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Abstract

We studied the cosmological linear perturbation theory. To learn how the perturbation

variables evolve we derived a set of coupled Boltzmann-Einstein equations for the

perturbation variables. These equations cannot be solved analytically all at once. We

studied the leading order solutions in four approximations: super-horizon modes, sub-

horizon modes, modes which crossed horizon at early and late times. The solutions are

sensitive to the initial conditions. We also discussed a modified theory of gravity for

the early universe motivated from the works in quantum gravity. Under such modified

theory we again constructed the modified equations for dynamics and kinetics between

the components of our universe. This modified theory suggest an inclusion of a pre-

inflationary era. We propose for future exploration that one needs to examine how

the initial conditions set at the end of the pre-inflationary era translates to the initial

conditions at the end of inflation which are the standard initial conditions for the

linear perturbation theory and see if there is any signature of the quantum gravity

effect at the late time evolution of perturbation variables.

v





Chapter 1

Introduction

Cosmological perturbation theory: To a “zero-th order” approximation, the uni-

verse is considered to be homogeneous and isotropic, where all the components of the

universe, such as photons, baryons, dark matter, neutrinos are in their corresponding

equilibrium distribution and in their presence the geometry of spacetime evolves fol-

lowing the dynamical Einstein field equations of general relativity. The homogeneous,

isotropic and expanding universe is characterized by a single variable of time, the scale

factor, which appears in the metric. Given the energy-momentum content of the uni-

verse, Einstein field equations predict how the scale factor evolves in time. However,

had our universe been perfectly homogeneous and isotropic from the beginning, no

structure such as galaxies, clusters etc. would have ever formed and much less, by ex-

tension of the same argument, there would have been no existence of human beings.

Therefore, in cosmological perturbation theory, a deviation from the homogeneous

and isotropic universe is considered. In the linear perturbation theory we only deal

with small perturbation quantities such that their second or higher order terms can

be neglected. Small perturbations in the energy-momentum tensor of the components

of the universe create deviations in the metric from the standard FLRW background

and vice versa. Another issue is that, in perturbation theory, the components of the

universe are not going to remain in their equilibrium distributions forever. Their dis-

tribution is going to change with time due the interactions between different species.

For instance, photons and electrons interact with each other via Compton scattering

and electron and proton interact with each other via Coulomb scattering, whereas

both neutrinos and dark matter do not take part in collisions. To incorporate these
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Figure 1.1: The interaction between different components of the universe

interactions we should use the framework of Boltzmann equations from the statistical

mechanics. As the components are interacting with themselves they are also dynam-

ically coupled to the metric of spacetime. The kinetics between the components is

described by the corresponding Boltzmann equations and the dynamics between the

components and spactime is given by the Einstein field equations. Thus, to study the

perturbations one constructs a set of coupled Einstein-Boltzmann equations involv-

ing all the perturbation variables. The solution of the Einstein-Boltzmann equations

would then give us the time evolution of the corresponding perturbation variables.

This is the overall scheme that should be followed to study the cosmological pertur-

bations. However, the Einstein-Boltzmann equations cannot be solved analytically

all at once. To get the analytical solutions one uses approximations corresponding to

super-horizon and sub-horizon modes and also modes which crosses horizon at radia-

tion and matter dominated era respectively. In the following few results about these

modes are mentioned. For super-horizon modes, at late times deep into the matter

dominated era, the gravitational potential falls to 9
10

of its initial value. In fact, modes
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of all sizes come to a constant value in the matter dominated era. Modes of grav-

itational potential, which crosses the horizon in the radiation dominated era itself,

falls rapidly before crossing the epoch of equality, oscillates around zero value with

decreasing amplitude and then settles down to zero value in the matter dominated

era. The matter perturbations in the radiation dominated era grow logarithmically.

The evolution of sub-horizon, cold dark matter perturbation is given by Meszaros

equation. It has a growing solution and another decaying solution. At late times the

the growing solution grows as y, whereas the decaying solution falls as y−
3
2 , with y

being, the scale factor over the scale factor at the epoch of equality.

Another significant perturbation variable is the temperature anisotropy, ∆T
T

, in the

CMB photons. These photons which are free streaming to us from the last scattering

surface almost have an isotropic temperature distribution with small deviations of the

order ∆T
T
∼ 10−5. The temperature anisotropy, a function of space, time and incoming

photon directions, can be decomposed into an infinite set of Legendre modes, with the

higher modes speaking of anisotropies at smaller angular scales in the sky. Among

these only monopole and dipole are significant, in the limit when photon is tightly

coupled with the baryons. The monopole and dipole satisfy differential equations

of the form of a forced harmonic oscillator causing them to oscillate rapidly over

comoving time. As the photon-baryon interaction is not efficient enough to make them

behave as a single fluid, existence of a small but non-vanishing quadrupole moment

damps the high k-modes in monopole and dipole. To detail the above analysis we

follow the treatment presented in [1].

It can be seen from these analysis that the late time values of many perturbation

variables are sensitive to the initial conditions. The initial conditions that are used

in the linear perturbation theory are motivated from standard dynamics given by

the Einstein field equations. If at very early times, due to the presence of quantum

gravity effects, the dynamical and kinetical equations as well, were to be modified,

so would the the initial conditions and their relationship with the late time values

of perturbation variables. Keeping this proposal in mind we study a particular mod-

ification to the Einstein’s gravity and construct the corresponding set of modified

Boltzmann-Einstein equations.

Quantum gravity motivated theory of modified gravity: According to [2],
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and subsequent works [3] and [4], dark energy can be understood to be emerging from

a violation of energy-momentum conservation. In an effective low energy theory of a

discrete spacetime, where the spacetime is assumed to be smooth and continuous, one

does not fully account for the exchange of energy and momentum from the matter

degrees of freedom to the underlying discrete strata of spacetime. Thus, in the effective

low energy limit energy and momentum coservation is violated. However, in the

standard dynamcial equations of general relativity such violation is prohibited, as the

energy-momentum conservation is enforced by the Bianchi identity of the Riemann

curvature tensor. To make such violation compatible with gravitational dynamics,

Einstein field equations are modified to a set of traceless dynamical equations called

the equations of Unimodular Gravity. We argue that these equations describe a

very early universe where the quantum gravity effects were dominant and also they

suggest a pre-inflationary era, at the end of which the universe entered in a De Sitter or

constant curvature or exponentially expanding phase and then the standard dynamics

of general relativity took over as the quantum gravity effects depleted.
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Chapter 2

Boltzmann Equation

In this chapter we derive the Boltzmann equation which quantifies the rate of change

of the distribution function of a particular species in the components of the universe

as a result of collisions and the expansion of the universe. The equations derived

in this chapter will be directly used in the subsequent chapters while dealing with

perturbation variables. The discussion in this chapter has its resemblance with the

presentation of the corresponding topics in [5].

2.1 Single particle phase space representation

The Phase space of a system consisting of N particles in 3-dimensional physical

space is 6N dimensional. Now in the case of inelastic collision between the particles,

the number of particles may change and so may the dimension of the phase space. This

is problematic. Thus we fix the phase space to be a 6-dimensional space, collection

of points representing all possible position and momentum that a single particle can

exhibit. A single point in this space is denoted by (~r, ~p). In this space, the microstate

of a system consisting of N particles is represented by N points. We define a quantity

f(~r, ~p, t), which quantifies the particle density in phase space around a point (~r, ~p) at

any given time t. The number of particles within an infinitesimal volume of phase

space around the same point is, thus, d3~rd3~pf(~r, ~p, t). The function f(~r, ~p, t) changes

with time, if the system is not in equilibrium. The number density of particles in
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position space is given by,

n(~r, t) =

∫
d3~p f(~r, ~p, t). (2.1)

In statistical mechanics of quantum particles, each states occupies a phase space

volume (2π~)3. We can also define a quantity,

ν(~r, ~p, t) = (2π~)3f(~r, ~p, t), (2.2)

which can be interpreted as the average number of particles occupying, at time t, a

state with position and momentum ~r and ~p, with corresponding uncertainties charac-

terized by the phase space volume. If the system is homogeneous and isotropic and is

in equilibrium, then ν = ν(|~p|) and thus, by the virtue of dispersion relation can be

expressed as a function of energy. This expression should be same as the BE or FD

distribution.

2.2 Collisionless and general Boltzmann equation

Since a time t to t + dt, in absence of collison, the position and momentum of a

particle will change as follows,

~r′ = ~r +
~p

m
dt,

~p′ = ~p+ ~Fdt. (2.3)

A the particles inside an infinitesimal volume d3~rd3~p will come to lie inside a new

volume element d3~r′d3~p′. As there is no collision the number of particles must be

conserved. Thus we can write,

d3~rd3~pf(~r, ~p, t) = d3~r′d3~p′f(~r′, ~p′, t). (2.4)

Liouville’s theorem tells us that up to first order in dt, the dynamics keeps the volume

element preserved, then it follows,

d3~rd3~pf(~r, ~p, t) = f(~r +
~p

m
dt, ~p+ ~Fdt, t+ dt). (2.5)
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Taylor expanding the RHS of the equation around the point (~r, ~p) and keeping the

terms up to order of dt we get,

∂f

∂t
+
~p

m
· ∂f
∂~r

+ ~F · ∂f
∂~p

= 0. (2.6)

This is collisionless Boltzmann equation. In a more general situation when collision

is involved, we can write,

∂f

∂t
=
∂f

∂t

∣∣∣∣
free-stream

+
∂f

∂t

∣∣∣∣
collision

. (2.7)

Using collisionless Boltzmann equation we can write,

∂f

∂t

∣∣∣∣
collision

=
∂f

∂t
− ∂f

∂t

∣∣∣∣
free-stream

=
∂f

∂t
+
~p

m
· ∂f
∂~r

+ ~F · ∂f
∂~p
. (2.8)

This is the general Boltzmann equation.

2.3 Calculation of the collision term

Considering only elastic collisions, where particle number is conserved, we can dis-

tinguish between two types of collision. First, a particle with momentum ~p in initial

state produces particles with other momenta in the final state. Second, a particle

with momentum ~p is produced in the collision of particles with other momenta. The

single particle distribution particle f(~r, ~p, t) decreases in the first kind of process and

decrease in the second kind of process. Thus we can write,

∂f

∂t

∣∣∣∣
collision

= −∂f
∂t

∣∣∣∣first

coll

+
∂f

∂t

∣∣∣∣second

coll

(2.9)

To calculate these two terms, let’s consider a binary elastic collision. In such a collision

the following conservation equations hold,

~p1 + ~p2 = ~p′1 + ~p′2

ε(~p1) + ε(~p2) = ε(~p′1) + ε(~p′2), (2.10)
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where primed and unprimed quantities correspond to before and after collision respec-

tively. In an isotropic system ε is only dependent upon the magnitude of momentum;

thus, the above four equations eat up four degrees of freedom leaving only two among

total six degrees of freedom. The conclusion is that specifying only two parameters

are sufficient to describe a binary elastic collision. In CM frame, by definition, the

initial total momentum is zero and by conservation of momentum, so is the final total

momentum. Thus only one of the two initial momenta and one of the two final mo-

menta are actually free. As energy depends only on the magnitude of the momentum,

the energy conservation equation fixes the magnitude of the final momenta. The only

undetermined parameters describe how the line of final momenta orients itself with

the line of initial momenta. In 3-dimensional momentum space this corresponds to

the freedom of choosing two angles, polar angle θ and azimuthal angle φ. Thus a set

of two undetermined angles (θ, φ) describe a collision. Moreover, in a central force

motion, the scattering occurs in a plane, in such case the angle φ can be set to zero

and θ is sufficient to describe the collision (along with the magnitude of the initial

momentum of one particle). This is known as the scattering angle.

Now, the first collision term is evaluated at (~r1, ~p1, t); as the final momenta are not

fully determined by the initial momenta, the final momenta have to be integrated out

and also as the second particle can come to collide with the first particle at location

~r1 with any possible momentum ~p2, this has to integrated out too. The integrand

should be proportional to f(~r1, ~p1, t), because the collision cannot occur if there is

no particle at the location ~r1 with momentum ~p1 at time t, i.e, if f(~r1, ~p1, t) is zero.

The integrand should also be proportional to f(~r1, ~p2, t) for the same reason. The

integrand should also be proportional to a quantity that represents the scattering

rate. Thus Boltzmann heuristically used the following ansatz,

∂f

∂t

∣∣∣∣first

coll

=

∫
d3~p2

∫
d3~p′1

∫
d3~p′2 f(~r1, ~p1, t)f(~r1, ~p2, t)w(~p′1, ~p

′
2|~p1, ~p2). (2.11)

A similar argument goes for the second collision term and the whole Boltzmann

equation becomes,

∂f

∂t
+
~p1

m
· ∂f
∂~r1

+ ~F1 ·
∂f

∂~p1

8



=

∫
d3~p2

∫
d3~p′1

∫
d3~p′2

[
f(~r1, ~p′1, t)f(~r1, ~p′2, t)w(~p1, ~p2|~p′1, ~p′2)

−f(~r1, ~p1, t)f(~r1, ~p2, t)w(~p′1, ~p
′
2|~p1, ~p2)

]
. (2.12)

2.4 Properties of the scattering factor

The scattering factor should manifest the fact that the energy and momentum are

conserved in a collision. Thus the scattering factor must have the following form,

w(~p′1, ~p
′
2|~p1, ~p2) = δ(3)(~p′1+~p′2−~p1−~p1)δ(ε(~p′1)+ε(~p′2)−ε(~p1)−ε(~p2))w̃(~p′1, ~p

′
2|~p1, ~p2).

(2.13)

If two identical particles are colliding and if they remain identical after the collision,

then the following relations hold,

w(~p′1, ~p
′
2|~p1, ~p2) = w(~p′2, ~p

′
1|~p1, ~p2) = w(~p′1, ~p

′
2|~p2, ~p1). (2.14)

This relation is only true for identical particles. If the system exhibits space-inversion

symmetry then,

w(~p′1, ~p
′
2|~p1, ~p2) = w(−~p′1,−~p′2| − ~p1,−~p2). (2.15)

If the system exhibits time-reversal symmetry then,

w(~p′1, ~p
′
2|~p1, ~p2) = w(−~p1,−~p2| − ~p′1,−~p′2). (2.16)

Combining the above two equations we get, for a system that exhibits time-reversal

and space-inversion symmetry simultaneously,

w(~p′1, ~p
′
2|~p1, ~p2) = w(~p1, ~p2|~p′1, ~p′2). (2.17)

Therefore, the classical, non-relativistic Boltzmann equation is,

∂f

∂t
+
~p1

m
· ∂f
∂~r1

+ ~F1 ·
∂f

∂~p1

=

∫
d3~p2

∫
d3~p′1

∫
d3~p′2 w(~p′1, ~p

′
2|~p1, ~p2)[

f(~r1, ~p′1, t)f(~r1, ~p′2, t)− f(~r1, ~p1, t)f(~r1, ~p2, t)
]
. (2.18)
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Quantum scattering amplitude and probability : The differential probability of an initial

state |i〉 to end up in a final state |f〉 after scattering, where the final state momenta

lies within an infinitesimal volume of momentum space dΠ, is [6],

dP =
|〈f |Ŝ|i〉|2

〈f |f〉〈i|i〉
dΠ. (2.19)

Here, dΠ is the normalized volume element in momentum space, given by,

dΠ =
∏
j

V

(2π)3
d3~pj, (2.20)

here, j denotes the final state particles and, V is the volume of space. In going from

equally spaced discrete momenta in a finite box to a continuous momenta in a large

box, one has to divide the elements by the density of the momentum states (2π)3

V
, that

is,

∆~p
large box limit−−−−−−−−→ V

(2π)3
d3~p. (2.21)

Now, we shall consider the quantities 〈i|i〉 and 〈f |f〉. We know that a momentum

state, |~p〉 = a†(~p)|0〉 (non-relativistic treatment). Thus,

〈~p|~p〉 = 〈0|a(~p)a†(~p)|0〉

= (2π)3δ(3)(0) = (2π)3

∫
d3~x

(2π)3
= V

Let the initial state be |i〉 = |~p1〉|~p2〉, then 〈i|i〉 = V · V . Similarly, for final state

〈f |f〉 =
∏

j V . It remains to calculate the transition probability |〈f |i〉|2. We define

the transformation of the asymptotic state with an operator Ŝ, such that,

Ŝ|in, T = −∞〉 = |out, T = +∞〉. (2.22)

The completeness of the in and out asymptotic states implies,

1 =
∑
out

|out, T = +∞〉〈out, T = +∞|

=
∑

in

Ŝ|in, T = −∞〉〈in, T = −∞|Ŝ†

= ŜŜ†. (2.23)
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Therefore, Ŝ is unitary. As most the time the initial state remains unchanged Ŝ

should include identity. Thus we define transfer matrix T̂i→f , as follows,

Ŝ = 1 + iT̂i→f . (2.24)

This transfer matrix should impose the conservation of energy and momentum; this

motivates the following definition,

T̂i→f = (2π)4δ(4)
(∑

p
)
M, (2.25)

here (2π)4 is conventional. Now the amplitude for the transition is,

〈f |Ŝ|i〉 = 〈f, T = +∞|Ŝ|i, T = −∞〉

= 〈f |(1 + (2π)4δ(4)
(∑

p
)
M)|i〉. (2.26)

If the initial final states are different then,

|〈f |Ŝ|i〉|2 = (2π)8δ(4)
(∑

p
)
δ(4)

(∑
p
)
|〈f |M|i〉|2

= (2π)8δ(4) (0) δ(4)
(∑

p
)
|M|2

= (2π)4V Tδ(4)
(∑

p
)
|M|2, (2.27)

here, V is the volume of the space and T is the total time of the process. Putting all

the results together, we get,

dP =
(2π)4V Tδ(4) (

∑
p) |M|2

V · V
∏

j V

∏
j

V

(2π)3
d3~pj

=
T

V
(2π)4δ(4)

(∑
p
)
|M|2

∏
j

d3~pj
(2π)3

. (2.28)

Flux, across a surface of area A, of a beam with Ninc number of incident particles and

velocity ~v equals to,

Φ =
Ninc

V
|~v|tA
At

=
Ninc

V
|~v|. (2.29)

The number of scattered particles is equal to cross section times the flux of the

beam that hits the target times the ‘time’ for scattering, that is, N = σTΦ and
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the differential version of the equation is dN = dσTΦ. The differential probability is

the ratio of number of scattered particles and the total number of incident particles,

dP = dN
Ninc

. Therefore,

dP = dσT
Φ

Ninc

= dσ
T

V
|~v|. (2.30)

Now, dσ|~v| is the differential scattering rate and sits in the integrand of the classical

Boltzmann equation, along with the distribution functions.

dσ|~v| = (2π)4δ(4)
(∑

p
)
|M|2

∏
j

d3~pj
(2π)3

. (2.31)

However this is a non-relativistic treatment.

