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Chapter 1

Introduction

This dissertation is an interplay between commutative algebra and combinatorics.

The symbiosis of combinatorics and commutative algebra have proved beneficial for

many branches of mathematics. Many problems in combinatorics can be proved

using tools of commutative algebra. Richard Stanley was the first mathematician

who introduced commutative algebra techniques to solve combinatorial problems.

To each simplicial complex ∆ on n vertices, Stanley associated a quotient ring

k[∆] of the standard polynomial ring k[x1, x2, . . . , xn] over a field k, called the

Stanley-Reisner ring of ∆ in such a manner that the combinatorial properties of

the simplicial complex ∆ are intimately related with the algebraic properties of

the Stanley-Reisner ring k[∆]. More generally, one can associate finitely gener-

ated k-algebras to certain combinatorial problems and it was observed by Stanley

that these k-algebras are Cohen-Macaulay or Gorenstein could be crucial in solving

these combinatorial problems. Also the formal power series associated with some

counting problems can be thought of as a Hilbert series of a finitely generated com-

mutative k-algebra. Stanley [27, 28] proved the upper bound conjecture(UBC) and

Anand-Dumir-Gupta(ADG) conjecture, which are fine examples of the symbiosis

of combinatorics and commutative algebra. This symbiosis, which is commonly

referred as combinatorial commutative algebra is a very active area of research,

which is indicated by a vast amount of literature published in the form of research

papers and monographs. Combinatorics and Commutative Algebra [28], Monomial

Algebra [32], Combinatorial Commutative Algebra [20], Monomial Ideals [13] are
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a few of standard books in this area.

Stanley-Reisner rings have been extensively studied in the last few decades.

Fröberg [11] studied the Stanley-Reisner rings having linear resolutions. He char-

acterized the Stanley-Reisner rings having 2-linear resolutions in terms of trian-

gulated graphs. Bruns and Hibi [4, 6] extended the work of Fröberg and char-

acterized Stanley-Reisner ring k[∆] with pure resolutions for dim (∆) = 1 or 2.

Eagon and Reiner [8] established a relationship between a Stanley-Reisner ideal I∆

having linear resolution and Cohen-Macaulayness of the Alexander dual ∆∗. This

result has been generalized by Herzog-Hibi [12] replacing the ideal having linear

resolution by the notion of componentwise linear ideal and Cohen-Macaulay by

sequentially Cohen-Macaulay. Hochster [14] gave a formula for graded Betti num-

bers of Stanley-Reisner rings. The Betti numbers of an ideal I in a polynomial

ring R = k[x1, x2, . . . , xn] gives us information about the homological structure of

the quotient ring R/I. The ith Betti number βi(I) is a homological invariant of the

ideal I in R and is given by the formula

βi(I) = dimk Tori
R(I, k) ∀ i ≥ 0.

Equivalently, βi(I) is the rank of the ith free module in a minimal free resolution

of I. It is not always easy to find a minimal free resolution of a monomial ideal.

However, formulae for the Betti numbers can be determined in certain type of

monomial ideals.

In a beautiful paper [9], Eliahou and Kervaire constructed the minimal resolu-

tions of a class of monomial ideals called stable ideals. By definition, a monomial

ideal I in k[x1, x2, . . . , xn] is called a stable if for every monomial w ∈ I and in-

dex i < m = max(w), the monomial xiw/xm again belongs to I, where max(w)

denotes the largest index of the variables dividing w. The minimal resolution of

a stable ideal is now termed as its Eliahou-Kervaire resolution. A combinatorial

formula for the Betti numbers of stable ideals has also been obtained by them. In

fact,

βi(I) =
∑

u∈G(I)

(
max(u)− 1

i

)
,
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where G(I) is the canonical generating system of I. In the same paper [9], Eliahou

and Kervaire introduced a concept of splittable monomial ideals. Since a power

md of the maximal ideal m = 〈x1, x2, . . . , xn〉 in R is stable and having a natural

splitting, Betti numbers of power md can easily be calculated. In fact,

βi(m
d) =

(
d+ n− 1

d+ i

)(
d+ i− 1

i

)
.

The Betti numbers of power md of maximal ideal can also be calculated using the

Eagon-Northcott complex [7].

Bayer and Sturmfell [2] constructed a cellular free complex F∗(X) (1.1.2) as-

sociated to a labeled cell complex X. By a labeled cell complex X we mean a

polyhedral cell complex whose vertices are labeled with the monomial generators

of some monomial ideal I. They described a necessary and sufficient condition for

the free complex F∗(X) to be a free resolution of I. If F∗(X) is a free resolution of

I, then it is called a cellular resolution of I supported on X. Further with the help

of cellular resolutions, they constructed the canonical free resolutions, so called hull

resolutions of monomial ideals. For a ∈ Nn and t ∈ R, the convex hull of points

ta = (ta1 , ta2 , . . . , tan) such that xa ∈ I is a polyhedron Pt ∈ Rn. The polyhedral

cell complex consisting of all bounded faces of Pt is independent of t for sufficiently

large t. This polyhedral cell complex is called the hull complex H(I) of I and the

cellular free complex F∗(H(I)) is called the hull resolution of I. The hull resolution

of I is a free resolution of I but it need not be minimal. However if I is a generic

monomial ideal([17], Definition 6.5) then the hull complex of I coincides with the

Scarf complex ∆I of I and the hull resolution is the minimal resolution F∗(∆I).

Let I be a monomial ideal with minimal generating set {n1, n2, . . . , ns}. Then

by a Scarf complex ∆I , we mean a simplicial complex consisting of the subsets

F ⊆ {1, 2, . . . , s} such that lcm{ni|i ∈ F} is unique ([2, 20]).

In the present thesis work, we have studied relationships between combinato-

rial and algebraic properties of certain classes of monomial ideals that are obtained

from combinatorial objects such as Permutohedron and Multipermutohedron. We

have computed the multigraded Betti numbers of an Alexander dual of a multiper-
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mutohedron ideal. We use the standard formula for multigraded Betti numbers of

a monomial ideal I,

βi−1,b(I) = dimk H̃|Supp(b)|−i−1(Kb(I); k); i ≥ 1,

where Kb(I) is the lower Koszul simplicial complex of I (Definition 1.1.18) and

support Supp(b) = {i : bi > 0}. In fact, βi−1(I) =
∑

b βi−1,b. We observed that

the lower Koszul simplicial complex of an Alexander dual of a multipermutohedron

ideal in a given degree is a join of skeletons of simplices. This observation turned

out to be crucial for computing multigraded Betti numbers of the dual. We also

characterize minimality of the cellular resolution of dual of multipermutohedron

ideal supported on a “subcomplex” associated to the first barycentric subdivision

of an (n − 1)-simplex. A similar characterization of minimality of the cellular

resolution of multipermutohedron ideal is given in [17]. Further, for an Artinian

quotient of dual of multipermutohedron ideal, the number of standard monomials

is given by number of generalized parking functions.

We intended to compute the Betti numbers of all higher powers of the multiper-

mutohedron ideals. However, this problem turned out to be too difficult and at the

end, we could only compute the Betti numbers of sum of two multipermutohedron

ideals and their Alexander duals. There are large classes of ideals for which explicit

formulae for Betti numbers are known. Eliahou and Kervaire [9] have described a

class of splittable monomial ideals. In fact if I is a monomial ideal with splitting

U and V , then βi(I) = βi(U) + βi(V ) + βi−1(U ∩ V ); i ≥ 0. Actually the sum of

two multipermutohedron ideals is not a splittable monomial ideal. Thus it seems

interesting to calculate their multigraded Betti numbers.

We have introduced and studied certain classes of monomial ideals called, split-

multipermutohedron ideals and hypercubic ideals, which are certain variants of mul-

tipermutohedron ideals. We have calculated the Betti numbers of these ideals and

their Alexander duals. The standard monomials of an Artinian quotient of the

Alexander dual of a hypercubic ideal corresponds to certain combinatorial objects

called, restricted λ-parking functions. Using free resolution of this quotient, we have
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obtained an explicit combinatorial formula for counting the restricted λ-parking

functions.

1.1 Basic Notions of Commutative Algebra

This section consists of basic concepts of commutative algebra. We have compiled

important concepts and results needed to make the dissertation self-contained.

These results have been taken from the books by Bruns and Herzog [5], Miller and

Sturmfels[20], Herzog and Hibi [13], Villareal [32].

Definition 1.1.1. Let R = k[x1, x2, . . . , xn] be a Nn-graded polynomial ring and

M be a Nn-graded R-module. If the vector space dimension dimk (Ma) is finite for

all a ∈ Nn, then the formal power series

H(M ; x) =
∑
a∈Nn

dimk (Ma).xa

is the Nn-graded Hilbert series of M. If xi = t for all i, then we get the Z-graded

Hilbert series.

Remark 1.1.2. 1. The Nn-graded Hilbert series of R = k[x1, x2, . . . , xn] is

given by H(R; x) =
∏n

i=1
1

1−xi . Also H(R(−a); x) = xa∏n
i=1(1−xi) = xa.H(R; x).

2. Hilbert series is additive i.e. H(M ; x) = H(M ′; x) +H(M ′′,x), for a graded

short exact sequence of the form 0→M ′ →M →M ′′ → 0.

1.1.1 Minimal Free Resolutions

Definition 1.1.3. A complex F of R-modules is a sequence of modules Fi and

homomorphisms ∂i : Fi → Fi−1 such that the composition ∂i ◦ ∂i+1 are all zero.

Then the R-module

Hi(F) =
ker(∂i : Fi → Fi−1)

Im(∂i+1 : Fi+1 → Fi)

is called the ith homology module. The homology modules of a complex is a measure

of the extent of deviation of the complex from being exact.
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A free resolution of R-module M is a complex

F : . . . .→ Fn
∂n→ Fn−1 → . . .→ F1

∂1→ F0 → 0

of free R-modules such that coker∂1 = M and F is exact (except at 0th position)

Further image of ∂i, im ∂i = ker ∂i−1, i ≥ 1 is called the ith syzygy module of M .

A resolution F is a graded free resolution if R is a graded ring, the Fi are graded

free modules and the maps are homogeneous of degree 0. Of course, only graded

modules can have graded free resolutions. If for some n < ∞ we have Fn+1 = 0,

but Fi 6= 0 for 0 ≤ i ≤ n, then we shall say that F is a finite free resolution of

length n.

Definition 1.1.4. A free(graded) complex

F : . . . .→ Fn
∂n→ Fn−1 → . . .→ F1

∂1→ F0

over a polynomial ring R = k[x1, . . . xn] is minimal if the differentials in the complex

F
⊗

R/m are all zero; that is , for each n, the image ∂n : Fn → Fn−1 is contained

in mFn−1, where m = 〈x1, x2, . . . , xn〉.

Theorem 1.1.5. If R = k[x1, x2, . . . , xn], then every finitely generated graded R-

module has a finite graded free resolution of length ≤ n.

Definition 1.1.6. Let M and N be two R-modules. Consider the chain complex

C ⊗N : . . .→ Cn+1 ⊗R N → Cn ⊗R N → . . .→ C1 ⊗R N → C0 ⊗R N → 0,

where

C . . .→ Cn+1 → Cn → . . .→ C1 → C0 → 0

is a projective resolution of M. Then the ith homology of the complex C ⊗ N is

called the ith torsion module of M and N denoted by TorRi (M,N) and we have

TorR0 (M,N) = M ⊗R N.
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Definition 1.1.7. Let R = k[x1, x2, . . . , xn] and a free complex

F :0→ Fl
∂l→ Fl−1 → . . .→ F1

∂1→ F0 → 0

be a minimal free resolution of a finitely generated Nn-graded module M with

Fi =
⊕
a∈Nn

R(−a)βi,a ,

then the ith Betti number of M in degree a is the invariant βi,a = βi,a(M). In other

words, the Betti numbers measures the minimum number of generators required in

degree a for any ith syzygy module of M .

Lemma 1.1.8. The ith Betti number of an Nn-graded module M in degree a equals

the vector space dimension dimk Tor
R
i (k,M)a.

1.1.2 Simplicial homology

Let ∆ be a simplicial complex on {1, . . . , n}. We may consider the reduced chain

complex of k-vector spaces.

C̃.(∆; k) : 0→ Cn−1
∂n−1→ Cn−2 → . . .→ C1

∂1→ C0
∂0→ C−1 → 0,

where Ci =
⊕
σ∈∆

dimσ=i

keσ. The boundary maps ∂i are defined by setting sign(j, σ) =

(−1)r−1 if j is the rth element of the set σ ⊆ {1, . . . , n}, written in increasing order,

and

∂i(eσ) =
∑
j∈σ

sign(j, σ)eσrj

If i < −1 or i > n − 1, then Ci = 0 and ∂i = 0 by definition. It can be checked

that ∂i ◦ ∂i+1 = 0.

Definition 1.1.9. For each integer i, the k-vector space

H̃i(∆; k) = ker(∂i)/im(∂i+1)
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in homological degree i is the ith reduced homology of ∆ over k.

Definition 1.1.10. For a monomial ideal I and a degree b ∈ Nn, define

Kb(I) = {squarefree vectors τ |xb−τ ∈ I}

to be upper Koszul simplicial complex of I in degree b.

Theorem 1.1.11. Given a vector b ∈ Nn, the ith Betti numbers of I and S/I in

degree b can be expressed as

βi,b(I) = βi+1,b(S/I) = dimk H̃i−1(Kb(I); k).

Proof. For a complete proof, we refer to [20](Theorem 1.34). �

1.1.3 Alexander duals of monomial ideals

Let n be a positive integer and [n] = {1, 2, . . . , n}. Let ∆ be a simplicial complex

on the vertex set [n]. The Alexander dual ∆∗ of ∆ is a simplicial complex on [n]

given by

∆∗ = {A ⊆ [n] : [n]− A /∈ ∆}.

For any subset A ⊆ [n], xA =
∏

i∈A xi is a squarefree monomial in the polynomial

ring R = k[x1, x2, . . . , xn] over a field k. The Stanley-Reisner ideal I∆ of the

simplicial complex ∆ is defined to be the squarefree monomial ideal

I∆ = 〈xA : A is a minimal nonface of ∆〉

in R. Now the Alexander dual of the squarefree monomial ideal I∆ is defined to be

the Stanley-Reisner ideal I∆∗ of the Alexander dual ∆∗.

Example 1.1.12. Consider a simplicial complex ∆ = {∅, {1}, {2}, {3}, {4}}. Then

∆∗ = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}.
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Figure 1.1: Simplicial complex ∆ and its dual.

Thus I∆ = 〈xixj : 1 ≤ i < j ≤ 4〉 and I∆∗ = 〈x1x2x3, x1x2x4, x2x3x4, x1x3x4〉

In fact, there is a close homological connection between ∆ and its ∆∗ known as

“combinatorial Alexander duality”.

Theorem 1.1.13. (Combinatorial Alexander duality) Let ∆ be a simplicial com-

plex on the vertex set [n] such that ∆ 6= 2[n]. Then

H̃i(∆
∗; k) ∼= H̃n−i−3(∆; k).

Combinatorial Alexander duality is a special case of topological Alexander du-

ality, which states that there is an isomorphism between the reduced homology of

a proper closed topological subspace of a sphere and the reduced cohomology of

complement of the subspace.

Example 1.1.14. Let ∆ be defined as in Example 1.1.12, then ∆∗ is 1-skeleton

of a 3-simplex. Now S2 − ∆ retracts to ∆∗. Thus homology of dual ∆∗ and the

complement S2 −∆ are same.

Definition 1.1.15. Let σ ∈ ∆ be a face. The link of σ inside ∆ is

link∆(σ) = {τ ∈ ∆ | τ ∪ σ ∈ ∆ and τ ∩ σ = ∅}.

Example 1.1.16. Let v be the vertex at the center of a hexagon as shown in the

figure. Then link (v) is the subcomplex constituting the boundary of the hexagon.
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Proposition 1.1.17. (Hochster’s formula, dual version) All nonzero Betti

numbers of I∆ and S/I∆ lie in squarefree degree σ

βi,σ(I∆) = βi+1,σ(S/I∆) = dimk H̃i−1(link∆∗(σ̄); k),

where σ̄ = {1, 2, . . . , n}r σ.

Proof. See [20], Corollary 1.40. �

Definition 1.1.18. For each vector b ∈ Nn, define b′ by subtracting 1 from each

nonzero coordinate of b. Given a monomial ideal I and a degree b ∈ Nn, the

(lower) Koszul simplicial complex of S/I in degree b is

Kb(I) = {squarefree vectors τ � b| xb′+τ /∈ I}.

The following result can be thought of as a dual version of Theorem 1.1.11.

Theorem 1.1.19. Given a vector b ∈ Nn with support supp(b) = {i | bi 6= 0}, the

Betti numbers of I and S/I in degree b can be expressed as

βi−1,b(I) = βi,b(S/I) = dimk H̃
|supp(b)|−i−1(Kb(I); k).

Proof. See [20], Theorem 5.11. �

10



Remark 1.1.20. Since we are working over a field k, one may substitute reduced

homology for reduced cohomology when calculating Betti numbers, since they have

the same dimension.

The notion of Alexander duals of a squarefree monomial ideals has been ex-

tended to monomial ideals by Miller [21]. Let b = (b1, b2, . . . , bn) ∈ Nn. Then xb

denotes the monomial
∏n

i=1 x
bi
i and mb denotes the monomial ideal 〈xbii : bi > 0〉

in the standard polynomial ring R = k[x1, x2, . . . , xn] over a field k. Consider a

monomial ideal I in the polynomial ring R. Then I has a unique minimal set of

monomial generators and all the (monomial) primary components of I are unique.

Let A and B be subsets of Nn such that {xb : b ∈ A} be the set of minimal

generators of I and {mb : b ∈ B} be the set of (monomial) primary components

of I. Thus, we have

I = 〈xb : b ∈ A〉 =
⋂
{mb : b ∈ B}.

Choose a = (a1, a2, . . . , an) ∈ Nn such that a − b ∈ Nn for all b ∈ A. In other

words, all the minimal generator xb of I divide xa. Whenever a,b ∈ Nn with

a− b ∈ Nn, we set a	 b ∈ Nn by defining its ith coordinate

(a	 b)i =

ai + 1− bi if bi > 0,

0 if bi = 0.

Definition 1.1.21. The Alexander dual I [a] of the monomial ideal I with respect

to a is defined to be the monomial ideal

I [a] =
⋂
{ma	b : b ∈ A}.

Equivalently, I [a] = 〈xa	b : b ∈ B〉.

Example 1.1.22. Let a = (3, 3). Then

I = 〈x3, x2y〉

= 〈x2〉 ∩ 〈y, x3〉
⇒

I [a] = 〈x2, xy3〉

= 〈x〉 ∩ 〈x2, y3〉.
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Example 1.1.23. Consider an ideal I = 〈xy2z3, xy3z2, x2yz3, x2y3z, x3yz2, x3y2z〉.
Then we have

I = 〈x3, y3, z3〉 ∩ 〈x2, y2〉 ∩ 〈x2, z2〉 ∩ 〈y2, z2〉 ∩ 〈x〉 ∩ 〈y〉 ∩ 〈z〉.

The Alexander dual I [(3,3,3)] is given by

I [(3,3,3)] = 〈xyz, x2y2, x2z2, y2z2, x3, y3, z3〉.

Remarks 1.1.24. 1. The Alexander dual is indeed a duality in the sense that

(I [a])[a] = I. Also, the Alexander dual (I∆)[1] of a Stanley-Reisner ideal I∆

with respect to 1 = (1, 1, . . . , 1) ∈ Nn is precisely I∆∗ . Therefore, the notion

of Alexander duality of monomial ideals introduced by Miller turns out to be

an appropriate generalization.

2. Let aI be the exponent on the LCM of all minimal generators of the monomial

ideal I. Then we define the (tight) Alexander dual I∗ = I [aI ]. The only

inadequacy of this notion is that (I∗)∗ need not equal I, unlike (I [a])[a] = I .

Example 1.1.25. Let I =
〈
x3, x2y

〉
be a monomial ideal. Then aI = (3, 1) ⇒

I∗ =
〈
x2, xy

〉
. Now aI∗ = (2, 1), therefore (I∗)∗ =

〈
x2, xy

〉
6= I.

The minimal generating set of an Alexander dual of a monomial ideal with

respect to a vector a can be described using the following proposition.

Proposition 1.1.26. Suppose that all minimal generators of ideal I divide xa. If

b ≤ a then xb lies outside I if and only if xa−b ∈ I [a].

Proof. See [20], Prop 5.23. �

1.1.4 Convex polytopes

Definition 1.1.27. A subset K of Rn is convex if for any two points x0, x1 ∈ K
the line segment with end points x0 and x1, that is, the set of points x = (1 −
λ)x0 + λx1, λ ∈ R, 0 ≤ λ ≤ 1 belongs to K. The intersection of any non-empty
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family of convex sets is again convex. Now, the convex hull, Conv(X), of a subset

X ⊂ Rn to be the intersection of all convex sets K ⊂ Rd which contains X. The

convex hull of X can also be described as the set of all convex combinations of finite

subsets of X, that is, as the set of linear combinations λ1x1 + λ1x2 + . . . + λrxr,

with xi ∈ X,λi ≥ 0,
∑n

i=1 λi = 1. A polytope is the convex hull of a finite set of

points in Rn.
There is another alternative description of a polytope as the intersection of a

finite number of closed half-spaces. Let a ∈ Rd, a 6= 0 and β ∈ R, the set

H = {x ∈ Rd : 〈a,x〉 = β},

where 〈a,x〉 =
∑d

i=1 aixi, is a hyperplane with normal vector a. Thus, we define

the closed half space as

H+ = {x ∈ Rd : 〈a,x〉 ≥ β}

and

H− = {x ∈ Rd : 〈a,x〉 ≤ β}.

For a detailed study of convex polytopes we refer to [34].

1.1.5 Cellular Resolution

Definition 1.1.28. A polyhedral cell complex X is a finite collection of convex

polytopes in Rn, called faces of X, satisfying two properties:

1. If P is a polytope in X and F is a face of P , then F is in X.

2. If P and Q are in X, then P ∩Q is a face of both P and Q.

We now define labeling of a polyhedral cell complex

Definition 1.1.29. Let X be a polyhedral cell complex with the vertex set V =

{v1, v2, . . . , vn}. A labeling on X consists of the following data:

i) Each vertex v of X corresponds to a monomial xav called the monomial label

of v.
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ii) Monomial label on each face F of X is xaF = lcm(xav |v ∈ F ).

iii) for the empty face ∅, xa∅ = 1.

A polyhedral cell complex together with a vertex labeling is called a labeled cell

complex and we call aF the degree of the face F.

Example 1.1.30. Consider the polyhedral cell complex X consisting of faces of a

hexagon

 𝑣3      𝑣2 

𝑣1 𝑣4 

𝑣5 𝑣6 

Suppose the labels on the vertices are given by

av1 = (3, 1, 2), av4 = (1, 3, 2),

av2 = (3, 2, 1), av5 = (1, 2, 3),

av3 = (2, 3, 1), av6 = (2, 1, 3).

The labeling on edges is given by

a〈v1,v2〉 = (3, 2, 2), a〈v4,v5〉 = (1, 3, 3),

a〈v2,v3〉 = (3, 3, 1), a〈v5,v6〉 = (2, 2, 3),

a〈v3,v4〉 = (2, 3, 2), a〈v6,v1〉 = (3, 1, 3).
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and the labeling on the hexagon is given by

a〈v1,v2,v3,v4,v5,v6〉 = (3, 3, 3).

