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Abstract

This work is aimed at exploring multi-variate pattern analysis of functional magnetic

resonance imaging data of human brain as an alternative for situations/questions

where the classical univariate analysis falls short. Pattern-based fMRI analysis en-

ables us to address content-based processing in human brain and helps us study the

direct link between multivoxel fMRI activity patterns and the corresponding cogni-

tive representations. The first goal is to categorise the mental representations for

colour and face perceptions, based on the pattern vectors. Region-of-interest based

multivariate pattern analysis shows that there are distinct mental representations for

colour and face perceptions, in the primary and secondary visual cortex and the ven-

tral stream. These representations are classified into distinct categories by supervised

machine learning algorithms such as support vector machine and linear discriminant

analysis. The second part of the work is aimed at a whole brain searchlight analysis to

validate the ROI based results. Searchlight analysis enabled us to look at the spatial

encoding of task relevant information across the whole brain. In addition to this,

efforts have been made to look at transformation of these mental representations with

practice.





Chapter 1

Introduction

In simple words cognition refers to thinking. Playing chess, writing a poem, solving

mathematical problems, etc are the obvious applications of conscious reasoning-but

thought assumes many other subtler forms, such as processing and interpreting sen-

sory input, guiding motor functions, and showing emotions. Research on cognition

addresses questions on attention, logical reasoning, memory formation and storage,

learning of language, acquisition and retention of knowledge and motor control and

many more [1].

This field of research combines the experiments in cognitive psychology with neu-

roimaging techniques to understand the functioning of the brain and the correspond-

ing cognitive activities. Neuroimaging technology can be used for functional brain

imaging to measure an aspect of the function of brain, often with an aim to under-

standing the link between activity in certain regions of brain and specific cognitive

functions [2].

1.1 History

During the 1880s, the first non-invasive neuroimaging technology - human circulation

balance - was invented by Angelo Mosso to measure to measure the redistribution of

blood during intellectual and emotional activity [3]. There were series of inventions

1
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and improvisations after this, which led to the development of magnetic resonance

imaging (MRI) and computed tomography (CT) in the 1970s and 1980s. Next came

functional MRI (fMRI), which allowed us to create images which are not just static but

can map the brain function to observe the cognitive activities. Due to lack of exposure

to radiation, non-invasiveness and relatively wide availability, fMRI has evolved to

dominate the neuroimaging field since 1990s [4].

1.2 fMRI and the BOLD signal

Figure 1.1: Theoretical BOLD sig-
nal response. Image taken from [5]

We know that when an area of the brain is in

use, the neurons in that region are active. Neu-

rons do not have internal energy reserves in the

form of sugar and oxygen. So when they fire,

they need more energy to be imported quickly.

Blood releases excess oxygen to those firing neu-

rons through a process called the hemodynamic

response. As a consequence, oxygen is depleted

from the surrounding blood vessels. Immediately,

the body overcompensates for the oxygen deple-

tion by increasing the flow of oxygenated blood to that region (Figure 1.1).

The color scale from red to yellow repre-
sents activity from low to high against the
basal level activity represented by the grey
scale. The image is taken from [5]

Figure 1.2: fMRI image of an activated region of the brain
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Functional magnetic resonance imaging (fMRI) is a technique which measures the

activity of brain using these changes associated with cerebral blood flow as a proxy to

neuronal activity. The functional image of the brain (Figure 1.2) shows which parts

of the brain are involved in a particular cognitive process.

Figure 1.3: fMRI time series of a voxel, say V.
Each of the bigger cubes (1,2,..,T) represent one scan of the brain and in each scan

the shaded voxel is V. The image is taken from [6]

The signal detected by the scanner is known as the Blood Oxygen-Level Dependent

(BOLD) signal. Hemoglobin in its two forms (oxygenated and deoxygenated), has

different magnetic properties. Oxy-hemoglobin is diamagnetic and deoxy-hemoglobin

is paramagnetic. An MRI scanner can detect the magnetic signal variation due to

this inherent difference in their magnetic properties. This difference is the origin of

the BOLD signal per voxel which can be captured across time points (Figure 1.3).

A voxel is one of many from which a volume is composed. Technically, voxels are

discrete elements into which a representation of a three-dimensional space is divided.

