
Neural Network and its optimization via

Hessian-free Newton’s method

Aman Dhiman

A dissertation submitted for the partial fulfilment of BS-MS

dual degree in Science

Department of Mathematics

Indian Institute of Science Education and Research

Mohali, India

ii

Certificate of Examination

This is to certify that the dissertation titled Neural Network and its optimization via

Hessian-free Newton’s method submitted by Mr. Aman Dhiman (Reg. No. MS14079)

for the partial fulfilment of BS-MS dual degree programme of the Institute, has been exam-

ined by the thesis committee duly appointed by the Institute. The committee finds the work

done by the candidate satisfactory and recommends that the report be accepted.

Dr. Kapil Hari Paranjape Dr. Lingaraj Sahu Dr. Neeraja Sahasrabuddhe

(Committee member) (Committee member) (Committee member)

Dr. Shane D’mello Dr. Anuj Sharma, PU

(Supervisor) (Co-Supervisor)

Dated: April 25, 2019

iii

iv

Declaration

The work in this dissertation has been carried out by me under the guidance of Dr. Anuj

Sharma, Department of Computer Science, PU at the Indian Institute of Science Edu-

cation and Research, Mohali.

This work has not been submitted in part or in full for a degree, a diploma or a fellowship to

any other university or institute. Whenever contribution of others are involved, every effort

is made to indicate this clearly, with due acknowledgement of collaborative research and

discussion. This thesis is a bonafide record of original work done by me and all sources

listed within have been detailed in the bibliography.

(Candidate)

Aman Dhiman

Dated: April 25, 2019

In my capacity as the (supervisor)/(internal supervisor) of the candidate’s project work, I

certify that the above statements by the candidate are true to the best of my knowledge.

(Co-Supervisor)

Dr. Anuj Sharma,

Department of Computer Science,

Panjab University.

(Supervisor)

Dr. Shane D‘mello,

Department of Mathematics,

IISER, Mohali.

v

vi

Acknowledgement

Foremost, I would like to express my sincere gratitude to my advisor Dr. Anuj Sharma,

Department of Computer Science, PU, for giving me an opportunity to work on a project

of my interest and, for his patience, motivation, enthusiasm, and immense knowledge. His

guidance helped me in all time of research and provided me with the most valuable notes

for my thesis. I would also like to thank Dr. Shane D‘mello, Department of Mathemat-

ics, IISER Mohali, for providing motivation and support constantly throughout my thesis

research. His constructive doubts regarding my topic encouraged me to explore the area

more and understand things thoroughly, which has helped me alot to become confident in

my research.

vii

viii

Contents

1 Introduction 1

1.1 Perceptron . 1

1.2 Decision making model . 2

1.3 Multilayer Perceptron model . 2

1.4 Perceptron as NAND gate . 3

2 Understanding Neural Network 5

2.1 Sigmoid Neuron . 5

2.2 Neural Network . 6

2.3 Training neural network . 7

3 Optimization methods 9

3.1 Gradient Decent . 10

3.2 Newton’s method . 10

4 Hessian-free Newton’s method 13

4.1 Hessian-free Optimization . 14

4.1.1 Conjugate Gradient algorithm . 14

4.1.2 Damping . 15

4.1.3 Gauss-Newton matrix . 16

5 Simulation 19

5.1 Feed-forward Neural network . 19

5.2 Algorithms . 21

5.3 Running Hessian-free Newton’s method 22

ix

x

List of Figures

1.1 Perceptron . 1

1.2 Multilayer perceptron network: Every circle represents a perceptron, every

inward arrow represents input, outward arrow represents output. 3

1.3 An example of perceptron mimicking NAND gate 3

2.1 Sigmoid Neuron . 5

2.2 Output comparison between sigmoid and perceptron neuron 6

2.3 A neural network . 7

3.1 A very simple cost function. 9

3.2 Gradient descent direction on a pathological curve[Pat] 11

3.3 Iterations in Newton’s method[met] . 11

5.1 Cost Vs Instance comparison between Hessian-free and SGD method . . . 23

5.2 Cg iteration incorporated Hessian-free Cost vs Instance 23

xi

xii

Abstract

Neural network has become a core part of machine learning in recent years and conven-

tional neural network although successful, gets bottle-necked due to slow technology and

lack of optimization potential in the common methods used to train the neural networks.

