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Abstract

The goal of this thesis is to study the modeling of stability in miscible fluid system.

In general, displacing fluid is less viscous than displaced fluid there form a unstable

interface pattern between these two fluids in a porous media called Viscous Fingering.

However in inverse case more viscous displacing the others the interface is stable and

there is no pattern form. Chouke was the first who analyse the mathematical linear

stability of displacement for two immiscible fluid by considering surface tension to act

at the interface and found there is a cutoff wave number of the stability and when

applying their theory to miscible case, there is no surface tension and diffusion this

shows that the growth constant increases with wave number with no bound and this

is physically unrealistic. Introduction of diffusion makes any base state profile time

dependent. To determine the stability of time dependent flow there are following

methods.

1. The quasi-steady-state approximation in which we freeze the time and determine

the growth constant.

2. The Self-similar QSSA

3. nonmodal analysis

So in this problem we get coupled partial differential equation which we reduce

into ordinary differential equation therefore we finally get the system of first order

differential equation, which can be written as dX
dt

= A(t)X. Where matrix A(t) de-

termine the stability of the system. In case of normal matrix we get the exponential

time dependent solution but in case of non-normal matrix it fails to predict the sta-

bility appropriately. Therefore to determine the non-normality of A(t) we define two
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quantity Numerical Abscissa and Spectral Abscissa. We freeze at different different

times and calculate the these two quantity. In case of normal matrix both Numerical

Abscissa and Spectral Abscissa will be equal. Therefore at infinite time give the same

results in both case modal analysis and nonmodal analysis, but at finite time it does

not give the true information of stability in modal analysis of non-normal matrix.

However in Nonmodal analysis it gives true information about stability.
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Chapter 1

Prerequisites

In this chapter we are defining some physical definition. Since in this whole thesis we

are mainly focus or study about stability of the system so we first defined stability

and different types of stability. We also use some mathematical formula and meth-

ods like Cnetral difference formula we use this formula in 3rd chapter SSQSSA to

discretize the ODEs. In chapter 2nd we get the 4th order ODEs(ordinary differential

equation),to solve this ODES we use shooting method to get appropriate solutions. So

further we describe in detail about Shooting method. We define about the Condition

number. The role of condition number is very important to get information about

matrix behaviour how it changes by perturbing the matrix. We use some theorem

like Singular value decomposition (SVD), this can be used in Nonmodal analysis to

get simpler form of propagator matrix.

1.1 Introduction

Definition 1.1.1. Viscous fingering In general, displacing fluid is less viscous than

displaced fluid there form a unstable interface pattern between these two fluids in a

porous media called Viscous Fingering. However in inverse case more viscous displac-

ing the others the interface is stable and there is no pattern form.

Definition 1.1.2. Linearly stable ( Infinitesimal disturbance) : When system is Sta-

ble to small disturbance called Linearly stable.

1



Definition 1.1.3. Non-linearly unstable : When system is Unstable to sufficiently

large disturbance called Non-linearly unstable.

The method of linear stability analysis consists of introducing Sinusoidal distur-

bances on a basis state (also called background or initial state), which is the flow

whose stability is being investigated. For example consider

v(x, t) = v∗(y)eikx+imz−σt

where u∗ is a complex amplitude and σ = σr + iσi.

For various σr systems behave differently;

σr < 0 : stable,

σr > 0 : unstable,

σr = 0 : neutrally − stable.

Figure 1.1: stable and unstable system

All things we defined above, for more detail here we can find [2] of chapter 12 (Insta-

bility). To study the stability of system we need various kind of concepts and methods

like singular value decomposition (SVD) , condition number, central difference for-

mula, shooting method etc.
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1.2 Singular value Decomposition (SVD)

The singular value decomposition is a factorization of a matrix A ∈Mn(C) . It is the

generalization of the eigen-decomposition of a positive semi-definite normal matrix i.e

its eigenvalue are non-negative.

Theorem 1.2.1. SVD : Let A ∈Mn(C) a matrix.The square root of the eigenvalues

of A∗A, (where A∗ is the conjugate transpose) is called Singular value.

Singular value decomposition (SVD) of a matrix A is given by;A = UDV ∗, Where

U and V are unitary matrices and D is diagonal matrices whose diagonal entries are

singular values.

For example : A =

 5 5

−1 −7

 ,

A∗A =

5 −1

5 −7

 5 5

−1 −7

 =

26 18

18 79

; eigenvalue of A∗A is 20 and 80.

Hence A∗A− 20I =

 6 18

18 54

 therefore v =

−3/
√

10

1/
√

10



and A∗A− 80I =

−54 18

18 −6

 therefore w =

1/
√

10

3/
√

10



∴ V =

−3/
√

10 1/
√

10

1/
√

10 3/
√

10

 , D =

√20 0

0
√

80


∵ AV = UD;

∴

 5 5

−1 7

−3/
√

10 1/
√

10

1/
√

10 3/
√

10

 = U

√20 0

0
√

80



∴ U =

−1/
√

2 1/
√

2

1/
√

2 1/
√

2

.
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1.3 Condition number[1]

For normal matrix condition number is the ratio of the largest to smallest singular

value in the singular value decomposition of a matrix. A system is said to ill-condition

if condition number is too large. If the system of equation given Ax = b;

A(x+ δx) = b+ δb

||δx||
||δb||

∗ ||b||
||x||

≤ ||A|| ∗ ||A−1|| = K

called Condition number which denote what is the fractional change in solution to

fractional change in b matrix. (A+ δA) ∗ (x+ δx) = b

||δx||
||δx+ x||

∗ ||A||
||δA||

≤ ||A|| ∗ ||A−1||

this is also Condition Number which denote the fractional change in solution related

to fractional change in matrix A

Since if A be a unitary matrix i.e A∗A = AA∗ = I then Condition number of unitary

matrix is 1.

since in the whole thesis we are solving differential equation. So here is the some basic

idea about differential equation ant its types.

• Differential equation : An equation that consist of derivatives is called differential

equation. Differential equation are of two types :

1. Ordinary differential equation : A differential equation with one independent

variable is called differential equation. Example : 3dy
dx

+ 5y2 = 3x, y(0) = 5.

2. Partial differential equation : A differential equation with more than one inde-

pendent variable is called the partial differential equation. Example : 3 ∂
2y
∂x2

+

2∂
2y
∂t2

= x2 + t2.