In a typical fMRI experiment, the task will have many repetitions of a thought or

action. So, we can use statistical methods to identify the regions of the brain which

reliably are most active during that thought or action. Hence, the data-set is a 4

dimensional construct involving 3D brain volumes at different time points. Time

being the 4th dimension, we can extract the time-series for each voxel for analysis.
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1.3 Visual Perception

Figure 1.4: Primary visual pathway [7]

It is well known that after primary vi-

sual areas (Figure 1.4), visual / visuo-

motor information are processed along

two distinct neural pathways. The exis-

tence of two distinct neural streams (Fig-

ure 1.5) - ventral and dorsal, projecting

from the primary visual areas to the in-

ferior temporal cortex and the posterior

parietal cortex respectively, is known for

almost 30 years. Visual dual stream has

also motivated discovery of similar du-

plex architecture in brain regions asso-

ciated with other cognitive domains like

auditory, haptic, and olfactory perception, language, and attention. Thus, it has con-

stituted a general framework for understanding the functional organization of cerebral

cortex [4].

Figure 1.5: Visual dual
streams [8]

Among the two most influential models of visual dual

stream, the MU model proposed by Mishkin and Unger-

leider (1982) suggests that the input information decides

the neural pathway for processing. Features that help in

object identification (”what”) like color, shape, texture

etc. are processed in the ventral stream whereas spatial

(”where”) information (e.g., position, velocity, depth, ori-

entation) take the dorsal stream [9].

In contrast, the Milner-Goodale (MG) model suggests that the output or the task

goal decides the processing pathway [10]. The ventral stream areas are needed for

internal representation (perception) of both what and where information whereas the

dorsal stream is recruited for processing those same input information for guiding

action online (”action”). However, it is true that in many everyday situations both
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models predict same brain activation. For example, ventral stream activation during

”perception” of ”what” information [9].

1.4 What is Recognition?

In simple words, recognition is a tally between the visual stimuli (processed through

the ventral stream) and a mental representation of a physical entity. Though not

trivial, luckily we can recognize a visual input from several viewpoints, even when the

images of the physical entity are entirely different [11].

1.4.1 Object Recognition

Object recognition is a property of an organism to comprehend the physical proper-

ties (shape, texture, and color) of an object and assign semantic attributes to it (for

example, identifying the object as an apple). This ability includes, understanding the

use of the object, its previous encounter, and how it relates to other people in case

of humans. Irrespective of an object’s position and illumination, humans have gained

the potential to effectively identify an object and label it. We are one among the

very few species to possess the capability of invariant visual object recognition. Re-

search suggests that Lateral Occipital Cortex (LOC) is involved in object recognition.

Two types of processing, Top-Down, which is knowledge/goal based, and Bottom-

Up, which is sensory driven are required for a species to recognize objects at varying

distances, angles, lighting, etc. [12].

1.4.2 Face Recognition

There have been strong evidences to show that visual cortex in the brain has discrete

areas involved in processing faces unlike for any other objects. It has also been

reported that a separate neural circuitry is required for identifying individual faces in

a viewpoint independent manner. There are separate regions in the brain to process
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faces and objects which are spatially separated by several centimeters. The region

Figure 1.6: The visual areas involved in (face and colour) recognition [13]

of the brain responsible for processing faces is known as the infero-temporal (IT)

cortex (Figure 1.6), located in the ventral lobe. Specifically, fusiform gyrus is the one

responsible for processing color information and for face-body recognition [14].



Chapter 2

Data-set and Methods

2.1 Data and its Origin

The data used in this project is taken from the Cognitive Brain Dynamics lab at the

National Brain Research Centre, Manesar. (https://cognitivebrainlab.weebly.com)

2.1.1 Participants

The data is obtained from 20 young, healthy subjects (Mean age = 25.35 years,

SD=2.796 years, 13 females, 7 males). Participants were all right-handed according

to the Edinburg Inventory with normal or corrected-to-normal vision. They gave

their written informed consent to the experimental procedure, which was approved by

the Ethics Committee of National Brain Research Center (NBRC). After preliminary

tests, 2 subjects were identified as outliers. Hence, all the analyses are restricted to

the other 18 subjects.