The labeled hexagon appears as in the following figure.

 𝑎2𝑏3𝑐  𝑎3𝑏2𝑐 

𝑎3𝑏𝑐2 𝑎𝑏3𝑐2 

𝑎𝑏2𝑐3 𝑎 𝑏2 𝑐3 

 𝑎3𝑏3𝑐 

𝑎3𝑏2𝑐2  

 𝑎3𝑏𝑐3 

𝑎2𝑏2𝑐3 

𝑎𝑏3𝑐3 

𝑎2𝑏3𝑐2 

𝑎3𝑏3𝑐3 

Now we proceed to define the reduced chain complex of a polyhedral cell com-

plex. In order to define a reduced chain complex of a polyhedral cell complex X, we

need to define orientation on its faces. Orientation on the faces of the cell complex

X is chosen so that for every oriented face G and its facet H, we could define the

signature sign(H,G), which is +1 if orientation on G induces orientation on H,

otherwise it is −1. Further, the boundary of a face G of X is given by

∂(G) =
∑

facets H⊆G

sign(H,G)H, (1.1.1)

where the boundary map ∂ satisfies the obvious property that ∂ ◦ ∂ = 0.

Now for an oriented labeled cell complex X, we proceed to define a free complex

F∗(X) and determine condition under which F∗(X) becomes a free resolution of

R/I(X), where I(X) is a monomial ideal 〈xav : v ∈ V 〉 generated by vertex labeling

on X.

Let Fi(X) denotes the set of i-dimensional faces of X. Then we consider the
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chain complex of free R-modules

F∗(X) : . . .→ Fi
∂→ Fi−1

∂→ . . .→ F0, (1.1.2)

where

Fi =
⊕

F∈Fi−1(X)

R(−aF )F, ∂F =
∑

facets G⊆F

sign(G,F )xaF−aGG.

Since X is an oriented cell complex the signature sign(G,F ) is consistently

defined for every pair (G,F ), where G is a facet of F . We see that ∂ : Fi → Fi−1

is in fact an Nn-graded R-module homomorphism. Thus F∗(X) is an Nn-graded

chain complex of free R-modules. It is clear that if F∗(X) is an exact R-complex,

then it gives us a free resolution of R/I(X).

Definition 1.1.31. The free complex F∗(X) supported on the polyhedral cell com-

plex X is called the cellular free complex supported on X and F∗(X) is called a

cellular resolution if it is acyclic(or exact).

Definition 1.1.32. Given two vectors a,b ∈ Nn, we write a � b and say that

a precedes b if b− a ∈ Nn. For each b ∈ Nn, let X�b be the subcomplex of X

consisting of the faces with degree aF � b and let X≺b be the subcomplex of X�b

obtained by deleting the faces of degree b.

Theorem 1.1.33. The cellular free complex F∗(X) supported on X is a cellular

resolution if and only if X�b is acyclic over k for all b ∈ Nn. When F∗(X) is

acyclic, it is a free resolution of R/I(X), where I(X) = 〈xav | v ∈ X is a vertex 〉
is generated by the monomial labels on vertices. Moreover the cellular resolution

F∗(X) is a minimal resolution if and only if any two comparable faces F ′ ⊂ F of

the complex X have distinct degrees aF 6= aF ′.

Proof. See [2](Proposition 1.2). �
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1.2 Betti numbers of multipermutohedron ideals

Let N be a set of non-negative integers. Let u = (u1, u2, . . . , un) ∈ Nn with 0 ≤
u1 < u2 < . . . < un. For any permutation π of u, πu = (πu1, . . . , πun) ∈ Nn. These

n! vertices πu span an (n− 1)-dimensional polytope in Rn called a Permutohedron

P (u). For n = 4 and u = (1, 2, 3, 4), permutohedron is a 3-dimensional polytope

as shown in the following figure.

Figure 1.2: Permutohedron having 24 vertices, 36 edges, 14 faces.

The associated ideal generated by the monomial vertex labels xπu of P (u) is

called a permutohedron ideal.

Now consider u = (u1, u2, . . . , un) ∈ Nn such that the first m1 coordinates be

equal to u1 and next m2 coordinates be equal to um1+1 and so on. In other words,

u1 = . . . = us1 < us1+1 = . . . = us2 < us2+1 = . . . < usl−1+1 = . . . = un,

where si =
∑i

α=1 mα for 0 ≤ i ≤ l and s0 = 0. Note that mi ≥ 1 and

sl =
∑l

i=1 mi = n. Now set m(or mu) = (m1,m2, . . . ,ml) ∈ Nl. For a permutation

π of u, let πu = (πu1, . . . , πun) ∈ Rn. The convex hull of all the points πu; π a

permutation of u, is an (n − 1)-dimensional (except when u1 = u2 = . . . = un)

polytope Pm(u) called a multipermutohedron. Note that for m = 1, P1(u) is a per-

mutohedron. Each vertex πu of the multipermutohedron P (u) is naturally labeled

with the monomial xπu making it a labeled polyhedral cell complex. The associated
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monomial ideal I(u) = 〈xπu : π a permutation of u〉 is called a multipermutohedron

ideal.

1.2.1 Facial description of multipermutohedron ideal

The facial description of a multipermutohedron is given by Billera-Sarangarajan

[3]. A similar facial description has been given in [17]. Firstly we give the facial

description of permutohedron ideal. Every i-face of P1(u) corresponds to a chain

of subsets of [n] of length n− i.

∅ = σ0 ⊂ σ1 ⊂ . . . ⊂ σ̂j1 ⊂ σj1+1 ⊂ . . . ⊂ σ̂ji ⊂ σji+1 ⊂ . . . ⊂ σn = [n], (1.2.1)

The inequality description of P1(u) is as follows(see [20])

P1(u) =

{
v ∈ Rn :

n∑
j=1

vj =
n∑
j=1

uj and
∑
j∈σ

vj ≥ u1 + . . .+ u|σ|, ∀ σ ⊂ [n]

}
.

The i-face given by chain 1.2.1 is actually the i-face{
v ∈ P1(u) :

∑
j∈σk

vj = u1 + . . .+ uk ∀ k ∈ [n]− {j1, . . . , ji}

}

in the inequality description of P1(u).

Now we give the facial description of multipermutohedron ideal. Consider such

a chain of subsets of [n]

∅ = σ0 ⊂ σ1 ⊂ . . . ⊂ σs1 ⊂ σs1+1 ⊂ . . . ⊂ σsi ⊂ σsi+1 ⊂ . . . ⊂ σn = [n]. (1.2.2)

Using the inequality description of permutohedron it has been shown in [17] that

a vertex of Pm(u) depends on the sets ∅ = σ0, σs1 , σs2 , . . . , σsj , . . . , σsl = [n] (with

σ0 = ∅; σn = [n] fixed) in the given chain (1.2.2) and not on the intermediate

members in between σsj−1
⊂ σsj for any j. Thus we mark the subsets σsj (0 ≤ j ≤

n) in the chain (1.2.2) by underlining them. This shows that a 0-face (or a vertex)
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of Pm(u) is represented by a marked chain of subsets of [n] of length n

∅ = σ0 ⊂ σ1 ⊂ . . . ⊂ σs1 ⊂ σs1+1 ⊂ . . . ⊂ σsi ⊂ σsi+1 ⊂ . . . ⊂ σn = [n], (1.2.3)

with the understanding that any two such chains are equivalent if their corre-

sponding marked subsets are equal. Thus the vertices of Pm(u) are in one-one

correspondence with the equivalence classes of the marked chains of subsets of [n]

of length n of the form (1.2.3). Therefore, the number of vertices of Pm(u) is given

by

f0(Pm(u)) =
l∏

α=1

(
sα
sα−1

)
=

n!∏l
α=1mα!

. (1.2.4)

Now we describe 1-faces (or edges) of Pm(u). It has been shown in [17] that a

1-face (or an edge) of Pm(u) corresponds to a marked chains of subsets of [n] of

length n − 1 obtained by deleting any one of marked subsets σsj (except σ0 = ∅
and σn = [n]) from an equivalence class of marked chain of subsets of [n] of length

n representing a vertex and marking the subsets σsj−1 and σsj+1 if they are not

already marked. Again two such marked chain of subsets of [n] of length n − 1

are equivalent if their marked subsets are the same. Thus a 1-face of Pm(u) is

represented by an equivalence class of marked chain of subsets of [n] of length n−1

of the form

∅ = σ0 ⊂ σ1 ⊂ . . . ⊂ σs1 ⊂ . . . ⊂ σsj−1 ⊂ σ̂sj ⊂ σsj+1 ⊂ . . . ⊂ σn = [n]. (1.2.5)

This gives an inductive procedure to describe faces of a multipermutohedron in

terms of equivalence classes of marked chains of subsets of [n]. Now, in order to

describe i-faces of Pm(u), we introduce a notion of m-admissible subsets. A subset

[p, q] = {x ∈ N : p ≤ x ≤ q} is called an integral interval, provided p, q ∈ N with

p ≤ q. If p < q, we write (p, q] for [p+ 1, q].

Definition 1.2.1. Let m = (m1,m2, . . . ,ml) with 1 ≤ mi and
l∑

α=1

mα = n. A

subset J ⊆ [n− 1] is said to be m-admissible if ([0, n]− J) ∩ [sj−1, sj] is either an

empty set or an integral interval for 1 ≤ j ≤ l. The set of all m-admissible subsets

is denoted by Am. If J ⊆ [n − 1] is m-admissible with size | J |= i, we write
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J ∈ Am(| i |).

Let J ∈ Am(| i |) and [0, n] − J = {λ0, λ1, . . . , λn−i−1, λn−i = n}; 0 = λ0 <

λ1 < . . . < λn−i = n. Since ([0, n] − J) ∩ [sj−1, sj] is either empty or an integral

interval, let CJ = {j ∈ [1, l] : ([0, n] − J) ∩ [sj−1, sj] 6= ∅} and for each j ∈ CJ ,

([0, n] − J) ∩ [sj−1, sj] = [νj, µj] with νj ≤ µj. For every such J ∈ Am(| i |), one

associates an equivalence class of marked chain of subsets of [n] of length n − i

given by

∅ = σ0 ⊂ σλ1 ⊂ σλ2 ⊂ . . . ⊂ σλn−i−1
⊂ σλn−i = [n] (1.2.6)

and a subset σλ in this chain is marked if λ = νj or λ = µj for some j ∈ CJ . We

now have a description for the faces of Pm(u).

Lemma 1.2.2. The i-faces of the multipermutohedron Pm(u) are in one-one cor-

respondence with the equivalence classes of marked chains of subsets of [n] of length

n− i associated with some J ∈ Am(| i |).

Proof. See [17](Lemma 2.2). �

1.2.2 Multigraded Betti numbers

Multigraded Betti numbers of multipermutohedron ideals have been calculated in

[17]. We need the following definition to describe the formula for the multigraded

Betti numbers of multipermutoedron ideals.

Definition 1.2.3. A subset J = {j1, j2, . . . , jt} ⊆ [n] is said to be m(or mu)-

isolated if jt = n and J ∩ (sj−1, sj] is either empty or singleton for 1 ≤ j ≤ l.

Thus for each α, there is a unique iα with siα−1 + 1 ≤ jα ≤ siα . In other words, J

contains at most one point from each of the integral intervals (sj−1, sj] (1 ≤ j ≤
l), which is the reason for the name m(or mu)-isolated . For u = (u1, . . . , un),

set b(J) =
∑t

α=1 ujαE(jα−1, jα) and set mu-weight wtmu(J) = wtmu(b(J)) =∑t
α=1(siα−1 − jα−1), where j0 = 0. The set of all mu-isolated subsets of [n] is

denoted by Imu . If J ⊆ [n] is an mu-isolated subset with wtmu(J) = i, we write

J ∈ Imu(〈i〉).
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Theorem 1.2.4. ([17], Theorem 3.5) For b = (b1, b2, . . . , bn) ∈ Nn and i ≥ 1, let

βi,b(I(u)) be an i-th multigraded Betti number of multipermutohedran ideal I(u)

in the degree b. Then βi,b(I(u)) are as follows:

i) For J = {j1, j2, . . . , jt} ∈ Imu ,

βi,b(J)(I(u)) =
[ t∏
α=1

(
jα − jα−1 − 1

siα−1 − jα−1

)]
δi,wtmu (J),

where J ∩ (siα−1, siα ] = {jα}. If π is a permutation of b(J), then

βi,πb(J)(I(u)) = βi,b(J)(I(u)).

ii) If b 6= πb(J) for any J ∈ Imu(〈i〉) and any permutation π of b(J), then

βi,b(I(u)) = 0.

Corollary 1.2.5. ([17], Corollary 3.7) Let βi(I(u) be the i-th Betti number of a

multipermutohedron ideal I(u). For J = {λ1, λ2, . . . , λt} ∈ Im(〈i〉), we set

βJi =
t∏

α=1

[(λα − λα−1 − 1

siα−1 − λα−1

)(
λα
λα−1

)]
, where J ∩ (siα−1, siα ] = {λα}.

Then βi(I(u) =
∑

J∈Im(〈i〉)
βJi .

Now as a consequence of corollary 1.2.5 and lemma 1.2.2 the minimality of

the cellular resolution supported on multipermutohedron has been characterized in

[17].

Theorem 1.2.6. ([17], Theorem 3.9) The cellular free complex associated to a

multipermutohedron Pm(u) is the minimal resolution of R/I(u) if and only if mα =

1 for 2 ≤ α ≤ l.

Now we give some examples to illustrate Theorem 1.2.6.
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Example 1.2.7. Let u = (a, a, b, b), 0 < a < b. Then the multipermutohedron

P (a, a, b, b) is a (solid) octahedron consisting of six vertices, twelve edges, eight tri-

angular 2-dimensional faces and one 3-dimensional face as shown in figure 1.3. We

will show that the cellular resolution supported by P (a, a, b, b) is the nonminimal

free resolution of multipermutohedron ideal I(a, a, b, b). We check this by deter-

mining all mu-isolated subsets. We see that subsets J0 = {2, 4}, J1 = {1, 4} and

J2 = {4} are unique mu-isolated subsets of weights 0, 1 and 2, respectively. Thus

the nonzero Betti numbers of I(a, a, b, b) are given by

β0 = βJ00 = 6, β1 = βJ11 = 8 and β2 = βJ22 = 3.

Since f1(P (a, a, b, b)) = 12 > 8 = β1(I(a, a, b, b)), the cellular resolution supported

by P (a, a, b, b) is nonminimal.

Figure 1.3: Octahedron

Example 1.2.8. Let u = (a, a, b, c), 0 < a < b < c. Then the multipermutohe-

dron P (a, a, b, c) is a 3-dimensional polytope(truncated octahedron) consisting of

twelve vertices, eighteen edges, eight 2-dimensional faces (four hexagonal and four

triangular faces) and one 3-dimensional face as shown in figure 1.4. In this case

the cellular resolution supported by P (a, a, b, c) is the minimal resolution of the

multipermutohedron ideal I(a, a, b, c) in k[x, y, z, w]. We check this by determining

all mu-isolated subsets. The subset J0 = {2, 3, 4} is the unique mu-isolated subset

of weight 0 and βJ00 = 12. The subsets J1 = {1, 3, 4} and J ′1 = {2, 4} are mu-

isolated subsets of weight 1 with βJ11 = 12 and β
J ′1
1 = 6. The subsets J2 = {1, 4}

and J ′2 = {3, 4} are mu-isolated subsets of weight 2 with βJ22 = 4 and β
J ′2
2 = 4.
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Finally, J3 = {4} is the unique mu-isolated subset of weight 3 with βJ33 = 1. Thus

the nonzero Betti numbers of I(a, a, b, c) are given by

β0 = 12, β1 = 12 + 6 = 18, β2 = 4 + 4 = 8 and β3 = 1.

Since fi(P (a, a, b, c)) = βi(I(a, a, b, c)) for all i, the cellular resolution supported by

P (a, a, b, c) is minimal.

Figure 1.4: Truncated octahedron

1.3 Overview of the thesis

In this section, we give a brief overview of the thesis. This thesis contains five

chapters of which, the first is an Introduction. Before describing other chapters

we shall fix some notations and give important definitions for sake of clarity. Let

R = k[x1, x2, . . . , xn] be the standard polynomial ring over a field k. For b =

(b1, b2, . . . , bn) ∈ Nn, let xb be the monomial
∏n

i=1 x
bi
i ∈ R. Consider a monomial

ideal I in the polynomial ring R. Choose a = (a1, a2, . . . , an) ∈ Nn so that all the

minimal generators of I divide the monomial xa. The Alexander dual I [a] of I with

respect to a is a monomial ideal in the polynomial ring R. The Alexander dual

of a (general) monomial ideal has been introduced by E. Miller (Definition 1.1.21)

extending the definition of Alexander dual for squarefree monomial ideal.

Let I(u) be a multipermutohedron ideal. For any integer c ≥ 1, we consider
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un + c− 1 = (un + c − 1, un + c − 1, . . . , un + c − 1) and the Alexander dual

I(u)[un+c−1] is given by

I(u)[un+c−1] =
〈(∏

i∈A

xi

)un−u|A|+c

: ∅ 6= A ⊂ [n]
〉
,

except the generating set need not be minimal. If u1 ≥ 1, then the quotient

R′ = R/I(u)[un−c+1] is an Artinian k-algebra. So one would like to know, what

is the dimension dimk(R
′) or equivalently, the number of standard monomials in

R′ = R/I(u)[un−c+1]? A solution of this problem is known and it lies in count-

ing generalized parking functions. The dimension dimk(R
′) equals the number of

λ-parking functions (Definition 2.2.3), where λ = (λ1, λ2, . . . , λn); λi = un− ui + c.

Using a free resolution of R′ and its multigraded Hilbert series, we give a sim-

ple proof of the Steck determinant formula for counting λ-parking functions. More

precisely, we prove the following result to count the number of λ-parking functions

(Theorem 3.1.1).

Theorem 1.3.1. Let µij = (λn−i+1)j−i+1

(j−i+1)!
if 1 ≤ i ≤ j+1 and µij = 0 if j+1 < i ≤ n.

Then the number of λ-parking functions of length n is given by (n!) det[µij]n×n.

To describe a combinatorial formula for all the multigraded Betti numbers of

the Alexander dual I(u)[un+c−1] of the multipermutohedron ideal we need the fol-

lowing notion. Let p, q ∈ N and p ≤ q. Then [p, q] denotes an integral interval

{r ∈ N : p ≤ r ≤ q}. We also write (p, q] for [p + 1, q]. Let e1, . . . , en be the

standard basis of Rn. For 0 ≤ j ≤ i, set E(j, i) =
∑i

α=j+1 eα.

Definition 1.3.2. Let J = {j1, j2, . . . , jt} ⊆ [n] with 0 = j0 < j1 < j2 < . . . <

jt ≤ n. Then J is said to be a dual mu-isolated if J ∩ (sj−1, sj] is either empty or

singleton for 1 ≤ j ≤ l. Thus for each α, there is a unique iα with siα−1 + 1 ≤ jα ≤
siα . For u = (u1, . . . , un), set b̃(J) =

∑t
α=1 λjαE(jα−1, jα), λi = un − ui + c and

set dual mu-weight dwtmu(J) = dwtmu(b̃(J)) =
[∑t

α=1(jα − siα−1)
]
− 1. Also, the
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size of the support |Supp(b(J))| = jt. The set of all dual mu-isolated subsets of

[n] is denoted by I∗mu
.

Using the above definition we prove the following result to calculate the multi-

graded Betti numbers of the Alexander dual of a multipermutohedron ideal (The-

orem 2.3.4 & Corollary 2.3.6).

Theorem 1.3.3. For b ∈ Nn and i ≥ 1, let βi−1,b(I(u)[un+c−1]) be an (i − 1)th

multigraded Betti number of I(u)[un+c−1] in the degree b. If u1 ≥ 1, then the

multigraded Betti numbers βi−1,b(I(u)[un+c−1]) are given as follows:

1. For J = {j1, j2, . . . , jt} ∈ I∗mu
,

βi−1,b̃(J)(I(u)[un+c−1]) =
[ t∏
α=1

(
jα − jα−1 − 1

siα−1 − jα−1

)]
δi−1,dwtmu (J),

where J ∩ (siα−1, siα ] = {jα}. If π is a permutation of b̃(J), then

βi−1,πb̃(J)(I(u)[un+c−1]) = βi−1,b̃(J)(I(u)[un+c−1]).

2. If b 6= πb̃(J) for any J ∈ I∗mu
(〈i− 1〉) and any permutation π of b̃(J), then

βi−1,b(I(u)[un+c−1]) = 0.

Corollary 1.3.4. Let βi−1(I(u)[un+c−1]) be the i−1-th Betti number of the Alexan-

der dual I(u)[un+c−1]. Suppose u1 ≥ 1 and for J = {j1, j2, . . . , jt} ∈ I∗mu
(〈i − 1〉),

we set

βJi−1 =
t∏

α=1

[(jα − jα−1 − 1

siα−1 − jα−1

)(
jα+1

jα

)]
, where J ∩ (siα−1, siα ] = {jα} and jt+1 = n.

Then βi−1(I(u)[un+c−1]) =
∑

J∈I∗mu (〈i−1〉)
βJi−1.

We also have defined a polyhedral cell complex Bdm(∆n−1) obtained by mod-

ifying the first barycentric subdivision Bd(∆n−1) and investigated the minimality
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of the cellular resolution supported by Bdm(∆n−1). More precisely, we prove the

following result (Theorem 2.3.9).

Theorem 1.3.5. The cellular resolution supported by Bdm(∆n−1) is the minimal

resolution of R/I(u)[un+c−1] if and only if mα = 1 for 2 ≤ α ≤ l.

In the third chapter, we have computed multigraded Betti numbers of a sum of

two multipermutohedron ideals and their Alexander duals. Since the multigraded

Betti numbers of a monomial ideal are given in terms of the reduced homology

groups of the lower Koszul simplicial complex the Mayer-Vietoris sequence can be

used to compute H̃i(Kb(I(u) + I(v))[a]). Also from the above formula of multi-

graded Betti numbers of an Alexander dual of a multipermutohedron ideal we ob-

serve that for any degree b ∈ Nn, there is at most one non-zero multigraded Betti

number. Therefore many terms in the Mayer-Vietoris sequence are zero. Thus we

can calculate the multigraded Betti numbers of (I(u) + I(v))[a] (Theorem 3.2.1).

On the similar lines multigraded Betti numbers of sum of two multipermutohedron

ideals have also been calculated (Theorem 3.1.1).

In the fourth chapter we defined a notion of split-multipermutohedron ideal.

Let n = r + s with r, s ≥ 1 be a positive integer and Sn denotes the set of all

permutations of {1, 2, . . . , n}. Consider the set H of all permutations of {1, 2, . . . , n}
of type (σ1, σ2), where σ1 is a permutation of {1, 2, . . . , r} and σ2 is a permutation of

{r+ 1, . . . , r+ s = n}. Let u = (u1, u2, . . . , un) ∈ Nn. The convex hull of points σu

for σ ∈H is also a polytope, which is the product of multipermutohedrons P (v)×
P (w), where v = (u1, . . . , ur) and w = (ur+1, . . . , un). The associated monomial

ideal I = 〈xσ1v.yσ2w : (σ1, σ2) ∈H 〉 ⊆ k[x1, x2, . . . , xr, y1, . . . , ys], where yj = xr+j

is a called split-multipermutohedron ideal. We have computed the multigraded Betti

numbers of split-multipermutohedron ideals and their Alexander duals and we have

the following results (Theorems 4.1.3 & 4.2.3).

