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Abstract

Hermann Weyl, in his famous book 'The Classical, their Invariants and Representations’,
coined the phrases “classical groups” to describe certain families of groups of linear trans-
formations. Even years after its introduction, these groups continue to retain their impor-
tance in mathematics ( especially in the subject of linear Lie groups ) and has applications

in both classical and modern physics.

We begin the thesis by introducing classical groups and study them from the point
of view of linear algebraic groups. We then develop the theory in order to obtain basic re-
sults on their representations and lie algebras. We further move on to study the structure of
classical groups. We show that for a classical group G, the subgroup of diagonal elements
H is the maximal torus and every maximal torus is conjugate to /. We find the decompo-
sition of g , the lie algebra of classical group G in terms of root and root spaces, under the

adjoint action of H.

In the second part of the thesis, we look at the ’tensor product problem’. To put it
into perspective, consider a finite dimensional simple lie algebra g. It is known that if W/
is a tensor product of finite dimensional irreducible modules of g, then W is completely
reducible. The major goal of tensor product problem is to determine the irreducible g-
modules of 1 along with their multiplicities. We look at one of the recent studies aimed at

tackling this problem.
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Chapter 1
Algebraic Geometry

In this chapter, we fix the notations and recall the definitions and results from algebraic
geometry which are used as tools to understand the structure and representations theory of

classical groups over complex field C.

1.1 Affine algebraic set

1.1.1 Introduction :

Let V be a finite dimensional vector space over C. Given a basis, P(V'), the set of polyno-

mial on V, is defined as follows,

n

PWV)={f:V=C:fO ze)=_ arz'}

i=1 1<k

where z; € C, I = (i, ,,i,) € N*and 2/ = 2{....2'». P(V') forms an commutative algebra

under point wise multiplication of functions and is freely generated as an algebra by the
coordinate functions {1, , , z, }, where z;(>_"_, zie;) = z;. Thus, P(V) = Clzy, ....., Tp).
A subset X of V is called an affine algebraic set if there exists fi,....., f,, € P(V) such
that

X={veV:fi(v)=0,V1<i<m}

The affine ring of X is defined to be the restrictions of polynomial function over V.
AfF(X) ={flx: f e P(V)}

These functions are called regular functions on X. Let
Ix={feP(V): flx =0}
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Then Iy is an ideal of P(V') and Aff(X) = P(V)/Ix.

Recall that a ring A is called noetherian if and only if every ideal of A is finitely gener-
ated and by Hilbert basis theorem, it is known that if A is noetherian, then the polynomial
ring Alz] is also noetherian. Since C is noetherian, by Hilbert basis theorem, C[z1, ...., 2]
is noetherian, which implies P(V") is noetherian. Thus we have the following result which
shall be used frequently.

Lemma 1.1.1. Let [ C P(V) be an ideal. There exists a finite set of polynomials f1,,, fa

such that every g € I can be written as

g=qg1f1+ ... + 9afa

for some choice of ¢1,,,, 94 € P(V).

1.1.2  Zariski topology

Let X C V be an algebraic set. Y C X is called Zariski closed in X if Y is an algebraic
subset of X. For any non zero f € Af f(X), the principal open set of X defined by f is

X' ={zeX: fx)#0}

Lemma 1.1.2. The Zariski closed sets of X gives X the structure of a topological space.
The finite union of principal open set X', for f € Aff(X) and f # 0, are the non empty
open sets of this topology.

Proof. In order to show that it is a topological space, we have to check whether arbitrary
intersection and finite union of algebraic sets are algebraic. Let Y; and Y5 be algebraic set
defined by { f1,, f»} and {g1, , , gm } respectively, then Y;UY5 is also an algebraic set defined
by {fig; : wherel <n, 1 <m}.Let{Y, : a € I} be an arbitrary collection of algebraic
sets. Then, their intersection is the zero set of possibly infinitely many polynomials. But
by Hilbert basis theorem, we get that this intersection is also defined by finite number of
polynomials, thus its an algebraic set.

Now, complement of any algebraic set, by definition is the finite union of principal open set
X/, ]

Let X, Y be two algebraic sets and f : X — Y be a map. Given any complex valued

function g on Y, we define f*(g) as
fr9)(x) =g(f(z)), z€X

Then f is said to be a regular map if f*(Aff(Y)) C Aff(X).
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Lemma 1.1.3. A regular map f between two algebraic sets is continuous with respect to

Zariski topology.

Proof. Let Z C Y be a closed set defined by {g1,,,g,}. Then, f~!(Z) is the zero set of
{f*(g:)}, which implies f~(Z) is a closed set. Thus, f is continuous. O

1.1.3 Product of affine sets

Let X C VandY C W be two affine algebraic sets. Let fi,,, f,, € P(V) be the defining
polynomial of X and ¢, ,, g, be the defining polynomials of Y. We can extend these
function to V' x W by setting f;(v, w) = f;(w) and g;(v, w) = g;(w). Therefore, X XY is an
algebraic set in the vector space V& W with { f1,,, fn, g1, , gm | as the defining polynomials.
By the universal mapping property of the tensor product, there exists a unique linear map
w:P(V)® P(W)— P(V @ W) such that

p(f' @ 1) (v, w)) = f(v) f" (w)
Lemma 1.1.4. The map 11 induces a vector space isomorphism
O AfFX)@ASFY) = Aff(X XY).
Proof. We have the vector space isomorphism
p:PV)@ PW)— P(VaeW)

Function in Af f(X x Y) are just restrictions of polynomials in P(V @ W). Therefore, the
map P is surjective. Now, it is left to show that  is injective.

Suppose f = >""_, fifl € Aff(X)® Aff(Y), such that f # 0. Without loss of gener-
ality, assume that functions { f/} are linearly independent and f; # 0. Choose ¢; € P(V)
and g/ € P(W) such that f/ € ¢/|x and f/" = ¢/|y. Set g(v,w) = > gi(v)g/(w). Then
v(f) = g|lxxy. Choose zg € X such that fi(zo) # 0. Since { f'} are linearly independent,

we have

Z Fl(zo) f] #0

in Af f(Y).Thus, the map y — ¢g(xo,y)|y is nonzero. Hence, ®(f) # 0. This shows that
® is injective.

O
1.1.4 Principal open set

Let X be an algebraic set and let f|x € Aff(X) with f ## 0. We will give an algebraic set
structure to the principal open set X/ in the following way. Define x : X/ — V x C by
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x(z) = (, f(z)~1). Clearly this map is injective. Now, choose f € P(V) so that f|x = f
and let f1,,,, f, € P(V) be the defining polynomials of X. Then

XX ={(v,t) e V xC: fi(v) =0, YViand f(v)t —1 =0}

Thus, x(X/) gets an algebraic set structure. Now, we define the ring of regular function on

X7 by taking the pull back of regular function on y(X/).

Aff(XT)y={gox:ge P(V xC)}

Notice that on y(X7), ¢ has same restriction as f~*. Therefore, the regular function on X/

are all of form g(x1, ,, z,, fll)-

1.1.5 Irreducible components

Let X C V be a non empty closed subset. We say X is reducible if there exists non empty
closed subsets X; # X and X, # X such that X = X; U Xs. If X is not reducible, then

its called irreducible.

Lemma 1.1.5. Let X C V be an algebraic set, there exists finitely many irreducible closed
subsets X;’s such that
X :X1UX2UUXn,

where X; ¢ X, for i # j. Moreover this decomposition is unique up to permutation of the
indices and is called the incontractible decomposition of X. The subsets X;’s are called

irreducible components of X.

Proof. We prove this using contradiction. Suppose the lemma does not hold for X. Then
X has a decomposition into closed sets, X = X; U X5, where X; C X, such that the lemma
does not hold for X; or X,. Without loss of generality, we assume that the lemma does not
hold for X;. Then, X; will have a decomposition, X; = X3 U X}, such that the lemma

does not hold. Continuing this procedure we get a infinite chain of closed subsets,

This gives an infinite chain of increasing ideals in P(V/),
IxClI x; C ...

which is a contradiction as P(V') is noetherian. Thus the algebraic set X must have a finite
decomposition into closed subsets. Any finite decomposition of X into closed subsets can
be written in the form X = X; U X, U .... U X,, , where X; ¢ X, for ¢ # j by a deletion
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process.

For the uniqueness part, suppose that X has two different incontractible decomposition,

X=XxjUuXoU..UX,

X=Y1UY,U..UY,

Then, X; = X;NX =(XiNY)U(XiNYy)U....U(X;NY,,). Since X is a irreducible
component i.e it is a maximal irreducible subset of X and X; C Xy NY;, forsome 1 <7 <
m, we get that X; C Y}, forsome 1 <17 < m.

Similarly, ¥; = (Y1 N X7) U (Y1 N Xp) U .... U (Y7 N X,,), which gives Y; C X, for some
1 < j < n. Therefore, X; C Y; C X, which implies X; = Y;. Hence, for 1 < i < n,
X; = Y5(;), where o € S,,,. Now, staring with Y;, repeating the same steps as before, we
getthat for 1 < j < m,Y; = X,(;, where 0 € Sp. Thus n = m, proving the uniqueness
of the decomposition. ]

Lemma 1.1.6. Let V and W be two finite dimensional vector space. If X C V andY C W
be two irreducible algebraic sets, then X X Y is an irreducible algebraic setin V & W.

Proof. Suppose X x Y is not irreducible, then it can be written as union of two closed
subsets, X X Y = Z; U Z,, where Zy, Z, are closed subset of X x Y. Notice that for
r € X, x x Y is irreducible, if not then it will be a contradiction to the irreducibility of Y.

Therefore z X Y C Z; orxz x Y C Z,. This gives us a decomposition for X,

X,={rxreX:xxY CZ}

We now show that X;’s are closed , which will contradict the fact that X is irreducible. Let
{f.} be the defining function of Z;. Then we define

X! ={z e X: fu(x,y) = 0Va}

It is clear that X! is closed subset and X; = () X/ is closed subset. Therefore X =
yey
X7 U X, where X; and X5 are closed subsets. This is a contradiction to the irreducibility

of X, which shows that X x Y is irreducible. ]
Lemma 1.1.7. Let X be an irreducible algebraic set, then X is also irreducible.

Proof. Tt is enough to prove that every non empty open subsets of X has a non empty
intersection. Take two non empty open subset of X, say A and B. Then AN X and BN X
are open in X. Since X is an irreducible set, Y = (AN X) U (BN X) is non empty, which
implies, A N B is non empty. Therefore X is irreducible. O]
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1.2 Tangent vector in an algebraic set

1.2.1 Tangent vector

Let X be an algebraic set. A tangent vector v at point a € X is defined as a linear function
from Af f(X) — C such that

v(fg) =v(f)gla) + fla)u(g) .V f,g€ Aff(X)

The collection of all tangent vectors at the point a is denoted as T'(X),.Let v be a tangent
vector, then by the derivation property, v(1) = v(1.1) = v(1).1 + L.v(l) = 2.0(1), =

v(1) = 0. Therefore, tangent vector acting on a constant gives 0.

Lemma 1.2.1. Given an algebraic set X and a € X, m, C Af f(X) denote the maximal

ideal of functions which vanishes at a. Then, there exists a natural isomorphism between
T(X)q and (mg/m?2) *.