2.5 Quantum Boltzmann equation

2.5.1 Non-relativistic equation

Due to uncertainty principle the concept of phase space in quantum mechanics is

not well defined so Boltzmann equation cannot be strictly derived in this case, but

the classical Boltzmann equation extended to quantum case by making the following

changes. In quantum case f has to be changed to ν which is the BE or FD distribution

over single particle energies. But for fermions if the unit cell in the phase space

which represents a quantum state is completely filled, i.e. ν = 1, there could be

no transition of further fermion in that state due to Pauli’s exclusion principle and

therefore such contribution in collision term of the Boltzmann equation should vanish.

This is achieved by introducing a factor (1 − ν) and known as Pauli blocking. An

opposite effect is expected in the case of Bosons known as Bose enhancement. This can

be seen in the QHO as its quanta behave like bosons. For QHO a†|ν〉 =
√
ν + 1|ν+1〉.

Thus, if there are already ν quanta, producing one more quanta involves (1 + ν) as a

factor in the probability. We should also include this factor. Putting these all together

and (~ = 1) the quantum Boltzmann equation becomes,

∂ν1

∂t
+
~p1

m
· ∂ν1

∂~r1

+ ~F1 ·
∂ν1

∂~p1

=

∫
d3~p2

(2π)3

∫
d3~p′1
(2π)3

∫
d3~p′2
(2π)3

(2π)4δ(4)
(∑

p
)
|M|2
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[ν ′1ν
′
2(1 + ην1)(1 + ην2)− ν1ν2(1 + ην ′1)(1 + ην ′2)] , (2.32)

where, η = ±1 for BE and FD distribution functions. This is the non-relativistic

quantum Boltzmann equation.

2.5.2 Relativistic equation

In relativistic case, the normalization factor 2E~p has to be used in the definition

of the states |~p〉 and this would lead to 〈i|i〉 = (2E1V )(2E2V ) and similarly for final

states, 〈f |f〉 =
∏

j(2EjV ). This would give the relativistic differential scattering rate

to be,

dw(~p′1, ~p
′
2|~p1, ~p2) =

1

(2E1)(2E2)
(2π)4δ(4)

(∑
p
)
|M|2

∏
j

d3~pj
(2π)32Ej

. (2.33)

Therefore, the relativistic quantum Boltzmann equation is,

∂ν1

∂t
+
~p1

m
· ∂ν1

∂~r1

+ ~F1 ·
∂ν1

∂~p1

=
1

2E1

∫
d3~p2

(2π)32E2

∫
d3~p′1

(2π)32E ′1

∫
d3~p′2

(2π)32E ′2
(2π)4δ(4)

(∑
p
)
|M|2

[ν ′1ν
′
2(1 + ην1)(1 + ην2)− ν1ν2(1 + ην ′1)(1 + ην ′2)] . (2.34)

2.5.3 Lorentz invariance of distribution functions

The density distribution functions are defined as,

f(~r, ~p, t) =
N∑
i=1

δ(3)(~r − ~ri)δ(3)(~p− ~pi). (2.35)

We define,

F (~r, ~p, t) = δ(p2 −m2)Θ(p0)f(~r, ~p, t). (2.36)

As both δ(p2 −m2) and Θ(p0) are Lorentz invariant quantities then F and f should

have same Lorentz transformation properties. Now,

δ(p2 −m2)Θ(p0) =
1

2E~p
δ(p0 − E~p), (2.37)
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which implies for F ,

F (~r, ~p, t) =
1

2E~p

N∑
i=1

δ(3)(~r − ~ri)δ(3)(~p− ~pi)δ(p0 − E~p)

=
1

2E~p

N∑
i=1

∫
dtiδ(t− ti)δ(3)(~r − ~ri(ti))δ(4)(pµ − pµi (ti)). (2.38)

Using the relation dτi = mc2

E~p
dti and dropping the particle index on time, we get,

F (~r, ~p, t) =
1

2m

N∑
i=1

∫
dτδ(4)(xµ − xµi (τ))δ(4)(pµ − pµi (τ)). (2.39)

Each term in the RHS are explicitly Lorentz invariant thus F and hence f and ν are

also Lorentz invariant. However, the above treatment would not work for massless

particles, as for them both the mass and proper time are inevitably zero. In such

a case we choose a different parameterization (λ) of the curve traced out by these

particles other than the proper time, such as, the four momenta of these particles are

defined as follows,

pµ ≡ dxµ

dλ
. (2.40)

Now the same kind of argument as above can be pushed forward,

F (~r, ~p, t) =
1

2p0

N∑
i=1

δ(3)(~r − ~ri)δ(3)(~p− ~pi)δ(p0 − |~p|)

=
1

2p0

N∑
i=1

∫
dti(λ)δ(t− ti(λ))δ(3)(~r − ~ri(λ))δ(4)(pµ − pµi (λ))

=
1

2p0

N∑
i=1

∫
dλ
dti
dλ
δ(4)(xµ − xµi (λ))δ(4)(pµ − pµi (λ))

=
1

2p0

N∑
i=1

∫
dλp0

i δ
(4)(xµ − xµi (λ))δ(4)(pµ − pµi (λ)). (2.41)

As there is a zeroth component of momenta inside the integral and one outside the

integral in the denominator, upon Lorentz transformation, the transformation factor

will cancel out and hence F is a Lorentz invariant quantity for massless particlea and

therefore so is f .

14



2.6 Boltzmann equation in the expanding universe

When the universe expands the density distribution function, ν(~r, ~p, t) changes due

to the change in volume of the space. The density distribution function is inversely

proportional to the volume being considered, i.e., ν ∝ V −1. Now the following can be

written using this statement,

1

ν
ν̇ =
−V −2V̇

V −1
= − V̇

V
= −3a2ȧ

a3
= −3

ȧ

a
= −3H. (2.42)

And hence, the rate of change in the density distribution function should be written

as,
∂ν

∂t

∣∣∣∣
volume

= − V̇
V
ν = −3Hν, (2.43)

here, H is the Hubble parameter. As the is homogeneous and the whole universe

in under consideration, there is no external force and hence free streaming terms

in the Boltzmann equation are zero. The total contribution to the change in the

density distribution should be from both change in volume of space and change due

to collision, which can be written as,

∂ν

∂t
=
∂ν

∂t

∣∣∣∣
volume

+
∂ν

∂t

∣∣∣∣
collisions

(2.44)

Thus the Boltzmann equation becomes,

∂ν1

∂t
+ 3Hν1 =

∂ν1

∂t

∣∣∣∣
collision

=
1

2E1

∫
d3~p2

(2π)32E2

∫
d3~p′1

(2π)32E ′1

∫
d3~p′2

(2π)32E ′2
(2π)4δ(4)

(∑
p
)
|M|2

[ν ′1ν
′
2(1 + ην1)(1 + ην2)− ν1ν2(1 + ην ′1)(1 + ην ′2)] . (2.45)

We can integrate with respect to momentum ~p1 to get the number density of particles

in position space also using n = 1
(2π)3

∫
d3~pν,

∂n1

∂t
+ 3Hn1 =

∫
d3~p1

(2π)32E1

∫
d3~p2

(2π)32E2

∫
d3~p′1

(2π)32E ′1

∫
d3~p′2

(2π)32E ′2
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(2π)4δ(4)
(∑

p
)
|M|2 [ν ′1ν

′
2(1 + ην1)(1 + ην2)− ν1ν2(1 + ην ′1)(1 + ην ′2)] .

(2.46)

2.7 Saha Equilibrium

In the expanding universe, Boltzmann equation can be used to track the relative

abundances of various species of particles. Let us consider a reaction between two

species giving out two other species as product, i.e., 1 + 2 ←→ 3 + 4. The number

density of species 1 will change according to the Boltzmann equation derived above.

∂n1

∂t
+ 3Hn1 =

(
4∏
i=1

∫
d3~pi

(2π)32Ei

)
(2π)4δ(4)

(∑
p
)
|M|2

[ν3ν4(1 + ην1)(1 + ην2)− ν1ν2(1 + ην3)(1 + ην4)] . (2.47)

We also have similar equations for other species, namely, 2,3, and 4. If the scattering

rate is much faster than the expansion rate of the universe, the species will be in

a thermal or kinetic equilibrium. In such cases the distribution function will be of

FD/BE type, with temperature set by the most populated and strongly interacting

species. The reaction can also achieve chemical equilibrium in which case, the con-

servation of chemical potential has to be satisfied, i.e. µ1 + µ2 = µ3 + µ4 must be

true. If the reaction is out of equilibrium then one would require to solve differential

equations concerning the chemical potentials. For many practical purposes a very

interesting scenario of investigation is the limit where (E − µ) � kBT . In this limit

the the FD/BE distribution functions reduces down to,

1

e
(E−µ)
T ± 1

→ e
µ
T e−

E
T . (2.48)

The Bose enhancement and Pauli blocking factors also reduce to 1 in this particular

limit. The conservation of energy implies, E1 + E2 = E3 + E4. After all these

simplifications the expression within the square bracket becomes,

e−
E1+E2
T

(
e
µ3+µ4
T − e

µ1+µ2
T

)
. (2.49)
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Now, the number density of a particular species is given by,

ni = gie
µi
T

∫
d3~p

(2π)3
e−

Ei
T . (2.50)

Thus we can define the species dependent equilibrium density as,

n
(0)
i = gi

∫
d3~p

(2π)3
e−

Ei
T =

gi
(
miT
2π

) 3
2 e−

mi
T , mi � |~p|

gi
T 3

π2 , mi � |~p|
(2.51)

The last equality was obtained by putting two different limits of the energy, which

are E =
√
|~p|2 +m2 ≈ m + |~p|2

2m
, for non-relativistic case (mi � |~p|) and E = |~p|,

for relativistic case (mi � |~p|). With all the simplifications considered above the

Boltzmann equation becomes,

∂n1

∂t
+ 3Hn1 = n

(0)
1 n

(0)
2 〈σv〉

{
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

}
, (2.52)

where,

〈σv〉 ≡ 1

n
(0)
1 n

(0)
2

(
4∏
i=1

∫
d3~pi

(2π)32Ei

)
e−

E1+E2
T (2π)4δ(4)

(∑
p
)
|M|2, (2.53)

is called the thermally averaged cross section. As the universe expands, the gradual

increment of the mean free path makes the interaction feeble. If the reaction rate

is slower than the expansion rate of the universe, which is parameterized by Hubble

constant, the reaction would fall out of equilibrium. But in the case where the reaction

rate is much faster than the expansion rate of the universe, the reaction would establish

equilibrium and hence would satisfy the following equation,

n3n4

n
(0)
3 n

(0)
4

=
n1n2

n
(0)
1 n

(0)
2

. (2.54)

The above equation is known as the Saha Equation.
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Chapter 3

Einstein’s Gravity

In this chapter, we shall first discuss few results from the standard model of cosmology

and then go on discuss the cosmological perturbation theory. While discussing pertur-

bation theory we shall derive the differential equations describing kinetics (Boltzmann

equations) and dynamics (Einstein field equations) separately and then proceed to ob-

tain the analytical solutions in approximated limit cases. Moreover, in this chapter,

as the name suggests, the dynamics will be given by the standard Einstein field equa-

tions,

Gµν = (8πG)Tµν , (3.1)

here, Gµν is the Einstein tensor constructed from the Ricci tensor and Ricci scalar,

Gµν ≡ Rµν− 1
2
gµνR; Tµν is the energy-momentum tensor of the content of the universe

and G is the Newton’s universal gravitational constant.

3.1 FLRW background

We would first derive some important results for the homogeneous and isotropic

universe or for the standard model of cosmology. The purpose for this is to put the

results derived here, from Einstein’s gravity, in contrast to the results that will be

derived in the next chapter with modified gravity. Mathematically, the homogeneity

and isotropy is the property of the metric that it satisfies translational and rotational

invariance in three spatial space respectively. The geometry of a homogeneous and

isotropic universe with zero spatial curvature is described by Friedmann-Lemâıtre-
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Robertson-Walker metric and the metric in mathematical form reads,

gµν =


−1 0 0 0

0 a(t)2 0 0

0 0 a(t)2 0

0 0 0 a(t)2

 , (3.2)

with the scale factor a(t), which is only a function of time and a dimensionless quan-

tity. It is useful to derive the Christoffel symbols immediately from the metric. The

Christoffel symbols are related to the metric in a metric compatible manifold as fol-

lows,

Γµαβ =
1

2
gµν (gαν,β + gνβ,α − gαβ,ν) . (3.3)

Upon computation, we can easily get the Christoffel symbols for the FLRW metric

and the results are listed below,

Γ0
00 = 0; Γ0

0i = 0; Γ0
ij = a

da

dt
δij; Γi0j =

1

a

da

dt
δij; Γijk = 0; Γi00 = 0. (3.4)

With the Christoffel symbols in hand we can immediately compute the geometric

quantities such as the Ricci tensor and Ricci scalar as they will be useful in writing

down the Einstein field equations. The definition of Ricci tensor in terms of Christoffel

symbols is,

Rαβ = ∂γΓ
γ
αβ − ∂βΓγαγ + ΓγαβΓσγσ − ΓσαγΓ

γ
βσ. (3.5)

Explicitly, the 00, ij and 0i components of the Ricci tensor are,

R00 = −3
1

a

d2a

dt2
; Rij = δij

[
2

(
da

dt

)2

+ a
d2a

dt2

]
; R0i = 0. (3.6)

The Ricci scalar is simply the trace of the Ricci tensor and takes the following form

for our particular FLRW metric,

R = gµνRµν = 6

[
1

a

d2a

dt2
+

(
1

a

da

dt

)2
]
. (3.7)
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Now, the 00 and ij components of the Einstein tensor can be calculated to be,

G00 = 3

(
1

a

da

dt

)2

; Gij = δij

[
−2a

d2a

dt2
−
(
da

dt

)2
]
. (3.8)

We have now completed computing the left hand side of the Einstein field equations.

For the right hand side, we need to know the energy-momentum tensor of the content

of the universe. One usually uses a simplistic picture of perfect fluid to model the

content of a homogeneous and isotropic universe. Perfect fluid is described by its rest

frame energy density and isotropic pressure, whereas it has no viscosity, shear, stress

or heat conduction. The energy-momentum tensor is written in mathematical form

as follows,

T µν =


−ρ(t) 0 0 0

0 P (t) 0 0

0 0 P (t) 0

0 0 0 P (t)

 . (3.9)

Now, the Bianchi identity enforces the conservation of energy and momentum that

is the covariant derivative of the energy momentum tensor is zero by virtue of the

dynamical equations (EFEs),

∇µT
µ
ν = 0

=⇒ ∂µT
µ
ν + ΓµµαT

α
ν − ΓανµT

µ
α = 0. (3.10)

Setting ν = 0 in the above equation and expanding out the summations, we get,

∂µT
µ
0 + ΓµµαT

α
0 − Γα0µT

µ
α = 0

=⇒ ∂0T
0
0 + Γ0

00T
0
0 + Γ0

0iT
i
0 + Γii0T

0
0 + ΓiijT

j
0 − Γ0

00T
0
0 − Γ0

0iT
i
0 − Γi00T

0
i − Γi0jT

j
i = 0

=⇒ −dρ
dt

+ 3
1

a

da

dt
(−ρ)− 3

1

a

da

dt
P = 0. (3.11)

Now, using the equation of state P = ωρ for a barotropic perfect fluid with a constant

ω, the above equation becomes,

dρ

dt
+ 3

1

a

da

dt
(1 + ω)ρ = 0. (3.12)

21



This equation is the continuity equation for the perfect fluid. The above equation can

be expressed as a differential equation involving ρ and a,

dρ

ρ
= −3(1 + ω)

da

a
, (3.13)

with the following solution,

ρ

ρ0

=

(
a

a0

)−3(1+ω)

, (3.14)

here, a0 is the present day value of scale factor and ρ0 is the corresponding value of

the fluid’s energy density. The above equation tells us how the energy density changes

with the evolving scale factor. Now, we are ready to write down the Einstein field

equations and solve them for a such that we know how the scale factor evolves in

time when the universe is dominated by a single fluid with the equation of state as

mentioned above. The 00-component of the Einstein field equations is,

G00 = 8πGT00

=⇒ 3
1

a2

(
da

dt

)2

= 8πGρ, (3.15)

whereas the ij-component is,

Gij = 8πGTij

=⇒ δij

[
−2a

d2a

dt2
−
(
da

dt

)2
]

= 8πGδija
2P

=⇒ 2
1

a

d2a

dt2
+

(
1

a

da

dt

)2

= −8πGP. (3.16)

Now, eliminating equation (3.15) from equation (3.16), we get,

1

a

d2a

dt2
= −4πG

3
(ρ+ 3P ). (3.17)

Equation (3.15) and (3.17) are called the Friedmann equations. Now, we can put the

relation of energy density with the scale factor in equation (3.15) to solve for a,

1

a2

(
da

dt

)2

=
8πG

3
ρ =

8πG

3H2
0

H2
0ρ
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= H2
0

ρ0

ρcr,0

(
a

a0

)−3(1+ω)

= H2
0 Ωω,0

(
a

a0

)−3(1+ω)

for a species with P = ωρ. (3.18)

Here, we have used the definition of critical energy density ρcr ≡ 3H2

8πG
, and ρcr,0 denotes

its value at the present time. Also, we have used the definition of density parameter

for an ω-type fluid, Ωω ≡ ρ
ρcr

. Similarly, Ωω,0 denotes the parameter’s value at present

time. In an ω dominated universe and for ω 6= −1, the solution of a in terms of time

is the following,

1

a

da

dt
= H0

√
Ωω,0

(
a

a0

)− 3
2

(1+ω)

=⇒
∫ a

0

ã
1
2

(1+3ω)dã = H0

√
Ωω,0

(
1

a0

)− 3
2

(1+ω) ∫ t

0

dt′

=⇒ a
3
2

(1+ω) =
3

2
(1 + ω)H0

√
Ωω,0

(
1

a0

)− 3
2

(1+ω)

t

=⇒ a(t) =

[
3

2
(1 + ω)H0

√
Ωω,0

(
1

a0

)− 3
2

(1+ω)

t

] 2
3(1+ω)

. (3.19)

For ω = −1, which describes an interesting fluid with constant or scale factor inde-

pendent energy density, we have the following solution,

1

a

da

dt
= H0

√
Ωω,0

=⇒
∫ a0

a

1

ã
dã = H0

√
Ωω,0

∫ t0

t

dt

=⇒ ln
a0

a
= H0

√
Ωω,0(t0 − t)

=⇒ a(t) = a0 exp
[
H0

√
Ωω,0(t− t0)

]
. (3.20)

Therefore, a universe dominated by a fluid with constant energy density grows expo-

nentially over time. Such a fluid can be considered to be the dark energy which is

responsible for the acceleration of the universe at late time. It is worth noting that

the dependence of energy density on the scale factor and subsequently the depen-

dence of scale factor on time comes from the continuity equation and the dynamical

equations respectively. These relations may not be valid once we consider a different
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set of dynamical equations which will be the case in the next chapter.