Some common methods used include, SGD(stochastic gradient descent), ADAM and ADA-

GRAD etc. These all algorithms are based on Gradient Descent, a first order root-finding

algorithm. These are great for small scale neural network computation, but at industry level,

where millions of data-points are produced, the neural networks required for the learning

from the data-points either require large number of nodes or lots of layers, so it lacks the

performance. The problem with Gradient Descent is that it becomes immensely slow as

layers or nodes in the neural network increases, as well as the lack of optimal-direction

finding potential on pathological curves makes it even harder to train networks using Gra-

dient descent based algorithms.

2nd order optimization method, Newton’s method, has been known to converge to the root

faster than Gradient Descent and since it is a 2nd order algorithm, it has the curvature data,

so we can modify the Newton’s method to compensate for the problems that Gradient De-

scent faces. The thesis research deals with one such modification, which in optimization

terminology is called Hessian-free approach. Further in this document, we will suggest

ways to modify the Newton’s method. The modified Hessian-free Newton’s method will

deal with the problem of optimization of cost function of the neural network efficiently.

xiii

xiv

Chapter 1

Introduction

1.1 Perceptron

Perceptrons were first developed by Frank Rosenblatt, inspired by work of Warren Mc-

Culloch and Walter Pitts [Nie]. To understand how modern neural networks work, it is

necessary to understand ’Perceptron’, which is the bone of the neural network model.

Figure 1.1: Perceptron

Perceptron is a simple model of biological neuron in an artificial network, that takes one or

more binary inputs and produces a binary output.

Every decision we take is consequence of certain factors which selectively influence it.

To accommodate that influence factor in the model, Rosenblatt introduced ’weights’ asso-

ciated with each input of the perceptron. For example, if input x1 is influencing the output

1

more than input x2, then w1 > w2, where w1 and w2 are respective weights associated with

the inputs x1 and x2.

1.2 Decision making model

Warren McCulloch and Walter Pitts created a computational decision making model for

neural networks, which they called threshold logic.

Let xi be the ith input and wi be the corresponding weight. Then the weighted sum of all

inputs is given by ∑wixi, and the output, y, of model is,

y =

 0 if ∑wixi ≤ threshold

1 if ∑wixi > threshold,
(1.1)

where threshold is a fixed constant. This model provides basic structure to the decision

making of the perceptron, and the output can be changed by varying the weights of the

inputs.

The model can be simplified mathematically by using w · x instead of ∑wixi and taking

’threshold’ term to the L.H.S. of the inequality. Let −threshold = b, where b is called the

bias. Then the output, y, of the model is given by:

out put =

 0 if w · x+b≤ 0

1 if w · x+b > 0.
(1.2)

We can implement the Decision making model in the perceptron and produce outputs. A

perceptron works well only when the prediction we want is linearly separable. Adding

more perceptron to the layer of single perceptron will allow the separation in different

linear directions allowing more abstract separation than a single perceptron.

1.3 Multilayer Perceptron model

In many references or books, for historical reasons, MLP(multilayer perceptron model) is

used to describe modern neural network, but we would be using MLP for the network of

perceptron, which is less confusing.

2

Figure 1.2: Multilayer perceptron network: Every circle represents a perceptron, every

inward arrow represents input, outward arrow represents output.

In the figure 1.2, each hidden-layer is taking ’decision’ at a more complex or abstract level

than the previous perceptron layer. This way the MLP can engage in more sophisticated

decision making.