• Boundary Value Problem (BVP) : Suppose y′′(x) = f(x, y(x), y′(x)) with y(x0) =

y0, y(x1) = y1 boundary value problem.
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• Initial Value Problem (IVP) : Let y′′(x) = f(x, y(x), y′(x)) with y(x0) = y0, y
′(x0) =

a implies y(x; a) denote the (IVP).

1.4 Central difference formula for derivatives

This formula is usually use to solve boundary value problem. Let φ : R → R is a

function and φ′ is derivative of φ, φ is double derivative of φ.

xi+1 = xi + h and x ∈ R

φ′(xi) =
1

2h
(φ(xi+1)− φ(xi−1)) for i = 1, 2, 3.... (1.1)

Where h is step size.

φ′′(xi) =
1

h2
(φ(xi+1)− 2φ(xi) + φ(xi−1)) for i = 1, 2, 3.... (1.2)

The boundary conditions played a vital role in finding the solution of a BVP and

analyzing the dynamics of the solution.

1.5 Methods to solve boundary value problem

The numerical methods for solving boundary value problem may broadly be classified

into the following three types:

1. Shooting methods: These are initial value problem methods. This method solve

a boundary value problem by reducing it to the solution of an IVP. Here, we

add sufficient number of condition at one end point and adjust these conditions

until the required conditions are satisfied at the other end.

2. Difference methods: The differential equation is replaced by a set of difference

equations which are solve by direct or iterative methods.

3. Finite element methods: The differential equation is replaced by using approx-

imate methods with the piece-wise polynomial solution.
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Here we only talk in detail about Shooting method, this method is more appropriate

than others and converse rapidly faster than the others.

1.6 Shooting Method

1.6.1 Procedure to solve second order BVP using shooting

method

Figure 1.2:

The shooting technique to approximate the solution of non-linear second order

BVP is that, the solution to the boundary value problem can be approximated by using

the solutions to a sequence of initial-value problems involving a parameter t, known as

shooting parameter. As the method superposition does not hold for non-linear ODEs,
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it is expected that we need more than two IVPs to solve y′′ = f(x, y, y′), x ∈ (a, b).

Thus, to approximate the solution of boundary value problem, we need to covert it

into corresponding initial value problem by taking shooting parameter t. Here, we

will discuss it for three types of boundary conditions.

1. For first kind boundary condition (Dirichlet Boundary Condition): In this case,

we need to solve the following IVP

y′′ = f(x, y, y′); y(a) = α; y0(a) = t(shooting parameter) (1.3)

the solution of the IVP will be of the form yt = y(x, t). Since this is approxi-

mated solution to boundary value problem, it should satisfy boundary condition

at other end. So we need to choose the parameter, t, in a manner to ensure that

φ1(t) ≡ f(x, y, y′), y(b, t)− β = 0 (1.4)

Similarly, we can define it for Neumann and mixed type boundary conditions.

2. For Second kind of BVP (Neumann BC): In this case, we need to solve the

following IVP

y′′ = f(x, y, y′); y(a) = t; y′(a) = α (1.5)

and solve up to x = b. Writing the solution of the IVP as yt = y(x, t), we need

to choose the parameter s, in a manner to ensure that

φ2(t) ≡ y′(b, t)− β = 0 (1.6)

3. For third kind of BVP (mixed BC): Here, the boundary conditions are a0y(a) +

a1y
′(a) = α and b0y(b) + b1y

′(b) = β.

Thus, we can assume the value of y(a) or y′(a) = t. Without loss of generality, let us

assume y′(a) = t then a0y(a) + a1y0(a) = α which gives y(a) = α−a1t
a0

. In this case,

we need to solve

y′′ = f(x, y, y′); y(a) =
α− a1t

a0

, y′(a) = t (1.7)

Writing the solution of the IVP as yt = y(x, t), we need to choose the parameter, t,

in a manner to ensure that

φ3(t) ≡ b0y(b, t) + b1y
′(b, t)− β = 0 : (1.8)
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Thus to solve the non-linear BVP, we need to find the root of non-linear equations,

(1.4)-(1.6). Since φ(s) is an algebraic equation in s, we can use any root finding

numerical method such as, Secant method or Newton- Raphson method. In our case

we are using Newton-Raphson method.

Newton-Raphson Method for finding the root of φ(t) = 0

tk+1 = tk −
φ(tk)

φ′(tk)

for k = 1, 2, 3.... Here t0 is an initial approximation of Newton-Raphson method. The

difficulty in Newton-Raphson method is to evaluate φ′(t).

Stopping criterion: |φ(tk+1)| < ε, 0 ≤ ε� 1. Since in Newton Raphson formula at

each iteration we have known every thing except φ′(t). So we need to find it.

How to calculate φ′(t)? Let us calculate it for mixed kind boundary condition. As

yt = y(x, t))⇒ y′t = y′(x, t) and y′′t = y′′(x, t). Thus,

y′′ = f(x, yt, y
′
t), yt(a) =

α− a1t

a0

and y′t(a) = t (1.9)

and
dφ3

dt
= b0

∂yt
∂t

+ b1
∂y′t
∂t

(1.10)

Hence for calculating the value of φ′3, it is sufficient to calculate the value of ∂yt
∂t

and

∂y′t
∂t

. Now, take partial derivative of Eq. (1.7) with respect to t, we have

∂y′′t
∂t

=
∂f(x, yt, y

′
t)

∂t

⇒ ∂y′′t
∂t

=
∂f

∂x

∂x

∂t
+
∂f

∂yt

∂yt
∂t

+
∂f

∂y′t

∂y′t
∂t

(1.11)

Set, v = ∂yt
∂t

. Then v′ =
∂y′t
∂t

and v′′ =
∂y′′t
∂t

. Then Eq.(1.9) can be rewritten as

v′′ =
∂f

∂yt
v +

∂f

∂y′′t
v′, v(a) =

−a1

a0

, v′(a) = 1. (1.12)

Thus IVP (1.10) can be solved step by step along with equation (1.7). When the

computation of one cycle is completed v(b) and v′(b) will be found. Now, φ(t) =

b0y(b, t) + b1y
′(b, t)− β ⇒ dφ

dt
= b0

∂yt
∂t

+ b1
∂y′t
∂t
⇒ dφ

dt
= b0v(b) + b1v

′(b). Thus we have

finally the value of φ′(t). In case of Drichlet BC, we have dφ
dt

= v(b).
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Chapter 2

Stability of Miscible fluid system:

using Quasi steady state

approximation(QSSA)

MOTIVATION : Currently there are so many field of research in mixing in porous

media that have many applications like in Oil extraction, chromatography etc. There

are three method to analyse the stability of miscible fluid system in porous media.

