.

• vd, l := sd
gcd(l, sd)

.

For d|n, l|n
d
sd, (i, j) ∈ Xd, l, where Xd, l is as defined in equation (1.4), 0 ≤ x ≤

n− 1 and 0 ≤ y ≤ sd − 1, define

• ud, l(i, j) := the solution of the congruence i
d
x ≡ −

i
d
k+n

d
j

gcd(l, sd)
(mod n

d
).

• Cd, l(i, j) := the q-cyclotomic coset of the character in Irr(〈a, bld〉/〈and , aubldv〉)
given by

a+ 〈a
n
d , aubldv〉 7→ ζ−it, bld + 〈a

n
d , aubldv〉 7→ ζ−ld(ik+nj),

where u = ud, l(i, j), v = vd, l and ζ is a primitive nt-th root of unity in Fq.

• Ad, l(i, j, x, y) :=
`d, l

gd, l|C(q
gd,l ,(ik+nj)y,nsd)||C(q

gd,l ,ix,n)| ,

• αd, l(i, j, x, y) :=

A
∑kd, l−1

α=0

∑gd, l−1
β=0

 ∑
z∈C(q

gd,l , ixrα, n)

(ζtz)q
β

 ∑
w∈C(q

gd,l , (ik+nj)y, nsd)

(ζ ldw)q
β

 , where

A = Ad, l(i, j, x, y).

Given d |n, l | n
d
sd and (i, j), (i′, j′) ∈ Xd, l, we say that (i′, j′) ∼ (i, j) if there

exists an integer λ such that

(i) i′k + nj′ ≡ (ik + nj)qλ (modnsd),

(ii) orb(i′) = orb(iqλ), i.e., i′ ≡ iqλrµ (modn), for some µ ≥ 0.
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It is easy to see that the relation ∼ defined above on Xd, l is an equivalence
relation. Let [Xd, l] denote a set of representatives of distinct equivalence classes of
Xd, l under the above equivalence relation.

With the group G and the notation as above, the following result gives a com-
plete set of primitive central idempotents of Fq[G].

Theorem 1.9 [BGP] (i) Let d|n, l|n
d
sd and (i, j) ∈ Xd, l. Let u = ud, l(i, j), v = vd, l,

and C = Cd, l(i, j). Then

eFq(χi, j) = eC(G, 〈a, bld〉, 〈a
n
d , aubldv〉) =

1

nsd

n−1∑
x=0

sd−1∑
y=0

αd, l(i, j, x, y) axby ld . (1.13)

(ii) {eFq(χi, j) | (i, j) ∈
⋃
d|n
⋃
l|n
d
sd

[Xd, l]} is a complete set of primitive central

idempotents of Fq[G].

We will prove the above result in a number of steps.

Let G be a finite group of order coprime to q and N E G. Let ψ be a linear
character on N and let C be the q-cyclotomic coset of ψ ∈ Irr(N/ kerψ), where ψ is
the corresponding character of N/ kerψ given by g = g+kerψ 7→ ψ(g). Let χ = ψG.
With this notation we have the following:

Theorem 1.10 If χ ∈ Irr(G), then

(i) eFq(ψ)= εC(N, kerψ).

(ii) eFq(χ) = eC(G, N, kerψ).
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Proof. (i) Let η be a primitive |N/ kerψ|th root of unity in Fq. We have

eFq(ψ) =
1

|N |
∑
g∈N

∑
τ∈G(ψ)

τ(ψ(g−1))g,

=
1

|N |
∑
g∈N

∑
τ∈G(ψ)

τ(ψ((g)−1))g,

=
1

|N |
∑
g∈N

∑
τ∈Gal(Fq(η)/Fq)

τ(ψ((g)−1))g, (G(ψ) = Gal(Fq(η)/Fq)),

=
1

|N |
∑
g∈N

TrFq(η)/Fq(ψ((g)−1))g,

= εC(N, kerψ).

This proves (i).

(ii) Let {x1, x2, . . . , xm} be a transversal of N in G. We have

[Fq(ψ) : Fq(χ)]eFq(χ) =
χ(1)[Fq(ψ) : Fq(χ)]

|G|
∑
g∈G

∑
τ∈G(χ)

τ(χ(g−1))g,

=
[G : N ]

|G|
∑
g∈G

∑
τ∈G(ψ)

τ(χ(g−1))g,

=
1

|N |
∑
g∈N

∑
τ∈G(ψ)

m∑
i=1

τ(ψ(x−1i g−1xi))g,

=
m∑
i=1

xi

 1

|N |
∑
g∈N

∑
τ∈G(ψ)

τ(ψ(g−1))g

x−1i ,

=
m∑
i=1

xieFq(ψ)x−1i ,

=
m∑
i=1

xiεC(N, kerψ)x−1i ,

= [CenG(εC(N, kerψ)) : N ]
m′∑
j=1

yjεC(N, kerψ)y−1j ,

where CenG(εC(N, kerψ)) denotes the centralizer of εC(N, kerψ) in G, and

{y1, y2, . . . , ym′} is a transversal of CenG(εC(N, kerψ)) inG. As
m′∑
j=1

yjεC(N, kerψ)y−1j ,
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being a sum of distinct primitive central idempotents of Fq[N ], is a non-zero idem-
potent, it follows that,

[Fq(ψ) : Fq(χ)] = [CenG(εC(N, kerψ)) : N ], (1.14)

and

eFq(χ) =
m′∑
j=1

yjεC(N, kerψ)y−1j = eC(G, N, kerψ).

This completes the proof of (ii). �

Let d|n, l|n
d
sd and (i, j) ∈ Xd, l. Let ψi, j : 〈a, bld〉 → Fq be the linear character

of 〈a, bld〉 given by ψi, j(a) = ζ−it and ψi, j(b
ld) = ζ−ld(ik+nj). It is easy to see that

χi, j is induced from the linear character ψi, j of 〈a, bld〉.

Lemma 1.11 Let d|n, l|n
d
sd and (i, j) ∈ Xd, l. Then

eFq(ψi, j) = εC(〈a, bld〉, 〈a
n
d , aubldv〉) =

1

nsd

n−1∑
x=0

sd−1∑
y=0

βx, y a
xby ld , (1.15)

where

βx, y = Ad, l(i, j, x, y)

gd, l−1∑
β=0

 ∑
z∈C(q

gd, l , ix, n)

(ζtz)
qβ

 ∑
w∈C(q

gd, l , (ik+nj)y, nsd)

(ζ ldw)
qβ

 ,

u, v, Ad, l(i, j, x, y) and the q-cyclotomic coset C are as in the statement of
Theorem 1.9.

Proof. The first equality of equation (1.15) follows from Theorem 1.10, if we show
that

ker(ψi, j) = 〈a
n
d , aubldv〉, (1.16)

where u and v are as in the statement. Now, ψi, j(a
n
d ) = ζ−i

n
d
t = ζ−n

i
d
t = 1.

Also ψi, j(a
ubldv) = ζ−iutζ−ldv(ik+nj) = 1. Thus a

n
d and aubldv belong to ker(ψi, j).

Therefore, 〈and , aubldv〉 ⊆ ker(ψi, j). As 〈a, bld〉/ ker(ψi, j) ∼= 〈ζdt, ζ ldld〉 and
|〈ζdt, ζ ldld〉| = lcm(n

d
, nsd

ld
) = n

d
sd

gcd(sd,l)
= n

d
v, it follows that | ker(ψi, j)| = dsd

v
. Also

note that |〈and , aubldv〉| = dsd
v
. Thus the equality in (1.16) follows.

We now prove the second equality of equation (1.15). We have

eFq(ψi, j) =
1

nsd

∑
g∈〈a, bld 〉

∑
τ∈G(ψi, j)

τ(ψi, j(g
−1))g.
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Since Fq(ψi, j) = Fq(ζ it, ζ ld(ik+nj)) = Fq(ζdt, ζ ldld), it follows that

[Fq(ψi, j) : Fq] = lcm(fd, hd, l) = `d, l, (1.17)

and

eFq(ψi, j) =
1

nsd

∑
g∈〈a, bld 〉

∑
τ∈G(ψi, j)

τ(ψi, j(g
−1))g =

1

nsd

n−1∑
x=0

sd−1∑
y=0

βx, ya
xbldy, (1.18)

where

βx, y =
∑

τ∈Gal(F
q
`d, l

/Fq)

τ(ψi, j(b
−ldya−x))

=
∑

τ∈Gal(F
q
`d, l

/Fq)

τ(ζ itxζ ld(ik+nj)y)

=

`d, l−1∑
ν=0

ζ itxq
ν

ζ ld(ik+nj)yq
ν

=

−1+`d, l/hd,l∑
γ=0

−1+hd,l∑
δ=0

ζ itxq
δ+γhd,l

ζ ld(ik+nj)yq
δ+γhd,l

=

−1+hd,l∑
δ=0

−1+`d, l/hd,l∑
γ=0

(ζ itxq
γhd,l

)
qδ

 ζ ld(ik+nj)yq
δ

,

as ld(ik + nj)qhd,l ≡ ld(ik + nj) (modnt),

=
`d, l

hd,l|C(qhd,l , ix, n)|

−1+hd,l∑
δ=0

 ∑
z∈C(q

hd,l , ix, n)

(ζtz)
qδ

 ζ ld(ik+nj)yq
δ

.

We now show that
C(qhd,l , ix, n) = C(qgd, l , ix, n). (1.19)

As gd, l divides hd,l, we clearly have C(qhd,l , ix, n) ⊆ C(qgd, l , ix, n). In order to see
that the right hand side of (1.19) is contained in its left hand side, we write gd, l =
x0fd + y0hd,l, where x0 and y0 integers, and note that for any integer z0 ≥ 0,

ixqz0gd, l = ixqz0x0fdqz0y0hd,l ≡ ixqz0y0hd,l (mod n). (1.20)

Since the left hand side of (1.20) is an arbitrary element of C(qgd, l , ix, n) and the
right hand side of (1.20) belongs to C(qhd,l , ix, n), it follows that C(qgd, l , ix, n) ⊆
C(qhd,l , ix, n) and hence (1.19) is proved.
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In view of (1.19), βx, y now becomes

=
`d, l

hd,l|C(qgd, l , ix, n)|

−1+hd, l∑
δ=0

 ∑
z∈C(q

gd, l ,ix,n)

(ζtz)
qδ

 ζ ld(ik+nj)yq
δ

=
`d, l

hd, l|C(qgd, l , ix, n)|

−1+hd, l/gd, l∑
µ=0

gd, l−1∑
β=0

 ∑
z∈C(q

gd, l ,ix,n)

(ζtz
q
µgd, l

)
qβ

 (ζ ld(ik+nj)yq
µgd, l

)q
β

=
`d, l

hd, l|C(qgd, l , ix, n)|

−1+hd, l/gd, l∑
µ=0

gd, l−1∑
β=0

 ∑
z∈C(q

gd, l , ix, n)

(ζtz)
qβ

 (ζ ld(ik+nj)yq
µgd, l

)q
β

=
`d, l

hd, l|C(qgd, l , ix, n)|

gd, l−1∑
β=0

 ∑
z∈C(q

gd, l , ix, n)

(ζtz)
qβ

−1+hd, l/gd, l∑
µ=0

(ζ ld(ik+nj)yq
µgd, l

)q
β


= Ad, l(i, j, x, y)

gd, l−1∑
β=0

 ∑
z∈C(q

gd, l , ix, n)

(ζtz)
qβ

 ∑
w∈C(q

gd, l , (ik+nj)y, nsd)

(ζ ldw)
qβ

 ,

where Ad, l(i, j, x, y) is as in the statement. Now substituting the above expression
of βx, y in (1.18), we obtain the second equality of equation (1.15). �

Lemma 1.12 Let d|n, l|n
d
sd and (i, j) ∈ Xd, l.