1.4 Perceptron as NAND gate

I am including this topic, as it is a very interesting to know that Perceptron model is consis-

tent with the fundamental gates and Boolean mathematics, that is used to do binary compu-

tation.

Fundamental logic gates include, AND & OR. Now to show that perceptron can mimic the

fundamental gates, lets design a perceptron that can mimic NAND gate. NAND gate is

universal gate and can be used to build every possible Boolean logic. Consider a perceptron

with two input x1 and x2, with w1 = w1 =−4 and b = 7. This perceptron look like this:

Figure 1.3: An example of perceptron mimicking NAND gate

3

Table 1.1: Logic table

w1 w2 evaluate output

1 1 −4(1)−4(1)+7 0

1 0 −4(0)−4(1)+7 1

0 1 −4(1)−4(0)+7 1

0 0 −4(0)−4(0)+7 1

This means that a perceptron can easily evaluate any logical function.

4

Chapter 2

Understanding Neural Network

Given certain amount of data, the neural network undergoes learning process and trains it-

self for the data. Learning algorithm follows the idea, that small change in weights should

make small change in the output. Only then the learning can be controlled and made effi-

cient over many iterations.

Perceptron is not very good with small changes. Small change in the perceptron leads to

large change in output. It even flips the output of the perceptron sometimes, which is not

appropriate for the leaning algorithm.

2.1 Sigmoid Neuron

Consider z = w · x+ b, then z can be enhanced using a sigmoid function to overcome the

problem of learning in a perceptron.

Figure 2.1: Sigmoid Neuron

5

The output of sigmoid neuron is given by:

σsigmoid(z) =
1

1+ e−z .

The sigmoid neuron acts same as perceptron at z� 0 and z� 0.

For z� 0, e−z ≈ 0, then σ(z) = 1. For z� 0, e−z ≈ ∞, then σ(z) = 0. So, for very large

positive and negative values of z, the sigmoid neuron behaves as perceptron.

(a) Sigmoid (b) Perceptron

Figure 2.2: Output comparison between sigmoid and perceptron neuron

In case of perceptron, a small change in weights will yield either 0 or 1 as output. Sigmoid

neuron, the smoothness of the sigmoid curve allows to make small change in weights and

biases, causing small change in the output.

The change in output with respect to the change in weights and biases is a linear function

of ∆w and ∆b.

4σ(z)≈∑
j

∂σ

∂w j
4w j +

∂σ

∂b
4b,

where sum is over all the inputs of the neuron.

2.2 Neural Network

Sigmoid neuron is one of many such possible neurons. The choice of neuron to build a

layer in neural network depends on the problem. Consider a neural network as in figure

2.3, the hidden layer of the network constitutes its main processing unit.This is where the

decisions are processed. Choosing the number of hidden layers for neural network is totally

problem based. In some cases, having only one hidden layer yields proper outputs whereas

some neural network has to incorporate large amounts of hidden layers, and such neural

networks are called Deep neural networks.

6

Figure 2.3: A neural network

2.3 Training neural network

Learning: Learning is acquiring knowledge or skill, or modify an existing behaviour, to

achieve desired results. This can be done by two ways:

1. By rewarding a good behaviour.

2. By punishing a bad behavior.

A neural network, during training, performs learning algorithm and modifies the initial

weights. This is done by punishing the network for every wrong guess by reducing weights

of the connections that lead to that prediction. 1By convention the other weights of the con-

nections leading to correct prediction will get rewarded. An untrained network means the

weights and biases of the network are normally distributed and doesn’t have the required

configuration of weights and biases to produce correct prediction.

We will first look at the learning rule that we will follow further in the research.

Error correction learning rule: Let error-function for the neural network (θ) be E(θi) =

(fact− f (θi))
2

2 , where f (θi) is the ith instance of predicted output and fact is the actual output.

1If particularly the connection with wrong predictions are getting punished, then other weights which are

unchanged are automatically getting rewarded with respect to the later.