2.1.2 Experimental Design, Stimuli, and Tasks

In perception task involving color stimuli, four different color dots were presented

sequentially and the participant was asked, at the end of the run, to denote verbally

7
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the number of times the target color (red) were presented. Similarly in face perception

task, four different faces were presented and the task was to indicate the number of

times a particular target face (that had been shown before the fMRI scan started)

was presented. Both the stimuli were presented on the center of the screen. Stimuli

were presented in on blocks (duration 24 seconds each) alternating with off blocks

of 16 seconds duration. During off blocks a central cross in a grey background was

presented. Stimulus order was randomized within an on block. In perception tasks,

each stimuli was presented for 2 seconds.In our case, we have 8 runs per task each

run containing 20 samples. Among the 20 samples, the first 12 samples are the brain

volumes acquired during active blocks (colour or face is shown). The last 8 samples

are the brain volumes acquired during the rest block (when the subject is resting).

2.1.3 fMRI Data Acquisition

Images were acquired on a 3T (Philips achieva) magnetic resonance imaging (MRI)

scanner at the National Neuroimaging Facility of NBRC (https://cognitivebrainlab.weebly.com).

The experimental design and the data aquisition is done by Dr.Dipanjan Ray for a

project on visual dual streams. A part of that data is used for MVPA in this project.

2.1.4 Practice Sessions

To assess the effect of practice on brain activation, seven practice sessions were con-

ducted across seven separate days between two fMRI scan sessions. Each practice

session comprised of same two tasks as scanning sessions and took place in an isolated

room in the lab. Stimuli were presented in a computer screen. The order of presen-

tation of stimuli in a task was randomized and was different for different sessions.

Overall, the order of two tasks was also randomized. In contrast to the fMRI sessions,

tasks were performed in sitting posture, but the distance between the participant and

the screen remains same. The number of practice sessions was decided based on a

pilot study probing the improvement of response time with practice.
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2.1.5 Pre-processing

The pre-processing and statistical analysis of fMRI data were executed with SPM8

(Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/) program. Initial

8 seconds of scan was discarded to allow the magnetization to stabilize to a steady

state. Prior to statistical analysis, images were slice time corrected, realigned with

the mean image, motion corrected, co-registered with the corresponding T1-weighted

images, normalized to a Montreal Neurological Institute (MNI) reference template

[15] and re-sampled to 4-4-5 mm3. Temporal high pass filtering with cut off of 128

seconds was employed to remove low frequency drifts caused by physiological and

physical (scanner related) noises.

2.2 The Two Types of fMRI Data Analysis

2.2.1 Classical univariate analysis

fMRI was initially used to study the activity of brain at the level of macro-anatomical

regions based on group data. These group data were smoothed spatially and warped

anatomically to standard brain templates. The smoothing across voxels and the spa-

tial spread of hemodynamic response leads to local spatial dependencies.

In a classical mass univariate analysis, statistical analysis is performed for these

smoothed group data using a general linear model separately for each voxel in the

brain. Analysis is done by fitting a model independently to the time series of indi-

vidual voxel or for the mean signal time series of a Region-Of-Interest (ROI). These

smoothed group results are of no use when we are interested to know how individual

cognitive representations are encoded and transformed in the human brain [16]. In

a mass univariate analysis activation of single voxels is related to the psychological

dimensions. So, this classical method cannot map the neural basis of experimental

conditions for which the effect on activation is multi-dimensionally distributed [17].
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2.2.2 Multi-Voxel Pattern Analysis (MVPA)

Pattern-based fMRI analyses enable us to address content-based processing in the

human brain by correlating multi-voxel fMRI activity patterns with the corresponding

cognitive representations [17].

2.3 MVPA

Figure 2.1: An example of MVPA for 2
classes [17]

fMRI signals provide some sort of repre-

sentation of the neural signals [18]. How-

ever the exact relation between fMRI sig-

nal and the neural signal are not estab-

lished. But what is well-established, is

the correlation between the spatial pat-

tern of fMRI scan and the mental state

of humans. In order to access this infor-

mation, scientists have long used classifiers and explored brain processes at the level

of mental representation. Due to vastness and complexity of the brain structure, one

needs to be cautious while making interpretations of the fMRI data. This is achieved

through pattern based analyses and computational modeling.

Figure 2.2: Classification
in MVPA [17]

During an activity, at any given instance the brain can be

thought of as a vector of its voxel values. Hence at any in-

stance it is nothing but a single point in the n-dimensional

voxel space. It is now possible to tag these data points

with the condition in which they were acquired. Multiple

measurements will provide us with a set of points for each

condition (Figure 2.1). The aim of the analyses is to be

able to classify new data points based on the previously

available data. This is achieved through classifiers, which attempt to separate points

without over-fitting (Figure 2.2). This then allows one to associate mental represen-

tations with the condition.
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2.3.1 Steps to perform MVPA

1. Feature selection: Restrict your Analysis to voxels which are relevant, based on

previous literature and anatomical knowledge of the brain or based on your region of

interest.

