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Abstract

In this work, we study the phase separation of brownian particles driven by activity.

These particles which are self propelled with the direction of motion relaxing through

rotational diffusion. As in [Redner 13] we first show that the suspension of ABPs,

modelled as discs, can cluster even in the absence of an attractive interaction. Next,

as in [Stenhammar 15] we look at binary mixture of active and passive particles and

show activity induced phase separation of two. We look at the orientational order

parameter to understand the structural properties of the clustered state.





Chapter 1

Introduction

The story of life on earth has started roughly about 4.28 billion years ago. The widely

accepted hypothesis regarding the origin of life is abiogenesis where life originates

gradually from non living matters. This hypothesis was experimentally demonstrated

by Miller and Urey in 1953 [Miller 53]. The transformation from such a unicellular

prokaryote to the present multicellular eukaryotic organism – comprising of sophis-

ticated organizational structure at every minute level– is intriguing. Today life has

evolved into a broad spectrum spanning millions of different species each coexisting

peacefully, and their interactions with abiotic components collectively gives shape to

nature. Trying to understand the physical principles which govern life is a challenging

problem and indeed a highly complex one.

1.1 Active Matter

There has been a lot of recent work which have tried to give a statistical description

of living systems. These systems are now classed as “active matter”. This is a purely

interdisciplinary field which incorporates experimental techniques from biology and

chemistry along with simulations and theoretical approaches from physics to develop a

proper understanding of the underlying phenomenon. The out of equilibrium behavior

of individual units such as the movement of birds, animals or micro organisms, or

1
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synthetic self-propelled particles, or the collective dynamics of these individual units

interacting with each other are a few examples of such systems. The prospects of

understanding the dynamics of living systems and using the knowledge to transport

drugs to specific regions in the body or designing smart devices and materials, to

name a few possibilities, makes it a fascinating field of research.

1.1.1 Individual dynamics

Active systems comprise of a large number of self driven units, each capable of convert-

ing either self stored or ambient free energy into systematic movement [Marchetti 13].

These self driven units vary from microscopic (migrating bacterial cells, actin-myosin

mesh under plasma membrane, asters formed by micotubules, cytoskeletal filaments

and motor proteins) to macroscopic (school of fishes, flock of birds, herd of horses)

in terms of length scales (figure1.1). One of the key ingredients of the dynamics of

these individual units is the random behavior which is known as Brownian motion.

The equilibrium statistical theory of Brownian motion describes a diffusive behavior

characterized by a linear dependence on time of the mean squared displacement of

the particle at long times. We will review the details of Brownian motion in a later

section. The theory of Brownian motion has been modified to describe the motion

of biological agents which typically show larger diffusivity as compared to that in

equillibrium. The description of active particles have to be augmented with the idea

of self propulsion which needs to be incorporated in the dynamics.

Figure 1.1: Left:- A motor protein carrying a vesicle through cytoskeletal filament
inside a cell, Middle:- Asters formed in a suspension of microtubules on a cover slide,

Right:-flock of birds

.

image source:-Tim Mitchison Self-Organization in Biology (2014),The inner life of the Cell Harvard University, (2016)
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1.1.2 Collective dynamics

These living systems exhibit interesting emergent behaviours by collective self reor-

ganization of individual units. Intricate dynamics of flocks of birds in flight, elegant

maneuvers exhibited by school of swimming fishes, transport of vesicles by motor pro-

teins through cytoskeletal filaments within a cell are few examples of such systematic

movement exhibited by living systems [Menon 10]. This collective motion benefits the

individuals of the system in several ways. Migratory birds take advantage of flocking

dynamics to reduce the energy cost of the day long flight [Flack 18]. Within the flock

itself assymetry can give rise to emergence of leadership and formation of subgroups

[Ferdinandy 17].

One of the most important and early models of collective behavior of active matter

was given by Vicsek et. al.[Vicsek 95]. They introduced a minimal model in which

particles are driven with a constant velocity in random self propulsion directions.

The movement of an individual unit proceeds in the average direction of motion of

neighbouring units lying within a certain radius from it, with a small perturbation

added to this average direction. This model showed the emergence of collective motion

by spontaneous breaking of rotational symmetry.

1.2 Brownian motion

Brownian motion refers to the random jittery motion exhibited by small particles

suspended in a fluid. The first experimental observation of this motion was done by

Scottish Botanist Robert Brown [Brown 28] in 1827. He observed the motion of pollen

grains suspended in water using a simple microscope. However, Brown was unable to

give a scientific explanation of the origin of motion. In 1905, Albert Einstein provided

a theoretical foundation of Brownian motion [Einstein 05]. The phenomenological

approach of Brownian motion considers the process to be a stochastic process and

constructs equations based on it. In this chapter we introduce and discuss Smolu-

chowski Equation and Langevin equation which describes Brownian motion.
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1.3 Smoluchowski Equation

Consider a diffusion in one dimension. Let c(x, t) be the concentration at x and t.

