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Cosmic Gall

Neutrinos, they are very small.

They have no charge and have no mass

And do not interact at all.

The earth is just a silly ball

To them, through which they simply pass,

Like dustmaids down a drafty hall

Or photons through a sheet of glass.

They snub the most exquisite gas,

Ignore the most substantial wall,

Cold-shoulder steel and sounding brass,

Insult the stallion in his stall,

And, scorning barriers of class,

Infiltrate you and me! Like tall

And painless guillotines, they fall

Down through our heads into the grass.

At night, they enter at Nepal

And pierce the lover and his lass

From underneath the bed - you call

It wonderful; I call it crass.

- John Updike
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Abstract
“A billion neutrinos go swimming in heavy water: one gets wet.”

- Michael Kamakana

Neutrino Physics over decades has proved crucial in improving our understanding of the Stan-

dard Model of Particle Physics and has moreover opened ways to probe Beyond Standard Model

Physics too. The discovery of the process of conversion of neutrino from one flavor to other

during propagation, called as Neutrino Oscillation has demonstrated that neutrinos have a non-

zero mass (a major correction needed in Updike’s poem). It has also made us possible to ask

if neutrinos may hold the key to many other great questions of physics such as why is the Uni-

verse dominated by matter (over anti-matter). Neutrino data collection from various sources has

already provided us with some insights into these mechanisms. However, all these suffer from a

significant drawback of no control over the source. This limits the number as well as the sensi-

tivity of the parameters we want to measure. Accelerator facilities come to rescue here. Due to

greater control over the source, we can produce neutrinos of all flavors as well as control other

parameters like intensity, propagation direction, etc. It is also essential to understand the flux

because of its direct dependence in every neutrino-nucleus cross-section measurement, estima-

tion of oscillation parameters [A+16] etc.. This thesis details the neutrino flux estimation at any

detector location on earth considering three accelerator neutrino sources, namely: CERN, Fer-

milab, and J-PARC. This provides the benefit of accessing three different baselines for a single

detector experiment. Presence of three different baselines not only offer a way to cross-check

results but also provide an opportunity to access different sensitivity regions to probe different

parameters. This thesis focusses on flux estimation at two detector locations, namely: Indian

Neutrino Observatory and EHEP (Experimental High Energy Physics) Lab, IISER Mohali, In-

dia. The thesis starts with an introduction to neutrinos in Chapter 1 and then goes on to describe

Neutrino Oscillation in vacuum and matter in Chapter 2 and Chapter 3 respectively. Chapter 4

discusses about the neutrinos produced at accelerators and methodology used to estimate flux

at detectors. Finally, Chapter 5, 6 and 7 present the results obtained and conclusions drawn.
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Chapter 1

Introduction

Neutrinos ... win the minimalist

contest: zero charge, zero radius,

and very possibly zero mass.

Leon M. Lederman

A neutrino (ν) is a fermion with zero charge and half-integer spin. Neutrinos are unique since

they have very distinct properties from other particles. Their mass is several orders less than

other fermions. They travel with ultra-relativistic speeds, don’t feel strong interactions and

interact via weak interactions.

W. Pauli in 1930, was the first one to propose the existence of neutrinos [Rei96] to justify

the issue of obtaining a continuous energy spectrum in β -decay of atomic nuclei. He initially

called this particle as ”neutron”. Pauli was very speculative of his proposal and did not publish

his results until 1934. However, till this time E. Fermi had already developed the theory of

β -decay process. Fermi later renamed the particles to ” Neutrino (Little neutral one)” (as a

wordplay on neutrone, the Italian name of the neutron) to distinguish it from neutron (as we

know today), discovered by J. Chadwick in 1932.

Neutrinos with a CMB (Cosmic Microwave Background) density of around 300 per cm3 hold

the second place for their abundance in the universe, with photons being the most abundant

[Kik09]. Thus to comprehend the universe, the study of neutrinos is critical.‘ They also in-

teract very weakly; hence they can travel long distances to provide us information about the

dynamics of distant stars. Also, in the last few decades, it has been confirmed by multiple ex-

periments that neutrinos have nonzero mass. This inference has been based on the discovery of

1



the phenomenon called Neutrino Oscillation - neutrinos changing flavors during propagation.

1.1 Detecting the Poltergeist

Due to their very weakly interacting property, neutrinos remained elusive for around 20 years,

since they were first proposed. The Reines-Cowan experiment, titled as Project Poltergeist

[RC97], was the first experiment to detect neutrinos.The detection was carried in 1956 at Sa-

vannah River Reactor. For his discovery, Reines was later awarded the Nobel Prize. They used

the Inverse β decay process as their detection process, given by:

p+ ν̄e→ n+ e+

These were called as "electron-type neutrinos" or "electron-flavored neutrinos".

Later, two other flavors on neutrinos were detected. Muon Neutrinos (νµ ) were detected in

1962 by L. Lederman, M. Schwarz and J. Stienberger (later awarded Nobel Prize) [DGG+62];

and in 2000, DONUT Collaboration discovered the tau flavored neutrino (ντ ) [K+01]. The

word "flavor" is just to signify the correspondence between their corresponding charged Lepton

partner. Electron Neutrinos are produced or detected with their corresponding charged Lepton,

i.e. electron and similarly for two other flavors of Neutrinos.

1.2 Motivation

Motivation for a Physicist

• Neutrinos can provide us with a huge amount of information about the universe by acting

as alternative astrophysical tracers since photons can be trapped by interstellar dust.

• Due to their weakly interacting property, they can travel long distances to tell us about

distant star dynamics.

• Probing different phenomenon related to Neutrinos can help put constraints on "Beyond

Standard Model" physics.

Motivation for Public

• Nuclear reactors undergo a lot of decay processes which release a large flux of neutrinos.

We can remotely monitor these neutrinos from nuclear reactors which can help in nuclear

non-proliferation [Cri11].
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• Similar to reactors earth also undergoes a lot of decay processes releasing neutrinos,

called as Geo-neutrinos. Geo-neutrinos could provide us important seismological data

[Kot79] which can detect early disturbances produced by earthquakes. These can also

help us to detect Mineral and Oil deposits deep in the earth.

• Medical Use: The RPC (resistive plate chambers) detectors used for detection of neu-

trinos can detect cancer early and prove to be a much cheaper facility if developed on

commercial scale [B+06].

1.3 Early anomalies in Neutrino Physics

1.3.1 Solar Neutrino Problem

Sun besides releasing its energy as heat and light, also spends around (2-3)% of its energy as

neutrinos. Detecting solar neutrinos is important since the weakly interacting neutrinos gener-

ated near the core of the sun can retain most of the information and tell us about its internal

dynamics.

Standard Solar Model given by John Bahcall and his collaborators [Bah99] [BBP98], gives an

excellent estimate of the number of neutrinos produced by the sun. Over the years, through var-

ious refinements in the Solar Model, we have great information and accuracy of the spectrum

of solar neutrinos incident on earth [Bel04]. The pp-chain releases the largest flux of neutri-

nos with E<0.411MeV. However, the early experiments performed to calculate solar neutrino

flux gave surprising results. Ray Davis’s Homestake experiment(1965) [DHH68] and Super

Kamiokande Experiment(1985) [You97] observed about 50%-60% deficit than the expected

neutrino flux. Later other experiments like SAGE [Gav01] and GALLEX [H+96] were able

to make better measurements of the solar neutrino flux but still observed a deficit in the neu-

trino flux. After the unexpected neutrino flux measurements measured by various experiments,

questions were raised whether the model we are using, i.e., ”Standard Solar Model” to estimate

neutrino flux is correct or not. Helioseismology results turned the decision in favor of ”Standard

Solar Model.” The results were matching with the expectations to better than 99.5%. So it was

concluded that there was still some problem with the measurement process only.

It was realized that the previous experiments were exclusively sensitive to electron neutrinos

only. We might be getting other flavors, but the experiment was unable to those flavors. Sud-
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bury Neutrino Observatory (SNO) [Kle02] was used to resolve this problem. SNO confirmed

that the total expected solar neutrino flux on earth is the sum of neutrino fluxes of all three types

of neutrinos, i.e., electron-neutrino, muon-neutrino, tau-neutrino. However, through the solar

model, it is known that the Sun only produces electron type of neutrinos. Hence, it was con-

cluded that while their propagation from the sun to earth neutrinos must be changing from one

flavor to another. Multiple theories attempted to explain this flavor change process. Neutrino

Oscillation was one such theory. For details refer to Appendix A.

1.4 Atmospheric Neutrino Problem

The atmosphere is constantly bombarded by cosmic rays. When cosmic rays (mostly composed

of protons and helium nuclei ) hit air nuclei in the atmosphere they produce secondary particles

like pions, kaons, etc.. Atmospheric neutrinos Stem from the decay of these charged pions and

subsequently muons. Neutrinos in the atmosphere are predominantly produced in two flavors

(νe,νµ ).The decay chain is:

π
±→ µ

±+νµ(ν̄µ)

µ
±→ e±+ ν̄µ(νµ)+νe(ν̄e)

The energy spectrum for atmospheric neutrinos varies from few GeV to around 104 GeV. The

inputs to estimate the atmospheric neutrino flux are mostly [DV99]: a). The energy spectrum

of cosmic rays. b). The energy spectrum of muons produced through the decay of secondary

particles like pions and kaons. c). Modeling of the interaction of cosmic rays and secondary

particles with air nuclei. d). Modeling of geomagnetic effect on the flux of cosmic rays. e).

Modeling of the longitudinal development of extensive air showers produced by cosmic rays.

The flux of νe and νµ depends on the flux of muons produced in the decay of pi/K in the atmo-

sphere. Hence the uncertainties on the flux of each of them are highly correlated. Therefore,

even if uncertainties on the absolute flux are high, the ratio of ν-induced muon to electron

events, for a given detector configuration, can be estimated more accurately. We have:

Rtheory(E) =
Nexp

µ (E)
Nexp

e (E)

where Nexp
µ (E) and Nexp

e (E) are the expected number of muons and electrons respectively. Here

E is the energy of the charged lepton produced in the interaction. The ratio Rtheory is expected

to be around two at low energies.
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Experiment Type of Experiment R

Super-Kamiokande Water Cerenkov 0.675± 0.085

Soudan 2 Iron Tracking Calorimeter 0.69± 0.13

IMB Water Cerenkov 0.54± 0.12

Kamiokande Water Cerenkov 0.60± 0.07

Table 1.1: Measurements of the double ratio for various atmospheric neutrino experiments.

1.4.1 Double Ratio

The spectrum of low energy ν−induced muons and electrons has been measured experimen-

tally by various experiments (Soudan 2, MACRO and Super-Kamiokande) and compared with

predictions. The ratio is defined as:

Robs(E) =
Nobs

µ (E)

Nobs
e (E)

The ratio of observed and theoretical values of the above parameter is called the Double Ratio

and is given by:

R =
Robs(E)

Rtheory(E)
(1.1)

Theoretically, this ratio is expected to be unity. But various experiments (Table 1.1) showed

that R varies significantly from unity.

This observation was referred to as the Atmospheric Neutrino Anomaly. Super-Kamiokande

was able to measure the direction of the incoming neutrinos in addition to R-value. This de-

tector in addition to confirming anomaly with high statistics also gave evidence of Neutrino

Oscillation.
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Chapter 2

Neutrino Oscillation (In Vacuum)

First proposed by Bruno Pontecorvo in 1957 [Pon57], experiments with neutrinos from various

sources(solar, atmospheric, reactor and accelerator) have very well established that neutrinos

produced and identified in a specific flavor (at the source) has a nonzero probability of chang-

ing their flavor during propagation leading to detection in a different flavor state later. This

phenomenon is referred to as Neutrino Oscillation. The likelihood of flavor transition has its

dependence on the neutrino energy and the propagation distance, i.e., the distance between the

source and the detector. Neutrino Oscillation was able to resolve the solar (and atmospheric)

neutrino problem and explain their deficits. It is also vital to study neutrino oscillation since till

date it is the only method to observe the physical effects of nonzero neutrino masses. Further,

it also tells that neutrino mass eigenstates are different from neutrino flavor eigenstates.

As discussed in the previous chapter, the measurement done by SNO of solar neutrinos can

be characterized by neutrino flavor changes [Win10]. Also, the observation of atmospheric

neutrinos by the Super-Kamiokande experiment further offered evidence in support for neutrino

oscillations as the leading flavor change mechanism. Both the solar and atmospheric neutrino

flavor changes can be portrayed as sub-segments of the general three-flavor oscillation case,

explained by different sets of oscillation parameters.

2.1 General Derivation

If neutrinos have masses, the weak eigenstates, να , produced in a weak interaction are, in

general, linear combinations of the mass eigenstates νi [GGM08]. For three neutrino flavors,

it is described by a 3*3 unitary mixing matrix paramterised by 3 mixing angle and 1 (or 3)
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physical phases.[T+18] Deriving expression for a general case:

|να〉=
n

∑
i=1

U∗αk|νk〉 (2.1)

where U is unitary matrix, α corresponds to flavor states and k is for mass eigenstates.These are

states at the source (i.e. x=0, t=0).

Apply the propagation operator to the mass eigenstates [|νk(x, t)〉= e−ιφk |νk(0,0)〉, where φk =

Ekt− pkx]. Also invert the mixing matrix to mass eigenstates as superposition of flavor states.[

|νk〉= ∑γ Uγk|νγ〉 ]. Hence we can write:

|να(x, t)〉= ∑
γ

∑
k

U∗αkUγke−ιφk |νk(x, t)〉 (2.2)

The probability of getting flavor β at (x,t) if α is generated at the source is given by the square

of the amplitude.

Pνα (0,0)→νβ (x,t) = |〈να(0,0)|νβ (x, t)〉|2 (2.3)

Pνα→νβ
= |∑

k
U∗αkUβke−ιφk |2 (2.4)

This formula can be expanded to get:

Pνα→νβ
= ∑

k, j
U∗αkUβkUα jU∗β jexp[−ι(φk−φ j)] (2.5)

We can now consider an approximation that neutrinos are ultra-relativistic and hence for any

realistic energy(E), the rest mass (i.e. mass eigenvalue (mi)) is very small in comparison to E.