2. Pattern assembly: Rearrange the data in an orderly fashion depending on the

sequence of events during the experiment, in a single scan. A single row which has

the activity in all the required voxels at a given time is called a pattern.

3. Classifier Training : Run the Multivariate classification algorithm on these

patterns.

4. Generalized Testing : Run your trained algorithm on new data to confirm

efficiency of classification.

2.4 Classifiers

Classifiers group the training data into discrete categories, each with a unique label

(experimental condition). In this study 2 supervised machine learning algorithms

namely Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) are

used. For classification, both LDA and SVM use a weight at each voxel to linearly

project the data points to a single decision axis. They use different algorithms for

estimating the weights from the training data.

2.4.1 Support vector machine (SVM)

Support Vector Machine is a classification technique in which one tries to determine

a hyperplane that separates the classes. The hyperplane is chosen so as to maximise

the distance from the classes.
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Linear Support Vector Machine

Linear Support Vector Machine that is used to for classification when there are pre-

cisely two classes and we can find a hyper plane that separates the two classes. For

instance for a 2-Dimensional data points this would imply that there exists a line that

can separate the two classes completely.

Figure 2.3: SVM on 2-D dataset with 2 classes

Method

Assume the separating Hyperplane is given by

H0 : −→w .−→x + b = 0 where, (2.1)

−→w is the vector perpendicular to H0 and
b

||w||
is the perpendicular distance of H0 from the origin

Notice that for 2-D data points the above equation simply represents the equation of

a line.

Let H1 and H2 be the hyperplane which contain the points of Class 1 and Class 2

respectively that are at the shortest distance from H0. Such points are called support

vectors. In Figure 2.3 the solid red and blue data points are the support vectors. We
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define the set of indices of support vectors as

S := {i ∈ {1, 2, 3, ..., N}|xi ∈ H1 or xi ∈ H2}

Since our aim is to find H0 such that it is equidistant from H1 and H2, one can vary

b and −→w in order to make

H1 : −→w .−→x + b = −1 (2.2)

H2 : −→w .−→x + b = +1 (2.3)

Let −→xi be the ith sample data point. To each xi assign yi such that

yi =

−1 if xi belongs to class 1

1 if xi belongs to class 2

Therefore our aim is to find −→w and b such that :

1. (2.1) (2.2) and (2.3) holds

2. The distance d between H0 and H1 (or H2) is maximized

3. For every i :

−→w .−→xi + b ≤ −1 if yi = −1

−→w .−→xi + b ≥ 1 if yi = 1

Equivalently the above two conditions can be clubbed into one.

yi(
−→w .−→xi + b) ≥ 1 ∀ i

Now, Let a be a scalar such that :

a.−→w ∈ H1
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⇒ (a+
d

||−→w ||
).−→w ∈ H0

⇒ (a.−→w ).−→w + b = −1 & ((a+
d

||−→w ||
).−→w ).−→w + b = 0

⇒ a||−→w ||2 + b = −1 & (a+
d

||−→w ||
)||−→w ||2 + b = 0

⇒ d

||−→w ||
||−→w ||2 = 1⇒ d =

1

||−→w ||

Therefore our problem is reduced to the following :

Find −→w and b that

maximise
1

||−→w ||
with the constraints yi(

−→w .−→xi + b) ≥ 1 ∀ i

Equivalently,

Find −→w and b that

minimize
1

2
||−→w ||2 with the constraints yi(

−→w .−→xi + b) ≥ 1 ∀ i

To solve this problem we use the Lagrange Multiplier Method and introduce Lagrange

Multipliers αi

Lp =
1

2
||−→w ||2 −

N∑
i=1

αi(yi(
−→w .−→xi + b)− 1) (2.4)

Now we need to find b and −→w such that Lp is maximised and αi such that αi ≥ 0 and

Lp is minimized. In order to find such b and −→w ,

∂Lp

∂b
= 0 &

∂Lp

∂−→w
= 0

∵ Lp =
1

2
−→w .−→w −

N∑
i=1

αi(yi(
−→w .−→xi + b)− 1)