3.2 Linear perturbations to the FLRW background

As we mentioned earlier that the homogeneous and isotropic picture of the universe

is only a zero-th order approximation and we shall now move on and consider first

order corrections to our zero-th order smooth universe. Therefore, we shall be adding

small perturbations to the FLRW metric and the energy momentum tensor. After

considering perturbed geometry and energy-momentum tensor we shall construct the

equations corresponding to dynamics and kinetics. After that we shall derive some

features about the approximated analytical solutions to those equations.

3.2.1 Perturbed geometry

We introduce two scalar fields Ψ(~x, t) and Φ(~x, t), which are dependent on both

space and time, to the metric to describe a perturbed universe,

g00(~x, t) = −1− 2Ψ(~x, t)

g0i(~x, t) = 0

gij(~x, t) = a(t)2δij(1 + 2Φ(~x, t)). (3.21)

Here, the values of these fields are small or |Φ|, |Ψ| � 1, in the sense that their second

and higher order powers, whenever they appear, can be neglected. This particular

choice of the metric is due to choosing a particular gauge, namely, the Conformal-

Newtonian gauge and the choice is not unique. There can be other choices of gauge

such as the synchronous gauge or the spatially flat slicing. However, dealing with

perturbations in our discussion is much simpler in the Conformal-Newtonian gauge

and as a result the other gauge choices remains out of the scope of this thesis. Having

decided the metric we can now compute the Christoffel symbols, and up to first order

they are,

Γ0
00 = Ψ,0; Γ0

0i = Ψ,i; Γ0
ij = δija

2 [H + 2H(Φ−Ψ) + Φ,0]

Γi00 =
1

a2
Ψ,i; Γij0 = δij(H + Φ,0); Γijk = δijΦ,k + δikΦ,j − δjkΦ,i. (3.22)
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The 00, ij and 0i components of the Ricci tensor can be computed to be as follows,

R00 =
1

a2
∇2Ψ− 3

1

a

d2a

dt2
− 3Φ,00 + 3H(Ψ,0 − 2Φ,0) (3.23)

Rij = δij

[(
2a2H2 + a

d2a

dt2

)
(1 + 2Φ− 2Ψ) + a2H(6Φ,0 −Ψ,0) + a2Φ,00 −∇2Φ

]
−Φ,ij −Ψ,ij

(3.24)

R0i = 2(HΨ,i − Φ,0i). (3.25)

Now, the Ricci scalar is simply the trace of the Ricci tensor and reads,

R = 6(1− 2Ψ)

(
H2 +

1

a

d2a

dt2

)
− 2

a2
∇2Ψ + 6Φ,00 − 6H(Ψ,0 − 4Φ,0)− 4

a2
∇2Φ. (3.26)

For the left hand side of the Einstein field equations we need to compute the 00, ij

and 0i components of the Einstein tensor, and they are,

G00 = R00 −
1

2
g00R = 3H2 + 6HΦ,0 −

2

a2
∇2Φ (3.27)

Gij = Rij −
1

2
gijR

= δij

[(
−a2H2 − 2a

d2a

dt2

)
(1 + 2Φ− 2Ψ) + 2a2H(Ψ,0 − 3Φ,0)− 2a2Φ,00 +∇2Φ +∇2Ψ

]
− Φ,ij −Ψ,ij (3.28)

G0i = R0i −
1

2
g0iR = R0i. (3.29)

Now, for the left hand side of the Einstein field equations we need to consider the

perturbed energy-momentum tensor and that is the next topic of discussion.

3.2.2 Perturbed energy-momentum tensor

For our purposes of discussion it suffices to consider photons and neutrinos as

relativistic fluid and dark matter and baryons to be non-relativistic fluid. While dark

matter and baryons can be modeled as perfect fluids with small perturbations around
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their homogeneous and isotropic energy density and pressure, computing the energy-

momentum tensor for the radiations (photons and neutrinos) is much trickier. We

shall discuss them separately.

Photons and neutrinos: The general relativistic expression for the energy-

momentum tensor in terms of the distribution function is (for this definition of energy-

momentum tensor as the second moment of the single particle distribution function

and for the justification of the integration measure see [7]),

T µν(~x, t) =
∑

all species α

gα

∫
d3P

(2π)3

√
−gP

µPν
P 0

fα(~x, ~p, t). (3.30)

Here, P µ ≡ dxµ

dλ
are the comoving momenta, λ being the parameter of photon’s tra-

jectory, i.e. xµ = xµ(λ) and gα is the degeneracy factor for the species α. Due to the

masslessness of photons (and to an approximation neutrinos can also be considered

massless, thus, also for nutrinos), the comoving momenta satisfy the following on-shell

condition,

gµνP
µP ν = 0. (3.31)

After expanding out the summations, the above equation becomes,

−(P 0)2 + gijP
iP j = 0

=⇒ P 0 = p, (3.32)

with, p2 = gijP
iP j. Now, let us assume that P i = C(p)p̂i, where, p̂i are the unit

vectors along the photon’s physical momenta p and satisfies δij p̂
ip̂j = 1. We perturb

the matter on the FLRW background, thus, we have,

p2 = gijP
iP j

= δija
2C2(p)p̂ip̂j

= C2(p)a2. (3.33)

Therefore, P i = p
a
p̂i. Collecting all the expressions above, one can write the conver-

sion between the components of comoving momenta and the magnitude of physical
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momenta as follows,

P µ =
[
p,
p

a
p̂i
]
. (3.34)

And also,

Pµ = gµαP
α = [−p, app̂i] , (3.35)

here, p̂i = p̂i and, p̂ip̂i = 1. Now, we can convert the comoving momenta in the

integral measure to physical momenta,

d3P = dP 1 ∧ dP 2 ∧ dP 3 =
1

a3
dp1 ∧ dp2 ∧ dp3 =

1

a3
d3p. (3.36)

Here, we have called pp̂i ≡ pi, which are the spatial components of physical momenta.

This factor of 1
a3

cancels with the a3 factor coming from
√
−g.

The perturbation variable corresponding to photon’s energy-momentum tensor can

be introduced as the temperature anisotropy in the photon distribution. If the photon

distribution had been homogeneous and isotropic, the temperature would only be a

function of time. Now, the photon temperature anisotropy can be introduced as

follows,

f(~x, p, p̂, t) =

[
exp

{
p

T (t)[1 + Θ(~x, p̂, t)]

}
− 1

]−1

. (3.37)

So, Θ = δT
T

measures the deviation from the average zero-th order temperature T (t)

and depends on the position vector, the direction of photon’s momentum and time.

Whereas, the zero order distribution function was,

f (0) =
1

ep/T − 1
. (3.38)

As the deviation from the homogeneity and isotropy is small, we can, now, expand the

distribution function (3.37) around its zero order form (up to first order correction),

f ' f (0) +
∂f (0)

∂T
δT

= f (0) − p∂f
(0)

∂p
Θ, (3.39)

as one observes T ∂f (0)

∂T
= −p∂f (0)

∂p
. We also define, the monopole of the photon temper-

ature anisotropy, which only depends on the position vector but not on the direction
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of the photon momenta, as follows,

Θ0(~x, t) ≡ 1

4π

∫
dΩ′Θ(p̂′, ~x, t), (3.40)

here, dΩ is the differential solid angle and is defined as sin θdθdφ. Now, the 00-

component of the energy-momentum tensor becomes, for photons or neutrinos, when

we break the distribution function in its zero order and first order part,

T 0
0 = −g

∫
d3p

(2π)3
p

[
f (0) − p∂f

(0)

∂p
Θ

]
= −ργ +

g

(2π)3

∫ ∞
0

dpp4∂f
(0)

∂p

∫
dΩΘ

= −ργ − 4
g

2π2

∫ ∞
0

dpp3f (0)Θ0, as f (0) → 0 when p→∞

= −ργ[1 + 4Θ0]. (3.41)

In the second equality of the above calculation we have broken the measure d3p into

its magnitude and angular part as p2dpdΩ. In the third equality, we have integrated

by parts. Similarly, the 0i-component of the energy-momentum tensor is given by the

following integration,

T 0
i = ga

∫
d3p

(2π)3
pp̂i

[
f (0) − p∂f

(0)

∂p
Θ

]
. (3.42)

For all purposes later, we shall be working in the Fourier space. Therein, naturally, a

propagation vector ~k for the perturbations would arise. We define, a variable µ that

expresses the cosine of angle between the photon’s momentum and the perturbation’s

propagation,

µ ≡ kip̂i
k

=
kip̂

i

k
. (3.43)

With this definition and considering the propagation of the perturbations in the ẑ

direction, the integration over sin θdθ, can be converted into an integration with re-

spect to µ, as sin θdθ = d(cos θ), with limit from −1 to 1. Thus, for the integrations

below we shall break the measure d3p as p2dpdµdφ. Now, to get a useful quantity,

we can multiply T 0
i with corresponding component of the propagation vector ki and
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sum over all the directions. The result is the following,

T 0
ik
i = ga

∫
d3p

(2π)3
pµ

[
f (0) − p∂f

(0)

∂p
Θ

]
= 2πgak

∫ ∞
0

dp

(2π)3

∫ 1

−1

dµp3µ

[
f (0) − p∂f

(0)

∂p
Θ

]
= −gak

2π2

∫ ∞
0

dpp4∂f
(0)

∂p

∫ 1

−1

dµ

2
µΘ

= −4igak

2π2

∫ ∞
0

dpp3f (0)Θ1

= −4iakργΘ1, (3.44)

above, we have defined,

Θ1 ≡
1

−i

∫ 1

−1

dµ

2
µΘ, (3.45)

which is called the dipole of the photon anisotropy. The ij-component of the energy-

momentum tensor becomes,

T i j = g

∫
d3p

(2π)3
pp̂ip̂j

[
f (0) − p∂f

(0)

∂p
Θ

]
. (3.46)

It is convenient to work with longitudinal, traceless part of the above object so that the

tensor perturbations decouple from the scalar ones. We use the projection operator

k̂ik̂
j − 1

3
δji to extract that part.

(
k̂ik̂

j − 1

3
δji

)
T i j = g

∫
d3p

(2π)3
p

(
µ2 − 1

3

)[
f (0) − p∂f

(0)

∂p
Θ

]
=

g

2π2

∫ ∞
0

dp

∫ 1

−1

dµ

2
p3 2

3

(
3

2
µ2 − 1

2

)[
f (0) − p∂f

(0)

∂p
Θ

]
=

g

2π2

∫ ∞
0

dp

∫ 1

−1

dµ

2
p3 2

3
P2(µ)

[
f (0) − p∂f

(0)

∂p
Θ

]
= − g

2π2

∫ ∞
0

dpp4∂f
(0)

∂p

∫ 1

−1

dµ

2

2

3
P2(µ)Θ

= −8

3

g

2π2

∫ ∞
0

dpp3f (0)Θ2

= −8

3
ργΘ2, (3.47)

here, we have defined,

Θ2 ≡
1

(−i)2

∫ 1

−1

dµ

2
P2(µ)Θ, (3.48)
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and P2(µ) is the second Legendre polynomial. In the similar vein, we define, in

general,

Θl ≡
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ, (3.49)

The above part of the energy-momentum tensor is known as the anisotrpic stress.

With the help of the definition of Θl, we can decompose the photon anisotropies into

infinite Legendre modes as follows,

Θ = (−i)l(2l + 1)
∞∑
l=0

Pl(µ)Θl. (3.50)

From the behaviour of the functions Pl(µ), it can be interpreted that the Θls with

higher l speaks of anisotropy at the smaller angular scales and is known as the multi-

pole moments of the photon anisotropy. Though we have only worked with the photon

distributions, similar expressions work for neutrinos as well.

Dark matter and baryon: Dark matter and baryon are considered non-relativistic

in our discussion. We can introduce small perturbation in the number density of the

dark matter as,

ndm(~x, t) = n
(0)
dm(1 + δ(~x, t)), (3.51)

here, n
(0)
dm is the average number density of the dark matter distribution. For non-

relativistic particles the energy density is mass times the number density, and so, the

denisty contrast δ can be written as,

δ(~x, t) =
ndm − n(0)

dm

n
(0)
dm

=
δρdm

ρdm

. (3.52)

In our discussion it suffices to consider both dark matter and baryon as pressureless

and they are also assumed to have no anisotropic stresses. As above, similar relations

hold for the baryon number desity (nb), density contrast (δb) and energy density (ρb).
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3.2.3 Kinetics: Boltzmann equations

We have derived the form of a general Boltzmann equation in the second chapter

(see equation (2.8)). Schematically, the unintegrated Boltzmann equation reads,

df

dt
= C[f ], (3.53)

where C[f ] contains all possible collision terms. As we are in a curved spacetime,

computing df
dt

is not trivial. First we shall focus on the deriving the form of df
dt

and

then later in this section we shall derive the collision terms for different types of

interactions separately.

We are studying the kinetics of the components of the universe in a perturbed

background for which the metric is given in (3.21). We start our discussion with

photons (or relativistic particles such as neutrinos). Let the comoving coordinates of

photons be denoted as xµ(λ). Then the comoving momenta are,

P µ =
dxµ

dλ
(3.54)

In principle, f is a function defined in 8-dimensional space (f = f(xµ, P µ)). However,

masslessness of photons implies,

P 2 ≡ gµνP
µP ν = 0. (3.55)

Expanding out the summations and using the metric components, we get,

P 2 = g00(P 0)2 + p2 = −(1 + 2Ψ)(P 0)2 + p2 = 0, (3.56)

here, as before,

p2 ≡ gijP
iP j, (3.57)

and is called the physical momentum (squared). Now, the zero-th component of the

comoving momenta can be expressed in terms of the physical momentum as follows,

ignoring the higher order terms in Ψ,

P 0 = p(1 + 2Ψ)−
1
2 ≈ p(1−Ψ). (3.58)
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With the new variable defined, f can be expressed as a function of time (t), position

vector (~x), magnitude of physical momentum (p) and its directions (p̂i). Thus, the

total derivative can be written as,

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
dp̂i

dt
. (3.59)

In the last term ∂f
∂p̂i

is a first order term because in zero-th order of f there is no

dependence on the direction of the photon momenta and also dp̂i

dt
is a first order term

because the direction of photon travelling only changes in presence of the perturba-

tions in the metric. Hence, as a whole the last term in the total derivative expression

is a multiplication of two first order terms, i.e. is a second order term and can be

dispensed with in our linear approximation. Now, we must derive expressions for dxi

dt

and dp
dt

.
dxi

dt
=
dxi

dλ

dλ

dt
=
P i

P 0
. (3.60)

We already have an expression for P 0. To express the P is in terms of physical mo-

menta we proceed as before, define,

P i ≡ C(p)p̂i. (3.61)

Putting this into the definition of physical momentum,

p2 = gijP
iP j = gij p̂

ip̂jC2 = a2(1 + 2Φ)δij p̂
ip̂jC2. (3.62)

We know δij p̂
ip̂j = 1, and hence,

C =
p

a
(1− Φ), (3.63)

up to the linear order. Thus, the spatial components of comoving momenta expressed

in terms of the phyical momenta are as follows,

P i =
p

a
(1− Φ)p̂i. (3.64)
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Putting all these expressions together we have an expression for dxi

dt
,

dxi

dt
=
P i

P 0
=

p
a
(1− Φ)p̂i

p(1−Ψ)
≈ p̂i

a
(1− Φ + Ψ). (3.65)

Now, we need to compute the expression for dp
dt

. We know that photons (or any

particles, for that matter) travel along the geodesics. We can, thus, use the geodesic

equation,
d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
. (3.66)

For µ = 0 the above equation becomes,

dP 0

dλ
= −Γ0

αβP
αP β. (3.67)

The 0-th component of the comoving momentum can be expressed in terms of the

physical momentum, as we derived earlier,

dP 0

dλ
=
dP 0

dt

dt

dλ
= P 0dP

0

dt
= p(1−Ψ)

d

dt
[p(1−Ψ)]. (3.68)

With this, the geodesic equation can be written as follows,

d

dt
[p(1−Ψ)] = −Γ0

αβ

PαP β

p
(1 + Ψ)

=⇒ dp

dt
(1−Ψ) = p

dΨ

dt
− Γ0

αβ

PαP β

p
(1 + Ψ)

=⇒ dp

dt
= p

{
∂Ψ

∂t
+
∂Ψ

∂xi
dxi

dt

}
(1 + Ψ)− Γ0

αβ

PαP β

p
(1 + 2Ψ)

= p

{
∂Ψ

∂t
+
p̂i

a

∂Ψ

∂xi

}
− Γ0

αβ

PαP β

p
(1 + 2Ψ), (3.69)

here, we have written the total derivative of Ψ(~x, t) with respect to time as ∂Ψ
∂t

+ ∂Ψ
∂xi

dxi

dt
,

and also used the fact that up to linear order (1+Ψ)(1−Ψ) = 1. First let us focus on

term involving the Christoffel symbol. Using the definition of the Christoffel symbols

and the symmetric property of the metric tensor, we can manipulate the expression,

algebraically, as follows,

Γ0
αβ

PαP β

p
=

1

2
g0ν [gνα,β + gνβ,α − gαβ,ν ]

PαP β

p
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=
−1 + 2Ψ

2
[2g0α,β − gαβ,0]

PαP β

p

=
−1 + 2Ψ

2

[
2

(
−2

∂Ψ

∂xβ

)
P 0P β

p
− gαβ,0

PαP β

p

]
. (3.70)

Now, again let us first look at second term inside the square brackets in the above

expression,

−∂gαβ
∂t

PαP β

p
= −∂g00

∂t

P 0P 0

p
− ∂gij

∂t

P iP j

p

= 2
∂Ψ

∂t
p− a2δij

[
2
∂Φ

∂t
+ 2H(1 + 2Φ)

]
P iP j

p

= 2
∂Ψ

∂t
p− p

[
2
∂Φ

∂t
+ 2H(1 + 2Φ)

]
(1− 2Φ), (3.71)

here, we kept everything up to the linear order and used the definition of the metric

components to evaluate their time derivatives. For instance, we know gij = a2δij(1 +

2Φ), thus,

∂gij
∂t

= 2a2δij
∂Φ

∂t
+ 2a

da

dt
δij(1 + 2Φ)

= a2δij

[
2
∂Φ

∂t
+ 2H(1 + 2Φ)

]
. (3.72)

We have also used the definition of physical momentum to find the expression for

δijP
iP j,

p2 = gijP
iP j = a2δij(1 + 2Φ)P iP j

=⇒ δijP
iP j =

p2

a2
(1− 2Φ). (3.73)

Using these results we can now find out the term with the Christoffel symbol,

Γ0
αβ

PαP β

p
=
−1 + 2Ψ

2

[
−4

∂Ψ

∂xβ
P β + 2p

∂Ψ

∂t
− 2p

{
∂Φ

∂t
+H(1 + 2Φ)

}
(1− 2Φ)

]
= (−1 + 2Ψ)

[
−2

{
∂Ψ

∂t
p+

∂Ψ

∂xi
pp̂i

a

}
+ p

∂Ψ

∂t
− p

{
∂Φ

∂t
+H

}]
= (−1 + 2Ψ)

[
−p∂Ψ

∂t
− 2

∂Ψ

∂xi
pp̂i

a
− p

{
∂Φ

∂t
+H

}]
. (3.74)
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With these results we have the expression for dp
dt

,

dp

dt
= p

{
∂Ψ

∂t
+
p̂i

a

∂Ψ

∂xi

}
− p∂Ψ

∂t
− 2

∂Ψ

∂xi
pp̂i

a
− p

{
∂Φ

∂t
+H

}
, (3.75)

which reduces to,
1

p

dp

dt
= −H − ∂Φ

∂t
− p̂i

a

∂Ψ

∂xi
. (3.76)

The above expression is insightful as it describes the change in photons’ physical

momentum as they travel trough an expanding and perturbed universe. The first

term after the equality says photons lose energy or get red shifted as the universe

expands. Now, according to the sign convention we are using an overdense region

corresponds to Φ > 0, and Ψ < 0. Thus, the second term after the equality says

photons lose energy in a gravitational potential well which is deepening with time(
∂Φ
∂t
> 0
)
. And the third term says photons travelling into a potential well

(
∂Ψ
∂xi

< 0
)

gain energy and conversely, get red shifted when emerging out of the well
(
∂Ψ
∂xi

> 0
)
.