Hence

pi =
√

E2
i −m2

i = Ei

√
1−

m2
i

E2
i
≈ Ei

(
1− m2

i

2E2
i

)
Use the above approximation for the φi and consider the neutrinos to be of same energy. Also

since neutrinos are ultra-relativistic we can replace t(c=1) by x (or L = Distance between source

and detector).

Pνα→νβ
= ∑

k, j
U∗αkUβkUα jU∗β jexp

[
−ι

∆m2
k jL

2E

]
(2.6)

where ∆m2
k j = m2

k−m2
j .

Using the identity:

|z1 + z2 + z3 + ...|2 = ∑
k
|zk|2 +2Re ∑

k> j
zkz∗j

Hence
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Pνα→νβ
= ∑

k
|Uαk|2|Uβk|2 +2Re ∑

k> j
U∗αkUβkUα jU∗β jexp

[
−2πι

L
LOsc.

k j

]
(2.7)

where LOsc.
k j = OscillationLength = 4πE

∆m2
k j

is the distance at which phase generated by ∆m2
k j be-

comes 2π . It is interesting to note that the above formula consists of a constant part (independent

of L) and other which shows oscillation. So even if the second part somehow goes to zero, we

can still observe some value of Pαβ (= Pνα→νβ
).

We can also write the above formula in different form using the following identity (obtained by

squaring the condition on matrix elements of a unitary matrix ) :

∑
k
|Uαk|2|Uβk|2 = δαβ −2Re ∑

k> j
U∗αkUβkUα jU∗β j

Hence (detailed derivation given in Appendix B)

Pαβ = δαβ −4∗∑
k> j

Re[U∗αkUβkUα jU∗β j]∗ sin2

(
∆m2

k jL

4E

)
+

2∗∑
k> j

Im[U∗αkUβkUα jU∗β j]∗ sin

(
∆m2

k jL

2E

)
(2.8)

When α = β its called the "Survival Probability" and when α 6= β its called the "Transition

Probability".

Survival Probability is measured by "Disappearance Channel" i.e. we are measuring fraction

of neutrinos of original flavor left. On the other hand, transition Probability is measured by

"Appearance Channel" i.e. we are measuring fraction of neutrinos of new flavor.

2.2 2-Flavor Neutrino Oscillation

To simplify things, let’s initially suppose two flavor states. Analysis done here will be of great

use to understand 3-flavor neutrino oscillations. However, for precise measurements three-flavor

analysis is essential. Two flavor oscillation is described by one mixing angle (θ ) and one mass

difference. The flavor states and mass states are related to each other by a unitary matrix (U),

which can be written as:
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U =

Uα1 Uα2

Uβ1 Uβ2

=

 cos(θ) sin(θ)

−sin(θ) cos(θ)


Hence

να

νβ

=

 cos(θ) sin(θ)

−sin(θ) cos(θ)

ν1

ν2


The transition probability now can be obtained by using Equation (2.8)

Pαβ = sin2(2θ)sin2(
∆m2L

4E
)

Pαβ = sin2(2θ)sin2(1.27
∆m2(eV2)L(km)

E(GeV)
) (2.9)

where the second relation is obtained by re-introducing h̄ and c:

∆m2L
4E

=
∆m2c4L

4Eh̄c
= 1.27

∆m2(eV2)L(km)
E(GeV)

= 1.27
∆m2(eV2)L(m)

E(MeV)
(2.10)

The corresponding survival probability is given by:

Pαα = 1−Pαβ (2.11)

Since θ is a physical parameter, it is the amplitude determining part of Pαβ (Equation (2.9)).

On the other hand ∆m2 is the frequency determining part.

2.2.1 Parameters

• Mixing Angle, θ

It determines how different are flavor states from mass states. If θ = 0, it can be easily

seen from mixing matrix form that flavor states are identical to mass states. This is the no

mixing case. If θ = π

4 , it’s the maximal mixing situation.

• Mass-squared difference, ∆m2

(Equation (2.9)) clearly tells us that if we are getting a non-zero transition probability
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(for some neutrino mixing) in a measurement, then the mass eigenvalues should be non-

zero and non-degenerate i.e. at-least one of the neutrinos must have a non-zero mass

for oscillation to happen. Also Pαβ is invariant under ∆m2→−∆m2. Hence we can’t tell

whether m1 is heavier or lighter than m2.

• Baseline to Energy Ratio, L/E

This is the only parameter under control of experimentalists. L is the distance between

source and detector, and E is the energy of the neutrino.Experimentally if we want to

experimentally check a value of ∆m2, then we try to build the experiment to be maximally

sensitive to the oscillation probability. Hence the argument of sin should be integral

multiple of π/2 i.e.

1.27∆m2 L
E

= (2n+1)
π

2

=⇒ L
E

=
π

2.54∆m2

2.2.2 2-Flavor Neutrino Oscillation: Interpretation of Atmospheric Neu-

trino Problem
Due to isotropic distribution, we ex-

pect observed number of neutrino events

to be symmetric about horizon i.e.

cos(θ = zenith angle) = 0 (i.e. number

of upward going neutrinos≈ number of down-

ward going neutrinos ).There is consistency

between observed and expected results in case

of electron-like events. However in case of

muon type, a distinct asymmetry is observed

around the horizon (cos(θ) = 0) [F+98].The

deficit of muon neutrinos is more prevalent

for upward going neutrinos (which have larger

pathlengths). This pattern can be consistently

reconstructed considering νµ ↔ ντ oscillation.

Figure 2.1: Zenith Angle distribu-

tion of the observed number of elec-

tron and muon type events.[F
+98]

Multi-GeV neutrinos, which have longer path-length are depleted more by the oscillations. As

the path-length reduces (cos(θ ) increases), i.e., for neutrinos coming from the upper hemi-
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sphere, the depletion becomes less pronounced. Because of smaller energy for the sub-GeV

µ-like neutrino events, the oscillation lengths are smaller. This causes sizable depletion due to

oscillations to neutrinos even coming from the upper hemisphere. For up-going sub-GeV neu-

trinos the oscillation length is much shorter than the path-length, and they experience averaged

oscillations.

2.2.2.1 Mathematical Analysis

We can easily estimate the extent of oscillation for different cases by using predetermined values

of the different variables in the formula. A rough analysis for multi-GeV events is done below:

• For Small L/E ( Coming directly from Atmosphere)

– Pµτ = sin2(2θatm)sin2(0.00127)≤ 1.6∗10−6 −→We should only see a very slight

shift for neutrinos traveling through atmosphere only. =⇒ Confirmed through the

plot.

• For Large L/E ( Crossing Earth Surface)

– Pµτ = sin2(2θatm)sin2(16.61) ≤ .51 −→ We should see around 50 % depletion in

expected flux. =⇒ Confirmed through the plot.

It can be clearly seen that neutrino oscillation provides a great way to interpret the experimental

results.

After proper analysis the best fit values were found to be:

∆m2
atm = 2.5∗10-3eV2,sin2(2θatm) = 1.0 i.e. θatm ≈ 45

◦

2.2.3 2-Flavor Neutrino Oscillation: Interpretation of Solar Neutrino

Problem

Since various models approximately knew most of the solar parameters, it was possible to con-

firm them using a neutrino source on the earth and to observe the depletion of the flux after

the neutrinos travel a known distance. Reactors produce νe having energies of the order of few

MeV. The oscillation parameters can be measured and tested by placing a neutrino detector at a

distance most sensitive to that measurement.
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KamLAND detector, the average baseline of≈ 180km, carried out detailed analysis ( also using

Solar Neutrino Data) in e− e survival channel and found out the best-fit values to be:

∆m2
sol = 7.5∗10-5eV2,sin2(2θsol)≈ .31i.e.θsol ≈ 34

◦

The above results have been reconfirmed time and again, by various experiments and by various

channels, suggesting that the model we have proposed to describe flavor mixing i.e. Neutrino

Oscillation model is robust.

2.3 3-Flavor Neutrino Oscillation

By dividing the general three-flavor case into sub-sectors, we can easily analyze Solar and

atmospheric neutrinos. However, to build a consistent picture of neutrino mixing, we have to

develop a framework for the mixing of all three neutrino species,νe,νµ ,ντ . Writing the flavor

states as the superposition of mass states:

|να〉=
n

∑
i=1

U∗αk|νk〉 (2.12)

where α = e,µ,τ and i = 1,2,3

In the case of three flavors, the mixing matrix(U) can be parametrized with three mixing an-

gles and one CP violating phase (two additional Majorana phases do not influence the flavor

evolution). The most commonly used parametrization has the form:

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−ιδCP

0 1 0

−s13eιδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1



UPMNS =


c12c13 s12c13 s13e−ιδCP

−s12c23− c12s13s23eιδCP c12c23− s12s13s23eιδCP c13s23

s12s23− c12s13c23eιδCP −c12s23− s12s13c23eιδCP c13c23


where ci j = cos(θi j) , si j = sin(θi j) and θi j are the mixing angles.

The probability that a neutrino flavor state να ,generated at the source, is observed in another
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flavor state νβ , at the detector, is give by:

Pνα→νβ
= δαβ −4∗∑

k> j
Re[U∗αkUβkUα jU∗β j]∗ sin2(

∆m2
k jL

4E
)+

2∗∑
k> j

Im[U∗αkUβkUα jU∗β j](sin(
∆m2

k jL

2E
)) (2.13)

It can be easily seen from the above equation that the neutrino oscillation probabilities de-

pend on the neutrino energy, E, the source-detector distance L, on the elements of U and,

∆m2
i j = m2

i −m2
j ,i 6= j,(for relativistic neutrinos). In the case of 3-neutrino mixing there are only

two independent neutrino mass squared differences, say ∆m2
21 6= 0 and ∆m2

31 6= 0.The splitting

given by ∆m2
21 = ∆m2

� > 0 is identified as the mass splitting responsible for solar neutrino os-

cillations.On the other hand |∆m2
31| ≈ |∆m2

21|= |∆m2
A|>> m2

21 is responsible for the dominant

oscillation, atmospheric neutrino oscillation. "θ12 = θ� and θ23 = θA" are the solar and atmo-

spheric neutrino mixing angles, respectively. The angle "θ13" is the called “CHOOZ mixing

angle”.It connects the solar sector with the atmospheric sector.

2.3.1 Probability Expressions for Three-Flavor Neutrino Oscillation

The Survival and Transition Probability expression in case of three flavor neutrino oscillation is

given by (derived in Appendix C ):

Pαα = 1−4|Uα2|2(1−|Uα2|2)sin2
(

∇21

2

)
−4|Uα3|2(1−|Uα3|2)sin2

(
∇31

2

)
+

2|Uα2|2|Uα3|2
[

4sin2
(

∇21

2

)
sin2

(
∇31

2

)
+ sin(∇31)sin(∇21)

]

Pαβ = 4|Uα2|2|Uβ2|2sin2
(

∇21

2

)
+4|Uα3|2|Uβ3|2sin2

(
∇31

2

)
+

2Re[U∗α3Uβ3Uα2U∗
β2]

(
4sin2

(
∇21

2

)
sin2

(
∇31

2

)
+ sin(∇31)sin(∇21)

)
−4J(αβ )

(
4sin2(∇31)sin2

(
∇21

2

)
− sin(∇21)sin

(
∇31

2

))
where ∇i j =

∆m2
i jL

2E and J(αβ ) is called the Jarlskog Invariant:

Jαβ =−Jβα = Im[U∗α1Uβ1Uα2U∗
β2] = Im[U∗α2Uβ2Uα3U∗

β3] = Im[U∗α3Uβ3Uα1U∗
β1]

=−Im[U∗α2Uβ2Uα1U∗
β1] =−Im[U∗α1Uβ1Uα3U∗

β3] =−Im[U∗α3Uβ3Uα2U∗
β2]

(2.14)
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Using the standard parametrization i.e. UPMNS, we have:

Jµe =−Jeµ = Jeτ = Jτµ =−Jµτ = Ĵsin(δCP)

with

Ĵ = s12c12s13c2
13s23c23
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Chapter 3

Neutrino Oscillation (In Matter)

The works of Wolfenstein [Wol78], Mikheyev and Smirnov [Smi03] were able to tell that the

presence of matter can significantly affect the propagation of neutrinos. In the presence of mat-

ter, the electron neutrino experiences an additional potential in comparison to muon and the

tau neutrino. Electron neutrino in addition to experiencing neutral current scattering (experi-

enced by all three neutrino flavors) also undergoes elastic charged-current scattering. This is

mainly because of the presence of an abundance of electrons in matter, and in general, absence

of muons and tau-particles.

3.1 General Derivation

The time-evolution of a neutrino mass eigenstate is given by Schrodinger equation:

ι h̄
∂

∂ t
|ν〉mass = H |ν〉mass (3.1)

where H is the hamiltonian in the mass eigenbasis. The hamiltonian in flavor eigenbasis can be

obtained by calculating the time-evolution of the inner product, as:

ψαβ = 〈νβ |να(t)〉

ι h̄
∂

∂ t
ψαβ = 〈νβ |ι h̄

∂

∂ t
να(t)〉
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Using the completeness relation for neutrino eigenstates we get:

ι h̄
∂

∂ t
ψαβ = ∑

jkγ

〈νβ |ν j〉〈ν j|ι h̄
∂

∂ t
|νk〉〈νk|νγ〉〈νγ |να(t)〉

=Uβ jEkδ jkU∗γkψαγ

=UβkEk(U†)kγψαγ

(3.2)

It is evident from above equation that the hamiltonian for flavor neutrinos will be given by:

H f lav =UHU† (3.3)

In the presence of matter, the Schrodinger equation will be given by:

ι h̄
∂

∂ t
|ν〉 f lav = H̃ |ν〉 f lav (3.4)

where H̃ = H f lav + V is the total hamiltonian. Here V is the potential the neutrino experiences

due to the presence of matter. V =VCC +VNC, where VCC is the potential energy due to charged

current scattering and VNC is the potential energy due to neutral current scattering. These can

be related to the number density of the matter by

VCC =
√

2GFNe (3.5)

VNC =−
√

2GF
Nn

2
(3.6)

where Ne and Nn are the number density due to electron and neutron respectively.

