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Abstract

Atomic and molecular stabilization in extremely intense laser fields has been studied

extensively over the past few years in the field of laser-atom physics. Though this

might sound counter-intuitive to the process of ionization, there have been a number

of theoretical studies to prove this idea and a few recent experiments which give direct

evidence of this concept. Here, we examine this phenomenon of stabilization in the high-

intensity regime for benzene using a circularly polarized pulse. Atoms have been studied

previously in a circularly polarized pulse and their behavior suggests an interesting

outcome for benzene. One of the applications of this outcome could be to gain a temporal

control over proton migration through the center of benzene provided we use the right

set of laser parameters. This is a fascinating phenomenon to think of when we remember

that there is a π electron cloud above and below the ring due to which the field free

benzene molecule will not hold the proton at the center.



Chapter 1

Introduction

The wave-particle duality of light and matter has been studied extensively since its

discovery in the 20th century. Although the electromagnetic theory of light, proposed

by Faraday and studied by Maxwell in the 19th century, gave rise to many new inventions

like the radio, television and wireless communications, it was not sufficient to describe

other visual effects of light such as spectral lines. The development of quantum theory

of light by Max Planck in the 20th century was necessary to describe the interactions

of light with matter at an atomic and molecular scale. Later, experiments such as

two-slit interference and diffraction of electrons showed that even electrons could be

both particles and waves giving rise to the branch of quantum mechanics. Quantum

mechanics looks at the wave nature of particles like electrons. The equation of motion

for the electron is given by the Time-Dependent Schrödinger equation,

i~
∂Ψ

∂t
= ĤΨ (1.1)

where i is the imaginary unit, ~ = h/2π and h is Planck’s constant, Ĥ is the Hamiltonian

operator for the observable, energy, and Ψ is the wavefunction of the electron which

contains all the information about the electron. The forthcoming section describes the

nature of a Hamiltonian when electrons interact with light.

1
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1.1 Light-matter interaction and the Time-Dependent

Schrödinger equation

There are three different approaches to explain the phenomena arising due to light-

matter interaction - classical, semi-classical and quantum mechanical descriptions. In

the semi-classical theory, light is treated as an electromagnetic wave and the atoms are

quantum mechanical objects. In the quantum approach, light and atoms are quantized

using field theory. Semi-classical methods are widely used to understand absorption and

scattering while the quantum methods have more recently been developed to understand

processes such as spontaneous emission and Lamb shift. [1] In this thesis, a semi-

classical approach is followed which is sufficient to understand the behavior of atoms

and molecules in the presence of time varying strong fields.

In order to understand the effect of intense electromagnetic fields on particles, the form

of the Hamiltonian defines the system under study.

1.1.1 Gauge invariance

The Time-Dependent Schrödinger equation (TDSE) for an electron in an atom in an

oscillating electric field is:

i~
∂Ψ

∂t
= ĤΨ (1.2)

Ĥ =
1

2me
[~p− e

c
~A(~r, t)]2 + eφ+ V (~r) (1.3)

where me is the mass of the electron, ~p is the electron momentum operator, e is the

charge of the electron, V (~r) is the binding potential of the atom and ~A and φ are known

as vector and scalar potentials respectively.

Scalar potential is the term given to any scalar function which is the gradient of a curl-

less field and vector potential is the term given to any vector function which is the curl of

a divergence-less field. [2] The vector and scalar potentials ~A and φ are gauge dependent

quantities. They change across different gauge transformations to keep the total system

invariant under these transformations. From Maxwell’s equations, we know that

~∇. ~B = 0 (1.4)

~∇× ~E + ∂ ~B/∂t = 0 (1.5)
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Differential calculus tells us that the divergence of a curl and that the curl of a gradient

are always zero. Hence, we can write ~B = ~∇ × ~A. Substituting this in the second

Maxwell’s equation above, we get ~E = −~∇φ− 1
c
∂ ~A
∂t . ~A and φ do not uniquely specify ~E

and ~B. They can be written as

~A′ = ~A− ~∇χ (1.6)

φ′ = φ− 1

c

∂χ

∂t
(1.7)

where χ is known as the gauge function. Transforming ~A and φ does not change the

electric and magnetic fields. This transformation of the potentials is called a gauge

transformation and the the invariance of the fields and hence Maxwell’s equations under

such a transformation is called gauge invariance.

The Schrödinger equation for charges in oscillating fields remains invariant under a gauge

transformation if the wavefunction transforms as

Ψ⇒ eiχΨ (1.8)

Depending on the gauge function, we can have multiple solutions for the scalar and

vector potentials. Introducing a constraint to this solution to solve for a particular

solution is known as gauge condition or gauge fixing. [3],[4] We can set φ = 0, which

gives us the radiation gauge. Next, we apply the Coulomb gauge:

~∇. ~A = 0 (1.9)

On replacing ~p with −i~~∇ in the position representation and applying the radiation

gauge, and rewriting the TDSE, we get

(
1

2me
[i~~∇+

e

c
~A(~r, t)]2 + V (~r)

)
Ψ(~r, t) = i~

∂Ψ(~r, t)

∂t
(1.10)

Applying the Coulomb gauge,

− i~[~∇.( ~AΨ) + ~A.~∇Ψ] = −i~[(~∇. ~A)Ψ + ~A(~∇Ψ) + ~A.∇Ψ] = −2i~ ~A.~∇Ψ (1.11)
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the TDSE becomes

(
1

2me
[−~2∇2 − i~2e

c
~A(~r, t).~∇+

e2

c2
~A2(~r, t)] + V (~r)

)
Ψ(~r, t) = i~

∂Ψ(~r, t)

∂t
(1.12)

This equation contains the semi-classical Hamiltonian which is valid in the strong field

regime. An external field is considered strong when it’s strength is comparable to the

strength of the electrostatic field in atoms and molecules. This is discussed in detail in

Sections 1.2 and 1.3.

1.1.2 Dipole approximation

Another important point to consider in the TDSE is the size of the atom in comparison

to the field. As the size of atom is small when compared to the wavelength of the

electromagnetic wave, ~k.~r << 1 where |~k| = 2π/λ (λ is the wavelength of the field and

< ~r > is the size of the atom). To get an idea of the size of the atom in comparison to

the wavelength, let’s take λ = 300 nm in the ultraviolet region and < r > = 0.0529 nm

for a hydrogen atom, then, <r>
λ = 1.763 × 10−4. Hence, the expansion of the electric

field as Taylor series can be truncated by ignoring the position dependent terms.