Theorem 1.3.6. The multigraded Betti numbers of a split-multipermutohedron

ideal I exist only in the multidegree b of the form b = (bv,bw) and

βi,b(I) = βp,bv(I(v))βq,bw(I(w)),
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where bv = b(J), bw = b(J ′) for J ∈ Imv , J ′ ∈ Imw and wtmv(bv) = p,

wtmw(bw) = q with p+ q = i.

Theorem 1.3.7. Let a = urE(0, r)+unE(r, n) = (vr,ws) and I [a] be the Alexander

dual of split-multipermutohedron ideal I with respect to a. The multigraded Betti

numbers of R/I [a] exists only in the multidegree b of the form b = (bv,bw) and

βi,b(R/I [a]) = βp,bv(R1/I(v)[vr])βq,bw(R2/I(w)[ws]),

where bv = b̃(J), bw = b̃(J ′) for J ∈ I∗mv
, J ′ ∈ I∗mw

and p = dwtmv(bv),

q = dwtmw(bw) with p+ q = i.

In the fifth and final chapter, we have defined so called, hypercubic ideals. Let

W be the set of permutations of {1, 2, . . . , n} such that apart from the leading

element, the number k can be placed only if either k + 1 or k − 1 already appears.

In other words, W is inductively defined as the set of all permutations σ ∈ Sn such

that σ(1) is arbitrary and σ(j) = k for j > 1 if either σ(i) = k + 1 or σ(i) = k − 1

for some i < j. It is easy to see that |W | = 2n−1. Let u = (u1, u2, . . . , un) with

1 ≤ u1 < u2 < . . . < un, then the convex hull of the 2n−1 points σu, σ ∈ W is

an (n − 1)-dimensional hypercube in Rn. Thus the monomial ideal J(u) = 〈xσu :

σ ∈ W 〉 is called a hypercubic ideal. The cellular free complex supported on the

hypercube is a minimal free resolution of J(u). Thus the ith Betti number βi(J(u))

is the number of i-faces of the hypercube = 2n−i−1
(
n−1
i

)
. We will prove the following

theorem about the Alexander dual of hypercubic ideal (Theorem 5.1.4).

Theorem 1.3.8. Let un = unE(0, n) = (un, un, . . . , un). Then the Alexander dual

J(u)[un] of hypercubic ideal is given by

J(u)[un] = 〈
∏
j∈T

x
µj,T
j | ∅ 6= T = {j1, j2, . . . , jt} ⊆ [n]; j1 < j2 < . . . < jt〉,

where µj1,T = un − ut + 1 and µji,T = un − ut+ji−i + 1 for i ∈ {2, 3, . . . , t}.

The vertices of the first barycentric subdivision Bd(∆n−1) of an (n−1)-simplex

can be naturally labeled with the minimal generators of the Alexander dual J(u)[un]
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of hypercubic ideals and the cellular free complex F∗(Bd(∆n−1)) supported on

Bd(∆n−1) is a minimal free resolution of R/J(u)[un]. Thus ith Betti number of

J(u)[un] is the number of i-faces of the first barycentric subdivision of an (n− 1)-

simplex = (i+ 1)!Sn+1,i+2, where Sn+1,i+2 is the Stirling number of the second type.

We recall that the Stirling number Sn,k of second type is the number of partitions

of the set {1, . . . , n} into k nonempty blocks.

A hypercubic ideal J(u) has the following minimal property. For each non

empty set B ⊆ Sn, we associate a monomial ideal IB = 〈xσu|σ ∈ B〉. Clearly

ISn = I(u) is a permutohedron ideal and the cellular free complex F∗(Bd(∆n−1))

supported on Bd(∆n−1) is a minimal free resolution of the quotient R/I(u)[un].

Now consider the set

A = {B ⊆ Sn|F∗(Bd(∆n−1)) supported on Bd(∆n−1) is a minimal free

resolution of the quotient R/I
[un]
B }.

Then W ∈ A is a minimal element of A. Thus hypercubic ideal J(u) = IW has a

minimal property (Theorem 5.1.6).

Theorem 1.3.9. For a non empty subset B of Sn, the ideal IW = J(u) has a

property that if B ⊇ W , then the cellular free complex F∗(Bd(∆n−1)) supported on

Bd(∆n−1) is a minimal free resolution of the quotient R/I
[un]
B and if B ( W , then

the cellular resolution of R/I
[un]
B is not minimally supported on Bd(∆n−1).

For u1 ≥ 1, the quotient R/J(u)[un] is an Artinian k-algebra and its standard

monomials corresponds to so called, restricted λ-parking functions.

Definition 1.3.10. A sequence p = (p1, p2, . . . , pn) of positive integers is called

a restricted λ-parking function of length n, if there exists a permutation α =

(α1, α2, . . . , αn) ∈ Sn such that pαi − 1 < µαi,Ti with Ti = [n] − {α1, α2, . . . , αi−1}
for i = 1, 2, . . . , n. The quantity µαi,Ti is as in the Theorem 1.3.8.

Again using free resolution and Hilbert series of R/J(u)[un], we have obtained

a combinatorial formula for number of restricted λ-parking functions. We have the

following theorem (Proposition 5.2.5).
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Theorem 1.3.11. Let J(u) be a hypercubic ideal and J(u)[un] be its Alexander

dual with respect to un and R′ = R/J(u)[un], Then the number of restricted λ-

parking functions of length n is given as follows.

n∑
i=1

(−1)n−i
∑

∅ A1 A2 ... Ai=[n]

i∏
q=1

∏
j∈Aq−Aq−1

µj, Aq ,

where µj, Aq is defined above.
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Chapter 2

Multipermutohedron Ideals and

their Alexander Duals

In this chapter we study the Alexander duals of multipermutohedron ideals. The

standard monomials of an Artinian quotient of such a dual correspond bijectively to

some λ-parking functions, and many interesting properties of these Artinian quo-

tients are obtained by Postnikov and Shapiro [23]. Using the multigraded Hilbert

series of an Artinian quotient of an Alexander dual of multipermutohedron ideals,

we obtained a simple proof of Steck determinant formula for enumeration of λ-

parking functions. A combinatorial formula for all the multigraded Betti numbers

of an Alexander dual of multipermutohedron ideals are also obtained.

2.1 Alexander duals of multipermutohedron ide-

als

Let I(1, 2, . . . , n) be a permutohedron ideal. The Alexander dual of the permutohe-

dron ideal I(1, 2, . . . , n) with respect to n = (n, n, . . . , n) is given by I(1, 2, . . . , n)[n]

=
〈 (∏

i∈A xi
)n−|A|+1

: ∅ 6= A ⊂ [n]
〉

. In fact, the quotient R/I(1, 2, . . . , n)[n] of

an Alexander dual of the permutohedron ideal is an Artinian k-algebra and the di-

mension of this quotient is dimk(R/I(1, 2, . . . , n)[n]) = (n+ 1)n−1. In other words,

the number of standard monomials in the Artinian quotient R/I(1, 2, . . . , n)[n] is

precisely (n+ 1)n−1, which is the number of labeled trees on (n+ 1) vertices. Thus
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the monomial ideal I(1, 2, . . . , n)[n] is called a tree ideal. The vertices of the first

barycentric subdivision of an (n − 1)-simplex can be naturally labeled with the

minimal generators of the tree ideal I(1, 2, . . . , n)[n] and the free resolution of tree

ideal supported by the first barycentric subdivision Bd(∆n−1) of an (n−1)-simplex

∆n−1 is minimal.

The (tight) Alexander dual I(u)∗ = I(u)[un], where un = (un, un, . . . , un). We

have considered the Alexander duals I(u)[un+c−1] of the multipermutohedron ideal

I(u) with respect to un + c− 1 = (un + c− 1, . . . , un + c− 1) for c ≥ 1. We now

describe the Alexander dual of multipermutohedron ideal in terms of its minimal

generating set by the following lemma.

Lemma 2.1.1. The minimal generators of the Alexander dual I(u)[un+c−1] of the

multipermutohedron ideal is given by

I(u)[un+c−1] =
〈(∏

j∈A

xj

)un−u|A|+c

: A ⊆ [n], |A| = si + 1

for 0 ≤ i < l and u|A| ≥ 1
〉
.

Therefore, the quotient R/(I(u)[un+c−1]) is an Artinian k-algebra if and only if

u1 ≥ 1.

Proof. Suppose all the minimal generators of a monomial ideal I in R divides

xa. Then, for any b = (b1, . . . , bn) with a − b ∈ Nn, the monomial xb /∈ I if

and only if xa−b ∈ I [a] (Proposition 1.1.26). Clearly, xa−b is a minimal generator

of I [a] precisely when b is maximal. If usi+1
≥ 1 then b = (usi+1 − 1)E(0, si +

1) + (un + c − 1)E(si + 1, n) or its permutation is a maximal with a − b ∈ Nn

and xb /∈ I(u). Suppose xb ∈ I(u), which means b � u. Which implies that

usi+1
− 1 ≥ usi+1

, which is a contradiction. This proves that xb /∈ I(u). Now

we show that b is maximal with b � a and xb /∈ I(u). Consider the vector

b + ej for 1 ≤ j ≤ si+1. Then our aim is to produce some c = σu for some

σ ∈ Sn such that b + ej ≥ c. Note that it is enough to take j = si+1. Then

b + esi+1
= (usi+1

− 1)E(0, si) + usi+1
E(si, si+1) + (un + c− 1)E(si+1, n) ≥ u. Thus
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we see that xun+c−1−b is a minimal generator of I(u)[un+c−1]. �

Example 2.1.2. Let u = (2, 2, 4, 4, 5) and c = 2. Then we have a = un + c− 1 =

(6, 6, 6, 6, 6) and

I [a] = 〈x5, y5, z5, t5, w5, (xyz)3, (xyt)3, (xyw)3,

(xzt)3, (xzw)3, (xtw)3, (yzt)3, (yzw)3, (ytw)3, (ztw)3, (xyztw)2〉.

Remark 2.1.3. It follows from Lemma 2.1.1 that Alexander dual of a multiper-

mutohedron ideal is a sum of special multipermutohedron ideals. In fact, the tree

ideal I(1, 2, . . . , n)[n] is a sum of multipermutohedron ideals

I(0, . . . , 0, n) + I(0, . . . , 0, n− 1, n− 1) + . . .+ I(0, 2, 2, . . . , 2) + I(1, 1, . . . , 1).

This gives another motivation for studying multipermutohedron ideals.

2.2 λ-parking functions

The quotient R′ = R/I(u)[un−c+1] is an Artinian k-algebra, if u1 ≥ 1. We have seen

that the dimk(R/I(1, 2, . . . , n)[n]) = (n+1)n−1. In case of multipermutohedron ideal

I(u) one would like to know, what is the dimension dimk(R
′) or equivalently, the

number of standard monomials in R′ = R/I(u)[un−c+1]? Answer to this problem is

known and it lies in counting λ-parking functions. The dimension dimk(R
′) equals

the number of λ-parking functions, where λ = (λ1, λ2, . . . , λn); λi = un − ui + c.

Using a free resolution of R′ and its multigraded Hilbert series, we give a simple

proof of the Steck determinant formula for counting λ-parking functions (Theo-

rem 3.1.1). Actually λ-parking functions are generalization of parking function, so

we firstly recall parking functions.

Definition 2.2.1. Suppose there are n cars C1, C2, . . . , Cn and there are linearly

ordered n parking spaces that can be numbered as 1, 2, . . . , n. Suppose each car

Ci has a preferred parking place, say ai ∈ [n] and it goes directly to the place ai

for parking and if ai is already occupied than the car Ci can be parked to the next
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available space in the linear ordering. A sequence a = (a1, a2, . . . , an) is called a

parking function of length n if all cars can be parked. Equivalently, it can be seen

that a sequence (a1, a2, . . . , an) of positive integers is a parking function of length

n if its non-decreasing rearrangement b1 ≤ b2 ≤ . . . ≤ bn satisfies bi ≤ i ∀ i [30].

Theorem 2.2.2. The number of parking functions of length n is (n+ 1)n−1.

An easy proof of the above theorem is due to Polak [10].

Definition 2.2.3. For λ = (λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ . . . ≥ λn, a sequence

(p1, p2, . . . , pn) of positive integers is said to be a λ-parking function of length n if

its nondecreasing rearrangement q1 ≤ q2 ≤ . . . ≤ qn satisfy qi ≤ λn−i+1, ∀i . A

λ-parking function for λ = (n, n− 1, n− 2, . . . , 1) is clearly a parking function.

Lemma 2.2.4. A monomial xp = xp11 x
p2
2 . . . xpnn is a standard monomial in the

Artinian k-algebra R′ = R/(I(u)[un+c−1]) if and only if p + 1 = (p1 + 1, p2 +

1, . . . , pn + 1) is a λ-parking function for λ = (λ1, λ2, . . . , λn) = (un − u1 + c, un −
u2 + c, . . . , un − un + c). Thus, the multigraded Hilbert series of R′ is given by

H(R′,x) =
∑

p∈Λn
xp−1, where Λn is the set of all λ-parking functions of length n.

Also, dimk(R
′) = H(R′,1) = |Λn|.

Proof. Suppose p + 1 = (p1 + 1, p2 + 1, . . . , pn + 1) is not a λ-parking function.

Thus there is a nondecreasing rearrangement q = (q1, q2, . . . , qn) of p + 1 such that

qj > λn−j+1 = un−un−j+1 + c for some j. Equivalently, there are at least n− j+ 1

indices i1, i2, . . . , in−j+1 such that pir ≥ un − un−j+1 + c for 1 ≤ r ≤ n − j + 1.

This condition holds if and only if xp is divisible by (
∏

i∈A xi)
un−un−j+1+c with

A = {i1, i2, . . . , in−j+1}. Hence, xp ∈ I(u)[un+c−1]. This shows that p + 1 =

(p1 + 1, p2 + 1, . . . , pn + 1) is not a λ-parking function ⇔ xp is not a standard

monomial in R′. Since the multigraded Hilbert series is the sum of all standard

monomials, the second and third parts of the lemma follows. �

We now proceed to give a proof of Steck determinant formula for counting λ-

parking functions. Consider the first barycentric subdivision Bd(∆n−1) of an n−1-

simplex ∆n−1. A vertex of Bd(∆n−1) corresponds to a nonempty subset A ⊆ [n]
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and hence it is naturally labeled with the monomial (
∏

α∈A xα)un−u|A|+c in R. Also,

an (i− 1)-dimensional face of Bd(∆n−1) corresponds to a tuple (A1, A2, . . . , Ai) of

nonempty subsets of [n] with ∅ = A0  A1  A2  . . .  Ai and the monomial

label on this i− 1-face is

i∏
j=1

 ∏
α∈Aj−Aj−1

xα

un−u|Aj |+c

.

Thus, Bd(∆n−1) is a labeled simplicial complex. Let X be the labeled polyhedral

cell complex and F∗(X) be the associated cellular chain complex(see, Equation

1.1.2), then the multigraded Hilbert series of R/I(X) is given by

H(R/I(X),x) =

dim(X)+1∑
i=0

(−1)iH(Fi,x)

=

dim(X)+1∑
i=0

(−1)i
∑

σ∈Fi−1

xν(σ)

(1− x1)(1− x2) . . . (1− xn)
.

The cellular free complex F∗(Bd(∆n−1)) associated to the first barycentric subdi-

vision Bd(∆n−1) is in fact a free resolution of the quotient R′ = R/(I(u)[un+c−1])

([23]). This resolution is usually nonminimal, but it can be used to calculate the

multigraded Hilbert series H(R′,x) of the quotient R′. We have,

H(R′,x) =
1∏n

j=1(1− xj)

n∑
i=0

(−1)i
∑

(A1,...,Ai)∈Fi−1

 i∏
j=1

 ∏
α∈Aj−Aj−1

xα

un−u|Aj |+c
 .

(2.2.1)

Proposition 2.2.5. The number of λ-parking functions of length n is given by

|Λn| = (n!)
n∑
i=0

(−1)n−i

 ∑
0=t0<t1<...<ti−1<ti=n

(
i∏

j=1

(λtj)
tj−tj−1

(tj − tj−1)!

) .
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Proof. From Lemma 2.2.4, we have

|Λn| = H(R′,1) = lim
x1→1,
...,

xn→1

H(R′,x) = lim
x1→1,
...,

xn→1

Q(x)∏n
j=1(1− xj)

,

where the polynomial Q(x), in view of Equation 2.2.1, is

Q(x) =
n∑
i=0

(−1)i
∑

(A1,...,Ai)∈Fi−1(Bd(∆n−1))

 i∏
j=1

 ∏
α∈Aj−Aj−1

xα

un−u|Aj |+c
 .

Now applying L’Hospital’s rule, we see that

|Λn| =
1

(−1)n
∂nQ(x)

∂x1∂x2 . . . ∂xn

∣∣∣∣
x=1

.

In the partial derivative ∂nQ(x)
∂x1∂x2...∂xn

, term corresponding to the tuple (A1, . . . , Ai)

survives only if |Ai| = n. Putting |Aj| = tj, λj = un − uj + c, and observing that

the number of i − 1-faces (A1, . . . , Ai) with |Aj| = tj is precisely n!∏i
j=1(tj−tj−1)!

, we

get the desired result. �

Theorem 2.2.6 (Steck). Let A = (µij) be a n× n matrix where,

µij =


(λn−i+1)j−i+1

(j−i+1)!
if 1 ≤ i ≤ j + 1,

0 if j + 1 < i ≤ n.

Then |Λn| = (n!) detA

= n! det



λn
1!

λ2n
2!

. . . λn−1
n

(n−1)!
λnn
n!

1
λ1n−1

1!
. . .

λn−2
n−1

(n−2)!

λn−1
n−1

(n−1)!

0 1 . . .
λn−3
n−2

(n−3)!

λn−2
n−2

(n−2)!
...

... . . .
...

...

0 0 . . . 1 λ1
1!


.
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Proof. Let vr =
∑r

j=0
(λn−j)r−j

(r−j)! ej+1 for 1 ≤ r ≤ n and en+1 = 0, where {e1, . . . , en}
be the standard basis of Rn. The column vector vr is the rth column of the n× n
matrix [µij]. Thus

v1 ∧ v2 ∧ . . . ∧ vn = (det[µij]) e1 ∧ e2 ∧ . . . ∧ en.

It is a straightforward verification that the exterior product v1∧v2∧ . . .∧vn equals

n∑
i=0

(−1)n−i

 ∑
0=t0<t1<...<ti−1<ti=n

(
i∏

j=1

(λtj)
tj−tj−1

(tj − tj−1)!

) e1 ∧ e2 ∧ . . . ∧ en.

Since exterior product is distributive and ei ∧ ei = 0, terms in the product v1 ∧
v2 ∧ . . . ∧ vn are obtained by choosing one term from each vector vr so that their

product give rise to a multiple of e1 ∧ e2 ∧ . . . ∧ en. For 0 ≤ i ≤ n and a tuple

(t1, t2, . . . , ti) with 0 = t0 < t1 . . . < ti−1 < ti = n, we choose a term fr from the

vector vr (1 ≤ r ≤ n) as follows:

fr =


(λtj )tj−tj−1

(tj−tj−1)!
en−tj+1 if r = n− tj−1,

er+1 if r 6= n− tj−1.

Then f1 ∧ f2 ∧ . . . ∧ fn is clearly equal to(
i∏

j=1

(λtj)
tj−tj−1

(tj − tj−1)!

)(
i∏

j=1

(−1)tj−tj−1−1

)
e1 ∧ e2 ∧ . . . ∧ en. (2.2.2)

As
∏i

j=1(−1)tj−tj−1−1 = (−1)n−i and the product v1 ∧ v2 ∧ . . . ∧ vn is obtained by

summing quantity (2.2.2) over all the possible values of i and (t1, t2, . . . , ti), using

Proposition 2.2.5, we get

(n!)v1 ∧ v2 ∧ . . . ∧ vn = |Λn|e1 ∧ e2 ∧ . . . ∧ en.

This completes the proof. �

Remark 2.2.7. The formula for counting λ-parking functions was known earliar

(see [23]). We have obtained an alternative proof of this formula.
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2.3 Multigraded Betti Numbers

In this section we will calculate the Betti numbers of an Alexander dual of a

multipermutohedron ideal. Betti numbers of multipermutohedron ideals has been

calculated in [17]. Postnikov and Shapiro studied the monomial ideal I(u)[un+c−1]

in [23], without referring it as an Alexander dual. They explicitly constructed a

finite free resolution of so called monotone monomial ideals and this free resolution

is minimal if the monomial ideal is strictly monotone. In particular, the ideal

I(u)[un+c−1] is strictly monotone if m = (1, 1, . . . , 1), or equivalently u1 < u2 <

. . . < un, and in this case, the minimal resolution of I(u)[un+c−1] is the cellular

resolution supported by the first barycentric subdivision Bd(∆n−1) of an (n− 1)-

simplex ∆n−1 with the vertex label (
∏

i∈A xi)
un−u|A|+c on the vertex corresponding

to ∅ 6= A ⊆ [n] (see [23], Corollary 6.4 and Corollary 12.2). The minimal resolution

of the monomial ideal I(u)[un+c−1] and their Betti numbers for the case mu 6=
(1, 1, . . . , 1) are not discussed in [23].

Let I be a monomial ideal in the polynomial ring k[x1, x2, . . . , xn] and b ∈ Nn,

then the multigraded Betti numbers of I in degree b are given by

βi,b(I) = dimk H̃i−1(Kb(I); k) and βi−1,b(I) = dimk H̃
|Supp(b)|−i−1(Kb(I); k); i ≥ 1,

where the support Supp(b) = {i : bi > 0} (See Theorem 1.1.11 and Theorem

1.1.19) . We will be primarily using lower Koszul simplicial complexes in computing

multigraded Betti numbers of the Alexander dual of multipermutohedron ideal

I(u)[un+c−1]. The minimal generators of an Alexander dual I(u)[un+c−1] are of the

form (
∏

j∈A xj)
un−u|A|+c, where A ⊆ [n], |A| = si + 1 for 0 ≤ i < l and u|A| ≥ 1.

Thus

β0,b(I(u)[un+c−1]) = 1

for b = (un − usi+1 + c)E(0, si + 1) or its permutation, where 0 ≤ i < l if u1 ≥ 1

or 0 < i < l if u1 = 0. Therefore,

β0(I(u)[un+c−1]) =


∑l−1

i=0

(
n

si+1

)
if u1 ≥ 1,∑l−1

i=1

(
n

si+1

)
if u1 = 0.
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The dimensions of reduced homology k-vector spaces of i-skeleton of n-simplex

and of the join of such skeletons are used in the computation of multigraded Betti

numbers. The following simple lemma is well-known to combinatorial topologists

(see [16], Theorem 12.3). We have reproduced its proof as in [17] for the sake of

completeness

Lemma 2.3.1. Let ∆n = 〈v0, v1, . . . , vn〉 be an n-simplex and ∆
(i)
n = {F ∈ ∆n :

dim(F ) ≤ i} be its i-skeleton. Suppose ∆nj = 〈vj0, v
j
1, . . . , v

j
nj
〉; 1 ≤ j ≤ t, is a

disjoint family of simplices and Γ = ∆
(i1)
n1 ∗∆

(i2)
n2 ∗ . . .∗∆

(it)
nt is the join of ij-skeleton

of nj-simplex ∆nj for 1 ≤ j ≤ t with dim(Γ) =
∑t

j=1 ij + (t − 1). Let δi,j be the

Kronecker delta. Then

i) dimk H̃j(∆
(i)
n ; k) =

(
n
i+1

)
δi,j,

ii) dimk H̃j(Γ; k) =
[ t∏
α=1

(
nα
iα+1

)]
δdim(Γ),j.