∴
∂Lp

∂b
= −→w −

N∑
i=1

αiyi
−→xi &

∂Lp

∂−→w
= −

N∑
i=1

αiyib

∴ −→w =
N∑
i=1

αiyi
−→xi &

N∑
i=1

αiyib = 0 (2.5)
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Substituting this back into (2.4), we get

Lp =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
i=1

αiαjyiyj(
−→xi .−→xj )

Define H := [Hij]N×N , where Hij = yiyj(
−→xi .−→xj ) & α = [α1 α2 ... αN ]

Then, Lp =
N∑
i=1

αi −
1

2
α.H .αT

The above term is called the Dual and denoted by LD

Therefore our problem reduces to finding αi ≥ 0 to maximize the Dual LD. This

problem can be solved using the Quadratic Problem Solver Method.

It can be shown that αi = 0 ∀ i ∈ S i.e for all the support vectors. Intuitively notice

that the constraint that yi(
−→w .−→xi + b) ≥ 1 is not significant for i /∈ S. This is because

if the data points are below H1 or above H2 then if yi(
−→w .−→xi + b) = 1 ∀ i ∈ S then

the inequality will be true for all i, since we have assumed that the data is linearly

separable.

Once, the αi are determined, By (2.5) we have :

−→w =
N∑
i=1

αiyi
−→xi =

∑
i∈S

αiyi
−→xi

In order to determine b look at the sample points that lie on the Support Vectors say,

xs, Then :

ys(
−→w .−→xs + b) = 1

⇒ ys
2(−→w .−→xs + b) = ys

But,ys
2 = 1

∴ b = ys −−→w .−→xs = ys −
∑
i∈S

αiyi
−→xi .−→xs
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Since ∀ s ∈ S we would get a different value of b, the ideal choice of b would be the

average.

∴ b =
1

|S|
∑
s∈S

(ys −
∑
i∈S

αiyi
−→xi .−→xs)

Thus, we have found the optimal Separating Hyperplane.

H0 :
∑
i∈S

αiyi
−→xi .−→x +

1

|S|
∑
s∈S

(ys −
∑
i∈S

αiyi
−→xi .−→xs) = 0

2.4.2 Linear discriminant analysis (LDA)

Figure 2.4: LDA on 2-D
data-set with 2 classes [19]

Linear discriminant analysis creates a classification bound-

ary by projecting sample data points in an n-dimensional

space on to an appropriate lower dimensional object and

then specifying hyper-planes in that lower dimension, that

can distinguish between the classes.

For example, if your data points are in a 2 dimensional

space and, say, there are 2 classes (Figure 2.4). Then,

LDA determines the optimum line (the lower dimensional

object) such that when we project our data points onto

that line, the two classes can be easily distinguished. Ide-

ally, such a line should be such that the projected points have a low within-class

variance and a high between-class variance.

Method

Suppose the data points are in an n-dimensional space and there are C classes.

Let Ni be the number of data points of class i.

Let xi,j be the jth sample of the ith class, where 1 ≤ i ≤ C , 1 ≤ j ≤ Ni Note that

xi,j would be an n-dimensional vector.
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In order to compute the within-class variance and between class variance, we need the

following quantities.

The sample mean of class i.

mi =
1

Ni

Ni∑
j=1

xi,j

The sample mean of the entire samples

m =
1

N

C∑
i=1

Nimi =
1

N

C∑
i=1

Ni∑
j=1

xi,j

The Co-variance matrix of Class i

Covi =
1

Ni − 1

Ni∑
j=1

(xi,j −mi)(xi,j −mi)
T

Notice the similarity between the co-variance matrix and the variance for 1-D data

points. In fact the co-variance matrix for 1-D data-set is Covi = 1
Ni−1

∑Ni

j=1(xi,j−mi)
2

which is precisely the variance. Hence, the co-variance matrix of class i gives a measure

of the variability within the class i. The within-class scatter Sw, a measure of the

variability within classes of the sample data points is given by

Sw =
C∑
i=1

(Ni − 1)Covi =
C∑
i=1

Ni∑
j=1

(xi,j −mi)(xi,j −mi)
T

Similarly, the between-class scatter, Sb, a measure of variability between points in

different classes is given by

Sb =
C∑
i=1

(mi −m)(mi −m)T

A projection matrix φ is matrix which when applied to the points will project it

into the required space. Our aim is to find a projection that minimizes the within-

class scatter Sw and maximizes the between-class scatter Sb. Hence we wish to find

projection matrix that maximizes
|φTSbφ|
|φTSwφ|

. Let such a matrix be φlda.
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In other words we need to find the maximum solution of the following equation

|Λ| = |φ
TSbφ|
|φTSwφ|

⇒ φTSbφ− φTSwφΛ = 0

⇒ φT (Sbφ− SwφΛ) = 0

⇒ Sbφ− SwφΛ = 0

⇒ Sbφ = SwφΛ

⇒ S−1w Sbφ = φΛ

Therefore, φlda will have eigenvalues of S−1w Sb as its column vectors. It is a standard

result in mathematics that eigenvalues of such matrices is at most n − 1. Hence the

projection space of φlda is at most an n− 1 dimensional space.