~E(~r, t) = f(t) ~E0e
(i(~k.~r−ωt)) (1.13)

= ~E0e
i~k.~re(−iωt) (1.14)

where f(t) is the wave envelope term (say, sin2(t)), ω is the frequency of the wave and

| ~E0| is the amplitude of the wave. Expanding ei
~k.~r:

~E(~r, t) = f(t) ~E0(1 + i~k.~r − 1

2!
(~k.~r)2 − i 1

3!
(~k.~r)3 + ...)e−iωt (1.15)

Ignoring the higher order terms which include ~k.~r because of the dipole approximation;

the time varying electric field can be written as:

~E(t) ≈ f(t) ~E0e
−iωt (1.16)

The vector potential within the dipole approximation has the form:

~A(t) = −f(t)c
~E0

ω
ie−iωt (1.17)
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Since the vector potential is independent of ~r with implications of spatial homogeneity,

the magnetic field, ~B = 0. The TDSE after applying the dipole approximation is now

written in what is known as the velocity gauge as:

(
1

2m
[−~2∇2 − i~2e

c
~A(t).∇+

e2

c2
~A2(t)] + V (~r)

)
Ψ(~r, t) = i~

∂Ψ(~r, t)

∂t
(1.18)

In Chapter 2, a specific form for the above equation is chosen to describe atoms and

molecules in the presence of a high intensity radiation. The next section looks at the

various physical processes that have been observed under intense laser fields.

1.2 Ionization processes in intense fields

The advancement in laser technology has made possible the study of the interaction of

atoms and molecules with fields of intensities of the order of 1014 W/cm2 or higher.

Some of the interesting phenomena observed under such high intensities include multi-

photon ionization, [5] tunnel ionization and barrier suppression ionization.

Multiphoton ionization (MPI), as the name suggests, occurs when more than one pho-

ton is absorbed for ionization. This means that transitions which have energy less than

Ip (Ionization potential) are allowed. If the energy of an n-photon (n > 1) absorption

exactly equals the Ip, the process is a MPI whereas if the the number of photons ab-

sorbed are greater than the Ip the process is more specifically known as Above-Threshold

ionization (ATI). Generally, ATI requires fields of intensity greater than those required

for MPI. [6] Tunnel ionization (TI) is possible at low-frequency, high-intensity fields.

The intensity is relatively higher than that required for multiphoton ionization. This

becomes clear from the following physics: at high intensities, the potential gets dis-

torted and begins to oscillate with the frequency of the field. For a sufficiently low

frequency, the potential oscillates slowly and the electron can tunnel fast enough before

the field changes its sign and the barrier no longer remains suppressed. Quantitatively,

the Keldysh parameter [7] is used to determine the possibility of the ionization process.

The Keldysh parameter, γ, is a ratio of the tunneling time to the time period of the

laser field. When γ >> 1, TI is more likely and when it is greater than or equal to

1, MPI is more likely. When the intensities are further increased, the field suppresses

the potential and this leads to barrier-suppression ionization, a phenomenon where the
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electron can easily ionize over the barrier.

Another interesting process which occurs is the high-order harmonic generation (HHG)

which can be explained using the three-step model. In this process, the three main steps

are as follows: first, the electrons undergo tunnel ionization under high intensities, then,

they accelerate in a free field and finally, they recombine with the parent ion to gener-

ate high energy photons. [8], [9] The intensities required for these ionization processes

are typically of the order of 1014 − 1015W/cm2. Surprisingly, when the strength of the

electric field is comparable to or higher than the binding electrostatic field of atoms and

molecules, there is a possibility of suppression of ionization. This leads to the formation

of the Kramers-Henneberger atom, which is discussed in the next section.

1.3 The Kramers-Henneberger atom

To get an idea of the intensities required to form the Kramers-Henneberger atom, the

intensity (I) of a field calculated as

I =
1

2
νcε0| ~E0|2 =

P

4πr2
(1.19)

where ν is the refractive index of the medium, c is the speed of light, ε0 is vacuum

permittivity, | ~E0| is the amplitude of the electric field and P is the power of the field

equals 3.51 × 1016 W/cm2 (= 1 a.u.) for the hydrogen atom. This is calculated for

an electric field of amplitude E0 = 5 × 109 V/cm and atomic radius a0 = 0.0529 nm.

The atom is inseparable from the external field. Such intense external fields can no

longer be considered as a perturbation to the system. In order to easily understand

the behavior of the electron, we move to the electron’s frame of reference and observe

the change in the potential. This change of frame of reference is simply a unitary

transformation of the wavefunction in Eq. [1.17] and is referred to as the Kramers-

Henneberger transformation. [10]

This phenomenon has been referred to as atomic stabilization although this can also

be used to stabilize molecules atop barriers. Once we move to the electron’s frame

of reference (also called the accelerating frame), the potential term becomes a time

dependent periodic function and can be expanded as a discrete Fourier series. Under

high frequencies, the higher order time-dependent potential terms oscillate extremely
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fast and can be neglected within something like a rotating wave approximation. The

only significant contribution comes from the first term in the series which is a time

averaged potential. For a linearly polarized field this time-averaged potential looks like

that of a diatomic molecule for the hydrogen atom with the distance between the two

wells given by 2α0 where α0 = eE0
meω2 and ω is the angular frequency of the field and

E0 is the maximum amplitude of the field. [11] For a circularly polarized field, the

potential and the electronic cloud for hydrogen were observed to form a torus-shaped

object with a radius of α0. Note that for a circularly polarized field also, α0 = eE0
meω2 ,

but here E0 = k
√

I0
2 whereas for a linearly polarized pulse, E0 = k

√
I0. [12], [13] I0

is the intensity of the field and k is a constant. The physical meaning of α0 is this: it

defines the amplitude of oscillation for an electron in a field.

A number of systems apart from the hydrogen atom in linearly and circularly polarized

fields, [14], such as multiply charged anions of hydrogen [15], simple diatomic molecules

like hydrogen and helium [16], [17] and two electron quantum dots [18] have been studied

using this method. Experiments have also shown evidence for the formation of such

stable atoms in the presence of a linearly polarized field. [19]− [22]. A detailed analysis

of the experiment by Eichmann. et al [20] which produced He and Ne atoms with

accelerations up to 1015 m/s2 was done by Wei. et al. [23] Here, they showed that the

KH force played a significant part in the acceleration of He and Ne atoms in intense

laser fields. Recently, Richter et al. [24] have even found ways to visualize the electronic

structure of these laser-dressed atoms using photoelectron spectroscopy. The direction

of oscillation of the field plays an important role in deciding the behavior of the atoms.

In the next section, three major classifications of light based on the direction of the

oscillations of the field are discussed.

1.3.1 Polarization

Polarization is the process of restricting the direction of the oscillations of light using a

polarizer. An unpolarized electric field oscillates randomly in all directions. Depending

on the orientation of the polarizer(s) used, we get linearly, circularly or elliptically po-

larized field.