Gathering all the results together we, finally, have the expression for df
dt

, the left

hand side of the Boltzmann equation,

df

dt
=
∂f

∂t
+
p̂i

a

∂f

∂xi
− p∂f

∂p

[
H +

∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
. (3.77)

From the above expression we can separate out the zero-th and first order parts. For

zero-th order equation there is no collision term. Thus, the zero-th order equation

becomes,

[
df

dt

]
zero-order

=
∂f (0)

∂t
−Hp∂f

(0)

∂p
= 0. (3.78)

We can convert the time derivative to a derivative with respect to temperature,

∂f (0)

∂t
=
∂f (0)

∂T

dT

dt
= − p

T

∂f (0)

∂p

dT

dt
. (3.79)

Putting that back into the zero-th order equation gives us,

[
−dT/dt

T
− da/dt

a

]
∂f (0)

∂p
= 0

=⇒ dT

T
= −da

a
. (3.80)
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Therefore, the zero-th order equation predicts that the temperature of the radiation

falls as the universe expands,

T ∝ 1

a
. (3.81)

To get the first order equation we should break the distribution function into its

zero-th and first order parts,

f ' f (0) − p∂f
(0)

∂p
Θ. (3.82)

Putting the above expression into equation 3.77, we get,

df

dt
=
∂f (0)

∂t
− p ∂

∂t

[
∂f (0)

∂p
Θ

]
− pp̂

i

a

∂Θ

∂xi
∂f (0)

∂p
− p ∂

∂p

[
f (0) − p∂f

(0)

∂p
Θ

]
{
H +

∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

}
. (3.83)

Collecting only the terms which are first order in perturbation variables gives,

[
df

dt

]
first order

= −p ∂
∂t

[
∂f (0)

∂p
Θ

]
− pp̂

i

a

∂Θ

∂xi
∂f (0)

∂p
− p∂f

(0)

∂p

[
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
+HpΘ

∂

∂p

[
p
∂f (0)

∂p

]
. (3.84)

To simplify the above expression we look at the first term after the equal sign,

−p ∂
∂t

[
∂f (0)

∂p
Θ

]
= −p∂f

(0)

∂p

∂Θ

∂t
− pΘdT

dt

∂2f (0)

∂T∂p

= −p∂f
(0)

∂p

∂Θ

∂t
+ pΘ

dT/dt

T︸ ︷︷ ︸
−H

∂

∂p

[
p
∂f (0)

∂p

]
, (3.85)

here dT/dt
T

= −H is ensured by the zero-th order equation. Using this result, we finally

have the left hand side of first order Boltzmann equation,

[
df

dt

]
first order

= −p∂f
(0)

∂p

[
∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
. (3.86)

We shall now discuss the collision term.

Collision term: Photons interact with electrons via Compton scattering. Consider
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the following scattering,

e−(~q) + γ(~p)↔ e−(~q′) + γ(~p′), (3.87)

the quantities within brackets indicate the momentum of the corresponding particles.

Schematically, the collision term should look like the following,

C[f(~p)] =
∑
~q,~q′,~p′

|M|2{fe(~q′)f(~p′)− fe(~q)f(~p)}, (3.88)

here, M is the quantum amplitude for the scattering process and we shall borrow

its expression from the quantum physics. We have neglected the Bose enhancement

1+fγ and Pauli blocking 1−fe terms because after electron-position annihilation the

excess electron have a very small occupation number fe and spontaneous emission is

not important in the first order approximation. The full expression for the collision

integral is as follows,

C[f(~p)] =
1

p

∫
d3~q

(2π)32Ee(~q)

∫
d3~q′

(2π)32Ee(~q′)

∫
d3~p′

(2π)32E(~p′)
|M|2(2π)4δ(3)(~p+ ~q − ~p′

− ~q′)δ[E(p) + Ee(q)− E(p′)− Ee(q′)]{fe(~q′)f(~p′)− fe(~q)f(~p)}

=
1

p

(2π)4

(2π)32me

∫
d3~q

(2π)32me

∫
d3~p′

(2π)32p′
|M|2δ

[
p+me +

q2

2me

− p′ −me

−(~q + ~p− ~p′)2

2me

]
{fe(~q + ~p− ~p′)f(~p′)− fe(~q)f(~p)}

=
π

4m2
ep

∫
d3~q

(2π)3

∫
d3~p′

(2π)3p′
|M|2δ

[
p+

q2

2me

− p′ − (~q + ~p− ~p′)2

2me

]
{fe(~q + ~p− ~p′)f(~p′)− fe(~q)f(~p)}, (3.89)

here we have used the fact that the electrons are non-relativistic particles in our limit

and then integrated over the momentum delta function. Also, the factor of 1
p

in front

of the collision integral comes from the fact that we are evaluating df
dt

, instead of df
dλ

.

Now, we know df
dλ

= df
dt
dt
dλ

= df
dt
p(1 − Ψ). Thus the collision term should be scaled

with 1
p
(1 + Ψ). However, as the collision term is already a first order quantity, only

the factor 1
p

is sufficient. In non-relativistic Compton scattering energy transfer from
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electron to photon is very small, and that enables us to approximate,

Ee(q)− Ee(~q + ~p− ~p′) =
q2

2me

− (~q + ~p− ~p′)2

2me

' (~p′ − ~p) · ~q
me

. (3.90)

Moreover, as the energy transfer is little, the delta function can be expanded as a

Taylor series around p−p′. This is possible because the delta function is well behaved

as long as its argument is not zero. The expansion looks like,

δ

[
p+

q2

2me

− p′ − (~q + ~p− ~p′)2

2me

]

' δ(p− p′) + (Ee(q
′)− Ee(q))

∂δ(p+ Ee(q)− p′ − Ee(q′))
∂Ee(q′)

∣∣
Ee(q′)=Ee(q)

= δ(p− p′) +
(~p− ~p′) · ~q

me

∂δ(p− p′)
∂p′

, (3.91)

in the last step we have used the mathematical identity ∂f(x−y)
∂x

= −∂f(x−y)
∂y

. Again,

as the energy transfer is little, p − p′ is small and the following electron distribution

reduces to fe(~q+ ~p− ~p′) ' fe(~q). With the help of these results, the collision integral

becomes,

C[f(~p)] =
π

4m2
ep

∫
d3~q

(2π)3
fe(~q)

∫
d3~p′

(2π)3p′
|M|2

{
δ(p− p′) +

(~p− ~p′) · ~q
me

∂δ(p− p′)
∂p′

}
{f(~p′)− f(~p)}.

(3.92)

For further analysis we shall borrow the expression for the scattering amplitude. In

[1], the following expression has been chosen, |M|2 = 6πσTm
2
e(1 + cos2[p̂ · p̂′]), here,

σT is the cross-section for the Thomson scattering. For the convenience of integration

we break this quantity into two pieces, |M|2 = 8πσTm
2
e + 2πσTm

2
e[3 cos2(p̂ · p̂′)− 1].

We first do the integration for the first part 8πσTm
2
e,

C1[f(~p)] =
2π2neσT

p

∫
d3~p′

(2π)3p′

{
δ(p− p′) + (~p− ~p′) · ~vb

∂δ(p− p′)
∂p′

}
{
f (0)(~p′)− f (0)(~p)− p′∂f

(0)

∂p′
Θ(p̂′) + p

∂f (0)

∂p
Θ(p̂)

}
=
neσT
4πp

∫ ∞
0

dp′p′
∫
dΩ′

[
δ(p− p′)

(
−p′∂f

(0)

∂p′
Θ(p̂′) + p

∂f (0)

∂p
Θ(p̂)

)
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+(~p− ~p′) · ~vb
∂δ(p− p′)

∂p′
(f (0)(~p′)− f (0)(~p))

]
, (3.93)

here we have broken the distribution functions into their zero-th and first order parts

and kept all the terms up to the first order; used the definitions
∫

d3~q
(2π)3

fe(~q) ≡ ne and∫
d3~q

(2π)3
fe(~q)

~q
me
≡ ne~vb (we are identifying electron fluid’s average velocity with the

baryon average velocity); used the property of delta function that δ(p− p′)(f (0)(~p′)−

f (0)(~p)) = 0. Moreover, the differential solid angle dΩ′ is spanned by the unit vector

p̂′. In going ahead we shall use the definition of monopole of photon anisotropy and

that leads to,

C1[f(~p)] =
neσT
p

∫ ∞
0

dp′p′
[
δ(p− p′)

(
−p′∂f

(0)

∂p′
Θ0 + p

∂f (0)

∂p
Θ(p̂)

)
+~p · ~vb

∂δ(p− p′)
∂p′

(f (0)(~p′)− f (0)(~p))

]
(3.94)

Integration by parts can be used for the last term inside the square brackets. Breaking,

~p′ into its magnitude and direction part, ~p′ · ~vb = p′p̂′ · ~vb, we have,

~p · ~vb
∂δ(p− p′)

∂p′
(f (0)(~p′)− f (0)(~p))

=
∂

∂p′

[
~p · ~vb(f (0)(~p′)− f (0)(~p))

]
− δ(p− p′) ∂

∂p′

[
~p · ~vb(f (0)(~p′)− f (0)(~p))

]
= −δ(p− p′)~p · ~vb

∂f (0)

∂p′
. (3.95)

Putting this expression back into the integral and integrating the delta function we

have,

C1[f(~p)] =
neσT
p

∫ ∞
0

dp′p′
[
δ(p− p′)

(
−p′∂f

(0)

∂p′
Θ0 + p

∂f (0)

∂p
Θ(p̂)

)
− δ(p− p′)pp̂ · ~vb

∂f (0)

∂p′

]
= −neσTp

∂f (0)

∂p
[Θ0 −Θ(p̂) + p̂ · ~vb] . (3.96)

Having done the integration for the first piece we now proceed to integrate the second

piece corresponding to 2πσTm
2
e[3 cos2(p̂ · p̂′)− 1]. Now,

2πσTm
2
e[3 cos2(p̂ · p̂′)− 1]

= 2πσTm
2
e · 2P2(p̂ · p̂′)
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= 2πσTm
2
e

8π

5

2∑
m=−2

Y2m(p̂)Y ∗2m(p̂′), (3.97)

here we have used the definition of the second Legendre polynomial and used its

relationship with the spherical harmonics,

Pl(x̂ · ŷ) =
4π

2l + 1

l∑
m=−l

Ylm(ŷ)Y ∗lm(x̂). (3.98)

The second part of the collision integral becomes,

C2[f(~p)] =
π

4m2
ep

∫
d3~q

(2π)3
fe(~q)

∫
d3~p′

(2π)3p′

(
2πσTm

2
e

8π

5

2∑
m=−2

Y2m(p̂)Y ∗2m(p̂′)

)
{
δ(p− p′) +

(~p− ~p′) · ~q
me

∂δ(p− p′)
∂p′

}
{f(~p′)− f(~p)}. (3.99)

Now, we have the following expression for the spherical harmonics,

Ylm(r̂) ≡ (−1)mil
[

2l + 1

4π

(l −m)!

(l +m)!

] 1
2

eimφPml (cos θ), (3.100)

here, r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ and cos θ = r̂ · ẑ. In our case we have

set the ẑ direction along the direction of perturbation’s propagation. Now, when

we break the integral measures into the magnitude and angular parts, the spherical

harmonics with m 6= 0 would not survive the integration over dφ. For m = 0,

Y20(p̂) = −
√

5
4π
P2(p̂ · k̂) = −

√
5

4π
P2(µ) and Y20(p̂′) = −

√
5

4π
P2(p̂′ · k̂) = −

√
5

4π
P2(µ′).

Thus, the integral becomes,

C2[f(~p)] =
π2neσT

p
P2(µ)

∫
d3~p′

(2π)3p′
P2(µ′)

{
δ(p− p′) + (~p− ~p′) · ~vb

∂δ(p− p′)
∂p′

}
{f(~p′)− f(~p)}, (3.101)

here, we have used the definitions
∫

d3~q
(2π)3

fe(~q) ≡ ne and
∫

d3~q
(2π)3

fe(~q)
~q
me
≡ ne~vb. We

can now break the distribution functions in their zero-th and first order parts. We

have to remember the fact that the zero-th order terms do not depend on the angle

of photon’s momentum and hence, the integration of the second Legendre polynomial

with the zero-th order term do not survive the angular integration. Also ~vb is already
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a first order quantity and its multiplication with other first order quantities can be

dropped. With these observations, the integral can be reduced to,

−neσT
2p
P2(µ)

∫ ∞
0

dp′p′
(
p′
∂f (0)

∂p′

)
δ(p− p′)

∫ 1

−1

dµ′

2
Θ(µ′)P2(µ′). (3.102)

Performing the delta function integration and using the definition of quadruple of

photon anisotropy, we have,

C2[f ] = p
∂f (0)

∂p

neσT
2
P2(µ)Θ2. (3.103)

Therefore, putting all the results together, we finally get the Boltzmann equation

for photons,

∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi
= neσT

[
Θ0 −Θ(p̂) + p̂ · ~vb −

1

2
P2Θ2

]
. (3.104)

It is convenient to use the conformal time instead of the coordinate time. With the

definition of conformal time, dη = dt
a(t)

, and denoting derivative with respect conformal

time with over dot, the Boltzmann equation takes the form,

Θ̇ + p̂i
∂Θ

∂xi
+ Φ̇ + p̂i

∂Ψ

∂xi
= neσTa

[
Θ0 −Θ(p̂) + p̂ · ~vb −

1

2
P2Θ2

]
. (3.105)

As we are working in a linear approximation, it is convenient to work in the Fourier

space. The Fourier transformation of the photon temperature anisotropy reads,

Θ(~x, t) =

∫
d3~k

(2π)3
ei
~k·~xΘ̃(~k, t). (3.106)

The derivative with respect to spatial coordinates become,

∂Θ

∂xi
=

∫
d3~k

(2π)3
(iki)e

i~k·~xΘ̃(~k, t). (3.107)

The baryon velocity can be considered to be in the direction as the propagation

vector and then for the corresponding Fourier transformed variable the following is

true, ~̃vb · p̂ = ṽbk̂ · p̂ = µṽb. With this observation we can compute the second term in
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the left hand side of the Boltzmann equation to be,

p̂i
∂Θ

∂xi
=

∫
d3~k

(2π)3
(ip̂iki)e

i~k·~xΘ̃(~k, t) =

∫
d3~k

(2π)3
(ikµ)ei

~k·~xΘ̃(~k, t). (3.108)

Moreover, we define a quantity called the optical depth as follows,

τ(η) ≡
∫ η0

η

dη′neσTa, (3.109)

with limits set in such a manner that its derivative is,

τ̇ ≡ dτ

dη
= −neσTa. (3.110)

Therefore, the Boltzmann equation in Fourier space, for each k modes reads,

˙̃Θ + ikµΘ̃ + ˙̃Φ + ikµΨ̃ = −τ̇
[
Θ̃0 − Θ̃ + µṽb −

1

2
P2Θ̃2

]
. (3.111)

In the early universe when Compton scattering was very effective, only the monopole

and dipole had significant values. This can be argued as follows, if the scattering is

very efficient the mean free path are much likely to be very small and all the photons

that an observer would receiving would come from nearby over which distance the

perturbations do not vary much in the early universe as most modes of interest lie

outside the horizon early on. Therefore to that observer the sky appears uniform

or the monopole is dominant. Other way of seeing this is to ignore the µvb term

coming from baryon drag velocity and Θ2 term coming from the angular dependence

of the Compton scattering in the above Boltzmann equation. Then we see that the,

in the limit kη � 1, the Boltzmann equation has an attractor at Θ = Θ0. Therefore,

photon anisotropy, being provided with sufficient time to establish equilibrium, would

drive to its monopole. But the drag velocity of the baryons are not exactly zero. As

the photons are tightly coupled to the baryons, a drag velocity in their distribution

introduces a dipole in the photon anisotropy. Next, if we calculate multiply the

Boltzmann equation with P2 and then integrate over
∫ 1

−1
dµ
2

we get the following

relation for Θ2, in the limit kη � 1,

Θ̇2 = − 9

10
τ̇Θ2. (3.112)
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The above equation has an attractor at Θ2 = 0 and hence, in equilibrium distribution

the value of quadruple drives towards zero. Moreover, we shall argue later that in

tightly coupled limit all the higher moments with l > 2 also have very small magnitude

compared to monopole and dipole.