Therefore, we have now successfully found a lower dimensional object, the projection

space of φlda that is optimum for separating the classes. After projecting the sample

data points onto this new dimensional object, one is now in a position to classify new

data points by using different distance measures, like Euclidean Distance. Briefly, one

looks at the distance of the new point from various classes and then allots it to the

class which is the closest.

2.4.3 Classification accuracy

Classification accuracy is a way to calculate the percentage of correct predictions. The

Figure 2.5 shows a confusion matrix which describes the performance of a supervised

machine learning classification algorithm. Here, a is true positive, c is false positive, d

is false negative and b is true negative. The classification accuracy says how often the

classifier is correct. Sensitivity of the classifier model is given by a
a+d

. The specificity

of the model is given by c
c+b

.

In our study, we are interested in classification accuracy since our aim is not to study

the classifiers. Further, the classification accuracy value is correlated to the amount

of information present in that particular set of features.
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Figure 2.5: Classification accuracy.

2.5 Methods of Analysis

2.5.1 Region of Interest (ROI) based MVPA

The features for pattern analysis are the voxels that belong to anatomically / func-

tionally defined regions which are of interest to the experimenter. MVPA is done on

this region which results in a classification accuracy in terms of percentages which

represent the task based information content in that region. For color and face per-

ception tasks, the chosen ROIs are primary and secondary visual cortices, and ventral

stream regions like V3v, V4v, LOC, FG for both scans (i.e., before and after practice

sessions). Definition of ROIs included in this study relies on activation clusters ob-

tained from SPM (Statistical Parametric Mapping) univariate analysis, done on the

data.

We have used both LDA and SVM with leave-one-out cross validation method (n-1

runs are used for the training purpose and the remaining one run is used for testing)

for analysis. To evaluate the classifier performance and its generalization across all the

data, the cross-validation step was performed 8 times where each fold had a different

run as the testing data and the classifier was trained on the remaining 7 runs. Then

the accuracies of all cross-validation folds were averaged. This resulted in a single

classification accuracy for each region of interest per subject.
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2.5.1.1 Statistical significance test

For the group level results, statistical significance in the multivariate classification

analyses was assessed using one sample t-test with the null hypothesis: ”Classification

done by the algorithms are just by chance, resulting in a mean classification accuracy of

50%”. We reject the null hypothesis if the mean classification accuracy is significantly

higher than the chance level at 5% significance level for a two-tailed test to prove

the alternate hypothesis that the classification observed is not by chance but due to

inherent differences in the patterns of the two classes [20].

To check if there is any significant difference in classification accuracies before practice

and after practice, paired t-test was done for each ROI. The null hypothesis for the

paired t-test: ”There is no difference between the before and after practice images (the

mean difference between paired observations is zero). We reject the null hypothesis if

the mean difference is significantly higher than zero at 5% significance level.

2.5.2 Searchlight MVPA

A searchlight is like a repeated ROI analysis, where data in each searchlight can be

described by a neighbourhood of features around a center feature. This approach can

be applied equally to volume-based fMRI, surface-based fMRI. A searchlight map (or

accuracy map) is created by applying an MVPA measure to data in each searchlight

[21]. We have used a searchlight neighbourhood of 100 voxels at a time and LDA with

leave-one-out cross-validation method for analysis.

The training and testing methods are similar to the methods followed in ROI analysis.

However at the end of searchlight analysis, we get a new searchlight map for each

subject per task where each voxel value is the classification accuracy of that particular

searchlight having that voxel as the center feature. This new brain map can be used

for further statistical significance tests at group level.
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2.5.2.1 Statistical analysis

After obtaining the Accuracy Maps for all the 18 non-outlier subjects, we needed to

get an idea of which voxels were statistically better than the others at classification.