In this chapter we are discussing about QSSA. In this method we assume that the

growth rate of the disturbance is much faster than the rate of change of the base

state. We get the solution of having two time in the mathematical modeling, one is

perturbation time and other is base state time. So we assume base state time is as

frozen profile and we replace base state time t by constant t0.

2.1 Basic formula

∇.V = 0 (2.1)

∇p = −µV (2.2)

Dc

Dt
= D∇2c (2.3)

where D
Dt

= ∂
∂t

+ ~V .∇.
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Figure 2.1: Suppose red fluid has viscosity µ1blue fluid has viscosity µ2. Here µ2 > µ1.

Therefore velocity of red fluid will be more so it will displace the blue fluid that is

why at interface there make a pattern called viscous fingering.

In the above equation, c is the concentration of solvent, µ is the viscosity of

the fluid divided by the permeability of the medium. Equation(2.1) is equation of

continuity, equation(2.2) is Dercy’s law while equation(2.3) is the Diffusion equation.

Here is six unknown but we have only five equations therefore further we assume that

viscosity is the function of concentration.

µ = µ(c) (2.4)

Since the fluid is moving with constant velocity U, for convenient change it into a

moving frame reference. x = x1 − Ut.

Therefore Eqs. (2.1)-(2.3) can be written as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.5)

Where u, v, w are velocity in x, y, z direction respectively.

∂p

∂x
= −µ(u+ U) = −µu− µU (2.6)

∂p

∂y
= −µv (2.7)

∂p

∂z
= −µw (2.8)
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Figure 2.2: µ2 < µ1 here fluid will be only defuse due to concentration difference

Since D
Dt

= ∂
∂t

+ ~V .∇.

Further we only look for system of 2-dimension, therefore we have ;

∂c

∂t
+ u

∂c

∂x
+ v

∂

∂y
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
(2.9)

2.2 Scaling

Since this experiment done in a very minor scale and there is no characteristic length

and time so we scale length and time by D
U

and D
U2 respectively. We also scales viscosity

by the viscosity of the displacing fluids µ1 and take µ1D as characteristic pressure.

With these diffusive scales the dimensionless equations contain no parameters, thus

the only parameter will be that entering the dimensionless viscosity-concentration

relation. After doing the scaling we get following Equations.

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.10)

∂p

∂x
= −µu− µ (2.11)

∂p

∂y
= −µv (2.12)

∂p

∂z
= −µw (2.13)

∂c

∂t
+ u

∂c

∂x
+ v

∂

∂y
= (

∂2c

∂x2
+
∂2c

∂y2
). (2.14)

11



Figure 2.3: Figure show that there is system with the base uniform flow in the x1-

direction of two fluids with different viscosity µ1 and µ2 where µ2 > µ1 of concentration

c1 = 0 and c2 = 1 with initial velocity U, Permeability k, Dispersion tensor D. Assum-

ing flowing fluid is neutrally buoyant and incompressible.The medium homogeneous

with a constant permeability and dispersion is isotropic.

2.3 Base-state solution

u = v = w = 0 (2.15)

µ0 = µ0(c0) = µ0(x, t) (2.16)

Hence base state is time dependent. The time dependent of concentration is due to

dispersion effect and since viscosity is dependent of concentration therefore viscosity

is also time dependent. Concentration at bease state will be ;

c0(x, t) =
1

2
[1 + erf(x/2

√
t)], (2.17)

where erf(z) = 2√
π

∫ z
0
e−t

2
dt is the error function.

2.4 Stability Analysis

Since we are interested in stability of this system so we do the small perturbation

in the system. (u, v, w, c, µ, p) = (u, v, w, c, µ, p)(base−state) + (u, v, w, c, µ, p)
′

Since the

coefficient of equation which we get after perturbation are independent of y and z, so
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we can decompose the perturbation into Fourier component in the y , z components.

(u′, c′) = (Φ,Ψ)eikyyeikzz (2.18)

where ky, kz are the disturbance wave-number and Φ,Ψ are the function of x and t.

k2 = k2
y + k2

z (2.19)

Since we are considering 2-D system k2 = k2
y. Till now whatever we got the equation

solve these using elimination method we get two coupled partial differential equations.

Here below the mathematical explanation, how we get the perturb concentration.

(u0, v0, w0, p0, µ0) + (u′, v′, w′, c′, µ′).

u→ εu′, v → εv′, c→ c0 + εc′ and p→ p0 + εp′.

Since O.v = 0,

∂εu′

∂x
+
∂εv′

∂y
= 0

∂u′

∂x
+
∂v′

∂y
= 0.

Also
∂p

∂x
=
∂(p0 + εp′

∂x

= −(µ0 + µ′ε)− (µ0 + µ′)u′,

implying
∂p′

∂x
ε = −µ′ε− µ0u

′ε− µ′u′ε2.

Since p0(x, t) = −
∫ x

µ0(x′, t)dx′, thus
∂p0

∂x
= −µ0(x, t), and hence

∂p′

∂x
= −µ′−µ0u

′.

The last equation implies that

∂p′

∂y
=
∂(p0 + εp′)

∂y
= −(µ0 + εµ′)εv′

∂p0

∂y
+ ε

∂p′

∂y
= −µ0εv

′ − ε2µ′v′

∂p′

∂y
= −µ0v

′.

13



Now,
∂(c0 + εc′)

∂t
+ εu′

∂(c0 + εc′)

∂x
+ εv′

∂(c0 + εc′)

∂y
=
∂2(c0 + εc′)

∂x2
+
∂2(c0 + εc′)

∂y2

ε
∂c′

∂t
+
∂c0

∂t
+ εu′

∂c0

∂x
+ ε2u′

∂c′

∂x
+ εv′

∂c0

∂y
+ ε2v′

∂c′

∂y
=
∂2c0

∂x2
+ ε

∂2c′

∂x2
+
∂2c0

∂y2
+ ε

∂2c′

∂y2
,

since c0(x, t) is independent of y, thus
∂c′

∂t
+ u′

∂c0

∂x
=
∂2c′

∂x2
+
∂2c′

∂y2
.