Boltzmann equation for cold dark matter: Deriving Boltzmann equation

for cold dark matter is almost similar but with the distinction that dark matter is

massive and has no collision with other components of the universe. For dark matter

the trajectory can be parameterized with the proper time and the comoving momenta

have the definition P µ = mdxµ

dτ
. Now, as the cold dark matter is massive,

P 2 ≡ gµνP
µP ν = −m2. (3.113)

We can define the energy for cold dark amtter as, E ≡
√
p2 +m2. And also with,

p2 = gijP
iP j, the above equation becomes,

P 2 = g00(P 0)2 + p2 = −(1 + 2Ψ)(P 0)2 + p2 = −m2. (3.114)

The 0-th component of comoving momentum is, now,

P 0 =

√
p2 +m2

1 + 2Ψ
≈ E(1−Ψ). (3.115)

We get the spatial components proceeding as before, by defining,

P i ≡ C(p)p̂i. (3.116)

With the help of the definition for the physical momentum, we have,

p2 = gijP
iP j = a2(1 + 2Φ)δij p̂

ip̂jC2 = a2(1 + 2Φ)C2 (3.117)

Using, δij p̂
ip̂j = 1, we determine C to be,

C =
p

a
(1− Φ). (3.118)
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Therefore, the comoving momenta are,

P µ =
[
E(1−Ψ),

p

a
(1− Φ)p̂i

]
. (3.119)

It is useful to compute dxi

dt
,

dxi

dt
= m

dxi

dτ

1

m

dτ

dt
=
P i

P 0
=

p
a
(1− Φ)p̂i

E(1−Ψ)
≈ p

E

p̂i

a
(1− Φ + Ψ). (3.120)

Similarly, as in the case for photons we express the distribution function for cold dark

matter as a function of time, position vector, its energy and direction of physical

momenta. Hence, the total derivative of the distribution function in the left hand

side of the unintegrated Boltzmann equation for cold dark matter becomes,

dfdm

dt
=
∂fdm

∂t
+
∂fdm

∂xi
dxi

dt
+
∂fdm

∂E

dE

dt
+
∂fdm

∂p̂i
dp̂i

dt
. (3.121)

The last term here is also a second order term and can be dropped. To calculate dE
dt

we use the geodesic equation as before,

d2xµ

dτ 2
= −Γµαβ

dxα

dτ

dxβ

dτ
. (3.122)

For µ = 0 the geodesic equation reads,

m
dP 0

dτ
= −Γ0

αβP
αP β. (3.123)

The left hand side of this equation can be written as,

m
dP 0

dτ
= m

dP 0

dt

dt

dτ
= P 0dP

0

dt
= E(1−Ψ)

d

dt
[E(1−Ψ)]. (3.124)

Putting this into the geodesic equation,

d

dt
[E(1−Ψ)] = −Γ0

αβ

PαP β

E
(1 + Ψ)

=⇒ dE

dt
(1−Ψ) = E

dΨ

dt
− Γ0

αβ

PαP β

E
(1 + Ψ)

=⇒ dE

dt
= E

{
∂Ψ

∂t
+
∂Ψ

∂xi
dxi

dt

}
(1 + Ψ)− Γ0

αβ

PαP β

E
(1 + 2Ψ)
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= E

{
∂Ψ

∂t
+
p

E

p̂i

a

∂Ψ

∂xi

}
− Γ0

αβ

PαP β

E
(1 + 2Ψ) (3.125)

Following the similar steps as before, the last term can be calculated to be,

Γ0
αβ

PαP β

E
= (−1 + 2Ψ)

[
−E∂Ψ

∂t
− 2

∂Ψ

∂xi
pp̂i

a
− p2

E

{
∂Φ

∂t
+H

}]
. (3.126)

Putting the above results together the expression for dE
dt

becomes,

dE

dt
= E

{
∂Ψ

∂t
+
p

E

p̂i

a

∂Ψ

∂xi

}
− E∂Ψ

∂t
− 2

∂Ψ

∂xi
pp̂i

a
− p2

E

{
∂Φ

∂t
+H

}
= −∂Ψ

∂xi
pp̂i

a
− p2

E

{
∂Φ

∂t
+H

}
. (3.127)

Therefore, the unintegrated Boltzmann equation for the cold dark matter has the

following form,

dfdm

dt
=
∂fdm

∂t
+
p

E

p̂i

a

∂fdm

∂xi
− ∂fdm

∂E

[
H
p2

E
+
p2

E

∂Φ

∂t
+
pp̂i

a

∂Ψ

∂xi

]
= 0. (3.128)

To get the equation in terms of recognizable quatities we compute the zero-th and

first moments of this equation. For the zero-th moment we integrate both sides of the

equation over all mommenta,

∂

∂t

∫
d3~p

(2π)3
fdm +

1

a

∂

∂xi

∫
d3~p

(2π)3
fdm

pp̂i

E
−
[
da/dt

a
+
∂Φ

∂t

] ∫
d3~p

(2π)3

∂fdm

∂E

p2

E

−1

a

∂Ψ

∂xi

∫
d3~p

(2π)3

∂fdm

∂E
p̂ip = 0. (3.129)

We can use the definitions for dark matter number density,

ndm =

∫
d3~p

(2π)3
fdm, (3.130)

and dark matter average velocity,

vi ≡ 1

ndm

∫
d3~p

(2π)3
fdm

pp̂i

E
. (3.131)
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Now, the third integral in the zero-th moment equation becomes,

∫
d3~p

(2π)3

∂fdm

∂E

p2

E
=

∫
d3~p

(2π)3

∂fdm

∂p

∂p

∂E

p2

E

=

∫
d3~p

(2π)3

∂fdm

∂p
p

=
1

2π2

∫ ∞
0

dpp3∂fdm

∂p

=
1

2π2

[
p3fdm

∣∣∞
0
−
∫ ∞

0

dp3p2fdm

]
= −3

∫ ∞
0

4πp2dp

(2π)3
fdm

= −3ndm. (3.132)

In the fourth integral the integrand only survives the angular integral if it is of first

order. As there is ∂Ψ
∂xi

multiplying with the integral, the overall term is of second order

and can be dropped. The zero-th moment of the Boltzmann equation becomes,

∂ndm

∂t
+

1

a

∂(ndmv
i)

∂xi
+ 3

[
da/dt

a
+
∂Φ

∂t

]
ndm = 0. (3.133)

From the above equation the zero-order equation can be extracted,

∂n
(0)
dm

∂t
+ 3

da/dt

a
n

(0)
dm = 0

=⇒ d

dt

(
n

(0)
dma

3
)

= 0

=⇒ n
(0)
dm ∝ a−3 (3.134)

Therefore, the number density of the cold dark matter falls as the third power of the

scale factor. To get the first-order equation we set,

ndm = n
(0)
dm(1 + δ(~x, t)). (3.135)

With this definition, keeping everything up to first order, the equation for density

contrast has the following form, First-order equation,

∂δ

∂t
+

1

a

∂vi

∂xi
+ 3

∂Φ

∂t
= 0. (3.136)
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To get the second moment of the Boltzmann equation we multiply both sides of the

Boltzmann equation with p
E
p̂j and integrate over all momenta as before, this leads to,

∂

∂t

∫
d3~p

(2π)3
fdm

p

E
p̂j +

1

a

∂

∂xi

∫
d3~p

(2π)3
fdm

p2

E2
p̂ip̂j −

[
da/dt

a
+
∂Φ

∂t

] ∫
d3~p

(2π)3

∂fdm

∂E

p3

E2
p̂j

−1

a

∂Ψ

∂xi

∫
d3~p

(2π)3

∂fdm

∂E

p2

E
p̂ip̂j = 0.

(3.137)

Roughly speaking, p
E

is of the order of the velocity of cold dark matter and it is a first

order quantity. Thus, the second term in the above equation can be dropped as it

contains second power of p
E

. With the relation p
E

∂
∂E

= ∂
∂p

the third integral becomes,

∫
d3~p

(2π)3

∂fdm

∂p

p2p̂j

E
=

∫
dΩ

(2π)3
p̂j
∫ ∞

0

dp
p4

E

∂fdm

∂p

=

∫
dΩ

(2π)3
p̂j
∫ ∞

0

dpfdm

(
4p3

E
− p5

E3

)
= −4

∫
d3~p

(2π)3
fdm

pp̂j

E

= −4ndmv
j, (3.138)

here we have used the fact that p5

E3 = p2
(
p
E

)3
is negligible. The fourth integral,

∫
d3~p

(2π)3

∂fdm

∂E

p2p̂ip̂j

E
=

∫
dΩ

(2π)3
p̂ip̂j

∫ ∞
0

dpp3∂fdm

∂p

= −
∫

dΩ

(2π)3
p̂ip̂j

∫ ∞
0

dp3p2fdm

= −δ
ij

3

∫
d3~p

(2π)3
3fdm

= −δijndm, (3.139)

here we have used the following identity,

∫
dΩp̂ip̂j =

1

3

∫
dΩδijδij p̂

ip̂j =
4π

3
δij. (3.140)

Therefore, the first moment of the Boltzmann equation is,

∂

∂t
(ndmv

j) + 4
da/dt

a
ndmv

j +
ndm

a

∂Ψ

∂xj
= 0. (3.141)
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As ndm is always multiplying a first order quantity in the above equation, it can be

replaced by ndm(0) up to first order,

n
(0)
dm

∂vj

∂t
+
∂n

(0)
dm

∂t
vj + 4

da/dt

a
n

(0)
dmv

j +
n

(0)
dm

a

∂Ψ

∂xj
= 0

=⇒ n
(0)
dm

∂vj

∂t
− 3

da/dt

a
n

(0)
dmv

j + 4
da/dt

a
n

(0)
dmv

j +
n

(0)
dm

a

∂Ψ

∂xj
= 0

=⇒ ∂vj

∂t
+
da/dt

a
vj +

1

a

∂Ψ

∂xj
= 0. (3.142)

In the above manipulation we have used the zero-th order Boltzmann equation. Sim-

ilarly, in the case for photons, the Fourier transformed equations with the definition,

ṽi =
(
ki

k

)
ṽ are as follows,

˙̃δ + ikṽ + 3 ˙̃Φ = 0, (3.143)

and,

˙̃v +
ȧ

a
ṽ + ikΨ̃ = 0. (3.144)

Here also over dot denotes the derivative with respect to the conformal time.

Boltzmann equation for baryons: The derivation for the left hand side of the

Boltzmann equation for the baryons works similarly to the case for cold dark matter,

however, for the right hand side we now have Compton scattering between electrons

and photons also Coulomb scattering between the electrons and protons. As the

protons and electrons remain tightly coupled through the Coulomb scattering and

also as the universe is considered to be electrically neutral, electrons’ and protons’

density contrasts can be identified with each other,

ρe − ρ(0)
e

ρ
(0)
e

=
ρp − ρ(0)

p

ρ
(0)
p

≡ δb. (3.145)

Similarly, due to the tight coupling their average velocities can also be identified,

~ve = ~vp ≡ ~vb. To compute the collision terms for Compton and Coulomb scattering,

let us assign momenta to the corresponding particles. Say, ~p and ~p′ are the incoming

and outgoing photon momenta, respectively; ~q and ~q′ are the incoming and outgoing

momenta, respectively and finally the incoming and outgoing momenta for the proton

are ~Q and ~Q′. Thus, we have following two unintegrated Boltzmann equation for
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electrons and protons,

dfe(~x, ~q, t)

dt
= 〈Cep〉QQ′q′ + 〈Ceγ〉pp′q′ (3.146)

dfp(~x, ~Q, t)

dt
= 〈Cep〉qq′Q′ (3.147)

In the above notation, the integrand of the collision term has been defined as follows,

Ceγ ≡ (2π)4δ(4)(p+ q − p′ − q′) |M|2

8E(p)E(p′)Ee(q)Ee(q′)
{fe(q′)fγ(p′)− fe(q)fγ(p)} ,

(3.148)

and the angular brackets around them denotes the integration over all the momenta

that are indicated in the subscripts,

〈(. . . )〉pp′q′ ≡
∫

d3~p

(2π)3

∫
d3~p′

(2π)3

∫
d3~q′

(2π)3
(. . . ). (3.149)

To get the equation for δb we integrate the electron Boltzmann equation with respect

to
∫

d3~q
(2π)3

, and then the left hand side of this equation becomes similar to the left

hand side of the corresponding equation for cold dark matter, thus we have,

∂ne
∂t

+
1

a

∂(nev
i
b)

∂xi
+ 3

[
da/dt

a
+
∂Φ

∂t

]
ne = 〈Cep〉QQ′q′q + 〈Ceγ〉pp′q′q = 0. (3.150)

The right hand side of the equation is equal to zero because both the collision integral

vanishes. The reason for this is, for instance, in the case of the first integral the

integration measure is invariant under the exchange of variables Q ↔ Q′ and q ↔ q′

but the integrand is antisymmetric under these exchanges. Similar reasoning works

for the second integration. Then the above equation is identical to that of cold dark

matter and in Fourier space the equation for δb can be written as,

˙̃δb + ikṽb + 3 ˙̃Φ = 0. (3.151)

For the equation corresponding to vb, we multiply equation (3.146) and (3.147) with

~q and ~Q, respectively, and integrate over these corresponding momenta. Thus, this

step is similar with the case for cold dark matter but there we had multiplied by ~p/E

and we can borrow the result for the left hand side of the dark matter’s Boltzmann
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equation so long as we also multiply a factor of corresponding mass. Then the left

hand side of the first equation has mass of an electron multiplied to it whereas the

second one has a proton’s mass. As proton is much heavier than electron, upon adding

the two equations, we get,

mp
∂

∂t
(nbv

j
b)+4

da/dt

a
mpnbv

j
b+

mpnb
a

∂Ψ

∂xj
= 〈Cep(qj+Qj)〉QQ′q′q+〈Ceγqj〉pp′q′q. (3.152)

As nb in the above equation is always multiplying a first order quantity, it can be

replaced by n
(0)
b . Using the fact that n

(0)
b ∝ a−3 and dividing both sides of the above

equation by ρb = mpn
(0)
b , we arrive at,

∂vjb
∂t

+
da/dt

a
vjb +

1

a

∂Ψ

∂xj
=

1

ρb
〈Ceγqj〉pp′q′q, (3.153)

here, the first collision integral in equation (3.152) has been set to zero by virtue of

momentum conservation. In Coulomb scattering the sum of the initial momenta of

proton and electron remains invariant before and after the collision. Now, it remains

to evaluate the second collision integral corresponding to the Compton scattering,

〈Ceγqj〉pp′q′q =

∫
d3~p

(2π)3

∫
d3~p′

(2π)3

∫
d3~q′

(2π)3

∫
d3~q

(2π)3
δ(4)(p+ q − p′ − q′)|M|2

qj {fe(q′)fγ(p′)− fe(q)fγ(p)} (3.154)

In the centre of mass frame, we have, ~p = −~q, and hence,

〈Ceγ~q〉pp′q′q = −〈Ceγ~p〉pp′q′q. (3.155)

Multiplying both sides of the equation (3.154) by k̂j, and using the fact that k̂j ·qj =⇒

k̂ · ~p = µp, we have,

− 〈Ceγµp〉pp
′q′q

ρb
=
neσT
ρb

∫
d3~p

(2π)3
p2∂f

(0)

∂p
µ[Θ̃0 − Θ̃(µ) + µṽb −

1

2
P2(µ)Θ2], (3.156)

here, we have used our previous result from the collision integral for the Compton

scattering. Now, breaking the integration measure into magnitude and angular part,
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we can perform the integral as follows,

−〈Ceγ~q〉pp
′q′q

ρb
=
neσT
ρb

∫ ∞
0

dp

(2π)3
p4∂f

(0)

∂p

∫ 2π

0

dφ

∫ 1

−1

dµµ[Θ̃0 − Θ̃(µ) + µṽb]

= −neσT
ρb

∫ ∞
0

dp

2π2
4p3f (0)

[
i

∫ 1

−1

dµ

2
iµΘ̃(µ) +

1

3
ṽb

]
= −neσT

ρb

∫ ∞
0

dp4πp2

(2π)3
4pf (0)

[
i

∫ 1

−1

dµ

2
iµΘ̃(µ) +

1

3
ṽb

]
= −neσT

4ργ
3ρb

[3iΘ̃1 + ṽb]

=
1

a
τ̇

4ργ
3ρb

[3iΘ̃1 + ṽb]. (3.157)

Therefore, in Fourier space and using conformal time the Boltzmann equation for

baryon average velocity becomes,

˙̃v +
ȧ

a
ṽ + ikΨ̃ = τ̇

4ργ
3ρb

[3iΘ̃1 + ṽb]. (3.158)

As from now on we shall always be working in the Fourier space, we adopt the notation

of dropping tilde for the Fourier transformed variables and keep the fact in mind that

we are working in the Fourier space rather than in the real space. Having derived all

the relevant Boltzmann equations we shall now move on to deriving the dynamical

Einstein field equations for linear perturbation theory.

3.2.4 Dynamics: Einstein equations

As we are dealing with equations that are linear in the perturbation variables, it

is convenient to work in the Fourier space. Because of the linearity, different Fourier

modes do not mix with each other and we can write equations for each of those modes

separately. In going form real space equations to the Fourier space equations for each

k mode we replace the spatial derivatives (∂i) by iki. In this way our expressions for

various components of Einstein tensor become in the Fourier space,

G00 = 3H2 + 6HΦ,0 +
2k2

a2
Φ (3.159)

Gij = δij

[(
−a2H2 − 2a

d2a

dt2

)
(1 + 2Φ− 2Ψ) + 2a2H(Ψ,0 − 3Φ,0)− 2a2Φ,00 − k2Φ− k2Ψ

]

51



+ kikjΦ + kikjΨ (3.160)

G0i = 2iki(HΨ− Φ,0). (3.161)

Here, the zero-th derivatives are with respect to coordinate time. As we projected the

longitudinal, traceless part out of the ij-components of the energy-momentum tensor

to avoid contributions from the tensor perturbations, we should do the same for the

ij-components of the Einstein tensor as well. When we apply the operator k̂ik̂
j − 1

3
δji

on Gi
j, the term proportional to δij vanish and we are left with,

(
k̂ik̂

j − 1

3
δji

)
Gi

j =

(
k̂ik̂

j − 1

3
δji

)(
kikj(Φ + Ψ)

a2

)
=

2

3a2
k2(Φ + Ψ), (3.162)

the factor of 1/a2 comes from the metric when we raise one index. Now, we have both

right and left hand sides of the Einstein field equations ready. Using conformal time,

the 00-component of the equation becomes,

G0
0 = 8πGT 0

0

=⇒ k2Φ + 3
ȧ

a

(
Φ̇−Ψ

ȧ

a

)
= 4πGa2[ρdmδ + ρbδb + 4ργΘ0 + 4ρνN0]. (3.163)

The longitudinal, traceless part of the ij-components become,

(
k̂ik̂

j − 1

3
δji

)
Gi

j = 8πG

(
k̂ik̂

j − 1

3
δji

)
T i j

=⇒ k2(Φ + Ψ) = −32πGa2[ργΘ2 + ρνN2]. (3.164)

And, finally, the 0i-components are,

G0
ik
i = 8πGT 0

ik
i

=⇒ Φ̇− aHΨ =
4πGa2

ik
[ρdmv + ρbvb − 4iργΘ1 − 4iρνN1]. (3.165)

As there are only two independent variables (Φ and Ψ) in the metric the equation cor-

responding to 0i-components add no new information to the other two equations and

we shall use the last equation as convenient to the situation. With all the Boltzmann

and Einstein field equations derived we have the set of coupled Boltzmann-Einstein
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equations ready to be solved and that is the discussion of our next section.