(i) For s ≥ 0, let js ≡ j + ik(1−rs)
n

(mod sd). Then (irs, js) ∈ Xd, l and

bseFq(ψi, j)b
−s = eFq(ψirs, js).

(ii) CenG(eFq(ψi, j)) = 〈a, bkd, l〉 and {1, b, . . . , bkd, l−1} is a transversal of CenG(eFq(ψi, j))
in G.

Proof. (i) Since gcd(r, n) = 1, we have gcd(irs, n) = gcd(i, n) = d and

irs

d
k +

n

d
js ≡

irs

d
k +

n

d
(j +

ik(1− rs)
n

) (mod
n

d
sd)

≡ i

d
k +

n

d
j (mod

n

d
sd).

Thus gcd( ir
s

d
k + n

d
js,

n
d
sd) = gcd( i

d
k + n

d
j, n

d
sd) = l. Hence (irs, js) ∈ Xd, l. Now, by

Lemma 1.11, we get that the coefficient of axbldy in the expression of eFq(ψirs, js) is

Ad, l(i, j, x, y)

gd, l−1∑
β=0

 ∑
z∈C(q

gd, l , irsx, n)

(ζtz)
qβ

 ∑
w∈C(q

gd, l , (ik+nj)y, nsd)

(ζ ldw)
qβ

 ,
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which is same as the coefficient of axbldy in the expression of bseFq(ψi, j)b
−s. Thus (i)

is proved.

(ii) Since eFq(ψi, j) is a central idempotent of Fq[〈a, bld〉], we have 〈a, bld〉 ⊆ CenG(eFq(ψi, j)).
Let bs ∈ CenG(eFq(ψi, j)). Then bseFq(ψi, j)b

−s = eFq(ψi, j). Therefore, by (i),

eFq(ψirs, js) = eFq(ψi, j), (1.21)

which, by Lemma 1.11, gives that

εC′(〈a, bld〉, ker(ψirs, js)) = εC(〈a, bld〉, ker(ψi, j)), (1.22)

where C ′ is the q-cyclotomic coset of Irr(〈a, bld〉/ ker(ψirs, js)) containing ψirs, js .
Also equation (1.21) implies that ψirs, js = τ ◦ ψi, j, for some τ ∈ G(ψi, j). This
gives that ker(ψirs, js) = ker(ψi, j). Consequently, we get from equation (1.22), that
εC′(〈a, bld〉, ker(ψi, j)) = εC(〈a, bld〉, ker(ψi, j)). This gives, by Theorem 1.2(iii), that
C = C ′, i.e., ψirs, js = ψi, j

qc , for some integer c ≥ 1. Now evaluating both ψirs, js and
ψi, j

qc at a and bld , we obtain that

ik + nj ≡ (ik + nj)qc (modnsd),

and
irs ≡ iqc (modn).

The first congruence implies that hd, l | c and consequently, the second congruence
yields kd, l | s. However, it is easily seen that bkd, l ∈ CenG(eFq(ψi, j)). Therefore, we
obtain that {1, b, . . . , bkd, l−1} is a transversal of CenG(eFq(ψi, j)) in G. �

Proof of Theorem 1.9. (i) It follows from Theorem 1.10 and Lemmas 1.11, 1.12
that

eFq(χi, j) =

kd, l−1∑
s=0

bseFq(ψi, j)b
−s =

kd, l−1∑
s=0

eFq(ψirs, js). (1.23)

Now substituting the expression of eFq(ψirs, js) obtained from Lemma 1.11, we get
the required expression of eFq(χi, j).

(ii) Let d|n, l|n
d
sd, (i, j), (i′, j′) ∈ Xd, l be such that (i′, j′) ∼ (i, j). Then it

follows immediately from the expressions of eFq(χi, j) and eFq(χi′, j′) given by (i)
that eFq(χi, j) = eFq(χi′, j′).

Conversely, let (i, j), (i′, j′) ∈
⋃
d|n
⋃
l|n
d
sd
Xd, l be such that

eFq(χi, j) = eFq(χi′, j′). (1.24)
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In order to prove (ii), we need to show that there exist integers d, l ≥ 1, d|n, l|n
d
sd

such that (i, j), (i′, j′) ∈ Xd, l and (i′, j′) ∼ (i, j). Equation (1.24) implies

χi′, j′ = τ ◦ χi, j, (1.25)

for some τ ∈ G(χi, j). This gives that χi, j and χi′, j′ have the same degrees, i.e.,
li = li′ . Also it follows from equation (1.25) that ker(χi′, j′) = ker(χi, j), which implies
that 〈an/ gcd(i′, n)〉 = ker(χi′, j′) ∩ 〈a〉 = ker(χi, j) ∩ 〈a〉 = 〈an/ gcd(i, n)〉. Consequently,
gcd(i′, n) = gcd(i, n) = d, say.

Let l = gcd( i
d
k + n

d
j, n

d
sd) and l′ = gcd( i

′

d
k + n

d
j′, n

d
sd). By Lemma 1.11 and

equations (1.23), (1.24), we have

kd, l−1∑
s=0

eFq(ψirs, js) =

kd, l′−1∑
s=0

eFq(ψi′rs, j′s), which holds

if, and only if,
eFq(ψi, j) = eFq(ψi′rs, j′s), (1.26)

for some s ≥ 0, i.e.,

εC(〈a, bld〉, ker(ψi, j)) = εC′(〈a, bld〉, ker(ψi′rs, j′s)). (1.27)

Also equation (1.26) implies that

ψi′rs, j′s = τ ◦ ψi, j, (1.28)

for some τ ∈ G(ψi, j), which gives that ker(ψi′rs, j′s) = ker(ψi, j). Consequently, equa-
tion (1.27) and Theorem 1.2(iii) gives that C = C ′. Therefore, ψi′rs, j′s = ψi, j

qc , for
some c ≥ 0 which yields, by evaluating ψi′rs, j′s , ψi, j

qc at a and bld , that l = l′ and
(i′, j′) ∼ (i, j). This completes the proof of (ii). �

Metabelian groups

Let G be a finite group and H a subgroup of G. We set

Ĥ =
1

|H|
∑
h∈H

h

and let

M(G/H) = the set of minimal normal subgroups of G containing H properly.

Let ε(K, H) be the element of the rational group algebra Q[G] given by

ε(K, H) =

{∏
M/H∈M(K/H)(Ĥ − M̂), if H 6= K,

K̂, if H = K.
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Definition 1.13 A strongly Shoda pair of G is a pair (K, H) of subgroups of G
with the properties that
(i) H ≤ K ENG(H),
(ii) K/H is cyclic and a maximal abelian subgroup of NG(H)/H,
(iii) the different G-conjugates of ε(K, H) are mutually orthogonal.

Let HEK ≤ G be such that K/H is cyclic. Let g ∈ G. For a character ψ of K, let
ψ(g) denote the character of K(g) := g−1Kg defined by ψ(g)(x) = ψ(gxg−1). Clearly
ker(ψ) = H if, and only if, ker(ψ(g)) = H(g). Therefore, the map π given by ψ 7→ ψ(g)

defines a bijection between the generators of Irr(K/H) and those of Irr(K(g)/H(g)).
Note that if C is the q-cyclotomic coset of ψ then C(g) := π(C) is the q-cyclotomic
coset of ψ(g). Thus π in turn induces a bijection π(g) : C(K/H) → C(K(g)/H(g))
given by C 7→ C(g).

Let N = NG(H) ∩NG(K). Define an action of N on C(K/H) as follows:

g.C = C(g), g ∈ N, C ∈ C(K/H).

Note that under this action the stabilizer of any C ∈ C(K/H) remains the same.
For C ∈ C(K/H), let Orb(C) denote the orbit of C and

EG(K/H) = the stablizer of C.

Let
R(K/H) = the set of representatives of distinct orbits of C(K/H).

Define

o(K, H) =
ord[K:H](q)

[EG(K/H) : K]
. (1.29)

The following result is due to Broche and Rio [BdR07].

Theorem 1.14 Let Fq be a finite field of order q and G a finite group of order
coprime to q. Let (K, H) be a strongly Shoda pair of G and C ∈ C(K/H). Then

(i) CenG(εC(K, H)) = EG(K/H).

(ii) eC(G, K, H) is a primitive central idempotent of Fq[G].

(iii) Fq[G]eC(G, K, H) ∼= M[G:K](Fqo(K,H)).

Furthermore, if G is an abelian-by-supersolvable group, the every primitive cen-
tral idempotent of Fq[G] is of the form eC(G, K, H), for a strongly Shoda pair
(K, H) of G and C ∈ C(K/H).

Let G be a finite metabelian group of order coprime to q. Let
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• A:= a fixed maximal abelian subgroup of G containing G′.

• T := the set of all subgroups D of G with D ≤ A and A/D cyclic.

For D1, D2 ∈ T , we say that D1 is equivalent to D2 if there exists g ∈ G such that
D2 = g−1D1g. Let

• TG:= a set of representatives of the distinct equivalence classes of T .

For D ∈ T , let

• KD := a fixed maximal element of {K | A ≤ K ≤ G, K ′ ≤ D}.

• R(D) := the set of those linear representations of KD over Fq whose restriction
to A has kernel D.

• RC(D) := a complete set of those representations in R(D) which are not
mutually G-conjugate.

The following result is proved in [BKP13] for complex irreducible representations.
However, the analogous proof works for the irreducible representations of G over Fq.

Theorem 1.15 [BKP13] Let G be a finite metabelian group with A and TG as
defined above. Then

Ω = {ρG, ρ ∈ RC(D), D ∈ TG},
is a complete set of inequivalent irreducible representations of G over Fq.