7

The θ in (i+1)th instance is adjusted using:

θi+1 = θi +4E(θi)Xi,

where4E(θi) =−2η(f (θ)act− f (θ)pred), η is the learning rate of the neural network and

Xi is the input vector.

θi+1 = θi−2η(fact− f (θ)pred)Xi .

Weights are adjusted only when neurons respond in error i.e,

(fact− f (θ)pred)> 0 or (fact− f (θ)pred)< 0

As soon as there is some amount of error in the prediction, the neural network will update

the weights towards the direction of reducing error. In the above definition, the weights are

updated using Gradient Decent. This update cycle goes on until either the error has become

0, or the error has converged to value near 0.

8

Chapter 3

Optimization methods

Optimization in learning process of neural network makes sure that the neural network

performs better than the previous iteration.

Cost function of neural network is given by:

f (θ) =
1
l ∑ξ (predicted, target)→ Cost function

where, ξ = ||target− predicted||2 and predicted is a function of θ .

Learning process involves finding minimum of f (θ).

Figure 3.1: A very simple cost function.

As seen earlier, weights are updated using Gradient decent, which is a line search method,

that updates the function towards its minimum.

9

3.1 Gradient Decent

Line search methods: Line search methods is a family of iterative optimization methods,

where the iterations are given by:

xk+1 = xk +αk pk.

The idea is to search for a direction such that xk+1 < xk.

One such method is Gradient decent method, where iterations are given by,

xk+1 = xk−η∇ f (xk),

here η is the learning rate.

1. if η is very small, then the optimization takes very long to converge to the minimum

and is very heavy on computation.

2. if η is very high, then there is high chance of overshooting away from the minimum.

So, appropriate learning rate has to be decided for best results. Gradient Descent is compu-

tationally expensive for large neural networks, because convergence to minimum becomes

slower with increase in network layers and also all the gradients are stored until the whole

training data is completed and then the weights are updated. Imagine a deep neural network

with 100 layers, for n∗n weight matrix it is doing the calculation n2 times, which is com-

putationally heavy as well as very storage heavy. So, commonly SGD (stochastic gradient

descent) is used.

Stochastic Gradient Descent SGD is the application of Gradient descent over random

batch sample of training data. This way the computation is reduced to that small batch and

next batch is not used until learning from previous batch of training data is updated in the

network.

3.2 Newton’s method

In optimization , it is well known that Gradient descent is unsuitable for minimizing patho-

logical curves since it is first order optimization method.

But a 2nd order root finding method is more efficient in such cases as they use the curvature

to find the direction of minima in the curve. One such method is Newton’s method.

10

Figure 3.2: Gradient descent direction on a pathological curve[Pat]

Definition. Newton’s method: Given f : R→R be a differentiable function, let xi ∈R then

xi+1 is given by :

xi+1 = xi−
f (xi)

f ‘(xi)
.

Figure 3.3: Iterations in Newton’s method[met]

2nd order Newton’s method: Any differentiable function f can be locally approximated

around θ by:

for small p,

f (θ + p) = gθ (p)≈ f (θ)+ p∇ f (θ)+
1
2

pT
∇

2 f (θ)p,

here ∇2 f (θ) = H→ Hessian of f (θ) and p̂ is the direction of the minima.

Assuming that H is symmetric positive-definite (SPD),the optimization of the approxima-

tion can be done by solving,

∇
2H p =−∇ f (θ).

11

Now using Newton’s method is impractical on a deep learning setup due to following chal-

lenges:

• Due to quadratic relation between hessian and the no. of parameters, which means

increasing layers will increase the required computation for the hessian by the order

of 2.

• Also Hessian can be indefinite, in which case our f may not have a minimum.

• For large values of p, we cannot trust the above approximation.

But we have a way around to all the challenges above

12

Chapter 4

Hessian-free Newton’s method

2nd order optimization method are theoritically more efficient than any 1st order method as

2nd order methods can utilise the curvature information to decide a better descent path for

the function.