3.3 Solving Einstein-Boltzmann equations for in-

homogeneities

In order to study how perturbations evolve we must solve the set of coupled

Boltzmann-Einstein equations. For our purpose here we would ignore the baryon den-

sity and its density contrast in favour of the corresponding cold dark matter quantities

because the baryon density is much smaller than that of cold dark matter. Also, we

shall assume that for photon (and for neutrinos as well) only monopole and dipole

are important until very late in the matter dominated era and thus, we shall only

include equations for these two quantities ignoring all the higher poles. Moreover,

as the quadruple or the anisotropic stress is being considered negligible, the equa-

tion (3.164) implies Φ = −Ψ. With the above considerations we have the following

equations to solve.

The Boltzmann equations,

Θ̇r,0 + kΘr,1 = −Φ̇ (3.166)

Θ̇r,1 −
k

3
Θr,0 = −k

3
Φ (3.167)

δ̇ + ikv = −3Φ̇ (3.168)

v̇ +
ȧ

a
v = ikΦ. (3.169)

The Einstein field equations,

k2Φ + 3
ȧ

a

(
Φ̇ + Φ

ȧ

a

)
= 4πGa2[ρdmδ + 4ρrΘr,0] (3.170)

Φ = −Ψ. (3.171)

For convenience, in particular situations we may also use an algebraic Einstein field

equation which is obtained when we substitute equation (3.165) into equation (3.163),

k2Φ = 4πGa2

[
ρdmδ + 4ρrΘr,0 +

3aH

k
(iρdmv + 4ρrΘr,1)

]
. (3.172)
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Figure 3.1: Super-horizon and sub-horizon region

In the above equations the subscript r means radiation which includes both photons

and neutrinos. Now, it is not possible to solve all of the above equations analytically.

To get leading order analytical solutions in various cases we must use approximations.

We identify different regions in comparison with the comoving horizon size. If the

universe was only radiation and matter dominated, the comoving horizon, in that

case is given by the following expression,

η =
2

ΩmH2
0

[√
a+ aeq −

√
aeq
]
, (3.173)

here, aeq is the scale factor corresponding the epoch of equality. Now, we shall identify

regions in the comoving distance scales which are always outside the horizon (super-

horizon) and always inside the horizon (sub-horizon). This two regions are shaded

in the figure 3.1. These two regions constitute our two primary regions of approxi-

mations. And also we shall look for the solutions corresponding to the modes which

crosses the horizon at early times in the radiation dominated era or at late time in

the matter dominated era. This two regions are shaded in the figure 3.2.

3.3.1 Initial conditions

Before we go on to solve the set of Boltzmann-Einstein equations we should discuss

the initial conditions. At very early time, when η → 0 all modes of interest lie outside
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Figure 3.2: Early and late time horizon crossing

the horizon. In that case it is appropriate to use k → 0, because the wavelengths

(∼ k−1) of the perturbations are so large and outside the horizon that they cannot

be probed from inside. Also in this limit only Θ0 is prominent among all the other

moments because as the perturbations lie outside the horizon the sky for an hypothet-

ical observer at that time appears almost homogeneous. Therefore, the Boltzmann

equations reduce to,

Θ̇0 + Φ̇ = 0; δ̇ + 3Φ̇ = 0

Ṅ0 + Φ̇ = 0; δ̇b + 3Φ̇ = 0 (3.174)

Here, we see that all the perturbation variables at early times are related to the

gravitational potential. Then it suffices to figure out the initial condition for the

potential. Θ0 has the following solution with an integration constant,

Θ0 = −Φ + constant. (3.175)

Now, the Einstein field equation in the early time or in the radiation dominated era

takes the following form,

3
ȧ

a

(
Φ̇− ȧ

a
Ψ

)
= 16πGa2(ργΘ0 + ρνN0). (3.176)
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In radiation dominated era, we have, a ∝ η =⇒ ȧ
a

= 1
η
. Using this into the Einstein

equation gives,

Φ̇

η
− 1

η2
Ψ =

16πGa2

3
ρ

(
ργ
ρ

Θ0 +
ρν
ρ
N0

)
= 2a2H2 ((1− fν)Θ0 + fνN0)

=
2

η2
((1− fν)Θ0 + fνN0) , (3.177)

here, ρ = ργ +ρν is the total energy density and fν = ρν
ρ

neutrino abundance fraction.

We have also used the first Friedmann equation in the above manipulation. The above

equation is re-written in the following form,

Φ̇η −Ψ = 2 ((1− fν)Θ0 + fνN0) . (3.178)

Using the fact that Θ̇0 = Ṅ0 = −Φ̇ from the Boltzmann equations, we have,

Φ̈η + Φ̇− Ψ̇ = −2Φ̇. (3.179)

As the quadruple is negligible, Φ + Ψ = 0, and hence,

Φ̈η + 4Φ̇ = 0. (3.180)

We use the ansatz Φ = ηp as the solution of the above equation. This gives us the

following algebraic equation in p

p(p− 1) + 4p = 0, (3.181)

with the solutions p = 0, and p = −3. As the second solution blows up in the η → 0

limit we take Φ = constant as the solution. Now, we also have,

Φ = 2 ((1− fν)Θ0 + fνN0) . (3.182)

Assuming, initially photon and neutrino monopoles were the same, i.e., Θ0(k, ηi) =

N0(k, ηi), we get,

Φ(k, ηi) = 2Θ0(k, ηi). (3.183)
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Now, for the density contrast of dark matter we have from the Boltzmann equation,

δ = 3Θ0 + constant. (3.184)

In the model of adiabatic perturbations this constant is chosen to be zero. Due to

this choice the matter to radiation number density ratio has a constant value,

ndm

nγ
=
n

(0)
dm

n
(0)
γ

[
1 + δ

1 + 3Θ0

]
≈ n

(0)
dm

n
(0)
γ

(1 + δ − 3Θ0) =
n

(0)
dm

n
(0)
γ

. (3.185)

Therefore, the density contrast initially had the following relationship with the initial

potential Φp,

δ(k, η = 0) =
3Φp

2
. (3.186)

Finally, we can also see that the constant in the solution of Θ0 in equation (3.175)

has to be 3Φp
2

in order for the equation (3.183) to hold.

3.3.2 Large Scales

Our first focus will be to solve the above set of equations for the large scale modes

which either always remain in the super-horizon scales or crosses horizon at late times

during the matter dominated era.

Super-horizon solution

Before we dive into the solution, it is useful to derive and define few relations. We

know that the radiation and matter density changes with the scale factor as follows,

ρr = ρcrΩra
−4 (3.187)

ρm = ρcrΩma
−3. (3.188)

Then their ratio is,

ρm
ρr

=
Ωm

Ωr

a. (3.189)

57



At epoch of equality the matter and radiation density becomes equal to each other,

i.e., at aeq, the following relation is true ρm = ρr. Thus, aeq can be written as,

aeq =
Ωr

Ωm

. (3.190)

Let us define a new parameter y as follows,

ρm
ρr

=
a

aeq
≡ y. (3.191)

Now, the condition for super-horizon region is kη � 1. We take very small k modes

such that for all time they are outside the horizon. At small ks, the v and Θr,1

decouple from the evolution equations, leaving,

Θ̇r,0 = −Φ̇ (3.192)

δ̇ = −3Φ̇ (3.193)

3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGa2[ρdmδ + 4ρrΘr,0]. (3.194)

We shall try to get a second order differential equation in terms of Φ and solve that.

Eliminating Φ̇ first two of the above three equations, we have,

δ̇ = 3Θ̇r,0 (3.195)

=⇒ δ − 3Θr,0 = constant. (3.196)

We can set the constant to be zero which by demanding the following initial condition

which corresponds to the adiabatic perturbation model, thus,

δ = 3Θr,0. (3.197)

Now, in the Einstein equation we can factor out ρdmδ and apply the definition of y,

3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGa2ρdmδ

[
1 +

4

3

ρr
ρdm

]
= 4πGa2ρdmδ

[
1 +

4

3y

]
. (3.198)
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It is convenient to work with a differential equation in terms of y and for that purpose,

we convert the comformal time derivatives into derivatives with respect to y,

d

dη
=
dy

dη

d

dy
=

(
d

dη

a

aeq

)
d

dy
= aHy

d

dy
. (3.199)

Above we have used the relation,

ȧ = a
da

dt
= a2H. (3.200)

Now, ρdm can be expressed in terms of y as,

y =
ρdm

ρr
=⇒ 1 + y =

ρ

ρr
=⇒ yρ

1 + y
= ρdm. (3.201)

With the above expressions, the left hand side of Einstein equation becomes,

3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 3aH (aHyΦ′ + aHΦ) = 3a2H2 (yΦ′ + Φ) . (3.202)

The prime denotes derivative with respect to y. Similarly, the right hand side takes

the form,

4πGa2ρdmδ

[
1 +

4

3y

]
=

8πG

3
ρ · 3

2

y

1 + y
a2δ

3y + 4

3y
=

3

2
a2H2δ

3y + 4

3(1 + y)
, (3.203)

here we have used the fact that from the zero-th order first Friedmann equation we

have, 8πG
3
ρ = H2. Putting the left and right hand sides together Einstein equation

becomes,

yΦ′ + Φ =
3y + 4

6(1 + y)
δ. (3.204)

To get a second order differential equation of Φ, we differentiate the above equation

with respect to y,

δ′ =
d

dy

{
6(1 + y)

3y + 4
[yΦ′ + Φ]

}
, (3.205)
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and then use the relation δ′ = −3Φ′ to eliminate δ′. This leaves us with a second

order differential equation of Φ,

Φ′′ +
21y2 + 54y + 32

2y(1 + y)(3y + 4)
Φ′ +

1

y(1 + y)(3y + 4)
Φ = 0. (3.206)

To simplify the above differential equation on introduces a new variable,

u ≡ y3

√
1 + y

Φ. (3.207)

In terms of u the above differential takes the following simpler form,

u′′ + u′
[
−2

y
+

3/2

1 + y
− 3

3y + 4

]
= 0. (3.208)

Integrating the above equation, we have,

ln(u′) = lnA+ 2 ln y − 3

2
ln(1 + y) + ln(3y + 4). (3.209)

We can exponentiate to get an expression for the u′,

u′ = A
y2(3y + 4)

(1 + y)
3
2

. (3.210)

Integrating the above equation further, we get,

y3

√
1 + y

Φ = A

∫ y

0

dy′
y′2(3y′ + 4)

(1 + y′)
3
2

. (3.211)

We can determine the integration constant A considering the solution at early time.

At early time Φ can be expanded to Φ(0) + yΦ′|y=0 + . . . . Early on, in the limit

y � 1, y3Φ→ y3Φ(0). For small y, the integrand becomes 4y′2, and consequantly the

integration is 4y3

3
, thus for small y,

Φ(0) =
4A

3
=⇒ A =

3Φ(0)

4
(3.212)

Substituting x =
√

1 + y, the integration can be completed, and the result reads,

Φ =
Φ(0)

10

1

y3

[
16
√

1 + y + 9y3 + 2y2 − 8y − 16
]
. (3.213)
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Figure 3.3: Evolution of large scale gravitational potential

At large y, once the universe has become matter-dominated, y3 in the brackets lead,

giving,

Φ→ 9

10
Φ(0). (3.214)

Therefore, the late time value of the gravitational potential is sensitive to its initial

value which we mentioned in the introductory remarks. The above function has been

plotted in figure 3.3, and we see that the potential starts off as a constant and as it

crosses the epoch of equality its value falls by almost 10% in the matter dominated

era and asymptotically approaches a constant value.

Through horizon crossing

We are considering large scale modes of Φ which enter the horizon late in the

matter dominated era. At late times, radiation is not important and the radiation

perturbations do not govern the dynamics, thus, we can drop the equations concerning

radiation perturbation. Also in this case the modes enter horizon, i.e., kη ∼ 1, and

hence, we cannot ignore the terms containing k as we did last time. The relevant

Boltzmann equations for the cold dark matter are,

δ̇ + ikv = 0, (3.215)

v̇ + aHv = ikΦ. (3.216)
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We shall be using the algebraic Einstein equation this time which can be manipulated

to give,

k2Φ = 4πGa2

[
ρdmδ +

3aH

k
· iρdmv

]
=

8πG

3
ρdm

3

2
a2

[
δ +

3iaH

k
v

]
=

3

2
a2H2

[
δ +

3iaH

k
v

]
. (3.217)

From the knowledge that the super-horizon solution implies deep in the matter dom-

inated era the gravitational potential reaches a constant value, one sets the initial

condition for this problem as Φ̇ = 0. Now, the task remains to see whether the above

equations admit a solution Φ = constant, if so, then that is the solution picked up

by the initial condition and merging of solutions of two different regimes. From the

algebraic equation δ can be written as,

δ =
2k2Φ

3a2H2
− 3iaH

k
v. (3.218)

Using the fact that in matter dominated era, H ∝ a−
3
2 and thus, d(aH)

dη
= −a2H2

2
we

evaluate the derivative of δ with respect to the conformal time,

δ̇ =
2k2Φ̇

3a2H2
+

2k2Φ

3aH
− 3iaH

k
v̇ +

3ia2H2v

2k
. (3.219)

Putting this back into the equation (3.215), we have,

2k2Φ̇

3a2H2
+

2k2Φ

3aH
− 3iaH

k
v̇ +

3ia2H2v

2k
+ ikv = 0. (3.220)

Replacing v̇ with v and Φ from equation (3.216),

2k2Φ̇

3a2H2
+

(
iv

k
+

2Φ

3aH

)[
9a2H2

2
+ k2

]
= 0. (3.221)

If the second order differential equation is of the form αΦ̈+βΦ̇ = 0, then Φ = constant

is a solution. We differentiate the above equation with respect to conformal time and
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only examine the terms containing Φ,

(
iv̇

k
+

Φ

3

)(
9a2H2

2
+ k2

)
+

(
iv

k
+

2Φ

3aH

)(
−9a3H3

2

)
, (3.222)

above we have used the fact that in matter dominated era d(aH)−1

dη
= 1

2
. Again,

replacing v̇ with v and Φ, we have,

−
[
iaHv

k
+

2Φ

3

]
(9a2H2 + k2) (3.223)

The term in the square bracket is proportional to Φ̇. Therefore, there is no term

proportional to Φ and constant potential is indeed a solution. Therefore the large

scale modes of the gravitational potential which enter the horizon at late time remains

constant.

3.3.3 Small scales

After discussing the large scale modes we shall now turn our attention to the small

scale modes which either crosses the horizon at early times during the radiation dom-

inated era or always remain in the sub-horizon scales.

Through horizon crossing

Small scale modes crosses the horizon in radiation dominated era itself. We assume

that the matter perturbation starts off small in the radiation dominated era and do

not take part in governing the dynamics of the universe. Thus, δ can be neglected

in this limit. The monopole and dipole governs the dynamics and sets the evolution

of the gravitational potential and once the potential is set it acts as a background in

which the evolution of matter perturbations will take place. To begin with, we drop

the cold dark matter equations and we are left with,

Θ̇r,0 + kΘr,1 = −Φ̇, (3.224)

Θ̇r,1 −
k

3
Θr,0 = −k

3
Φ, (3.225)

k2Φ = 4πGa2

[
4ρrΘr,0 +

3aH

k
(4ρrΘr,1)

]
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=
8πG

3
ρr

3

2
a2 · 4

[
Θr,0 +

3aH

k
Θr,1

]
= 6a2H2

[
Θr,0 +

3aH

k
Θr,1

]
. (3.226)

In radiation era, we have the following expressions,

H ∝ t−1, η ∝ a, a ∝ t
1
2 , aH ∝ a−1, and aH =

1

η
. (3.227)

Using the above facts, the Einstein equation becomes,

k2η2Φ

6
− 3

kη
Θr,1 = Θr,0. (3.228)

Taking derivative of the above equation with respect to conformal time, we, have,

Θ̇r,0 =
k2ηΦ

3
+
k2η2

6
Φ̇ +

3

kη2
Θr,1 −

3

kη
Θ̇r,1. (3.229)

Using equation (3.224) in the avobe equation gives,

k2ηΦ

3
+
k2η2

6
Φ̇ +

3

kη2
Θr,1 −

3

kη
Θ̇r,1 + kΘr,1 = −Φ̇

=⇒ − 3

kη
Θ̇r,1 + kΘr,1

[
1 +

3

k2η2

]
= −Φ̇

[
1 +

k2η2

6

]
− Φ

k2η

3
. (3.230)

On the other hand, from equation (3.225),

Θ̇r,1 −
k

3

(
k2η2

6
Φ− 3

kη
Θr,1

)
= −k

3
Φ (3.231)

=⇒ Θ̇r,1 +
1

η
Θr,1 = −k

3
Φ

[
1− k2η2

6

]
. (3.232)

Eliminating Θ̇r,1 from the above two equations, we have,

Φ̇ +
1

η
Φ = − 6

kη2
Θr,1 (3.233)

To get the second order differential equation in terms of Φ, we differentiate the above

equation with respect to conformal time and substitute for Θ̇r,1 and Θr,1 from their
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above relations to get everything in terms of Φ and its derivatives,

Φ̈− 1

η2
Φ +

1

η
Φ̇ =

12

kη3
Θr,1 −

6

kη2
Θ̇r,1

=
12

kη3
Θr,1 −

6

kη2

(
−k

3
Φ

[
1− k2η2

6

]
− 1

η
Θr,1

)
=

18

kη3
Θr,1 +

2

η2
Φ

[
1− k2η2

6

]
= −3

η
Φ̇− 3

η2
Φ +

2Φ

η2
− k2

3
Φ. (3.234)

This leaves us with the following differential equation,

Φ̈ +
4

η
Φ̇ +

k2

3
Φ = 0. (3.235)

To solve the above equation, we define, u ≡ Φη, and the above equation in terms of

u becomes,

ü+
2

η
u̇+

[
k2

3
− 2

η2

]
u = 0. (3.236)

Substituting x = kη√
3
, we have,

d2u

dx2
+

2

x

du

dx
+

[
1− 2

x2

]
u = 0. (3.237)

Solutions of the above equations are spherical Bessel function and spherical Neumann

function of order 1. As Neumann function blows up for small η, that is rejected,

leaving the solution to be,

u(x) = A
sinx− x cosx

x2

=⇒ u

(
kη√

3

)
= A

sin
(
kη√

3

)
−
(
kη√

3

)
cos
(
kη√

3

)
(
kη√

3

)2

=⇒ Φ = A
sin
(
kη√

3

)
−
(
kη√

3

)
cos
(
kη√

3

)
(
kη√

3

)3 . (3.238)

To determine the constant we take early time limit. When η → 0, the function
sin

(
kη√
3

)
−
(
kη√
3

)
cos

(
kη√
3

)
(
kη√
3

)3 → 1
3

and the gravitational potential reaches its initial value Φ→

65



k=1 h Mpc-1

k=10 h Mpc-1

10-7 10-6 10-5 10-4 10-3

0.0

0.2

0.4

0.6

0.8

1.0

Scale factor (a)

Φ
/Φ

(0
)

Figure 3.4: Evolution of small scale gravitational potential

Φp. Thus, we can set A = 3Φp, and we have,

Φ = 3Φp

sin
(
kη√

3

)
−
(
kη√

3

)
cos
(
kη√

3

)
(
kη√

3

)3 . (3.239)

The above profile for the small scale mode of the gravitational potential has been

plotted in figure 3.4. The potential starts from a constant value and as it crosses the

horizon it falls rapidly, oscillates around its zero value and settles at zero at late time.