Proof. Takev € T'(X),. Then, forany f € Aff(X),v(f) =v(f—f(a))and (f—f(a)) €
m,. Therefore the action of v on Af f(X) is defined entirely by its restricted action on m,.
For g € m?, g = hk, where h, k € m,, v(g) = v(hk) = v(h)k(a) + h(a)v(k) = 0, =
v(m?) = 0.Thus ,v € T'(X), naturally defines a v’ € ((m,/m?2) *.

*

Conversely, for v/ € ( m,/m?2) *, we define a tangent vector at a as follows, v(f) =

v'(f — f(a)). Only thing remaining to show is that the defined v is indeed a tangent vector.

Consider f,g € Aff(X), then (f — f(a))(g — g(a)) € m?.
v((f = f(a))(g — g(a))) = v(fg) —v(f)g(a) — f(a)v(g) + v(f(a)g(a))

=v(fg) —v(f)g(a) — f(a)v(g)
v(fg) = v(f)gla) + fla)v(g)

Hence v € T(X),. O

Note: 1. Consider X = C", then Aff(X) = Clzy,z9,....,x,]. Let f € Aff(X),

u,a € X, then D, f(a) denote the directional derivative of f in the direction of the vector u,

which forms a tangent vector at a. Thus, v(f) = D, f(a) and suppose u = (uq, Uz, ..., Uy),
a = (ai, as, ...., a,) then we can write v(f) as,
v(f) = Duf(a )

Z |ul ax,

Notice that 5 |a € T(X),. We will now show that in fact %Ll, 1 < < n forms the basis
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of T(X),. Take f € m,, then the Taylor series expansion of f at a is,

Fla) = 0)+ D ta = ) G (0) + 3 D0 Dl = ey = ) G )+

= 3= ) G @)+ 30D s = )l = ) G (e +

i=1 i=1 j=1

So, f € m, is generated by (z; — a;), for 1 < ¢ < n. Thus, (x; —a;), for1 < i <n
spans m,, /m?, also (x; — a;) forms a orthogonal set, which implies (z; —a;), for 1 <i < n
forms the basis of m,/m?2. Now, using the result 7(X), = ( m,/m?2) *, we see that
a%ila € ('my/m?2) * and further {a%Ja} forms dual basis to {(z; — a;)}, = {B%JCL} forms

the basis of T'(X),.

2. Take X C C", then Aff(X) = P(C")/Ix.For some a € X, take v € T(X),,v :
Af f(p(C")/Ix) — C, there exists a unique © € T(C"),, v : Af f(p(C")) — C, such that
o(f) =v(f+Ix)ando(Ix) =0, for f € Aff(p(C")). Conversely, for some v € T'(C"),,
itinduces av € Af f(X) defined by v(f + Ix) = v(f). Therefore we get,

T(X), = {# € T(C"), : o(Ix) = 0}

Suppose Ix is generated by polynomials { fi, fo, ...., fi }. As we have already discussed ©

can be expressed as v = Y u;7>-|, and 0(Ix) = 0 = 0(f;) = 0, for 1 < < m. Hence we
i=1 '

get,
E UZM:O 7f07ﬂ1§j§m7

i=1 Oz;
where u; = 0(z; — u;). So we get a system of m linear equations, i.e a m X n matrix,
which is denoted by J(a). Applying the rank-nullity theorem, we get n = rank(J(a)) +
nullity(J(a)). Observe that nullity(J(a)) is exactly the dim/(T(X),). Therefore, dim(T'(X),) =
n —rank(J(a)).

Smoothness of an algebraic set: We first define

m(X) = min dim(T(X),)
Let Xo = {z € X : dim(T(X),) = m(X)}. The points of X, is called the smooth points
of algebraic set. An algebraic set X is called smooth if X = X. For example, let X = C"
an algebraic set. Then, as we have seen Vo € X, dim(T(X),) = dim(C") = n. Therefore,
X = C" is a smooth algebraic set.



1.2.2 Differential of a regular map
Let X, Y be two algebraic set and ¢ : X — Y be a regular map.Then differential of ¢ at a
point a € X, denoted by d¢, is a linear map from 7'(X), to T'(Y")4(a), defined as

d¢a : T(X)a — T(Y)¢(a)

(dav)(f) = v(¢"(f)) forveT(X)aand f € Aff(Y)

Since ¢ is a regular map, ¢*(Aff(Y)) C Aff(X), so dp, maps takes every v € T(X),
to do,(v) which acts on Af f(Y'). Now it remains to show that d¢,(v) indeed belong to

T(Y)p(a)- Let f,g € AfF(Y),

(deav)(fg) = v(6*(f9))
=v(¢*"(f)o"(g9)) (since ¢" is an algebra homomorphism)
= v(¢"(f))9"(9)(a) + ¢"(f)(a)v(0*(9))
= 0(¢"(f))(9)(¢(a)) + (f)((a))v(d™(g))

Thus, dpq(v) € T(Y)4(a), implying d¢, is a well defined linear map.

1.2.3 Vector field

Derivation of an algebra A is any linear map D : A — A, which satisfies the Leibniz rule.
If the algebra A is commutative and D, D’ are derivations, then linear combination of D
and D’ also form a derivation, furthermore the commutator [D, D’| = DD’ — D'D also is
a derivation. Therefore, the set of all derivations of a commutative algebra A forms a lie
algebra, denoted by Der(A). For an algebraic set X, a derivation on Af f(X) is called a
vector field on X and vect(X) denote the lie algebra of all vector fields on X.



Chapter 2
Classical Groups

In this chapter we introduce the linear algebraic groups. We show that the class of matrix
groups which H. Weyl referred to as the ”Classical groups” are in fact linear algebraic
groups. We study some of the basic results on the Linear algebraic groups and the Lie

algebras associated with them.

2.1 Linear algebraic group

2.1.1 Definitions and examples

Definition 1. Let GL(n, C) be the group of invertible n x n complex matrices and M, (C)
denote the space of all n x n complex matrices. For 1 < 1,5 < n, let z;; denote
the coordinate functions i.e for any y € M,(C), z;;(y) gives the i, j entry of y. Then
P(M,(C)) = Clz11, %12, 5 5 » Tnn). A subgroup G C GL(n,C) is called a linear algebraic
group if there exists a subset A of P(M,,(C)) such that

G={9g€GL(n,C): fi(g9) =0,Yf; € A}

By Hilbert basis theorem, we get that any linear algebraic group is defined by finite set
of polynomials.

Examples

1. Let D, C GL(n,C) denote the subgroup of diagonal matrices. The defining poly-

nomials for D,, are z;; = 0 for 7 # j. Then
Dﬂ = {g € GL(R,C) xzj(g) = 07 fO?"’l}é]}

Hence D, is a linear algebraic group.



2. Special linear group SL(n,C).
SL(n,C) is the group of invertible matrices with determinant one. Since determinant is

polynomial map, define
SL(n,C) ={g € GL(n,C) : det(g) = 1}
SL(n,C) is a linear algebraic group.

3. Orthogonal group O(n)
Let B be a non degenerate symmetric bilinear form on C", then we define the orthogonal

group as,
O(C",B) ={g € GL(n,C) : B(x,y) = B(gz, gy), Vx,y € C"}
From the above definition, we have

g€ O(C", B) « ¢'Sg=38,

where S is the matrix corresponding the bilinear form B. This quadratic relation gives
O(C™, B) the linear algebraic group structure. For ¢ € O(C™, B), we have ¢'Sg = S.
Taking determinant, we get det(S) = det(g")det(S)det(g). This implies, det(g) = +1.
We define

SO(C",B) ={g € O(C",B) : det(g) = 1}

SO(C™, B) is called the special orthogonal group relative to B.

A set of vectors {vy, ,,v,} C C"is called a B-orthonormal basis of C" if B(v;,v;) = d;;.

Lemma 2.1.1. Let {vy,,,v,} and {w.,,,w,} be two B-orthonormal basis of C". Let
g € GL(n,C) such that gv; = w;, for 1 <i <n, then g € O(C", B).

Proof. Since both are B-orthonormal basis, we get
B(gvi, gv;) = B(wi, w;) = B(vi, v))

Thus, B(gz, gy) = B(x,y), for every z,y € C", which implies g € O(C", B).
O

Proposition 2.1.2. Let B, B’ be two non degenerate symmetric bilinear form on C". Then,
there exists v € GL(n, C) such that O(C", B') = vO(C", B)y ..

Proof. Consider a B-orthonormal basis {v,,,v,} and B’-orthonormal basis {wy,,,w,}
of C". Let v € GL(n,C) be such that yv; = w; for 1 < ¢ < n. Let S, S’ be the matrix

10



corresponding to the forms B and B’ respectively. Then,
(S"yvi, yv;) = (7' S"yviv;) = 8y = (Svi, vy)

Thus, v*S’y = S. Now, for g € GL(n, C), set h = yg+*'. Then, we have
h'S'h=(v"1)'g"'Svgyv ™ = (v 1)'g'Sgr "

This implies g € O(C", B) and hence h € O(C", B'). O

Definition 2. When n = 2l, a basis {n1, ,,n;,n_1,,n_;} of C" is called a B-isotropic basis
if B(v;,v;) =0, fori # —j and B(v;,v_;) = 1, for all i and j. When n = 2l + 1, a basis
{vo, v1,,v,v_1,,v_} of C" that satisfies B(v;,v;) = 0, for i # —j and B(v;,v_;) = 1,
foralli,j =0,%1,,,, +lis called a B- isotropic basis.

Remark : Given a non degenerate symmetric form on C", we can always find a B-

isotropic basis.

Lemma 2.1.3. Suppose {v;} and {w;} be two B-isotropic bases of C". If g € GL(n,C)
such that gv; = w;, then g € O(C", B).

Proof. Same as the proof of Lemma 2.1.1. ]

4. Symplectic group Sp(C?*, Q)
Let €2 be a non degenerate skew symmetric bilinear form on C”. We define the symplectic

group relative to €2 as
Sp(C*,Q) = {g € GL(n,C) : gz, gy) = Q(x,y), Yo,y € C"}
Form the above definition, we get
g€ Sp(C*,Q)if andonlyif g'Jg = J,

where J is the matrix corresponding to 2. Thus, Sp(C%, Q) is an algebraic group.

Definition 3. Given a basis {v1,,v;,v_1,,v_;} of C¥, we call it an Q- symplectic basis if
Qvi,v5) =0, fori # —j and Q(v;,v_;) =1, for 1 <i <.

Lemma 2.1.4. Suppose {v;} and {w;} are two Q-symplectic basis of C*. Let g € GL(2l,C)
such that gv; = w;, for all i, then g € Sp(C*, Q).

Proof. Same as the proof of Lemma 2.1.1. [

Proposition 2.1.5. Let Q) and €)' be two non degenerate skew symmetric form on C¥. Then,
there exists y € GL(2l,C) such that Sp(C*, Q') = vSp(C*, Q)y~ 1.
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Proof. Same argument as in Proposition 2.1.2. [

The groups GL(n,C), SL(n,C), O(n,C), SO(n,C) and Sp(2l, C) are called the clas-

sical groups.

2.1.2 Regular functions

GL(n,C) is a principal open set in the M, (C) with respect to the Zariski topology. For
GL(n,C), the ring of regular function is defined as

Aff(GL(TL, (C)) = C[xlla L1255 5 Lnn, (det)_l}
Given B € End(C™), we define a linear functional on End(C") by,
fB(A) =trace(AB),

forany A € End(C™). Notice that f5 is the linear combination of coordinate functions and
hence it is a regular function. Any coordinate function x;; can be written as a polynomial
in fp, where B € M,,(C). Thus, Aff(GL(n,C)) is generated by f5 and (det)~!, where
B spans over End(C").