As described in the paper [Mar10], if the curvature is low in some direction d, means that

the gradient of the function changes slowly along d. This small change in gradient means

that the minima of the curvature is far in the curve and hence choosing a direction p on the

curve, which travels far along the d will be best even though the reduction in the function

is very small. Similarly, if curvature of the function is small, then choosing a direction p

which travels small distance along d will be more efficient.

Our optimization method must take care of the above phenomena otherwise it could lead to

some unwanted results.

• A bouncing behaviour can be observed.

• Low curvature will be explored very slowly. If the only direction of descent are the

ones with low curvature then that would lead to very impractically slow exploration

and even appear like the function has reached a local minima.

Newton’s method updates the function by,

xn+1 = xn−
∇ f (xn)dT

dH(f (xn))dT , (4.1)

here d is the descent direction vector. So basically Newton’s method does the computation

of change in function (∇ f (xn)dT) with respect to the curvature (dH(f (xn))dT) by defini-

tion.

13

As introduced, Newton’s method is impractical to be used for machine learning. We can

make it practical by modifying our Newton’s method to overcome the challenges described

before.

4.1 Hessian-free Optimization

Hessian-free is the basis of the 2nd order optimization approach that we are going to study.

Now standard Newton’s method uses equation 4.1 to optimize gx(p) by computing the

Hessian matrix B and then solving,

Bp =−∇ f (x).

Computing B is going to be expensive for deep networks, instead, Hessian-free optimizes

gx(p) by utilizing two simple techniques.

First technique that Hessian-free uses is called finite-difference method.

Definition. Finite-difference: Let B is N×N matrix and p is N-dimensional vector, then

matrix-vector product Bp can be computed using finite-difference method,

Bp = lim
ε→0

∇ f (x+ ε p)−∇ f (x)
ε

.

This method can compute the matrix-vector product at the cost of a single extra gradient

computation .

4.1.1 Conjugate Gradient algorithm

Second technique is a very effective algorithm for optimizing quadratic functions such as

gx(p).

Definition. Let A is N×N matrix be symmetric and positive definite. We say that a vector

p is A-conjugate if,

pT Ap = 0.

Lemma. If A is positive definite matrix and the set of nonzero vectors p0, p1, p2, p3, · · · , pk

are pairwise A-conjugate, then these vectors are linearly independent.

14

Proof. Suppose p1, p2, · · · , pk not all zero, are not linearly independent. Assuming coeffi-

cient ρ0 6= 0,

ρ0 p0 +ρ1 p1 + · · ·+ρk pk = 0,

multiplying both side by pT
0 A, we get,

ρ0 pT
0 Ap0 +ρ1 pT

0 Ap1 + · · ·+ρk pT
0 Apk = 0,

where all but the first term vanishes because of A-conjugacy.

=⇒ ρ0 pT
0 Ap0 = 0.

On the other hand, since p0 6= 0 and A > 0, we must have pT
0 Ap0 > 0 =⇒ ρ0 pT

0 Ap0 6= 0.

Hence, contradiction.

Since set of p’s are linearly independent, they span the whole space Rn. We can express the

difference between the exact solution x∗ and x0 (our initial guess) as a linear combination

of the conjugate vectors, in turn expressing the exact solution as the sum of the linear

combination and x0:

x∗ = x0 +ρ0 p0 +ρ1 p1 + · · ·+ρn−1 pn−1. (4.2)

Till now we are using the assumption that the set of A-conjugate directions exist. Practically

we have to create such vectors and there are many ways to do so.

The most storage and computation effective method to create A-conjugate set is Conju-

gate direction method. It turns out that using the conjugacy property each new pk can be

computed using pk−1 given by:

pk =−rk +βk pk−1

Here rk is the gradient(nd hence the method is called Conjugate gradient method) and βk is

given by:

βk =
rT

k Apk−1

pT
k−1Apk−1

=
rT

k rk

rT
k−1rk−1

.