Let the relation between the flavor eigenbasis and the matter-modified mass eigenbasis |ν〉m, in

which the total hamiltonian H̃ is diagonal, be given by a mixing matrix Um parameterized by

matter-modified mixing angle θ m:

|ν〉 f lav =Um(θ
m) |ν〉m (3.7)

Assuming Um and V to be time-independent; Equation 3.4 can be re-written as

ι h̄
∂

∂ t
Um |ν〉m = H̃Um |ν〉m

ι h̄
∂

∂ t
|ν〉m =U†

mH̃Um |ν〉m

ι h̄
∂

∂ t
|ν〉m = Hm |ν〉m

(3.8)
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where

Hm =U†
m[UHU† +V ]Um (3.9)

.

Hence we need to find the diagonal matter-modified hamiltonian in the matter modified-mass

eigenbasis |ν〉m.This can then be used to find the matter-modified mixing angle θ m and the

matter-modified squared-mass difference ∆m [MP16].

3.2 Two-Flavor Oscillations

The hamiltonian in vacuum mass basis is given by:

H =
1

2E

m2
1 0

0 m2
2

 (3.10)

We can modify the above hamiltonian [Pra13] to express it as a sum of a matrix consisting of

squared-mass differences and a matrix proportional to identity:

H =
1

2E

m2
1−m2

2
2 0

0 −m2
1+m2

2
2

+ 1
2E

m2
1+m2

2
2 0

0 m2
1+m2

2
2

 (3.11)

The term proportional to identity will only lead to an overall phase and hence can be ignored

for all observational purposes. So,

H =
1

4E

−∆ 0

0 ∆

 (3.12)

here ∆ = m2
2−m2

1.

Using the relation from equation 3.9 we obtain the matter-modified hamiltonian (details in Ap-

pendix E), whose diagonal elements are given as:

(Hm)1,1 =−(Hm)2,2 =
1

4E
[(A−∆cos2θ)cos2θm− (∆sin2θ)sin2θm] (3.13)

and the off-diagonal elements are:

(Hm)1,2 = (Hm)2,1 =
1

4E
[(∆sin2θ)cos2θm +(A−∆cos2θ)sin2θm] (3.14)
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where A = 2EVCC (VCC is the potential energy due to charged current scattering and can be

obtained from charge number density of matter.)

The matrix Hm can be expressed as:

1
4E

−∆m 0

0 ∆m

 (3.15)

where ∆m = (m2
2)mat − (m2

1)mat is the squared-mass difference in the matter-modified mass

eigenbasis.

Comparing the diagonal and off-diagonal elements with the form given in equation 3.15, we

get:

θm =
1
2

tan−1
(

∆sin2θ

∆cos2θ −A

)
(3.16)

and

∆
m =

√
(∆cos2θ −A)2 +(∆sin2θ) (3.17)

Thus, in the presence of matter, the two-flavor oscillation probabilities can be obtained by sub-

stituting θm and ∆m for the mixing angle and the squared-mass difference respectively in Equa-

tion 2.12(in natural units)

Pm
ee = 1− sin2 2θm sin2

(
1.27∆mL

E

)
(3.18)

Pm
eµ = sin2 2θm sin2

(
1.27∆mL

E

)
(3.19)

3.3 Three-Flavor Oscillations

For three-flavor case, the hamiltonian in vacuum mass basis is given by:

H =
1

2E


m2

1 0 0

0 m2
2 0

0 0 m2
3

 (3.20)
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Writing the hamiltonian in flavor eigenbasis will be:

H f lav =UHU† (3.21)

=
1

2E
U


m2

1 0 0

0 m2
2 0

0 0 m2
3

U† (3.22)

=
1

2E
U


0 0 0

0 ∆21 0

0 0 ∆31

U† =
1

2E
(UM2U†) (3.23)

3.3.1 With OMSD Approximation

We will now be deriving the expression for matter-modified mixing angles and squared-mass

differences, considering three neutrino flavors [AJL+04]. As derived and explained multiple

times before, neutrino oscillation has sensitivity to squared mass-differences only and not to the

neutrino mass eigenvalues. However, for the three mass eigenvalues for a three-flavor oscilla-

tion case, only two are independent squared-mass differences.

Data from experiments have shown that the parameter α = ∆21
∆31

is roughly 0.03. This can be

exploited to derive approximate results, by considering ∆21 = 0 [OMSD (One Mass Scale

Dominant) Approximation]. Later results with ∆21 non-zero can also be derived.

To obtain the matter-modified squared-mass differences and the mixing angles, we repeat sim-

ilar steps (details in Appendix E) as done for matter-modified two flavor case. We get the

matter-modified squared-mass differences as:

∆
m
31 =

√
(∆31cos2θ13−A)2 +(∆31sin2θ13)2 (3.24)

∆
m
21 =

1
2
(∆m

31−∆31−A) (3.25)

∆
m
23 =

1
2
(−∆

m
31−∆31−A) (3.26)

and matter-modified mixing angle is given by:

θ
m
13 =

1
2

tan−1
(

∆31sin2θ13

∆31cos2θ13−A

)
(3.27)
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Hence few probability expressions can be given as (in natural units):

Pee = 1− sin2 2θ
m
13 sin2

[
1.27(∆m

31)L
E

]
(3.28)

Pµµ = 1− cos2 2θ
m
13sin22θ23 sin2

[
1.27(∆31 +A+∆m

31)L
2E

]
− sin2 2θ

m
13sin22θ23 sin2

[
1.27(∆31 +A−∆m

31)L
2E

]
− sin4

θ23 sin2 2θ13 sin2
[

1.27∆m
31L

E

] (3.29)

Pµe = sin2
θ13 sin2

θ23 sin2
[

1.27∆m
31L

E

]
and so on.. (3.30)

3.3.2 Without OMSD approximation

Sometimes for certain L and E values, the phase in the leading term can diminish the leading

term to the extent at which α cannot be ignored. Also, in the OMSD approximation, the

δCP-dependence is lost from the probability expressions. It is, therefore, necessary to include a

non-zero ∆21 in the calculations.For details please refer to Appendix E.
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Chapter 4

Neutrinos from Accelerators

High Energy Physics has revolutionized the way we look at the universe. Neutrino Physics

has taken a central role in it for quite some time. Observing neutrinos from various sources

has helped measure multiple parameters which have not only helped us understand neutrino

physics in more detail but has also opened paths to probe beyond Standard Model Physics. It

bridges many disciplines of physics which complement each other. However, recent experi-

ments on neutrinos from the sun have shown that the flux of solar neutrinos reaching the earth

is not sufficient to probe all the parameters[Ric00][Spu18]. Experiments also reveal that muon-

type neutrinos produced in the atmosphere seem to be depleted while passing through the earth

compared to that incident on detectors directly from above[Suz06]. This puts a limit on the

number as well as the precision of parameters we can measure. Neutrino beams from accelera-

tors have been proved to be of the great rescue here. They have not only helped us understand

the phenomenon that governs neutrino but has also helped in unifying weak-nuclear force and

electromagnetic force[Kop07]. Accelerator-based experiments have led to important discover-

ies like the neutral currents at the CERN PS to the determination of the number of neutrinos at

LEP [D+18].

Accelerator neutrino experiments can be classified by the length of its baseline, which is a major

factor in determining its sensitivity to various parameters like ∆m2. Accordingly:

• Long Base Line (LBL) accelerator neutrino experiments can probe still unknown param-

eters since matter effects become significant: L> 100 km.

• Short Base Line (SBL) accelerator neutrino experiments that are devoted to the search

of additional neutrinos beyond the 3*3 scenario: L≈ 1km.
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Here, I will only discuss the Long Base Line (LBL) accelerator neutrino experiments. These

kinds of experiments generally have a two detector setup, where neutrinos generated by the

accelerator are first measured before oscillation in a near detector and then again, after oscil-

lation in a far detector. This technique has a major advantage that a very intense beam can

be operated at the optimal L/E value. Several LBL experiments like K2K [A+05] and T2K

[A+11] in Japan, MINOS [M+06] in USA and OPERA [G+00] in Italy, not only implement

this technique but have also helped improve the precision of oscillation parameters measured

by previous experiments.

4.1 Neutrino Beams

Figure 4.1: Schematic Diagram: Conventional Neutrino Beams [Str19].

First proposed by M. Schwartz [Sch60] and Pontecorvo; and first tested out by Lederman,

Schwartz, Steinberger, and collaborators [DGG+62], conventional neutrino beams are gener-

ated impinging a high-energy beam of protons produced by an accelerator upon a nuclear target

(as shown in Figure 4.1). After the protons hit the thin slab of material, the atomic nuclei form

a beam of particles like protons and neutrons with a beam of other secondaries like pion and

kaons. The beam is then allowed to pass through a magnetic field, which bends and deviates the

charged particles from their original path. The direction of bending is determined by the electric

charge of the particle, whereas its energy decides the bending amount. This is used as a filter,

and positive(negative) charged pions (in a fixed energy range) are allowed to propagate further

— the pions decay into an anti-muon(muon) and a muon-neutrino(muon anti-neutrino). The

beam now has muons, with a few as-yet-undecayed pions and stray protons left over, and neu-

trinos. Again with the use of magnetic field all charged particles are focused out and stopped,

and an almost pure neutrino beam is produced. Similar processes are carried out to create other
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flavors of neutrinos. By controlling the parameters, we can restrict the beam direction. The neu-

trino sources which are considered for the present work are the CERN Facility, the Fermilab

Facility and the J-PARC Facility. The detector location that I will be explicitly using are INO

(Indian Neutrino Observatory) and EHEP-Lab IISER Mohali, India. However, the setup

developed by me allows to enter any detector location on earth and calculate the final number of

events from CERN, Fermilab, and J-PARC. The significant advantage of longer-baselines over

shorter baselines is the presence of probability peak at higher energies, which in turn improves

cross-sections [CLP13]. Long baselines because of enhanced matter-effects are also able to

probe problems of mass-hierarchy.

4.2 Flux Calculation Methodology

To calculate the final number of events, I have used a simplistic computation method that gives

the number of neutrinos for given energy (spectrum) and transition channel. In spite of its

simplistic form, for practical purposes, it provides a sufficiently good estimate. The underlying

formula for the calculation is

Nexp
νβ

(E) = ε(E)σ(E)Pνα→νβ
(E,L,θ ,∆m2)Φνβ

(E,L) (4.1)

Here: E,L = Energy and baseline ; θ ,∆m2 = Mixing angle and squared −

mass − eigenvalues di f f erence. ; Nexp
νx (E) = Number o f neutrinos detected in β −

f lavor at the f ar detector ; ε = Detection E f f iciency o f the f ar detector ; σ =

Interaction Cross − Section at the f ar detector ; Pνα→νβ
= Neutrino −

Oscillation Probability ; Φνβ
= Total interpolated incident f lux at f ar detector.

Out of the factors, as mentioned above, detection-efficiency and cross-section are obtained by

detector calibration. In my case because of no established detector or detection information, I

have considered the values of both these parameters as unity. However, for detailed and accu-

rate analysis the detector information has to be considered to get the full-picture (The number

of neutrinos collected by a given detector depends on the cross-section, detector mass, and neu-

trino flux incident on the detector. Hence both large detectors and high neutrino flux are needed

to observe these particles.). The Neutrino-oscillation probability factor has been considered in
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length before, and transition probability relation for matter case is considered in GLoBES for

the simulation. The total flux at the far detector is obtained by extrapolating flux from source

or from near detector. Both cases are discussed in detail later. However, for simulation, only

two-detector setup was considered.

Most of the neutrino experiments are focussed on measuring oscillation parameters. Hence once

a measurement is performed, the observed event distribution Nobs(E) is compared to Nexp(E)

to extract the parameters that best match the observations. Usually, the uncertainties in the

calculation of the predicted flux and neutrino interaction cross-sections are large. The devia-

tions in the predicted flux are mainly due to the difficulty in accurate modeling of the hadronic

interactions responsible for generating mesons (hadron production) that produce the neutrino

beam. Whereas the uncertainties in the neutrino interaction cross-sections is due to the absence

of available cross-section measurements and the large experimental errors associated with them

[Gal12]. Two detector setup provides the opportunity to measure hadron production in a dedi-

cated experiment, a significant advantage over source-detector configuration.

4.3 Source-Detector Setup

To know the unoscillated flux at the far detector, we can proceed step-wise by first obtaining

the flux produced at the source in the lab frame and then interpolating it to the far detector.