Furthermore, ρG ∈ Ω is faithful if, and only if, D is core-free.

For N EG with

AN/N = a maximal abelian subgroup of G/N containing (G/N)′,

define

SG/N = {(D/N, AN/N) |D/N ∈ TG/N , D/N core-free in G/N}.

Let

S := {(N, D/N, AN/N) |N EG, SG/N 6= ø, (D/N, AN/N) ∈ SG/N}.

The following is our main result on the primitive central idempotents of a semisimple

finite group algebra of a metabelian group.
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Theorem 1.16 Let Fq be a finite field with q elements and G a finite metabelian
group of order coprime to q. Then

{eC(G, AN , D) | (N, D/N, AN/N) ∈ S, C ∈ R(AN/D)}

is a complete set of primitive central idempotents of Fq[G].

Proof. Let

S := {((N, D/N, AN/N), C) | (N, D/N, AN/N) ∈ S, C ∈ R(AN/D)}. (1.30)

If ((N, D/N, AN/N), C) ∈ S, then, by ([BKP13], Lemma 6), (AN , D) is a strongly
Shoda pair in G, and therefore, by Theorem 1.14 (ii), eC(G, AN , D) is a primitive
central idempotent of Fq[G]. Thus we have a map

π : ((N, D/N, AN/N), C) 7→ eC(G, AN , D)

from S to a complete set of primitive central idempotents of Fq[G]. In order to prove
the Theorem, we need to prove that π is 1-1 and onto.

To show that π is onto, let e be a primitive central idempotent of Fq[G]. We have
e = eFq(χ), for some χ ∈ Irr(G). Let τ be a representation affording χ and N = ker τ.
Let τ be the corresponding faithful representation of G/N. By Theorem 1.15, it
follows that there exists a unique pair (D/N, AN/N) ∈ SG/N and a representation
ρ of AN/N with kernel D/N such that τ = ρG/N . This yields χ = ψG, where ψ is
the character afforded by ρ : AN → Fq given by ρ(x) = ρ(xN). Since kerψ = D, by
Theorem 1.10, we have

eFq(χ) = eC(G, AN , D), (1.31)

where C ∈ R(AN/D) is the q-cyclotomic coset of ψ and consequently π is onto.

To show that π is 1-1, let ((N, D/N, AN/N), C) and
((Ñ , D̃/Ñ , AÑ/Ñ), C̃) ∈ S be such that

eC(G, AN , D) = eC̃(G, AÑ , D̃). (1.32)

Let ρ ∈ RC(D), ρ̃ ∈ RC̃(D̃) and χ and χ̃ be the character afforded by ρG and ρ̃G re-
spectively. By Theorem 1.10, eFq(χ) = eC(G, AN , D) and eFq(χ̃) = eC̃(G, AÑ , D̃).
Therefore, equation (1.32) implies that eFq(χ) = eFq(χ̃), which, in turn, implies that

χ̃ = σ ◦ χ, σ ∈ G(χ). (1.33)

Consequently, Ñ = ker(χ̃) = ker(χ) = N. Also, by going modulo N, it follows
from equation (1.33) and Theorem 1.15, that D/N and D̃/N are conjugate in G/N.

23



This gives D/N = D̃/N, i.e., D = D̃. Next, if {z1, z2, . . . , zk} is a transversal of
EG(AN/D) in G, then, by Theorem 1.14(i) and equation (1.32), we have

k∑
j=1

ε
C(zj)(AN , D(zj)) =

k∑
j=1

ε
C̃(zj)(AN , D(zj)). (1.34)

Since both the sides of the above equation are primitive central idempotents in
Fq[AN ], it follows that, for some j, 1 ≤ j ≤ k,

εC(AN , D) = ε
C̃(zj)(AN , D(zj)). (1.35)

However, by Theorem 1.2, εC(AN , D) = eFq(ρ), and ε
C̃(zj)(AN , D̃(zj)) = eFq(ρ̃

(zj)).

Therefore, we have by equation (1.35), eFq(ρ) = eFq(ρ̃
(zj)), which, as before, gives

D = ker ρ = ker ρ̃(zj) = D̃(zj) = D(zj), i.e., zj ∈ NG(D). Consequently, Orb(C) =
Orb(C̃). This proves that π is 1-1. �

We now illustrate Theorem 1.16 with its application to metacyclic groups; thus
obtaining an alternative set of primitive central idempotents of Fq[G] with G given
by presentation (1.3).

For a divisor v of n, let

• ov = ordv(r).

• Gov = 〈a, bov〉.

• Bov = {(w, i, c) ∈ Z3 |w > 0, w |n, w | rov − 1, ovc > 0 , ovc | t, w | k + i t
ovc
}.

Let

N = {(v, i, c) ∈ Z3 | v > 0, v|n, c > 0, c|t, 0 ≤ i ≤ v−1, v|k+i
t

c
, ov | c and v | i(r−1)}.

For (v, i, c) ∈ N, define

• Hv, i, c = 〈av, aibc〉.

• Xv, i, c = {(v, α, β) | βov | c, α c
βov

≡ i (mod v), β = c gcd(α(r−1), v)
vov

,

gcd(v, α, β) = 1 and (v, α, β) ∈ Bov}.

Define a relation, denoted ∼, on Xv, i, c as follows:

For (v, α1, β1), (v, α2, β2) ∈ Xv, i, c, we say that (v, α1, β1) ∼ (v, α2, β2)⇔ β1 = β2
and α1 ≡ α2r

j (mod v) for some j. It is easy to see that ∼ is an equivalence relation
on Xv, i, c. Let Xv, i, c denote the set of distinct equivalence classes of Xv, i, c under the
equivalence relation ∼ .

24



Theorem 1.17 Let Fq be a finite field with q elements and G the group given by
the presentation (1.3). If gcd(q, nt) = 1, then⋃

(v, i, c)∈N

{eC(G, Gov , Hv, α, βov), | (v, α, β) ∈ Xv, i, c, C ∈ R(Gov/Hv, α, βov)}

is a complete set of primitive central idempotents of the group algebra Fq[G].

We prove it in a number of steps.

Lemma 1.18 Hv, i, c, (v, i, c) ∈ N, are all the distinct normal subgroups of G.

Proof. Let N E G. Suppose N ∩ 〈a〉 = 〈av〉, v |n, v > 0. Now, if N/N ∩ 〈a〉, as a
subgroup of G/〈a〉, is generated by 〈bc〈a〉〉, c > 0, c | t, then clearly,

N = 〈av, aibc〉 for some i, 0 ≤ i ≤ v − 1. (1.36)

Now N being a normal subgroup of G, we must have b−1aibcb, a−1aibca and

(aibc)
t/c

all belong to N. This gives

v | i(r − 1), ov | c, v | k + i
t

c
. (1.37)

Consequently, equations (1.36) and (1.37) yield that (v, i, c) ∈ N and N = Hv, i, c.

Conversely, it is easy to see that for any (v, i, c) ∈ N, Hv, i, c is normal subgroup
of G. Furthermore,

|Hv, i, c| =
nt

vc
. (1.38)

In order to complete the proof of the Lemma, we need to show that
Hv, i, c, (v, i, c) ∈ N, are distinct. Let (v1, i1, c1), (v2, i2, c2) ∈ N be such that
Hv1, i1, c1 = Hv2, i2, c2 . Then 〈av1〉 = Hv1, i1, c1 ∩ 〈a〉 = Hv2, i2, c2 ∩ 〈a〉 = 〈av2〉
implies that v1 = v2 = v, say. Also, in view of equation (1.38), |Hv, i1, c1/〈av〉| =
|Hv, i2, c2/〈av〉| implies that c1 = c2 = c, say. Further, ai2bc ∈ Hv, i2, c, a

i1bc ∈ Hv, i1, c

and Hv, i1, c = Hv, i2, c gives that ai1−i2 ∈ Hv, i1, c ∩ 〈a〉 = 〈av〉. Hence i2 ≡ i1 (mod v1),
i.e., i1 = i2. This proves the Lemma. �

Lemma 1.19 Let (v, i, c) ∈ N and N = Hv, i, c. Then

(i) Gov/N is a maximal abelian subgroup of G/N containing (G/N)
′
.

(ii) H/N is a subgroup of Gov/N with cyclic quotient and H/N core-free in G/N ⇔
H = Hv, α, βov , (v, α, β) ∈ Xv, i, c.
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Proof. (i) By ([CR06], p.336), G′ov = 〈arov−1〉. Since v | rov − 1, we have
G′ov ≤ 〈a

v〉 ≤ N and therefore Gov/N is abelian. Furthermore Gov/N contains

(G/N)
′

as G′ = 〈ar−1〉 ≤ 〈a, bov〉 = Gov . Thus Gov/N is an abelian subgroup of

G/N containing (G/N)
′
.

If ov = 1, then clearly, Gov/N = G/N is a maximal abelian subgroup of G/N

containing (G/N)
′
. Let ov > 1. Suppose that K/N is an abelian subgroup of G/N

with Gov/N ≤ K/N ≤ G/N. Since ov > 1, G/N is not abelian. Thus K/N � G/N.
Now K ∩ 〈a〉 = 〈a〉 implies that K = 〈a, bj〉 for some j | ov. However, K ′ ≤ N
implies that 〈arj−1〉 ≤ N, which gives that v | rj − 1, i.e., ov | j. Thus j = ov and
K/N = Gov/N. This proves (i).

(ii) Let H/N be a subgroup of Gov/N with cyclic quotient. By ([OdRS06],
Lemma 2.2), we have

H = Hu, α, βov , (u, α, β) ∈ Bov and gcd(u, α, β) = 1.

Since N ≤ H, we must have av ∈ H and aibc ∈ H, which holds, if, and only if,

u | v, βov | c and α
c

βov
≡ i (modu). (1.39)

We claim that

core(H) = 〈au, aα
δ
βov bδ〉, δ =

βuov
gcd(α(r − 1), u)

.

Let K = 〈au, aα
δ
βov bδ〉 with δ as above. Since (u, α δ

βov
, δ) ∈ N, by Lemma 1.18,

it follows that K is a normal subgroup of G. Since abova−1b−ov ∈ 〈av〉, we have

aα
δ
βov bδ(aαbβov)

− δ
βov ∈ 〈av〉. Thus K is a subgroup of Hu, α, βov = H.