Since the coefficient of the equation are the independent of y so we can decompose

the perturbation into fourier components in y-direction.
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(u′, c′) = (Φ,Ψ) exp(ikyy)

implying u′ = Φ exp(ikyy), and

c′ = Ψ exp(ikyy)

Since
∂u

∂x
= −∂v

∂y
, and

∂p

∂x
= −µ− µ0u.

Thus
∂

∂x

(∂p
∂x

)
= −∂µ

∂y
− u∂µ0

∂y
− µ0

∂u

∂y
∂

∂x

(∂p
∂y

)
= −v∂µ0

∂x
− µ0

∂v

∂x
(because of exact diffrentiation)

−v∂µ0

∂x
− µ0

∂v

∂x
= −µ0

∂u

∂y
− ∂µ

∂y
(*)

∂(Ψeiky)

∂t
+ Φeiky

∂c0

∂x
=
∂2(Ψeiky)

∂x2
+
∂2(Ψeiky)

∂y2

∂Ψ

∂t
+ Φ

∂c0

∂x
=
∂2Ψ

∂x2
+
∂2Ψ

∂y2
−Ψk2

∂Ψ

∂t
− ∂2Ψ

∂x2
+ Ψk2 = −Φ

∂c0

∂x( ∂
∂t
− ∂2

∂x2
+ k2

)
Ψ = −Φ

∂c0

∂x
. (**)

Differentiating equation * w.r.t y we get

∂µ0

∂x

∂u

∂x
+ µ0

∂2u

∂x2
= −µ0

∂2u

∂y2

∂µ0

∂c0

∂c0

∂x

∂u

∂x
+

1

R

∂µ0

∂c0

∂2u

∂x2
+

1

R

∂µ0

∂c0

∂2u

∂y2
= 0

R
∂c0

∂x

∂u

∂x
+
∂2u

∂x2
+
∂2u

∂y2
= 0

From equation *, we have

−v∂µ0

∂c0

∂c0

∂x
− µ0

∂v

∂x
= −µ0

∂u

∂y
− ∂µ

∂y

−vRµ0
∂c0

∂x
− µ0

∂v

∂x
= −µ0

∂u

∂y
− ∂µ

∂y

1

µ0

vR
∂c0

∂x
+
∂v

∂x
=
∂u

∂y
+R

∂c

∂y
,

differentiating w.r.t y, we get

R
∂2c0v

∂y∂x
+

∂2v

∂y∂x
=
∂2u

∂y2
+R

∂2c

∂y2
.

Put
∂v

∂y
= −∂u

∂x15



−R∂c0

∂x

∂u

∂x
− ∂2u

∂x2
=
∂2u

∂y2
+R

∂2c

∂y2

∂2u

∂x2
+
∂2u

∂y2
+R

∂c0

∂x

∂u

∂x
+R

∂2c

∂y2
= 0.

Since u = Φeikyy, and

c = Ψeikyy, we have

∂2Φ

∂x2
− k2Ψ +R

∂c0

∂x

∂Φ

∂x
= k2ΨR( ∂2

∂x2
− k2 +R

∂c0

∂x

∂

∂x

)
Φ = k2RΨ

(
because

1

µ

∂µ0

∂c0

= R
)

2.5 Quasi-steady-state approximation (QSSA)

We assume that growth rate of the disturbances to be much faster than the rate

of change of the base state. So adopting the QSSA, we replace the time t in the

coefficient of founded above coupled equation by constant t0 and treat this as frozen

profile. So we define,

(Φ,Ψ)(x, t) = (φ, ψ)(x, t0)eσ(t0)t (2.20)

where σ is the quasi-static growth constant. it depend on the wave-number k and

varies with the time t0. After QSSA we get the two second order ordinary differential

equation for which to solve we need viscosity, concentration relation. In general this

relationship is very complicated so for our convenience we assume viscosity varies

exponentially with concentration.

1

µ

dµ

dc
= R. (2.21)

where R is a parameter determined by the mobility ratio α = µ2
µ1
.

α = eR. (2.22)

We replace the time t in the coefficient of equation by constant to define:

(Φ,Ψ)(x, t) = (φ,Ψ)(x, t0)eσ(t0)t

.

i.e Φ = φeσ(t0)t,Ψ = ψeσ(t0)t. Therefore equation is(
∂2

∂x2
+

1

µ0

∂µ0

∂x
(x, t)

∂

∂x
− k

)
Φ = k2∂µ

∂c

Ψ

µ(x, t)
(2.23)
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and (
∂

∂t
− ∂2

∂x2
+ k2

)
Ψ = −∂c0

∂x
(x, t)Φ. (2.24)

After substitution of Φ and Ψ in equation (2.12) and (2.13) we get

((
∂2

∂x2
)eσ(t0)t +

1

µ0

µ0

∂x
(x, t0)

∂σ(t0)t

∂x
− k2)φ = k2∂µ

∂c
ψ

σ(t0)t

µ0(x, t0)

=⇒ (
2

∂x2
+

1

µ0

∂

∂x
µ0(x, t0)

∂

∂x
− k2)φ =

k2 µ
∂c
ψ

µ0(x, t0)

and (
∂

t
− ∂2

∂x2
+ k2)ψ(eσ(t0)t) = −∂c0

∂x
φ(eσ(t0)t)

=⇒ (σ(t0)− ∂2

∂x2
+ k2)ψ = −∂c0

∂x
(x, t0)φ

Since µ = eRC =⇒ ∂µ
∂C

= ReRC = Rµ

=⇒ (σ(t0)− ∂2

∂x2
+ k2)(

∂2

∂x2
+

1

µ0

∂µ0

∂x

∂

∂x
− k2)φ =

−k2

µ0(x, t0)
(
∂µ

∂C
)
∂c0(x, t0)

∂x
φ

=⇒ (−σ(t0) +
∂2

∂x2
− k2)(

∂2

∂x2
+

1

µ0

× ∂µ

∂c0

× ∂c0

∂x

∂

∂x
− k2)φ = Rk2∂c0(x, t0)