Proof. Since every j-cycle of an n-simplex ∆n, is a j-boundary and there are

no j-dimensional faces of ∆
(i)
n for j > i, we have H̃j(∆

(i)
n ; k) = 0 for j 6= i. For

{j0, j1, . . . , ji+1} ⊆ [0, n] with j0 < j1 < . . . < ji+1;

∂〈vj0 , vj1 , . . . , vji+1
〉 =

i+1∑
α=0

(−1)α〈vj0 , . . . , v̂jα , . . . , vji+1
〉

is an i-cycle of ∆
(i)
n as ∂ ◦ ∂ = 0 for boundary operators. If 0 < j0, then

∂〈v0, vj0 , . . . , vji+1
〉 = 〈vj0 , . . . , vji+1

〉 −
i+1∑
α=0

(−1)α〈v0, vj0 , . . . , v̂jα , . . . , vji+1
〉.

Using ∂ ◦ ∂ = 0, we get

∂〈vj0 , vj1 , . . . , vji+1
〉 =

i+1∑
α=0

(−1)α∂〈v0, vj0 , . . . , v̂jα , . . . , vji+1
〉.

These are all independent relations among generators. Thus i-cycles of ∆
(i)
n of

the form ∂〈v0, vj1 , . . . , vji+1
〉 constitute a basis for H̃i(∆

(i)
n ; k), which shows that

dimk(H̃i(∆
(i)
n ; k)) =

(
n
i+1

)
. This proves (i).
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For Γ = ∆
(i1)
n1 ∗ ∆

(i2)
n2 ∗ . . . ∗ ∆

(it)
nt , dim(Γ) =

∑t
α=1 iα + (t − 1). Thus, if j >

dim(Γ), then H̃j(Γ; k) = 0. Assuming j ≤ dim(Γ), every j-cycle of Γ is a k-linear

combination of the j-cycles of the form c1∗c2∗· · ·∗ct, where cα is a jα-cycle of ∆
(iα)
nα

with j =
∑t

α=1 jα + (t − 1). If j < dim(Γ), then there exists an α with jα < iα.

Thus cα is a boundary, say ∂c̄α = cα. Now, we have

∂(c1 ∗ · · · ∗ c̄α ∗ · · · ∗ ct) = ±c1 ∗ · · · ∗ cα ∗ · · · ∗ ct.

Thus H̃j(Γ; k) = 0 for j < dim(Γ). If j =
∑t

α=1 iα + (t − 1), then j-cycles of the

form c1 ∗ c2 ∗ · · · ∗ ct constitute a basis of H̃j(Γ; k), where cα runs over a basis of

H̃iα(∆
(iα)
nα ; k) for all α. Now in view of (i), part (ii) follows. �

Let p, q ∈ N and p ≤ q. Then [p, q] denotes an integral interval {r ∈ N :

p ≤ r ≤ q}. We also write (p, q] for [p + 1, q]. In order to describe multigraded

Betti numbers of the Alexander dual I(u)[un+c−1], we need the definition of dual

mu-isolated set.

Definition 2.3.2. Let J = {j1, j2, . . . , jt} ⊆ [n] with 0 = j0 < j1 < j2 < . . . <

jt ≤ n. Then J is said to be a dual mu-isolated if J ∩ (sj−1, sj] is either empty

or singleton for 1 ≤ j ≤ l. Thus for each α, there is a unique iα with siα−1 + 1 ≤
jα ≤ siα . In other words, J contains at most one point from each of the integral

intervals (sj−1, sj] (1 ≤ j ≤ l), which is the reason for the name mu-isolated. For

u = (u1, . . . , un), set b̃(J) =
∑t

α=1 λjαE(jα−1, jα), λi = un − ui + c and set dual

mu-weight dwtmu(J) = dwtmu(b̃(J)) =
[∑t

α=1(jα − siα−1)
]
− 1. Also, the size of

the support |Supp(b(J))| = jt. The set of all dual mu-isolated subsets of [n] is

denoted by I∗mu
. If J ⊆ [n] is a dual mu-isolated subset with dwtmu(J) = i, we

write J ∈ I∗mu
(〈i〉).

Example 2.3.3. Let u = (u1, u2, u3, u4) = (a, a, b, b), then s0 = 0, s1 = 2, s2 = 4.

The dual mu-isolated subsets in this case are, J0 = {1}, J1 = {2}, J0
′

= {3}, J1
′

=

{4}, J1
′′

= {1, 3}, J2 = {1, 4}, J2
′

= {2, 3}, J3 = {2, 4}, where Ji(or Ji
′
, Ji

′′
) has

dual weight i.

In the following theorem, multigraded Betti numbers of the Alexander dual

I(u)[un+c−1] are computed using the notion of dual mu-isolated subsets.
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Theorem 2.3.4. For b ∈ Nn and i ≥ 1, let βi−1,b(I(u)[un+c−1]) be an i − 1-th

multigraded Betti number of I(u)[un+c−1] in the degree b. If u1 ≥ 1, then the

multigraded Betti numbers βi−1,b(I(u)[un+c−1]) are given as follows:

1. For J = {j1, j2, . . . , jt} ∈ I∗mu
,

βi−1,b̃(J)(I(u)[un+c−1]) =
[ t∏
α=1

(
jα − jα−1 − 1

siα−1 − jα−1

)]
δi−1,dwtmu (J),

where J ∩ (siα−1, siα ] = {jα}. If π is a permutation of b̃(J), then

βi−1,πb̃(J)(I(u)[un+c−1]) = βi−1,b̃(J)(I(u)[un+c−1]).

2. If b 6= πb̃(J) for any J ∈ I∗mu
(〈i− 1〉) and any permutation π of b̃(J), then

βi−1,b(I(u)[un+c−1]) = 0.

Proof. The lower Koszul simplicial complex Kb̃(J)(I(u)[un+c−1]) of the Alexander

dual I(u)[un+c−1] of the multipermutohedron ideal I(u) is claimed to be the join

of skeletons of simplices

∆
(si1−1−1)

j1−1 ∗∆
(si2−1−j1−1)

j2−j1−1 ∗ . . . ∗∆
(siα−1−jα−1−1)
jα−jα−1−1 ∗ . . . ∗∆

(sit−1−jt−1−1)

jt−jt−1−1 ,

where simplex ∆jα−jα−1−1 is spanned by vertices {eν : jα−1 + 1 ≤ ν ≤ jα}. This

claim is proved by a straightforward verification. Consider the vector

v = E(0, si1−1) + E(j1, si2−1) + E(j2, si3−1) + . . .+ E(jt−1, sit−1).

Then v is the vector

v =

(
1, . . . , 1, 0, . . . , 0,

...1, . . . , 1, 0, . . . , 0,
... . . . . . .

...1, . . . , 1, 0, . . . , 0,
...0, . . . , 0

)
consisting of exactly t strands of 1’s followed by 0’s together with n − jt ze-

ros at the end. The length of the αth strand is jα − jα−1 and precisely first
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siα−1 − jα−1 entries of the αth strand are 1’s followed by 0’s. Now, set b̃′(J) =∑t
α=1(λjα − 1)E(jα−1, jα). Clearly, b̃′(J) + v cannot be bigger than or equal to an

exponent of any minimal generator of I(u)[un+c−1]. Thus v ∈ Kb̃(J)(I(u)[un+c−1]).

Let πj be a permutation of the jth strand of the vector v and let π be the

product of the (disjoint) permutations πj for 1 ≤ j ≤ t. Then we also have

πv ∈ Kb̃(J)(I(u)[un+c−1]). If v
′

is another vector obtained from v by replacing

at least one of the 0 by 1, then b̃′(J) + πv
′

becomes bigger than or equal to an

exponent of some minimal generator of Kb̃(J)(I(u)[un+c−1]). This proves the claim.

The dimension dim(Kb̃(J)(I(u)[un+c−1])) =
∑t

α=1(siα−1 − jα−1 − 1) + (t− 1) =

jt −
∑t

α=1(jα − siα−1)− 1. The multigraded Betti number

βi−1,b̃(J)(I(u)[un+c−1]) = dimk(H̃
jt−i−1(Kb̃(J)(I(u)[un+c−1]); k)) for i ≥ 1.

Clearly, i − 1 = dwt(b̃(J)) ⇔ jt − i − 1 = dim(Kb̃(J)(I(u)[un+c−1])). Thus from

the above result on homology groups of the join of skeletons of simplexes, the

first part of (1) follows. Since minimal generators of I(u)[un+c−1] are invariant

under a permutations, we have βi,πb̃(J)(I(u)[un+c−1]) = βi,b̃(J)(I(u)[un+c−1]), for a

permutation π of b̃(J).

Let b = (b1, b2, . . . , bn) ∈ Nn such that b 6= πb̃(J) for any permutation π.

Changing b by a permutation, we may assume that b1 ≥ b2 ≥ . . . ≥ bn. The

nonzero Betti numbers of a monomial ideal exist in a multidegree b only if the

monomial xb is a LCM of some set of minimal generators of the monomial ideal.

Therefore, b =
∑t

α=1 λjαE(jα−1, jα) for some J ′ = {j1, j2, . . . , jt} ∈ I∗m. But by

the given condition, J ′ /∈ I∗m(〈i − 1〉). Thus βi−1,b(I(u)[un+c−1]) = 0. This proves

(2). �

Remark 2.3.5. The Theorem 2.3.4 looks quite similar to the Theorem 1.2.4. This

is not surprising as there is a general duality for Betti numbers of a monomial ideal

I and its Alexander dual I [a]. In fact,

βn−i,b(R/I) = βi,a+1−b(I [a]) (2.3.1)

for b = (b1, . . . , bn) with 1 ≤ bi ≤ ai, ∀i ([20],Theorem 5.48). However, this duality
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does not give all the multigraded Betti numbers of the dual I [a]. Using Theorem

1.1.2. and Theorem 1.1.5. we verify this duality for multipermutohedron ideals.

Take jt = n in Theorem 1.1.5., we get

b̃(J) =
t∑

α=1

(un − ujα + c)E(jα−1, jα)

= (un + c− 1)E(0, n) + 1E(0, n)− ujαE(0, n)

= a− b(J) + 1

and wt(b(J)) =
∑t

α=1(siα−1 − jα−1) = jt −
[∑t

α=1(jα − siα−1)
]
− 1

= n− dwt(b̃(J))− 1

Thus we have,

βn−i,b(J)(R/I(u)) = βi,a−b(J)+1I(u)[un+c−1], where i = dwt(b̃(J))).

and for b 6= b(J) both sides of equation 2.3.1 are 0.

Corollary 2.3.6. Let βi−1(I(u)[un+c−1]) be the i−1-th Betti number of the Alexan-

der dual I(u)[un+c−1]. Suppose u1 ≥ 1 and for J = {j1, j2, . . . , jt} ∈ I∗mu
(〈i − 1〉),

we set

βJi−1 =
t∏

α=1

[(jα − jα−1 − 1

siα−1 − jα−1

)(
jα+1

jα

)]
, where J ∩ (siα−1, siα ] = {jα} and jt+1 = n.

Then βi−1(I(u)[un+c−1]) =
∑

J∈I∗mu (〈i−1〉)
βJi−1.

Proof. Let Per(b(J)) be the set of all permutations of b(J). Then, in view of

Theorem 2.3.4, we have

βi−1(I(u)[un+c−1]) =
∑
b∈Nn

βi−1,b(I(u)[un+c−1])

=
∑

J∈I∗mu (〈i−1〉)

[ ∑
π∈Per(b(J))

βi−1,πb(J)(I(u)[un+c−1])
]

=
∑

J∈I∗mu (〈i−1〉)

βJi−1,
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where βJi−1 =
∑

π∈Per(b(J))

βi−1,πb(J)(I(u)[un+c−1]). For the set J = {j1, j2, . . . , jt} ∈

I∗mu
(〈i− 1〉) with J ∩ (siα−1, siα ] = {jα}, we have

βi−1,πb(J)(I(u)[un+c−1]) =
t∏

α=1

(
jα − jα−1 − 1

siα−1 − jα−1

)
,

for all π ∈ Per(b(J)). The number of permutations π of b(J) is

| Per(b(J)) |= n!∏t
α=1(jα+1 − jα)!

=
t∏

α=1

(
jα+1

jα

)
.

Therefore,

βJi−1 =
[ t∏
α=1

(
jα − jα−1 − 1

siα−1 − jα−1

)][ t∏
α=1

(
jα+1

jα

)]
.

This completes the proof. �

Remark 2.3.7. Let Ĩ∗mu
(〈i − 1〉) = {J ∈ I∗mu

(〈i − 1〉) : J ∩ (s0, s1] = ∅}. Then

for u1 = 0, the formula for Betti numbers of the Alexander dual I(u)[un+c−1] as in

Theorem 2.3.4 or Corollary 2.3.6 remain valid by just replacing I∗mu
(〈i− 1〉) with

Ĩ∗mu
(〈i− 1〉).

We have already obtained formula for the zeroth Betti number of the Alexander

dual I(u)[un+c−1]. For the first Betti number, we need to determine all dual mu-

isolated subsets J ∈ I∗mu
(〈1〉) of dual weight 1. Let Jα = {sα + 2} for 0 ≤ α < l

with sα+1 − sα ≥ 2 and Jν,ω = {sν + 1, sω + 1} with 0 ≤ ν < ω < l. Then

Jα, Jν,ω ∈ I∗mu
(〈1〉) and

βJα1 = (sα + 1)

(
n

sα + 2

)
while β

Jν,ω
1 =

(
n

sω + 1

)(
sω + 1

sν + 1

)
.
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Thus

β1(I(u)[un+c−1]) =
∑

0≤α<l,
sα+1−sα≥2

βJα1 +
∑

0≤ν<ω<l

β
Jν,ω
1

=
∑

0≤α<l,
sα+1−sα≥2

(sα + 1)

(
n

sα + 2

)
+ (2.3.2)

∑
0≤ν<ω<l

(
n

sω + 1

)(
sω + 1

sν + 1

)
,

provided u1 ≥ 1. On the other hand, if u1 = 0, then

β1(I(u)[un+c−1]) =
∑

0<α<l,
sα+1−sα≥2

(sα + 1)

(
n

sα + 2

)
+

∑
0<ν<ω<l

(
n

sω + 1

)(
sω + 1

sν + 1

)
.

We have seen that the first barycentric subdivision Bd(∆n−1) of an n−1-simplex

∆n−1 supports a free resolution of the quotient R/I(u)[un+c−1] of the Alexander

dual of the multipermutohedron ideal. Now consider a polyhedral cell complex

Bdm(∆n−1) obtained by modifying the first barycentric subdivision Bd(∆n−1) as

follows: First assume that u1 ≥ 1. In this case, the vertices of the polyhedral cell

complex Bdm(∆n−1) are precisely the barycenters corresponding to the subsets

A ⊆ [n] with |A| = si + 1 for 0 ≤ i < l and the edges corresponds to the chain of

subsets A ⊂ B of [n] with |A| = sν + 1 and |B| = sω + 1 for 0 ≤ ν < ω < l, or

the subsets C of [n] of the form C = A ∪B with |C| = sα + 2, |A| = |B| = sα + 1,

and sα+1 − sα ≥ 2. Higher dimensional faces of Bdm(∆n−1) are spanned by the

vertices and edges so that the polyhedral cell complex gives a subdivision of the

n−1-simplex ∆n−1. Thus the dimension of Bdm(∆n−1) is n−1. Now assume that

u1 = 0. In this case, the polyhedral cell complex Bdm(∆n−1) is obtained as in the

earlier case, but now we delete all the faces containing the vertices of n−1-simplex

∆n−1, i.e. barycenters corresponding to the subsets A ⊆ [n] with |A| = 1. The

dimension of Bdm(∆n−1) in the case u1 = 0 can be any number from 0 to n − 1

depending on m.

Let fi(Bdm(∆n−1)) be the number of i-dimensional faces of Bdm(∆n−1). Clearly,
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f0(Bdm(∆n−1)) equals the zeroth Betti number β0(I(u)[un+c−1]). We now proceed

to count the number of edges of the polyhedral cell complex Bdm(∆n−1). Firstly,

we consider the case u1 ≥ 1. For any two vertices of Bdm(∆n−1) corresponding to

the subsets A,B ⊆ [n] with |A| = sν+1 and |B| = sω+1 for 0 ≤ ν < ω < l, there is

an edge between these two vertices if and only if A ⊆ B. Also if |A| = |B| = sα+1,

then there is an edge between these vertices if |A∪B| = sα + 2 and sα+1− sα ≥ 2.

Now counting these subsets, we obtain a combinatorial formula

f1(Bdm(∆n−1)) =
∑

0≤ν<ω<l

(
n

sω + 1

)(
sω + 1

sν + 1

)
+ (2.3.3)

∑
0≤α<l,

sα+1−sα≥2

(sα + 1)(sα + 2)

2

(
n

sα + 2

)
.

If u1 = 0, then deleting all the edges containing the vertices of n−1-simplex ∆n−1,

the combinatorial formula takes the form

f1(Bdm(∆n−1)) =
∑

0<ν<ω<l

(
n

sω + 1

)(
sω + 1

sν + 1

)
+

∑
0<α<l,

sα+1−sα≥2

(sα + 1)(sα + 2)

2

(
n

sα + 2

)
.

A combinatorial formula for the higher dimensional faces of the polyhedral cell

complex Bdm(∆n−1) are quite cumbersome. But if m = (m1, 1, . . . , 1), then

fi(Bdm(∆n−1)) can be easily calculated.

Theorem 2.3.8. Let m = (m1, 1, . . . , 1). Then

fi−1(Bdm(∆n−1)) = βi−1(I(u)[un+c−1]) ∀i ≥ 1.

Proof. Firstly we consider the case u1 ≥ 1. We know that (i − 1)-faces of the

first barycentric subdivision Bd(∆n−1) correspond to a chain of nonempty subsets

of [n] of length i. Since the barycenters corresponding to the subsets A ⊂ [n] with
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1 < |A| ≤ m1 are missing, an (i − 1)-face of the polyhedral complex Bdm(∆n−1)

corresponds to a chain

A1  A2  . . .  At

of subsets of [n] such that either all Ai’s represent vertices of Bdm(∆n−1) or 1 <

|A1| ≤ m1 < |A2|. In the former case, t = i, while in the latter case, t = i−|A1|+1

as it represents the (i − 1)-face spanned by vertices of ∆n−1, corresponding to

singleton subsets of A1, and the barycenters A2, . . . , At. Let |Ai| = ji. Then J =

{j1, j2, . . . , jt} is a dual mu-isolated subset with dwtmu(J) = j1 +(t−1)−1 = i−1,

and every (i−1)-face of Bdm(∆n−1) arises in this way. In this case, all the faces of

Bdm(∆n−1) are simplicial and thus Bdm(∆n−1) is a (n− 1)-dimensional simplicial

complex.

Let fJi−1 be the number of (i− 1)-faces of Bdm(∆n−1) associated to a dual mu-

isolated subset J ∈ I∗mu
(〈i− 1〉) with dual weight i− 1. Then fJi−1 =

∏t
α=1

(
jα+1

jα

)
,

where jt+1 = n. For m(or mu) = (m1, 1, . . . , 1), using Corollary 2.3.6 βJi−1 =∏t
α=1

(
jα+1

jα

)
, because either jα+1 − jα − 1 = 0 or siα−1 − jα = 0. Thus

fi−1(Bdm(∆n−1)) =
∑

J∈I∗mu (〈i−1〉)

fJi−1 =
∑

J∈I∗mu (〈i−1〉)

βJi−1 = βi−1(I(u)[un+c−1]).

If u1 = 0, then vertices of the n − 1-simplex ∆n−1 are no longer vertices of

Bdm(∆n−1). Thus an (i− 1)-face of Bdm(∆n−1) corresponds to a chain

A1  A2  . . .  At

of subsets of [n] with t = i and |A1| > m1. Clearly, maximal such chain has length

n−m1 and hence the dimension of Bdm(∆n−1) is n−m1−1. In this case, we have

fi−1(Bdm(∆n−1)) =
∑

J∈Ĩ∗mu (〈i−1〉)

fJi−1 =
∑

J∈Ĩ∗mu (〈i−1〉)

βJi−1 = βi−1(I(u)[un+c−1]).

This completes the proof. �

A vertex of Bdm(∆n−1) corresponds to a nonempty subset A ⊆ [n], and it

is naturally labeled with the monomial (
∏

i∈A xi)
un−u|A|+c. Thus Bdm(∆n−1) is
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a labeled polyhedral cell complex. The free complex associated to the labeled

polyhedral cell complex Bdm(∆n−1) gives a cellular free resolution of the quotient

R/I(u)[un+c−1]. We now investigate minimality of the cellular resolution supported

by Bdm(∆n−1) .

Theorem 2.3.9. The cellular resolution supported by Bdm(∆n−1) is the minimal

resolution of R/I(u)[un+c−1] if and only if mα = 1 for 2 ≤ α ≤ l.

Proof. Suppose the free resolution supported by the labeled polyhedral cell com-

plex Bdm(∆n−1) minimally resolves R/I(u)[un+c−1]. Then we have β1(I(u)[un+c−1])

= f1(Bdm(∆n−1)), the number of edges of Bdm(∆n−1). Using Equations 2.3.2

and 2.3.3, and the similar equations for the case u1 = 0, we see that there are at

most one α with sα+1 − sα ≥ 2; namely α = 0 if u1 ≥ 1 and no such α if u1 = 0.

Thus in either case, mα+1 = sα+1 − sα = 1 for α ≥ 1. This proves the direct part.

Conversely, let mα = 1 for α ≥ 2. Then βi−1(I(u)[un+c−1]) = fi−1(Bdm(∆n−1))

∀i ≥ 1, in view of Theorem 2.3.8. Thus the cellular free resolution supported by

the labeled polyhedral cell complex Bdm(∆n−1) is minimal. �

Remark 2.3.10. In [17], it is proved that the cellular resolution supported by the

multipermutohedron P (u) is the minimal resolution of the quotient R/I(u) if and

only if mα = 1 for 2 ≤ α ≤ l. In spite of the identical resemblance, in view of

the Remark 2.3.5, the Theorem 2.3.9 about the minimal resolution of the quotient

R/I(u)[un+c−1] can not simply be deduced from the minimal resolution of R/I(u).

At the end of this chapter, we give some examples of cellular free resolutions of

the Alexander duals of multipermutohedron ideals.