In order to show that core(H) = K, we need to show that K is the largest
normal subgroup of G contained in H = Hu, α, βov . Let L be a normal subgroup of
G contained in Hu, α, βov . By Lemma 1.18, L = Hw, γ, f for some (w, γ, f) ∈ N.
Since 〈aw〉 = L ∩ 〈a〉 ≤ Hu, α, βov ∩ 〈a〉 = 〈au〉, it follows that u |w. Next ob-
serve that an arbitray element of Hu, α, βov is of the type ajbs with βov | s and
j ≡ α s

βov
(modu). Therefore, L = Hw, γ, f is a subgroup of Hu, α, βov if, and only if,

βov | f and γ ≡ α f
βov

(modu). Since γ(r − 1) ≡ 0 (modw), we have

α f
βov

(r − 1) ≡ 0 (mod u). This gives that δ | f and consequently L = Hw, γ, f is

contained in K = 〈au, aα
δ
βov bδ〉. This proves that K is the largest normal subgroup

of G contained in Hu, α, βov , which proves the claim.

It is now immediate from the claim that H/N is core-free in G/N if, and only
if, u = v and δ = c. This proves (ii). �
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Lemma 1.20 Let (v, i, c) ∈ N and (v, α1, β1), (v, α2, β2) ∈ Xv, i, c. Then Hv, α1, β1ov

and Hv, α2, β2ov are conjugate in G if, and only if, β1 = β2 and α1 ≡ α2r
j (mod v),

for some j.

Proof. Suppose

Hv, α1, β1ov = g−1Hv, α2, β2ovg, g = aibj ∈ G. (1.40)

Then, in particular, in view of equation (1.38), we have

|Hv, α1, β1ov | =
nt

vβ1ov
=

nt

vβ2ov
= |Hv, α2, β2ov |,

i.e.,
β1 = β2.

Further equation (1.40) holds, if, and only if,

(aibj)
−1
aα2bβ1ovaibj ∈ Hv, α1, β1ov .

Since abova−1b−ov ∈ 〈av〉, we have (aibj)
−1
aα2bβ1ovaibj(aα2rjbβ1ov)

−1 ∈ 〈av〉 ⊆ Hv, α1, β1ov ,
which yields that

α1 ≡ α2r
j (mod v)

and proves the Lemma. �

Proof of Theorem 1.17. By Lemma 1.18, Hv, i, c, (v, i, c) ∈ N, are all the distinct
normal subgroups of G. For (v, i, c) ∈ N, and N = Hv, i, c, Lemma 1.19 implies that

SG/N = {(Hv, α, βov/N, Gov/N) | (v, α, β) ∈ Xv, i, c}.

Therefore, we have

S =
⋃

(v, i, c)∈N

{(Hv, i, c, Hv, α, βov/N, Gov/N) | (v, α, β) ∈ Xv, i, c}

and consequently, Theorem 1.16 yields the required result. �
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Chapter 2

Wedderburn Decomposition and
Automorphism Group

Let Fq be a finite field with q elements. In this Chapter, we compute the

Wedderburn decomposition and the group of automorphisms of Fq[G], where

G is a finite metabelian group of order coprime to q. We compute the explicit

Wedderburn decomposition. The standard results on automorphisms of finite

dimensional algebras yield the corresponding group of automorphisms and we

omit the details.

We continue with the notation introduced in Chapter 1. We denote by Aut(Fq[G]),
the group of Fq-automorphisms of Fq[G]. For χ ∈ Irr(G), let A(χ) := Fq[G]eFq(χ).

Groups of order p1p2

Theorem 2.1 [BGP11] Let G = 〈a, b | ap1 = bp2 = 1, b−1ab = ar〉 be a group of
order p1p2, where p1 and p2 are primes, p2 | p1 − 1, and r is an element of order p2
in Z∗p1. Suppose gcd(q, p1p2) = 1. Then

(i) Fq[G] ∼=

{
Fq ⊕ F(e2)qf2

⊕Mp2(Fqu)(e1), p2|f1,
Fq ⊕ F(e2)qf2

⊕Mp2(Fqf1 )
(
e1
p2

)
, p2 - f1,

where u = f1
p2
.
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(ii) Aut(Fq[G]) ∼=


(Z(e2)

f2
o Se2)⊕ (H

(e1)
1 o Se1), p2 | f1, f2 6= 1,

Se2+1 ⊕ (H
(e1)
1 o Se1), p2 | f1, f2 = 1,

(Z(e2)
f2
o Se2)⊕ (H

(
e1
p2

)

2 o Se1/p2), p2 - f1, f2 6= 1,

Se2+1 ⊕ (H
(
e1
p2

)

2 o Se1/p2), p2 - f1, f2 = 1,

where H1 = SLp2(Fqu)o Zu, u = f1
p2

and H2 = SLp2(Fqf1 )o Zf1 .

Proof. Let

ẽ :=

{
e1, p2 | f1,
e1
p2
, p2 - f1.

(2.1)

By Theorem 1.8, eFq(ι), eFq(ψm), eFq(φn), 0 ≤ m ≤ e2 − 1, 0 ≤ n ≤ ẽ− 1 constitute
a complete set of distinct primitive central idempotents of Fq[G]. Therefore,

Fq[G] ∼= A(ι)⊕ A(ψ0)⊕ · · · ⊕ A(ψe2−1)⊕ A(φ0)⊕ · · · ⊕ A(φẽ−1).

We have eFq(ι) = 1
p1p2

∑
g ∈G g and A(ι, Fq) = Fq[G]eFq(ι)

∼= Fq.

For 0 ≤ m ≤ e2 − 1, ψm being a linear character, A(ψm) is commutative and so
A(ψm) is equal to its centre. But, in view of ([Yam74], Proposition 1.4) , the centre of
A(ψm) is isomorphic to Fq(ψm) = Fq(ζ2). Hence A(ψm) ∼= Fq(ζ2) for 0 ≤ m ≤ e2−1.

For 0 ≤ i ≤ ẽ − 1, by Wedderburn structure theorem, A(φi) ∼= Mni(Di), where
Di is a finite field containing Fq, and ni ≥ 1. By ([Yam74], Proposition 1.4), the
centre of A(φi) is isomorphic to Fq(φi), therefore, we have Di

∼= Fq(φi). However,
for 1 ≤ i ≤ n, Fq(φi) = K, where K is as defined in equation (1.8). Observe that
A(φi), 0 ≤ i ≤ ẽ − 1, are all isomorphic as Fq-vector spaces. Therefore, it follows
that n0 = n1 = · · · = nẽ = ñ, say. Consequently, A(φi) ∼= Mñ(K) for 0 ≤ i ≤ ẽ− 1
and

Fq[G] ∼= Fq ⊕ Fq(ζ2)(e2) ⊕Mñ(K)(ẽ). (2.2)

Furthermore,
Z(Fq[G]) ∼= Fq ⊕ Fq(ζ2)(e2) ⊕K(ẽ), (2.3)

where Z(Fq[G]) is the centre of Fq[G].

Observe that [Fq(ζ2) : Fq] = ordp2(q) = f2, thus on comparing the dimension
over Fq on both sides of (2.3), we obtain that

p2 +
p1 − 1

p2
= 1 + e2f2 + ẽ[K : Fq],
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which gives that

[K : Fq] =

{
f1
p2
, p2 | f1

f1, p2 - f1.
(2.4)

and now comparing the dimension over Fq on both sides of (2.2), we obtain that

p1p2 = 1 + e2f2 + ñ2ẽ[K : Fq],

which gives that ñ = p2. Thus (i) is proved.

(ii) follows from (i) and the standard results on automorphisms of finite dimen-
sional algebras [Lam01]. �

Metacyclic groups

The following Theorem follows from Theorems 1.9(ii) and 1.14(iii). However,
we give a simpler proof, in this case, using the ideas contained in ([OdRS04],
Theorem 2.1).

Theorem 2.2 [BGP] Let n, t, r, k be natural numbers with rt ≡ 1(modn), kr ≡
k(modn) and let G be a metacyclic group given by presentation

G = 〈a, b | an = 1, bt = ak, b−1ab = ar〉.

Suppose that gcd(q, nt) = 1. Then

Fq[G] ∼=
⊕
d|n

⊕
l|n
d
sd

Mld(Kd, l)
(nd,l),

where Kd, l is the field extension of Fq of degree
`d, lkd, l
ld

and nd, l = |[Xd, l]|.

Proof. By Wedderburn theorem,

Fq[G]eFq(χi, j)
∼= Mκ(K), (2.5)

where K is a finite field containing Fq. Comparing the centre of the algebras on
both sides of (2.5), it follows that K is isomorphic to the centre of Fq[G]eFq(χi, j).
However, by ([Yam74], Proposition 1.4), the centre of Fq[G]eFq(χi, j) is isomorphic
to Fq(χi, j). Therefore

[K : Fq] = [Fq(χi, j) : Fq].
By equations (1.14), (1.17) and Lemma 1.12(ii), we have

[Fq(χi, j) : Fq] =
[Fq(ψi, j) : Fq]

[CenG(eFq(ψi, j)) : 〈a, bld〉]
=
`d, lkd, l
ld
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and hence,

[K : Fq] =
`d, lkd, l
ld

and K ∼= Kd, l.

Since by equation (1.17), the dimension of Fq[〈a, bld〉]eFq(ψirγ , jγ ) over Fq,
dimFq(Fq[〈a, bld〉]eFq(ψirγ , jγ )), equals `d, l, it follows from equation (1.23) that
dimFq(Fq[G]eFq(χi, j)) = kd, lld`d, l. Therefore, comparing the dimension of the al-
gebras over Fq on both sides of (2.5), we obtain that

kd, lld`d, l = κ2 dimFq K =
κ2`d, lkd, l

ld
,

which gives κ = ld and the Theorem is thus proved. �

Metabelian groups

Let G be a metabelian group of order coprime to q and let ξ be a primitive |G|-th
root of unity in Fq. We use the notation introduced in Section 1.5 of Chapter 1. Let
(N, D/N, AN/N) ∈ S. Then AN/D is a cyclic group generated by aD, say. Let
x1, x2, . . . , xt be a transversal of AN in G, and ri, 1 ≤ i ≤ t, be integers such that
x−1i axiD = ariD. Let ζ = ξ|G|/[AN :D], and K(N, D/N, AN/N) be the subfield of Fq

obtained by adjoining the t elements
t∑
i=1

ζjri , 1 ≤ j ≤ t − 1 to Fq. It is easily seen

that the field K(N, D/N, AN/N) is independent of the choice of transversal of AN
in G.

For d|[G : G′] and l|[Fq(ξ) : Fq], let Sd, l be the set of those (N, D/N, AN/N) ∈ S
such that

(i) [G : AN ] = d,

(ii) [K(N, D/N, AN/N) : Fq] = l.

Clearly Sd, l, d|[G : G′], l|[Fq(ξ) : Fq], are disjoint and S =
⋃

d | [G:G′]
l | [Fq(ξ):Fq ]

Sd, l.