Later neutrino-oscillation physics can be added to it to get the total oscillated flux at the de-

tector. Let’s consider neutrinos in centre of mass (C.O.M.) frame have energy E∗ and three-

momentum
#»

p∗ = (p∗x , p∗y , p∗z ). Also, since neutrinos are ultra-relativistic with their negligible

mass in comparison to their energy we can write [Orm09]:

E∗ = | #»p ∗| and p∗x = E∗sinθ
∗cosφ , p∗y = E∗sinθ

∗sinφ , pz = E∗cosθ
∗

Without loss of generality we can take φ = 0
◦

and consider boost to be in θ = 0
◦

direction. The

four-momentum in lab can be obtained from:
E

Esinθ

0

Ecosθ

=


γ 0 0 βγ

0 1 0 0

0 0 1 0

βγ 0 0 0




E∗

E∗sinθ ∗

0

E∗cosθ ∗

 (4.2)
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Therefore, energy in lab-frame is =γE∗(1+βcosθ ∗)

However, this is still in terms of rest-frame angle and so needs to be transformed:

dE
dcosθ

=
dE

dcosθ ∗
dcosθ ∗

dcosθ
= γE∗

dcosθ ∗

dcosθ
(4.3)

Using results of Lorentz transformation we can write

cosθ =
γE∗(β + cosθ ∗)√

(γE∗(β + cosθ ∗))2 +(E∗sinθ ∗)

=
β + cosθ ∗

1+βcosθ ∗
(4.4)

Inverting this we get

cosθ
∗ =
−β + cosθ

1−βcosθ
(4.5)

⇒ dcosθ ∗

dcosθ
= [γ2(1−βcosθ)2]−1 (4.6)

From equation 4.3, the exact angle in lab frame is given by

E(θ) =
E∗

γ

1
1−βcosθ

(4.7)

In large γ and small θ approximation (β ≈ 1− 1
2γ2 and cosθ ≈ 1− θ 2

2 ),we get

E(θ) =
2γE∗

1+ γ2θ 2 (4.8)

We require neutrino spectrum which takes the form

Φ(Eν) =
dN

dEνdcosθ
(4.9)

However, boosting from centre of mass frame to lab-frame is equivalent to following transfor-

mations(as derived earlier):

Eν −→ Eνγ(1−β cosθ) (4.10)

dEν −→ γ(1−β cosθ)dEν (4.11)

Using the expected flux form and the transformations, it is clear that the lab spectrum is related

to C.O.M. spectrum via [BLM04]

ΦLab(Eν ,θ) =
ΦC.O.M.(Eνγ[1−β cosθ ])

γ[1−β cosθ ]
(4.12)
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4.3.1 Extrapolating Beam Flux

The differential width of β -decay, neglecting small Coulomb corrections is given by [ARS05]

[ACR07]
d2Γ∗

dΩ∗dE∗ν
=

1
4π

ln2
m5

e f t1/2
(E0−E∗ν)E

∗2
ν

√
(E0−E∗ν)2−m2

e (4.13)

where me is the electron mass and E∗ν is the neutrino energy C.O.M.-frame. E0 is the electron

end-point energy, t1/2 is the half life of the decaying ion in its C.O.M. frame and

f (ye) =
1

60y5
e

{√
1− y2

e(2−9y2
e−8y4

e)+15y4
e log

[
ye

1−
√

1− y2
e

]}
(4.14)

where ye = me/E0.

However the flux N is related to Γ by the radioactive decay law

d2N
dEνdt

= gγτ
dΓ

dEν

(4.15)

where g is the number of injected ions per unit time, and τ is the lifetime of that ion in its rest

frame.

We can now replace dΩ by dA
L2 where dA is the small area of the detector and L is the baseline

length. Therefore using equation relating flux in lab-frame to C.O.M. frame, equation 4.13 and

equation 4.15, the number of neutrinos within the energy range Eν to Eν +dEν hitting unit area

of the detector located at a distance L aligned with the straight sections of the storage ring in

time dt is given by:

d3N
dAdE∗νdt

∣∣∣∣
lab

=
1

4πL2
ln2

m5
e f t1/2

gτ

γ(1−β cosθ)
(E0−E∗ν)E

∗2
ν

√
(E0−E∗ν)2−m2

e (4.16)

where E∗ν = γEν(1−β cosθ).

4.4 Two-Detector Setup

Pioneered at CERN and Fermilab, it is a unique technique to estimate flux at the detector lo-

cation [Min08]. A near detector or ND is placed close to the neutrino production site which

directly measures the neutrinos from the beam over a span of energies. Whereas the other one,

the far detector or FD, is placed at a distance where the oscillation probability is closer to
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unity and is at a much greater distance than the near detector. It quantifies the energy range of

neutrinos which have traveled through matter or vacuum (causing oscillation), for quite a while.

The deviation between the two energy spectra is then used to infer phenomenon like neutrino-

oscillation or measure relevant physical parameters. The utilization of an extra near detector

diminishes the need to calculate beam spectrum which incredibly improves the investigation’s

sensitivity. It can also measure the interaction cross-sections with the same neutrino beam to

constrain the cross-section uncertainties. The two-detector setup is favored for this work over

source-detector configuration because of greater control and availability of data.

4.4.1 Extrapolating Beam Flux

The difference in distance between the near and far detector, causes a change in observed beam

spectrum of the two detectors. This difference is prevalent even in the absence of neutrino

oscillation. The prediction can be estimated by [Kop07] :

Φ f ar = RFNΦNear (4.17)

When the beam is viewed as an extended source rather than a point source, we need to consider

the factor of pion lifetime (in the decay length) in the extrapolation factor and the factor is given

by [Kop07]

RFN =

∫ L
z≈0

e
− 0.43mπ z

Eν cτ

(ZF−z)2 dz∫ L
z≈0

e
− 0.43mπ z

Eν cτ

(ZN−z)2 dz
(4.18)

where the integral is over the length L of the decay tunnel and the substitution.

However, GLoBES only allows us to simulate point sources(z=0). In that case the above ex-

trapolation factor reduces to

RFN =
Z2

near

Z2
f ar

(4.19)

which is just the ratio of solid angles subtended by the two detectors. Hence if we know flux at

the near detector, we can easily calculate the unoscillated flux at the far detector. To obtain the

full picture other factor like transition probability, efficiency etc. can be incorporated.
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4.5 Horn focussing

To study the properties of neutrinos at neutrino detectors, we have to guarantee that we have

enough number of neutrinos at the detector. It can be achieved by neutrino horns, delivering a

concentrated beam of neutrinos at the source itself. These were created at CERN by Simon van

der Meer in 1961, a Nobel Prize-winning physicist.

Neutrino beam at accelerators is produced from a shower of short-lived particles, made when

protons are going near the speed of light hammer into a target. However, this shower is not

a clean, focused beam. Magnetic horns act the hero here. After the protons hammer into the

target creating pions and kaons - the short-lived charged particles that decay into neutrinos - the

magnetic horns focus them promptly by utilizing the magnetic field. The focusing must be done

promptly before they decay into neutrinos. This is because, in contrast to the pions and kaons,

neutrinos don’t interact with magnetic fields. That implies we can’t focus them directly. Thus

concentrating pions and kaons at first will create a focused neutrino beam.

Few requirements that need to be imposed for neutrino horns are[Caz04] [Nez75]:

• Good focussing effectiveness

• High operational dependability

• Minimize failures because of radiation

• Modular design

• Simultaneous horn activity and subsystem testing

The principle of focussing secondary particles created in the target using two coaxial horns is

illustrated as :

Figure 4.2: Schematic of the focussing principle of the secondary particles [NP16].

As depicted Figure 4.2, the first horn is placed close to the target. It is unable to sufficiently
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deviate the more energetic particles, while the less energetic particles deviate too much. The

second horn is placed to correct this effect (also the reason why it is called reflector). It is set

sufficiently farther (less than decay length of pions and kaons) and is larger in diameter than

the first horn, to increase its acceptance. If the particles have small deviation angles, they need

not be focused much. The end of the inner driver is cylindrical, allowing the particles already

focused by the horn to stay in the line of the beam. The reflector thus makes it possible to obtain

a broadband energy beam. For most of the cases, a tube filled with helium at atmospheric

pressure is placed between the horn and the reflector to minimize energy losses. The same

goes for the distance between reflector output from the decay tunnel input. For this text, when

positive-charged pions and kaons are focused it’s called Plus-focussing and Minus-focussing

if it’s negative-charged pions and kaons [Kop07].

4.6 Simulating Experiments - GLoBES Software Package

To perform simulations for this work, I am using GLoBES ( General Long Baseline Exper-

iment Simulator). GLoBES [HLS+05] is an open-source software package for the simula-

tion of long baseline neutrino oscillation experiments, currently maintained by Patrick Huber,

Joachim Kopp, Manfred Lindner, and Walter Winter. With the use of several built-in al-

gorithms, it computes final event rates that take into account neutrino propagation and energy-

dependent efficiencies.

The major features of GLoBES which eases experiment simulations are:

• AEDL (Abstract Experiment Definition Language) which forms the backbone of

GLoBES, gives a simple method to characterize test setups. It is the part of GLoBES

where all the relevant information regarding the source (the accelerator for our case),

baseline and detector is specified. Using the parameters defined in the AEDL file

GLoBES software calculates the final number of events.

• We can easily include priors if we want to include arbitrary external physical information.

• It also allows us to incorporate correlations and degeneracies which might exist in the

oscillation parameter space.

• To treat arbitrary systematical errors, it provides beneficial advanced routines.

• It likewise has predefined setups accessible for some investigations: Neutrino factories,

Beta Beams, Superbeams, Reactors, different detector technologies.
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4.7 Density Distribution

GLoBES provide the flexibility to use three different methods to define the matter density pro-

file for our experiment. We can insert an average matter density or insert a manually defined

density map or PREM (Preliminary Reference Earth Mode) profile [DA81]. For my study,

I have used the PREM profile, which simulates the matter density by approximating the Earth

to a series of layers. It provides a fairly accurate representation of density profile and moreover

considers important parameters like elastic properties, pressure, density, attenuation, and grav-

ity, as a function of planetary radius which is essential for an accurate representation [Vih14].

By comparing the two graphs given below (Figure 4.3 and Figure 4.4), it can be easily seen

that for baselines less than 6000 km the propagation of neutrinos mainly occurs in the crust

layer of the earth. For baselines between 6000km-10000km the propagation occurs in Crust as

well as Mantle and for baselines above 10000km, the propagation occurs within Earth Core in

addition to Crust and Mantle.

Figure 4.3: PREM Density Profiles for various baselines.

Figure 4.4: Earth’s radial density map according to PREM [McC19].
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4.8 Flux at Near Detector

The primary task of the near detector is to characterize the flux of the un-oscillated neutrino

beam. It is crucial to the precision studies of neutrino oscillations as well as for other neutrino

experiments. In addition to the estimation of neutrino flux by the evaluation of neutrino-electron

scattering process[TW09], near detector is additionally utilized for the investigation of neutrino

beam properties required for the flux to be extrapolated to the far detector, and estimation of

charm production cross-sections(charm production in the far detector is one of the principal

backgrounds to the oscillation signal) [B+14]. It can likewise test new physics, for instance

by detecting τ leptons, which are particularly sensitive probes of nonstandard interactions with

matter. Additionally, ντ is also vital in the search for sterile neutrinos. Neutrino beam fluxes

can be estimated by the information of neutrino-electron association cross sections[Oku82].

4.8.1 Near Detector: CERN

Figure 4.5: Location of the SPL on the CERN site [Fre17].

CERN’s accelerator complex consists of various sections which successively accelerate parti-

cles to increasingly higher energies. Utilizing a simple container of hydrogen gas as a proton

source, an electric field is used to strip hydrogen molecules of their electrons to yield protons.

These protons are then allowed to pass through the LINAC (Linear Accelerator), which ac-

celerates them to an energy of 50 MeV. After initial acceleration, the beam is infused into the

Proton Synchrotron Booster (PSB) followed by the Proton Synchrotron (PS); where they

are accelerated to an energy of 1.4 GeV and 25 GeV respectively. Finally, the protons are ac-

celerated by Super Proton Synchrotron (SPS) to a final energy of 450 GeV. These highly
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energetic protons are used to hit a target to finally produce neutrino beams.In this text, I have

used data from Superconducting Proton Linac (SPL) [CMMS06] [CC06] [Mez03] which is

used as driver for neutrinos [GG06]. The neutrino flux at the near detector for CERN-SPL for

different focusing is given below.

4.8.1.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux (Negligible in number).

Figure 4.6: Total Neutrino Flux at Near detector - CERN for Plus Horn focussing.

Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux (Negligible in number).

Figure 4.7: Total Anti-Neutrino Flux at Near detector - CERN for Plus Horn focussing.
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4.8.1.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux (Negligible in number).

Figure 4.8: Total Neutrino Flux at Near detector - CERN for Minus Horn focussing.

Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux (Negligible in number).

Figure 4.9: Total Anti-Neutrino Flux at Near detector - CERN for Minus Horn focussing.
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4.8.2 NOvA - Fermilab

Fermilab current neutrino project is composed of three parts: the Deep Underground Neu-

trino Experiment (DUNE), the Long-Baseline Neutrino Facility (LBNF) and the Proton

Improvement Plan II (PIP-II). The DUNE facility consists of massive neutrino detectors that

capture neutrinos and analyze the data. LBNF provides the infrastructure that houses and cools

the DUNE detectors and also delivers the neutrino beam from Fermilab. PIP-II, coupled to

the existing Fermilab particle accelerator complex, provides the powerful stream of protons

that create the neutrinos. Much similar to other facilities protons from PIP-II, hit the target,

ultimately decaying into neutrinos that stream first through the near detector, then through the

earth and finally through the far detector.

In this text, I have dealt with data from NOνA (NuMI Off-Axis νe Appearance) Near Detector

[A+04] [YW04] [Mes] [PY02] , which is designed to identify neutrinos in Fermilab’s NuMI

(Neutrinos at the Main Injector) beam. NOνA utilizes two detectors - the NOνA near detec-

tor (ND) and the NOνA far detector (FD). The neutrino flux at the near detector for NOvA -

Fermilab for different focusing is given below.

4.8.2.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux (Negligible in number).

Figure 4.10: Total Neutrino Flux at Near detector - Fermilab for Plus Horn focussing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux (Negligible in number).

Figure 4.11: Total Anti-Neutrino Flux at Near detector - Fermilab for Plus Horn focussing.

4.8.2.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux (Negligible in number).

Figure 4.12: Total Neutrino Flux at Near detector - Fermilab for Minus Horn focussing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux (Negligible in number).

Figure 4.13: Total Anti-Neutrino Flux at Near detector - Fermilab for Minus Horn focussing.

4.8.3 J-PARC

Figure 4.14: Schematic Diagram: J-PARC Neutrino Facility [JP19].