Example 2.3.11. Let u = (a, a, a, b), 0 < a < b. Consider b + c− 1 = (b + c −
1, b+ c− 1, b+ c− 1, b+ c− 1), c ≥ 1. Then the Alexander dual of I(a, a, a, b) with

respect to b + c− 1 is I(a, a, a, b)[b+c−1] = 〈xb−a+c, yb−a+c, zb−a+c, tb+a−c, (xyzt)c〉
is an ideal in the polynomial ring R = k[x, y, z, t]. The polyhedral cell complex

Bdm(∆3) is obtained by subdividing a 3-simplex into four regions by choosing the

fifth vertex as the centroid and joining it with the four vertices of the 3-simplex
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(Figure 2.1). Thus Bdm(∆3) is a simplicial complex with five vertices, ten edges

and ten 2-dimensional faces and four 3-dimensional faces. Clearly, the labels on

the vertices of the 3-simplex are xb−a+c, yb−a+c, zb−a+c, tb−a+c while the label on the

centroid is (xyzt)c. The dual mu-isolated subsets are J0 = {1}, J̄0 = {4}, J1 =

{2}, J̄1 = {1, 4}, J2 = {3}, J̄2 = {2, 4}, and J̄3 = {3, 4} where Ji (or J̄i) has dual

mu-weight i. Using Corollary 2.3.6, we have βJ00 = 4, βJ̄00 = 1, βJ11 = 6, βJ̄11 =

4,βJ22 = 4, βJ̄22 = 6 and β3(J3) = 4. Thus the Betti numbers of I(a, a, a, b)[b+c−1]

are β0 = 5, β1 = 10, β2 = 10 and β3 = 4. Thus the free complex associated with

the labeled simplicial complex Bdm(∆3) is the minimal resolution of the Alexander

dual I(a, a, a, b)[b+c−1].

Figure 2.1: Polyhedral cell complex Bdm(∆3)

Example 2.3.12. Let u = (a, b, b), 0 < a < b. Consider b + c− 1 = (b +

c − 1, b + c − 1, b + c − 1), c ≥ 1. Then the Alexander dual is I(a, b, b)[b+c−1] =

〈xb−a+c, yb−a+c, zb−a+c, (xy)c, (xz)c, (yz)c〉. The polyhedral cell complex Bdm(∆2) is

obtained by subdividing a 2-simplex into four triangular regions by choosing three

more vertices as the barycenters of the three edges of the 2-simplex and joining

the barycenters with each other (Figure 2.2(i)). Thus Bdm(∆2) is a simplicial

complex having six vertices, nine edges and four triangular faces. Clearly, labels
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on the vertices of the 2-simplex are xb−a+c, yb−a+c, zb−a+c, while the labels on the

barycenters of the three edges are (xy)c, (xz)c, (yz)c. The dual mu-isolated subsets

in this case are J0 = {1}, J̄0 = {2}, J1 = {1, 2}, J̄1 = {3} and J2 = {1, 3}, where

Ji (or J̄i) has dual mu-weight i. We have βJ00 = 3, βJ̄00 = 3, βJ11 = 6, βJ̄11 = 2 and

βJ22 = 3. Thus the Betti numbers of I(a, a, b)[b+c−1] are β0 = 6, β1 = 8 and β2 = 3.

Since the number of edges of Bdm(∆2) is 9 > 8 = β1, the free complex associated

with this labeled simplicial complex is a non-minimal resolution of the Alexander

dual I(a, b, b)[b+c−1].

𝑥𝑏−𝑎+𝑐 

 𝑦𝑏−𝑎+𝑐  𝑧𝑏−𝑎+𝑐
     

  

   𝑦𝑐𝑧𝑐 

 𝑥𝑐𝑧𝑐  𝑥𝑐y𝑐   

𝑥𝑏−𝑎+𝑐 

 𝑦𝑏−𝑎+𝑐  𝑧𝑏−𝑎+𝑐
     

 𝑥𝑐𝑦𝑐𝑧𝑐   
  

(i) (ii)

Figure 2.2: Polyhedral cell complexes for Example 2.3.12 and Example 2.3.13.

Example 2.3.13. Let u = (a, a, b), 0 < a < b. Consider b + c− 1 = (b +

c − 1, b + c − 1, b + c − 1), c ≥ 1. Then the Alexander dual I(a, a, b)[b+c−1] =

〈xb−a+c, yb−a+c, zb−a+c, (xyz)c〉 is an ideal in the polynomial ring R = k[x, y, z].

The polyhedral cell complex Bdm(∆2) is obtained by subdividing a 2-simplex into

three triangular regions by choosing the fourth vertex as the centroid and joining

it with the three vertices of the 2-simplex (Figure 2.2(ii)). Thus Bdm(∆2) is a

simplicial complex with four vertices, six edges and three triangular faces. Clearly,

the labels on the vertices of the 2-simplex are xb−a+c, yb−a+c, zb−a+c while the la-

bel on the centroid is (xyz)c. The dual mu-isolated subsets are J0 = {1}, J̄0 =

{3}, J1 = {2}, J̄1 = {1, 3} and J2 = {2, 3}, where Ji (or J̄i) has dual mu-weight

i. Using Corollary 2.3.6, we have βJ00 = 3, βJ̄00 = 1, βJ11 = 3, βJ̄11 = 3 and βJ22 = 3.

Thus the Betti numbers of I(a, a, b)[b+c−1] are β0 = 4, β1 = 6 and β2 = 3. Thus

the free complex associated with the labeled simplicial complex Bdm(∆2) is the
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minimal resolution of the Alexander dual I(a, a, b)[b+c−1], which is also indicated

by Theorem 2.3.9.
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Chapter 3

Sum of Two Multipermutohedron

Ideals

In this chapter, we describe the multigraded Betti numbers of the sum of two

multipermutohedron ideals. We have used the reduced Mayer-Vietoris sequence to

calculate their multigraded Betti numbers. Alexander duals of multipermutohedron

ideals have been discussed in the second chapter. Again using the reduced Mayer-

Vietoris sequence, we also describe the multigraded Betti numbers of the Alexander

dual of the sum of two multipermutohedron ideals.

3.1 Betti numbers of the sum of two multiper-

mutohedron ideals

We shall use the same notations as in the Introduction. Let J denotes the mu-

isolated subset and Imu be set of all mu-isolated subsets of [n] (Definition 1.2.3).

In view of Theorem 1.2.4, we recall the following facts about multipermutohedron

ideals.

• For a multipermutohedron ideal I(u), the upper Koszul simplicial complex

Kb(J)(I(u)) is the join of the skeletons of simplices and

wtmu(J)− 1 = dimKb(J)(I(u)).
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• The multigraded Betti numbers βi,b(I(u)) are given as follows. For J =

{j1, j2, . . . , jt} ∈ Imu ,

βi,b(J)(I(u)) =
[ t∏
α=1

(
jα − jα−1 − 1

siα−1 − jα−1

)]
δi,wtmu (J),

where J ∩ (siα−1, siα ] = {jα} and δi,q is the Kronecker delta. If π is a permu-

tation of b(J), then βi,πb(J)(I(u)) = βi,b(J)(I(u)).

• βi,b(I(u)) = 0 if b 6= πb(J) for any J ∈ Imu and any permutation π of b(J).

Let u = (u1, . . . , un) ∈ Nn with 1 ≤ u1 ≤ u2 ≤ . . . ≤ un and v = (v1, v2, . . . , vn)

∈ Nn with 1 ≤ v1 ≤ v2 ≤ . . . ≤ vn. Consider the multipermutohedron ideals

I(u) and I(v). Then their intersection I(u) ∩ I(v) is again a multipermutohedron

ideal I(w), where w = u ∨ v with wi = max(ui, vi). Let

Bu = {b(J) ∈ Nn : J ∈ Imu}.

Similarly, we define subsets Bv and Bw of Nn and let B = Bu ∪Bv ∪Bw.

We see that the upper Koszul simplicial complexes of the sum I(u) + I(v) and

the intersection I(u) ∩ I(v) = I(w) are given by

Kb(I(u) + I(v)) = Kb(I(u)) ∪Kb(I(v)) and Kb(I(w)) = Kb(I(u)) ∩Kb(I(v)).

Suppose 41 and 42 be two simplicial complexes and let 4 = 41 ∪ 42 and

Γ = 41 ∩42, Then there is a long exact sequence of the form

. . .→ H̃i(Γ; k)
∂−−→ H̃i(41; k)⊕ H̃i(42, k)

∂−−→ H̃i(4, k)
δ−→ H̃i−1(Γ; k)→ . . . ,

where δ is the connecting homomorphism. This sequence is called the reduced

Mayer-Vietoris sequence [24]. Since the multigraded Betti numbers of a monomial

ideal are given in terms of the dimension of reduced homology groups of the upper

Koszul simplicial complex with coefficients in the field k, the Mayer-Vietoris se-

quence can be used to compute H̃i(K
b(I(u) + I(v)); k). In fact, we can take 41 =

Kb(I(u)), 42 = Kb(I(v)), then 4 = Kb(I(u)) ∪ Kb(I(v)) = Kb(I(u) + I(v))
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and Γ = Kb(I(u)) ∩Kb(I(v)) = Kb(I(w)).

As discussed earlier for any degree b ∈ Nn, there is at most one non-zero

multigraded Betti number βi,b(I(u)). Therefore many terms in the Mayer-Vietoris

sequence are zero and it is possible to obtain the dimension dimk H̃i(4; k). On

considering various possibilities for b ∈ Nn, we have the following theorem.

Theorem 3.1.1. For b = (b1, b2, . . . , bn) ∈ Nn and i ≥ 0, let βi,b(I(u) + I(v)) be

the ith multigraded Betti number of the sum of two multipermutohedron ideals I(u)

and I(v) in degree b. As βi,b(I(u)+I(v)) = βi,πb(I(u)+I(v)) for any permutation

π of b and βi,b(I(u) + I(v)) = 0 if b 6= πb′ for any b′ ∈ B and π any permutation

of b′. Thus it is enough to take b ∈ B and we have the following cases:

Case 1 : b ∈ Bu,b /∈ Bv,b /∈ Bw and wtmu(b) = q. Then

βi,b(I(u) + I(v)) =

βi,b(I(u)) if i = q,

0 otherwise.

Case 2 : b /∈ Bu,b ∈ Bv,b /∈ Bw and wtmv(b) = q.Then

βi,b(I(u) + I(v)) =

βi,b(I(v)) if i = q,

0 otherwise.

Case 3 : b /∈ Bu,b /∈ Bv,b ∈ Bw and wtmw(b) = q. Then

βi,b(I(u) + I(v)) =

βi−1,b(I(w)) if i = q + 1,

0 otherwise.

Case 4 : b ∈ Bu ∩Bv ∩Bw. Then we have the following sub-cases:

i) wtmu(b) = q, wtmv(b) = q − p, wtmw(b) = q − p− 1 for p ≥ 1. Then

βi,b(I(u) + I(v)) =


βi,b(I(u)) if i = q,

βi,b(I(v)) + βi−1,b(I(w)) if i = q − p,

0 otherwise.
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ii) wtmu(b) = q, wtmv(b) = q, wtmw(b) = q. Then

βi,b(I(u) + I(v)) =

βi,b(I(u)) + βi,b(I(v))− βi,b(I(w)) if i = q,

0 otherwise.

iii) wtmu(b) = q, wtmv(b) = q − p, wtmw(b) = q − (p + g), where p ≥ 1, g ≥ 2.

Then

βi,b(I(u) + I(v)) =



βi,b(I(u)) if i = q,

βi,b(I(v)) if i = q − p,

βi−1,b(I(w)) if i = q − (p+ g) + 1,

0 otherwise.

iv) wtmu(b) = q = wtmv(b), wtmw(b) = q − 1. Then

βi,b(I(u) + I(v)) =

βi,b(I(u)) + βi,b(I(v)) + βi−1,b(I(w)) if i = q,

0 otherwise.

v) wtmu(b) = q = wtmv(b), wtmw(b) = q − p, where p ≥ 2. Then

βi,b(I(u) + I(v)) =


βi,b(I(u)) + βi,b(I(v)) if i = q,

βi−1,b(I(w)) if i = q − p+ 1,

0 otherwise.

vi) wtmu(b) = q, wtmv(b) = wtmw(b) = q − p, where p ≥ 1. Then

βi,b(I(u) + I(v)) =


βi,b(I(u)) if i = q,

βi,b(I(v))− βi,b(I(w)) if i = q − p,

0 otherwise.

Case 5 :b ∈ Bu ∩Bw,b /∈ Bv. Then we have the following sub-cases:
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i) wtmu(b) = q, wtmw(b) = q. Then

βi,b(I(u) + I(v)) =

βi,b(I(u))− βi,b(I(w)) if i = q,

0 otherwise.

ii) wtmu(b) = q, wtmw(b) = q − 1. Then

βi,b(I(u) + I(v)) =

βi,b(I(u)) + βi−1,b(I(w)) if i = q,

0 otherwise.

iii) wtmu(b) = q, wtmw(b) = q − p for p ≥ 2. Then

βi,b(I(u) + I(v)) =


βi,b(I(u)) if i = q,

βi−1,b(I(w)) if i = q − p+ 1,

0 otherwise.

Case 6 :b ∈ Bv ∩Bw,b /∈ Bu. Then we have the following sub-cases:

i) wtmv(b) = q, wtmw(b) = q. Then

βi,b(I(u) + I(v)) =

βi,b(I(v))− βi,b(I(w)) if i = q,

0 otherwise.

ii) wtmv(b) = q, wtmw(b) = q − 1. Then

βi,b(I(u) + I(v)) =

βi,b(I(v)) + βi−1,b(I(w)) if i = q,

0 otherwise.

iii) wtmv(b) = q, wtmw(b) = q − p for p ≥ 2. Then

βi,b(I(u) + I(v)) =


βi,b(I(v)) if i = q,

βi−1,b(I(w)) if i = q − p+ 1,

0 otherwise.

57



Proof. It is enough to take b ∈ B = Bu∪Bv ∪Bw. Then we the following cases:

Case 1 : b ∈ Bu,b /∈ Bv,b /∈ Bw and wtmu(b) = q. Then only relevant portion of

Mayer-Vietoris sequence is 0 → H̃q−1(41; k) → H̃q−1(4; k) → 0. From this exact

sequence, we get the desired Betti numbers.

Case 2 : b /∈ Bu,b ∈ Bv,b /∈ Bw and wtmv(b) = q. Then only relevant portion of

Mayer-Vietoris sequence is 0 → H̃q−1(42; k) → H̃q−1(4; k) → 0. From this exact

sequence, we get the desired Betti numbers.

Case 3 : b /∈ Bu,b /∈ Bv,b ∈ Bw and wtmw(b) = q. Then only relevant portion

of Mayer-Vietoris sequence is 0 → H̃q(4; k) → H̃q−1(Γ; k) → 0. From this exact

sequence, we get the desired Betti numbers.

Case 4 : b ∈ Bu ∩Bv ∩Bw. Then we have the following sub-cases:

i) wtmu(b) = q, wtmv(b) = q − p, wtmw(b) = q − p − 1 for p ≥ 1. Then

Mayer-Vietoris sequence gives us two exact sequences. 0 → H̃q−1(41; k) →
H̃q−1(4; k) → 0 and 0 → H̃q−p−1(42; k) → H̃q−p−1(4; k) → H̃q−p−2(Γ; k) →
0. From the above exact sequences, we obtain the desired Betti numbers.

ii) wtmu(b) = q, wtmv(b) = q, wtmw(b) = q. Then only relevant portion of

Mayer-Vietoris sequence is 0 → H̃q−1(Γ; k) → H̃q−1(41; k) ⊕ H̃q−1(42; k) →
H̃q−1(4; k) → 0. From this exact sequence, we obtain the desired Betti

numbers. Note that dim41 = dim42 = q − 1 and because dim4 =

max{dim41, dim42} = q − 1, we have H̃q(4; k) = 0.

iii) wtmu(b) = q, wtmv(b) = q − p, wtmw(b) = q − (p + g), where p ≥ 1, g ≥ 2.

Then only relevant portions of Mayer-Vietoris sequence are 0→ H̃q−1(41; k)

→ H̃q−1(4; k) → 0, 0 −→ H̃q−p−1(42; k) −→ H̃q−p−1(4; k) −→ 0 and 0 −→
H̃q−(p+g)(4; k) −→ H̃q−(p+g+1)(Γ; k) −→ 0. These exact sequences gives us

the desired Betti numbers.

iv) wtmu(b) = q = wtmv(b), wtmw(b) = q − 1. Then only relevant portion of

Mayer-Vietoris sequence is 0 → H̃q−1(41; k) ⊕ H̃q−1(42; k) → H̃q−1(4; k) →
H̃q−2(Γ; k) → 0. From this exact sequence, we obtain the desired Betti num-

bers.
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v) wtmu(b) = q = wtmv(b), wtmw(b) = q − p, where p ≥ 2.

Then only relevant portions of Mayer-Vietoris sequence are 0→ H̃q−1(41; k)

⊕ H̃q−1(42; k) → H̃q−1(4; k) → 0 and 0 → H̃q−p(4; k) → H̃q−p−1(Γ; k) → 0.

These exact sequences gives us the desired Betti numbers.

vi) wtmu(b) = q, wtmv(b) = wtmw(b) = q − p where p ≥ 1. Then Mayer-Vietoris

sequence reduces to 0 → H̃q−1(41; k) → H̃q−1(4; k) → 0 → H̃q−p(4; k)
δ−→

H̃q−p−1(Γ; k) → H̃q−p−1(42; k) → H̃q−p−1(4; k) → 0, where δ is a connecting

homomorphism.

Claim : The connecting homomorphism δ : H̃q−p(4; k) → H̃q−p−1(Γ; k) is

zero.

Let z ∈ H̃q−p(4; k). Then z = c1 + c2 with ∂z = 0 and ci is a k-valued (q−p)-
chain of 4i; i = 1, 2. As ∂(z) = 0, we have ∂(c1) = −∂(c2). Therefore the

connecting homomorphism is given by δ(z) = ∂(c1) = −∂(c2). Since dim42 =

dimKb(I(v)) = wtmv(b) − 1 = q − p − 1, we have c2 = 0. This proves the

claim. Thus we have the exact sequences 0→ H̃q−1(41; k)→ H̃q−1(4; k)→ 0

and 0 → H̃q−p−1(Γ; k) → H̃q−p−1(42; k) → H̃q−p−1(4; k) → 0. These exact

sequences gives us the desired Betti numbers.

Case 5 : b ∈ Bu ∩Bw,b /∈ Bv. Then we have the following sub-cases:

i) wtmu(b) = q, wtmw(b) = q. Then only relevant portion of Mayer-Vietoris se-

quence is 0→ H̃q−1(Γ; k)→ H̃q−1(41; k)→ H̃q−1(4; k)→ 0. From the above

exact sequences, we obtain the desired Betti numbers. We prove that the con-

necting homomorphism δ : H̃q(4; k) → H̃q−1(Γ; k) is zero. Let z ∈ H̃q(4; k).

Then z = c1 + c2 with ∂z = 0 and ci a k-valued q-chain of 4i; i = 1, 2.

As ∂(z) = 0, we have ∂(c1) = −∂(c2). Therefore the connecting homomor-

phism is given by δ(z) = ∂(c1) = −∂(c2). Since dim41 = dimKb(I(u)) =

wtmu(b)− 1 = q − 1, we have c1 = 0.

ii) wtmu(b) = q, wtmw(b) = q − 1. Then only relevant portion of Mayer-Vietoris

sequence is 0 → H̃q−1(41; k) → H̃q−1(4; k) → H̃q−2(Γ; k) → 0. From this

exact sequence, we obtain the desired Betti numbers.
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iii) wtmu(b) = q, wtmw(b) = q − p, where p ≥ 2. Then only relevant por-

tions of Mayer-Vietoris sequence are 0 → H̃q−1(41; k) → H̃q−1(4; k) → 0,

0 −→ H̃q−p(4; k) −→ H̃q−p−1(Γ; k) −→ 0. These exact sequences gives us the

desired Betti numbers.

Proof of Case 6 is as in the Case 5. �

We remark that Bu ∩ Bv ⊆ Bw and all the above cases are relevant. Using

Theorem 3.1.1 we shall illustrate the computation of Betti numbers of I(u) + I(v)

in the following example.

Example 3.1.2. Let u = (1, 2, 3, 4, 6, 6) and v = (1, 4, 4, 4, 5, 6) and w = (1, 4, 4, 4, 6, 6).

Writing (a, b, b, c, c, c) compactly as (a, b2, c3), it can be checked that

Bu = {(1, 65), (22, 64), (33, 63), (44, 62), (1, 2, 3, 4, 62), (1, 2, 3, 63), (1, 2, 42, 62),

(22, 3, 4, 62), (1, 32, 4, 62), (1, 2, 64), (1, 32, 63), (1, 43, 62), (22, 3, 63), (22, 42, 62),

(33, 4, 62), (66)},

Bv = {(1, 65), (42, 64), (43, 63), (44, 62), (1, 4, 64), (1, 42, 63), (1, 43, 62), (66)}, and

Bw = {(1, 65), (42, 64), (43, 63), (44, 62), (55, 6), (1, 4, 64), (1, 42, 63), (1, 43, 62), (1, 54, 6),

(42, 53, 6), (43, 52, 6), (44, 5, 6), (1, 4, 53, 6), (1, 42, 52, 6), (1, 43, 5, 6), (66)}.

If b ∈ Bu only (i.e. b /∈ Bv ∪Bw), then βi,b(I(u) + I(v)) = βi,b(I(u)). For in-

stance b = (22, 3, 4, 62), then β1,b(I(u)+I(v)) = β1,b(I(u)) = 1, where wtmu(b) =

1. and βi,b(I(u) + I(v)) = 0 for all i 6= 1. Similarly, we can calculate the Betti

numbers of I(u) + I(v) for b ∈ Bv only (or b ∈ Bw only). Also

Bu ∩Bw = {(1, 65), (44, 62), (1, 43, 62), (66)} = Bu ∩Bv ∩Bw , and

Bv ∩Bw = {(1, 65), (42, 62), (1, 43, 62), (66), (42, 64), (43, 63), (1, 4, 64), (1, 42, 63)}.

If b ∈ Bu ∩ Bv ∩ Bw, for instance b = (44, 62), then wtmu(b) = 3, wtmv(b) =

2, wtmw(b) = 1. In view of Theorem 3.1.1,β3,b(I(u) + I(v)) = β3,b(I(u)) = 1,

β2,b(I(u) + I(v)) = β2,b(I(v)) + β1,b(I(w)) = 3 + 3 = 6 and βi,b(I(u) + I(v)) = 0
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for all i 6= 2, 3. On the other hand, if b ∈ Bv ∩ Bw but b /∈ Bu, for instance

b = (43, 63), then wtmv(b) = 3, wtmw(b) = 2. Again by Theorem 3.1.1, we have

β3,b(I(u) + I(v)) = β3,b(I(v)) + β2,b(I(w)) = 2 + 4 = 6 and βi,b(I(u) + I(v)) = 0

for all i 6= 3. Similarly, other Betti numbers can be calculated.

3.2 Betti numbers of an Alexander dual of the

sum of two multipermutohedron ideals

Now we proceed to calculate the Betti numbers of an Alexander dual of the sum

of two multipermutohedron ideals. For a monomial ideal I, the multigraded Betti

numbers of I in degree b are given by βi,b(I) = dimk H̃|Supp(b)|−i−2(Kb(I); k); i ≥
0, where the support Supp(b) = {i : bi > 0}. Set a = wn + c− 1 = (wn + c −
1, wn + c− 1, . . . , wn + c− 1) for c ≥ 1. Let I(u)[a], I(v)[a], I(w)[a] be Alexander

duals of I(u), I(v) and I(w) with respect to a.

It is easy to see that I
[a]
1 + I

[a]
2 = (I1 ∩ I2)[a] and I

[a]
1 ∩ I

[a]
2 = (I1 + I2)[a], for

monomial ideals I1 and I2, whose minimal generators divides xa. Also,

Kb(I1 + I2) = Kb(I1) ∩Kb(I2) and Kb(I1 ∩ I2) = Kb(I1) ∪Kb(I2).