A complex valued function f on G is called regular if it is the restriction of a regular
function on GL(n, C). The set of regular functions Af f(G), on G is a commutative algebra

over C under point wise multiplication. Define

le ={f € Aff(GL(n,C)): f(G) = 0}

I is the ideal of Af f(G L(n, C)), containing functions that vanishes over G. Then,
AfF(G) = AfF(GL(n, C))/1c

Let G and H be two algebraic group, then an abstract group homomorphism II : G — H
is said to be regular if II*(Aff(H)) C Aff(G), where II*(f)(g9) = f(Il(g)), for ¥V f €
Aff(H). We say G and H are isomorphic as algebraic group if there exists a regular

homomorphism II : G — H, which has a regular inverse.

Theorem 2.1.6. The multiplication map p : G X G — G and inversion map 1 : G — G
are regular. If f € Aff(G) then there exists an integer p and f] and f!' € Aff(G) for
1=1,,,p such that

flgh) = Z Flg) (),

for g, h € G. Further, for a fixed g € G, the maps x — L,(z) = gx and R,(z) = xg from

G to G are regular.
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Proof. Fix a basis for V' and let z;; be the coordinate functions with respect to this basis.
We have ¢! = (1/det(g))adjoint(g), where adjoint(g) is the adjoint matrix of A. Since
adjoint(g) is a polynomial in the x;;, thus we get that inversion is a regular function.
Letg, h € G,

zij(gh) = Z Tip(9)r;(h)

By multiplicative property of determinant map, (det) ™' (gh) = (det)~*(g)(det)~*(h). The
coordinate function {z;;} and (det)~! generate Af f(G) as an algebra, thus the property
holds for any f € Af f(G).

Using the above result, we can write
w( =Y I

We have already seen that Af f(G x G) = Aff(G) @ Af f(G). Using this identification,
we get u*(Aff(G)) C Aff(G x G). Therefore, . is a regular map. Similarly, we get

Ly(f) =Y h@f!, Ry(f)=>_ I9f

Thus, L, and R, are regular functions. L]

2.1.3 Representation

A representation of a linear algebraic group G is a pair (p, V') , where p : G — GL(n,C)
1s an abstract group homomorphism and V' is a complex vector space. A representation
p is called regular if for a fixed basis of V/, the component functions g — p;;(g), for
1 < 4,5 < n, are all regular functions. To put the regularity condition of p in a more

convenient manner, for B € End(V') , define a function on G as,

fh(g) = trace(p(g)B) , forge G

Since trace function is a non degenerate bilinear function on End(V'), forany A € End(V)*,
there exists a unique Ay € End(V) such that A\(X) = trace(A,X) forany X € End(V).
Therefore, p;;(g) = trace(A;;g) for a unique A;; € End(V). It thus follows that the rep-
resentation (p, V') is regular if and only if f4 is a regular function for every B € End(V).
Set

Ef ={f%:B¢€ End(V)}

The space E” is called the space of representative functions associated with p.
An infinite dimensional representation (¢, V') of G is said to be locally regular if for any

finite dimensional subspace ' C V there exists a finite dimensional G-invariant subspace
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E such that F' C E and restriction of ¢ to £ is a regular representation.
Examples

1. Let (p,V) be a regular representation of G, then we define the dual representation

(p*,V*) as p*(g)v* =v* o p(g7").

Therefore, the dual representation p* is regular. E consists of functions of the form
g — f(g71), where f € E”.

2. Consider the representation (R, Af f(G)) (called the right translation representation)
of G, defined by R(g)f(z) = f(zg) forg € Gand f € Aff(G). R(g) is a example for
locally regular representation. To see this, given f € Af f(G), there exists f/ and f” such
that

R(g)f = Z () f!

Let W = span(f!, fI' - 1 < i < n). Then W is invariant under the action of R(g) for
every g € GG and is finite dimensional. Then V' (f) = span(R(g)f : Vg € G) C W. Let F
be any finite dimensional subspace of Af f(G), and { f1, fa, ... fs} be the defining function
of F. Then, set E = 3.0 V(f,).

Remark: Similarly we can define L(g)f(y) = f(x'y), the left translation representa-

tion, which is also locally regular.

3. Let (p,V) and (o, W) be two regular representations of G, then we define the tensor
product representation (p ® o,V @ W) as,

p®a(g)(vew)=p(g)ea(w)

Clearly p ® o is regular as

{((p@0)(g)(v@w),v* @w") = (p(g)(v), v")(o(g)(w),w")

14



Also,
Er®? = span(E*.E°)

2.1.4 Connectedness

Theorem 2.1.7. Let G be a linear algebraic group. Then G has a unigque subgroup G° that
is closed, irreducible and of finite index. Furthermore, G° is a normal subgroup of G and

its cosets forms the irreducible and connected components of G.

Proof. First we will show the existence of such a subgroup G, Since G is an algebraic set,

it has a unique incontractible decomposition, i.e
G=X,UX5U... UXx,,

where each X is an irreducible component of GG. We label the X;’s such that for 1 < i < p,
1 € X;and fori > p, 1 ¢ X;, where 1 < p < r is a natural number. Now we define a
function p : X7 x X5 x ... x X, — G such that p(zy, 2o, ...... ,Typ) = T1.%a....Tp. Set
X X Xog X ... x X, = X. X is an irreducible set ( as finite product of irreducible set
is irreducible) and the the map y is a regular map as multiplication is a regular map. Since
regular map is continuous with respect to the Zariski topology, we see that the image of the
irreducible set X is irreducible in G. Now observe that for 1 < ¢ < p, X; C X and each
of the X;’s are maximal irreducible sets. This is only possible if p = 1i.e X = Xj. Since
irreducible components are closed with respect to the topology, we get X = X; = X; = X.
Thus X is a closed set.

Forx € X, X — 2~ 'X is ahomeomorphism and ~' X contains identity element. Thus,
71X = X, which implies 7! € X,Vz € X. Forz,y € X,sincez7! € X, 2X = X,
which implies zy € X. This proves that X is subgroup of G. Moreover if z € G, then
X — X! is a homeomorphism and zX z~! contains the identity. Thus X = zXz7!,
proving that X is a normal subgroup of G.

G — gG, for g € G, is a homeomorphism.
=G=9gG=9gX;UgXoU.. UgX,

by uniqueness of incontractible decomposition of algebraic sets, we conclude that g X; =
Xo(9)i» Wwhere o(g) € S,. Furthermore g X; = Xj, if ¢ € X;. Therefore the cosets of X =
X, forms the irreducible components. Hence the index of X over G is finite( using the fact
that a noetherian topological space can only have finitely many irreducible components).
Since the irreducible components are disjoint and irreducibility implies connectedness, the
irreducible components also form the connected components of G. Setting G° = X, we
get the required subgroup.

Uniqueness of subgroup G°: Suppose there exists another normal subgroup H of G with
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the given properties. Then the cosets of H will form the irreducible components of GG, with
H being the only component containing the identity, which implies subgroup H = G°,

proving the uniqueness of G°. []

Note: Each irreducible component X is a closed subset of G. Then, the complement
of each X, X is the union of closed subsets, which implies X; is closed in G. Hence X is

also open in G. Thus the irreducible components X;’s are both closed and open in G.

Corollary 2.1.7.1. A linear algebraic subgroup is connected if and only if it is irreducible.

2.1.5 Subgroup and homomorphism

Definition 4. Let G be an algebraic group. A closed subset H of G which is also a subgroup
of G is called an algebraic subgroup of G.

Lemma 2.1.8. Any closed subgroup of G of finite index contains G°.

Proof. Let H be a closed subgroup of GG with finite index, then G \ H = |J gH i.e finite

geG
union of closed subsets. That implies G \ H is closed , which implies H is open. Therefore

H N G° is both closed and open. But since G is connected, if H N G C G, then it is a
contradiction. Therefore, H N G° = G and G° C H. O

Lemma 2.1.9. Let H be a subgroup of linear algebraic group G. Then H is an algebraic
subgroup. Furthermore, if H contains a non empty open subset of H, then H is an algebraic

subgroup.

Proof. First we show that H is a subgroup. The map x — 2~ ' is a homeomorphism,

therefore Ffl — H1=H,since H'= H.Forx € H,xH = H,thus tH = xH = H.
Hence HH = H. Now for x € H, Hx C H which implies Hx = Hx C H. Hence
HH C H and H is an subgroup.

Let U be a open subset of H such that U C H. For x € U, 27U is an open subset of H in
H, such that 1 € 27'U. Now we set V = 27'U and take y € H \ H. Then yV is an open
neighbourhood of y in H \ H. Thus, for every y € H \ H we have an open neighbourhood

of yin H \ H, which implies H \ H is open. Hence H is closed. O

Lemma 2.1.10. Let ¢ : G — H be a regular homomorphism of linear algebraic group.
Then,

1.ker(¢) is closed in H.

2.Image(¢) is closed in H.

3.7(G% = ¢(G)°.

Proof. 1. For x € H, singleton {x} is closed in H. Since regular functions are continuous
with respect to the Zariski topology, ker(¢) = ¢~ (e).
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= ker(¢) is closed.

2.¢(G) contains a non empty open subset of ¢(G), = ¢(G) is closed.

3.Restricting ¢ to G°, then by (2), ¢(G°) is closed. Since ¢ is a regular map, G° is ir-
reducible, which implies ¢(G?) is irreducible. By the same argument, ¢(G") is also con-
nected. Therefore ¢p(GY) C ¢(G)°. Since G° has finite index in G, ¢(GP) has finite index
in ¢(G). We have already seen that any closed subgroup of finite index contains G°, thus
#(G)° C ¢(GY), which gives ¢(G°) = ¢(G)°. O

2.1.6  Group structure on affine varieties

Theorem 2.1.11. Let X be an affine algebraic set such that (z,y) — xy and x — x~' are
regular mappings. Then there exists a linear algebraic group G and a group isomorphism

® . X — G such that ® is also an isomorphism of affine algebraic sets.

Proof. Let {f1,,, f.} be the functions that generate Af f(X). We have isomorphism from
Aff(X x X)to Aff(X)® Aff(X). The map o : X x X — X induces a map A :
Aff(X) — Aff(X) ® Af f(X) such that A(f;) = >°F_, fi; ® fi;. Then,

j=17ij
p
fiwy) =Y L1
j=1

forz,y € X. Set W = Span{f}; : 1 <i<n,1<j<plandV = Span{R(y)fi -y €
X,1<1i<n}, where R(y)f(x) = f(zy) is the right translation representation. It is clear
that V' C W and thus, dimV < oco. By definition V' is R(y)-invariant. We define the map
¢ : X — GL(V) by ®(y) = R(y)|y. ® is a group homomorphism. Now we shall show
that ® has following properties

1. ® is injective.

If R(y)f; = f; for all i, then f;(xy) = f;(x) for every z € X. Hence y = 1. Therefore
ker® = {1} and ® is injective.

2. ® is a regular map.

Let 0, € V*, defined by 6, f = f(z). Clearly {0, }.ex spans V*. Choose z; € X such that
{02, ,,,0z, } forms the basis of V and {¢1, ,, g,n } be the dual basis. Then,

R(z)g; = Z ¢ij(2)9i,

forx € X. Also
cij(z) = (R(z)g, 6z,;) = gj(xiv)

Therefore the map x — ¢;;(«x) is a regular function, which implies @ is a regular function.
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3. ®(X) is closed in GL(V).