The J-PARC complex, comprise of a Linear Accelerator (LINAC), a Rapid Cycle Syn-

chrotron (RCS) and a Main Ring Synchrotron (MR). The proton beams discharged by the

MR are coordinated through the primary beam line by the assistance of multiple normal-

conducting / super-conducting magnets and are then sent to the target station. At the target

station, the protons slam into the target made out of graphite bars and produce various daughter

particles. Among these particles, the positive charged π-mesons (parents of muon neutrinos),

are focused with the assistance of magnetic horns in the forward direction. These are then
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permitted to decay into muon and muon neutrino, in a 100m long decay volume. Every one

of the neutrinos (and a little number of muons) escape from the facility, while all the other par-

ticles, for example, the rest of the protons and undecayed π-mesons are absorbed by a beam

dump. The Near Detector (ND280) approximately 280m downstream of the target is then used

to characterize the beam profile, its purity, and energy distribution of the muon-type neutrinos.

For my investigation, I have used data from Near Detector(ND280) [HLSW09] [Fec06] [Kat08]

[CMMS06] [Mes] [PY02] .

4.8.3.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux (Negligible in number).

Figure 4.15: Total Neutrino Flux at Near detector - J-PARC for Plus Horn focussing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux (Negligible in number).

Figure 4.16: Total Anti-Neutrino Flux at Near detector - J-PARC for Plus Horn focussing.

4.8.3.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux (Negligible in number).

Figure 4.17: Total Neutrino Flux at Near detector - J-PARC for Minus Horn focussing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux (Negligible in number).

Figure 4.18: Total Anti-Neutrino Flux at Near detector - J-PARC for Minus Horn focussing.
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Chapter 5

INO: India-based Neutrino Observatory

The India-based Neutrino Observatory (INO) [Gos17] is a proposed underground research cen-

ter whose primary objective is to contemplate the properties and interactions of neutrinos. There

is worldwide enthusiasm for the field of Neutrino Physics because of its implications for a sev-

eral different and associated areas such as particle physics, energy production mechanisms in

the Sun, cosmology and the origin of the Universe, and other stars, etc. During the initial

run of INO it’s focus is on making precise estimations parameters associated with atmospheric

neutrino oscillations. Solving the mass-hierarchy problem of neutrino physics is one such pos-

sibility. INO’s geographical location is additionally advantageous as there is no other detector

closer to the equator, whereas INO presents the option to set up a detector at nearly 8◦ latitude.

A detector at such a location allows neutrino astronomy searches to cover the entire celestial

sky, investigation of solar-neutrinos propagating through Earth’s core and lastly neutrino to-

mography of the Earth [DPRS19].

Figure 5.1: Schematic of INO to be established at Bodi West Hills near Theni, Tamil Nadu, India
[STIE15].
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5.1 Source: CERN

Using GLoBES the neutrino flux was calculated for all flavors at INO site, for Plus and Minus

Horn Focussing. The baseline length from CERN Near Detector to INO site detector is 7302.89

Km, with density profile for the propagation length given by

Figure 5.2: Matter Density Profile for neutrino propagating from CERN-SPL to INO.

5.1.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 5.3: Total Neutrino Flux at INO from CERN for Plus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 5.4: Total Anti-Neutrino Flux at INO for Plus Horn Focusing.

5.1.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 5.5: Total Neutrino Flux at INO from CERN for Minus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 5.6: Total Anti-Neutrino Flux at INO from CERN for Minus Horn Focusing.

5.1.3 Oscillation Probabilities

Different Oscillations probabilities for neutrinos and anti-neutrinos propagating from CERN to

INO site, India.

Legends:

• Neutrino: Pαβ → α = Initial Flavor and β = Final Flavor ; e = Electron Neutrino , m

= Muon Neutrino ,t = Tau Neutrino

• Anti-neutrino: Pbarαβ → α = Initial Flavor and β = Final Flavor ; e = Electron

Neutrino , m = Muon Neutrino ,t = Tau Neutrino
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Figure 5.7: Neutrino Transition Probability Values for CERN to INO

Baseline.

Figure 5.8: Anti-Neutrino Transition Probability Values for CERN

to INO Baseline.
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5.2 Source: Fermilab

Similar to previous case, using GLoBES the neutrino flux was calculated for all flavors at INO

site, for Plus and Minus Horn Focussing, propagating from Fermilab Near detector. The base-

line length is 11392.51 Km, with density profile for the propagation length given by

Figure 5.9: Matter Density Profile for neutrino propagating from Fermilab-NOvA to INO.

5.2.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 5.10: Total Neutrino Flux at INO from Fermilab for Plus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 5.11: Total Anti-Neutrino Flux at INO from Fermilab for Plus Horn Focusing.

5.2.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 5.12: Total Neutrino Flux at INO from Fermilab for Minus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 5.13: Total Anti-Neutrino Flux at INO from Fermilab for Minus Horn Focusing.

5.2.3 Oscillation Probabilities

Different Oscillations probabilities for neutrinos and anti-neutrinos propagating from Fermilab

to INO site, India.

Legends:

• Neutrino: Pαβ → α = Initial Flavor and β = Final Flavor ; e = Electron Neutrino , m

= Muon Neutrino ,t = Tau Neutrino

• Anti-neutrino: Pbarαβ → α = Initial Flavor and β = Final Flavor ; e = Electron

Neutrino , m = Muon Neutrino ,t = Tau Neutrino
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Figure 5.14: Neutrino Transition Probability Values for Fermilab to INO

Baseline.

Figure 5.15: Anti-Neutrino Transition Probability Values for Fer-

milab to INO Baseline.
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5.3 Source: J-PARC

Similar to the two previous cases, using GLoBES the neutrino flux was calculated for all flavors

at INO site, for Plus and Minus Horn Focussing, coming from Fermilab Near detector. The

baseline length is 6637.53 Km, with density profile for the propagation length given by

Figure 5.16: Matter Density Profile for neutrino propagating from J-PARC to INO.

5.3.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 5.17: Total Neutrino Flux at INO from J-PARC for Plus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 5.18: Total Anti-Neutrino Flux at INO from J-PARC for Plus Horn Focusing.

5.3.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 5.19: Total Neutrino Flux at INO from J-PARC for Minus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 5.20: Total Anti-Neutrino Flux at INO from J-PARC for Minus Horn Focusing.

5.3.3 Oscillation Probabilities

Different Oscillations probabilities for neutrinos and anti-neutrinos propagating from J-PARC

to INO site, India.

Legends:

• Neutrino: Pαβ → α = Initial Flavor and β = Final Flavor ; e = Electron Neutrino , m

= Muon Neutrino ,t = Tau Neutrino

• Anti-neutrino: Pbarαβ → α = Initial Flavor and β = Final Flavor ; e = Electron

Neutrino , m = Muon Neutrino ,t = Tau Neutrino
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Figure 5.21: Neutrino Transition Probability Values for J-PARC to INO

Baseline

Figure 5.22: Anti-Neutrino Transition Probability Values for J-

PARC to INO Baseline
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Chapter 6

EHEP Lab, IISER Mohali

EHEP (Experimental High Energy Physics) Lab at IISER Mohali, India is actively involved

in various detector R&D programs at the technological frontiers for current and future particle

physics experiments via national and international mega-science programs. It is also work-

ing towards the development of gas-ionizing detectors like RPC, PMD, MWPC and silicon

detectors. These technological developments have numerous applications over a wide range

of disciplines starting from physical sciences, nuclear physics experiments, radiation physics,

accelerator driven research to medical imaging and applications. Individuals at EHEP lab are

also involved in the study of the phase transition from hadronic matter to quark-gluon plasma

in heavy ion-collisions and to the experimental investigation of soft non-perturbative QCD in

high-energy collisions in a large accelerator like LHC. Finally, the lab is also involved in the

study of neutrinos and detector R&D activities in INO collaboration.

The neutrino flux was calculated at the location for test and estimation purposes.

Figure 6.1: Location of Detector (Blue Dot) in IISER Mohali, India Campus.
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6.1 Source: CERN

Using GLoBES the neutrino flux was calculated for all flavors at EHEP Lab, for Plus and Minus

Horn Focussing. The baseline length from CERN Near Detector to EHEP Lab Far detector is

5945.56 Km, with density profile for the propagation length given by

Figure 6.2: Matter Density Profile for neutrino propagating from CERN-SPL to EHEP Lab, IISER

Mohali.

6.1.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 6.3: Total Neutrino Flux at EHEP Lab, IISER Mohali from CERN for Plus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 6.4: Total Anti-Neutrino Flux at EHEP Lab, IISER Mohali from CERN for Plus Horn Focusing.

6.1.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 6.5: Total Neutrino Flux at EHEP Lab, IISER Mohali from CERN for Minus Horn Focusing.

Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux
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= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 6.6: Total Anti-Neutrino Flux at EHEP Lab, IISER Mohali from CERN for Minus Horn Fo-

cusing.

6.1.3 Oscillation Probabilities

Different Oscillations probabilities for neutrinos and anti-neutrinos propagating from CERN to

EHEP-Lab, IISER Mohali, India.

Legends:

• Neutrino: Pαβ → α = Initial Flavor and β = Final Flavor ; e = Electron Neutrino , m

= Muon Neutrino ,t = Tau Neutrino

• Anti-neutrino: Pbarαβ → α = Initial Flavor and β = Final Flavor ; e = Electron

Neutrino , m = Muon Neutrino ,t = Tau Neutrino
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Figure 6.7: Neutrino Transition Probability Values for CERN to EHEP

Lab, IISER Mohali Baseline.

Figure 6.8: Anti-Neutrino Transition Probability Values for CERN

to EHEP Lab, IISER Mohali Baseline.
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6.2 Source: Fermilab

Similar to previous case, using GLoBES the neutrino flux was calculated for all flavors at EHEP

Lab, for Plus and Minus Horn Focussing, propagating from Fermilab Near detector to EHEP

Lab, IISER Mohali, India. The baseline length is 10200.28 Km, with density profile for the

propagation length given by

Figure 6.9: Matter Density Profile for neutrino propagating from Fermilab to EHEP Lab, IISER Mohali,

India .

6.2.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 6.10: Total Neutrino Flux at EHEP Lab, IISER Mohali from Fermilab for Plus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 6.11: Total Anti-Neutrino Flux at EHEP Lab, IISER Mohali from Fermilab for Plus Horn

Focusing.

6.2.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 6.12: Total Neutrino Flux at EHEP Lab, IISER Mohali from Fermilab for Minus Horn Focus-

ing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 6.13: Total Anti-Neutrino Flux at EHEP Lab, IISER Mohali from Fermilab for Minus Horn

Focusing.

6.2.3 Oscillation Probabilities

Different Oscillations probabilities for neutrinos and anti-neutrinos propagating from Fermilab

to EHEP-Lab, IISER Mohali, India.

Legends:

• Neutrino: Pαβ → α = Initial Flavor and β = Final Flavor ; e = Electron Neutrino , m

= Muon Neutrino ,t = Tau Neutrino

• Anti-neutrino: Pbarαβ → α = Initial Flavor and β = Final Flavor ; e = Electron

Neutrino , m = Muon Neutrino ,t = Tau Neutrino
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Figure 6.14: Neutrino Transition Probability Values for Fermilab to

EHEP Lab, IISER Mohali Baseline

Figure 6.15: Anti-Neutrino Transition Probability Values for Fer-

milab to EHEP Lab, IISER Mohali Baseline.
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6.3 Source: J-PARC

Similar to the two previous cases, using GLoBES the neutrino flux was calculated for all flavors

at EHEP Lab, for Plus and Minus Horn Focussing, coming from J-PARC Near detector. The

baseline length is 5649.37 Km, with density profile for the propagation length given by

Figure 6.16: Matter Density Profile for neutrino propagating from J-PARC to EHEP Lab, IISER Mohali.

6.3.1 Plus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 6.17: Total Neutrino Flux at EHEP Lab, IISER Mohali from J-PARC for Plus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 6.18: Total Anti-Neutrino Flux at EHEP Lab, IISER Mohali from J-PARC for Plus Horn

Focusing.

6.3.2 Minus Focussing

Neutrino → Legends: ElecNeuFlux = Electron Neutrino Flux, MuonNeuFlux = Muon Neu-

trino Flux, TauNeuFlux = Tau Neutrino Flux.

Figure 6.19: Total Neutrino Flux at EHEP Lab, IISER Mohali from J-PARC for Minus Horn Focusing.
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Anti-neutrino→ Legends: ElecNeuBarFlux = Electron Anti-neutrino Flux, MuonNeuBarFlux

= Muon Anti-neutrino Flux, TauNeuBarFlux = Tau Anti-neutrino Flux.

Figure 6.20: Total Anti-Neutrino Flux at EHEP Lab, IISER Mohali from J-PARC for Minus Horn

Focusing.

6.3.3 Oscillation Probabilities

Different Oscillations probabilities for neutrinos and anti-neutrinos propagating from J-PARC

to EHEP-Lab, IISER Mohali, India.

Legends:

• Neutrino: Pαβ → α = Initial Flavor and β = Final Flavor ; e = Electron Neutrino , m

= Muon Neutrino ,t = Tau Neutrino

• Anti-neutrino: Pbarαβ → α = Initial Flavor and β = Final Flavor ; e = Electron

Neutrino , m = Muon Neutrino ,t = Tau Neutrino
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Figure 6.21: Neutrino Transition Probability Values for J-PARC to EHEP

Lab, IISER Mohali Baseline.

Figure 6.22: Anti-Neutrino Transition Probability Values for J-

PARC to EHEP Lab, IISER Mohali Baseline.
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Chapter 7

Conclusions

Neutrino Oscillation provide us a way to probe Beyond Standard Model Physics and a satisfac-

tory explanation to solar and atmospheric neutrino deficits. It now plans to solve probe param-

eters which could shed light on why is the Universe dominated by matter over anti-matter(by

the measurement of δCP). This long-lasting important question of Physics could be answered

if neutrinos and anti-neutrinos behave differently. To do this, we need simultaneous knowledge

of neutrino and anti-neutrino fluxes at the same detector location. Few other unsolved problems

in neutrino physics like Octant issue, sterile neutrinos can also benefit from the simultaneous

knowledge of neutrino flux for various flavors. Understanding of matter effects is crucial for

many of the experiments trying to solve the mentioned problems. This was the primary reason

for us to study matter effects on neutrino oscillations.