Let J be a dual mu-isolated subset of [n] and I∗mu
be the set of all dual mu-

isolated subsets of [n] (Definition 2.3.2). Let B̃u = {b̃(J) ∈ Nn : J ∈ I∗mu
}.

Similarly, we define B̃v and B̃w and let B̃ = B̃u ∪ B̃v ∪ B̃w. In view of Theorem

2.3.4, we have the following facts.

• The lower Koszul simplicial complex Kb̃(J)(I(u)[un+c−1]) of an Alexander dual

I(u)[un+c−1] of a multipermutohedron ideal I(u) is join of skeletons of sim-

plices and

dimKb̃(J)(I(u)[un+c−1]) = jt − dwtmu(J)− 2.

• The multigraded Betti numbers of I(u)[un+c−1] are given as follows. For
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J = {j1, j2, . . . , jt} ∈ I∗mu
,

βi−1,b̃(J)(I(u)[un+c−1]) =
[ t∏
α=1

(
jα − jα−1 − 1

siα−1 − jα−1

)]
δi−1,dwtmu (J),

where J ∩ (siα−1, siα ] = {jα}. If π is a permutation of b̃(J), then

βi−1,πb̃(J)(I(u)[un+c−1]) = βi−1,b̃(J)(I(u)[un+c−1]).

• If b 6= πb̃(J) for any J ∈ I∗mu
(〈i− 1〉) and any permutation π of b̃(J), then

βi−1,b(I(u)[un+c−1]) = 0.

If we take 41 = Kb(I(u)[a]), 42 = Kb(I(v)[a]), then 4 = Kb((I(u) + I(v))[a])

and Γ = Kb(I(w)[a]). This again give rise to a reduced Mayer-Vietoris sequence of

homology groups. Again, many terms in the reduced Mayer-Vietoris sequence are

zero. Thus we can calculate the multigraded Betti numbers of (I(u) + I(v))[a].

Theorem 3.2.1. For b = (b1, b2, . . . , bn) ∈ Nn and i ≥ 0, let βi,b(I(u) + I(v))[a]

be the ith multigraded Betti number of the Alexander dual of the sum of two mul-

tipermutohedron ideals I(u) and I(v) in degree b. As βi,b((I(u) + I(v))[a]) =

βi,πb((I(u) + I(v))[a]) for any permutation π of b and βi,b((I(u) + I(v))[a]) = 0 if

b 6= πb′, for b′ any element of B̃ and π any permutation of b′. Thus, it is enough

to take b ∈ B̃ and we have the following cases:

Case 1 : b ∈ B̃u,b /∈ B̃v,b /∈ B̃w and dwtmu(b) = q. Then

βi,b((I(u) + I(v))[a]) =

βi,b(I(u)[a]) if i = q,

0 otherwise.

Case 2 : For b /∈ B̃u,b ∈ B̃v,b /∈ B̃w and dwtmv(b) = q. Then

βi,b((I(u) + I(v))[a]) =

βi,b(I(v)[a]) if i = q,

0 otherwise.
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Case 3 : For b /∈ B̃u,b /∈ B̃v,b ∈ B̃w and dwtmw(b) = q. Then

βi−1,b((I(u) + I(v))[a]) =

βi,b(I(w)[a]) if i = q,

0 otherwise.

Case 4 : b ∈ B̃u ∩ B̃v ∩ B̃w. Then we have the following sub-cases:

i) dwtmu(b) = q, dwtmv(b) = q + p, dwtmw(b) = q + p+ 1 for p ≥ 1. Then

βi,b((I(u) + I(v))[a]) =


βi,b(I(u)[a]) if i = q,

βi,b(I(v)[a]) + βi+1,b(I(w)[a]) if i = q + p,

0 otherwise.

ii) dwtmu(b) = q, dwtmv(b) = q, dwtmw(b) = q. Then

βi,b((I(u)+I(v))[a]) =

βi,b(I(u)[a]) + βi,b(I(v)[a])− βi,b(I(w)[a]) if i = q,

0 otherwise.

iii) dwtmu(b) = q, dwtmv(b) = q+ p, dwtmw(b) = q+ (p+ g), where p ≥ 1, g ≥ 2.

Then

βi,b((I(u) + I(v))[a]) =



βi,b(I(u)[a]) if i = q,

βi,b(I(v)[a]) if i = q + p,

βi+1,b(I(w)[a]) if i = q + p+ g − 1,

0 otherwise.

iv) dwtmu(b) = q = dwtmv(b), dwtmw(b) = q + 1. Then

βi,b((I(u) + I(v))[a]) =

βi,b(I(u)[a]) + βi,b(I(v)[a]) + βi+1,b(I(w)[a]) if i = q,

0 otherwise.
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v) dwtmu(b) = q = dwtmv(b), dwtmw(b) = q + p, where p ≥ 2. Then

βi,b((I(u) + I(v))[a]) =


βi,b(I(u)[a]) + βi,b(I(v)[a]) if i = q,

βi+1,b(I(w)[a]) if i = q + p− 1,

0 otherwise.

vi) dwtmu(b) = q, dwtmv(b) = dwtmw(b) = q + p where p ≥ 1. Then

βi,b((I(u) + I(v))[a]) =


βi,b(I(u)[a]) if i = q,

βi,b(I(v)[a])− βi,b(I(w)[a]) if i = q + p,

0 otherwise.

Case 5 :b ∈ B̃u ∩ B̃w,b /∈ B̃v. Then we have the following sub-cases:

i) dwtmu(b) = q, dwtmw(b) = q. Then

βi,b((I(u) + I(v))[a]) =

βi,b(I(u)[a])− βi,b(I(w)[a]) if i = q,

0 otherwise.

ii) dwtmu(b) = q, dwtmw(b) = q + 1. Then

βi,b((I(u) + I(v))[a]) =

βi,b(I(u)[a]) + βi+1,b(I(w)[a]) if i = q,

0 otherwise.

iii) dwtmu(b) = q, dwtmw(b) = q + p for p ≥ 2. Then

βi,b((I(u) + I(v))[a]) =


βi,b(I(u)[a]) if i = q,

βi+1,b(I(w)[a]) if i = q + p− 1,

0 otherwise.

Case 6 :b ∈ B̃v ∩ B̃w,b /∈ B̃u. Then we have the following sub-cases:

i) dwtmv(b) = q, dwtmw(b) = q. Then
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βi,b((I(u) + I(v))[a]) =

βi,b(I(v)[a])− βi,b(I(w)[a]) if i = q,

0 otherwise.

ii) dwtmv(b) = q, dwtmw(b) = q + 1. Then

βi,b((I(u) + I(v))[a]) =

βi,b(I(v)[a]) + βi+1,b(I(w)[a]) if i = q,

0 otherwise.

iii) dwtmv(b) = q, dwtmw(b) = q + p for p ≥ 2. Then

βi,b((I(u) + I(v))[a]) =


βi,b(I(v)[a]) if i = q,

βi+1,b(I(w)[a]) if i = q + p− 1,

0 otherwise.

Proof. It is enough to take b ∈ B̃ = B̃u∪ B̃v ∪ B̃w. Then we the following cases:

Case 1 : b ∈ B̃u,b /∈ B̃v,b /∈ B̃w and dwtmu(b) = q. Then only relevant portion

of Mayer-Vietoris sequence is 0→ H̃jt−q−2(41; k)→ H̃jt−q−2(4; k)→ 0. From this

exact sequence, we get the desired Betti numbers.

Case 2 : b /∈ Bu,b ∈ B̃v,b /∈ B̃w and dwtmv(b) = q. Then only relevant portion

of Mayer-Vietoris sequence is 0→ H̃jt−q−2(42; k)→ H̃jt−q−2(4; k)→ 0. From this

exact sequence, we get the desired Betti numbers.

Case 3 : b /∈ B̃u,b /∈ B̃v,b ∈ B̃w and dwtmw(b) = q. Then only relevant portion

of Mayer-Vietoris sequence is 0 → H̃jt−(q−1)−2(4; k) → H̃jt−q−2(Γ; k) → 0. From

this exact sequence, we get the desired Betti numbers.

Case 4 : b ∈ B̃u ∩ B̃v ∩ B̃w. Then we have the following sub-cases:

i) dwtmu(b) = q, dwtmv(b) = q + p, dwtmw(b) = q + p + 1 for p ≥ 1. Then

Mayer-Vietoris sequence gives us two exact sequences. 0→ H̃jt−q−2(41; k)→
H̃jt−q−2(4; k) → 0 and 0 −→ H̃jt−(q+p)−2(42; k) −→ H̃jt−(q+p)−2(4; k) −→
H̃jt−(q+p+1)−2(Γ; k) → 0. From the above exact sequences, we obtain the

desired Betti numbers.

ii) dwtmu(b) = q, dwtmv(b) = q, dwtmw(b) = q. Then only relevant portion of
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Mayer-Vietoris sequence is 0→ H̃jt−q−2(Γ; k)→ H̃jt−q−2(41; k)⊕ H̃jt−q−2(42; k)

→ H̃jt−q−2(4; k)→ 0. From this exact sequence, we obtain the desired Betti

numbers. Note that dim41 = dim42 = jt − q − 2 and because dim4 =

max{dim41, dim42} = jt − q − 2, we have H̃jt−(q−1)−2(4; k) = 0.

iii) dwtmu(b) = q, dwtmv(b) = q + p, dwtmw(b) = q + (p + g), where p ≥ 1, g ≥
2. In this case the only relevant portions of Mayer-Vietoris sequence are

0 −→ H̃jt−q−2(41; k) −→ H̃jt−q−2(4; k) −→ 0, 0 −→ H̃jt−(q+p)−2(42; k) −→
H̃jt−(q+p)−2(4; k) −→ 0 and 0 −→ H̃jt−(q+p+g−1)−2(4; k) −→ H̃jt−(q+p+g)−2(Γ; k)

−→ 0. These exact sequences gives us the desired Betti numbers.

iv) dwtmu(b) = q = dwtmv(b), dwtmw(b) = q + 1. Then only relevant por-

tion of Mayer-Vietoris sequence is 0 → H̃jt−q−2(41; k) ⊕ H̃jt−q−2(42; k) →
H̃jt−q−2(4; k) → H̃jt−(q+1)−2(Γ; k) → 0. From this exact sequence, we obtain

the desired Betti numbers.

v) dwtmu(b) = q = dwtmv(b), dwtmw(b) = q + p, where p ≥ 2.

Then only relevant portions of Mayer-Vietoris sequence are 0→ H̃jt−q−2(41; k)

⊕ H̃jt−q−2(42; k) → H̃jt−q−2(4; k) → 0 and 0 −→ H̃jt−(q+p−1)−2(4; k) −→
H̃jt−(q+p)−2(Γ; k) −→ 0. These exact sequences gives us the desired Betti

numbers.

vi) dwtmu(b) = q, dwtmv(b) = dwtmw(b) = q + p where p ≥ 1. Then Mayer-

Vietoris sequence reduces to 0 −→ H̃jt−q−2(41; k) −→ H̃jt−q−2(4; k) →
0 −→ H̃jt−(q+p−1)−2(4; k)

δ−→ H̃jt−(q+p)−2(Γ; k) → H̃jt−(q+p)−2(42; k) −→
H̃jt−(q+p)−2(4; k)→ 0, where δ is a connecting homomorphism.

Claim : δ : H̃jt−(q+p−1)−2(4; k) → H̃jt−(q+p)−2(Γ; k) is a zero connecting ho-

momorphism.

Let z ∈ H̃jt−(q+p−1)−2(4; k). Then z = c1 + c2 with ∂z = 0 and ci is a

k-valued (jt − (q + p − 1) − 2)-chain of 4i; i = 1, 2. As ∂(z) = 0, we

have ∂(c1) = −∂(c2). Therefore the connecting homomorphism is given by

δ(z) = ∂(c1) = −∂(c2). Since dim42 = dimKb(I(v)[a]) = jt − (q + p) − 2,

we have c2 = 0. This proves the claim. Thus we have the exact sequences
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0 → H̃jt−q−2(41; k) → H̃jt−q−2(4; k) → 0 and 0 → H̃jt−(q+p)−2(Γ; k) →
H̃jt−(q+p)−2(42; k) → H̃jt−(q+p)−2(4; k) → 0. These exact sequences gives us

the desired Betti numbers.

Case 5 : b ∈ B̃u ∩ B̃w,b /∈ B̃v. Then we have the following sub-cases:

i) dwtmu(b) = q, dwtmw(b) = q. Then only relevant portion of Mayer-Vietoris

sequence is 0 → H̃jt−q−2(Γ; k) → H̃jt−q−2(41; k) → H̃jt−q−2(4; k) → 0. From

the above exact sequences, we obtain the desired Betti numbers. We prove

that the connecting homomorphism δ : H̃jt−(q−1)−2(4; k) → H̃jt−q−2(Γ; k) is

zero. Let z ∈ H̃jt−(q−1)−2(4; k). Then z = c1+c2 with ∂z = 0 and ci a k-valued

(jt − (q − 1)− 2)-chain of 4i; i = 1, 2. As ∂(z) = 0, we have ∂(c1) = −∂(c2).

Therefore the connecting homomorphism is given by δ(z) = ∂(c1) = −∂(c2).

Since dim41 = dimKb(I(u)[a]) = jt − q − 2, we have c1 = 0.

ii) dwtmu(b) = q, dwtmw(b) = q + 1. In this case the only relevant portion

of Mayer-Vietoris sequence is 0 −→ H̃jt−q−2(41; k) −→ H̃jt−q−2(4; k) −→
H̃jt−(q+1)−2(Γ; k) → 0. From this exact sequence, we obtain the desired Betti

numbers.

iii) dwtmu(b) = q, dwtmw(b) = q + p, where p ≥ 2. Then only relevant portions

of Mayer-Vietoris sequence are 0 → H̃jt−q−2(41; k) → H̃jt−q−2(4; k) → 0,

0 → H̃jt−(q+p−1)−2(4; k) → H̃jt−(q+p)−2(Γ; k) → 0. These exact sequences

gives us the desired Betti numbers.

Proof of Case 6 is as in the Case 5. �

Example 3.2.2. Let u = (1, 2, 4, 4, 4) and v = (2, 2, 3, 3, 4) and w = (2, 2, 4, 4, 4).
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It can be checked that

B̃u = {(4, 0, 0, 0, 0), (3, 3, 0, 0, 0), (1, 1, 1, 0, 0), (1, 1, 1, 1, 0),

(1, 1, 1, 1, 1), (4, 3, 0, 0, 0), (4, 1, 1, 0, 0), (4, 1, 1, 1, 0),

(4, 1, 1, 1, 1), (3, 3, 1, 0, 0), (3, 3, 1, 1, 0), (3, 3, 1, 1, 1),

(4, 3, 1, 0, 0), (4, 3, 1, 1, 0), (4, 3, 1, 1, 1)},

B̃v = {(3, 0, 0, 0, 0), (3, 3, 0, 0, 0), (2, 2, 2, 0, 0), (2, 2, 2, 2, 0),

(1, 1, 1, 1, 1), (3, 2, 2, 0, 0), (3, 2, 2, 2, 0), (3, 1, 1, 1, 1),

(3, 3, 2, 0, 0), (3, 3, 2, 2, 0), (3, 3, 1, 1, 1), (2, 2, 2, 1, 1),

(2, 2, 2, 2, 1), (3, 2, 2, 1, 1), (3, 2, 2, 2, 1), (3, 3, 2, 1, 1),

(3, 3, 2, 2, 1)},

B̃w = {(3, 0, 0, 0, 0), (3, 3, 0, 0, 0), (1, 1, 1, 0, 0), (1, 1, 1, 1, 0),

(1, 1, 1, 1, 1), (3, 1, 1, 0, 0), (3, 1, 1, 1, 0), (3, 1, 1, 1, 1),

(3, 3, 1, 0, 0), (3, 3, 1, 1, 0), (3, 3, 1, 1, 1)},

B̃u ∩ B̃w = {(3, 3, 0, 0, 0), (1, 1, 1, 0, 0), (1, 1, 1, 1, 0), (1, 1, 1, 1, 1),

(3, 3, 1, 0, 0), (3, 3, 1, 1, 0), (3, 3, 1, 1, 1)},

B̃v ∩ B̃w = {(3, 0, 0, 0, 0), (3, 3, 0, 0, 0), (1, 1, 1, 1, 1), (3, 1, 1, 1, 1),

(3, 3, 1, 1, 1)},

B̃u ∩ B̃v ∩ B̃w = {(3, 3, 0, 0, 0), (1, 1, 1, 1, 1), (3, 3, 1, 1, 1)}.

If b ∈ B̃u only (i.e. b /∈ B̃v ∪ B̃w), then βi,b((I(u) + I(v))[a]) = βi,b(I(u)[a]),

where dwtmu = i. For instance b = (4, 3, 0, 0, 0), then β1,b((I(u) + I(v))[a])) =

β1,b(I(u)[a]) = 1, where dwtmu(b) = 1. and βi,b((I(u) + I(v))[a]) = 0 for all i 6= 1.

Similarly, we can calculate the Betti numbers of (I(u) + I(v))[a] for b ∈ B̃v only

(or b ∈ B̃w only). If b ∈ B̃u ∩ B̃v ∩ B̃w, for instance b = (3, 3, 1, 1, 1), then

dwtmu(b) = 3, dwtmv(b) = 2, dwtmw(b) = 4. In view of Theorem 3.2.1, we have

β2,b((I(u) + I(v))[a]) = β2,b(I(v)[a]) = 1, β3,b((I(u) + I(v))[a]) = β3,b(I(u)[a]) +

β4,b(I(w)[a]) = 1+1 = 2 and βi,b((I(u)+I(v))[a]) = 0 for all i 6= 2, 3. If b ∈ B̃v∩B̃w

but b /∈ B̃u, for instance b = (3, 1, 1, 1, 1), then dwtmv(b) = 1, dwtmw(b) = 3.
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Again by Theorem 3.1.1, we have β1,b((I(u) + I(v))[a]) = β1,b(I(v)[a]) = 1 and

β2,b((I(u) + I(v))[a]) = β3,b(I(w)[a]) = 3. If b ∈ B̃u ∩ B̃w but b /∈ B̃v, for instance

b = (3, 3, 1, 1, 0), then dwtmu(b) = 2, dwtmw(b) = 3. Again by Theorem 3.1.1, we

have β2,b((I(u) + I(v))[a]) = β2,b(I(u)[a]) + β3,b(I(w)[a]) = 1 + 1 = 2.

As u1 ≥ 1, v1 ≥ 1, so R/I((u)) + I(v))[a], R/I(u)[a], R/I(v)[a] are Artinian

k-algebras and dimk(R/(I(u) + I(v))[a]) is given by the following lemma.

Lemma 3.2.3. For an Artinian k-algebra R/(I(u) + I(v))[a], we have

dimk(R/(I(u) + I(v))[a]) = dimk(R/(I(u))[a]) + dimk(R/(I(v))[a])

− dimk(R/(I(u) ∩ I(v))[a]).

Proof. For ideals I1 and I2 in R, there exist an exact sequence of R-modules

0→ R/(I1 ∩ I2)→ R/I1 ⊕R/I2 → R/(I1 + I2)→ 0.

Now taking I1 = I(u)[a] and I2 = I(v)[a], the desired result follows. �

Remark 3.2.4. It is easy to check that Modular law holds for monomial ide-

als. In other words, if I, J and K are monomial ideals in a polynomial ring

R = k[x1, x2, . . . , xn], then I ∩ (J +K) = I ∩J + I ∩K. Thus if I(ui) are multiper-

mutohedron ideals such that R/I(ui)
[a] are Artinian k-algebras for 1 ≤ i ≤ l, then

using the inclusion-exclusion principle we have the following formula in general.

dimk

(
R

(
∑l

i=1 I(ui))[a]

)
=

l∑
i=1

dimk

(
R

I(ui)[a]

)
−

∑
1≤i<j≤l

dimk

(
R

(I(ui) ∩ I(uj))[a]

)

+ . . .+ (−1)l−1 dimk

(
R

(I(u1) ∩ I(u2) ∩ . . . ∩ I(ul))[a]

)
.

It is clear that the intersection of multipermutohedron ideals is again a multipermu-

tohedron ideal. Each term dimk

(
R

(
⋂j
α=1 I(uiα ))[a]

)
in the RHS of the above expression

can be calculated using the Steck determinant formula (Theorem 3.1.1). Thus the

quantity dimk

(
R

(
∑l
i=1 I(ui))

[a]

)
in LHS can also be calculated.
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Chapter 4

Split-Multipermutohedron Ideals

In this chapter, we introduce a variant of multipermutohedron ideals called split-

multipermutohedron ideals. We study the Alxander duals of these ideals. We also

calculate the Betti numbers of split-multipermutohedron ideals and their Alexander

duals.

4.1 Betti numbers of split-multipermutohedron

ideals

Let n = r+s with r, s ≥ 1, be a positive integer and let Sn be the set of all permu-

tations of {1, 2, . . . , n}. Consider the subset H of Sn consisting of permutations of

the type (σ1, σ2), where σ1 is a permutation of {1, 2, . . . , r} and σ2 is a permutation

of {r+ 1, . . . , r+ s = n}. Clearly H is a subgroup isomorphic to Sr×Ss. Let u =

(u1, u2, . . . , un) ∈ Nn with 0 ≤ u1 ≤ u2 ≤ . . . ≤ un. The convex hull of the points

σu for σ ∈ H is a polytope, which is just the product of multipermutohedrons

P (v)× P (w), where v = (u1, . . . , ur) and w = (ur+1, . . . , un) = (w1, w2, . . . , ws).

Definition 4.1.1. The monomial ideal I = 〈xσ1vyσ2w : (σ1, σ2) ∈ H〉 in the

polynomial ring k[x,y] = k[x1, x2, . . . , xr, y1, . . . , ys], with yj = xr+j is called a

split-multipermutohedron ideal.

We notice that the ideal I = I(v)⊗kI(w), where I(v) and I(w) are the mul-

tipermutohedron ideals. Thus the split-multipermutohedron ideal I depends on
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the splitting of the vector u = (v,w), but instead of denoting it by a cum-

bersome notation I(v,w), we simply write I without causing any confusion. Let

R1 = k[x1, x2, . . . , xr] and R2 = k[y1, y2, . . . , ys] be polynomials rings over a field

k and R = R1 ⊗k R2 = k[x]⊗kk[y] ∼= k[x,y]. Let b ∈ Nn, then we can write

b = (bv,bw), where bv = (b1, b2, . . . , br) and bw = (br+1, br+2, . . . , bn).

Lemma 4.1.2. The upper Koszul simplicial complex Kb(I) of I in degree b =

(bv,bw) is given by

Kb(I) = Kbv(I(v)) ∗Kbw(I(w)),

where ∗ denotes the simplicial join.

Proof. For a square-free vector τ = (τv, τw), we have

τ ∈ Kb(I) ⇔ x(bv−τv,bw−τw) ∈ I

⇔ xbv−τv ∈ I(v) and xbw−τw ∈ I(w)

⇔ τv ∈ Kbv(I(v)) and τw ∈ Kbw(I(w))

⇔ τ = (τv, τw) ∈ Kbv(I(v)) ∗Kbw(I(w)).

This completes the proof. �

Let Σ1 and Σ2 be two simplicial complexes. Then the Künneth formula for the

homology vector space of the join Σ1 ∗ Σ2 is given by

H̃i−1(Σ1 ∗ Σ2; k) =
⊕

p+q=i−2

H̃p(Σ1; k)⊗ H̃q(Σ2; k). (4.1.1)

We shall use this formula to calculate the multigraded Betti numbers of split-

multipermutohedron ideals and their Alexander duals.