Fig.(1.1) shows the forms of the real parts of linearly, circularly and elliptically polarized

fields. Linearly polarized field has waves oscillating only in one direction (here the x
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direction),

E0 cos(ωt)x̂ (1.20)

while circularly polarized field has waves of equal amplitudes oscillating in two directions

(x and y) with a phase difference of ±π/2.

E0(cosωtx̂+ sinωtŷ) (1.21)

Elliptically polarized field has waves of unequal amplitudes oscillating in two directions

(x and y) with a phase difference of ±π/2.

E01 cosωtx̂+ E02 sinωtŷ (1.22)

E0 and ω are the amplitude and angular frequency of the field respectively.

In case of the circularly polarized field, the amplitude of the field along the x and y

direction equals 1 a.u. whereas for the elliptically polarized field, the amplitude along x

axis is 1 a.u. whereas along y axis, it is 0.1 a.u. In this thesis, we study benzene in a

Figure 1.1: a) Linearly polarized field E0 cos(ωt)x̂ b) Circularly polarized field
along x-y axes E0(cosωtx̂ + sinωtŷ) c) Elliptically polarized field along x-y axes
E01 cosωtx̂ + E02 sinωtŷ; E0 is the amplitude of the field and ω is its frequency. The
linearly polarized field is seen to oscillate only along the x axis while the circularly and
elliptically polarized fields oscillate along the x and y axes with equal amplitudes and
unequal amplitudes respectively along both the directions.

circularly polarized pulse. The next section looks at the electronic structure of benzene

in the absence of an intense field.
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1.4 Electronic structure of benzene

Benzene has always been an interesting system to study owing to its aromaticity; it is a

planar, ring shaped structure which has a delocalized π electron ring above and below

its plane.This π-electron cloud above and below the ring is of importance when it comes

to understanding the reactions of benzene since they occupy the valence orbitals. The

Hückel molecular orbital (HMO) theory helps us calculate the energies of π MOs of

conjugated systems. [25] A conjugated π system has atoms connected to each other via

overlapping p orbitals. Such a system allows for delocalization of electrons, the electrons

are not limited to one atom, they belong to all the atoms in the conjugated system. This

is based on the following assumptions: [26]

1) MOs are constructed as a linear combination of the atomic orbitals (AOs). The

electron correlation between σ and π electrons is ignored due to the σ - π orthogonality

in planar systems. Only the π electrons are considered.

2) For the atomic labels given by i and j, the orbital energy Hij = α when i = j; Hij = β

when the ith atom and jth atom are connected by a σ bond and, Hij = 0 when the two

atoms are not adjacent to each other.

3) The overlap of electron density integral Sij = 0 when i 6= j and 1 when i = j. In

other words, a basis set consisting of p orbitals is orthonormal.

The π MOs of benzene calculated at the HF level theory using 6-311++g** basis set

then look like those shown in Fig.(1.2). In this figure, the lowest three orbitals are the

bonding π orbitals which hold six π electrons and the highest three orbitals are the

anti-bonding π orbitals. The increase in energy of the orbitals is seen as the number of

nodal planes increase. The first MO has 1 nodal plane due to the symmetry of the π

orbitals, the second and third MOs have 2 nodal planes each, the next two MOs have 3

nodal planes and the highest energy MO has 4 nodal planes. Further, only those orbitals

which have the same number of nodal planes are seen to be degenerate.

Another easy method to draw the energy levels of conjugated systems was given by

Frost and Musulin in 1953. [27] According to this method (also known as the polygon

method), a circle is drawn with radius 2β. A polygon is inscribed with its one vertex

pointing down. For open chain compounds having n atoms, we construct a polygon

having 2n + 2 vertices whereas for ring compounds, we inscribe the ring in the circle.

Each vertex represents an atom and is projected horizontally to construct the energy

level diagram with the energy at the center taken to be equal to α. Here, α and β
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Figure 1.2: Hartree-Fock π MOs of benzene calculated using 6-311++g** basis set
arranged in an ascending order of energy. The occupancy of these orbitals is depicted
schematically using arrows (each arrow represents an electron). The lowest three or-
bitals are the bonding π orbitals which hold a total of six π electrons. The higher three
orbitals are the anti-bonding π orbitals. The energy of the orbitals is seen to increase
as the number of nodal planes increase as 1,2,3 and 4. MOs having the same number
of nodal planes are degenerate.

have the same meaning as in Hückel theory mentioned above. Fig. (1.3) shows the

Frost-Musulin diagram for benzene. Here, the orbitals below the α energy level are the

bonding π orbitals and those above α are the anti-bonding π orbitals. Although this

method does not tell us the values of the orbital energies, one can easily get the energy

level diagram of the orbitals and find out the number of degenerate orbitals by looking

at the figure.

The photoelectron spectroscopy of benzene shows that the first ionization occurs at 9.2

eV [28] which naturally corresponds to the valence π electrons with e1g molecular orbital

symmetry. Calculations done using 6-311++g** basis set and MP2 level of theory give

an Ip of 9.497 eV. The transition dipole moment calculation for benzene helps us know
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Figure 1.3: A graphical representation of the energy levels of benzene using the
polygon method ; α is the energy of an electron in the 2p orbital and β is the interaction
energy between two electrons in two 2p orbitals. (both are conventionally negative).
This method easily helps to find out the number of bonding and anti-bonding π orbitals,
the energy levels of these orbitals and the number of degenerate orbitals.

which orbitals are involved in the transition and hence which orbitals could be the most

affected in the presence of a field. The notations for transitions used below stand for the

state symmetry of the molecule. A CIS (Configuration Interaction Singles) calculation

for 10 singly excited states of benzene with 100 valence orbitals and 2101 CSFs gives us

a significant (and maximum) oscillator strength of 0.952 for the transition from A1g →

B1u +B2u +E1u. The B1u +B2u +E1u state symmetry represents the π - π∗ transition.

These results conform with experimental results in which the electronic spectrum for

the absorption of benzene in vapor phase has a band of extremely high intensity near

1850 Å assigned to the A1g → E1u transition, [29] a band of moderate intensity at 2100

Å assigned to the A1g → B1u transition and a weak band at 2600 Å for the A1g →

B2u transition. [30] The band at 2600 Å was found to be a vibronic transition. [31]

The agreement of the transition dipole moment calculation with the results obtained

from symmetry calculations and experiments confirms our choice of the basis set. These

calculations on benzene are necessary to understand and compare how the molecular

orbitals and the energy levels of these orbitals of benzene change in an intense circularly

polarized pulse. In the next section, the reason we have chosen to study benzene becomes

clear.