∂x
φ

Because µ = µ(c) and 1
µ
∂µ
∂C

= R, we have

(
∂2

∂x2
− k2 − σ(t0))(

∂2

∂x2
+R

∂c0

∂x

∂

∂x
− k2)φ = Rk2∂c0(x, t0)

∂x

=⇒ ∂4φ

∂x4
+R

∂c0

∂x

∂3x

∂x3
−2k2∂

2φ

∂x2
−R∂c0

∂x

∂φ

x
(k2+σ(t0))−σ(t0)

∂2

φ
∂x2 = φ(Rk2∂c0(x, t0)

∂x
−k4−σk2)

we get forth order ordinary differential equation with boundary condition; Disturbance

decay goes to zero as x tends to ∓∞.( d2

dx2
− k2 − σ(t0)

)( d2

dx2
+R

dc0

dx
(x, t0)

d

dx
− k2

)
φ = Rk2dc0

dx
(x, t0)φ. (2.25)

Solve this Forth order ODE analytically for the growth rate at t = 0 and numerically

using forth order Runge-kutta method for t > 0. Since base state concentration is a

step function since the derivative of step function is Dirac-delta function. Hence

dc0

dx
= δ(x). (2.26)

Finally we got the relation between growth constant σ and wave-number k at t = 0;

σ =
1

2
[(Rk − k2)− k(k2 + 2Rk)1/2]. (2.27)
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Figure 2.4: [3].

When we plot the disturbance concentration for R = 3, k = 0 at different time

obtained from IVP in (x,t) coordinate system. It takes longer time to converge to

dominant modes. So to solve these kind of problem we discuss SSQSSA which we

discuss more about in next chapter.

when σ = 0 obtaining wave-number is called cutoff wave-number denoted as kc.

kc = R/4

and when growth constant is maximum obtaining wave-number is called dangerous

mode σ(max) ≈ 0.0225R2.

2.6 Deriving Tan and Homsy dispersion relation

analytically for step profile.

Since we have equation (2.14) with boundary condition disturbance decays is zero as

x→ ±∞

( d2

dx2
− k2 − σ(t0)

)( d2

dx2
+R

dc0

dx
(x, t0)

d

dx
− k2

)
φ = Rk2dc0

dx
(x, t0)φ.

Analytically solution of equation (2.14) at t = 0.
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c0 =

0, x < 0

1, x > 0.

Therefore
dc0

dx
= δ(x). (2.28)

Where

δ(x) =

0, x 6= 0

∞, x = 0.

Therefore Eq.(2.14) at x 6= 0 becomes as;( d2

dx2
− k2 − σ

)( d
dx
− k2

)
φ = 0. (2.29)

Now applying boundary condition φ→ 0 as x→ ±∞.

We get

φ = c1e
ρx + c2e

−ρx + c3e
kx + c4e

−kx, where ρ2 = σ + k2.

Applying decaying boundary conditions,

φ =

c1e
ρx + c3e

kx, x < 0

c2e
−ρx + c4e

−kx, x > 0.

for convenience let c1 = A1, c2 = A2, c3 = B1 and c4 = B2.

Therefore

φ =

A1e
ρx +B1e

kx, x < 0

A2e
−ρx +B2e

−kx, x > 0.

(2.30)

To solve above problem we need four boundary conditions which are following;

now integrate Eq.(2.14) from 0+ to 0- we get using Eq.(2.17)∫ 0+

0−

( d2

dx2
− k2 − σ

)( d2

dx2
+Rδ(x)

d

dx
− k2

)
φdx = Rk2

∫ 0+

0−
δ(x)φdx.
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Since disturbance φ and ψ are continuous at zero. Therefore by disturbance velocity

continuity and disturbance concentration continuity around the interface,

φ(0+) = φ(0−)

and

ψ(0+) = ψ(0−)

also,

p′(0+) = p′(0−)

Since

∂p′

∂x
= −µ′ − µ0u

′

= −dµ

dc
|c0c′ − µ0u

′

= −dµ

dc
|c0ψeik+σt − µ0φe

ik+σt

= −eik+σt(
dµ

dc
|c0ψ + µ0φ)

= −eik+σt(
µ0

k2
(

d2

dx2
+

1

µ0

dµ0

dx

d

dx
− k2)φ+ µ0φ).

(2.31)

Now integrating Eq.(2.31) both sides w.r.t x from 0− to 0+ we get,

p′(0+)− p′(0−) =

∫ 0+

0−
−eik+σt

(
µ0

k2

(
d2

dx2
+

1

µ0

dµ0

dx

d

dx
− k2

)
φ+ µ0φ

)
dx

⇒ 0 = −eik+σt

∫ 0+

0−

(
µ0

k2

d2φ

dx2
+

1

k2

dµ0

dx

dφ

dx
− µ0φ+ µ0φ

)
dx

by using ILATE rule of integration.

⇒ µ0(0+)
dφ

dx
|0+ = µ0(0−)

dφ

dx
|0−

⇒ α
dφ

dx
|0+ =

dφ

dx
|0− where α =

µ0(0+)

µ0(0−)
=
µ2

µ1

d2φ

dx2
+

1

µ0

dµ0

dx

dc

dc

dφ

dx
− k2φ =

k2

µ0

(
dµ

dc
)ψ
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Since R =
1

µ

dµ

dc
⇒ ψ =

1

Rk2

(
d2φ

dx2
+R

dc0

dx

dφ

dx
− k2φ

)
.

for x 6= 0,
dc0

dx
= 0 therefore ψ =

1

Rk2

(
d2φ

dx2
− k2φ

)
,

if x > 0, φ = A2e
−ρx +B2e

−kx.

therefore, ψ =
1

Rk2

(
A2e

−ρx) (ρ2 − k2)

and if x < 0, φ = A1e
ρx +B1e

kx.

therefore, ψ =
1

Rk2

(
A1e

ρx(ρ2 − k2))

since φ(0+) = φ(0−)⇒ A1 +B1 = A2 +B2

and ψ(0+) = ψ(0−)⇒ A1 = A2

similarly we get, B1 = B2

α
dφ

dx
|0+ =

dφ

dx
|0− ⇒ α (−ρA2 −B2K) = ρA1 +B1k

therefore either α = -1 or ρA1 +B1k = 0, but α = µ2
µ1

= eR > 0

hence ρA1 +B1k = 0⇒ A1 = −K
ρ
B1. ∴ φ =

−
k
ρ
B1e

ρx +B1e
kx, x < 0

−k
ρ
B1e

−ρx +B1e
−kx, x > 0

(2.32)