Proposition 4.1.3. The multigraded Betti numbers of a split-multipermutohedron

ideal I exist only in the multidegree b of the form b = (bv,bw) and

βi,b(I) = βp,bv(I(v))βq,bw(I(w)),
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where bv = b(J), bw = b(J ′) for J ∈ Imv , J ′ ∈ Imw (as in Definition 1.2.3)

and wtmv(bv) = p, wtmw(bw) = q with p+ q = i.

Proof. In view of Theorem 3.5 in [17], it is sufficient to take b = (bv,bw), where

bv = b(J), bw = b(J ′) for J ∈ Imv , J ′ ∈ Imw . From the Lemma 4.1.2 we have

Kb(I) = Kbv(I(v)) ∗ Kbw(I(w)). Thus using the Künneth formula 4.1.1 for the

join of simplicial complexes, we have

βi,b(I) =
∑
p+q=i

βp,bv(I(v))βq,bw(I(w)). (4.1.2)

Further, in view of Theorem 3.5 in [17], we observe that

βp,bv(I(v)) 6= 0⇔ p = wtmv(bv).

Hence we have the desired result. �

Remark 4.1.4. From the last proposition, ith Betti number βi(I) can easily be

calculated. We have

βi(I) =
∑
b

βi,b(I)

=
∑

b=(bv,bw)

∑
p+q=i

(βp,bv(I(v))βq,bw(I(w))) (4.1.2)

=
∑
p+q=i

(∑
bv

βp,bv(I(v))

)(∑
bw

βq,bw(I(w))

)
=

∑
p+q=i

βp(I(v))βq(I(w)).

However, the above result on Betti numbers βi(I) of split-multipermutohedron

ideals is true for a large class of ideals. Let I1 and I2 be ideals in polynomial

rings k[x] and k[y], respectively. Suppose F∗ → I1 and G∗ → I2 are minimal free

resolutions. Then it is known that the tensor complex F∗⊗kG∗ is the minimal free

resolution of I1⊗k I2. Hence formula for the ith Betti number of I holds in general

for ideals of the form I1 ⊗k I2.
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4.2 Alexander duals of split multipermutohedron

ideals

Let v and w be defined as above. Set vr = (ur, ur, . . . , ur) ∈ Rr and ws =

(un, un, . . . , un) ∈ Rs.

Lemma 4.2.1. Let a = (vr,ws) = (ur, ur, . . . , ur, un, un, . . . , un). Then the Alexan-

der dual of I with respect to a is given by

I [a] = I(v)[vr] ⊗k R2 +R1 ⊗k I(w)[ws].

Proof. We recall that, for any b = (b1, b2, . . . , bn) with a− b ∈ Nn, the monomial

xb /∈ I if and only if xa−b ∈ I [a] (Proposition 1.1.26). Clearly xa−b is a minimal

generator of I [a] precisely when b is maximal. Thus a maximal b � a with xb /∈ I
is either b = (b1,ws), where b1 is maximal with xb1 /∈ I(v) or b = (vr,b2), where

b2 is maximal with xb2 /∈ I(w). Hence

I [a] = I(v)[vr] ⊗k R2 +R1 ⊗k I(w)[ws].

This completes the proof. �

Lemma 4.2.2. The lower Koszul simplicial complex Kb(I [a]) of I [a] in degree

b = (bv,bw) is given by

Kb(I [a]) = Kbv(I(v)[vr]) ∗Kbw(I(w)[ws]),

where ∗ denotes the simplicial join.

Proof. For a square-free vector τ = (τv, τw), we have

τ ∈ Kb(I [a]) ⇔ x(b′v+τv,b′w+τw) /∈ I [a] (Definition 1.1.18)

⇔ xb′v+τv /∈ I(v)[vr] and xb′w+τw /∈ I(w)[ws]

⇔ τv ∈ Kbv(I(v)[vr]) and τw ∈ Kbw(I(w)[ws])

⇔ τ = (τv, τw) ∈ Kbv(I(v)[vr]) ∗Kbw(I(w)[ws]).
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This completes the proof. �

Theorem 4.2.3. The multigraded Betti numbers of R/I [a] exist only in the multi-

degree b of the form b = (bv,bw) and

βi,b(R/I [a]) = βp,bv(R1/I(v)[vr])βq,bw(R2/I(w)[ws]),

where bv = b̃(J), bw = b̃(J ′) for J ∈ I∗mv
, J ′ ∈ I∗mw

(as in Definition 2.3.2) and

p = dwtmv(bv), q = dwtmw(bw) with p+ q = i.

Proof. In view of Theorem 2.3.4, it is sufficient to take b = (bv,bw), where

bv = b̃(J), bw = b̃(J ′) for J ∈ I∗mv
, J ′ ∈ I∗mw

. From the Lemma 4.2.2, we have

Kb(I [a]) = Kbv(I(v)[vr]) ∗Kbw(I(w)[ws]). Thus using the Künneth formula 4.1.1,

we have

βi,b(R/I [a]) =
∑
p+q=i

βp,bv(R1/I(v)[vr])βq,bw(R2/I(w)[ws]).

Further from Theorem 2.3.4, we observe that

βp,bv(I [a]) 6= 0⇔ p = dwtmv(bv).

Hence we have the required result. �

Remark 4.2.4. As in the case of split-multipermutohedron ideal, we can prove

that

βi(R/I [a]) =
∑
p+q=i

βp(R1/I(v)[vr])βq(R2/I(w)[ws]).

It follows from the above formula that if the cellular free complex supported on a

polyhedral cell complex41 gives us the (minimal) free resolution of R1/I(v)[vr] and

the cellular free complex supported on a polyhedral cell complex 42 gives us the

(minimal) free resolution of R2/I(w)[ws] then the cellular free complex supported

on the join 41 ∗ 42 gives us the (minimal) free resolution of R/I. We illustrate

this fact with the following example.

Example 4.2.5. Let v = (1, 2, 2) , w = (3, 4). Then v3 = (2, 2, 2),w2 = (4, 4)
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and set a = (2, 2, 2, 4, 4). We see that

I(v)[v3] = 〈x2, y2, z2, xy, yz, zx〉,

and

I(w)[w2] = 〈s2, t2, ts〉.

𝑥2 

𝑦2 𝑧2 

𝑥𝑦 𝑥𝑧  

𝑦𝑧  𝑠2 𝑡2 𝑠𝑡  

41 42

Figure 4.1: Polyhedral cell complexes 41 and 42.

Note β0(R1/I(v)[v3]) = 1, β1(R1/I(v)[v3]) = 6, β2(R1/I(v)[v3]) = 8,

β3(R1/I(v)[v3]) = 3, and β0(R2/I(w)[w2]) = 1, β1(R2/I(w)[w2]) = 3,

β2(R2/I(w)[w2]) = 2.

As

βi(R/I [a]) =
∑
p+q=i

βp(R1/I(v)[ur])βq(R2/I(w)[ws]).

Therefore, β0(R/I [a]) = 1, β1(R/I [a]) = 9, β2(R/I [a]) = 28, β3(R/I [a]) =

39, β4(R/I [a]) = 25, β5(R/I [a]) = 6. Clearly βi(I [a]) = Fi(41 ∗ 42). Thus

the cellular free complex supported on the join 41 ∗ 42 gives us the minimal free

resolution of R/I.
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Chapter 5

Hypercubic Ideals

In the last and final chapter, we introduce and study a class of ideals called hy-

percubic ideals. Hypercubic ideals are certain variants of permutohedron ideals

and these ideals have an interesting minimal property. The number of standard

monomials in an Artinian quotient of an Alexander dual of a hypercubic ideal is

obtained by counting λ-parking functions with certain restrictions. We obtained a

combinatorial formula for the number of restricted λ-parking functions.

5.1 Hypercubic ideals and their Alexander duals

Let u = (u1, . . . , un) ∈ Nn, 1 ≤ u1 < u2 < . . . < un. For each non empty set

B ⊆ Sn, we associate a monomial ideal IB = 〈xσu|σ ∈ B〉. Clearly, ISn = I(u) is

a permutohedron ideal and the cellular free complex F∗(Bd(∆n−1)) supported on

the first barycentric subdivision Bd(∆n−1) of a (n − 1)-simplex is a minimal free

resolution of an Alexander dual I(u)[un]. We asked a natural question. What is a

minimal B ⊆ Sn such that the cellular free complex associated to Bd(∆n−1) is a

minimal free resolution of I
[un]
B ? In order to answer this question, we introduce a

notion of hypercubic ideals. Firstly we consider a subset W ⊆ Sn of n-permutations

given by

W = {σ ∈ Sn|σ(1) is arbitrary and σ(j) = k for j > 1 if either σ(i) = k + 1

or σ(i) = k − 1 for some i < j}.
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Definition 5.1.1. The monomial ideal IW = 〈xσu|σ ∈ W 〉 in the polynomial ring

R = k[x1, x2, . . . , xn] is called a hypercubic ideal. We denote the hypercubic ideal

IW by J(u).

It is easy to see that |W | = 2n−1 and the convex polytope spanned by 2n−1

points σu, σ ∈ W is a (n− 1)-dimensional hypercube and we denote it by H(u). A

vertex σu in the hypercubeH(u) is naturally labeled with monomial xσu for σ ∈ W .

Thus the ideal J(u) is the monomial ideal generated by vertex labels of the (n−1)-

dimensional hypercube, which is the reason for calling it a hypercubic ideal.

The subset W ⊆ Sn has been defined combinatorially as the set of permutations

of {1, 2, . . . , n} such that apart from the leading term a number k appears only if

either k+1 or k−1 has already appeared. It is interesting to see that the hypercubic

ideal IW = J(u) has the minimal property described earlier.

Now we proceed to systematically study hypercubic ideals. The following result

is already known, although we have included its proof for the sake of completeness.

Lemma 5.1.2. There is one to one correspondence between the set W and the

power set P[n− 1] of [n− 1].

Proof. Let B = Set of (n−1)-tuples consisting of ‘0’ and ‘1’. Clearly |B| = 2n−1.

Define f : W → B as follows:

For σ ∈ W, f(σ) ∈ B is given by

(f(σ))(i) = ith coordinate of f(σ) =

1 if σ(i) > σ(i+ 1),

0 otherwise.

Let b = (b1, b2, . . . , bn−1) ∈ B and
n−1∑
i=0

bi = l. Then define g : B → W as follows:

(g(b))(1) = l + 1, and for j ≥ 2, (g(b))(j) =


max

1≤k≤j−1
(g(b))(k) + 1 if bj−1 = 0,

min
1≤k≤j−1

(g(b))(k)− 1 if bj−1 = 1.

Clearly g ◦ f = 1W and f ◦ g = 1B. �
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Facial Description of a Hypercube

The Hasse diagram of the Boolean poset (P[n− 1],⊆) constitutes vertices and

edges of an (n−1)-dimensional hypercube. The faces of hypercube can be described

by chains of subsets of [n − 1]. A 0-dimensional face (vertex) of a hypercube

corresponds to subsets of [n − 1]. An 1-dimensional face (edge) corresponds to a

chain A0  A1 ⊆ [n − 1] such that |A1| − |A0| = 1. Similarly, a 2-dimensional

face corresponds to a chain A0  A2 ⊆ [n − 1] such that |A2| − |A0| = 2 and in

general, a d-dimensional face corresponds to a chain A0  Ad ⊆ [n − 1] such that

|Ad| − |A0| = d. Now we count the number of d−dimensional faces of a hypercube.

As the number of ways of choosing d elements out of n − 1 elements is
(
n−1
d

)
and

total number of subsets of [n− 1− d] are 2n−1−d, so number of d-dimensional faces

of a hypercube are exactly 2n−1−d(n−1
d

)
.

Theorem 5.1.3. A hypercube H(u) supports the minimal cellular resolution of

J(u), where J(u) = 〈xσu | σ ∈ W 〉.

Proof. A vertex σu in the hypercube H(u) is naturally labeled with monomial

xσu for σ ∈ W and monomial label on each face F is a least common multiple of

the monomial label on each of vertex v ∈ F. Thus H(u) is a labeled cell complex.

It is clear that for any vector b ∈ Nn either H(u)�b is contractible or void. Also,

the label of any face F of hypercube is different from the label on any proper face

of F . Thus in view of Theorem 1.1.33, we conclude that the cellular free complex

F∗(H(u)) associated to hypercube H(u) is a minimal free resolution of J(u). �

Theorem 5.1.4. The minimal generators of Alexander dual J(u)[un] of hypercubic

ideal is given by

J(u)[un] = 〈
∏
j∈T

x
µj,T
j | ∅ 6= T = {j1, j2, . . . , jt} ⊆ [n]; j1 < j2 < . . . < jt〉,

where µj1,T = un − ut + 1 and µji,T = un − ut+ji−i + 1 for i ∈ {2, 3, . . . , t}.
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Proof. Let T ⊆ [n] be a non-empty subset such that T = {j1, j2, . . . , jt}, where

j1 < j2 < . . . < jt. Consider the vector

bT =
∑
j /∈T

unej + (ut − 1)ej1 +
t∑

α=2

(ut+jα−α − 1)ejα . (5.1.1)

Since 1 ≤ j1 < j2 < . . . < jt ≤ n, we see that j2 − 2 ≤ j3 − 3 ≤ . . . ≤ jt − t and

hence t+ jα − α ≤ jt ≤ n for 2 ≤ α ≤ t. Thus bT � un.

Claim: xbT /∈ J(u).

In order to prove the claim, we may write T as a disjoint union of integer intervals.

By integer interval [a, b] for a, b ∈ Z, we mean the set [a, b] = {x ∈ Z : a ≤ x ≤ b}.
Let

T = [j1, jn1 ]q [jn1+1, jn2 ]q . . .q [jnr−1+1, jnr ]

= T1 q T2 q . . .q Tr,

where Ti = [jni−1+1, jni ] = {jni−1+1, jni−1+2, . . . , jni} for i = 1, 2, . . . , r; n0 = 0 and

nr = t. Set S = [1, n]− T and write S also as a disjoint union of integer intervals

i.e. S = S0 q S1 q . . . q Sr, where Sα = [jnα + 1, jnα+1 − 1]; 0 ≤ α ≤ r. Clearly,

S0 = ∅ if and only if j1 = 1 and Sr = ∅ if and only if jt = n. Further, Sα 6= ∅ for

1 ≤ α ≤ r − 1. Since [1, n]− T = S, we have

n =
r∑
i=0

|Si|+ t. (5.1.2)

Also,[1, jnα+1 − 1] =
(
qαi=1Ti

)
q
(
qαi=0Si

)
and qαi=1Ti = {j1, j2, . . . , jnα} implies

that

jnα+1 − 1 = nα +
α∑
i=0

|Si|. (5.1.3)

We note that the vector bT can also be expressed as

bT =
∑
j /∈T

unej + (ut − 1)ej1 +
∑

j1<j≤jn1

(ut+j1−1 − 1)ej +
r∑

α=2

∑
j∈Tα

(ut+jnα−nα − 1)ej.
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Suppose, if possible xbT ∈ J(u). Then there exists a vector c =
∑n

i=1 ciei = σu,

σ ∈ W such that bT � c. Since c = σu for some σ ∈ W , there exists some

i0 ∈ [1, n] such that ci0 = un. Also jth coordinate (bT )j of the vector bT is un if

and only if j ∈ S = [1, n]− T . Thus i0 ∈ Sα for some 0 ≤ α ≤ r. We now proceed

to show that

max
j∈S0

cj ≥ un−|S1|+|S2|+...+|Sα| if S0 6= ∅ (5.1.4)

or, in the other case

max
j∈S1

cj ≥ un−|S2|+...+|Sα| if S0 = ∅. (5.1.5)

Suppose, if possible

max
j∈S0

cj < un−|S1|+|S2|+...+|Sα| if S0 6= ∅

or max
j∈S1

cj < un−|S2|+...+|Sα| if S0 = ∅.

For any β ≤ α, in view of equations 5.1.2 and 5.1.3, we have

n− (|Sβ|+ |Sβ+1|+ . . .+ |Sα|) ≥ n−
r∑
i=β

|Si|

= t+

β−1∑
i=0

|Si| = t+ jnβ−1+1 − 1− nβ−1.

Thus un−(|Sβ |+...+|Sα|) ≥ ut+jnβ−1+1−(nβ−1+1) > ut+jnβ−1+1−(nβ−1+1) − 1. Since the jth

coordinate of bT is (bT )j = ut+jnβ−1+1−(nβ−1+1)−1 for j ∈ Tβ, β ≥ 1 (except j = j1)

and c � bT , we have cj ≤ ut+jnβ−1+1−(nβ−1+1) − 1 < un−(|Sβ |+...+|Sα|) for j ∈ Tβ

(except j = j1). Further cj1 < ut < ut+|S0| ≤ un−(|S1|+...+|Sα|). Thus

cj < un−(|Sβ |+...+|Sα|) for j ∈ Tβ, 1 ≤ β ≤ r. (5.1.6)

Suppose S0 6= ∅ and max
j∈S0

cj = um0 . Then um0 < un−(|S1|+...+|Sα|). Also, using

equation 5.1.6, we get cj < un−(|S1|+...+|Sα|) for j ∈ T1. Thus the maximum value of
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cj for j ∈ [1, jn1 ] = S0 ∪ T1 will remain less than un−(|S1|+...+|Sα|), i.e.

max
j∈[1,jn1 ]

cj = um1 < un−(|S1|+...+|Sα|).

As c ∈ σu, for some σ ∈ W , we have cj = uα for j > 1 if and only if ck is either

uα−1 or uα+1 for some k < j. If cjn1+1 = um1+1, cjn1+2 = um1+2, . . . , cjn1+1 − 1 =

um1+(jn1+1−jn1−1) = um1+|S1|, then max
j∈[1,jn1+1−1]

cj = um1+|S1|. Since the values of cj

as j varies over S1 can not increase faster than the sequence (um1+1, . . . , um1+|S1|),

we must have max
j∈[1,jn1+1−1]

cj = um′1 , where m′1 ≤ m1 + |S1|. Thus, we have

um′1 ≤ um1+|S1| < un−(|S2|+...|Sα|).

Since cj < un−(|S2|+...+|Sα|) for j ∈ T2, max
j∈[1,jn2 ]

cj = um2 < un−(|S2|+...+|Sα|).

Again, If cjn2+1 = um2+1, cjn2+2 = um2+2, . . . , cjn2+1 − 1 = um2+|S2|, then we

see that max
j∈[1,jn2+1−1]

cj = um2+|S2|. Since the values of cj as j varies over S2

can not increase faster than the sequence (um2+1, . . . , um2+|S2|), we must have

max
j∈[1,jn2+1−1]

cj = um′2 , for some m′2 ≤ m2 + |S2|. Thus

um′2 ≤ um2+|S2| < un−(|S3|+...|Sα|).

Repeating this argument, we conclude that max
j∈[1,jnα+1−1]

cj < un, which is contrary

to the fact that ci0 = un for i0 ∈ Sα ⊆ [1, jnα+1 − 1]. This proves that

max
j∈S0

cj ≥ un−|S1|+...+|Sα| if S0 6= ∅.

Similarly, we can prove the other case,

max
j∈S1

cj ≥ un−|S2|+...+|Sα| if S0 = ∅.

For S0 6= ∅, we have max
j∈S0

cj ≥ un−|S1|+...+|Sα| ≥ un−(
∑r
i=1 |Si|) = ut+|S0|. This is

possible only if cj ≥ ut+1 ∀ j ∈ S0 = [1, j1 − 1]. As cj1 = ut − 1 and cj > ut

for j < j1, we arrive at a contradiction. On the other hand, for S0 = ∅, we have

max
j∈S1

cj ≥ un−|S2|+...+|Sα| ≥ un−(
∑r
i=2 |Si|) = ut+|S1|. This shows that cj ≥ ut+1 ∀ j ∈
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S1 = [j1+1, jn1−1]. Since cj ≤ ut−1 < ut ∀ j ∈ T1 = [1, j1], we get a contradiction.

Therefore, xbT /∈ J(u). This proves the claim.

We now proceed to show that bT � un is maximal vector such that xbT /∈ J(u).

In other words, we shall prove that xbT+ej ∈ J(u) for j ∈ T .

Let j ∈ T . Then we construct a vector c = (c1, c2, . . . , cn) as follows. For

i ∈ T − {j}, ci = urank(i), where rank(i) is the rank of the element ‘i’ in the

set T − {j}. In other words, if A = {a1, a2, . . . , al} with a1 < a1 < . . . < al,

then rank(ak) = l − k + 1; 1 ≤ k ≤ l. Also, cj = (bT )j + 1 and the value of ci

for i /∈ T are obtained by arranging remaining uα
′s in an increasing order. We

illustrate the choice of vector c by an example. Let n = 7 and T = {2, 3, 5, 6}.
Then bT = (u7, u4 − 1, u5 − 1, u7, u6 − 1, u6 − 1, u7). Let j = 5. Then bT + e5 =

(u7, u4 − 1, u5 − 1, u7, u6, u6 − 1, u7). Then c6 = u1, c3 = u2, c2 = u3, c5 = u6, c1 =

u4, c4 = u5, c7 = u7. Let T = {j1, j2, . . . , jt} and j = jk ∈ T . Then

cjk =

ut ; k = 1,

ut+jk−k ; k > 1.

and for i 6= k,

cji =

ut−i+1 ; i > k,

ut−i ; i < k.

As (bT )ji = ut+ji−i − 1 ≥ ut+ji−i−1 ≥ cji and

(bT + ejk)jk =

ut ; k = 1,

ut+jk−k ; k > 1.

We deduce that bT + ej � c. It is clear that u1, u2, . . . , ut−1 appears in the vector c

in a decreasing order at ‘t−1’ places j1, j2, . . . , jk−1, jk+1, . . . , jt. Thus if uα appears

at the ith position in the vector c for i > 1, then certainly uα−1 appears in c before

the ith position. This shows that xc ∈ J(u). Thus xbT+ej ∈ J(u). �

Consider the first barycentric subdivision Bd(∆n−1) of an (n−1)-simplex ∆n−1.

A vertex of Bd(∆n−1) corresponds to a non-empty subset T ⊆ [n] and hence it

is naturally labeled with the monomial
∏

j∈T x
µj,T
j = x

µj1,T
j1

x
µj2,T
j2

. . . x
µjt,T
jt

which
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are minimal generators of J(u)[un] and µj,T are defined in Theorem 5.1.4. An

(i − 1)-dimensional face of Bd(∆n−1) corresponds to a tuple (A1, A2, . . . , Ai) of

non-empty subsets of [n] with ∅ = A0  A1  . . .  Ai and the monomial label

on this (i− 1)-face can be seen to be
∏i

q=1(
∏

j∈Aq−Aq−1
x
µj, Aq
j ). Thus Bd(∆n−1) is

a labeled simplicial complex. If we set X = Bd(∆n−1), then we see that X�b is

either contractible or void. Thus using Theorem 1.1.33, we see that the cellular free

complex F∗(Bd(∆n−1)) associated to the first Barycentric subdivision Bd(∆n−1)

is a minimal free resolution of the quotient R′ = R/J(u)[un].

Proposition 5.1.5. Let K(u) be a monomial ideal such that J(u) $ K(u) $ I(u).

Then minimal generators of the Alexander dual K(u)[un] is parameterized by non-

empty subsets Tof [n].