We shall ,now, see how the matter perturbations evolve, affected by the potential.

The Boltzmann equations corresponding to matter perturbations are,

δ̇ + ikv = −3Φ̇, (3.240)

v̇ +
ȧ

a
v = ikΦ. (3.241)

Differentiating the first equation and substituting v̇ from the second equation gives,

δ̈ + ik

(
− ȧ
a
v + ikΦ

)
= −3Φ̈

=⇒ δ̈ +
1

η
δ̇ = −3Φ̈− 3

η
Φ̇ + k2Φ︸ ︷︷ ︸

S(k,η)

, (3.242)
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in the last step we have again substituted v from the first equation. This is a linear

differential equation for δ with a source term S(k, η). Let us look at the solution

of the homogeneous equation first. For the homogeneous equation δ̈ + 1
η
δ̇ = 0, two

solutions are, δ = constant and δ = ln[η] = ln a. We can construct a Green’s function

from the above two solutions, and it takes the form,

G(η, η′) =
s1(η)s2(η′)− s1(η′)s2(η)

ṡ1(η′)s2(η′)− s1(η′)ṡ2(η′)

=
C ln[η′]− C ln[η]

0− C 1
η′

= −η′ (ln[kη′]− ln[kη]) . (3.243)

The full solution of the inhomogeneous differential equation is the linear combination

of the two homogeneous equation and the particular solution obtained from Green’s

function,

δ(k, η) = C1 + C2 ln[η]−
∫ η

0

dη′S(k, η′)η′ (ln[kη′]− ln[kη]) . (3.244)

We, now, have to determine the constants C1 and C2. At very early time, when

η → 0, the contribution from the integral is small. The initial condition that at early

time δ(k, η = 0) = 3Φp
2

is a constant sets C2 = 0 and C1 = 3Φp
2

. Now as we know

from the profile of the potential that at late times after it has crossed the horizon

it settles down to zero. Thus the source integral has dominant contribution around

kη ∼ 1. The part of the integral with S(k, η′) ln[kη′] then asymptotically settles to a

constant value after the horizon crossing whereas the part with S(k, η′) ln[kη] becomes

proportional to ln[kη]. Thus, we expect the following solution for the density contrast

after it crosses the horizon, constituting of a constant part and a logarithmic growing

part,

δ(k, η) = AΦp ln(Bkη). (3.245)

Now, from the above argument, the constant part should be,

AΦp ln[B] =
3Φp

2
−
∫ ∞

0

dη′S(k, η′)η′ ln[kη′], (3.246)
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Figure 3.5: Evolution of matter perturbations in radiation dominated era

and the coefficient of the logarithmic term should be,

AΦp =

∫ ∞
0

dη′S(k, η′)η′. (3.247)

The late time has been exaggerated to infinity to pick up the asymptotic contributions.

Performing the above two integrals in Mathematica with the potential profile given in

equation (3.239), we get the following values for the constants A = 9 and B = 0.62.

The evolution of the matter perturbation has been plotted in the figure 3.5.

Sub-horizon solution

For small scale perturbations the cold dark matter density contrast δ grows loga-

rithmically in the radiation dominated era and for Θr,0, the growth is suppressed due

to the existence of radiation pressure. Eventually, ρdmδ becomes much larger than

ρrΘr,0 even though it may still be that ρdm < ρr. In this limit, radiation perturbations

can be neglected and we are left with the following set of equations,

δ′ +
ikv

aHy
= −3Φ′, (3.248)

v′ +
v

y
=

ikΦ

aHy
, (3.249)

k2Φ =
3

2

y

1 + y
a2H2

[
δ +

3iaHv

k

]
=

3y

2(1 + y)
a2H2δ. (3.250)
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In the above equations we have used the facts that ȧ
a

= 1
a
aHy da

d( a
aeq

)
= aH, and the

zero-th order first Friedmann equation is 4πGρdm = H2 y
1+y
· 3

2
, and for sub-horizon

modes we have aH
k
� 1. Now, the first Friedmann equation can again be written as,

H2 =
8πG

3
(ρdm + ρr) =

8πG

3
ρr(1 + y). (3.251)

Also the second Friedmann equation is written as,

1

a

d2a

dt2
= −4πG

3
(ρdm + ρr + 3Pr) = −4πG

3
ρr(2 + y). (3.252)

From the two Friedmann equations we get,

d2a

dt2
= −1

2

aH2(2 + y)

1 + y
. (3.253)

For a later purpose we need to compute the expression for d
dy

(
1

aHy

)
, which is,

d

dy

(
1

aHy

)
= − 1

(aHy)2

d

dy
(aHy), (3.254)

which, prompts us to compute the expression for d
dy

(aHy), and that is,

d

dy
(aHy) = y

d

dy
aH + aH = y

dt

dy

d2a

dt2
+ aH = y

1
1
aeq

da
dt

(
−1

2

aH2(2 + y)

1 + y

)
+ aH

= aH

(
1− 2 + y

2(1 + y)

)
=

aHy

2(1 + y)

(3.255)

And with the help of these results finally we have the expression for d
dy

(
1

aHy

)
, in the

following form,
d

dy

(
1

aHy

)
= − 1

2aHy(1 + y)
. (3.256)

Now to get the second order differential equation in terms of the density contrast we

differentiate equation (3.248) with respect to y and use the previous result in (3.256)

to get,

δ′′ +
ikv′

aHy
− ikv

2aHy(1 + y)
= −3Φ′′. (3.257)
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We can eliminate v′ using the equation (3.249),

δ′′ +
ik

aHy

(
−v
y

+
ikΦ

aHy

)
− ikv

2aHy(1 + y)
= −3Φ′′

=⇒ δ′′ − ikv

aHy

(
1

y
+

1

2(1 + y)

)
= −3Φ′′ +

k2Φ

a2H2y2

=
k2Φ

a2H2y2
,

k

aH
� 1 (3.258)

As the value of the gravitational potential of all k modes falls after crossing the

horizon, in the sub-horizon limit, potential can be neglected in favour of the density

contrast in the equation (3.248) and that leaves for us, δ′ = ikv
aHy

. Also from the

Einstein equation we have, k2Φ
a2H2y2

= 3δ
2y(1+y)

. Using these two expressions the second

order differential equation for the density contrast becomes,

δ′′ +
2 + 3y

2y(1 + y)
δ′ − 3

2y(1 + y)
δ = 0. (3.259)

The above equation is called Meszaros equation. We take the ansatz that one of the

solutions is a polynomial of y of order 1. That implies δ′′ = 0; and then for the first

solution D1, we have,

2 + 3y

2y(1 + y)
D′1 −

3

2y(1 + y)
D1 = 0

=⇒ D′1
D1

=
1

2
3

+ y

lnD1 = ln

(
2

3
+ y

)
=⇒ D1 = y +

2

3
(3.260)

Now, we find the second solution by defining, u ≡ δ
D1

. In terms of u then the Meszaros

equation takes the form,

(1 +
3y

2
)u′′ +

u′

y(1 + y)

[
21

4
y2 + 6y + 1

]
= 0. (3.261)

We integrate the above equation as follows,

du′

u′
= −

21
4
y2 + 6y + 1

y(1 + y)
(
1 + 3y

2

)dy
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=⇒ du′

u′
= −

(
1

y
+

1

2(1 + y)
+

3(
1 + 3y

2

)) dy
=⇒ lnu′ = − ln y − 1

2
(1 + y)− 2 ln(2 + 3y)

=⇒ u′ =
1

y
√

1 + y(2 + 3y)2
. (3.262)

To get the solution for u, we need to compute the following integral,

∫
1

y
√

1 + y(2 + 3y)2
dy = −1

4

[
ln

∣∣∣∣√1 + y + 1√
1 + y − 1

∣∣∣∣− 2
√

1 + y
2
3

+ y

]
. (3.263)

Using the above result and the definition of u, we get the second solution as,

D2 = uD1 = −1

4

[
D1 ln

∣∣∣∣√1 + y + 1√
1 + y − 1

∣∣∣∣− 2
√

1 + y

]
. (3.264)

Now, the solution of the Meszaros equation will be a linear combination of the above

two solutions. However, to determine the constant coefficients of the linear combina-

tion one requires to do the numerical fitting and we have left that discussion out.

3.4 Solving Einstein-Boltzmann equations for

anisotropies

We have already seen the solutions of Einstein-Boltzmann equations for inhomo-

geneities in the previous section. Now shall turn our focus to the solutions for the

anisotropies.

3.4.1 Large scale anisotropies

For super-horizon scales when kη � 1, we have the following solution for Θ0, as we

already calculated earlier,

Θ0(k, η) = −Φ(k, η) +
3Φp

2
(3.265)

The CMB photons that reaches us today are free streaming to us from the time of

recombination. As recombination takes place long time after the epoch of equality,

now, for y � 1, we have Φ(k, η∗) → 9Φp
10

. Thus at recombination the value of Θ0 is
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given as,

Θ0(k, η∗) = −Φ(k, η∗) +
3Φp(k)

2

= −Φ(k, η∗) +
5

3
Φ(k, η∗)

=
2

3
Φ(k, η∗). (3.266)

One defines the observed anisotropy as follows,

(Θ0 + Ψ)(k, η∗) ' Θ0 − Φ. (3.267)

Thus we have,

(Θ0 + Ψ)(k, η∗) = −1

3
Φ(k, η∗) =

1

3
Ψ(k, η∗). (3.268)

From the analysis in the section regarding initial conditions we had δ̇ = −3Φ̇ and

the initial value of δ was set to be 3Φp
2

. Now, integrating the large scale Boltzmann

equation for δ, we have,

δ(η∗)− δ(ηi) = −3(Φ(η∗)− Φp)

=⇒ δ(η∗) =
3

2
Φp − 3(Φ(η∗)− Φp)

=
9

2
· 10

9
Φ(η∗)− 3Φ(η∗)

= 2Φ(η∗). (3.269)

Using this result we can express the observed large scale anisotropy as,

(Θ0 + Ψ)(k, η∗) = −1

6
δ(η∗). (3.270)

The above equation relates the observed anisotropy at the recombination to the den-

sity perturbation of the dark matter at the recombination.

3.4.2 Tightly coupled limit of the Boltzmann equation

Before recombination all electrons were ionized and they were strongly coupled to

the photons via Compton scattering and the scattering rate was much faster than the
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expansion rate of the universe. This limit corresponds to a very high optical depth,

τ(η) ≡
∫ η0

η

dη′neσTa� 1. (3.271)

We have the Boltzmann equation for photons, which reads,

Θ̇ + ikµΘ = −Φ̇− ikµΨ− τ̇
[
Θ0 −Θ + µvb +

1

2
P2Θ2

]
. (3.272)

For, l > 2, we multiply the Boltzmann equation with Pl(µ) and integrate with respect

to 1
(−i)l

∫ 1

−1
dµ
2

. Using the orthogonality of the Legendre polynomials and the definition

for Θl, we get,

Θ̇l +
k

(−i)l+1

∫ 1

−1

dµ

2
µPl(µ)Θ(µ) = τ̇Θl. (3.273)

Now, we use the following mathematical identity for the Legendre polynomials,

(l + 1)Pl+1(µ) = (2l + 1)µPl(µ)− lPl−1(µ)

µPl(µ) =
(l + 1)Pl+1(µ) + lPl−1(µ)

2l + 1
. (3.274)

Using the above identity the integral in equation (3.273) becomes,

∫ 1

−1

dµ

2
µPl(µ)Θ(µ) =

∫ 1

−1

dµ

2

(l + 1)Pl+1(µ) + lPl−1(µ)

2l + 1
Θ(µ)

=
(−i)l+1(l + 1)

2l + 1
Θl+1 +

(−1)l−1l

2l + 1
Θl−1. (3.275)

Therefore, the Boltzmann equation finally takes the following form,

Θ̇l +
k(l + 1)

2l + 1
Θl+1 −

kl

2l + 1
Θl−1 = τ̇Θl. (3.276)

Let us take the term Θ̇l to the right hand side of the equation and then the right

hand side can be written as,

−Θ̇l + τ̇Θl =
d

dη
(τΘl −Θl)− τΘ̇l (3.277)
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As τ � 1, the terms inside the parenthesis reduce to τΘl. Hence, the right hand side

of the Boltzmann equation beomes τ̇Θl,

k(l + 1)

2l + 1
Θl+1 −

kl

2l + 1
Θl−1 = τ̇Θl. (3.278)

Neglecting the term corresponding to l + 1 for the moment, we have,

Θl =
kl

(2l + 1)neσTa
Θl−1. (3.279)

As neσT is proportional to the reaction rate for the Compton scattering its value is

very large for the tightly coupled limit. Therefore, the value of Θl−1 is much larger

than that of Θl. Therefore, our scheme of throwing away the Θl+1 is self consistent.

In conclusion for l > 2 all the higher moments are subsequently suppressed compared

to the previous moments.

For our discussion in this section we shall only consider the monopole and dipole of

the photon temperature anisotropy and assume that all higher moments are negligible

compared to them. With these approximations the relevant Boltzmann equations for

the photons and the electrons (or baryons) are,

Θ̇0 + ikΘ1 = −Φ̇, (3.280)

Θ̇1 −
k

3
Θ0 =

k

3
Ψ + τ̇

[
Θ1 +

vb
3i

]
, (3.281)

δ̇b + ikvb = −3Φ̇, (3.282)

v̇b +
ȧ

a
vb = −ikΨ + τ̇

4ρ
(0)
γ

3ρ
(0)
b

[vb + 3iΘ1] . (3.283)

Defining 1
R
≡ 4ρ

(0)
γ

3ρ
(0)
b

, we re-write the last equation in the following form,

vb = −3iΘ1 +
R

τ̇

[
v̇b +

ȧ

a
vb + ikΨ

]
. (3.284)

As τ̇ is proportional to the reaction rate and is a much larger quantity than terms in

the square brackets because individually all the perturbation variables are considered

to have magnitude much less than 1, we can approximate −3iΘ1 as the zero-th order

solution of vb. To get the first order correction, we put this value back into the above
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equation and get,

vb ' −3iΘ1 +
R

τ̇

[
−3iΘ̇1 − 3i

ȧ

a
Θ1 + ikΨ

]
. (3.285)

Putting this expression of vb into equation (3.281), we get,

Θ̇1 −
k

3
Θ0 =

k

3
Ψ + τ̇

[
Θ1 −

i

3

(
−3iΘ1 +

R

τ̇

(
−3iΘ̇1 − 3i

ȧ

a
Θ1 + ikΨ

))]
=
k

3
Ψ + τ̇

[
R

τ̇

(
−Θ̇1 −

ȧ

a
Θ1 +

k

3
Ψ

)]
= −RΘ̇1 −

ȧ

a
RΘ1 +

k

3
(1 +R)Ψ. (3.286)

Rearrenging the terms we can write,

Θ̇1 +
ȧ

a

R

1 +R
Θ1 −

k

3(1 +R)
Θ0 =

k

3
Ψ. (3.287)

Differentiating equation (3.280) with respect to conformal time Θ̇1 and Θ1 in favour

of Θ0, we get,

Θ̈0 + kΘ̇1 = −Φ̈

=⇒ Θ̈0 + k

[
k

3
Ψ− ȧ

a

R

1 +R
Θ1 +

k

3(1 +R)
Θ0

]
= −Φ̈

=⇒ Θ̈0 +
k2

3
Ψ− ȧ

a

kR

1 +R

(
1

k
(−Φ̇− Θ̇0)

)
+

k2

3(1 +R)
Θ0 = −Φ̈

=⇒ Θ̈0 +
ȧ

a

R

1 +R
Θ̇0 + k2 1

3(1 +R)
Θ0 = −k

2

3
Ψ− ȧ

a

R

1 +R
Φ̇− Φ̈ (3.288)

In the above equation the derivatives of Θ0 and Φ appears almost similarly and using

the fact that R ∝ a we can write the above equation as,{
d2

dη2
+

Ṙ

1 +R

d

dη
+ k2c2

s

}
[Θ0 + Φ] =

k2

3

[
1

1 +R
Φ−Ψ

]
, (3.289)

here, cs ≡
√

1
3(1+R)

. The above equation is of the form of a damped and forced har-

monic oscillator. When R is small the speed of sound cs is much larger and the friction

term can be ignored in its favour and we also notice that the homogeneous equation

has two solutions in this limit, S1(k, η) = sin[krs(η)] and S2(k, η) = cos[krs(η)], with
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the definition rs(η) ≡
∫ η

0
dη′cs(η

′). From these two solutions we can build the Green’s

function as before and that turns out to be
√

3 sin[k(rs−r′s)]
k

. Therefore, the general

solution to the inhomogeneous equation is,

(Θ0 + Φ)(η) = C1S1(η) + C2S2(η) + +
k√
3

∫ η

0

dη′[Φ(η′)−Ψ(η′)]

sin [k(rs(η)− rs(η′))], (3.290)

here, we have ignored R so long as it does not appear in the argument of an oscillating

function. In the limit η → 0, both Θ0 and Φ becomes constant and also the contribu-

tion from the integral is much less, then C1 must vanish (as sine function goes to zero

in this limit) and C2 = Θ0(0) + Φ(0) (as cosine goes to 1). Therefore, the solution for

the observed monopole can be written as,

Θ0(η) + Φ(η) = [Θ0(0) + Φ(0)] cos (krs) +
k√
3

∫ η

0

dη′[Φ(η′)−Ψ(η′)]

sin [k(rs(η)− rs(η′))]. (3.291)

From equation (3.281) the corresponding equation for the dipole,

Θ1(η) = [Θ0(0) + Φ(0)] sin (krs)−
k√
3

∫ η

0

dη′[Φ(η′)−Ψ(η′)] cos [k(rs(η)− rs(η′))].