From Equation (38) we get,∫ 0+

0−

( d2

dx2
Rk2ψdx−ρ2

(( d2

dx2
− k2 − σ

)( d2

dx2
+Rδ(x)

d

dx
− k2

)
φdx = Rk2

∫ 0+

0−
δ(x)φdx

Rk2 dψ

dx

∣∣0+
0−
− ρ2

(
dφ

dx
|0+0− +R

dφ(0)

dx
− k2

∫ 0+

0−
φdx

)
= Rk2φ(0)

∫ 0+

0−

( d2

dx2
− k2 − σ

)( d2

dx2
+Rδ(x)

d

dx
− k2

)
φdx = Rk2

∫ 0+

0−
δ(x)φdx.

∫ 0+

0−

( d2

dx2
Rk2ψdx−ρ2

(( d2

dx2
− k2 − σ

)( d2

dx2
+Rδ(x)

d

dx
− k2

)
φdx = Rk2

∫ 0+

0−
δ(x)φdx

Rk2 dψ

dx

∣∣0+
0−
− ρ2

(
dφ

dx
|0+0− +R

dφ(0)

dx
− k2

∫ 0+

0−
φdx

)
= Rk2φ(0)
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Since φ is continuous i.e φ(0+) = φ(0) = φ(0−) = A1 +B1,

dφ

dx
is also continuous i.e

dφ

dx
(0+) =

dφ

dx
(0−) =

dφ

dx
(0) = −A1ρ−B1k = 0

dφ(0)

dx
= 0

Assume that φ is bounded i.e |φ(x)| ≤M∀x.

=⇒
∫ 0−

0+
φdx = limε→0

∫ ε
−ε φdx

=⇒ |
∫ 0−

0+
φdx| = limε→0 |

∫ ε
−ε φdx| ≤ε→0

∫ ε
−ε |φdx| ≤ limε→0M

∫ ε
−ε dx = limε→0 2Mε =

0.∫ 0+

0−
φdx = 0

Rk2

(
dψ

dx
|0+ −

dψ

dx
|0−
)
− ρ2

(
dφ

dx
|0+ −

dφ

dx
|0+
)

= Rk2 (A1 +B1)

rK2
(
− ρ

Rk2
A1(ρ2 − k2)− ρ

Rk2
A2(ρ2 − k2)− ρ2(A1ρ−B1kA2ρ−B2k)

)
= Rk2(A1+B1)

k(ρ− k)(Rk − 2ρ2 − 2ρk) = 0

since k 6= 0, ρ2 = k2 + σ ⇒ ρ− k 6= 0

therefore we get the quadratic equation in σ; 2(k2 + σ)−Rk = −2k
√
k2 + σ

squaring on both sides we get, 4σ2 + 4k2σ − 4Rkσ − (−R2K2 + 4Rk3)

Hence, σ =
1

2

(
Rk − k2 + k

√
(k2 + 2Rk)

)
Since φ is continuous i.e φ(0+) = φ(0) = φ(0−) = A1 +B1,

Rk2

(
dψ

dx
|0+ −

dψ

dx
|0−
)
− ρ2

(
dφ

dx
|0+ −

dφ

dx
|0+
)

= Rk2 (A1 +B1)

rK2
(
− ρ

Rk2
A1(ρ2 − k2)− ρ

Rk2
A2(ρ2 − k2)− ρ2(A1ρ−B1kA2ρ−B2k)

)
= Rk2(A1+B1)

k(ρ− k)(Rk − 2ρ2 − 2ρk) = 0

since k 6= 0, ρ2 = k2 + σ ⇒ ρ− k 6= 0

therefore we get the quadratic equation in σ; 2(k2 + σ)−Rk = −2k
√
k2 + σ
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squaring on both sides we get, 4σ2 + 4k2σ − 4Rkσ − (−R2K2 + 4Rk3)

Hence, σ =
1

2

(
Rk − k2 + k

√
(k2 + 2Rk)

)
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Chapter 3

Stability of Miscible fluid system:

using Self similar Quasi steady

state approximation (SSQSSA)

In this chapter we discuss the method of numerical solutions of linearized equa-

tions.The linear perturbation equations in both (x,t) and (ξ, t)-coordinate systems

are solved as an IVP and compare the obtained both results.

In QSSA there are two time variable one is perturbation time and another is

base state time c0(x, t) = 1
2
[1 + erf(x/2

√
t)], where erf(z) = 2√

π

∫ z
0
e−t

2
dt is the error

function. We transform the coordinates from (x, y, t) to (ξ, y, t). Where ξ := x/
√
t,

so now we pretend base-state is time-independent. Transforming (x, y, t) to (ξ, y, t)

we get

Cb(ξ) =
1

2
[1 + erf(

ξ

2
)]. (3.1)

Where ξ = x√
t

and φc is the perturb concentration.

∂u′

∂x
= (

∂u′

∂ξ
)(
∂ξ

∂x
) =

1√
t

∂

∂x

∂u′

∂ξ
∴

1√
t

+
∂v′

∂y
= 0; (3.2)

1√
t

∂p′

∂ξ
= −µbu′ − µ′;

∂p′

∂y
= −µbv′ (3.3)

∵ (
∂2

∂x2
+R

dC0

dx

∂

∂x
− k2)φu = k2RφC
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∂c′

∂t
− ξ

2t

∂c′

∂ξ
+

1√
t

dcb
dξ
u′ =

1

t

∂2c′

∂ξ2
+
∂2c′

∂y2
(3.4)

since

(u′, c′)(ξ, y, t) = (φu, φc)(ξ, t)e
iky

⇒ ∂φc
∂t
− ξ

2t

∂φc
∂ξ

+
1√
t

dcb
dξ
φu =

1

t

∂2φc
∂ξ
− k2φc (3.5)

∵ x = ξ√
t

therefore ( ∂2

∂ξ2
+Rdcb

dξ
− k2t)φu = tk2Rφc.