A significant part of this thesis focused on the estimation of neutrino and anti-neutrino flux (for

both Plus and Minus Horn focussing) using two detector setup. This involves measuring the

neutrino flux near the production site and then at the far detector where the peak of oscillation

probability lies. After including the near detector data into the analysis of the oscillation sig-

nals, it was extrapolated using GLoBES simulation software to get the flux at the far detector.

This was done taking data from the near detector at three accelerator facilities namely: CERN,

Fermilab, and J-PARC.

After analysis, it was realized that although oscillation peaks existed for various transition chan-

nels at both the detector locations (Indian Neutrino Observatory and EHEP-Lab, IISER Mohali,

India), considerable neutrino flux contribution for all flavors is only from CERN neutrino facil-

ity. The flux from other accelerator facilities is too less to make any measurement by a detector.
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This is mainly because of CERN operating at intensity frontier of neutrino physics, produc-

ing neutrinos with intensity several orders higher than other accelerator facilities. On the other

hand, Fermilab and J-PARC function on energy frontier, with neutrino production over a higher

energy range but with low intensity.

It will be interesting to apply some of the ideas developed in this thesis, to establish new neutrino

detectors which can benefit from the multiple baselines and probe the properties of neutrinos

and improve the precision of already established parameters. I also further plan to modify my

work to develop a setup which can easily itself give suitable detector location on earth having

considerable flux to make measurements and still benefiting from the multiple baselines.
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Appendix A

Solar and Atmospheric Neutrino Problem

Neutrino flux is mainly measured by two processes listed as:

• Radiochemical Detection: This method involves exposing the detection element to the

flux of neutrinos and later extracting the signals (using radiochemical techniques) and

counting them. This method uses the Inverse β−decay process as its detection process.

Since it’s a passive detection process, it loses the information of direction.

• Cerenkov Detection: This method uses the elastic scattering processes as its detection

process. The charged leptons produced from neutrino interactions produce Cerenkov light

while passing through the detector. By analyzing this Cerenkov Light, we can reconstruct

the neutrino track. The recoil particle’s energy distribution gives information about the

incident neutrino energy spectrum. It’s a real-time detection process.

A.1 Solar Neutrino Problem:

A.1.1 Homestake Experiment:

Ray Davis’s Homestake experiment(1965) [Dav94] was the first experiment to measure so-

lar neutrino flux. This experiment used the radiochemical detection method and consisted of

400,000 liters of Perchloroethylene (C2Cl4). The reaction involved in the detection process is:

νe +
37 Cl→37 Ar+ e−

This reaction has a threshold 0.814 MeV.

Surprising Result: Homestake experiment noted an average capture rate of solar neutrinos
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of 2.56±0.25 SNU (1 SNU = 10−36 neutrino interactions per target atom per second). However

Standard Solar Model predicted that Homestake should have seen about 8.1±1.2 SNU. This was

the birth of "Solar Neutrino Problem". Since the Homestake experiment had no information

about directionality, the results were not widely accepted by the scientific community at that

time.

A.1.2 Super Kamiokande Experiment:

Solar Neutrino Problem was only reconfirmed 20 years later when S-Kamiokande [Smy01]

in 1985 measured the solar neutrino flux again. They used the Cerenkov detection process

and obtained a clear amount of excess events in the direction of the sun, confirming that the

neutrinos detected were, in fact, solar neutrinos. Much similar to the Homestake Experiment

they also observed around 50% deficit in the neutrino flux. The experiment had a high threshold

of 7.5 MeV.

After S-Kamiokande it was clear that there was in fact some deficit in the solar neutrino flux.

However, later a problem was realized with these experiments. They had a high energy threshold

for detection. However, most of the neutrino flux was released at lower energies through the

pp-chain in the sun. So the previous experiments were insensitive to the majority of the solar

neutrino flux.

To cover-up for the Homestake and S-Kamiokande, Gallium [A+94] [Vig98] experiments were

proposed. These experiments because of their low threshold were sensitive to most of the solar

neutrino flux.

A.1.3 SAGE and GALLEX:

These were radiochemical detectors, using Gallium as their main detector element. These ex-

periments also observed a deficit in the neutrino flux.

After the unexpected neutrino flux measurements measured by above-mentioned experiments,

questions were raised whether the model we are using, i.e., "Standard Solar Model" to estimate

Neutrino flux is correct or not. Helioseismology results turned the decision in favor of "Stan-

dard Solar Model." The results were matching with the expectations to better than 99.5%. So it

was concluded that there was still some problem with the measurement process only.

It was realized that the previous experiments had sensitivity exclusively to electron neutrinos
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only. So we might be getting other flavors, but the experiment was unable to detect those.

Sudbury Neutrino Observatory (SNO) was used for this.

A.1.4 Sudbury Neutrino Observatory (SNO):

SNO is a "Heavy-Water" Cerenkov detector. SNO used heavy water since deuteron is a very

fragile nucleus. It only takes about 2 MeV to break it apart into a proton and a neutron. The

deuterium in heavy water allows the detection of all types of neutrinos.SNO was able to detect

neutrino via three different interactions:

• The Charged Current (CC) channel :

νe +d→ p+ p+ e−

This reaction can only be initiated by electron neutrinos and therefore only measure flux

of electron neutrinos (φ(νe)).

• The Elastic Scattering (ES) channel :

νe + e−→ νe + e−

This channel is most sensitive to electron neutrinos.It measures,φ(νe) + .15
[
φ(νµ) +

φ(ντ)
]

• The Neutral Current (NC) channel :

ν +d→ n+ p+ν

This channel was the unique feature of SNO. It is equally sensitive to all flavors of neu-

trinos.Hence it measures the total flux φ(νe)+φ(νµ)+φ(ντ).

SNO used the measurements [Ske02] of the these three independent reaction channels to get in-

dividual fluxes of neutrinos.Their measurement of the neutrino fluxes (in units of 10−8cm−2s−1)

was:

φCC = φ(νe) = 1.76±0.01

φES = φ(νe)+ .15
[
φ(νµ)+φ(ντ)

]
= 2.39±0.26

φNC = φ(νe)+φ(νµ)+φ(ντ) = 5.09±0.63
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The total flux of muon and tau neutrinos from the Sun φ(νµ) + φ(ντ) is (3.33 ±

0.63)10−8cm−2s−1. This is roughly three times larger than the flux of νe. Since we know the

Sun only produces electron neutrinos, the only conclusion is that neutrinos must change flavor

between the Sun and the Earth. Further, the SSM predicts a total flux of neutrinos with ener-

gies greater than 2 MeV (the deuteron break-up energy) of φSSM = (5.05±1.01)10−8cm−2s−1,

which is in very good agreement with the NC flux measured by SNO. Hence the Solar Neutrino

Problem was solved.

A.2 Atmospheric Neutrino Problem

The atmosphere is constantly bombarded by cosmic rays. When cosmic rays (mostly composed

of protons and helium nuclei ) hit air nuclei in the atmosphere they produce secondary particles

like pions, kaons etc.. When these secondary particles decay, it produces neutrinos. Neutrinos

in atmosphere are predominantly produced in two flavors (νe , νµ ).The decay chain is:

π
±→ µ

±+νµ(ν̄µ)

µ
±→ e±+ ν̄µ(νµ)+νe(ν̄e)

As described in chapter 1, the value of parameter Double Ratio R should be near unity but

various experiments showed a significant deviation from unity for the R value.

This deviation from the unity signifies a deficit in the observed flux and was refereed as the

Atmospheric Neutrino Anomaly. Super-Kamiokande in addition to confirming the anomaly

with high statistics, also gave evidence of Neutrino Oscillation. Many other models to justify

the anomalies, such as neutrino decay etc. have been ruled out because of their inability to

justify all experimental measurements.

A.2.1 Super-Kamiokande(SK) Observations

Located in Kamioka mines of Japan, it is a water Cerenkov detector. Cerenkov light produced

in water is detected by 7650 photomultiplier tubes (PMT) mounted on the walls of the detector.

The trajectory of the charged particle (such as e,µ,τ) propagating in water is recreated by

analyzing the Cerenkov ring’s timing and pulse data from PMTs.
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Figure A.1: Zenith Angle distribution of observed number of events in sub-MeV and multi-GeV range

for electron and muon like events [F+98]

Since the flux of cosmic rays is almost isotropic, the flux reaching a detector in the upward

and downward direction is expected to be the same (little asymmetry for Eν < 3GeV ). Hence

we expect observed number of events to be symmetric about cos(θ) = 0 .As can be seen from

Figure A.1; there is consistency between observed and expected observation in case of electron

type events. However in case of muon-type, a distinct asymmetry is observed around the horizon

(cos(θ ) = 0) . This is referred as up-down asymmetry in muon flux. These observations suggest

Beyond Standard Model Physics. One of the most convincing and promising explanations for

these was suggested as Neutrino Oscillation. Many other models such as neutrino decay etc.

have been ruled out to a good extent by experimental measurements.
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Appendix B

Standard Derivation of Neutrino

Oscillations

Let |να〉 represent the flavor states and |νk〉 represent the mass states. Writing the flavor states

as superposition of mass states we get:

|να〉=U∗αk |νk〉 (B.1)

Here α = e,ν ,τ and k = 1,2,3

Where Uαk is the (α,k) component of Unitary matrix U.

The transition probability of any general neutrino flavor να to νβ is given by:

Pνα→νβ
(L,E) = ∑

k
|Uαk |2|Uβk |2 +2∗Re ∑

k> j
U∗αkUβkUα jU∗β j ∗ exp

(
−2πι

L
Losc

k j

)
(B.2)

Here

E = Energy of the neutrino

L = Distance between source and detector

Losc
k j = Oscillation Length = 4πE

∆m2
k j

= 2.47∗ E(GeV )
∆m2(eV 2)

km

Using the identity:

∑
k
|Uαk |2|Uβk |2= δαβ −2∗Re ∑

k> j
U∗αkUβkUα jU∗β j (B.3)
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Using Equation(B.3) in Equation(B.2) we get:

Pνα→νβ
(L,E) = δαβ −2∗∑

k> j
Re[U∗αkUβkUα jU∗β j]+

2∗Re

[
∑
k> j

U∗αkUβkUα jU∗β j

(
cos

(
∆m2

k jL

2E

)
− ι sin

(
∆m2

k jL

2E

))]

= δαβ −2∗∑
k> j

Re[U∗αkUβkUα jU∗β j]∗

(
1− cos

(
∆m2

k jL

2E

))
+

2∗∑
k> j

Im[U∗αkUβkUα jU∗β j]∗ sin

(
∆m2

k jL

2E

)

So Pνα→νβ
(L,E) = δαβ −4∗∑

k> j
Re[U∗αkUβkUα jU∗β j]∗ sin2

(
∆m2

k jL

4E

)
+

2∗∑
k> j

Im[U∗αkUβkUα jU∗β j]

(
sin

(
∆m2

k jL

2E

))
(B.4)

When α = β its called the "Survival Probability" and when α 6= β its called the "Transition

Probability"
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Appendix C

General Survival and Transition

Probability Expressions

The general probability expression is given by:

Pαβ = δαβ −4∗∑
k> j

Re[U∗αkUβkUα jU∗β j]∗ sin2

(
∆m2

k jL

4E

)
+

2∗∑
k> j

Im[U∗αkUβkUα jU∗β j]∗ sin

(
∆m2

k jL

2E

)
(C.1)

C.1 Expression for Survival Probability, α = β

Consider three neutrino flavors.

Pαα = 1−4 ∑
k> j
|Uαk|2|Uα j|2sin2

(
∆m2

k jL

4E

)

= 1−4
[
|Uα2|2|Uα1|2sin2

(
∆m2

21L
4E

)
+ |Uα3|2|Uα2|2sin2

(
∆m2

32L
4E

)
+

|Uα3|2|Uα1|2sin2
(

∆m2
31L

4E

)] (C.2)

But

∆m2
i j = m2

i −m2
j

=⇒ ∆m2
32 = ∆m2

31−∆m2
21

Let

∇i j =
∆m2

i jL

2E
=⇒ ∇32 = ∇31−∇21
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Putting these in above expression we get:

Pαα = 1−4
[
|Uα2|2|Uα1|2sin2

(
∇21

2

)
+ |Uα3|2|Uα2|2sin2

(
∇31−∇21

2

)
+

|Uα3|2|Uα1|2sin2
(

∇31

2

)]

Use identity of unitary matrix i.e.:

|Uα1|2 + |Uα2|2 + |Uα3|2 = 1

Using the unitary matrix identity, the probability expression can be written as: expression we

get:

Pαα = 1−4|Uα2|2(1−|Uα2|2)sin2
(

∇21

2

)
−4|Uα3|2(1−|Uα3|2)sin2

(
∇31

2

)
+

4|Uα2|2|Uα3|2sin2
(

∇21

2

)
+4|Uα2|2|Uα3|2sin2

(
∇31

2

)
−

4|Uα2|2|Uα3|2sin2
(

∇31−∇21

2

)
= 1−4|Uα2|2(1−|Uα2|2)sin2

(
∇21

2

)
−4|Uα3|2(1−|Uα3|2)sin2

(
∇31

2

)
+

4|Uα2|2|Uα3|2
(

sin2
(

∇21

2

)
+ sin2

(
∇31

2

)
− sin2

(
∇31−∇21

2

))
= 1−4|Uα2|2(1−|Uα2|2)sin2

(
∇21

2

)
−4|Uα3|2(1−|Uα3|2)sin2

(
∇31

2

)
+

4|Uα2|2|Uα3|2
[

sin2
(

∇21

2

)
+ sin2

(
∇31

2

)
−
(

sin
(

∇31

2

)
cos
(

∇21

2

)
−

cos
(

∇31

2

)
sin
(

∇21

2

))2
]

= 1−4|Uα2|2(1−|Uα2|2)sin2
(

∇21

2

)
−4|Uα3|2(1−|Uα3|2)sin2

(
∇31

2

)
+

4|Uα2|2|Uα3|2
[

2sin2
(

∇21

2

)
sin2

(
∇31

2

)
+

1
2

sin(∇31)sin(∇21)

]

Hence

Pαα = 1−4|Uα2|2(1−|Uα2|2)sin2
(

∇21
2

)
−4|Uα3|2(1−|Uα3|2)sin2

(
∇31

2

)
+

2|Uα2|2|Uα3|2
[
4sin2

(
∇21

2

)
sin2

(
∇31

2

)
+ sin(∇31)sin(∇21)

]
(C.3)
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C.2 Expression for Transition Probability, α 6= β

Consider three neutrino flavors.