1.4.1 Benzene and graphene

Apart from graphene’s various applications, its relatively low carrier concentration to

metals and its strength make it an ideal material to study field-driven dynamics in con-

ducting materials. [32] Heide. et al studied the electron dynamics in graphene in a
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strong-field regime (for graphene, this value is only 2 ×107 V/m due to its band struc-

ture) and observed that they could gain a control over the coherent electron trajectory in

graphene. Studies have also been done on HHG in graphene in an elliptically polarized

pulse [33] and ionization and HHG in benzene aligned in an intense circularly polarized

pulse. [34],[35] HHG on atoms and molecules is being increasingly studied given its ap-

plication to generate ultrafast laser pulses. Analysis of HHG in graphene suggested that

this effect could be extended to more solid-state systems to generate coherent sources

of light. Here, we look at the proton transfer through benzene.

Benzene is the basic unit of graphene and can be used as a model to study graphene.

Although the electronic structure of both these systems vary, they have delocalized π

electrons and are conjugated systems, further, as we will see later, the energy barrier

for proton transfer through graphene and benzene and both the systems is comparable.

A simple Gaussian calculation done at the MP2 level of theory using 6-311++g** basis

set for the proton transfer through benzene gives us a barrier height of 1.63 eV (Fig.1.4)

while that for proton transfer through graphene has been calculated to be 1.41 eV. [36]

On the left and right sides of the plot in Fig.(1.4) the proton is above and below the

Figure 1.4: Energy curve for proton transfer through benzene using the 6-311++g**
basis set and MP2 level of theory. This curve was obtained by using Gaussian09 for
401 points. A barrier is seen when the proton sits right at the center of benzene and a
minimum is obtained when the proton is exactly above and below benzene respectively.

plane of the benzene molecule respectively. These regions correspond to the minimum

in the curve. As the proton moves to the center of benzene, the energy increases and

reaches a maximum when the proton lies exactly in the center of the molecule.
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1.5 Thesis outline

The idea of this work is to look at the behavior of benzene in a high-intensity high-

frequency circularly polarized laser pulse. Atoms in an intense circularly polarized

pulse show an interesting potential transformation from a single deep potential well

to a “doughnut” like potential.Given the D6h symmetry of benzene, we could expect

fascinating results from its potential. In benzene, the electron density in the absence of

a field is mainly centered around the carbon atoms. In the presence of an intense field,

this density is seen to shift from the edges and above the plane towards the center of

the ring. One of the interesting applications of this observation is this; the proton could

be held at the center as long as the pulse is on and could be made to move away from

the ring by switching off the laser. In other words, we could gain a temporal control

over this phenomenon. The effect of circularly polarized pulse on atoms makes not only

benzene but any closed molecule having π electrons an interesting system to study.

The first part of the thesis, Chapter 2, deals with the theoretical background required to

calculate laser-dressed potentials, the methodology and the basis set required to calcu-

late the KH states. We also look at the potentials for a model system and the hydrogen

atom. Further, to check the type of basis set required, energy calculations were done

on helium and carbon. In Chapter 3, we observe the KH potential and states of the

benzene molecule and its energies at various α0 values in an intense circularly polarized

laser pulse. We discuss and analyze the calculations and results for benzene.



References

[1] M. Fox, Quantum Optics: An introduction, Oxford University Press

[2] D. J. Griffiths, Introduction to Electrodynamics, Third Edition

[3] A. D. Bandrauk, F. Fillion-Gourdeau, E. Lorin, J. Phys. B: At., Mol. Opt. Phys.,

arXiv:1302.2932

[4] Kuo-Ho Yang, Am. J. Phys., 73, 742 (2005)

[5] G. S. Voronov, N. B. Delone, JETP Letters, 1, 66 (1965)

[6] M. Gavrila, J. Phys. B: At., Mol. Opt. Phys., 35, 147 (2003)

[7] L. V. Keldysh, Soviet Physics JETP, 20, 1307 (1964)

[8] P. B. Corkum, Phys. Rev. Lett., 71, 1994 (1993)

[9] K. Kulander, K. Schafer, J. Krause, Super-Intense Laser-Atom Physics, 316, edited

by B. Piraux, A. LHuillier and K. Rzazewski (Plenum, New York, 1993)

[10] W. C. Henneberger, Phys. Rev. Lett., 21, 838 (1968)

[11] M. Pont, N. R. Walet, M. Gavrila, C. W. McCurdy, Phys. Rev. Lett., 61, 939 (1988)

[12] M. Pont, Phys. Rev. A, 40, 5659 (1989)

[13] M. Boca, H. G. Mueller, M. Gavrila, J. Phys. B: At., Mol. Opt. Phys., 37, 147

(2004)

[14] M. Pont, M. J. Offerhaus, M. Gavrila,Z Phys D - Atoms, Molecules and Clusters,

9, 297 (1988)

[15] E. Van Duijin, M. Gavrila, H. G. Muller, Phys. Rev. Lett., 77, 3759 (1996)

14



Chapter 1 Introduction 15

[16] Q. Wei, S. Kais, D. Herschbach, J. Chem. Phys., 129, 214110 (2008)

[17] T. Yasuike, K. Someda, J. Phys. B: At., Mol. Opt. Phys., 37, 3149, (2004)

[18] P. Raj, P. Balanarayan, Phys. Chem. Chem. Phys., 27, 297 (2019)

[19] M. P. de Boer, J. H. Hoogenraad, R. B. Vrijen , R. C. Constantinescu , L. D.

Noordam, H. G. Muller, Phys. Rev. A, 50, 4085 (1994)

[20] U. Eichmann, T. Nubbemeyer, H. Rottke, W. Sandner, Nature, 461, 1261 (2009)

[21] U. Eichmann, H. Zimmermann, S. Eilzer, Phys. Rev. Lett., 112, 113001 (2014)

[22] U. Eichmann, H. Zimmermann, S. Eilzer, J. Phys. B: At., Mol. Opt. Phys., 47,

204014 (2014)

[23] Q. Wei, P. Wang, S. Kais, D. Herschbach, Chem. Phys. Lett., 683, 240 (2017)

[24] F. Morales, M. Richter, S. Patchovskii, O. Smirnova, PNAS, 108, 16906 (2011)

[25] E. Hückel, Z. Physik, 70, 204 (1931)

[26] W. Kutzelnigg, J. Comput. Chem., 28, 25 (2007)

[27] A. A. Frost, B. Musulin, J. Chem. Phys., 20, 572 (1953)

[28] A. W. Potts, W. C. Price, D. G. Streets, T. A. Williams, Faraday Discuss. Chem.