(3.292)

Considering the contribution from the integrals to be small we see that the monopole

and dipole oscillate out of phase with respect to each other. These two are the primary

solutions of photon anisotropy from the analysis of Boltzmann-Einstein equations.

However, the presence of a small but non-negligible quadruple moment dampens the

oscillations for higher k modes, a phenomenon known as diffusion damping.
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Chapter 4

Modified Gravity

As in the early universe the value of the scale factor was considerably small and

the energy scale of the universe was much higher we expect quantum gravity effects

to be dominant in the past. With this proposition in mind we review a particular

effective low energy model of a theory of discrete spacetime and review some of its

consequences in this chapter.

4.1 The modified gravity theory

We shall now briefly describe the modified gravity theory suggested in the works

[2], and [3]. In these works, they have rejected the view that, for a quantum theory

of gravity, in an already discretized spacetime the quantum matter should display

its predetermined properties, rather they suggest the discreteness of the spacetime

is relational to the matter degrees of freedom which can probe the discreteness. For

instance, the geodesics in the general theory of relativity can only be realized in

relation to the motion of the test particles. Similarly, the discreteness of the spacetime

can only be realized through the interaction between the matter degrees of freedom

and the spacetime. Thus matter degrees of freedom exchange energy and momentum

with the underlying discrete structure of the spacetime. If, to an effective low energy

limit, we consider the spacetime to be a smooth manifold, then we would not be

taking into account the whole of the energy and momentum that is being exchanged

between the matter degrees of freedom and the discrete spacetime. Therefore in such

an effective low energy theory there should be violation of the principle of energy-
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momentum conservation. However, Einstein’s theory of gravity cannot be the model

for such an effective low energy theory because in this theory the energy-momentum

conservation is enforced by the geometric Bianchi identity. One should look beyond

this theory and choose a modified set of equations. The particular choice taken in the

above mentioned works is the equations of Unimodular Gravity (UG), in which the

dynamical equations do not enforce a conservation of energy-momentum. Another

motivation for choosing this set of equations is that in UG the vacuum energy does

not gravitate and might be plausible solution for the cosmological constant problem

[8].

As given in [9], the equations for UG is achieved with the constraint, δ
√
−g =

0 =⇒ gµνδgµν = 0. If the deformation of the manifold is given by a vector field ξµ,

then, we have,

δgµν = Lξgµν = ξα∇αgµν + (∇µξ
λ)gλν + (∇νξ

λ)gµλ = 2∇(µξν). (4.1)

Thus, the constraint is equivalent to, gµνδgµν = 0 =⇒ ∇µξ
µ = 0, having a diver-

gence free deformation of the manifold, i.e., transformations in which the 4-volume

is preserved. To achieve the UG dynamical equations we take into consideration the

following action,

S =

∫
d4x

1

16πG

[√
−gR− λ(x)(

√
−g − ε0)

]
+ Sm, (4.2)

here, ε0 is a constant tensor density and Sm is the matter action. Varying the action

with respect to the metric and setting the variation to be zero, we get,

δS =

∫
d4x

1

16πG

[
Gµν +

λ(x)

2
gµν

]√
−gδgµν +

∫
d4x

δSm
δgµν

δgµν = 0. (4.3)

And the equation of motion now reads,

Gµν +
λ(x)

2
gµν = 8πGTµν . (4.4)

Also we have a constraint equation
√
−g = ε0, obtained by varying the action with

respect the Lagrange’s multiplier λ. Taking the trace of the equation of motion we

have, λ(x) = 1
2
(R+8πGT ) and recasting this relationship into the equation of motion
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again we achieve the traceless dynamical equation for UG, as given below,

Rµν −
1

4
gµνR = 8πG

(
Tµν −

1

4
gµνT

)
. (4.5)

The Bianchi identity no longer ensures the conservation of energy and momentum.

One defines energy-momentum violation current as (8πG)∇µTµν = Jν . Now, the

variation of matter action gives,

δSm =

∫
d4x

δSm
δgµν

δgµν = −
∫
d4x

√
−g
2

Tµνδg
µν

[
Tµν =

−2√
−g

δSm
δgµν

]
=

∫
d4x
√
−gTµν∇µξν

= − 1

(8πG)

∫
d4x
√
−g jµ ξµ. (4.6)

From the condition for volume preserving diffeomorphism, we have, ∇µξ
µ = 0 =⇒

ξµ = εµναλ∇νωαλ, and with the help of this one obtains,

δSm = − 1

(8πG)

∫
d4x
√
−g jµ εµναλ∇νωαλ

=
1

(8πG)

∫
d4x
√
−g εµναλ∇νjµωαλ. (4.7)

If the matter action is invariant under volume preserving diffeomorphisms, then δSm =

0. As ωαλ, is arbitrary, one concludes,

εµναλ∇νjµωαλ = 0 =⇒ dJ = 0 =⇒ jµ = ∇µQ. (4.8)

Now, the UG equation can be written as,

Rµν −
1

2
gµνR +

1

4
gµνR = 8πG

(
Tµν −

1

4
gµνT

)
. (4.9)

Using Bianchi identity, we get,

1

4
∇µR = ∇µ

(
Q− 8πG · 1

4
T

)
. (4.10)

This is equivalent to, 1
4
R =

(
Λ0 +Q− 8πG · 1

4
T
)

with an integration constant Λ0.
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One recasts the value of Ricci scalar in the UG equation to obtain,

Rµν−
1

2
gµνR + gµν

(
Λ0 +Q− 8πG · 1

4
T

)
= 8πG

(
Tµν −

1

4
gµνT

)
=⇒ Rµν −

1

2
gµνR + gµν

[
Λ0 +

∫
l

J

]
= 8πGTµν . (4.11)

We were after the above equation. It is worth noting that depending on whether the

gradient of Q vanishes the UG equation includes both the possibility of having or not

having violation of energy-momentum conservation. The UG equation is invariant

under the transformation Tµν → Tµν + Cgµν . Therefore, the vacuum fluctuations do

not gravitate. We, now, write down a slightly more general form of the modified

Einstein’s Equation(s) as,

Gµν +Xµν = (8πG)Tµν , (4.12)

here, Xµν is a function of geometric and matter quantities. This kind of modification

violates the local energy-momentum conservation and gives rise to a four-current,

∇µXµν = (8πG)∇µTµν ≡ Jν . (4.13)

For the case of Unimodular Gravity, we set,

Xµν =
1

4
gµν (R + (8πG)T ) . (4.14)

We shall now look at the effects of such modification of the dynamical equation.

4.2 FLRW background

With the same metric structure and the energy-momentum tensor given in equa-

tions (3.2) and (3.9), respectively, the energy-momentum conservation violation equa-

tion (4.13) becomes, (for ν = 0),

∇µT
µ
0 =

1

8πG
J0(t)

=⇒ dρ

dt
+ 3

1

a

da

dt
(1 + ω)ρ = − 1

8πG
J0(t). (4.15)
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The solution of this equation can be obtained to be the following,

ρ(t) = a−3(1+ω)

[(
− 1

8πG

)∫ t

J0(t′)a(t′)3(1+ω)dt′ + C

]
. (4.16)

For ν = i, one gets,

∂µT
µ
i + ΓµµαT

α
i − ΓαiµT

µ
α =

1

8πG
Ji(t)

=⇒ ∂0T
0
i + ∂jT

j
i + Γ0

00T
0
i + Γ0

0jT
j
i + Γjj0T

0
i + ΓjjkT

k
i − Γ0

i0T
0
0 − Γ0

ijT
j
0

− Γji0T
0
j − ΓjikT

k
j =

1

8πG
Ji(t)

=⇒ Ji(t) = 0. (4.17)

In the kind of modified theory being studied here, the form of the current Jµ depends

on our choice. It can be put by hand. But if the FLRW background is being used the

spatial components of Jµ cannot be set to nonzero values.

Now, it is time to calculate the modified field equations. From the modified field

equations (4.5), we have, for 00-component,

R00 −
1

4
g00R = (8πG)

[
T00 −

1

4
g00T

]
=⇒

(
1

a

da

dt

)2

− 1

a

d2a

dt2
= 4πG(ρ+ P ) (4.18)

The ij-component equations are exactly the same as above.

To get the relation how the scale factor evolves with time we take single fluid model

with the equation of state P = ωρ, and we substitute equation (4.16) into the field

equation,

(
1

a

da

dt

)2

− 1

a

d2a

dt2
= 4πG(1 + ω)ρ

= 4πG(1 + ω)a−3(1+ω)

[(
− 1

8πG

)∫ t

J0(t′)a(t′)3(1+ω)dt′ + C

]
=⇒ − d

dt

(
1

a

da

dt

)
= 4πG(1 + ω)a−3(1+ω)

[(
− 1

8πG

)∫ t

J0(t′)a(t′)3(1+ω)dt′ + C

]
.

(4.19)

Using the definition of H, multiplying both sides of the equation by a3(1+ω) and taking
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derivative with respect to time, we obtain the following differential equation,

d2H

dt2
+ 3(1 + ω)H

dH

dt
=

1

2
(1 + ω)J0(t). (4.20)

This is an inhomogeneous differential equation in H and we can solve it via Green’s

function method as earlier. Homogeneous equation has two solutions, H1 = constant,

and,

H2(t) =

A
√

2
3

tanh

[
A
√

3(1+ω)
2

(t+B)

]
√

1 + ω
(4.21)

H2 = 0 at t = 0, implies B = 0. As we mentioned earlier that the UG may or may

not have a violation current activated, when the violation current is absent, the scale

factor from H2 can be derived to be,

a(t) = D

(
cosh

[
A

√
3(1 + ω)

2
t

]) 2
3(1+ω)

. (4.22)

It is interesting to see that at large coordinate time, the scale factor takes the form,

a(t → ∞) = D
2
eHt, with H = A

√
2

3(1+ω)
. We may also say that the at late times H2

approaches H1. Therefore, after the modified dynamics plays itself out, the universe

ends up in a constant curvature or De Sitter spacetime and the standard Einsteinian

dynamics take over. If D is a sufficiently small constant, this modified dynamics

can be considered to come from dominant quantum gravity effects at very early time

and can be interpreted as a pre-inflationary era. The general solution for the Hubble

parameter, when the violation current is active can be written as,

H(t) = C1 + C2H2(t) +
1

2
(1 + ω)

∫ t

0

dt′G(t− t′)J0(t′), (4.23)

with,

G(t− t′) =
(H2(t′)−H2(t))

A2 sech2

[
A
√

3(1+ω)
2

(t′ +B)

] . (4.24)

At very early time, the contribution from the source integral would be very small and
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if we demand that at that time H2 is the solution (whereas H1 is achieved at the end

of the modified dynamics), then we can set C1 = 0 and C2 = 1.

4.3 Linear perturbations to the FLRW background

We shall now derive the equations corresponding to dynamics and kinetics for the

Unimodular Gravity model.

4.3.1 Dynamics: modified Einstein equations

As we mentioned earlier the dynamical equations are,

Gµ
ν +Xµ

ν = (8πG)T µν , (4.25)

with Xµ
ν set to,

Xµ
ν =

1

4
δµν (R + (8πG)T ) . (4.26)

For photons and neutrinos T = 0. For baryons and dark matter, pressure is considered

negligible compared to the energy density. Thus, T = ρdm(1 + δ) + ρb(1 + δb). Thus

the different components of Xµ
ν takes the following forms,

X0
0 =

3

2
(1− 2Ψ)

(
H2 +

1

a

d2a

dt2

)
− 1

2a2
∇2Ψ +

3

2
Φ,00 −

3

2
H(Ψ,0 − 4Φ,0)− 1

a2
∇2Φ

−(2πG)[ρdm(1 + δ) + ρb(1 + δb)],

(4.27)

(
k̂ik̂j −

1

3
δij

)
X i

j = 0, (4.28)

X0
i = 0. (4.29)

Therefore, the first order part of the 00 equation, G
0(1)

0 +X
0(1)

0 = (8πG)T
0(1)
0 , is,

3

2
HΨ,0+

k2

a2
Φ−3Ψ

(
H2 − 1

a

d2a

dt2

)
− k2

2a2
Ψ−3

2
Φ,00 = 4πG

[
3

2
(ρdmδ + ρbδb) + 8ργΘ0 + 8ρνN0

]
(4.30)
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Converting the time derivatives to derivatives with respect to conformal time, which

shall be denoted by over dots, we get,

k2(2Φ−Ψ)+3
ȧ

a

(
Φ̇ + Ψ̇− 4

ȧ

a
Ψ

)
+6Ψ

ä

a
−3aΦ̈ = 8πGa2

[
3

2
(ρdmδ + ρbδb) + 8ργΘ0 + 8ρνN0

]
.

(4.31)

The traceless, longitudinal part of the space-space components of the modified equa-

tions (first order) is the same as before,
(
k̂ik̂j − 1

3
δij

) [
Gi

j +X i
j = (8πG)T i j

]
k2(Φ + Ψ) = −32πGa2[ργΘ2 + ρνN2]. (4.32)

The time-space equation (G0
i +X0

i) k
i = (8πG)T 0

ik
i, in the first order, also remains

same as before,

Φ̇− ȧ

a
Ψ =

4πGa2

ik
[ρdmv + ρbvb − 4iργΘ1 − 4iρνN1]. (4.33)

4.3.2 Kinetics: modified Boltzmann equations

Having discussed the modified dynamical equations we shall, now, turn our atten-

tion to the modified equations for kinetics between the components of the universe. In

our previous understanding the general Boltzmann equation was of the form, schemat-

ically,

df

dt
= C[f ]. (4.34)

This equation meant the number of particles in the phase space inside an infinitesimal

volume d3~rd3~p around a point (~r, ~p) did not change with time unless there were some

collisions to bring in particles into the box or throw them out of the box. But in the

scenario of the modified theory the local energy and momentum are not conserved.

Particles can now disappear from the box or conjure up inside the box. Therefore, we

must add an ad hoc modification term to our general Boltzmann equation to account

for the violation of energy-momentum conservation. The exact form of the term must

be decided from the purpose of the theory. We must also break this modification

term into its zero-th order homogeneous part and first order perturbation part. For
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instance, the Boltzmann eqaution for the cold dark matter should now look like,

∂ndm

∂t
+

1

a

∂(ndmv
i)

∂xi
+ 3

[
da/dt

a
+
∂Φ

∂t

]
ndm =

1

m

(
− 1

8πG

)[
J

(0),dm
0 (t) + J

(1),dm
0 (~x, t)

]
,

(4.35)

here m is the dark matter mass. From the above equation the zero-order equation

can be extracted,

∂n
(0)
dm

∂t
+ 3

da/dt

a
n

(0)
dm =

1

m

(
− 1

8πG

)[
J

(0),dm
0 (t)

]
. (4.36)

This is the form we should have expected from the equation (4.15). Now using the

definition,

ndm = n
(0)
dm(1 + δ(~x, t)), (4.37)

and following, keeping everything up to first order, and recasting the zero-th order

equation, the equation for density contrast has the following form,

∂δ

∂t
+

1

a

∂vi

∂xi
+ 3

∂Φ

∂t
=

1

mn
(0)
dm

(
− 1

8πG

)[
J

(1),dm
0 (~x, t)− J (0),dm

0 (t)δ(~x, t)
]
. (4.38)

Similarly, other equations can also be modified using different ad hoc terms. For

example the modified Boltzmann equation for photons can be suggested to have the

following form in the Fourier space,

−p∂f
(0)

∂p

[
Θ̇ + ikµΘ + Φ̇ + ikµΨ

]
= p

∂f (0)

∂p
τ̇

[
Θ0 −Θ + µvb +

1

2
P2Θ2

]
+Jphoton(k, µ, t).

(4.39)

Introducing a term like Jphoton(k, µ, t), now, challenges the idea that in the early

universe or in tightly coupled limit the anisotropic stress and other higher moments

of photon anisotropy are negligible. One must be careful in postulating the magnitude

of such term in a specific theory. Having suggested the modifications to be made in

the Boltzmann-Einstein set of equations in the framework of a modified theory of

gravity we close our discussion.
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Chapter 5

Conclusions & future outlook

In the preceding chapters we have introduced several perturbation variables and

learned their evolution with time by solving the set of coupled Boltzmann-Einstein

equations. We saw that the modes of all sizes of the gravitational potential falls in

their magnitude as the universe becomes matter dominated. Whereas the matter

perturbations grow with time which is needed for structure formation. The matter

perturbation grows logarithmically in the radiation dominated era and then linearly

in the matter dominated era. If the magnitude of the perturbation variable grows

significantly, then the linear approximation would not hold and one must consider the

non-linear perturbation theory. On the other hand as the radiation has non-negligible

pressure, their evolution becomes a tug of war between gravitational pull and outward

directed radiation pressure. As a result, the photon temperature anisotropies oscil-

late, and more specifically, we derived that the monopole and dipole oscillate out of

phase with respect to each other. Another interesting aspect of the solutions is that,

as we mentioned earlier, the solutions are sensitive to the initial conditions. The late

time value of many perturbation variables are directly linked to their initial values.

For example the late time value of the large scale gravitational potential is 9
10

-th of

its initial value.

In the later part of this thesis, we considered a modified theory of gravity. In the

early universe we expect the quantum gravity effects to be dominant and we have

chosen a particular effective low energy theory which glosses over the details of the

discreteness of the spacetime arising from its interaction with the matter degrees

of freedom. As a result of this glossing over we do not account for all the energy-
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Figure 5.1: Pre-inflationary era and initial conditions

momentum exchanges between the discrete spacetime and matter and we should ex-

pect a violation of the energy-momentum conservation in the effective low energy

limit of the theory. In such a theory we modified the dynamical equations of gravity

to traceless UG equations. Dynamics with such modifications implies possibility of a

pre-inflationary era after which the universe entered a De Sitter phase. As a part of

the future exploration we propose that one should study the perturbation theory in

this pre-inflationary era and see how the initial conditions set at the end of this phase

translate to the initial conditions set in the aftermath of inflation in the standard cos-

mological theories (figure 5.1). To that end we have constructed the modified Einstein

equations for the linear perturbation theory and then also suggested the changes to

be made in the Boltzmann equations. The next logical step should be to solve these

equations.
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