Pαβ =−4 ∑
k> j

Re[U∗αkUβkUα jU∗β j]sin2
(

∇k j

2

)
+2 ∑

k> j
Im[U∗αkUβkUα jU∗β j]sin(∇k j)

=−4Re[U∗α3Uβ3Uα2U∗
β2]sin2

(
∇32

2

)
−4Re[U∗α2Uβ2Uα1U∗

β1]sin2
(

∇21

2

)
−4Re[U∗α3Uβ3Uα1U∗

β1]sin2
(

∇31

2

)
+2Im[U∗α3Uβ3Uα2U∗

β2]sin(∇32)

+2Im[U∗α2Uβ2Uα1U∗
β1]sin(∇21)+2Im[U∗α3Uβ3Uα1U∗

β1]sin(∇31)

(C.4)

Use the identity of Unitary matrix:

Uα1U∗
β1 +Uα2U∗

β2 +Uα3U∗
β3 = 0

We get:

Pαβ = 4|Uα2|2|Uβ2|2sin2
(

∇21

2

)
+4|Uα3|2|Uβ3|2sin2

(
∇31

2

)
−4Re[U∗α3Uβ3Uα2U∗

β2]sin2
(

∇32

2

)
+4Re[U∗α3Uβ3Uα2U∗

β2]sin2
(

∇31

2

)
+4Re[U∗α2Uβ2Uα1U∗

β1]sin2
(

∇21

2

)
+

2Im[U∗α3Uβ3Uα2U∗
β2](−sin(∇31)+ sin(∇32))−2Im[U∗α2Uβ2Uα3U∗

β3]sin(∇21)

Note:

|Uα2U∗
β2 +Uα3U∗

β3|
2 = |Uα2|2|Uβ2|2 + |Uα3|2|Uβ3|2 +Uα2U∗

β2U∗α3Uβ3 +Uα3U∗
β3U∗α2Uβ2

But it can also be expanded using the following identity:

|z1 + z2|2 = ∑
k
|zk|2 +2Re ∑

k> j
zkz∗j

So, |Uα2U∗
β2 +Uα3U∗

β3|
2 = |Uα2|2|Uβ2|2 + |Uα3|2|Uβ3|2 +2Re[U∗α2Uβ2Uα3U∗

β3]

Hence

2Re[U∗α2Uβ2Uα3U∗
β3] =Uα2U∗

β2U∗α3Uβ3 +Uα3U∗
β3U∗α2Uβ2

Use this in transition probability formula.
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Pαβ = 4|Uα2|2|Uβ2|2sin2
(

∇21

2

)
+4|Uα3|2|Uβ3|2sin2

(
∇31

2

)
+4Re[U∗α3Uβ3Uα2U∗

β2]

(
sin2

(
∇31

2

)
+ sin2

(
∇21

2

)
− sin2

(
∇32

2

))
+

−2Im[U∗α3Uβ3Uα2U∗
β2](−sin(∇31)+ sin(∇21)− sin(∇32))

Using ∇32 = ∇31−∇21, we can obtain transition probability as:

Pαβ = 4|Uα2|2|Uβ2|2sin2
(

∇21
2

)
+4|Uα3|2|Uβ3|2sin2

(
∇31

2

)
+

2Re[U∗
α3Uβ3Uα2U∗

β2]
(

4sin2
(

∇21
2

)
sin2

(
∇31

2

)
+ sin(∇31)sin(∇21)

)
−4J(αβ )

(
4sin2(∇31)sin2

(
∇21

2

)
− sin(∇21)sin

(
∇31

2

))
(C.5)

where J(αβ ) is called the Jarlskog Invariant:

Jαβ = Im[U∗α1Uβ1Uα2U∗
β2] = Im[U∗α2Uβ2Uα3U∗

β3] = Im[U∗α3Uβ3Uα1U∗
β1]

=−Im[U∗α2Uβ2Uα1U∗
β1] =−Im[U∗α1Uβ1Uα3U∗

β3] =−Im[U∗α3Uβ3Uα2U∗
β2]

=−Jβα

(C.6)

Using the standard parametrization i.e. UPMNS, we have:

Jµe =−Jeµ = Jeτ = Jτµ =−Jµτ = Ĵsin(δCP)

with

Ĵ = s12c12s13c2
13s23c23
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Appendix D

Few Survival and Transition Probability

Expressions

We know that probability expression can also be written as:

Pαβ = ∑
j

∣∣∣∣∣Uβ jU
∗
α jexp

[
−ι

m2
jL

2E

] ∣∣∣∣∣
2

(D.1)

Use the standard PMNS Parametrization:

UPMNS =


c12c13 s12c13 s13e−ιδCP

−s12c23− c12s13s23eιδCP c12c23− s12s13s23eιδCP c13s23

s12s23− c12s13c23eιδCP −c12s23− s12s13c23eιδCP c13c23


Also use the following change of variables:

α =
∆m2

21
∆m2

31
≈ 0.026 and ∆ =

∆m2
31L

4E

D.1 νe-νe Channel

Pee = |c2
12c2

13 + s2
12c2

13e−ι2α∆ + s2
13e−ι2∆|2

= (c12c13)
4 + s4

13 +(s12c13)
4 + c2

12c2
13s2

12c2
13(e

ι2α∆ + e−ι2α∆)+ c2
12c2

13s2
13(e

ι2∆ + e−ι2∆)

+ s2
12c2

13s2
13(e

−ι2α∆eι2∆ + eι2α∆e−ι2∆)

= (c12c13)
4 + s4

13 +(s12c13)
4 +2c2

12c2
13s2

12c2
13cos(2α∆)+2c2

12c2
13s2

13cos(2∆)

+2s2
12c2

13s2
13cos(2(α−1)∆)

Use the identity:

c4
12 + s4

12 = 1−2c2
12s2

12 = 1− 1
2

sin2(2θ12)
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Hence:

Pee = c4
13−2c4

13s2
12c2

12 + s4
13 +(s12c13)

4 +2c2
12c2

13s2
12c2

13cos(2α∆)+2c2
12c2

13s2
13cos(2∆)

+2s2
12c2

13s2
13cos(2(α−1)∆)

= c4
13

(
1− 1

2
sin2(2θ12)

)
+ s4

13 +
1
2

sin2(2θ12)[c2
12cos(2∆)+(1− c2

12)cos(2(α−1)∆)]

+
1
2

sin2(2θ12)c4
13cos(2α∆)

= 1− 1
2

sin2(2θ13)−
1
2

c4
13sin2(2θ12)+

1
2

sin2(2θ12)c2
12[cos(2∆)− cos(2(α−1)∆)]

+
1
2

sin2(2θ13)cos(2(α−1)∆)

Pairing the second and last term we get:

Pee = 1− sin2(2θ13)sin2((α−1)∆)+
1
2

sin2(2θ12)c2
12[cos(2∆)− cos(2(α−1)∆)]

+
1
2

sin2(2θ12)c4
13cos(2α∆)− 1

2
c4

13sin2(2θ12)

Hence

Pee = 1− sin2(2θ13)sin2((α−1)∆)− c4
13sin2(2θ12)sin2(α∆)

+ 1
2sin2(2θ12)c2

12[cos(2∆)− cos(2(α−1)∆)] (D.2)

D.2 νe-νµ Channel

Peµ = |c12c13(−s12c23− c12s23s13eιδCP)+ s12c13(c12c23− s12s23s13eιδCP)e−ι2α∆+

s13s23c13e−ι2∆|2

= |c12c13s12c23(−1+ e−ι2α∆)− s23c13s13eιδ (c2
12 + s2

12e−ι2α∆− e−ι2∆)|2

= c2
13(c12s12c23(−1+ e−ι2α∆)− s23s13eιδ (c2

12 + s2
12e−ι2α∆− e−ι2∆))∗

(c12s12c23(−1+ eι2α∆)− s23s13e−ιδ (c2
12 + s2

12eι2α∆− eι2∆))

= c2
13
[

c2
12s2

12c2
23(2−2cos(2α∆))+ s2

13s2
23( c4

12 + s4
12 +1+ c2

12s2
12(2cos(2α∆))−2c2

12 cos(2∆)

−2s2
12 cos(2(α−1)∆) )

]
+ e−ιδ (c2

12 + s2
12eι2α∆− eι2∆)(e−ι2α∆−1) ]

− c12s12c23s23s13c2
13[ eιδ (c2

12 + s2
12e−ι2α∆− e−ι2∆)(eι2α∆−1)
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Let’s denote the cross terms in above equation as "C.T.". Solving the above equation then gives:

Peµ = C.T.+ sin2(2θ12c2
23c2

13 sin2(α∆))+
1
4

sin2(2θ13)s2
23[1+ c4

12 + s4
12−2c2

12 cos(2∆)−

2s2
12 cos(2(α−1)∆)+2c2

12s2
12 cos(2α∆)]

= C.T.+ sin2(2θ12c2
23c2

13 sin2(α∆))+
1
4

sin2(2θ13)s2
23[2−2s2

12c2
12−2c2

12 cos(2∆)

−2s2
12 cos(2(α−1)∆)+2c2

12s2
12 cos(2α∆)]

= C.T.+ sin2(2θ12c2
23c2

13 sin2(α∆))+
1
4

sin2(2θ13)s2
23[2−2sin2(2θ12)sin2(α∆)−2c2

12 cos(2∆)

−2s2
12 cos(2(α−1)∆)]

(D.3)

Solving for cross terms C.T. now:

C.T. =−c12s12c23s13c2
13[e

ιδ (c2
12 + s2

12e−ι2α∆− e−ι2∆)(eι2α∆−1)+

e−ιδ (c2
12 + s2

12eι2α∆− eι2∆)(e−ι2α∆−1)]

=−1
8

c13sin(2θ12)sin(2θ23)sin(2θ13)[ eιδ (e−ι2∆− eι2(α−1)∆)+ eιδ c2
12(e

ι2α∆−1)+

eιδ s2
12(−e−ι2α∆ +1)+ e−ιδ (eι2∆− e−ι2(α−1)∆)+ e−ιδ c2

12(e
−ι2α∆−2)+

e−ιδ s2
12(−eι2α∆ +1) ]

=−1
8

c13sin(2θ12)sin(2θ23)sin(2θ13)[ 2(cos(2∆−δ )− cos(2(α−1)∆+δ ))+

2c2
12(cos(2α∆+δ )− cos(δ ))+2s2

12(cos(2α∆−δ )+ cos(δ )) ]

=−1
8

c13sin(2θ12)sin(2θ23)sin(2θ13)[ 4sin(α∆)sin((α−2)∆+δ )−2cos(δ )(c2
12− s2

12)

+2(1− s2
12)cos(2α∆+δ )−2s2

12cos(2α∆−δ ) ]

=−1
8

c13sin(2θ12)sin(2θ23)sin(2θ13)[ 4sin(α∆)sin((α−2)∆+δ )−2cos(δ )(c2
12− s2

12)

+2cos(2α∆+δ )−2s2
12(cos(2α∆−δ )+ cos(2α∆+δ )) ]

=−1
8

c13sin(2θ12)sin(2θ23)sin(2θ13)[ 4sin(α∆)sin((α−2)∆+δ )−2cos(δ )(c2
12− s2

12)

−4s2
12cos(2α∆)cos(δ )+2cos(2α∆)cos(δ )−2sin(2α∆)sin(δ ) ]

=−1
8

c13sin(2θ12)sin(2θ23)sin(2θ13)[ 4sin(α∆)sin((α−2)∆+δ )−2cos(δ )(c2
12− s2

12)

+2cos(2α∆)cos(δ )cos(2θ12)−2sin(2α∆)sin(δ ) ]

=−1
2

c13sin(2θ12)sin(2θ23)sin(2θ13)sin(α∆)[ sin((α−2)∆+δ )− sin(δ )cos(α∆)

− cos(2θ12)cos(δ )sin(α∆) ]

(D.4)
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Putting term obtained in Equation (D.4) into in Equation (D.3), we get transition probability

as:

Peµ = sin2(2θ12)c2
23c2

13sin2(α∆)+ 1
4sin2(2θ13)s2

23
[
2− sin2(2θ12)sin2(α∆)−2c2

12cos(2∆)

−2s2
12(cos(2∆)− cos(2(α−1)∆))

]
− 1

2c13sin(2θ12)sin(2θ13)sin(2θ23)sin(α∆)[
sin((α−2)∆+δ )− sin(δ )cos(α∆)− cos(2θ12)cos(δ )sin(α∆)

]
(D.5)
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Appendix E

Matter Modified Neutrino Oscillation

E.1 Two Flavor Case

UHU† =
1

4E

 cosθ sinθ

−sinθ cosθ

−∆ 0

0 ∆

cosθ −sinθ

sinθ cosθ

 (E.1)

=
1

4E

−∆cos2θ ∆sin2θ

∆sin2θ ∆cos2θ

 (E.2)

Hm =U†
m[UHU† +V ]Um (E.3)

=U†
m

 1
4E

−∆cos2θ ∆sin2θ

∆sin2θ ∆cos2θ

+
VNC +VCC 0

0 VNC

Um (E.4)

=U†
m

 1
4E

−∆cos2θ ∆sin2θ

∆sin2θ ∆cos2θ

+(VNC +
VCC

2

)
1+

VCC
2 0

0 −VCC
2

Um (E.5)

Again we can ignore the terms proportional to identity 1. Hence we get:

Hm =U†
m

 1
4E

−∆cos2θ +A ∆sin2θ

∆sin2θ ∆cos2θ −A

Um (E.6)

where A = 2EVCC. On substituting Um in equation E.6, we get:

Hm =
1

4E

cosθm −sinθm

sinθm cosθm

−∆cos2θ +A ∆sin2θ

∆sin2θ ∆cos2θ −A

 cosθm sinθm

−sinθm cosθm

 (E.7)

On carrying out the multiplication in equation E.7, the diagonal elements of matrix Hm are

found out to be:

(Hm)1,1 =−(Hm)2,2 =
1

4E
[(A−∆cos2θ)cos2θm− (∆sin2θ)sin2θm] (E.8)
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and the off-diagonal elements are:

(Hm)1,2 = (Hm)2,1 =
1

4E
[(∆sin2θ)cos2θm +(A−∆cos2θ)sin2θm] (E.9)

E.2 Three Flavor Case

The hamiltonian in flavor eigenbasis will be:

H f lav =UHU† (E.10)

=
1

2E
U


m2

1 0 0

0 m2
2 0

0 0 m2
3

U† (E.11)

=
1

2E
U


0 0 0

0 ∆21 0

0 0 ∆31

U† =
1

2E
(UM2U†) (E.12)

The time-evolution in flavor eigenbasis, with matter potential added, will be given by:

ι
∂

∂ t
|ν〉 f lav = H̃ |ν〉 f lav (E.13)

where H̃ is the matter-modified hamiltonian.