With the help of above equation and equation (3.5) we eliminate φu so we get,

∂φc
∂t

=
ξ

2t

∂φc
∂ξ

+
1

t

∂2φc
∂ξ2
− k2φc −

1√
t

dcb
dξ
M−1

1 M2

M1 = ( ∂2

∂ξ2
+Rdcb

dξ
− k2t);

M2 = tk2R;

M3 =
1

t
(
ξ

2

∂

∂ξ
+

∂2

∂ξ2
− k2t);

M4 = − 1√
t

dcb
dξ
.

We get the system of ordinary differential equation

dφc(t)

dt
= A(t)φc. (3.6)

where φc(t) = φc(ξi, t) and A(t) = M3 +M4M
−1
1 M2 is the stability matrix of order n.

By using Central difference formula we get;
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on the left side of the equation (3.6) will be column matrix look like,



dφc(ξ1,t)
dt

dφc(ξ2,t)
dt
...

dφc(ξn,t)
dt

,

where ξi are the grid points. h is the step size. Therefore the dimension of matrix

will be number of grid points in x-axis substract by 2 i.e n = length(ξ)− 2, because

we are not interested on boundary value. Dimension of matrix A(t) is n× n.

Right side will look like A(ξ, t)


φc(ξ1)

φc(ξ2)
...

φc(ξn)



M1(i, j)(t) =


1
h2
± R

4h2
(c0(j + 1)− c0(j − 1)) , i = j ∓ 1

− 2
h2
− k2t, i = j

0, otherwise,

M2(i, j)(t) =

k
2Rt, i = j

0, otherwise,

M3(i, j)(t) =


1
th2
± ξj

4ht
, i = j ∓ 1

− 2
th2
− k2, i = j

0, otherwise,

and

M4(i, j)(t) =

−
(
c0(j+1)−c0(j−1)

2h
√
t

)
, i = j

0, otherwise.

In this chapter what we get the matrix, we discuss about its normality and normality

and change ODE system in terms of propagator matrix and analysis the transient

energy growth and onset instabilty in the next chapter. Fig(3.1) is SSQSSA plot

while Fig(3.2) QSSA plot. The first benefit of SSQSSA odal analysis is that it converge

rapidly fast to the dominant eigenmode while in QSSA modal analysis it takes longer

time to converge to dominant eigenmode. Second benefit is that if we see the plot
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Figure 3.1: (ξ, t) coordinate system[4].

there is disturbance occur around the origin since we study the instability at the

interface while in QSSA plot there are disturbance scattered all arround.
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Figure 3.2: (x,t) coordinate system[4].
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Chapter 4

Stability of Miscible fluid system:

using Nonmodal linear stability

analysis

In this chapter we discuss about the determination of linear stability of time dependent

flow in porous media by Nonmodal analysis. The advantage of this method is as

compare to SSQSSA, we have known initial condition but in SSQSSA method we were

taking random initial condition. Therefore in Nonmodal analysis we get the solution

more accurate than SSQSSA. Supoose A(t0)c′ = σ(t0)c′ is eigenvalue problem. To

analyse the behaviour of the system to the external excitation, we study about the

Pseudospectra which play a very important role and it is a very helpful tool to analyse

system behaviour. But study about Pseudospectra is a very big challenge so in this

chapter just discussing the basic idea about the Pseudospectra.

4.1 Pseudospecra of Matrix

For each ε ≥ 0 ε-Pseudospectra [4] of a Matrix A is defined as

Λε(A) := z ∈ C : ||(zI − A)−1|| ≥ ε−1 (4.1)

For Normal Matrices : ||(zI − A)−1|| = 1
dis(z,Λ)

.

In above equation Λ(A) is equal to union of the closed ε-ball about the eigenvalue of
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A. however in general it may be much larger.

For Non-Normal Matrices : The norm of (zI−A)−1 is its largest singular value, i.e the

inverse of the smallest singular value of (zI − A). Therefore an equivalent definition

of the Pseudospectra is

Λε(A) = z ∈ C : σ(A) ≤ ε (4.2)

for example : A =

−1 5

0 −2


since A is non-normal matrix, Figure is contour plot(in matlab using eigtool(A)) of

pseudospectra of matrix A[5].

Figure 4.1:

Since we determine the instability of the system by the behaviour of the eigenvalue of

the linearized stability matrix A(t), which assumes an exponential time dependence

of A(t). While it fails to determine the instability appropriately. The temporal

eigenmodes of time-dependent matrix A(t) (or non-autonomous operator). Therefore

to quantify the Non-normality of matrix A(t), we freeze A(t) at different times and

defined two quantities name as Spectral abscissa and Numerical abscissa. We define

the Spectral abscissa α(A) of matrix A(t) as

α(A) := max{<(λ(A))} (4.3)

and Numerical abscissa η(A) of matrix A is define as

η(A) := sup
z∈W (A)

<(z) = sup{λ(A+ A∗)/2} (4.4)
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where λ(·) represents the spectrum of the matrix and <(·) denotes the real part.

η(A) measures the maximum possible instantaneous growth rate corresponding to

any initial condition as t → 0 . W (A) is called Numerical Range or Field of Values

of complex n× n matrix A define as

W (A) := {x∗Ax : x ∈ Cn, ‖ x ‖= 1} (4.5)

where the superscript (∗) denotes the transpose. The growth or decay of the initial

energy can be studied from the numerical abscissa.

Since in case of Normal matrix the spectral abscissa and Numerical abscissa will be

equal.

Proposition 4.1.1. [6] If A is normal matrix then η(A) = α(A).

Lemma 4.1.2. T = 0 ⇔< v, Tw >= 0 for all v, w ∈ V ⇔< v, Tv >= 0 for all v ∈

V = (Cn, <>).

Proof:

We claim that < v, Tw >= 0 =⇒ T = 0.

Let v = Tw, therefore < Tw, Tw >= 0 =⇒ Tw = 0 for all w ∈ V =⇒ T = 0

Now,

T = 0⇔< v, Tv >= 0 for all v ∈ V.

If v = αw1 + βw2, then < v, Tv >= 0 for all v ∈ V , which implies,

< αw1 + βw2, αTw1 + βTw2 >= 0.

Thus we get

< αα∗ < w1, Tw1 > +αβ∗ < w1, Tw2 >

+ α∗β∗ < w2, Tw1 > +ββ∗ < w2, Tw2 >= 0.