4.1.2 Damping

Overshooting or divergence from the actual minimum is a flaw in our Hessian-free ap-

proach. The curvature matrix in Hessian-free method is not any approximation rather it is

the exact curvature data of the objective function. So it allows for the identification of a

15

descent direction which has very low curvature. When such a direction is identified, and

also the direction has reasonably large reduction then Conjugate Gradient method will tend

to move far in the direction causing it to overshoot from the approximate minimum.

To overcome damping, damping parameter λ can be accommodated with the hessian matrix

as :

H +λ I =−∇ f (x).

λ will control how ’conservative’ the approximation is, corresponding to each direction d.

We can adjust λ using Levenberg-Marquardt hueristic technique:

Define,

ρk =
f (θ k +αkdk)− f (θ k)

αk∇ f (θ k)T dk + 1
2(αk)2(dk)T Gkdk

(4.3)

as the ratio between the actual function reduction and the predicted function.

Based on ρk, λk+1 can be computed by,

λk+1 =


λk×drop ρk > 0.75,

λk 0.25≤ ρk ≤ 0.75,

λk×boost otherwise,

(4.4)

where drop and boost are given constants. [Giba] So if the predicted reduction is close to

true reduction, then the choice of direction closer to the Newton direction is considered by

reducing λk, else if the predicted reduction is far from the true reduction, then λk is adjusted

to iterate in a direction away from Newton direction.

4.1.3 Gauss-Newton matrix

[Giba] Conjugate gradient method assumes that Hessian is positive semidefinite. But this

assumption is not always true and Hessians can be non positive definite. In order to use

conjugate gradient method on our quadratic objective function, we need to approximate the

Hessian such that the approximation will be positive semidefinite.

Gauss-Newton matrix: Let us denote Gauss-Newton matrix as G. It is an approximation of

Hessian H such that that G is always positive semi-definite. It is helpful in implementation

of Conjugate Gradient method, because now we dont have to assume the convexity of H.

16

Given the objective function f (x) = σ(g(x)) where σ is the activation function, Hessian

H is given by

Hi j = ∇
2 f (x) =

∂

∂x j

∂ f (X)

∂xi
=

∂

∂x j

∂σ(g(x))
∂xi

.

After applying chain rule,

Hi j =
n

∑
k=0

∂

∂x j

(
∂σ

∂gk(x)
(f (x))

∂gk(x)
∂xi

)
,

then applying product rule:

Hi j =
n

∑
k=0

∂

∂x j

(
∂σ

∂gk(x)
(g(x))

)
∂gk(x)

∂xi
+

n

∑
k=0

∂σ

∂gk(x)
(g(x))

∂gk(x)
∂xix j

,

similar calculation in individual summands gives us

...

Hi j =
n

∑
k=0

n

∑
l=0

∂σ2

∂gl(x)gk(x)
(g(x))

∂gl(x)
∂x j

∂gk(x)
∂xi

+
n

∑
k=0

∂σ

∂gk(x)
(g(x))

∂gk(x)2

∂xi∂x j
.

Now Gauss-Newton method forms a positive semi-definite approximation of hessian by

neglecting the second term. This new matrix is :

G = JT
f Hσ J f

Now that we have defined an approximation of H i.e G, we dont have to compute and store

all G’s, instead we can compute the Gv (matrix-vector) multiplication.

Gv = JT
f Hσ J f v

This will be done in two steps,

1. compute the vector Jv.

2. compute the matrix v‘ = Hσ Jv.

3. compute the vector Jtv‘.

Let’s compute v‘ using R{·} method given by:

Jv = Rv f (x) =
∂

∂ε
f (x+ εv)|

ε=0 = lim
ε→0

f (x+ εv)− f (x)
ε

.

where f : Rn→ Rm is a vector valued function.