H̃ = H f lav +V (E.14)

=
1

2E
(UM2U† +A) (E.15)

Here,

A =


A 0 0

0 0 0

0 0 0

 (E.16)

Hence, equation E.13 becomes,

ι
∂

∂ t
|ν〉 f lav =

1
2E

(UM2U† +A) |ν〉 f lav (E.17)

It can be checked that

U13(θ13,δ ) =UδU13(θ13)U
†
δ

(E.18)
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where

Uδ =


1 0 0

0 1 0

0 0 eιδ

 (E.19)

Thus, the PMNS matrix U can be written as,

U =U23(θ23)UδU13(θ13)U
†
δ
U12(θ12) (E.20)

Using the fact the elements of the (2,3) sub-matrix A are all zeros, one can write A as,

A =U23(θ23)Uδ AU†
δ
U23(θ23) (E.21)

Expressing U and A as given in equations E.20 and E.20, equation E.17 can be written as:

ι
∂

∂ t
|ν〉 f lav =

1
2E

[
UA(UBM2U†

B +A)U†
A

]
|ν〉 f lav (E.22)

where

UA =U23(θ23)Uδ ;UB =U13(θ13)U
†
δ
U12(θ12) (E.23)

Therefore,

ι
∂

∂ t
U†

A |ν〉 f lav =
1

2E
(UBM2U†

B +A)U†
A |ν〉 f lav (E.24)

⇒ ι
∂

∂ t
|̃ν〉 f lav =

1
2E

(UBM2U†
B +A)|̃ν〉 f lav (E.25)

⇒ ι
∂

∂ t
|̃ν〉 f lav =

1
2E

(M2
matt)|̃ν〉 f lav; (E.26)

where

|̃ν〉 f lav =U†
A |ν〉 f lav (E.27)

M2
matt =UBM2U†

B +A (E.28)

=UB


0 0 0

0 ∆21 0

0 0 ∆31

U†
B +


A 0 0

0 0 0

0 0 0

 (E.29)

We know that ∆31 ≈ O(10−3eV 2) and ∆21 ≈ O(10−5eV 2). Therefore, ∆21-dependent part can

be considered as a perturbation and can be ignored for OMSD approximation.
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E.2.1 OMSD approximation

M2
matt =UB


0 0 0

0 0 0

0 0 ∆31

U†
B +


A 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

M0

+UB


0 0 0

0 ∆21 0

0 0 0

U†
B

︸ ︷︷ ︸
M1

(E.30)

Here M0 is the dominant term and M1 represents the perturbation in M2
matt .

It can be checked that U†
δ

commutes withU12(θ12) and hence UB can be written as

U13(θ13)U12(θ12)U
†
δ

. Hence calculating M0 we get

M0 =


A+∆31sin2θ13 0 ∆31sinθ13cosθ13

0 0 0

∆31sinθ13cosθ13 0 ∆31cos2θ13

 (E.31)

Because of the symmetric nature of M0, it can be made diagonal in a fixed basis. Let that basis

be |ν〉m. Also let the matter-modified flavor eigen-basis (|̃ν〉 f lav) be connected to |ν〉m by the

unitary matrix Um
B . Hence

|̃ν〉 f lav =Um
B |ν〉

m (E.32)

⇒ |ν〉 f lav =UAUm
B |ν〉

m (E.33)

From equation E.26 we get:

ι
∂

∂ t
|̃ν〉 f lav =

1
2E

(M0 +M1)|̃ν〉 f lav (E.34)

⇒ ι
∂

∂ t
Um

B |ν〉
m =

1
2E

(M0 +M1)Um
B |ν〉

m (E.35)

⇒ ι
∂

∂ t
|ν〉m =

1
2E

Um†
B (M0 +M1)Um

B |ν〉
m (E.36)

Ignoring the non-diagonal perturbing term Um†
B (M1)Um

B , we are only left with the dominant

diagonal term Um†
B (M0)Um

B . Take Um
B as U13(θ

m
13), we have

Um†
B (M0)Um

B =


λ1 0 0

0 λ2 0

0 0 λ3

 (E.37)

=


1
2(∆31 +A−∆m

31) 0 0

0 0 0

0 0 1
2(∆31 +A+∆m

31)

 (E.38)
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where

∆
m
31 =

√
(∆31cos2θ13−A)2 +(∆31sin2θ13)2 = λ3−λ1 (E.39)

We can also define

∆
m
21 = λ2−λ1 =

1
2
(∆m

31−∆31−A) (E.40)

and

∆
m
23 = λ2−λ3 =

1
2
(−∆

m
31−∆31−A) (E.41)

Equating the off-diagonal term to zero gives

θ
m
13 =

1
2

tan−1
(

∆31sin2θ13

∆31cos2θ13−A

)
(E.42)

Hence, the matter modified PMNS matrix is given by

UOMSD =UAUm
B (E.43)

=


Um

e1 Um
e2 Um

e3

Um
µ1 Um

µ2 Um
µ3

Um
τ1 Um

τ2 Um
τ3


OMSD

(E.44)

=U23(θ23)UδU13(θ
m
13) (E.45)

=


1 0 0

0 c23 s23

0 −s23 c23




1 0 0

0 1 0

0 0 eιδ




cm
13 0 sm

13

0 1 0

−s13 0 cm
13

 (E.46)

=


cm

13 0 sm
13

−s23sm
13eιδ c23 s23cm

13eιδ

−c23sm
13eιδ −s23 c23cm

13eιδ

 (E.47)

Using mass eigenvalues from equation E.38 and elements of PMNS matrix from equation E.47,

the probability expressions can be given as (in natural units):

Pee = 1− sin2 2θ
m
13 sin2

[
1.27(∆m

31)L
E

]
(E.48)

Pµµ = 1− cos2 2θ
m
13sin22θ23 sin2

[
1.27(∆31 +A+∆m

31)L
2E

]
− sin2 2θ

m
13sin22θ23 sin2

[
1.27(∆31 +A−∆m

31)L
2E

]
− sin4

θ23 sin2 2θ13 sin2
[

1.27∆m
31L

E

] (E.49)
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Pµe = sin2
θ13 sin2

θ23 sin2
[

1.27∆m
31L

E

]
and so on... (E.50)

E.2.2 Without OMSD approximation

In the OMSD approximation, the δCP-dependence is lost from the probability expres-

sions.Hence, to obtain δCP information we have to obtain expression without OMSD approxi-

mation. Moreover, for certain values of L and E, the phase in the leading term can diminish the

leading term to the extent at which α cannot be ignored. Hence we need to include ∆21 in the

calculations.

The ∆21-perturbation in the hamiltonian in equation E.30 is

Um†
B M1Um

B =


∆21sin2θ12cos2θ ∆21sinθ12cosθ12cosθ −∆21sin2θ12cosθsinθ

∆21sinθ12cosθ12cosθ ∆21cos2θ12 −∆21sinθ12cosθ12sinθ

∆21sin2θ12cosθsinθ ∆21sinθ12cosθ12sinθ ∆21sin2θ12sin2θ


(E.51)

To first order in ∆21, the matter-modified squared-mass eigenvalues are

Λ1 =
1
2
(∆31 +A−∆

m
31)+∆21sin2

θ12cos2
θ (E.52)

Λ2 = ∆21cos2
θ12 (E.53)

Λ3 =
1
2
(∆31 +A+∆

m
31)+∆21sin2

θ12sin2
θ (E.54)

and the eigenvectors of M0 are

|νm
1 〉=


cosθ m

13

0

−sinθ m
13

corresponding to λ1 (E.55)

|νm
1 〉=


0

1

0

corresponding to λ2 (E.56)

|νm
1 〉=


sinθ m

13

0

cosθ m
13

corresponding to λ3 (E.57)

96



To obtain the matter-modified PMNS matrix without OMSD approximation, we need to know

what is Um
B to first order in ∆21. It is the eigenvectors of M0 with order-∆21 correction, expressed

as columns of Um
B .

Using first-order perturbation theory, calculating corrections in |ν〉m:

Correction in |νm
1 〉 :

=
νm

2 |M1|νm
1

λ1−λ2
|νm

2 〉+
νm

3 |M1|νm
1

λ1−λ3
|νm

3 〉

=
[
0 1 0

]
M1


cosθ m

13

0

−sinθ m
13

 |νm
2 〉
−∆m

21
+
[
sinθ m

13 0 cosθ m
13

]
M1


cosθ m

13

0

−sinθ m
13

 |νm
3 〉
−∆m

31

= (
−∆21

2∆m
21

sin2θ12cosθ̃)


0

1

0

+(
∆21

2∆m
31

sin2
θ12sin2θ̃)


sinθ m

13

0

cosθ m
13



⇒ |νm
1 〉

O(∆21) =


cosθ m

13 +
∆21
2∆m

31
sin2θ12sin2θ̃sinθ m

13
−∆21
2∆m

31
sin2θ12cosθ̃

−sinθ m
13 +

∆21
2∆m

31
sin2θ12sin2θ̃cosθ m

13

 (E.58)

Here θ̃ = θ13−2θ m
13.

Similarly Correction in |νm
2 〉:

⇒ |νm
2 〉

O(∆21) =


∆21
2∆m

21
sin2θ12cosθ̃cosθ m

13 +
∆21
2∆m

32
sin2θ12sinθ̃sinθ m

13

1
−∆21
2∆m

21
sin2θ12cosθ̃sinθ m

13 +
∆21

2∆m
32

sin2θ12sinθ̃cosθ m
13

 (E.59)

Similarly Correction in |νm
3 〉:

⇒ |νm
3 〉

O(∆21) =


sinθ m

13−
∆21

2∆m
31

sin2θ12sin2θ̃cosθ m
13

−∆21
2∆m

32
sin2θ12sinθ̃

cosθ m
13 +

∆21
2∆m

31
sin2θ12sin2θ̃sinθ m

13

 (E.60)

Hence matrix Um
B is:

Um
B =

[
|νm

1 〉
O(∆21) |νm

2 〉
O(∆21) |νm

3 〉
O(∆21)

]
(E.61)
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And,

Um =


Um

e1 Um
e2 Um

e3

Um
µ1 Um

µ2 Um
µ3

Um
τ1 Um

τ2 Um
τ3

=UAUm
B =U23(θ23)UδUm

B (E.62)

Hence the elements of matter-modified PMNS matrix up to first orer in ∆21 are:

• Um
e1 = cosθ m

13 + ysin2θ12sin2θ̃sinθ m
13

• Um
e2 = xsin2θ12cosθ̃sinθ m

13 + zsin2θ12sinθ̃cosθ m
13

• Um
e3 = sinθ m

13− ysin2θ12sin2θ̃cosθ m
13

• Um
µ1 =−sinθ m

13sinθ23eιδ − xsin2θ12cosθ̃cosθ23 + ysin2θ12sin2θ̃cosθ m
13sinθ23eιδ

• Um
µ2 = cosθ23− xsin2θ12cosθ̃sinθ m

13sinθ23eιδ + zsin2θ12sinθ̃cosθ m
13sinθ23eιδ

• Um
µ3 = cosθ m

13sinθ23eιδ − zsin2θ12sinθ̃cosθ23 + ysin2θ12sin2θ̃sinθ m
13sinθ23eιδ

• Um
τ1 =−sinθ m

13cosθ23eιδ + xsin2θ12cosθ̃sinθ23 + ysin2θ12sin2θ̃cosθ m
13cosθ23eιδ

• Um
τ2 =−sinθ23− xsin2θ12cosθ̃sinθ m

13cosθ23eιδ + zsin2θ12sinθ̃cosθ m
13cosθ23eιδ

• Um
τ3 = cosθ m

13cosθ23eιδ + zsin2θ12sinθ̃sinθ23 + ysin2θ12sin2θ̃sinθ m
13cosθ23eιδ

In all the above expressions we have:

• x = ∆21
2∆m

21

• y = ∆21
2∆m

31
and

• z = ∆21
2∆m

23

To obtain any probability expression for matter-modified case we now just need to use the

formulas derived in Appendix B and Appendix C, with the vacuum parameters replaced by

matter-modified parameters.
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