Since ® is a regular homomorphism, ®(X) is a closed subgroup of GL(V). Set G = ®(X),
then X = (G as an abstract group.

4.9~ is regular map.

Since @ is regular ®*(Aff(G)) C Aff(X). Also, the set {fi,,, f.} C P*(Aff(G)).
Thus, Af f(X) C ®*(Af f(Q)). Therefore ®*(Af f(G)) = Aff(X) and ™' is regular.
This completes the proof. U

2.2 Lie algebra of algebraic groups

2.2.1 Left invariant vector field

A vector field Y on a linear algebraic group G = GL(V') is said to be left invariant if

L(g)(Y f) = Y(L(g)f) for f € Aff(G)andg € G,

where L(g) f(z) = f(g~'z) is the left representation of G on Af f(G).
Now, for A € End(V'), we define a linear transformation X4 : Af f(G) — Aff(G) such
that

Xaf(z) = %f(x(] +tA))|i=0 where A € End(V)

X 4 has the following properties,

1. Xa(fg) = Xa(f)g+ fXa(g), for f,g € Af f(G) i.e satisfies the Leibniz rule.
2. Ly(Xaf(x))) = Xa(Lyf(x))forg e Gand f € Af f(G)

Thus we see that X 4 is a left invariant vector field on G. In fact, we will prove in a while
that every left invariant vector field on G is of the form X 4, where A € End(V'). Now
given X4 and Xp,

XaXp(fg) = Xa(Xp(f)g+ fXB(9))
= Xa(XB(f))g + X5(f)Xalg) + Xa(f)XB(g9) + fXa(Xp(g))

XpXa(fg) = Xp(Xa(f)g + [Xa(g))
= Xp(Xa(f)g + Xa(f)X5(9) + Xp(f)Xalg) + fX5(Xal(g))

We see that X, Xp is not a derivation. But, subtracting one equation form other , we
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get

(XaXp — XpXa)(f9) = Xa(XB(f))g + [Xa(XB(9))
— Xp(Xa(f))g — fXB(Xalg))
= (XuXp — XpXa)(f)g+ f(XaXp — XpXa)(9)

Thus, the commutator defined as [X 4, Xp] = X4 Xp — XX, is a derivation and is also

left invariant, i.e [ X 4, X | is a left invariant vector field on G.

Lemma 2.2.1. G = GL(V), where V is a finite dimensional vector space. Then, for
A,B € End(V)
(X4, XB| = X4

Moreover, any left invariant vector field on G is of the form X 4, for a unique A € End(V').

Proof. We know that Af f(GL(V)) is generated by restriction of polynomial to GL(V)
along with (det)™'. Define function fy; : GL(V) — C, where M € End(V), such
that fy/(g) = trace(gM). The function f; along with (det)™! also generate the algebra
Aff(GL(V)). Consider a left invariant vector field Y on G.

(Ydet ") (g) = —det *(Ydet)(g)

Since determinant is a polynomial function, the action of Y on Af f(G) is entirely defined
by its action on the function fy;, as M ranges over End(V).
For A,C' € End(V'), we take the vector field X 4 and the function f,

Xa(fe(z)) = %trace(x([ +tA)C)|i=0o

Since trace is a continous function, we take the derivative inside the trace function, we get

Xa(fo(r)) = fac(z)

Therefore, for A, B,C' € End(v), we get

[Xa, XB](fc) = XaXB(fc) — XpXa(fo)
= fABC - fBAC

= Xia,p fc

So, we have proved the first part of the lemma. Now to prove the second part, we define
a linear functional, which takes B — Y'(fg(I)), where Y is any vector field on G and
B € End(V'). Then there exists an unique A € End(V') such that Y (fo)(I) = trace(AB).
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Then, for a left invariant vector field Y and g € G

Y (fe)lg) = (L{g )Y (fe)))(I)
= (Y(L(g™") fe))I)
= (Xa(L(g™") fe))(I)
= (L{g ) (Xalfo)) )
= (Xa(fe))(9)
This holds true for every C' € End(V'), thus we have Y = X 4. O

Definition 5. (Lie algebra) A vector space G is caled a lie algebra if it has a bilinear form,
G x G — C, which takes (z,y) — [x,y], with the following properties,

1. Forx,y € G, [z,y] = —[y, x].
2. For x,y, z € G, it satisfies the jacobi identity, i.e |z, [y, z]] = [[x,y], 2] + [y, [z, 2]].

For a linear algebraic group G C GL(V'), we define a Lie algebra associated with G,
denoted by Lie(G),

Lie(G) ={A € End(V) : Xa(lg) C I}

Few things that we can readily infer from the definition is that Lie(G) is a subset of End(V)
and Lie(GL(V)) = End(V), since Igrvy = 0. In fact, we will now show that Lie(G)
forms a subspace of End(V).

Lemma 2.2.2. Given any linear algebraic group G C GL(V), the corresponding lie alge-
bra of G, Lie(QG) is a lie subgroup of End(V).

Proof. Take A, B € Lie(G). we have already seen that X 4 depends linearly on A, hence
Xoarps = aXa+ Xp, where a.p € C.

Xoaysp(la) = aXa(le) + BXp(le) C I

Therefore, for A, B € Lie(G), aA + B € Lie(G). Also, X4 Xp leaves I invariant,
thus X4 p) = [Xa, Xg| = XuXp — XpX4 also leaves I invariant. Therefore, [A, B] €
Lie(G), whenever A, B € Lie(G), which shows that Lie(G) is indeed a lie subspace of
End(V). 0

Lemma 2.2.3. Let G be a linear algebraic group. For every g € G, the map Lie(G) —
T(G), is an isomorphism. Hence we get dim(Lie(G)) = dimG and G is a smooth alge-

braic set.
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Proof. For any g € G, define the map A — X 4(g). First we will show the injectivity of
the map. Suppose X 4(g) = 0, then

(Xaf) (@) = (Xaf)(zg~'g)

We get (Xaf) =0Vf € Aff(G), then (Xafp)(I) = 0, VB € End(V), which implies
trace(AB) = 0,VB € End(V).Therefore, A = 0, which shows the injectivity.

Now, to show the surjectivity, it is enough to show it in case of g = [ i.e the surjectivity
of map Lie(G) — T(G);, the same will follow for every g € G due to the left invariance
of X4. Take av € T(G);, we define a linear functional B — v(fg). Then there exists an
unique A € End(V) such that v(f5) = trace(AB). Thus we get v(f5) = (Xafr)(I). By

the derivation property of v, we get

v(fefe) =v(fp)fc(l) + fe(I)v(fo)
= trace(AB)trace(C') + trace(B)trace( AC)
= Xa(fB)feI) + fe(I)Xa(fc)
= Xa(fpfo)I)

Since fp generate Af f(G) as B ranges over End(V'), we get that v(f) = Xa(f)([). Now
we are left to prove that A € Lie(V). If f € Ig, then f(z) = 0,V € G. L,(f)(z) =
flg7tz) =0,Vz € G (since g 'x € G, Vo € G), thus we get L,(f) € Ig.

Xa(f)(z) = Lo (Xaf)(I)
= Xa(Lo—1 f)(I)
= U(folf)

=0 (since v vanishes at I¢)

Hence, A € Lie(G). O

2.2.2 Lie algebras of Classical groups

Lemma 2.2.4. Let G C GL(n, C) be an linear algebraic group and = — ¢(z) be a rational
map from C to M,,(C) such that $(0) = I and ¢(z) € G for all expect finitely many non
zero z € C. Then the matrix A = L ¢(2)|.—g is in Lie(G).

Proof. Consider the curve z — [ + zA. Det(I + zA) = 0 is a polynomial in one variable,
thus has finite number of solution. Therefore, I + zA € G L(n, C) except for finitely many
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z € C ( which is precisely the roots of equation det(I + zA) = 0). Taking the derivative
at z = 0, we get its equal to A. Also the curves z — ¢(z) and z — I + zA have the same
same value at z = 0, thus both the curve have same tangent vector at z = ( and both are in
G L(n, C) for all but finitely many nonzero z € C. For f € I5 and g € G,

d d
Xaflg) = —f(gI + 24))|:=0 = — fl99(2))]:=0 = 0
, since go(z) € G. Hence A € Lie(G). O

Special linear group: We now define the lie algebra of the linear algebraic group
G = SL(n,C). Define sl(n,C) = {A € M,(C) : trace(A) = 0}.
The function defined as f(g) = det(g) — 1 clearly belongs to /. Thus, for A € m,,(C),

X4f(9) = - (o1 + 2A))
= T det(glI + 2A))=

d
= det(g)adet(f + 2A)|.=0

Let M be a differentiable map from C to space of n x n matrices, then we have the

standard result for derivative of determinant,

dizdet(M(z)) = det(M(Z))tmce(M(z)_l%M(Z))-

Using this result, we get

d d

et + 2A) .z = det (] + zA)trace((I + zA)*@(I + 24))|:=0
= det(I + zA)trace((I + zA) 1 A)|.—o
= det(I)trace(I 1 A)

= trace(A)

Thus, if A € Lie(G), then X 4 f(g) = det(g)trace(A) = 0, for every g € GG, which implies
trace(A) = 0 and Lie(G) C sl(n, C). Now, notice that for i # j ,I + zE;; € G, for every
z € C. Therefore by previous lemma E;; € Lie(G). It follows that [E;;, E;;] = E;;—Ej; €
Lie(G). E;j and E;; — E;; for i # j spans sl(n, C), Thus,sl(n, C) C Lie(G), which further
implies that Lie(G) = sl(n, C).

Orthogonal and symplectic groups :

Consider a non degenerate bilinear form B(x,y) on C™ with I the corresponding matrix of
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the bilinear form. Define,
Gr={9€ GL(n,C:¢'Tg=T)

As we have already seen, depending on whether B is symmetric or skew-symmetric, Gt is
the orthogonal or symplectic group relative to B. In order to study the lie algebra of Gr,

define Cayley transform c(A),

c(A) =T+ AT —-A)" for Ae M,(C)anddet(I — A) #0

Lemma 2.2.5. Suppose A € M, (C) and det(I — A) # 0, then ¢(A) € Gr if and only if
AT +TA=0.

Proof.

(I — AYe(A)'Te(A) I — A) = (I — AY((I + A)(I — AT+ A) (I — A~ - A)

= (I +A)T(I+ A)
=T+TA+ AT+ ATA
2.1)
(I—AYT(I —A) =T — AT —TA+ ATA
(2.2)

=I—-(AT+TA)+ ATA

If ¢(A) € Gr, then equation 2.1 and 2.2 are equal, which impies (A‘['+T"A) = 0. Similarly,
if (A'T'+ T A) = 0, then from equation 2.1 and 2.2, we get that ¢(A) € Gr.
O

Theorem 2.2.6. The lie algebra of Gr consists of all A € M,,(C) such that A'T +T'A = 0.