Theorem 2.3 With the above notation,

(i) Fq[G] ∼=
⊕

d|[G:G′]
l|[Fq(ξ):Fq ]

Md(Fql)
(αd, l),

(ii) Aut(Fq[G]) ∼=
⊕

d | [G:G′]
l | [Fq(ξ):Fq ]

K
(αd, l)

d, l o Sαd, l ,

where Kd, l = SLd(Fql)o Zl and αd, l =
∑

(N,D/N,AN/N)∈Sd, l

|R(AN/D)|.
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Proof. (i) It follows from Theorems 1.14(iii) and 1.16 that for ((N, D/N, AN/N), C)
∈ S, where S is as defined in equation (1.30),

Fq[G]eC(G, AN , D) ∼= M[G:AN ](Fqo(AN,D))

Thus we have,

Fq[G] ∼=
⊕

((N,D/N,AN/N), C)∈S

Fq[G]eC(G, AN , D)

∼=
⊕

(N,D/N,AN/N)∈S

⊕
C∈R(AN/D)

Fq[G]eC(G, AN , D)

∼=
⊕

(N,D/N,AN/N)∈S

⊕
C∈R(AN/D)

M[G:AN ](Fqo(AN,D))

∼=
⊕
d|[G:G′]
l|[Fq(ξ):Fq ]

⊕
(N,D/N,AN/N)∈Sd, l

⊕
C∈R(AN/D)

M[G:AN ](Fqo(AN,D))

∼=
⊕
d|[G:G′]
l|[Fq(ξ):Fq ]

⊕
(N,D/N,AN/N)∈Sd, l

M[G:AN ](Fqo(AN,D))
(|R(AN/D)|)

For d | [G : G′], l | [Fq(ξ) : Fq], and (N, D/N, AN/N) ∈ Sd, l, we show that

o(AN , D) = [K(N, D/N, AN/N) : Fq] = l. (2.6)

If ρ ∈ RC(D) and χ is the character afforded by ρG, then, by Theorem 1.14(i)
and equation (1.14),

[EG(AN/D) : AN ] = [Fq(ζ) : Fq(χ)].

However, note that
Fq(χ) = K(N, D/N, AN/N).

Therefore, we have,

[K(N, D/N, AN/N) : Fq] = [Fq(ζ) : Fq]/[EG(AN/D) : AN ] = o(AN , D).

This proves (2.6) and we thus have

Fq[G] ∼=
⊕
d|[G:G′]
l|[Fq(ξ):Fq ]

⊕
(N,D/N,AN/N)∈Sd, l

Md(Fql)
(|R(AN/D)|)

∼=
⊕
d|[G:G′]
l|[Fq(ξ):Fq ]

Md(Fql)
(αd, l),
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where αd, l =
∑

(N,D/N,AN/N)∈Sd, l

|R(AN/D)|. This proves (i).

(ii) It follows immediately from (i). �
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Chapter 3

Misc. Examples

In this Chapter, we give several examples of the computation of primitive

central idempotents, Wedderburn decomposition and the group of automor-

phisms of semisimple finite group algebras.

We continue with the notation used in Chapters 1 and 2.

3.1 G := 〈a, b | a2m = b2 = 1, b−1ab = a2m−1−1〉, m ≥ 2.

Let λ be the highest power of 2 dividing q − 1 (resp. q + 1) if q ≡ 1 (mod 4)
(resp. q ≡ −1 (mod 4)). Observe that for any integer α ≥ 2, ord2α(q), the order of
q modulo 2α, is given by

ord2α(q) =


2α−λ, α ≥ λ+ 1, q ≡ 1 or − 1 (mod 4),

1, 2 ≤ α ≤ λ, q ≡ 1 (mod 4),

2, 2 ≤ α ≤ λ, q ≡ −1 (mod 4).

Let T = {β ∈ Z | 0 ≤ β ≤ m−2, qu ≡ 2m−1−1 (mod 2m−β) for some integer u ≥ 1}.
For 0 ≤ β ≤ m − 2, let Tβ ⊆ Z∗2m−β be such that Tβ (resp. Tβ ∪ (2m−1 − 1)Tβ) is a
left transversal of 〈q〉 in Z∗

2m−β according as β ∈ T (resp. β /∈ T ).

By Theorems 1.9, 2.2 and 2.3, we have the following:

Primitive central idempotents

Case I : q ≡ 1 (mod 4)
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m ≥ λ+ 1 ;

eFq(χ0, 0), eFq(χ0, 1);
eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χ2βs, 0), s ∈ Tβ, (|Tβ| = 2min(m−β, λ)−2), 0 ≤ β ≤ m− 2.

3 ≤ m ≤ λ ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χ2βs, 0), s ∈ Tβ, (|Tβ| = 2m−β−2), 0 ≤ β ≤ m− 2.

m = 2 ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χ1, 0), eFq(χ3, 0), eFq(χ1, 1), eFq(χ3, 1).

Case II : q ≡ −1 (mod 4)

m = λ+ 1 ;
eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χ2βs, 0), s ∈ Tβ, (|Tβ| = 2m−β−2), 0 ≤ β ≤ m− 2.

m > λ+ 1 ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χ2βs, 0), s ∈ Tβ, (|Tβ| = 2min(m−β, λ)−2), 0 ≤ β ≤ m− 2.

3 ≤ m ≤ λ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χs, 0), s ∈ T0, (|T0| = 2m−3);
eFq(χ2βs, 0), s ∈ Tβ, (|Tβ| = 2m−β−2), 1 ≤ β ≤ m− 2.

m = 2 ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2, 0), eFq(χ2, 1), eFq(χ1, 0), eFq(χ1, 1).
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Wedderburn decomposition

Case I : q ≡ 1 (mod 4)

m ≥ λ+ 1 ;

F(4)q
m−λ−1⊕
β=0

M2(Fq2m−β−λ )(2
λ−2)

⊕
M2(Fq)(2

λ−1−1).

3 ≤ m ≤ λ ;

F(4)q
⊕

M2(Fq)(2
m−1−1).

m = 2 ;

F(8)q .

Case II : q ≡ −1 (mod 4)

m = λ+ 1 ;

F(4)q
⊕

M2(Fq)(2
m−1−1).

m > λ+ 1 ;

Fq(4)
m−λ−1⊕
β=0

M2(Fq2m−β−λ )(2
λ−2)

⊕
M2(Fq)(2

λ−1−1).

3 ≤ m ≤ λ;

F(4)q
⊕

M2(Fq2)(2
m−3)

⊕
M2(Fq)(2

m−2−1).
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m = 2;

Fq(4)
⊕

F(2)q2 .

Automorphism group

Case I : q ≡ 1 (mod 4)

m ≥ λ+ 1 ;

S4

m−λ−1⊕
β=0

(Hβ
(2λ−2) o S2λ−2)

⊕
(SL2(Fq)(2

λ−1−1) o S2λ−1−1),

where Hβ = SL2(Fq2m−β−λ )o Z2m−β−λ .

3 ≤ m ≤ λ ;

S4

⊕
(SL2(Fq)(2

m−1−1) o S2m−1−1).

m = 2 ;
S8.

Case II : q ≡ −1 (mod 4)

m = λ+ 1 ;

S4

⊕
(SL2(Fq)(2

m−1−1) o S2m−1−1).

m > λ+ 1 ;

S4

m−λ−1⊕
β=0

(Hβ
(2λ−2) o S2λ−2)

⊕
(SL2(Fq)(2

λ−1−1) o S2λ−1−1),

where Hβ = SL2(Fq2m−β−λ )o Z2m−β−λ .
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3 ≤ m ≤ λ;

S4

⊕(
(SL2(Fq2)o Z2)

(2m−3) o S2m−3

)⊕
(SL2(Fq)(2

m−2−1)o S2m−2−1).

m = 2;

S4

⊕
(Z2

(2) o S2).

3.2 G := 〈a, b | a2m = b2 = 1, b−1ab = a2m−1+1〉, m ≥ 2.

Let U = {β ∈ Z | 0 ≤ β ≤ m−2, qu ≡ 2m−1 +1 (mod 2m−β) for some integer u ≥
1}. For 0 ≤ β ≤ m− 2, let Uβ ⊆ Z∗2m−β be such that Uβ (resp. Uβ ∪ (2m−1 + 1)Uβ)
is a left transversal of 〈q〉 in Z∗

2m−β according as β ∈ U (resp. β /∈ U). Let λ be as
in Example 3.1.

By Theorems 1.9, 2.2 and 2.3, we have the following:

Primitive central idempotents

Case I : q ≡ 1 (mod 4)

m ≥ λ+ 1 ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χs, 0), s ∈ U0, (|U0| = 2λ−1);
eFq(χ2βs, 0), eFq(χ2βs, 1), s ∈ Uβ, (|Uβ| = 2min(m−β, λ)−1), 1 ≤ β ≤ m− 2.

2 ≤ m ≤ λ ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χs, 0), s ∈ U0, (|U0| = 2m−2);
eFq(χ2βs, 0), eFq(χ2βs, 1), s ∈ Uβ, (|Uβ| = 2m−β−1), 1 ≤ β ≤ m− 2.

Case II : q ≡ −1 (mod 4)

m > λ+ 1 ;
eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χs, 0), s ∈ U0, (|U0| = 2λ−1);
eFq(χ2βs, 0), eFq(χ2βs, 1), s ∈ Uβ, (|Uβ| = 2min(m−β, λ)−1), 1 ≤ β ≤ m− 2.
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3 ≤ m ≤ λ+ 1 ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2m−1, 0), eFq(χ2m−1, 1);
eFq(χs, 0), s ∈ U0, (|U0| = 2m−3);
eFq(χ2βs, 0), eFq(χ2βs, 1), s ∈ Uβ, (|Uβ| = 2m−β−2), 1 ≤ β ≤ m− 2.

m = 2;

eFq(χ0, 0), eFq(χ0, 1), eFq(χ2, 0), eFq(χ2, 1), eFq(χ1, 0).

Wedderburn decomposition

Case I : q ≡ 1 (mod 4)

m = λ+ 1 ;

Fq(2
m)
⊕

M2(Fq)(2
m−2).

m > λ+ 1 ;

Fq(2
λ+1)

m−λ−1⊕
β=1

F(2
λ)

q2
m−β−λ

⊕
M2(Fq2m−λ−1 )(2

λ−1).

2 ≤ m ≤ λ;

F(2m)
q

⊕
M2(Fq)(2

m−2).