Soc., 54, 168 (1972)

[29] H. Sponer, G. Nordheim, A. L. Sklar, E. Teller, J. Chem. Phy., 7, 207 (1939)

[30] W. C. Price, A. D. Walsh, Proc. Roy. Soc., A191, 22 (1947)

[31] G. H. Atkinson, C. S. Parmenter, J. Mol. Spec., 73, 31 (1978)

[32] C. Heide, T. Higuchi, H. B. Weber, P. Hommelhoff, Phys. Rev. Lett., 121, 207401

(2018)

[33] N. Yoshikawa, T. Tamaya, K. Tanaka, Science, 356, 736 (2017)

[34] P. Zdanska, V. Averbukh, J. Chem. Phys., 118, 8726 (2003)

[35] R. Baer, D. Neuhauser, P. Zdanska, N. Moiseyev, Phys. Rev. A, 68, 043406 (2003)

[36] M. Miao, M. Buongiorno Nardelli, Qi Wang, Yingchun Liu , Phys. Chem. Chem.

Phys., 15, 16132 (2013)



Chapter 2

Kramers-Henneberger potentials,

states of model and atomic

systems in a circularly polarized

pulse

In this chapter, in the first section, we look at the derivation of the KH time-averaged

potential for atoms in a circularly polarized pulse. In the next section, we look at the

KH potentials for a model system and hydrogen. Finally, we explain the choice of an

even tempered Gaussian basis set to describe the KH states since in the case of KH

states in a circularly polarized pulse, a standard Gaussian basis set is not good enough.

Helium and carbon were used as test cases to verify the choice of the basis set.

2.1 Kramers-Henneberger transformation

The KH transformation is a unitary transformation from the laboratory frame to the

oscillating frame or the KH frame of reference. In the laboratory frame, the electron

oscillates as a function of the laser parameters whereas in the KH frame, it is the Coulomb

potential that oscillates. The time-averaged part of this potential is what we call the

16
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zeroth order KH potential. This transformation is done as follows:

Ψ = Ω̂ψ (2.1)

where Ω̂ is given by

Ω̂ = exp

[
i

~

∫ t

−∞

(
e

mec
~A(τ).∇+

e2

2mec2
~A2(τ)dτ

)]
(2.2)

Replacing Ψ with Ω̂ψ converts the Schrödinger equation in the velocity gauge (Eq.

[1.17]) into a very familiar form

i~
∂ψ

∂t
= [Ω̂ĤΩ̂† − i~Ω̂

∂Ω̂†

∂t
]ψ (2.3)

The Baker-Campbell-Hausdorff [1] formula is used to evaluate Ω̂ĤΩ̂† for every term in

the Hamiltonian Ĥ. The formula is as follows:

e[Y ]X̂e[−Y ] = X̂ + [Y, X̂] +
1

2!
[Y, [Y, X̂]] + .... (2.4)

The time dependent terms in the Hamiltonian commute with Ω̂ and cancel out the

−i~Ω̂∂Ω̂
∂t term. Since the kinetic energy term also commutes with Ω̂, we are left with

eΩ̂1V (~r)e−Ω̂1 where

Ω̂1 =
i

~

∫ t

−∞

e

mec
~A(τ).∇dτ (2.5)

Using the same formula as above, we get

V (~r) + [Ω̂1, V (~r)] +
1

2!
[Ω̂1, [Ω̂1, V (~r)]] + .. = V (~r) + (~α.∇)V (~r) +

1

2!
(~α.∇)2V (~r) + ..(2.6)

where

~α(t) = −
∫ t

−∞

e

mec
dτ ~A(τ) (2.7)

⇒ ~̈α(t) =
−e
mec

d ~A(t)

dt
=

e

me

~E(t) =
e

me

~E0 cosωt (2.8)

⇒ ~α(t) =
e ~E0

meω2
cosωt = ~α0 cosωt (2.9)
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for a linearly polarized light. In our case, since we consider a circularly polarized light

in the x-y plane, the electric field and ~α are given as

~E0(t) = E0x̂+ E
i±π

2
0 ŷ + 0ẑ (2.10)

⇒ ~E(t) = E0e
(−iωt)(x̂± iŷ) (2.11)

⇒ Re[ ~E(t)] = E0(cosωtx̂∓ sinωtŷ) (2.12)

⇒ ~α(t) = α0(cosωtx̂∓ sinωtŷ) (2.13)

The evaluation for the potential term gives a Taylor expansion of V (~r) about ~r which

translates the potential by ~α. The Schrödinger equation can be now written as

i~
∂ψ(~r, t)

∂t
=

1

2me
[−~2∇2 + V (~r + ~α(t))]ψ(~r, t) (2.14)

V (~r+~α(t)) is called the Kramers-Henneberger potential and is a periodic function. Since

we have only done the time-independent calculations here, it is more accurate to write

the Time-Independent Schrödinger equation (TISE),

1

2me
[−~2∇2 + V (~r + ~α(t))]ψ(~r) = EKHψ(~r) (2.15)

For molecules, we include the electronic and nuclear repulsion terms which gives us,∑
i

−~2

2me
∇2
e +

∑
i,A

VNe(~riA + ~α(t)) +
∑
i,j

Vee(~rij) +
∑
A,B

VNN (~rAB)

ψ(~r) = EKHψ(~r)

(2.16)

2.1.1 Kramers-Henneberger potential

Since the potential is periodic with T = 2π
ω , it can be expanded in a discrete Fourier

series as [2]

V KH(~r + ~α(t)) = V KH
0 (~r) +

∞∑
n=1

V KH
n (~r) cos(nωt) (2.17)

V KH
n (~r) =

1

T

∫ T

0
V KH(~r + ~α(t)) cos(nωt)dt (2.18)

The harmonics (except n = 0) under high frequencies, show extremely fast oscillations

and can be averaged to zero. We are then left with the zeroth order term in the series
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which is a time-averaged stabilizing potential and is known as the zeroth order Kramers-

Henneberger potential. The zeroth order potential can be written as

V KH
0 =

1

T

∫ T

0
V (~r + ~α(t))dt (2.19)

For the model potential,

V (x, y) = −0.63 exp[−0.1424(x2 + y2)] (2.20)

the KH potential is,

V KH(~r + ~α(t)) = −0.63 exp[−0.1424(x− α0 cos(ωt)2 + y − α0 sin(ωt)2)] (2.21)

Similarly, for the hydrogen atom V (~r) = −1
|~r| , the KH potential is:

V KH(~r + ~α(t)) =
−1√

(x− α0 cos(wt))2 + (y − α0 sin(wt))2 + z2
(2.22)