Proof. We will denote Lie(Gr) as gr. For B € M,,(C), define a function W € Af f(GL(n,C))
Up(g) = trace((¢'Tg —T)B), for g € GL(n,C)

Notice that ¥ 5(g) vanishes on Gr. Suppose A € gr.
Vp€lg. = Xua¥p € lg,
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= 0= X,Up(I)
d

— E\IIB(I(I + ZA))’ZZO

_ dilztmce(((z + 2AYD(I + 2A) — 1) B)|oey

= dilztrace(((] + 2ANT(I + 2A))B)|.—o

= ditrace(((F + 2AT)(I 4+ 2zA))B)|.=0

z

= ditrace((F + 2T A+ 2A'T + 22A'TA)B) |-
2

= trace((I'A + A'T)B)
Hence, we get trace((TA+ A'T)B) = 0 for every B € M,,(C), which implie A'T'+TA =
0.
Conversely, let A be such that A'T'+T'A = 0. Consider the rational curve z — ¢(zA), from

C to M,(C). Since zA'T' + I'zA = 0 and det(I — zA) # 0 for all except finitely many
z € C, by the Lemma 2.2.5 ¢(zA) € Gr for every except finitely many z € C.

d
= EC(ZA”Z:() €gr

d d
EC(ZA)|Z:0 =7 (I +2A)(I = 24) .=

dz
— A(I = 2A) P AT 4 2A) (I — 2A) Y0y = A+ A
— 24

Therefore, 2A € gr, which implies A € gr. O

Consider the symmetric bilinear form (z,y) where I' = I, the identity matrix. Then
Gr = O(n,C), with elements g such that g'g = I. The subgroup SO(n,C) is open in
O(n,C), then it has the same lie algebra as O(n,C). We denote this by so(n,C). By
Theorem 2.2.6,

so(n,C) = {A e M,(C): A" = —A}

Suppose n = 2[. Then we denote by sq the [ X [ matrix,

So =
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Set

Now, we define the bilinear forms,
B(z,y) = (v, Jyy), Qz,y) = (z,J-y) forz,yeC"

Using Theorem 2.2.6 and with some matrix calculation, we get the following corollaries.

Corollary 2.2.6.1. The lie algebra s0(C*, B) of SO(C*, B) consists of all matrices

a b
A= R
C —S50a°Sp
where a € gl(n,C) and b, c are | x | matrices such that b' = —sgbsg and ¢* = —sgcs.

Corollary 2.2.6.2. The lie algebra sp(C?, Q) of Sp(C*, Q) consists of all matrices

a b

¢ —spa's

A:

)

where a € gl(n,C) and b, c are | x | matrices such that b' = sybsy and ¢ = sycsg.

Now, for n = 20 + 1, we define symmetric bilinear form on C" as B(z,y) = (x, Sy)

for z,y € C", and
S0
S0

Corollary 2.2.6.3. The lie algebra s0(C* ', B) of SO(C**, B) consists of all matrices

a w b
A=lu 0 —w'sy |,

c —sout —spatsy

where a € gl(n,C), b, c are | x | matrices such that b* = —sybsy and ¢! = —sgcso, w is

[ x 1 matrix and v is a 1 x | matrix.

2.2.3 Differential of a representation

Let G C GL(n,C) be an linear algebraic group and g be its lie algebra. Let (¢,V') be
regular representation of G. For C' € End(V'), we define fo(B) = trace(BC), linear
functional on End(V'). Then the pull back fc o w of fo will be a regular function on G.
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Theorem 2.2.7. Given a linear algebraic group G with regular representation (7, V'), there

exists a unique linear map dr : g — End(V') such that
Xa(feom)(I) = farayc(1),
forall A € g, C € End(V). This map is a lie algebra homomorphism,
dn([A, B]) = [dw(A),dn(B)] for A,B€ g
Furthermore, for [ € Aff(GL(V)) and A € g,

Xa(form)I) = (Xinayf)om

Proof. For afixeda A € End(V'), we define a linear functional on End(V') by
C — Xa(feom)(I)
Then, there exists a unique D € End(V') such that
Xa(fcom) =trace(CD)

Set dr(A) = D. Clearly dr is a linear map, and we get

(Xa(feom)U) = farayc(I)

Now we are left to show that its a lie algebra homomorphism.
Notice that L(g™")(fc om) = fer(g) © 7. Hence, using the fact that X 4 is left invariant, we
get

Xafe(n(g)) = (L(g™") Xa(fo o m))(I)
= (XaL(g™))(foom)(I)

Xa(forg)om))
(o)1)

Thus, we get X 4(fc o) = farayc o 7.
Now, for A, B and C' € End(V'), using the above result we get,

(X4, XBl(fecom) = Xa(faxzyc ©7) — XB(far(a)c o ™)
_fd7r Coﬂ_fdw dn(A)C O T

—f[dw B)jc ©T.
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But, we have already seen [X 4, Xp] = X4 5], which gives

(X4, XB](fc om) = fanqappcom.

Evaluating at I, we get trace([dn(A), dn(B)|C) = trace(dr([A, B])C) forall C € End(V).
Thus, we get the dr is a lie algebra homomorphism.
Now to proves the final result. For a fixed g € G and for f € Aff(GL(V)), we define a

linear functional by

= Kanay f)((g)) — Xa(fom)(g).

Notice that the above defined function is a tangent vector to GL(V') at w(g). Then, by

definition of dr(A), it vanishes on f¢, which gives us the required result. ]

Theorem 2.2.8. Suppose G is a linear algebraic group with Lie algebra g. Let (7, V') be a
regular representation of G.

1. Suppose W C V is a linear subspace such that w(g)W C W for all g € G. Then
dn(A)W C W forall A € g.

2. Assume that G is connected. If W C V is a linear subspace such that dn(X)W C W
forall X € gthen (g)W C W forall g € G.

Proof. 1. Forv € V and u* € V*, we define a linear function f,,~ on G by f,.-(g) =
(u*,m(g)v). Let C be a rank one linear transformation on V' defined by C'(g) = (v*,r)v

for r € V. Then, we have
Joaw(g) = trace(n(g)C) = fcom(g)
For A € g,
Xafour(9) = Xafoom(g) = firaye o m(g) = trace(m(g)dn(A)C) = far(ayvvr
forallg € G. Let W C V be a (¢ invariant subspace of V. Define
W ={v"eV*: (v, w) Yw e W}

Then, f, .~ = 0forallw € W, v* € W+ and g € G. That implies f,, ,« € I forw € W
and v* € V*. Thus, X4 fy.« € Igie

XA(fw,v*)(g) = fdﬂ’(A)w,v*(g) =0

Set g = I, then we have (v*, dr(A)w) = 0 for all w € W and v* € W+. Therefore,
dr(A)w € W, which proves the result.
2. LetdimW = d. Consider the dth exterior product AV C ®4V. This forms a G-module.
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Let the basis of W be {w;, ,,wq} and set & = w; A .. A wg. Then AW = C&. Hence W is
a is G-invariant subspace if and only if C¢ is a G- invariant subspace.

Let W be invariant under g. Then for every A € g, A.{ = A(A)E, where A € g*. Let
p € (AV)* such that 11(€) = 0. If we prove pu(g.£) = 0 for every g € G, then we are done.
Define f(g) = pu(g.§) for g € G. Then f € Af f(G).

X47(g) = o1 +14) &0 = AA)f(g), YA€ g

Define
O ={oc Aff(G): Xa(d) =NA)p, VAE}

Claim: dimé&, < 1.
Suppose ¢, 0 # 1 € £,. Now since G is connected, it is irreducible which implies Af f(G)

does not have any zero divisors. Therefore, ¢ /1) is well defined rational function on G and

Xa(0/¥) = (AMA) — 9A(A)) /4 =0,

forall A € g. The vector fields { X4 : A € g} spans the tangent space 7'(G), for all g € G.
Thus, D(¢/v) = 0 for any derivation of quotient field of Af f(G). Thus, we get ¢/1) is a
constant function i.e dimé&, < 1.

If dimé&, = 0, then f = 0 and we are done. If dim&, = 1, take 0 # ¢ € ). Forany z € G,
the function y — v (zy) also belongs to &,. Then i (zy) = c(x)(y), for ¢(x) € C. Set
y = 1, we get ¥(xy) = ¥(x)Y(y) for all x,y € G, that implies ¥)(g) # 0 forall g € G
(since we took ¢ # 0). Then, f = a, for some a € C. But f(1) = 0, which implies a = 0
and hence f = 0.

This completes the proof. []

Theorem 2.2.9. Let G and H be linear algebraic groups. If m : G — H is a regular
homomorphism, then dr : (Lie(G)) C Lie(H) and p : H — K is another regular
homomorphism, then d(p o ) = dp o dn.

Proof. Let f € Iy and A € Lie(G). We know that X (f o m) = (X4r(a)s). Then, for

he H
Xa(fom)(h) = (Xarays)(h)

= L(h™)(Xan(a)(])

= Xan(ay (L))

= XaA((L(h™) f) o m)(1)
L(hY)f € Iy, thus (L(h™)) o w(g) = 0 for all g € G. Thus, we get Xa(f o 7)(h) =
0Y h € H, which implies dr(Lie(G)) C Lie(H).
For the second part of the theorem, set ¢ = p o w. Then do(Lie(G)) C Lie(K). For
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A€ Lie(G)and f € Af f(K),

(Xdo(a)f) = Xa(f o 0)
= Xa(fopom)
- (Xdpdﬂ'(A)f)

Thus, we get Xy,4) = Xapan(a). Therefore, we get do = dp o dr. [

2.2.4 The adjoint representation

Lemma 2.2.10. Let A € Lie(G) and g € G. Then gAg™" € Lie(G).
Proof R(g)f(y) = f(yg) fory.g € GL(n,C) and f € Aff(CL(n,C)). For A € Mj(C),

(R(9)XaR(g")f)(y) = (XaR(g™ ") f)(yg)

d

= ER(Q‘I)f(yg(f + 24)) .0

d
= —flyg(l + 2A)g™ )| a=0

d
= —flg(I+ 29Ag™"))|:=0

= gAg*1f<y>

Suppose A € Lie(G) and f € Ig, then R(g~ ') f € Ig. Thus, X,R(g~')f € Ig , which
implies X 4,-1f € Ig. Therefore,we get gAg~* € Lie(G). O

Definition 6. Define Ad(g)A = aAg™" for g € G and A € Lie(G). Then by previous
lemma, Ad(g) : Lie(G) — Lie(G). The representation (Ad, Lie(G)) is called the ad-
joint representation of G. For A, B € Lie(G), Ad(g)[A,B] = gABg™! — gBAg™! =
gAg'gBg™' — gBg 'gAg™! = [Ad(g) A, Ad(g) B] Thus, Ad(g) is a lie algebra automor-
phism.

2.2.5 Nilpotent and unipotent matrix

A matrix A € M, (C) is called nilpotent if A" = 0 for some positive integer 7. A matrix
u € M, (C) is called unipotent if (v — I) is nilpotent. Determinant of a unipotent element
is always 1.

Let A € M, (C) be nilpotent. Then, A™ = 0. We define exponential A as,

n—1
1
epr:ZEAkZI%-Y,

k=0
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where Y = A + 5 1 5 A?
is unipotent. Conversely, let u € GL(n, C) be unipotent, then u = [ + Y, where Y is

nilpotent. We define [og u as,

n—1 k+1

logu =
k=1
Now, we intend to show that the nilpotent elements of M, (C) is in one to one correspon-
dence with unipotent elements of G L(n,C). For a nilpotent A € M, (C) and z € C, we

define the function
6(2) = log(exp zA)

¢(z) is a polynomial function as zA is nilpotent and ¢(0) = 0. Also
d o(z) =A, forallzeC
—d(z) = or all z .
dz ’

Thus, we get log(exp zA) = zAforall z € C. With the same argument, we get exp(log (I+
2Y’)) = I + zY. Thus, the exponential map is a bijective map from nilpotent elements in

M,,(C) to unipotent elements in GL(n, C), with log as its inverse.