Now to compute v‘ = Hσ Jv, we will use Backward R{·} algorithm.

17

With that computation done, we need to figure out a way to compute JT v‘. For that we can

make use of the backpropagation method which converts gradient computation as:

(∇E)i = f (x)
∂ f (x)

∂xi
,

where E is the error function and f (x) is the output vector of last layer.

(JT f (x))i =




∂ f1
∂x1

∂ f2
∂x1

· · · ∂ fn
∂x1

∂ f1
∂x2

∂ f2
∂x2

· · · ∂ fn
∂x2

...
...

...
...

∂ f1
∂xm

∂ f2
∂xm

· · · ∂ fn
∂xm




f1

f2
...

fn




i

=
n

∑
k=0

fk
∂ fk

∂xi
.

Now if we insert vector v in place of the output vectors, it simply multiplies by JT .

18

Chapter 5

Simulation

5.1 Feed-forward Neural network

[Wan+18] Construction of Feed-forward network is as follows:

Let nm denote the no. of nodes in mth layer such that n0 is the no. of features and nL

is the no. of classesuch thathw weight matrix W m and the bias vector bm at the mth layer

are

W m =



wm
11 wm

12 · · · wm
1nm

wm
21 wm

22 · · · wm
2nm

...
...

...
...

wm
nm−11 wm

nm−12 · · · wm
nm−1nm


and bm =



bm
1

bm
2

...

bm
nm


We will consider the input layer as layer 0, i.e

s0,i = z0,i = xi

, where sm,i and zm,i are the respective input vector and output vector for the ith instance of

the mth layer and xi is the ith feature vector in the dataset.

The calculation between (m−1)th and mth layer is given by:

sm,i = (W m)T zm−1,i +bm,m = 1, · · · ,L, i = 1, · · · , l

zm,i
j = σ(sm,i

j), j = 1, · · · ,nm,m = 1, · · · ,L, i = 1, · · · , l (5.1)

19

here σ(·) is the activation function.

We will modify weight matrix for the construction of weight vector of the whole neural

network.

Concatenate the weight matrix of mth layer,

wm = [wm
11 · · ·wm

nm−11wm
12 · · ·wm

nm−12 · · ·wm
1nm
· · ·wm

nm−1nm
]T

The weight matrix of the whole neural network is given by:

θ =



w1

b1

...

wL

bL


(5.2)

This completes our neural network with L layers and n parameters given by:

n =
L

∑
m=1

(nm−1×nm +nm)

20

5.2 Algorithms

Algorithm 1: Trust region method (Levenberg-Marquardt) [Bö]
Initialization:

initial approximation x0,

maximum step length λ̄ ,

initial trust region approximation λ0 ∈ (0, λ̄),

acceptance constant φ ∈ [0,1/4];

For k = 0,1, · · · until xk is optimal:

• Solve,

min
p

mk(p) = fk + pT
∇ fk +1/2pT Hk p,

such that ||p|| ≤ λk, approximated for a trial step pk.

• Calculate ρk =
f (xk)− f (xk+pk
mk(0)−mk(pk)

• Update the current point,

xk+1 =

xk + pk if pk > φ

xk otherwise

• Update the trust region,

λk+1 =


1/4λk if ρk < 1/4,

min(2λk, λ̄) if ρk < 1/4 and ‖ρk‖= λk

λk otherwise.

Algorithm 2: Conjugate Gradient algorithm [Gibb]

i = 0, xi = x0 be our initial point;

• Find best step size: compute α to minimize the function f (xi +αdi) :

α =−dT
i (Axi+b)
dT

i Adi
.

• Update the guess: xi+1 = xi +αdi.

• Iterate: Repeat until all n directions are explored.

21

Algorithm 3: Hessian-free optimization [Cha]
For every epoch:

• gn← ∇ f (θn)

• Compute λ using Algorithm 1.

• Define, Bn = Gnv+λv,Gn as approximation of Hessian.