For benzene, the potential V (~r, ~R) =
∑

i,A−ZA/|~ri − ~RA| where ~ri and ~RA are the

position vectors of the electrons and nuclei respectively transforms as:

V KH(~r + ~α(t)) =
∑
i,A

−ZA√
(xi − α0 cos(wt)− xA)2 + (yi − α0 sin(wt)− yA)2 + (zi − zA)2

(2.23)

2.2 Model potential and hydrogen atom

Kramers-Henneberger time independent potential and the higher order harmonics were

calculated for the model potential. Fig.(2.1) shows the 2D contours for the zeroth order

potential and the harmonics for n = 1 to 5. The zeroth order potential oscillates with

the pulse in a circular fashion and so if we consider the time averaged potential, it comes

out to be in the shape of a ring whose radius equals α0. For the higher order harmonics,

nodal planes increase as n increases. The number of nodal planes are equal to n − 1

for the nth term in the potential. As n increases, the magnitude of the higher order

potential terms are very small compared to the zeroth order term. These potentials were

calculated according to the Eq. [2.18], where V KH for the model system and hydrogen
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are given by Eq. [2.21] and Eq. [2.22] respectively. Just as in the case of the V KH
0 for

Figure 2.1: Contours of V KH
n (~r) for the model potential n=0-5 calculated according

to Eq. [2.18]. V KH
0 contour is a circle with zero nodes. As n increases, the number of

nodal planes increase as n-1. Red and blue stand for positive and negative potential
values respectively.

the model system in Fig.(2.2), hydrogen atom also has a ring like or “doughnut” shaped

zeroth order potential. The potential also looks similar to a torus of a radius r and

center c, whose equation in Cartesian coordinates is given by:

r2 = (c−
√
x2 + y2 + z2)2 (2.24)

Carbon atom shows the same potential qualitatively but has a deeper potential. This is

expected since carbon has a greater number of electrons than hydrogen, the potential has

to hold more bound states of the atom. The higher order harmonics for hydrogen and

carbon average to zero for high frequencies,in the ultraviolet range, and can be neglected.
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Figure 2.2: The isosurface of V KH
0 for hydrogen at an isovalue = -3.7207 a.u. visual-

ized using VMD. [3] The potential oscillates in a circular motion to give a ring shaped
time-averaged potential. The ring like structure implies there is no potential at the
center for this isovalue.

Throughout this work, red represents a positive isovalue and dark blue represents a

negative isovalue.

2.3 Methodology

The flow-chart for the methodology [4], [5] has been given in Fig.(2.3). It is explained

below.

To calculate the KH potential : We generated a grid for the Gauss-Legendre integration.

The nuclear-electron transformed potentials (V KH(~r + ~α(t))) were calculated at these

grid points using GAMESS. [6],[7] These potentials were then averaged by 2π to give

the KH potential.

To calculate the KH states: The TISE was solved by feeding the KH potential into

GAMESS. The kinetic energy terms and the two-electron repulsion terms in the Hamilto-

nian do not change. HF energies and CIS state energies were calculated from GAMESS.

For benzene, the number of valence orbitals for the CIS calculation were taken to be 100

and the number of CSFs were 2101. In order to perform calculations for the KH states,

a modified basis set which included the even-tempered Gaussian series was considered.

This is discussed in the next section.

2.4 Even-tempered Gaussian basis set

The KH potentials for the model potential and hydrogen atom clearly tell us that the

KH states which the potential holds will be centered on the ring. The orbitals can be
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Figure 2.3: A flow chart explaining the steps to calculate the KH potentials and
energies.

thought to look similar to the d2
z Gaussian function,

1

2
β

7
4 exp(−βr2)[2z2 − x2 − y2] (2.25)

In order to account for these orbitals, we would have to incorporate a significant number

of D shells in the basis set. For the helium atom, an SPD type basis was constructed

where the S and P shells were taken from the coemd-ref [8] basis set but their number

was modified to include more D shells. The exponents of the Gaussian primitives for

the D shells were taken as a geometric progression with common ratio 2 (see Appendix

A). These are known as an even-tempered Gaussians (ETG). It was proven empirically

by Schmidt and Ruedenberg [9] that using a large number of Gaussian primitives for an

even-tempered Gaussian series gives accurate SCF (Self-consistent field) energies.
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2.5 KH states of helium

The occupied orbital of helium was observed as α0 was varied for this fixed basis set.

We can see from Fig.(2.4) that using the SPD-type basis set gives an s-type orbital

Figure 2.4: Helium 1s Hartree-Fock orbital at α0 = 0.0 a.u. and the ring shaped
KH orbital at α0 = 2.94 a.u. at isovalues (i) 0.008782, (ii) 0.022298, (iii) 0.029056 and
(iv) 0.030454 calculated using the SPD-type basis set. From the lowest isovalue itself,
we see a dip in the center of the orbital. The second isovalue shows an elongation of
the orbital. For the third isovalue, we can see the ring begins to show and the ring is
clearly seen for the maximum isovalue.

for α0 = 0.0 a.u. similar to any standard Gaussian basis set. The energy of helium

using this basis set was found to be -2.9021 a.u. This value differs slightly from the

energy obtained using coemd-ref which is -2.8616 a.u. When we increase the α0 value,

the orbital looks similar to the potential obtained for the model system and hydrogen.

Fig.(2.5) shows the variation of KH Hartree-Fock energies with α0. A sharp increase in

energy is seen up to α0 > 1 with a discontinuity at α0 = 1. This could be due to an

insufficient number of basis set functions. Although, an increase in energy is observed

beyond this value, it is comparatively much slower than the rise for α0 > 1.
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Figure 2.5: The Hartree-Fock KH energies (EKH) (a.u.) of the KH states of helium
with varying α0. The basis set used was the SPD-type basis set given in Appendix A.
The ground state energy at α0 = 0 is -2.90212 a.u. The rise in energy is sharp for α0

> 1. At 1, there is a discontinuity in the plot which could have occurred due to the
basis. Beyond 1, the rise in energy is comparatively slow.

2.6 KH states of carbon

Similar calculations were done for carbon. The S and P shells were taken from the

coemd-ref basis set for carbon but the D shell exponents were kept constant.Fig.(2.6)

shows only the occupied orbitals for the carbon atom at α0 = 0.0 a.u. and at α0 = 3.0

a.u. At α0 = 0.0 a.u., the orbitals are the free-field 1s, 2s and 2p atomic orbitals. The

1s orbital looks like a ring at α0 = 3.0 a.u. and the 2s and 2p orbitals break down to

form d type orbitals. We can see that these orbitals are degenerate with an equal energy

of -0.1580 a.u. and contain two nodal planes each. This trend was observed in carbon

for all values of α0 6= 0 that we considered. Fig.(2.7) shows the plot for Hartree-Fock

KH energies of carbon vs α0. Here, again there is a sharp increase in energy for a small

α0 value and then a gradual increase as α0 further increases.