Proof. Let ∅ 6= T ⊆ [n]. Then in view of Lemma 2.1.1 and Theorem 5.1.4 there

are vectors bT � un and b′T � un maximal with property that xbT /∈ I(u) and

xb′T /∈ J(u). Now xbT /∈ I(u) implies that xbT /∈ K(u). If bT � un is maximal

such that xbT /∈ K(u), then using Theorem 1.1.26 we have xun−bT ∈ K(u)[un].

Otherwise there exists a vector wT with un < wT � bT , so that wT is maximal

with the property that xwT /∈ K(u). Further we notice that wT � b′T. Otherwise

xwT ∈ J(u), which implies xwT ∈ K(u), a contradiction. Hence we conclude that

for all non-empty subsets T of [n] there is a vector wT with bT � wT � b′T,

which is maximal with the property that xwT /∈ K(u). In other words, xun−wT is

a minimal generator of K(u)[un]. �

Theorem 5.1.6. For a non empty subset B of Sn, the ideal IW = J(u) has a

property that if B ⊇ W , then the cellular free complex F∗(Bd(∆n−1)) supported

on Bd(∆n−1) is a minimal free resolution of the quotient R/I
[un]
B and if B ( W ,

then the cellular resolution of the quotient R/I
[un]
B is not minimally supported on

Bd(∆n−1).

Proof. A proof of this theorem depends heavily on the proof of Theorem 5.1.4.

Therefore, we continue to use notations and terminologies used in the proof of
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Theorem 5.1.4. Let J ′(u) = IW ′ = 〈xσu|σ ∈ W ′〉, where W ′ = W − {σ} for some

σ ∈ W. For a non-empty subset T ⊆ [n] such that either 1 /∈ T but 2 ∈ T or 1 ∈ T
but 2 /∈ T, we now define a vector vT as follows.

vT =
∑
j /∈T

unej + (ut+1 − 1)ej1 +
t∑

α=2

(ut+jα−α − 1)ejα ,

where ∅ 6= T = {j1, j2, . . . , jt} ⊆ [n] with j1 < j2 < . . . < jt and either j1 = 1 but

j2 > 2 or j1 = 2. We notice that there are exactly 2n−1 subsets T ⊆ [n] of the above

type and hence there are exactly 2n−1 associated vectors vT .

Claim: There exists a unique vector c = σu for σ ∈ W such that vT � c or,

equivalently xc divides xvT . We now proceed to prove this claim.

Case 1. Take T = {j1 = 2, j2, . . . , jt}, where j1 < j2 < . . . < jt. Write T =

[j1, jn1 ]q [jn1+1, jn2 ]q . . .q [jnr−1+1, jnr ] = T1qT2q . . .qTr and set S = [1, n]−T =

S0 q S1 q . . . q Sr. Then |S0| = 1. Set T ′ = {1} ∪ T and consider a vector

bT ′ =
∑

j /∈T ′ unej + (ut+1 − 1)e1 +
∑t

α=1(ut+1+jα−(α+1) − 1)ejα as in Theorem 5.1.4

(Equation 5.1.1). Clearly vT � bT ′ . Thus xvT ∈ J(u). Since the ideal J(u) is

minimally generated by xσu; σ ∈ W, there exists c = σu with σ ∈ W such that

vT � c. Consider a vector bT =
∑

j /∈T unej + (ut − 1)ej1 +
∑t

α=2(ut+jα−α − 1)ejα

as in Theorem 5.1.4 (Equation 5.1.1). Note that vT and bT differ only in one

coordinate (j = j1). Using the same technique as in Theorem 5.1.4 one can show

that max
j∈S0

cj ≥ un−|S1|+|S2|+...+|Sα| for some 1 ≤ α ≤ r. In fact,

max
j∈S0

cj ≥ un−|S1|+|S2|+...+|Sα| ≥ un−|S1|+|S2|+...+|Sr| = ut+|S0|.

Thus c1 ≥ ut+1. Also c2 ≤ (vT )2 = ut+1 − 1. This implies c1 = ut+1 and c2 = ut.

Now using equation 5.1.3, we have t + jnβ−1+1 − (nβ−1 + 1) = t +
∑β−1

i=0 |Si| for

1 ≤ β ≤ r. Thus (vT )j = ut+jnβ−1+1−(nβ−1+1) − 1 = ut+
∑β−1
i=0 |Si|

− 1; j ∈ Tβ (except

j 6= j1). Thus using the fact that c � vT , we have cj < ut+∑β−1
i=0 |Si|

; j ∈ Tβ.

Since cj1 < ut+1, we have cj < ut+1; j ∈ T1. This implies that cj = ut−j+2 for

j ∈ T1. Again using the same technique as in Theorem 5.1.4, one can show that

max
j∈[1,jn1+1−1]

cj ≥ un−(|S2|+...|Sα|) = ut+|S0|+|S1|. This implies that cj = ut+s+|S0|, where
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j = jn1 + s ∈ S1 and s = 1, 2, . . . , |S1|. Continuing in this manner we see that

c = ut+1e1 +
r−1∑
h=0

nh+1∑
l=nh+1

ut−l+1ejl +
r∑
i=1

|Si|∑
s=1

(ut+|S0|+|S1|+...+|Si−1|+s)ejni+s.

Case 2. Take T = {j1 = 1, j2, . . . , jt}, where j2 > 2 and j1 > j2 > . . . > jt. Set

T ′′ = {2}∪T and consider a vector bT ′′ as in Theorem 5.1.4 (Equation 5.1.1). Now

proceeding as in Case 1, we get

c =
r−1∑
h=0

nh+1∑
l=nh+1

ut−l+1ejl +
r∑
i=1

|Si|∑
s=1

(ut+|S0|+|S1|+...+|Si−1|+s)ejni+s,

where n1 = 1, |S0| = 0.

From the above discussion, we conclude that to each vector vT associated to

2n−1 possible subsets T ⊆ [n], there exists a unique vector c = σu, σ ∈ W . Since

J(u) is minimally generated by xσu, σ ∈ W. We see that minimal generators of

J(u) are in one-one correspondence with vT . Thus if we delete one of the generator

of J(u), there will be exactly one vT such that xvT /∈ J ′(u). Consider the case

T = {j1 = 2, j2, . . . , jt}. Let vT � c for a unique vector c = σ1u, σ1 ∈ W and

set W ′ = W − {σ1}. Now in view of Theorem 5.1.4, we have xbT ′+ej ∈ J(u) for

j ∈ T ′. We will take j ∈ T (means j 6= 1), in this case also, xbT ′+ej ∈ J(u).

In other words bT ′ + ej � d, for some d = σu, σ ∈ W with j ∈ T. Since

(bT ′ + ej)1 = ut+1 − 1, for j ∈ T and c1 = ut+1 (Case 1). We have d 6= c. Thus

d = σu, σ ∈ W ′. Which further implies xbT ′+ej ∈ J ′(u) = IW ′ , j ∈ T. Since

(vT )j = (bT ′)j for all j 6= 1 and un = (vT )1 > (bT ′)1. We conclude that vT � un

is maximal such that xvT /∈ J ′(u) = IW ′ . Thus xun−vT is a minimal generator of

J ′(u)[un]. Also xun−bT ∈ J ′(u)[un] and xun−bT ′ ∈ J ′(u)[un]. Since vT � bT ′ and

vT � bT , the monomial xun−vT strictly divides xun−bT ′ and xun−bT . Thus there

will be no minimal generator of J ′(u)[un] corresponding to non-empty subset T ′ of

[n]. Similarly for T = {j1 = 1, j2, . . . , jt}; j2 > 2, we have (bT ′′+ej)2 = ut+1−1, for

j ∈ T and c2 = ut+1 (Case 2). Thus in this case also we have the same conclusion.

Hence the cellular resolution of the quotient R/I
[un]
W ′ is not minimally supported on

Bd(∆n−1).

Now if B ⊇ W, then in view of Proposition 5.1.5 the minimal generators of
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an Alexander dual I
[un]
B is parameterized by non-empty subsets T of [n]. Thus

the vertices of first barycentric subdivision Bd(∆n−1) of (n − 1)-simplex can be

naturally labeled with the minimal generators of I
[un]
B . Now from the way Bd(∆n−1)

is labeled and in view of Theorem 1.1.33, we conclude that the cellular free complex

F∗(Bd(∆n−1)) supported on Bd(∆n−1) is a minimal free resolution of the quotient

R/I
[un]
B . �

We will illustrate the proof of the last theorem by analyzing the following ex-

ample.

Example 5.1.7. Let J(u) = 〈xy2z3, x2yz3, x2y3z, x3y2z〉. Then the Alexander dual

of J(u) with respect to u3 is J(u)[u3] = 〈x3, y3, z3, x2y2, y2z, x2z, xyz〉. We see

that for T = {1}, we have vT = (1, 3, 3) � (1, 2, 3). For T = {2}, we have

vT = (3, 1, 3) � (2, 1, 3). For T = {1, 3}, we have vT = (2, 3, 2) � (2, 3, 1). For

T = {2, 3}, we have vT = (3, 2, 2) � (3, 2, 1). Now delete xy2z3 from J(u) and

consider J ′1(u) = 〈x2yz3, x2y3z, x3y2z〉, then J ′1(u)[u3] = 〈x2, y3, z3, y2z, xyz〉. Now

delete x2y1z3 from J(u) and set J ′2(u) = 〈xy2z3, x2y3z, x3y2z〉, then J ′2(u)[u3] =

〈x3, y2, z3, x2z, xyz〉. Similarly if we delete x2y3z from the ideal J(u) and con-

sider the ideal J ′3(u) = 〈xy2z3, x2yz3, x3y2z〉, then the Alexander dual of J ′3(u)

is J ′3(u)[u3] = 〈x3, y3, z3, x2y2, y2z, xz〉. Similarly if we delete x3y2z1 from the

ideal J(u) and consider the ideal J ′4(u) = 〈xy2z3, x2yz3, x2y3z〉, then J ′4(u)[u3] =

〈x3, y3, z3, x2y2, x2z, yz〉.

Remark 5.1.8. The minimality property of the hypercubic ideal J(u) as described

in Theorem 5.1.6 does not characterize these ideals. There are some ideals IB 6=
J(u), where B $ Sn also having the same minimality property. We illustrate it by

the following example.

Example 5.1.9. Let IB = 〈xy3z2, x2yz3, x2y3z, x3yz2〉. Then the Alexander dual

of IB with respect to u3 is I
[u3]
B = 〈x3, y3, z3, x2y, yz2, x2z2, xyz〉. If we delete xy3z2

from IB and set IB1 = 〈x2yz3, x2y3z, x3yz2〉, then I
[u3]
B1

= 〈x2, y3, z3, yz2, xyz〉.
If we delete x2y1z3 from IB and set IB2 = 〈xy3z2, x2y3z, x3yz2〉, then I

[u3]
B2

=

〈x3, y3, z3, xy, x2z2, yz2〉. If we delete x2y3z from IB and consider the ideal IB3 =

〈xy3z2, x2yz3, x3yz2〉, then I
[u3]
B3

= 〈x3, y3, z2, x2y, xyz〉. If we delete x3yz2 from
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IB and consider the ideal IB4 = 〈xy3z2, x2yz3, x2y3z, 〉, then its Alexander dual is

I
[u3]
B4

= 〈x3, y3, z3, x2y, yz, x2z2〉.

Question: It will be an interesting question to characterize all minimal subsets

B ⊆ Sn such that the quotient R/I
[un]
B of an Alexander dual I

[un]
B has the minimal

cellular resolution supported on the first barycentric subdivision Bd(∆n−1).

5.2 Restricted λ-parking functions

Now we proceed to study the standard monomials in an Artinian quotient

R/J(u)[un] of the Alexander dual of the hypercubic ideal J(u). We recall that

the standard monomials of an Artinian quotient R/I(u)[un−c+1] of the Alexander

duals of multipermutohedron ideals corresponds bijectively to generalized park-

ing functions. Let λ = (λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ . . . ≥ λn. A sequence

(p1, p2, . . . , pn) of positive integers is said to be a λ-parking function of length ‘n’

if its non-decreasing rearrangement (q1 ≤ q2 ≤ . . . ≤ qn) satisfies qi ≤ λn−i+1 ∀ i.
We now introduce a notion of restricted λ-parking functions.

Definition 5.2.1. A sequence (p1, p2, . . . , pn) of positive integers is called a re-

stricted λ-parking function if there exists some permutation α ∈ Sn such that

pαi − 1 < µαi,Ti ,

where α(i) = αi and Ti = [n]−{α1, α2, . . . , αi−1}, for all 1 ≤ i ≤ n. The expression

µαi,Ti is as in the Theorem 5.1.4.

In the Definition 5.2.1, λ = (un−u1 +1, un−u2 +1, . . . , un−un+1). Although,

λ is not explicit in the definition of restricted λ-parking functions, we shall see later

that every restricted λ-parking function is indeed a λ-parking function. This fact

is not obvious from the definition.

The following simple lemma will be used in characterizing the standard mono-

mials in the Artinian quotient R/J(u)[un].
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Lemma 5.2.2. Let S = {a1, . . . , ai1 , ai1+1, . . . , ai2 , . . . , aim , . . . , an} be a subset of

positive integers (arranged in an increasing order) and T = {ai1 , ai2 , . . . , aim} ⊂ S.

Then m− r ≤ n− ir. In particular,

m+ air − r ≤ n+ air − ir.

Proof. In order to prove the required inequality, we need only to show that

ir − r ≤ n −m. Suppose if possible ir − r > n −m. Then ir ≥ n −m + (r + 1).

Also im ≥ ir + (m− r) implies that

im ≥ n−m+ (r + 1) +m− r

= n+ 1,

which is a contradiction as im ≤ n. �

Theorem 5.2.3. A monomial xp = xp11 x
p2
2 . . . xpnn is a standard monomial in the

Artinian k-algebra R′ = R/J(u)[un] if and only if p + 1 = (p1 +1, p2 +1, . . . , pn+1)

is a restricted λ-parking function .

Proof. Let xp−1 be a standard monomial in Artinian k-algebra R/J(u)[un]. Thus

xp−1 /∈ J(u)[un]. Therefore for every non-empty subset T ⊆ [n] there exists some

α ∈ T such that

pα − 1 < µα,T . (5.2.1)

If T1 = {1, 2, . . . , n}, then there exists some α1 ∈ T1 such that pα1 − 1 < µα1,T1 .

Now take T2 = T1 − {α1}, then there exists some α2 ∈ T2 such that pα2 − 1 <

µα2,T2 . Continuing in this manner, by choosing Ti = T1 − {α1, α2, . . . , αi−1} for

i = 1, 2, . . . , n, we have the desired result. Conversely let p = (p1, p2, . . . , pn) be

a restricted λ-parking function. Let T = {j1, j2, . . . , jt} be a non-empty subset of

[n], where j1 < j2 < . . . < jt.

Claim: pj − 1 < µj,T for some j ∈ T .

Let t = n − q; q ≥ 0. If T = [n] − {α1, α2, . . . , αq} = Tq+1, then by definition

there exists some αq+1 = js (say) ∈ Tq+1 such that pjs − 1 < µjs,T . Otherwise
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suppose {αi1 , αi2 , . . . , αir} ⊆ T ; i1 < i2 < . . . < ir ≤ q. Let s = max{i : T ⊆ Ti}.
Then T ( Ts but T * Ts+1. Thus Ts+1 = Ts − {α} for some α ∈ T. Clearly

α = αil for some l ∈ {1, 2, . . . , r}. Now from the definition of restricted λ-parking

function it follows that pαil − 1 < µαil ,Ts . Further using the Lemma 5.2.2, we have

µαil ,Ts ≤ µαil ,T . �

Remark 5.2.4.

1. We notice that J(u) $ I(u) ⇒ I(u)[un] $ J(u)[un]. Thus the restricted

λ-parking functions are indeed λ-parking functions.

2. Let G be a digraph on the set of vertices 0, 1, . . . , n. The vertex 0 will be the

root of G. For a subset I in [n] and a vertex i ∈ I, let

dI(i) =
∑
j /∈I

aij,

i.e., dI(i) is the number of edges from the vertex i to a vertex outside of the

subset I. A sequence b = (b1, . . . , bn) of non-negative integers is a G-parking

function, if for any nonempty subset I ⊆ {1, . . . , n}, there exists i ∈ I such

that bi < dI(i). Let IG = 〈mI〉 be a monomial ideal in the polynomial ring

R = k[x1, x2, . . . , xn] generated by the monomials mI =
∏

i∈I xi
dI(i), where

I ranges over all nonempty subsets I ⊆ [n]. Clearly, a non-negative integer

sequence b = (b1, . . . , bn) is a G-parking function if and only if the monomial

xb /∈ AG = R/IG. Postnikov and Shapiro [23] introduced the notion of G-

parking functions and proved that dimkAG is the number of spanning trees

of G.

It is important to note that J(u)[un] 6= IG for any digraph G on the set of

vertices 0, 1, 2 . . . , n. For example, if n = 3 and u = (1, 2, 3), we have

J(u)[u3] = 〈x3
1, x

3
2, x

3
3, x

2
1x

2
2, x

2
1x3, x

2
2x3, x1x2x3〉.

Suppose J(u)[u3] = IG for a digraph G. Then d{3}(3) = 3 and d{1,3}(3) = 1,

which implies that there are two edges from vertex 3 to 1, but it is contrary
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to the fact that d{2,3}(3) = 1. This shows that, the notion of restricted λ-

parking functions is not a particular case of G-parking functions. Hence, it

is interesting to calculate the number of restricted λ-parking functions.

Now we shall derive a combinatorial formula for counting restricted λ-parking

functions of length n. Let Λn
′ be the set of restricted λ-parking functions of length

n. Let X be the labeled polyhedral cell complex and F∗(X) be the associated

cellular chain complex as described in the Introduction (equation 1.1.2). Then the

multigraded Hilbert series of R/I(X) is given by

H(R/I(X),x) =

dim(X)+1∑
i=0

(−1)iH(Fi,x)

=

dim(X)+1∑
i=0

(−1)i
∑

σ∈ Fi−1

xν(σ)

(1− x1)(1− x2) . . . (1− xn)
.

As discussed earlier the free complex F∗(Bd(∆n−1)) associated to the first Barycen-

tric subdivision Bd(∆n−1) is a minimal free resolution of the ideal J(u)[un]. This

resolution can be used to calculate the multigraded Hilbert series H(R′,x) of the

quotient R′. We have

H(R′,x) =
1∏n

l=1(1− xl)

n∑
i=0

(−1)i
∑

(A1,A2,...,Ai)∈Fi−1

i∏
q=1

(
∏

j∈Aq−Aq−1

x
µj,Aq
j ). (5.2.2)

Proposition 5.2.5. Let J(u) be a hypercubic ideal and J(u)[un] be its Alexander

dual with respect to un and R′ = R/J(u)[un]. Then the number of restricted λ-

parking functions of length n is given by

|Λ′n| =
n∑
i=1

(−1)n−i
∑

∅ A1 A2 ... Ai=[n]

i∏
q=1

∏
j∈Aq−Aq−1

µj, Aq ,

where µj, Aq is defined above.
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Proof. In view of Theorem 5.2.3, we see that

H(R′,x) =
∑
p∈Λ′n

xp−1.

Thus H(R′,1) = |Λ′n|. Now passing to the limit xi → 1 simultaneously for each i

in the rational expression for the Hilbert series H(R′,x), we obtain

H(R′, 1) = lim
x1→1,
...,

xn→1

H(R′,x) = lim
x1→1,
...,

xn→1

Q(x)∏n
l=1(1− xl)

,

where

Q(x) =
n∑
i=0

(−1)i
∑

(A1,A2,...,Ai)∈Fi−1(Bd(∆n−1))

i∏
q=1

∏
j∈Aq−Aq−1

x
µj, Aq
j .

Now apply L’Hospital Rule, we see that

|Λ′n| =
1

(−1)n
∂nQ(x)

∂x1∂x2 . . . ∂xn

∣∣∣∣
x=1

.

As in the partial derivative ∂nQ(x)
∂x1∂x2...∂xn

, term corresponding to tuple (A1, A2, . . . , Ai)

survives only if |Ai| = n. Thus we get the desired result. �

We illustrate the last theorem with the help of following example.

Example 5.2.6. Let n = 3 and u = (1, 2, 3). Then for different values of i, we

have the following possibilities for the chains of type ∅ = A0 ( A1 ( . . . ( Ai = [n]

(as shown in the table). Now using Proposition 5.2.5, the number of restricted

λ-parking function of length 3 are given by,

|Λ′3| =
3∑
i=1

(−1)3−i
∑

∅ A1 A2 ... Ai=[3]

i∏
q=1

∏
j∈Aq−Aq−1

µj, Aq

= 1− (3.1.1 + 3.1.1 + 3.1.1 + 2.2.1 + 2.1.1 + 2.1.1) + (3.2.1 + 3.1.1 + 3.2.1

+3.1.1 + 3.2.1 + 3.2.1)

= 14.
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i Chains
1 ∅ ( {1, 2, 3}

2

∅ ( {1} ( {1, 2, 3}
∅ ( {2} ( {1, 2, 3}
∅ ( {3} ( {1, 2, 3}
∅ ( {1, 2} ( {1, 2, 3}
∅ ( {2, 3} ( {1, 2, 3}
∅ ( {1, 3} ( {1, 2, 3}

3

∅ ( {1} ( {1, 2} ( {1, 2, 3}
∅ ( {1} ( {1, 3} ( {1, 2, 3}
∅ ( {2} ( {1, 2} ( {1, 2, 3}
∅ ( {2} ( {2, 3} ( {1, 2, 3}
∅ ( {3} ( {1, 3} ( {1, 2, 3}
∅ ( {3} ( {2, 3} ( {1, 2, 3}

Here λ = (3, 2, 1). So in this case the λ-parking functions are indeed the

ordinary parking functions. The parking functions in this case are as follows.

Λ3 = {(1, 2, 3), (1, 3, 2), (2, 3, 1), (3, 2, 1), (3, 1, 2), (2, 1, 3),

(1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1),

(1, 2, 2), (2, 1, 2), (2, 2, 1), (1, 1, 1)}.

Out of these (3, 1, 2) and (1, 3, 2) are not restricted λ-parking functions. This

verifies the above example that the number of restricted λ-parking functions in this

case is 14.

We have seen that the standard monomials in the quotient R/I(1, 2, . . . , n)[n] of

the tree ideal correspond bijectively to the parking functions of length n. More gen-

erally, the standard monomials in the Artinian quotient R/I(u)[un] of the Alexander

dual of multipermutohedron ideal correspond bijectively to the λ-parking functions

of length n. In the final chapter, we have characterized the standard monomials

in the Artinian quotient R/J(u)[un] in terms of restricted λ-parking functions of

length n and obtained a combinatorial formula for counting restricted λ-parking

functions of length n. We end this chapter with the following questions.

1. It may be an interesting problem to characterize the standard monomials in

the Artinian Quotient R/(I(u)l)[lun] of the Alexander dual of the lth power of

93



multipermutohedron ideal and obtain a combinatorial formula for the num-

ber of standard monomials in this quotient. In other words, what is the

dimension dimk

(
R

(I(u)l)[lun]

)
? Does this number has any other combinatorial

significance?

2. Betti numbers of all the higher powers of the maximal ideal m = 〈x1, . . . , xn〉
in the polynomial ring k[x1, x2, . . . , xn] are calculated using Eagon-Northcott

complex or by Eliahou-Kervaire resolution. On the similar lines, one would

like to calculate the Betti numbers of higher powers of multipermutohedron

ideals and their Alexander duals.
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