Lemma 2.2.11. (Taylor’s formula) Suppose A € M, (C) is nilpotent and f is a regular
function on GL(n,C). Then there exists an integer k so that (X )" f = 0, and

k—1
1 m
flexp A) = Z % (Xa)™f(I).
m=0
Proof. Since (exp zA) is a polynomial, the function z — f(exp zA) is also a polynomial

in z € C. Then there exists a positive integer k such that

d
()" f(exp 2A) = 0.
Claim : £ f(exp zA) = (Xaf)(exp 2zA) for z € C.

diz and X 4 are derivations, thus it is sufficient to check if the relation is satisfied by the
generating set of regular functions. Recall that the set of functions { fg} as B ranges over
M, (C) and (det)™" generate the regular functions on GL(n,C). Take f = fp for some

B € M, (C), then
d d
@fB(ein zA) = Etmce((exp 2zA)B)
= trace((exp zA)AB)
= faB(exp zA)

= Xafp(exp zA)
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Now, take f = (det)™'. exp zA is unipotent, thus f(exp zA) = 1. Also, Xsf =
—trace(A)f = 0. Thus, f = (det)™" satisfies the relation.
O

Theorem 2.2.12. Let G C GL(n,C) be a linear algbraic group.

1. Let A € M, (C) be a nilpotent matrix. Then A € Lie(QG) if and only if exp A € G.

2. Suppose A € Lie(QG) is a nilpotent matrix and (p, V') is a regular representation of G.
Then dp(A) is a nilpotent transformation on'V and p(exp A) = exp dp(A).

Proof. 1. Take f € Ig. If A € Lie(G), then X4 f € Ig. Thus, (X4)"f € I for all non
negative integers n, which implies (X4)"f(I) = 0 for all n > 0. Therefore, by Taylor’s
formula ( Lemma 2.2.11 ) f(exp A) = 0, implies exp A € G. For the converse part,
suppose exp A € G. Then, define the polynomial map = — f(exp zA). Notice that f
vanishes for all integral values of z i.e f has infinite solutions. Since f is a polynomial, it
should then vanish for all values of z € C. Thus, by Taylor’s formula, we get X 4 f(I) = 0,
which implies A € Lie(G).

2. Take B € End(V'). Then, as we have already seen that f, is a regular function on G.
By Taylor’s formula, there exists a positive integer such that

(Xa)"fR(1) =0

Thus,
(XA)*fH(I) = trace(dp(A)*B) = 0.

This is satisfied for every B € End(V'), hence dp(A) = 0. Now, applying Taylor’s formula

to function f5, we get

trace(Bp(exp A)) = Z %X}fog([)

m>0

= Z %tmce(dp(A)mB)

m>0
= trace(Bexp dp(A))
This holds for all B € End(V'), hence p(exp A) = exp dp(A). O
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Chapter 3
Basic structure of Classical group

In this chapter we study the structure of the classical groups GG and the associated lie algebra
g = Lie(G). We begin by introducing maximal torus of G. We show that for a classical
group G, the subgroup of diagonal matrices H, is a maximal torus and any maximal torus of
G is G-conjugate to H. Finally, we give the structure theorem for Lie(G). By considering
the adjoint action of H and Lie(H) = b on the lie algebra Lie(G), we obtain the root space

decomposition of Lie(G).

3.1 Semisimple and Unipotent elements

3.1.1 Semisimple and nilpotent elements

Definition 7. (Maximal torus) An algebraic torus is an algebraic group T' isomorphic to
(€*), where L is the rank of T. Let G be a linear algebraic group, then a torus T is called

maximal if it is not contained in any larger torus in G.

Let G be one of the classical groups GL(l,C), SL(I + 1,C), Sp(C?%,Q), SO(C?%, B),
or SO(C**1 B). Q and B are the specific bilinear form defined in the subsection 2.2.2.
Let H be the subgroup of diagonal matrices in G.

1. G = SIl(l+1,C). Then
H = {diag[zy,....,x;, (x1...17) '] : 2; € C*}.

and
Lie(H) = {diaglay, ....,a141] : a; € C, Zai = 0}.

2. G = Sp(C% Q) or G = SO(C%, B), then
H = {diag|zy, ...z, x; ", ...,z '] s 2y € C.
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By Corollary 2.2.6.1 and 2.2.6.2, we have
Lie(H) = {diagla, ....,a;, —ay, ...., —aq] : a; € C}.
3. G = SO(C? ", B), then
H = {diag|xy, ...z, 1,2, .. 27t 2y € C.
By Corollary 2.2.6.3, we have
Lie(H) = {diagla, ....,a;,0, —ay, ....., —aq] : a; € C}.
Thus, in all the cases, H is isomorphic to an algebraic torus of rank / and

Aff(H) =Clzy, ...,z ay s o, 2]

Definition 8. For an algebraic group K, a rational character of K is a regular homomor-
phism x : K — C*. X(K) denote the set of all rational characters over K, and it have a

abelian group structure under point wise multiplication.

Lemma 3.1.1. Let T be an algebraic torus of rank . Then X (T) is isomorphic to 7.

Furthermore, X (T') is linearly independent as a set of functions over H.

Proof. We can assume that T = (C*)!. Now for A = [py,ps,,,,m] € Z' and t =

[th t27 19 tl]’ we define
l

=]

i=1
Now, notice that the map ¢t — t* is a rational character and we will denote it by x. The
functions ¢ .¢52....t7" forms the basis of Aff(T) and t**# = t*P. Therefore, the map
A — X\ is an injective homomorphism from Z! to X' (T'). To show the surjectivity, we will
show that every rational character over 1" is of the form yx,, for some . Consider a rational

character y. We define

where ¢ occupies the k-th position. x;’s are one dimensional regular representations of C*.

Then . (t) = t** for some p;, € Z. Hence

X(ty, sty HXZ D) = xalt, o th),

where A = [py, ....., p;]. Thus every rational character is of the form  for some A € Z!. [
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Theorem 3.1.2. Let G be GL(n,C),SL(n,C),SO(C", B) or Sp(C*",), and H is the
subgroup of diagonal elements. Suppose g € G and gh = hgV h € H, then g € H.

Proof. G C GL(n,C). The action of H on the standard basis e; for C" is given by,
he; = 0;(h)e; forl<i<nandhec H

Suppose v € C™ and hv = 6;(h)v for some ¢ and for all h € H. We can write v as,

n
v = E )\iei
i=1

Then, hv = ", \;0;(h)e;. But,

Jj=1

hv = 0;(hyv =Y N;0;(h)e; Vh e H.
j=1

Thus, \;0;(h) = X\;0;(h) for 1 < j <nandforall h € H. But 6;’s are distinct, so we must
have \; = 0 for j # 1.

Assume that g commutes with H. Then,
hge; = ghe; = 0;(h)ge;, Yhe H, i=1,,,,n

Thus, by the result we proved above, we have ge; = \;e;,i.e g € H. L]

Corollary 3.1.2.1. Let G and H be as mentioned above. If T' C G be an abelian subgroup.
If H C T, then H="T. In particular, H is a maximal torus in G.

Theorem 3.1.3. Let T' be a torus. There exists an element t € T such that the subgroup
generated by t is dense in T" with respect to the Zariski topology.

Proof. We can assume that 7' = (C*)'. First we choose a t € T with coordinates x;(t) = t;

such that l

Htf"yél

i=1
for any py, pa,....,pr € Z with some p; # 0 (we can simply choose elements which are
algebraically independent over rationals).

Consider the subgroup < ¢ >, generated by ¢. To show that < ¢ > is dense in 7', we will
show that for any f € Aff(T) if f|.4~ = 0, then f is identically equal to zero. Take
f € Clzy,z7",,, 2,7, "]. Replacing f by (z7'..z;")", for a suitably large r, we can
assume that f € C[zy,,,x;]. Then,

)= Y ae

|K|<p
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Since we have f(t") =0V n € Z, we get

Z ag(t)"=0 Vnez

|K|<p

Claim: {t/} are all distinct.
Suppose not, then we have th =t for k =# m. Then, tk=m = (), which is a contradiction to
the choice of t.

We enumerate the coefficients ax as a; and corresponding ¢;, as y;. Then

T

> ai(y)" =0 forn=01,2,,,r—1

Jj=1

Writing these equations in matrix form we get the coefficent matrix V' (y) as

T T VR |
—1 -2

Yo~ Yo ooy 1
oyt yr 1)

Now det(V(y)) = [1<i;<,(4i — y;). Since we have already proved that y; # y; fori # j,

the determinant in non zero. That implies that a;’s are zero for all k. O]

Definition 9. (Semisimple element) Let G be a linear algebraic group over C, then for

g € G, we say that g is semisimple if g is a diagonalizable matrix.

Theorem 3.1.4. Every semisimple element of G is G-conjugate to an element of H. Thus

G.=|JgHg™!

geG

Proof. We have G C GL(n,C). Let g € G be a semisimple element. Then we have the

eigen space decomposition,
C"=aV,,, gv=Nv forvelV,,

Let A1, Ao, ,, A\, be the eigen values of ¢ ( including the repeated eigen values ) and let
v1, Vs, , ,, U, be the corresponding eigen vectors. We will proceed to prove this theorem
case by case.

For G = GL(n,C) or SL(n,C). Let {e;} be the standard basis of C". We define uv; = e;.
We can multiply v; by suitable constant so that dety = 1. Then, we have 1 € G such that

pgpt € H.
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For orthogonal and symplectic group g preserves the bilinear form w,
w(v, w) = w(gv, gw) = N jw(v, w)

where v € V; and w € V;. That implies w(v,w) = 0 when \;\; # 1. Since w is a
non degenerate bilinear form, we have dimV, = dimV,-1, for A € C. For A # +1, we

enumerate the eigen values of g as A1, Aa, , ,, Ao, such that A 1— Artie Set
Wl - V)\Z EB V)\fl.

Then we have the following observations,

Mm.Cr=VieV, oW, ..o W,

(2). restriction of w to V4, V_; and WV, is non degenerate.

(3). detg = (—1)k, where k = dimV_;.

Take G = Sp(C?",§). Then from (2), dimV; and dimV_; are even. We can find canonical
symplectic basis for each of the subspaces in (1). The union of all this basis gives canonical

basis for C". We enumerate the basis as vy, , , v,, v_1,,, U_, such that
-1 .
gui = Nv;, gqu_; =\ v, fori=1,2...n

Define i such that yuv; = e; and pv_; = eg,11-;. Then by Lemma 2.1.4, we have u € G
and pgp~t € H.