In the next chapter, we look at the calculations for benzene in a circularly polarized

pulse using this basis set.
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Figure 2.6: Occupied orbitals of the carbon atom at a) α0 = 0.0 a.u. and b) α0 =
3.0 a.u. calculated using the SPD-type basis set at the Hartree-Fock level of theory.
As α0 increases, the core 1s orbital goes from a sphere to a “doughnut” shape and the
2s and 2p orbitals no longer exist; we instead get d type degenerate orbitals with two
nodal planes each.

Figure 2.7: Hartree-Fock KH energies calculated for 10 α0 values for the carbon atom.
The ground state energy at α0 is -37.422 a.u. Similar to helium, the energy initially
shows a sharp increase in energy for α0 up to 1 a.u. and then gradually increases.
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Chapter 3

Benzene in a circularly polarized

pulse

3.1 Kramers-Henneberger potential of benzene

In the previous chapter, we saw that a single atom shows a ring like potential in the

presence of a circularly polarized pulse. The radii of these potentials increase with

increasing α0. If six such potentials are considered for six carbon atoms in benzene, they

begin to intersect each other when the α0 is greater than half the C-C bond distance.

We see in the schematic Fig.(3.1) below that when the α0 value equals the C-C bond

distance, all the potentials intersect in the center. It is important to note here that the

plane of the circularly polarized pulse has to be in the plane of the molecule. If the

pulse was perpendicular to the plane of benzene, the potentials would also form a ring

perpendicular to the plane. This would not give us the desired results as there would

be no intersection of the potentials. In the schematic, we don’t consider the intersection

of potentials due to hydrogen atoms. This is because hydrogen atoms only contribute 6

electrons in benzene compared to 36 electrons from the carbon atoms. Hence, it is safe

to say that the potential in the center majorly holds the bound states of the electrons

from the carbon atoms.

The contributions of the higher order potential terms are also ignored. The next figure

makes this clear. The higher order harmonics were calculated and visualized in VMD

for α0 = 2.7 a.u. (The choice of this α0 was based on the C-C bond distance of benzene

27
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Figure 3.1: A schematic diagram showing varying radii of the six circles (potentials)
for varying α0.α0 = Radius of the circle.The radius of each circle increases on increasing
the α0 value. In the last diagram, we see that the radius of the circle equals the side of
the hexagon; this gives an intersection of all the six circles in the center which would
give a deep minimum. This means that most of the electrons will be held here.

(2.67 a.u.).) These harmonics are calculated according to the equation for higher order

Fourier coefficient terms,

V KH
n (~r) =

1

T

∫ T

0

∑
i,A

−ZA cos(nωt)√
(xi − α cos(wt)−XA)2 + (yi − α sin(wt)− YA)2 + (zi − ZA)2

dt

(3.1)

These potential terms as can be seen from Fig.(3.2) appear symmetric for all the n

values and suggest a possible spatial cancellation. The plots for these potential terms

show no value of the potential at the center, hence it can be concluded that the higher

order terms do not interfere significantly with the zeroth order KH potential. Further,

on increasing n, the potential is more dispersed due to the the increase in the number

of nodes. In Fig.(3.3), graphs of V KH
0 for benzene vs α0 values along the x-y axes show

Figure 3.2: Isosurfaces of the higher order harmonics of benzene V KH
n (~r) for n = 1-5

calculated according to the Eq.[3.1]. These potentials were visualized at an isovalue of
| ± 1|.

us the form of these potentials. This figure looks at the potential values along the x

and y axes for three different α0 values, 2.3 a.u., 2.7 a.u. and 3.0 a.u. Calculations were
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Figure 3.3: a)Isosurfaces calculated at isovalues 1a) 19.6 a.u., 2a) -19.8801 a.u. and
3a) 18.4462 a.u. and b) 2D plots of V KH

0 for α0 = (1) 2.3 a.u. (2) 2.7 a.u. (3) 3.0
a.u. Visualization of the isosurfaces was done with the help of VMD. The isosurface
is maximum at the center at α0 = 2.7 a.u. (in the red box) close to the C-C bond
distance value of 2.67 a.u. As we increase and decrease the α0 values, the maximum
shifts away from the center. The plot of the potential shows the same idea graphically.
The local minima in each graph arise due to the intersection of two carbon atoms (can
be seen from the schematic diagram).

done at these values since the C-C bond distance obtained from optimizing benzene

using GAMESS and the 6-311++g** basis set was found to be 2.67 a.u. The potentials

were calculated on a cubic grid and the isosurfaces on the right of the Fig.(3.3) were

visualized using VMD. From the graphs of the potentials, we see that the magnitude of

the potential is maximum at the center for α0 = 2.7 a.u. and decreases on increasing

or decreasing the α0 value. As expected, this value is close enough to the C-C bond

distance obtained from GAMESS optimization of benzene. The isosurface plot similarly

shows that there is a maximum in the center for the same α0 value. The local minima
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which can be seen symmetrically flanked on either side of the global minimum are due

to the intersection of two carbon atoms and two hydrogen atoms. These intersections

are expected and can be seen in the schematic in Fig.(3.1) The symmetrical nature of

these minima is due to the symmetry of the molecule.

3.1.1 Kramers-Henneberger states of benzene

In this section, we present all the electronic structure calculations of benzene. Only a

partial analysis has been done so far, regarding the orbital energies and the CIS states,

although the electronic densities confirm our theory and the correctness of our potential

calculations. Fig.(3.4) shows the core molecular orbital along with HOMO-3, HOMO-2,

HOMO-1 and HOMO and the total electronic density for the molecule with varying α0.

The core MO and the electronic density of benzene show a similar trend; at α0 = 0.0,

the isosurfaces for both are centered on the carbon atoms and as α0 increases, they shift

towards the center. At α0 = 2.7 a.u., (the same value for which we observed a deep

minimum in the KH potential), both the core MO as well as electron density show a

maximum at the center. In case of the other MOs, we see the three bonding π orbitals

of benzene up to α0 = 1.5 a.u. although their energy levels are constantly changing. At

α0= 2.7 a.u. and 3.0 a.u., we no longer see the degenerate π orbitals. Instead, we see

the formation of three new orbitals, out of which two still show degeneracy. Although a

complete analysis has not been made for these MOs, the electronic density calculations

give us the expected results. In order to understand the behavior of the orbitals, Hartree-

Fock energy calculations and CIS calculations were done.