Case II : q ≡ −1 (mod 4)

m > λ+ 1 ;

Fq(4)
m−λ−1⊕
β=1

F(2
λ)

q2
m−β−λ

⊕
F(2

λ−2)
q2

⊕
M2(Fq2m−λ−1 )(2

λ−1).
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3 ≤ m ≤ λ+ 1 ;

F(4)q
⊕

F(2
m−1−2)

q2

⊕
M2(Fq2)(2

m−3).

m = 2;

F(4)q
⊕

M2(Fq).

Automorphism group

Case I : q ≡ 1 (mod 4)

m = λ+ 1 ;

S2m

⊕
(SL2(Fq)(2

m−2) o S2m−2).

m > λ+ 1 ;

S2λ+1

m−λ−1⊕
β=1

(Z2m−β−λ
(2λ) o S2λ)

⊕
(H(2λ−1) o S2λ−1),

where H = SL2(Fq2m−λ−1 )o Z2m−λ−1 .

2 ≤ m ≤ λ;

S2m

⊕
(SL2(Fq)(2

m−2) o S2m−2).

Case II : q ≡ −1 (mod 4)

m > λ+ 1 ;

S4

⊕
(Z2

(2λ+1−2) o S2λ+1−2)
m−λ−2⊕
β=1

(Hβ
(2λ) o S2λ)

⊕
(H(2λ−1) o S2λ−1),

where Hβ = Z2m−β−λ and H = SL2(Fq2m−λ−1 )o Z2m−λ−1 .
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3 ≤ m ≤ λ+ 1 ;

S4

⊕
(Z2

(2m−1−2) o S2m−1−2)
⊕

(H(2m−3) o S2m−3),

where H = SL2(Fq2)o Z2.

m = 2;

S4

⊕
SL2(Fq).

3.3 G = D2n, the dihedral group of order 2n.

We determine the structure of Fq[G], when G := 〈a, b | an = b2 = 1, b−1ab = a−1〉
is dihedral group of order 2n. Suppose that gcd(q, 2n) = 1. Let

S = {d | d|n, qu ≡ −1 (mod
n

d
) for some integer u ≥ 1}.

For a divisor d of n, d ≥ 1, let fd = ordn/d(q) and Td ⊆ Z∗n/d be such that Td (resp.

±Td) is a left transversal of 〈q〉 in Z∗n/d if d ∈ S (resp. d /∈ S). Note that

|Td| =


ϕ(n

d
)

fd
, d ∈ S,

ϕ(n
d
)

2fd
, d /∈ S.

Given l | ordn(q), let Sl be the set of those divisors d of n such that

(i) d 6= n, n
2
,

(ii) fd =

{
l, d /∈ S,
2l, d ∈ S.

Thus Theorems 1.9, 2.2 and 2.3 yield the following:

Primitive central idempotents

n odd;

eFq(χ0, 0), eFq(χ0, 1), eFq(χdk, 0), d|n, d 6= n, k ∈ Td.
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n even ;

eFq(χ0, 0), eFq(χ0, 1), eFq(χn
2
, 0), eFq(χn

2
, 1), eFq(χdk, 0), d|n, d 6= n, n/2, k ∈ Td.

Wedderburn decomposition

n odd;

F(2)q
⊕
d/∈S

M2(Fqfd )
(
ϕ(n
d
)

2fd
)
⊕

d∈S, d 6=n

M2(Fqfd/2)
(
ϕ(n
d
)

fd
)
.

n even;

F(4)q
⊕
d/∈S

M2(Fqfd )
(
ϕ(n
d
)

2fd
)
⊕

d∈S, d 6=n,n
2

M2(Fqfd/2)
(
ϕ(n
d
)

fd
)
.

Automorphism group

n odd;

S2

⊕
l|ordn(q)

(
(SL2(Fql)o Zl)(αd, l) o Sαd, l

)
n even;

S4

⊕
l|ordn(q)

(
(SL2(Fql)o Zl)(αd, l) o Sαd, l

)
,

where αd, l =
∑
d∈Sl

ϕ(n
d
)

2l
.
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3.4 G = Q4n, the quaternion group of order 4n.

We determine the structure of Fq[G], when G := 〈a, b | a2n = 1, b2 = an, b−1ab =
a−1〉 is the quaternion group of order 4n. Suppose that gcd(q, 4n) = 1. Let

V = {d | d|2n, qu ≡ −1 (mod
2n

d
) for some integer u ≥ 1}.

For a divisor d of 2n, d ≥ 1, let od = ord2n(q) and Vd ⊆ Z∗2n/d be such that Vd (resp.

±Vd) is a left transversal of 〈q〉 in Z∗2n/d according as d ∈ V (resp. d /∈ V ). Note
that

|Vd| =


ϕ( 2n

d
)

od
, d ∈ V,

ϕ( 2n
d
)

2od
, d /∈ V.

Given l | ord2n(q), let Ul be the set of those divisors d of n such that

(i) d 6= n, 2n,

(ii) od =

{
l, d /∈ V,
2l, d ∈ V.

Theorems 1.9, 2.2 and 2.3 yield the following:

Primitive central idempotents

Case I : q ≡ 1 (mod 4)

eFq(χ0, 0), eFq(χ0, 1), eFq(χn, 0), eFq(χn, 1), eFq(χdk, 0), d | 2n, d 6= n, 2n, k ∈ Vd.

Case II : q ≡ −1 (mod 4)

n odd;

eFq(χ0, 0), eFq(χ0, 1), eFq(χn, 0), eFq(χdk, 0), d|2n, d 6= n, 2n, k ∈ Vd.
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n even;

eFq(χ0, 0), eFq(χ0, 1), eFq(χn, 0), eFq(χn, 1), eFq(χdk, 0), d | 2n, d 6= n, 2n, k ∈ Vd.

Wedderburn decomposition

Case I : q ≡ 1 (mod 4)

F(4)q
⊕
d/∈V

M2(Fqod )
(
ϕ( 2n

d
)

2od
)
⊕
d∈V,

d6=n, 2n

M2(Fqod/2)
(
ϕ( 2n

d
)

od
)
.

Case II : q ≡ −1 (mod 4)

n odd;

F(2)q
⊕

Fq2
⊕
d/∈V

M2(Fqod )
(
ϕ( 2n

d
)

2od
)
⊕
d∈V,

d6=n, 2n

M2(Fqod/2)
(
ϕ( 2n

d
)

od
)

n even;

F(4)q
⊕
d/∈V

M2(Fqod )
(
ϕ( 2n

d
)

2od
)
⊕
d∈V,

d6=n, 2n

M2(Fqod/2)
(
ϕ( 2n

d
)

od
)
.

Automorphism group

Case I : q ≡ 1 (mod 4)

S4

⊕
l|ord2n(q)

(
(SL2(Fql)o Zl)(βd, l) o Sβd, l

)
Case II : q ≡ −1 (mod 4)

44



n odd;

S2

⊕
Z2

⊕
l|ord2n(q)

(
(SL2(Fql)o Zl)(βd, l) o Sβd, l

)
,

n even;

S4

⊕
l|ord2n(q)

(
(SL2(Fql)o Zl)(βd, l) o Sβd, l

)
,

where βd, l =
∑
d∈Ul

ϕ(2n
d

)

2l
.

3.5 G := 〈a, b, x | ap = bp = a−1b−1ab = x2 = 1, x−1ax =

a−1, x−1bx = b−1〉, p odd prime

Observe that the normal subgroups of G are G = 〈a, b, x〉, G′ = 〈a, b〉,
Ni = 〈aib〉, 0 ≤ i ≤ p− 1, Np = 〈a〉 and 〈1〉. It is easy to see that

SG/G = {(〈1〉, 〈1〉)}, SG/G′ = {(〈1〉, G/G′)}

and
SG/Ni = {(〈1〉, G′/Ni)}, 0 ≤ i ≤ p.

This gives

S = {(G, 〈1〉, 〈1〉)} ∪ {(G′, 〈1〉, G/G′)} ∪ {(Ni, 〈1〉, G′/Ni), 0 ≤ i ≤ p}.

Observe that, R(G/G) and R(G/G′) has precisely one q-cyclotomic coset, call it
C and C ′, say. For 0 ≤ i ≤ p, R(G′/Ni) has p−1

f
q-cyclotomic cosets, if −1 ∈

〈q〉 (mod p); and p−1
2f

q-cyclotomic cosets, if −1 6∈ 〈q〉 (mod p), where f is the order

of q modulo p. Direct calculations yield that for each (N,D/N,AN/N) ∈ S, the
corresponding o(AN , D) and |R(AN/D)| are as follows:

(N, D/N, AN/N) o(AN , D) |R(AN/D)|
(G, 〈1〉, 〈1〉) 1 1

(G′, 〈1〉, G/G′) 1 1

(Ni, 〈1〉, G′/Ni), 0 ≤ i ≤ p

{
f/2, −1 ∈ 〈q〉 (mod p),

f, −1 /∈ 〈q〉 (mod p).

{
p−1
f
, −1 ∈ 〈q〉 (mod p),

p−1
2f
, −1 /∈ 〈q〉 (mod p).
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Thus Theorems 1.16 and 2.3 yield the following:

Primitive central idempotents

eC(G,G,G), C ∈ R(G/G);
eC′(G,G,G

′), C ′ ∈ R(G/G′);
eCi(G,G

′, Ni), Ci ∈ R(G′/Ni), 0 ≤ i ≤ p.

Wedderburn decomposition

Fq[G] ∼=


F(2)q

⊕
M2(Fqf/2)

( p
2−1
f

), −1 ∈ 〈q〉 (mod p),

F(2)q
⊕

M2(Fqf )
( p

2−1
2f

), −1 /∈ 〈q〉 (mod p).

Automorphism group

Aut(Fq[G]) ∼= S2

⊕(
H(κ) o Sκ

)
,

where H = SL2(Fqα)o Zα,

α =

{
f/2, −1 ∈ 〈q〉 (mod p),

f, −1 /∈ 〈q〉 (mod p).

and

κ =

{
p2−1
f
, −1 ∈ 〈q〉 (mod p),

p2−1
2f

, −1 /∈ 〈q〉 (mod p).
.