Take G as the orthogonal group, O(C", B) or SO(C", B). Since detg = 1, we have
dimV_q is even from (3). Also dimW; is even. That implies dimV; is odd if and only
if n is odd. Suppose n = 2I, then dimV; = 2r. Like in the case of symplectic group, we

get B isotropic basis for C" and we enumerate the basis such that
qu; = )\ﬂ)i qgu_; = )\ZIU,Z' fOT’ 1= 1, 2, ,l

Define p such that pv; = e; and pv_; = e,11_;. By Lemma 2.1.1, we know that u €

O(C", B). We can interchange v; and v_;, if necessary to get dety = 1. Thus,we have

pgp~t € H.
For n = 21 + 1, we enumerate the basis such that

gup = Vg gU; = NjU; QU_; = )\Z-_ll)_i forl1=12,..1

Define p such that pvy = v, pv; = e€; and pv_; = e,y1-;. Then, by Lemma 2.1.1,
uw € O(C", B). Replace u by —p if necessary so that p € SO(C™, B). Then, we have
pgp~t € H. O
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3.1.2 Unipotent generators

For the group G = SL(2,C), consider the subgroups consisting of unipotent elements of

Nt = 'Y apec
0 1 b1

Lemma 3.1.5. SL(2,C) is generated by N U N.

the form

Proof. Elements of SL(2,C) are of the form

b
[a ] ad —bc=1
c d
We will proceed in cases.
Case 1: When a # 0. Then we have d = o' + a~'cb. Then

ab_l()a() 1 a '
c dl  late 1110 a '] |ec 1

Case 2: When a = 0, then we have ¢ # 0 and b = —1/c. Then

R B R T

0 0 —
If we show that d(a) = ¢ for a € C* and
0 at 1

] is also generated by elements

of N and N, then we are done.
0o —1] [t 1]t o] 1 —1
1 o o 1]t 1]]o 1
0 — 1 o |1 1 1 0
day=1| ~"°
0 1 at—1 1110 1| ]la—1 1

Hence proved. O

Theorem 3.1.6. Let G be SL(I+1,C),SO(2l+1,C), Sp(2l,C) withl > 1, or SO(2l,C)
with | > 2. Then G is generated by its unipotent elements.

Proof. We have G C G L(n,C). Let G’ be the subgroup generated by unipotent elements
of the group GG and H be the subgroup of diagonal elements.
Fact: Suppose g € G is unipotent i.e (g — I)"” = 0 for some n € Z, then any conjugate of
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g is also unipotent.
For some h € G,
(hgh™ — I)" = (hgh™ — hh™1)"
=h(g—I)"h™"
=0.

By Jordan decomposition ( cf. [H]), we know that any g € G can be expressed as product
of a unipotent element and a semisimple element. Combining this with the fact that every
semisimple element is the conjugate of diagonal element, it is enough to prove that the sub-
group of diagonal elements H € G is generated by unipotent elements in order to prove

that G’ = GG. We will proceed to prove this case by case using induction.

Case 1: G = Si(l +1,C).

for [ = 1, we have already showed that SL(2,C) is generated by its unipotent elements.
We assume the result holds true for [ = n — 1.

For [ = n, let H be the subgroup of diagonal elements of SL(n,C) as mentioned above.
For h € H, let h = diag[zy,xs,,,,x,]. Then, we write h as h = h'h”, where ¥ =
diag[zy, 7", 1,1,,,, 1] and " = diag[l, v12s, T3, , , , Tp).

Let (G; denote the subgroup of matrices of the form

o 0 where a € SL(2,C).
0 In72

We get G; = SL(2,C).

Let (G5 denote the subgroup of matrices of the form

10
whereb € SL(n —1,C).
0 b

We get Gy = SL(n — 1,C).

Now h' € G7 and h” € (G5, thus by induction hypothesis 4’ and ~” and products of unipo-

tent elements. Thus / is product of unipotent elements.
Therefore H C G’, which implies G = G'.

Case 2: G = Sp(2[,C).

A skew symmetric bilinear form over complex is standard, thus it is enough to prove the

result for any one skew symmetric bilinear form, as any other form will be equivalent to it.
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We take the bilinear form

First we intend to show that Sp(C? w) = SL(2,C). For that consider v,w € C?. Let

v = (v1,v9) and w = (wy, ws). Then

0 1| |wy
w(v,w) = [vy, Vo] [_1 0] [wJ

= V1W2 — V2W2
= det [Ul wl]
Vo Wo

Thus, we have w(v,w) = det[v, w]. Now for g € GL(2,C), w(gv, gw) = det(g)w(v, w).
That implies g € Sp(C?,w) <= det(g) = 1. Therefore, Sp(C? w) = SL(2,C).
Now we apply induction on [. For [ = 1, we have already proved that Sp(C? w) is gener-
ated by unipotent elements. Therefore result holds for [ = 1.
We assume result holds for [ = n — 1. Now for [ = n, we have to show that Sp(C*", w)

1 -1
.ys, 27 ). Then

we can write h = h'h", where I’ = diag|r1,1,,,,1, 27 and b = diag[1, zo, 23, ,,, 25", 75", 1].

is generated by unipotent elements. For h € H, h = diag[z1, xa, , ,, Tp, T

Define Vi = span{e, ey} and Vo = span{es, es,,,, ey 2,21} We see that C* =

V1 @ V. Restriction of w to V; and V5 is non degenerate, thus we define
Gi={geGlgVi=Viand g=1onVs}
Go={g€G|lg=TITonV;and gVo =V}

Now observe that G; = Sp(C?,w) , G2 = Sp(C*~?,w) and K’ € Gy and I € G, Thus
by induction hypothesis both A’ and h” are product of unipotent elements, which implies
that  C G'.

Case 3: G = SO(2[,C) or G = SO(2l + 1,C) for [ > 1.

Since symmetric bilinear form over complex is standard, we only need to show the result
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for any one bilinear form. Consider the bilinear form over C"

5: [ 0 80]
—S0 0

or
0 0 S0
=10 1 0
—3S0 0 0

depending upon the parity of dimension n. First, we will show that SO(C3, §) is generated
by unipotent elements.

Take G = SO(C?,§). We will define a homomorphism p : G = SL(2,C) — G such
that p takes H ( subgroup of diagonal elements of G ) onto H. Set V = {X € M;(C) :
trace(X) = 0} and the action of G' on V is defined by p(g)X = ¢gXg' ( the adjoint
representation of G ).

Consider the symmetric bilinear form w(z, y) = 3trace(zy). Notice that w is non degen-

erate and invariant under p(g), thus we have w-isotropic basis for V,

1 0 0 V2 0 0
vy = v = Vo =
"o -1 "o oo V2 oo
We identify V' with C? with the following identifications,

V1 — €1 Vg —> €y V_1— €3

With this identification we have w = &, which implies p(G) C O(C3,6). But since G is
generated by unipotent elements and p maps unipotent elements to unipotent elements, we
have p(G) C SO(C3,5) = G. Now for h € H, we have h = diag[z, z'].

p(h)vo =vo p(h)vy = 2%v; p(h)v_y =2 %v_,

Therefore, vy, v; and v_; are the eigen vectors of p(h). Thus, for any h € H , where
h = diag[z, z_], we have b’ € H such that b’ = diag[z, 1, 2], which implies p(H) =
H. Thus H C G, which implies SO(C3,§) is generated by unipotent elements. Thus

SO(3,C) is generated by unipotent elements.

Now the next step is to show that G = SO(4,C) is generated by unipotent elements.
We follow the same procedure as before. Take G = SO(C*, §) and we will define a homo-
morphism p : G — G, where G’ = SL(2,C) x SL(2,C), such that p maps H onto H.

Set V' = M,(C) and we define the action of p(a,b) on V as p(a,b)X = aXb~*, for
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(a,b) € G. Define a symmetric bilinear form B on V' given by,
B(X.,Y)=det(X +Y) —det(X) — det(Y)
B is a non degenerate bilinear form over V', thus we have B-isotopic basis of V/, given by
v1=FEn, vg=FEip, v ==FEyn,v9=—Ey

Upon identification with C* we get that B = § and p(é) C G. Following the same
procedure are before, we get that p(H) = H, thus proving the theorem for G = SO(4, C).
Now we consider the group G = SO(n,C) for n > 5. Notice that SO(2[,C) can be

embedded inside SO(2] + 1, C) by

a 0 b
a b
— 10 1 0
c d
c 0 d

The diagonal elements of SO(2[, C) is isomorphic to diagonal elements of SO(2! + 1, C).
Therefore it is sufficient to prove that diagonal elements of SO(I, C) is generated by unipo-
tent elements when [ is even.

Consider G = SO(2[,C) for 20 > 4. We have already seen that for [ = 2, SO(4,C) is
generated by its unipotent elements. Assume that the result holds for{ =n — 1 > 3.

For | = n, we have
~ -1 -1
h:dzag['rlax%amxnvxn77HI1 ] fOThGH

We can write h = h'h”, where

/ : -1 -1
h :dlag[$17$2,1,,”7,171’2 y Lq ]

-1

h” = diag[1,1,$3,$4,,,7,,1'21,1'3 7171]

_ _ 2n __
Define Vi = span{ey, ez, €an_1, €20} and Vo = span{es, es, , ,, €2n_3, €2n_2}. Then C*" =

V1 @& V5, and restriction of B to V; and V5 is non degenerated. Set
Gi={9€G:gVi=Viand g =1 on Vs}

Then G, = SO(4, C).Define W = span{ey, es, } and Wy = span{es, €3, ,,, €an_2, €2n_1}-
Then C?" = W; @ WS, and restriction of B to W, and W, is non degenerated. Set

Go={9g€G:g=1onW;and gWy = Ws}.
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Then G5 = SO(2n — 2,C). Now 2n — 2 > 4 and b/ € Gy, " € (5. Then by induction
hypothesis both A’ and A" is product of unipotent elements, which implies H C G’. This
completes the proof. O

Theorem 3.1.7. The algebraic groups GL(n,C),SL(n,C),Sp(n,C) and SO(n,C) are

connected with respect to Zariski topology.

Proof. We have already seen that GL(n, C) is connected as its a principal open set. In the
case of SL(1,C) and SO(1,C), both groups are trivial. For SO(2,C), we have already
seen that its isomorphic to GL(1,C), which shows that its connected. For the rest of the
groups, by the previous theorem we know that it’s generated by its unipotent elements. It is
sufficient to show that Aff(G) does not have any zero divisors. Let f € Af f(G) such that
f#0.Leth € Af f(G) such that fh = 0. We need to show that then h = 0. Let g € G,
then we have g = ¢19-....9,, Where each g; is an unipotent element. Since we know that
unipotent elements and nilpotent elements are in bijection by the exponential map, we can

write g = exp X7 exp Xs.... exp X,,, where each Xj is a nilpotent element. Define
o(t) = exp Xyt exp Xat.....exp Xt

t — ¢(t) is a regular function from C to G(since X;’s are nilpotent). Now f o ¢ # 0 and
(f o @)(ho¢) = 0. Now since C is irreducible, Af f(C) cannot have any zero divisors.
Thus, we get ho ¢ = 0,1i.e h(g) = 0 forevery g € G. So h = 0. O

3.2 Adjoint representation

3.2.1 Roots with respect to a Maximal torus( we have mainly focused
on the cases when G = GI(n,C))and G = SL(n,C))

Let GG be a connected classical groups of rank [ and g be the corresponding lie algebra. H be
the subgroups of diagonal elements and h be its lie algebra. Let x4, ,, z; be the coordinate
functions of H.

We are trying to find a basis for h*, the set of linear functionals on b.

1.G = GL(I,C).
Let (; denote the functional on H defined by ((;, A) = a;. Then, we can easily see that the
set {(1,,,(;} forms the basis for h*.

2.G=SL(l+1,C).
Restricting (; defined above to h,we see that (; is an element of h*. Every element of

b* can be written as Zig AiG. Also Zig A; = 0 (since every element in f is such that
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sum of diagonal elements is zero). Thus, we get the {¢ — 14%1 ((1+...+ (1) forms the basis.

Let X' (H) be the group of rational characters over H. We have already seen that X'(H)
is isomorphic to Z'. We can see characters as one dimensional representations, thus it make
sense to talk about differential of characters.