⇒ αβ∗ < w1, Tw2 > +α∗β∗ < w2, Tw1 >= 0.

For α = 1, β = 1 ,then < w1, Tw2 > + < w2, Tw1 >= 0.

For α = 1, β = i ,then < w1, Tw2 > − < w2, Tw1 >= 0.
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⇒ 2 < w1, Tw2 >= 0.⇒< w1, Tw2 >= 0

Now we will use

‖Ax‖ = ‖A∗x‖

⇔ A is normal

Since 〈Av,w〉 = 〈v,A∗w〉

⇒< Ax,Ax >=< A∗x,A∗x >⇒< x,A∗Ax >=< x,AA∗x > ⇒< x,A∗A−AA∗)x >= 0

By using lemma 4.1.2 we get

(A∗A− AA∗) = 0

⇒A∗A = AA∗

⇒ A is normal.

⇒(A - λI) is normal.

∴ ‖(A− λI)x‖ = ‖(A∗ − λ∗I)x‖ ⇒ (A∗ − λ∗I)x = 0⇒ A∗x = λ∗x

⇒λ∗ is an eigenvalue of A∗ and λ is an eigenvalue of A

∴ (A+ A∗)x = (λ+ λ∗)x

Hence, η(A) = sup{λ(A+ A∗)/2} = sup{(λ+ λ∗)/2 = supR(λ) = α(A)

Since the main goal of doing Modal analysis is to study the Spectral abscissa and their

eigenmodes. In fig(4.2) there is a plot of spectral abscissa and numerical abscissa for

the stability matrix A at different times for a given wave number k = 0.2 and R = 3.

There is a matlab code for above plot.

1 R = 3 ; % log−mobol ity r a t i o

2 k = 0 . 2 ; % Wave number

3 L = 100 ; % Equal to l ength o f domain

4 h = 0 . 2 ; % Spa t i a l s i z e

5 x i = −L : h :L ; % Middle case domain

6 t = 0 . 0 0 0 1 : 0 . 1 : 2 0 ;

7 %%

8 Nxi = length ( x i ) ; % Number o f g r id po in t s in x ax i s

9 n = Nxi−2; % Number o f I n t e r na l po in t s

32



Figure 4.2: we plot the numerical abscissa and spectral abscissa verses time. figure

shows that initially matrix is highly non-normal but with increasing time spectral

abscissa approaching to numerical abscissa means it is approaching to normality.

10

11

12

13

14 %% Base s t a t e s

15

16 cb = 0.5∗(1+ e r f ( ( x i ) /2) ) ;

17

18 f o r i i =1: l ength ( t )

19 t0=t ( i i ) ;

20 M1 = ze ro s (n , n) ;

21 M3 = ze ro s (n , n) ; M4 = ze ro s (n , n) ;

22 %%

23 kk = k .∗ k ;

24 hh = h∗h ;

25 h4t = 4∗h∗ t0 ;

26 h1t = 1/hh . / t0 ;

27 h2 = 2∗h ;

28 hh4 = R/4/hh ;

29 t sq = sq r t ( t0 ) ;

30 % Formulation o f the d iagona l e lements

31 f o r j = 1 : n

32 M1( j , j ) = −2/hh − kk∗ t0 ;

33 end

34 % Formulate the o f f−d iagona l e lements

35 M1(1 ,2 ) = 1/hh + hh4 ∗( cb (3 ) − cb (1 ) ) ;
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36 f o r j =2:n−1

37 M1( j , j +1) = 1/hh + hh4 ∗( cb ( j +2) − cb ( j ) ) ;

38 M1( j , j−1) = 1/hh − hh4 ∗( cb ( j +2) − cb ( j ) ) ;

39 end

40 M1(n , n−1) = 1/hh − hh4 ∗( cb (n+2) − cb (n) ) ;

41 %% Formulation o f the matrix M2

42 M2 = t0 ∗R∗kk∗ eye (n) ;

43 %% Formulate the matrix M3

44 % Formulation o f the d iagona l e lements

45 f o r j = 1 : n

46 M3( j , j ) = (−2∗h1t − kk ) ;

47 end

48 % Formulate the o f f−d iagona l e lements

49 M3(1 ,2 ) = h1t + x i (2 ) /h4t ;

50 f o r j = 2 : n−1

51 M3( j , j +1) = h1t + x i ( j +1)/h4t ;

52 M3( j , j−1) = h1t − x i ( j +1)/h4t ;

53 end

54 M3(n , n−1) = h1t − x i (n+1)/h4t ;

55 %% Fomulate the d iagona l matrix M4

56 M4(1 ,1 ) = −(cb (3 ) − cb (1 ) ) /h2/ tsq ;

57 f o r j = 2 : n−1

58 M4( j , j ) = −(cb ( j +2) − cb ( j ) ) /h2/ tsq ;

59 end

60 M4(n , n) = −(cb (n+2) − cb (n) ) /h2/ tsq ;

61 %% M = M3 + M4∗ inv (M1) ∗M2

62 M = M3 + (M4∗(M1\M2) ) ;

63 a = max( r e a l ( e i g (M) ) ) ;

64 b = max( e i g (M+M’ ) ) ;

65 n2 = b/2 ;

66 s1 ( i i ) = a ;

67 n1 ( i i ) = n2 ;

68 end

69

70 %%

71 f i g u r e

72 hold on ; box on ;

34



73 p lo t ( t , s1 , t , n1 )

4.2 Transient energy growth

Here we analysis the Transient growth energy and the onset instability.

Suppose equation (3.4) can be rewritten as

c′(t) := Φ(t0; t)c′0 (4.6)

with arbitrary initial condition c′(t0) = c′0 and Φ(t0; t) is called propagator matrix,

since it propagate the information forward from the initial time to time t. What we

did earlier in SSQSSA there were random initial condition but here initial condition

is Φ(t0; t0) = I where I is identity matrix of same order of matrix A(t).

substitute the equation(4.7) into equation(3.4) we get

d

dt
Φ(t0; t) = A(t)Φ(t0; t). (4.7)
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Figure 4.3: It shows that in SSQSSA with time growth rate is increasing which is not

true but in Nonmodal analysis solution approaching to DNS solution[4].
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