3.6 Groups G of the type G/Z(G) ∼= Z2 × Z2.

The groups G of the type G/Z(G) ∼= Z2 × Z2, where Z(G) denotes the centre
of group G, arose in the work of Goodaire [Goo83] while studying Moufang loops
and then subsequently appeared in the work of several authors [GPMS09, JRM05,
JRM06, LSS09]. It is known ([GJPM96], Chapter 5) that any group with G/Z(G) ∼=
Z2×Z2 is the direct product of an indecomposable group (with this property) and an
abelian group. Moreover the finite indecomposable groups with G/Z(G) ∼= Z2 × Z2

break into five classes as follows:
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Group Generators Relations

D1 x, y, t x2, y2, t2
m
, y−1x−1yxt2

m−1
, t central ,

m ≥ 1

D2 x, y, t x2t−1, y2t−1, t2
m
, y−1x−1yxt2

m−1
, t central ,

m ≥ 1

D3 x, y, t1, t2 x2, y2t−12 , t2
m1

1 , t2
m2

2 , y−1x−1yxt2
m1−1

1 , t1, t2 central ,
m1,m2 ≥ 1

D4 x, y, t1, t2 x2t−11 , y2t−12 , t2
m1

1 , t2
m2

2 , y−1x−1yxt2
m1−1

1 , t1, t2 central ,
m1,m2 ≥ 1

D5 x, y, t1, t2, t3 x2t−12 , y2t−13 , t2
m1

1 , t2
m2

2 , t2
m3

3 , y−1x−1yxt2
m1−1

1 , t1, t2, t3 central ,
m1,m2,m3 ≥ 1

It thus becomes important to investigate the group algebra Fq[Di], 1 ≤ i ≤ 5.

3.6.1 Groups G of type D1.

Observe that for m = 1, G is isomorphic to D8, the dihedral group of order 8,
and the structure of group algebra Fq[D8] can be read from Example 3.3.

Let m ≥ 2, Define
N0 := {e}, N1 := 〈t, x〉, N2 := 〈t, y〉, N3 := 〈t, xy〉, N (α)

4 := 〈t2α , x, y〉,
N

(β)
5 := 〈t2m−1

, x, yt2
β〉, N (β)

6 := 〈t2m−1
, xt2

β
, y〉, N (β)

7 := 〈t2βx, t2βy〉,
0 ≤ α ≤ m− 1, 0 ≤ β ≤ m− 2.

Let λ be the highest power of 2 dividing q − 1 (resp. q + 1) according as q ≡
1 (mod 4) (resp. q ≡ −1 (mod 4)).

Ferraz, Goodaire and Milies ([FGPM10], Theorem 3.1) proved that the Wed-
derburn decomposition of Fq[G], G of type D1, contains at least 8m − 10 simple
components. If q ≡ 3 (mod 8), then this number is acheived with 8m− 12 fields and
2 quaternion algebras, each necessarily a ring of 2 × 2 matrices. We improve this
result of Ferraz et.al. by providing a concrete description of Fq[G], G of type D1,
in the following Theorem:

Theorem 3.1 A complete set of primitive central idempotents, Wedderburn decom-
position and the automorphism group of Fq[G], G of type D1, m ≥ 2, is given by :
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(i)

Primitive central idempotents

eC(G, N1, 〈x〉), C ∈ R(N1/〈x〉);
eC(G, G, Ni), C ∈ R(G/Ni), 1 ≤ i ≤ 3;

eC(G, G, N
(α)
4 ), C ∈ R(G/N

(α)
4 ), 0 ≤ α ≤ m− 1;

eC(G, G, N
(β)
j ), C ∈ R(G/N

(β)
j ), 0 ≤ β ≤ m− 2, 5 ≤ j ≤ 7.

(ii)

Wedderburn decomposition

q ≡ 1 (mod 4)

Fq[G] ∼=


Fq(2

m+1)⊕M2(Fq)(2
m−1), m ≤ λ,

Fq(2
m+1)⊕M2(Fq2)(2

m−2), m = λ+ 1,

Fq(2
λ+2)⊕m−1

α=λ+1 Fq2α−λ
(2λ+1)⊕M2(Fq2m−λ )(2

λ−1), m ≥ λ+ 2.

q ≡ −1 (mod 4)

Fq[G] ∼=


Fq(8)

⊕
Fq2 (2

m−4)⊕M2(Fq2)(2
m−2), 2 ≤ m ≤ λ+ 1,

Fq(8)
⊕
Fq2 (2

m−4)⊕M2(Fq4)(2
m−3), m = λ+ 2,

Fq(8)
⊕
Fq2 (2

λ+2−4)⊕m−1
α=λ+2 Fq2α−λ

(2λ+1)⊕M2(Fq2m−λ )(2
λ−1), m ≥ λ+ 3.

(iii)

Automorphism group

q ≡ 1 (mod 4)

Aut(Fq[G]) ∼=


S2m+1

⊕
(SL2(Fq)(2

m−1) o S2m−1), m ≤ λ,

S2m+1

⊕(
(SL2(Fq2)o Z2)

(2m−2) o S2m−2

)
, m = λ+ 1,

S2λ+2

⊕m−1
α=λ+1(Z2α−λ

(2λ+1) o S2λ+1)
⊕
Hλ, m ≥ λ+ 2,

q ≡ −1 (mod 4)

Aut(Fq[G]) ∼=


S8

⊕
(Z2

(2m−4) o S2m−4)
⊕

((SL2(Fq2)o Z2)
(2m−2) o S2m−2), m ≤ λ+ 1,

S8

⊕
(Z2

(2m−4) o S2m−4)
⊕

((SL2(Fq4)o Z4)
(2m−3) o S2m−3), m = λ+ 2,

S8

⊕
(Z2

(2λ+2−4) o S2λ+2−4)
⊕m−1

α=λ+2(Z2α−λ
(2λ+1) o S2λ+1)

⊕
Hλ, m ≥ λ+ 3,

where Hλ = (SL2(Fq2m−λ )o Z2m−λ)(2
λ−1) o S2λ−1 .
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In order to prove the above Theorem, we first need to compute all the normal
subgroups of G, G of type D1.

Lemma 3.2 All the distinct non-identity normal subgroups of G are given by:

(i) 〈t2α , x〉, 〈t2α , y〉, 〈t2α , xy〉, 〈t2α , x, y〉;
(ii) 〈t2βx〉, 〈t2βy〉, 〈t2m−1

, t2
β
xy〉, 〈t2m−1

, x, t2
β
y〉, 〈t2m−1

, t2
β
x, y〉, 〈t2βx, t2βy〉;

(iii) 〈t2γ〉,

where 0 ≤ α ≤ m− 1, 0 ≤ β ≤ m− 2 and 0 ≤ γ ≤ m− 1.

Proof. Observe that all the subgroups listed in the statement are distinct and
normal in G.

Let N be a normal subgroup of G not contained in 〈t〉. If N 6= 〈1〉, then it is
easy to see that 〈t2m−1〉 ≤ N. Therefore N ∩ 〈t〉 = 〈t2v〉, 0 ≤ v ≤ m − 1. Since
N/N ∩ 〈t〉 is isomorphic to subgroup of G/〈t〉, which is generated by x〈t〉, y〈t〉, it
follows that N/N ∩ 〈t〉 is isomorphic to one of the following: 〈x〈t〉〉, 〈y〈t〉〉, 〈xy〈t〉〉
or 〈x〈t〉, y〈t〉〉.

Case I : N/〈t2v〉 ∼= 〈x〈t〉〉

In this case, N = 〈t2v , t2ix〉, for some i, 0 ≤ i ≤ v ≤ m− 1.

If i = v, then N = 〈t2v , x〉. Since N E G, xt2
m−1

= y−1xy ∈ N, implies that
t2
m−1 ∈ N ∩ 〈t〉 = 〈t2v〉, which is possible only if v ≤ m− 1.

If i < v, then N = 〈t2v , t2ix〉 = 〈t2ix〉 as t2
v ∈ 〈t2ix〉. Further xt2

i+2m−1
=

y−1t2
i
xy ∈ N implies that t2

m−1 ∈ 〈t2v〉. Hence v ≤ m − 1 and i ≤ m − 2. Thus in
this case, either

N = 〈t2i , x〉, 0 ≤ i ≤ m− 1 (3.1)

or
N = 〈t2ix〉, 0 ≤ i ≤ m− 2. (3.2)

Case II: N/〈t2v〉 ∼= 〈y〈t〉〉.

Computation analogous to those in Case I yield that

N = 〈t2iy〉, 0 ≤ i ≤ m− 2 (3.3)

or
N = 〈t2i , y〉, 0 ≤ i ≤ m− 1. (3.4)
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Case III: N/〈t2v〉 ∼= 〈xy〈t〉〉.

In this case N = 〈t2v , t2ixy〉 for 0 ≤ i ≤ v ≤ m− 1.

If i = v, then N = 〈t2v , xy〉. Since N is a normal subgroup of G, xyt2
m−1

=
y−1xyy ∈ N, implies that t2

m−1 ∈ N∩〈t〉 = 〈t2v〉, which is possible only if v ≤ m−1.

If i < v, then N = 〈t2v , t2ixy〉, 0 ≤ i ≤ m− 2. Since 〈t2m−1
, t2

i
xy〉 ≤ 〈t2v , t2ixy〉

and

t2
v

=

(t2
i
xy)

2v−i

t2
m−1

, if v − i = 1,

(t2
i
xy)

2v−i

, if v − i ≥ 2,

it follows that 〈t2v , t2ixy〉 = 〈t2m−1
, t2

i
xy〉.

Thus in this case, either

N = 〈t2i , xy〉, 0 ≤ i ≤ m− 1 (3.5)

or
N = 〈t2m−1

, t2
i

xy〉, 0 ≤ i ≤ m− 2. (3.6)

Case IV: N/〈t2v〉 ∼= 〈x〈t〉, 〈y〈t〉〉.
In this case, N is one of the following forms:

(a) 〈t2v , x, y〉;
(b) 〈t2v , t2ix, y〉 for some i, 0 ≤ i ≤ v − 1;
(c) 〈t2v , x, t2iy〉 for some i, 0 ≤ i ≤ v − 1;
(d) 〈t2v , t2ix, t2iy〉 for some i, 0 ≤ i ≤ v − 1;
(e) 〈t2v , t2ix, t2jy〉 for some 1 ≤ i, j ≤ v − 1, i 6= j.

Observe that for 0 ≤ i ≤ v − 1,

〈t2v , t2ix, y〉 = 〈t2m−1

, t2
i

x, y〉,

〈t2v , x, t2iy〉 = 〈t2m−1

, x, t2
i

y〉,
and

〈t2v , t2ix, t2iy〉 = 〈t2m−1

, t2
i

x, t2
i

y〉.
Also for 1 ≤ i, j ≤ v − 1, i 6= j,

〈t2v , t2ix, t2jy〉 =

{
〈t2ix, y〉, if i < j,

〈x, t2jy〉, if j < i.

Thus we have proved that any normal subgroup of G not contained in 〈t〉 is one
of the forms given in (i) and (ii) of the statement. This proves the Lemma. �
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In order to apply Theorem 1.16 to a group G of type D1, we compute SG/N for
all normal subgroups N of G.

Clearly if N = 〈1〉, SG/N = {(〈x〉, 〈t, x〉)}.