In order to do so we calculated the one-sample t-value of each voxel against the null

hypothesis of it being a chance event (i.e. 50% or 0.5 value), where t-value is given

by :

t =
x̄− 0.5

σ/
√

18

Here, x̄ references to mean classification accuracy of the particular voxel searchlight

across 20 subjects and σ is its standard deviation.

Hence, we obtained t-value map of the brain i.e. a map of the voxels where each voxel

is assigned its corresponding t-value. Then for each ROI, we compared it with the

corresponding values in the t-value map to verify the ROI results.

2.6 Software and Tools

2.6.1 CoSMoMVPA

CoSMoMVPA is a multi-variate pattern analysis (MVPA) toolbox in Matlab [22].

MVP analysis techniques for any kind of neuroimaging data are supported by CoS-

MoMVPA. These toolboxes are used to address questions which are both data driven

and hypothesis driven on neural organization and cognitive representations. The tool-

box is very powerful and accommodates data analysis within and across space, time,

neuroimaging modalities and organisms.

2.6.2 Statistical Parametric Mapping (SPM)

Statistical Parametric Mapping [23] is a process used to statistically test hypotheses

on functional imaging data. A specialized software called SPM has been created for
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this purpose.The inputs for SPM could be brain imaging data sequences from different

groups of people, or time-series from the same subject. We have used SPM for pre-

processing our data and for defining the regions of interest to create brain mask files.

2.6.3 MRICRON

MRICRON is a GUI based MRI image visualization toolbox which we have used for

visualizing the output brain maps [24].



Chapter 3

Results

Both LDA and SVM classifiers performed equally well for this data set.

3.1 ROI Analyses

6 relevant functionally defined ROIs (also called ”masks”) have been chosen for the

analysis. ROIs are similar but slightly different for both the scanning sessions since

they are functionally defined. Different ROIs are of different sizes. Hence they span

different number of slices. The 6 ROIs are:

1. Activated regions of left ventral stream (lven act).

2. Activated regions of right ventral stream (rven act).

3. Deactivated regions of left ventral stream (lven deact).

4. Deactivated regions of right ventral stream (rven deact).

5. Activated regions of primary and secondary visual regions in left hemisphere

(lv1v2 act).

6. Activated regions of primary and secondary visual regions in right hemisphere

(rv1v2 act).

23
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Figure 3.1 shows all the relevant regions of interest.

Figure 3.1: Regions of interest in the brain.
We have a combined mask for primary and secondary visual regions (V1)

The group level ROI analysis shows that all the ROIs significantly (significance level

p=0.05) classify colour / rest (Figure 3.2 and 3.3) and face/rest (Figure 3.4 and 3.5)

conditions for both before practice session (scan 1) and after practice session (scan 2)

in both the classification methods (SVM and LDA).

The t-test results are given below:

Figure 3.2: Significance test for the SVM classification on colour perception.

Figure 3.3: Significance test for the LDA classification on colour perception.

To see the effect of practice on classification accuracies, we performed a paired t-

test between before (scan1) and after (scan2) sessions. The only ROI which showed

significant (significance level p=0.05) was the activated region of left ventral stream

(lven act), for colour perception. After practice the classification accuracy reduced

significantly.
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Figure 3.4: Significance test for the SVM classification on face perception.

Figure 3.5: Significance test for the LDA classification on face perception.

3.2 Searchlight Analyses

The searchlight results re-affirm the role of ROIs in color and face perception. The t-

value maps obtained from the searchlight analysis allows the identification of clusters

across the whole brain which are statistically significant for task based information

encoding.

The following images (Figure 3.6 and Figure 3.7) show the slices of t-value maps

corresponding to the various ROIs. The ROIs themselves have been depicted in the

second row as white regions in the brain mask (shown in grey color). The color coding

for the t-values is show in the color bar present with each image. These images were

created using MATLAB.
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Color Perception

ROI Before Practice After Practice

lv1v2 act

rv1v2 act

lven act
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rven act

lven de

rven de

Figure 3.6: Color Perception
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Face Perception

ROI Before Practice After Practice

lv1v2 act

rv1v2 act

lven act
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rven act

lven de

rven de

Figure 3.7: Face Perception
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Discussion and Future Direction

4.1 Possible Explanation for the Results

4.1.1 ROI Analysis

The six ROIs significantly classified color v/s rest and face v/s rest, which could

possibly mean that those regions encoded task relevant information about colors and

faces.