Define P(G) = {df : 0 € X(H)} C b*. Given A = \,(; + ... + N(, where \; € C, let e
be a rational character defined by the A = (A1, ,,, A;). Then we claim that

de*(A) = (N A), forAch (3.1
Proof. We know that X4 = Zw aijXp,;. Here we have a;; = 0 fori # j and Xg,, =

> 20/ 0x,;. Thus we get for A € h, X4 is defined by

Xa= (G A)zimy— (3:2)

on Clzy, 21, ., 2,27t
We know form differential of representation, X 4(fc o m)(/) = far(a)c(I), where (7, V) is
a regular representation and fo € End(V'). Apply this result,

Xa(fee)I) = faerayc(I), where fo € End(C)

putting fo =1
Xa(€MI)) = farn ()

X4(eM(I) = de*(A) (3.3)
from 3.2 and 3.3, we have

deM(A) = Xa(at ..o (1)
=Y A>x@-%<xil..--x?l>u>
= Z(Q,AMi
= (\A)

which proves our claim. [

From 3.1, we see that P(G) = @2:1 Z¢,. Thus, P(G) is a free abelian group of rank !
in h*, and is called weight lattice of G.
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Adjoint action of H and ) on g.

For a € b*, let
0o ={X €g:[AX]|= (0, A)X, forevery Ach}

If a # 0 and g, # 0, then « is called the root and g,, is the root space.If « is a root then a
nonzero element of g, is called a root vector of a. Let ¢ denote the set of roots of g, and is

called the root system of g. Suppose « be a root and X be a root vector of «, then for every
Aeb,

= AX" - X'A
= A'X" — X'A" (since A is a diagonal matriz)
=—[4,XT]"
= —{a, A)X"
Thus, —« is also a root with X* as root space.

Remark: The classical groups are closed under transposition, thus if X € G, then X! € G.
Root system for Classical groups

1. G =GL(n,C)
g = M, (C).Let E;; be the basis of g. For A = diagla,,,a] € b,

The roots are {(;—(; : 1 <1i,j <I,i # j} and the root space g, = CE;;, where A = (;—(j.
2.G=SL(l+1,C)

Similar as the above calculation, The roots are {¢; — (; : 1 < 4,5 <1+ 1,7 # j} and the
root space gy = CE;;, where A\ = (; — (j.

3.2.2 Structure theorem for g

Theorem 3.2.1. Let G be a classical group and H C G be a maximal torus. Let g and b
be the lie algebra of G and H respectively. Let ¢ denote the root system of h) on g,

L Ifa€ ¢ thena € P(G), dimg, =1landg=b® > ., 0

2. Ifa € pand ca € ¢ for c € ¢. then c = *1.

3. The symmetric bilinear form (X,Y") = trace(XY') on g is invariant i.e

45



([Xv Y]7Z) = _<Yv [Xv Z])7

for X.Y 7 € g.
4. Let o, B € ¢ and o # —[5. Then (h,9,) = 0 and (ga, 93) = 0.
5. The form (X,Y') on g is non degenerate.

Proof. 1. Straight from the calculations we made for classical groups.

2. Straight from the calculations we made for classical groups.

(X,Y],Z) =trace((XY — Y X)Z)
=trace(XYZ —-YXZ)
=trace(YZX —YXZ)
=trace(Y(ZX — X 7))
= (Y12, X])
= -V, [X, Z])

4. Take X € g, and Y € gg such that o« # — . Then by (3), for A € g, we have,

+ (X, [A,Y])
X, (8, A)Y)

—~

Now, a + 8 # 0. We can choose suitable A € g such that (o + 3, A) # 0. This forces
(X,Y)=0.
Similarly, when we take Y € b,

0= ([A,X],Y) + (X? [A7Y])
= (o, A)(X,Y)

We can choose A suitably such that (a, A) # 0. This forces (X,Y) = 0.

5. We need to prove that restriction of trace form to h x h and g, X g_, are non de-
generate for every o € ¢.
For X, Y €0,
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n

trace(XY) = Z G(X)G(Y)

i=1

Thus trace form is non degenerate on h x .

Now for a € ¢, let X,, € g,. Then, X, X _, is given by
Xe—¢; X = L,

forl <i<j<Il+1.
Thus, the trace form is non degenerate on g, X g_.

47



48



Chapter 4

Intertwiners of arbitrary tensor product

representations

Let g be a simple finite dimensional lie algebra over C. Let {V;}}", be a finite family of
finite dimensional irreducible representations of g. Then ®!' ,V; is a finite dimensional

g-module where, forz € gand v; ® ..... v, € Q14 Vi,

r0 X.... Qv, = Zvl Xt RV Q.. @ Uy,
i=1
By Weyl’s complete reducibility theorem we know &' ,V; is completely reducible as a
g-module. One of the engaging problems in this field is to determine the irreducible g-
modules of ®?_,V; or equivalently, to determine the dimension of Homy(V,®}_,V;), for
any finite dimensional irreducible g-module V.
Many results along this direction have been proved [K]. Recently in [S], this problem has

been studied using the representation theorey of the associated current algebra g ® C[t].

4.1 Setup

Let g be a finite dimensional simple lie algebra over C and C[t] be the polynomial algebra

in one variable, then g ® C[t] is a lie algebra with the lie bracket defined as follows:

[2(P),y(Q)] = [z,y](PQ), forx,ycg,P,QecCl],

where z(P) denotes = ® P. This lie algebra is called the current algebra associated with g.
Let U(g ® C[t]) denote the universal enveloping algebra of g ® C[t]. For = >, 2} ® 24 ®
. @zt € [g?*]9, and any P, ...., P, € C[t],
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Lemma 4.1.1. 0(P,,, P.) commutes with g i.e [g,0(Py,,,, P.)] = 0.

Proof. Let T'(g ® A) denote the tensor algebra of g ® A. Then we have the quotient map,
m:T(g® A — U(g® A). Consider §(P,,,, P,) € T(g ® A) defined by,

0Py, P) =Y 2i(P)® ... 0 2} (P).
Now, for any y € g,

[yu Plauypk szl Pl ® ®[y7 ]](PJ)®®$;€(PIC)

9(P)®..®@9(P) 2 g® ... ®gas a g-module and [g, §] = 0. Thus, we get
[y7é(P1777Pk)] =0

Also, 7(0(P,,, P)) = 0(Py,,, Py). Therefore, we get [g,0(Py, ,, P)] = 0. O

Given a k-tuple of integers (ny, ....,n), and 6 € [g®*]9, set

Lemma 4.1.2. For a finite dimensional simple lie algebra g, the subalgebra [U(g]t])]® of
U(glt]) is spanned by {6(ni,,,ni)}, where 0 ranges over homogeneous elements in the
basis of [T'(g)]® and for k = deg 0, (n1, ....,nx) € Z%, such that ny < ny < ..... < ng.

Further, [U(g[t])]® is generated (as an algebra) by {0(n1,,,ny)}, where 0 runs over ho-
mogeneous algebra generators of [T(g)]® and for k = deg 0, (n, ....,ny,) € Z%, such that

Proof. We have the quotient map

7 T(g[t]) = U(g[t])

Notice that {t"}, for n > 0 forms a homogeneous basis of C[t]. Thus, g[t] = €, 9(n),
where g(n) = g ® t". Thus,

@ @ (n1) ® .. ® g(nx)

k>0 ni,np€Z

= @ EB nl, , k], as g — modules

k>0 ni,nip€Z

where g®*[ny, ......nx] = g(ny) @ ... ® g(ny). Now from the surjective homomorphism



m, we get the map
[T(glt)]* — [U(alt])]*®

Hence,
Tl =D @ o Pl
k>0 ni,ny,€Z

Thus, we get that {6(ny,,ni)} spans [T'(g[t])]?, where 6 runs over homogeneous basis of
[T(g)]? and for k = deg 6, n;’s are non negative integers ( {0(n1, ,n;,)} denote the element
in [T'(g[t])]? as in the proof of Lemma 4.2.1 ). From this surjective algebra homomorphism,
we get that {6(nq,,,ny)} spans [T'(g[t])]®. Similarly we get that, {0(n4,,,n;)} generate
the algebra [T'(g[t])]%, as € runs over the homogeneous algebra generators of [7'(g)]? and

]

4.2 Main result

It is well known that there is a one-one correspondence between the finite-dimensional
irreducible modules for a simple finite dimensional complex Lie algebra g and the set of
dominant integral weights P*(g) of g.

For A € P*(g), let V() be the corresponding finite dimensional irreducible g-module and
for (A1, ..oy M) € (PH(@)E), et VX)) = V(A ®.....®V(\). Given 5= (p1, ..., pi) €
C*, one can consider V (X) as a g[t]-module by defining the g[t] action on V (X) as follows:

k
z(P).(v ® ... @ vg) = ZP(pi)vl R ... QT R ... D Uy,

i=1
forx € g, P € C[t] and v; € V,,. We denote such a g[t]-module by VI;(X) and refer to them
as evaluation modules for g|t]. It was proved in [C], that Vj(X) is an irreducible g[t]-module
if and only if p; # p; for ¢ # j. Using this fact, an alternative approach to tackle the tensor
decomposition problem of the g-module V (X) was given in [S]. Let Vﬁ(X) =D, Vﬁ(X) 1]
be the g-module decomposition of V() into its isotypic components, where Vj(\)[u] de-
note the g-isotypic component corresponding to ;1 € P (g). ( Isotypic components of
weight p of a lie algebra module is the direct sum of all irreducible submodules which is
isomorphic to highest weight module with weight . )

For g € g, u € [U(g[t])]?

lg,u].(v) = g.(uv) —u.(g.v), forvée Vﬁ(X)

But, [g, u| = 0, Thus we get g.(u.v) = u.(g.v), i.e the action of g commutes with the action

of [U(g[t])]® on Vz(A). Thus, we get an action of g x [U(gl[t])]® on V;(\) stabilizing each
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isotypic components.

Theorem 4.2.1. Let g be a simple finite dimensional lie algebra. Then each isotypic com-
ponents of %»(X), V;;(X) (1], where i is the highest weight, is an irreducible module of

g x [U(g[t])]".

Proof. We will denote V;(\) by W and the isotypic component V()] as W [u]. Choose
a Borel subalgebra (cf. [H]) b of g. Since W|u| is g- module, we can see W{u] as a b-
module. Then, W{u], as a b-module, decomposes into isotypic components. Let W {u]™
be b-isotypic component. Then, [U(g[t])]® acts on W |u|*. From the representation W, we

have the ring homomorphism,
¥ U(glt]) = Endc(W)

Since W is an irreducible g[t]-module, by Burnside’s theorem (cf. [L]), ¢ is a surjective

homomorphism. From 1), we get the surjective homomorphism,
W [U(glt)]® = Endg(W) = Endg(W[pl),

where Endg(W) is the space of g-module endomorphisms of /. Taking the projection
from Endy (W) to Endy(W[u]), we get the surjective map,

Yy (U] = Endy(W(u]) = Ende(W[u]")
Since, the map is surjective, we get W[u|™ is an irreducible module of [U(g[t])]®. From this
the theorem follows. [

From the above theorem we get that there is a correspondence between Hom, (V,;(X) (], Vi(
and irreducible modules of g x [U(g[t])]%, where p is the dominant integral weight of g,
which gives an alternate approach to the study of the g-isotypic components of tensor prod-

ucts of finite dimensional g-modules.
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