Suppose N is a non-identity normal subgroup of G, then N is one of the sub-
groups listed in Lemma 3.2. Since G′ = 〈t2m−1〉 ≤ N, we have AN/N = G/N and
the corresponding

SG/N =

{
{(〈1〉, G/N)}, if G/N is cyclic,

ø, otherwise.

Next we see that among all the normal subgroups N of G stated in Lemma 3.2,
only the following subgroups N satisfy the condition that G/N is cyclic;

Ni, N
(α)
4 , N

(β)
j , 1 ≤ i ≤ 3, 0 ≤ α ≤ m− 1, 5 ≤ j ≤ 7, 0 ≤ β ≤ m− 2.

Therefore S = {(N0, 〈x〉, N1)}∪{(Ni, 〈1〉, G/Ni) | 1 ≤ i ≤ 3}∪{(N (α)
4 , 〈1〉, G/N (α)

4 )|
0 ≤ α ≤ m− 1} ∪ {(N (β)

j , 〈1〉, G/N (β)
j ) | 0 ≤ β ≤ m− 2}. This proves (i).

In order to prove (ii) and (iii), we first note that for any integer γ ≥ 2,

ord2γ (q) =


2γ−λ, γ ≥ λ+ 1, q ≡ 1 or − 1(mod 4),

1, γ ≤ λ , q ≡ 1(mod 4),

2, γ ≤ λ, q ≡ −1(mod 4).

Direct calculations yield that for each (N,D/N,AN/N) ∈ S, the corresponding
o(AN , D) and |R(AN/D)| are as given by the following tables:
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Case I : q ≡ 1 (mod 4).

(N, D/N, AN/N) o(AN , D) |R(AN/D)|
(Ni, 〈1〉, G/Ni), 1 1

1 ≤ i ≤ 3

(N
(0)
4 , 〈1〉, G/N (0)

4 ), 1 1

(N
(α)
4 , 〈1〉, G/N (α)

4 ),

{
2α−λ, α ≥ λ+ 1,

1, α ≤ λ

{
2λ−1, α ≥ λ+ 1,

2α−1, α ≤ λ

1 ≤ α ≤ m− 1

(N
(β)
j , 〈1〉, G/N (β)

j ),

{
2β+1−λ, β ≥ λ,

1, β ≤ λ− 1

{
2λ−1, β ≥ λ,

2β, β ≤ λ− 1

5 ≤ j ≤ 7, 0 ≤ β ≤ m− 2

(N0, 〈x〉, N1)

{
2m−λ, m ≥ λ+ 1,

1, m ≤ λ

{
2λ−1, m ≥ λ+ 1,

2m−1, m ≤ λ

Case II : q ≡ −1 (mod 4).

(N, D/N, AN/N) o(AN , D) |R(AN/D)|
(Ni, 〈1〉, G/Ni), 1 1

1 ≤ i ≤ 3

(N
(α)
4 , 〈1〉, G/N (α)

4 ), 1 1
0 ≤ α ≤ 1

(N
(α)
4 , 〈1〉, G/N (α)

4 ),

{
2α−λ, α ≥ λ+ 2,

2, α ≤ λ+ 1

{
2λ−1, α ≥ λ+ 2,

2α−2, α ≤ λ+ 1

2 ≤ α ≤ m− 1

(N
(0)
j , 〈1〉, G/N (0)

j ), 1 1
5 ≤ j ≤ 7,

(N
(β)
j , 〈1〉, G/N (β)

j ),

{
2β+1−λ, β ≥ λ+ 1,

2, β ≤ λ

{
2λ−1, β ≥ λ+ 1,

2β−1, β ≤ λ

5 ≤ j ≤ 7, 1 ≤ β ≤ m− 2

(N0, 〈x〉, N1)

{
2m−λ, m ≥ λ+ 1,

2, m ≤ λ

{
2λ−1, m ≥ λ+ 2,

2m−2, m ≤ λ+ 1

Thus, Theorem 2.3 with the help of above two tables yield (ii) and (iii).
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3.6.2 Groups G of type D2.

Observe that for m = 1, D2 is isomorphic to Q8, the quaternion group of order
8 and the structure of group algebra Fq[Q8] can be read from Example 3.4.

Let m ≥ 2. Define
K0 := {e}, K1 := 〈x〉;
K2

(α) := 〈x2α , x2α−1y〉, K3
(β) := 〈x2β , x2β−1−1y〉,

0 ≤ α ≤ m, 1 ≤ β ≤ m.

Let λ be the highest power of 2 dividing q − 1 (resp. q + 1) according as q ≡
1 (mod 4) (resp. q ≡ −1 (mod 4)).

Ferraz, Goodaire and Milies proved ([FGPM10], Theorem 3.2) that the Wedder-
burn decomposition of Fq[G], G of type D2, contains at least 4m simple components.
If q ≡ 3 (mod 8), then this number is acheived with 4m− 2 fields and 2 quaternion
algebras, each necessarily a ring of 2× 2 matrices. The following Theorem improves
this result of Ferraz et.al.

Theorem 3.3 A complete set of primitive central idempotents, Wedderburn decom-
position and the automorphism group of Fq[G], G of type D2, m ≥ 2, is given by :

(i)

Primitive central idempotents

eC(G, K1, K0), C ∈ R(K1/K0);
eC(G, G, K1), C ∈ R(G/K1);

eC(G, G, K
(α)
2 ), C ∈ R(G/K2

(α)), 0 ≤ α ≤ m;

eC(G, G, K
(β)
3 ), C ∈ R(G/K

(β)
3 ), 1 ≤ β ≤ m.

(ii)

Wedderburn decomposition

q ≡ 1 (mod 4)

Fq[G] ∼=

{
Fq(2

m+1)⊕M2(Fq)(2
m−1), m ≤ λ,

Fq(2
λ+1)⊕m

α=λ+1 Fq2α−λ
(2λ)⊕M2(Fq2m−λ )(2

λ−1), m ≥ λ+ 1.

q ≡ −1 (mod 4)

Fq[G] ∼=

{
Fq(4)

⊕
Fq2 (2

m−2)⊕M2(Fq2)(2
m−2), 2 ≤ m ≤ λ+ 1,

Fq(4)
⊕
Fq2 (2

λ+1−2)⊕m
α=λ+2 Fq2α−λ

(2λ)⊕M2(Fq2m−λ )(2
λ−1), m ≥ λ+ 2.
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(iii)

Automorphism group

q ≡ 1 (mod 4)

Aut(Fq[G]) ∼=

{
S2m+1

⊕
(SL2(Fq)(2

m−1) o S2m−1), m ≤ λ,

S2λ+1

⊕m
α=λ+1(Z2α−λ

(2λ) o S2λ)
⊕
Hλ, m ≥ λ+ 1,

q ≡ −1 (mod 4)

Aut(Fq[G]) ∼=

{
S4

⊕
(Z2

(2m−2) o S2m−2)
⊕

((SL2(Fq2)o Z2)
(2m−2) o S2m−2), m ≤ λ+ 1,

S4

⊕
(Z2

(2λ+1−2) o S2λ+1−2)
⊕m

α=λ+2(Z2α−λ
(2λ) o S2λ)

⊕
Hλ, m ≥ λ+ 2,

where Hλ = (SL2(Fq2m−λ )o Z2m−λ)(2
λ−1) o S2λ−1 .

Proof. We have

G = 〈x, y | x2m+1

= 1, y2 = x2, y−1xy = x2
m+1〉.

By Lemma 1.18, the non-identity normal subgroups of G are given by

(i) 〈x2α〉, 〈x2α , x2α−1y〉, 0 ≤ α ≤ m,
(ii) 〈x2β , x2β−1−1y〉, 1 ≤ β ≤ m.

Also, Lemmas 1.19 and 1.20 yield that

S = {(K0, 〈1〉, K1)} ∪ {(K1, 〈1〉, G/K1)} ∪ {(K2
(α), 〈1〉, G/K2

(α)) | 0 ≤ α ≤ m} ∪
{(K3

(β), 〈1〉, G/K3
(β)) | 1 ≤ β ≤ m}.

Therefore, (i) follows from Theorem 1.17.

For each (N,D/N,AN/N) ∈ S, the corresponding o(AN , D) and |R(AN/D)| in
the case q ≡ 1 (mod 4) or q ≡ −1 (mod 4) are as follows:
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Case I : q ≡ 1 (mod 4).

(N, D/N, AN/N) o(AN , D) |R(AN/D)|
(K1, 〈1〉, G/K1), 1 1

(K2
(0), 〈1〉, G/K2

(0)), 1 1

(K2
(α), 〈1〉, G/K2

(α)),

{
2α−λ, α ≥ λ+ 1,

1, α ≤ λ

{
2λ−1, α ≥ λ+ 1,

2α−1, α ≤ λ

1 ≤ α ≤ m

(K3
(β), 〈1〉, G/K3

(β)),

{
2β−λ, β ≥ λ+ 1,

1, β ≤ λ

{
2λ−1, β ≥ λ+ 1,

2β−1, β ≤ λ

1 ≤ β ≤ m

(K0, 〈1〉, K1)

{
2m−λ, m ≥ λ+ 1,

1, m ≤ λ

{
2λ−1, m ≥ λ+ 1,

2m−1, m ≤ λ

Case II : q ≡ −1 (mod 4).

(N, D/N, AN/N) o(AN , D) |R(AN/D)|
(K1, 〈1〉, G/K1), 1 1

(K
(α)
2 , 〈1〉, G/K(α)

2 ), 1 1
0 ≤ α ≤ 1

(K
(α)
2 , 〈1〉, G/K(α)

2 ),

{
2α−λ, α ≥ λ+ 2,

2, α ≤ λ+ 1

{
2λ−1, α ≥ λ+ 2,

2α−2, α ≤ λ+ 1

2 ≤ α ≤ m

(K
(1)
3 , 〈1〉, G/K(1)

3 ), 1 1

(K
(β)
3 , 〈1〉, G/K(β)

3 ),

{
2β−λ, β ≥ λ+ 2,

2, β ≤ λ+ 1

{
2λ−1, β ≥ λ+ 2,

2β−2, β ≤ λ+ 1

2 ≤ β ≤ m

(K0, 〈1〉, K1)

{
2m−λ, m ≥ λ+ 2,

2, m ≤ λ+ 1

{
2λ−1, m ≥ λ+ 2,

2m−2, m ≤ λ+ 1

Thus Theorem 2.3 , with the help of above two tables yield (ii) and (iii). �

Remark: The above analysis of the structure of Fq[G], G of type D1, D2, provides
a method for computing the algebraic structure of Fq[G], for finite group G whose
central quotient is Klein four-group. It will thus naturally be of interest to compute
the algebraic structure of Fq[G], G of type Di, i = 3, 4, 5.
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