• CG−Minimize(Bn,gn) using Algorithm 2.

• Update θ by :

θn+1 = θn + pn

5.3 Running Hessian-free Newton’s method

Xor Dataset : An XOR gate is a digital logic gate with two or more inputs and one output

that performs exclusive disjunction.

Table 5.1: Logic table

input A input B output

1 1 0

1 0 1

0 1 1

0 0 0

For the example run, we are generating a random dataset of 2 columns, inputs and outputs

respectively of 50000 rows. Input consists of two columns, input A and input B, similar to

the table above.

From this test run, we want to test our hypothesis, that Hessian free Newtons method is

faster than Gradient descent based algorithm in general. We will use Stochastic Gradient

Descent(SGD) method for the comparison.

SGD : η = 0.001, Hessian-Free

The updates in Hessian-free are not same as SGD visually. Before completing one update,

Hessian-free undergoes conjugate gradient iterations which is not visible in the plot 5.1. The

22

Figure 5.1: Cost Vs Instance comparison between Hessian-free and SGD method

Figure 5.2: Cg iteration incorporated Hessian-free Cost vs Instance

conjugate gradient updates are averaged over an update and then used for the plot.Plot 5.2

show the actual updates including the conjugate gradient updates in Hessian-free method.

The grooves in the plot 5.2, are the iterations due to conjugate gradient updates in the

Hessian-free method. Due to these small iterations, the performance of Hessian-free has

improved over the updates as compared to SGD.

23

Conclusion

The simulation over XOR dataset is a test run and the plots do not prove that Hessian-free

is faster than gradient descent based method.

However, plot 5.1 brings strength to the hypothesis that Hessian-free is faster than gradient

descent based methods, as it can be seen that after 10th update instance Hessian-free passes

SGD in cost reduction.

24

Bibliography

[Ahm14] Amir Ali Ahmadi. Lec10p1. 2014.

URL: http : / / www . princeton . edu / ~amirali / Public / Teaching /

ORF363_COS323/F14/ORF363_COS323_F14_Lec10.pdf.

[Bö] Niclas Börlin. Trust region and Levenberg-Marquardt method.

URL: https://www8.cs.umu.se/kurser/5DA001/HT13/lectures/C4.

pdf.

[Cha] Carlos Eduardo Cancino Chacon. Hessian Free optimization.

URL: www.ofai.at/~maarten.grachten/downloads/lrn2cre8/dlmp-

workshop/slides/carlos/Hessian_Free.pdf.

[Giba] Andrew Gibiansky. Gauss newton matrix.

URL: http://andrew.gibiansky.com/blog/machine-learning/gauss-

newton-matrix/.

[Gibb] Andrew Gibiansky. Hessian free Optimization.

URL: http : / / andrew . gibiansky . com / blog / machine - learning /

hessian-free-optimization/.

[Mar10] James Martens. “Deep learning via Hessian-free optimization.” In: ICML. Vol. 27.

2010, pp. 735–742.

[met] Newton-Raphson method.

URL: https://www.geeksforgeeks.org/program-for-newton-raphson-

method/.

[Mor78] Jorge J Moré. “The Levenberg-Marquardt algorithm: implementation and the-

ory”. In: Numerical analysis. Springer, 1978, pp. 105–116.

25

[Nie] Michael Nielsen. Neural Networks and Deep learning.

URL: http://neuralnetworksanddeeplearning.com/chap1.html.

[Pat] Intro to optimization in deep learning: Momentum, RMSprop and Adam. 2018.

URL: https : / / blog . paperspace . com / intro - to - optimization -

momentum-rmsprop-adam/.

[Ray14] Nirmal Rayan. “Performance Optimization of Levenberg-Marquardt Algorithm

with Parallelization”. In: May 2014.

[Wan+18] Chien-Chih Wang et al. “Distributed newton methods for deep neural net-

works”. In: Neural computation 30.6 (2018), pp. 1673–1724.

26