The Hartree-Fock energies of benzene with varying α0 in Fig. (3.5) show a smooth

curve with a continuous increase in energy for the SPD-type basis set. It is important

to note here that at this basis set, the energy of benzene is seen to be -224.289 Hartree

whereas the ground state energy of benzene calculated at the 6-311++g** basis set was

found to be -230.745 Hartree. This is an energy difference of almost 6.5 Hartree. This

basis set gives us an understanding of the kind of basis functions important for a system

in a circularly polarized field and we are yet to arrive at a converged basis set. Again,

it can be seen that for small α0 < 0.5 a.u., the increase in energy is sudden. For α0 >

0.5 a.u., the increase is comparatively slower and tends to 0 as α0 goes to 3.5 a.u.

Fig.(3.6) looks at the Hartree-Fock molecular orbital energies as a function of α0. The

core six MOs show a significant change in energy as α0 varies as compared to the
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Figure 3.4: a) Isosurfaces of molecular orbitals and b) Electronic density of benzene
(visualized using VMD) with increasing α0. The first and the last three occupied
molecular orbitals (in order of increasing energy) are shown on the left side along
with the total electronic density for each α0 on the right side. The electronic density
increases towards the center with increasing α0 and is maximum at the center for α0

= 2.7 a.u.(the red box). This is the same value for which we saw a deep minimum in
the KH potential in the previous section. The core molecular orbital follows the exact
same trend as the electronic density.

remaining occupied 15 MOs. This is exactly the same trend observed in the total HF

energy plot in the previous figure. The remaining 15 MOs do not show as significant

a change in energy as the core MOs. This implies that a major contribution to the

change in energy of the system comes from the core orbitals of benzene. The excited

state energies of the first 20 states of benzene were calculated at each α0 for valence

orbitals = 100 and CSFs = 2101. But their values could not be understood from the

total energy curve as can be seen from Fig.(3.7). The excited state energies differed

from the ground state energy by 10−1 - 10−2 a.u. A plot of difference of the excited
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Figure 3.5: Hartree-Fock energies of benzene vs α0 calculated using the SPD-type
basis set mentioned in the previous chapter. For α0 below 0.5 a.u., the energy increases
rapidly as compared to the rate of increase for values greater than 0.5 a.u. As α0 goes
to 3.5 a.u., energy tends to 0.

Figure 3.6: Orbital energies vs α0 The increase in energy in the core orbitals follows
the same trend as HF energies. Relatively, the remaining occupied orbitals show a much
smaller change in energy. This implies that changes in the core orbitals significantly
affect the total energy of the molecule.

state energies and the ground state energies gives a better picture (Fig.(3.8)) Fig.(3.8)

is a plot of the relative energies of the excited states vs α0. It shows a huge number of

of discontinuities which can be corrected by increasing the number of d functions and

plot the energies by following the orbital overlap.
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Figure 3.7: CIS energies as a function of α0 for the first 20 singly excited states of
benzene at each α0. This plot looks exactly similar to the plot of Hartree-Fock energies
and does not show the excited state energies clearly. This is because the relative
difference of the excited state energies is very small (of the order of magnitude -1 to
-2 a.u.) compared to the magnitude of the ground state energies at each α0. Hence, it
makes sense to look at the excited state energies relative to the ground state in order
to understand the plot.

Figure 3.8: CIS calculations for benzene done using GAMESS and the SPD-type
basis set. Number of valence orbitals were taken to be 100 and the the number of
CSFs were 2101. The energies plotted here are obtained after taking a difference of the
excited states with respect to the ground state. This had to be done since the range of
the energies was very large compared to the increase in energies of the excited states.
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3.2 Conclusion

The time-averaged KH potential which was observed to be a torus shaped object for a

single atom was calculated for benzene at α0 values close to the C-C bond distance (2.67

a.u.). A maximum was observed in the center for α0 = 2.7 a.u. Electron density was also

seen to be maximum near the center for this value. This suggests that the π electrons of

benzene shift towards the center of the molecule in the presence of a circularly polarized

laser.



Appendix A

Atomic units

Length a0 = ~2
mee2

= 5.29 × 10−11 m (α0 has a unit of length)

Charge e = 1.602 × 10−19 C

Energy Eh = 27.21 eV = 1 Hartree

Frequency ν0 = v0
a0

= 4.13 × 1016 s−1 (v0 = atomic unit of velocity)

Angular frequency ω = 2πν0 = 1.51976 × 10−16 rad/s

Electric potential Eh
e = 2.72 V

Electric field E0 = e
4πε0a20

= 5.14 × 109 V/cm

Electric field intensity =
ε0cE2

0
2 = 3.51 × 1016 W/cm2 for peak E0 field

A.1 Energy conversion

1 eV = 8065.54 cm−1

1 kcal/mol = 0.0434 eV
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Appendix B

SPD-type basis set

The SPD-type basis set used for helium is shown here. For the D shells, we use an

even-tempered Gaussian series; the S and P shells were taken from coemd-ref although

their number was modified. This same set of functions for D shells was used for carbon

and and hence, benzene.

B.1 Helium

S 1

1 7.2133178967035583E+03 1.0000000

S 1

1 3.7392158142382218E+03 1.0000000

S 1

1 1.6182918090816222E+03 1.0000000

S 1

1 6.8024380231811381E+02 1.0000000

S 1

1 2.8186347003881883E+02 1.0000000

S 1

1 1.1708264448048692E+02 1.0000000

S 1

1 4.8127702397986326E+01 1.0000000

36
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S 1

1 1.9939284124522398E+01 1.0000000

S 1

1 8.1927758612694639E+00 1.0000000

S 1

1 3.3871337688450596E+00 1.0000000

P 1

1 3.2154329461467510E+00 1.0000000

P 1

1 1.8806445835690861E+00 1.0000000

P 1

1 9.5381664247686715E-01 1.0000000

P 1

1 4.7975023162404312E-01 1.0000000

D 1

1 0.0010000000 1.0000000000

D 1

1 0.0020000000 1.0000000000

D 1

1 0.0040000000 1.0000000000

D 1

1 0.0080000000 1.0000000000

D 1

1 0.0160000000 1.0000000000

D 1

1 0.0320000000 1.0000000000

D 1

1 0.0640000000 1.0000000000

D 1

1 0.1280000000 1.0000000000

D 1

1 0.2560000000 1.0000000000

D 1

1 0.5120000000 1.0000000000
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D 1

1 1.0240000000 1.0000000000

D 1

1 2.0480000000 1.0000000000

D 1

1 4.0960000000 1.0000000000

D 1

1 8.1920000000 1.0000000000

D 1

1 16.3840000000 1.0000000000

D 1

1 32.7680000000 1.0000000000
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