After practice, only the left ventral stream showed a reduced classification accuracy

for the color perception task. A probable reason could be that region evolved to

increase its efficiency of color recognition by restricting its stimulus dimensions.

4.2 Interpreting classification accuracy

Substantial advances have been made since the last decade, in fMRI decoding. How-

ever, it is very crucial to look at the challenges and short-comings in the analysis and

interpretation of fMRI experiments. In our case, it is important to critically analyse

classification experiments.

31
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We know that fMRI is done using the BOLD signal which is a result of sluggish,

nonlinear hemodynamic response. It is important to remember that BOLD signal is a

proxy to neuronal signal and we are not capturing the neuronal activity directly. So,

interpretations of our classification results are not directly addressing the information

encoded in individual neurons [25].

4.2.1 Underestimation

Since, a voxel contains a pool of hundreds of neurons, it is possible to have a random

mixture of neurons with different tuning properties. This may confound the macro-

scopic effect at the level of voxels. However, this does not mean that there is no

information in the local neuronal populations. Also, a single neuron might encode

a significant amount of information which is vanquished by the surrounding neurons

which are contributing only noise. Thus the inherent nature of fMRI offers several

instances to underestimate the information content in the brain. The hidden infor-

mation can be unravelled only through direct invasive measurements of population

signals combined with computational methods [17].

4.2.2 Overestimation

A voxel can also sample a huge blood vessel which supplies blood to a large population

of neurons which are not anatomically related. This could result in a false positive

result showing significant information in that region which is not computationally

encoded by the neurons in reality.

The temporal resolution of fMRI is very low compared to the timescales of neuronal

signal processing. The sluggish hemodynamic response which has a time lag of 1-2

seconds contributes to the temporal disintegration of neuronal signal and the image

acquisition.

Thus there are several ways in which an observed fMRI classification accuracy might

overestimate the information content at the neuronal level [17].
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4.2.3 Other limitations

Following are few other reasons why the interpretations of classification accuracy can

be challenging.

The design of the experiment, parameter setting, temporal aggregation, etc,. can have

huge impacts on the classification accuracies. The size of the data and the partitioning

of the data-set into training and testing sets will decide how well the algorithm learns

the optimal decision boundary.

Moreover, if we fit a very complex classification algorithm to the training set, we

might face problems in generalization of the results to the testing set. This is called

over fitting which is a major topic of concern in classification studies [17].

4.3 Conclusions

To put it in a nutshell, if the experiment and analysis is done with proper care and

diligence, accounting for the errors in methodology, MVPA can reveal the mental

representations encoded in the fMR signals. This is a breakthrough when compared

to the classical univariate analysis.

MVPA is promising since it provides a generic framework for using fMRI data to

validate theoretical / computational models in future. However, fMRI has limitations

that are preventing us from extracting information from neuronal levels. So, the much

needed move for a great leap is to corroborate the classification studies using neuronal

recordings over different methods and different species [17].

4.4 What next?

MVPA is well known to be highly sensitive in detecting various characteristics of

the stimulus. As we have seen, one of the methods of MVPA is the searchlight

analysis. Traditional Searchlight analyses involved defining a sphere volume about
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each voxel and associating with that voxel the classification accuracy of that whole

sphere, thereby allowing us to project the experimental conditions of interest onto the

brain, via the voxels. This is the analysis we are doing in our study. However, a major

drawback of this analysis is that it does not take into account the actual structure of

the brain i.e. the anatomy of the cortical surface [26].

A method that does account for this is called the SURFACE-BASED SEARCH-

LIGHT analysis, in which we reconstruct the cortical surface using the anatomical

information of each subject. This surface is now used to select the region around a

voxel whose accuracy will be associated with this voxel. This approach differs from

volume based searchlight analysis in two aspects :

1. Since we use voxels on the reconstructed cortical surfaces we are restricting our

analysis to a more realistic subspace namely the grey matter of our brain which

contains all the cell bodies.

2. We use geodesic metric as a distance measure instead of the standard 3D-euclidean

metric. This will avoid selection of false neighbours (voxels) across the sulcus.

Clearly, it is interesting and crucial to understand the effect of these two factors

on the actual classification accuracy. At the same time it is necessary to decode if

the information obtained is sensitive to the spatial structure. Since, surface-based

analysis provides a better representation of the information-containing part of our

cerebral cortex, it might give a better understanding of the color and face perception

regions of the brain.
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