Fick’s law which provides the phenomenological description of diffusion process says,

if there is a non uniformity in the concentration of particles, there will be a flux which

is proportional to the concentration gradient.

J(x, t) = −D∂c(x, t)
∂x

(1.1)

where J is the flux and D the diffusion constant which depends on the temperature

and size of the particle,

D =
kBT

ζ
(1.2)

where kB is Boltzmann constant, T is temperature and ζ is friction constant. The

equation(1.2) is known as Einstein’s relation. For a spherical particle of radius a, ζ is

given by,

ζ = 6πηa (1.3)

where η is the coefficient of viscosity. Since the particle numbers are conserved, c(x, t)

should obey they continuity equation

∂c(x, t)

∂t
= −∂J(x, t)

∂x
(1.4)

Combining equations (1.1) and (1.4) gives

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
(1.5)

Solving, c(x, t) should has the functional form

c(x, t) =
N√

4πDt
exp(− x2

4Dt
) (1.6)

The mean squared displacement of the particle is given by,

〈X(t)2〉 = 2Dt (1.7)
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Figure 1.2: Brownian particle of mass m surrounded by fluid particles

Thus the particle concentration should spread out uniformly and it should be propor-

tional to the square root of time.

In the presence of an external potential U(x, t), the particles will experience a force,

F = −∂U(x)

∂x
(1.8)

and thus the diffusion equation modifies to

∂c(x, t)

∂t
=

∂

∂x

1

ζ

(
kBT

∂c

∂x
+ c

∂U

∂x

)
(1.9)

Equation (1.9) is known as Smoluchowski equation [Doi 88].

1.4 Langevin Equation

Consider a Brownian particle of mass m immersed in a fluid of viscosity η as shown in

figure 2.1. The Newton’s equation of motion governing the motion of the Browninan
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particle in one dimenaion is,

m
dv

dt
= Ftotal(t) (1.10)

Since we know that the major contribution is from the viscous force exerted by the

fluid, equation (1.10) can be written as,

m
dv

dt
= −ζv (1.11)

where ζ is the friction constant and v, the velocity of the particle. Solving the above

differential equation(1.11) will give

v(t) = v(0)e

(
−ζt
m

)
(1.12)

Thus based on the equation (1.12) the velocity of the particle should decay to zero in

longer times. This is in contradiction with the fact that the mean squared velocity

of the particle in thermal equilibrium should be kBT
m

. Hence the assumption of Ftotal

being dominated by friction alone needs to be scrutinized.

At each instant the Brownian particle is colliding with a large number of particles in

the surrounding fluid. The number of collisions and force exerted by these particles

varies rapidly and we cannot quantify them. One way of tackling this would be to

modify the equation (1.11) with a random noise term which accounts for the rapid

collisions imparted by the surrounding fluid particles. Thus equation(1.11) becomes,

m
dv

dt
= −ζv + δF (t) (1.13)

were δF (t) is Gaussian white noise with

〈δF (t)〉 = 0 (1.14)

〈δF (t)δF (t
′
)〉 = 2Bδ(t− t′) (1.15)

Equations (1.14) and (1.15) sum up the properties of the fluctuating force. The delta

correlated noise says there is no correlation between the noise at two instants t and

t
′
. Here B determines the strength of the fluctuating force.
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Equation (1.13) is called Langevin equation, which on solving yields

v(t) = e
−ζt
m v(0) +

∫ t

0

dt
′
e
−ζ(t−t

′
)

m
δF (t

′
)

m
(1.16)

Calculating mean squared velocity using (1.15) yields

〈v(t)2〉 = e
−2ζt
m v(0)2 +

B

ζm

(
1− e

−2ζt
m

)
(1.17)

The exponentials in the above equation (1.17) drops out in long time and hence

approached B
ζm

. Combining this with the equilibrium value KBT
m

yeilds,

B = ζKBT (1.18)

The above obtained result (1.18) is known as fluctuation dissipation theorem. This

relates the strength of fluctuating force and the friction coefficient or dissipation. In

other words the balance between the fluctuations which keeps the system alive and

dissipation which let the system die out[Zwanzig 01].

In the presence of an external force F , Langevin equation (1.13) modifies to

m
dv

dt
= F − ζv + δF (t) (1.19)

1.5 Colloidal Systems

The Brownian motion of particles is difficult to observe. Colloidal systems which are

micron sized particles suspended in liquids are an ideal system for observation and

characterization. Colloids form an important part of our lives from food items to

medicine. Colloidal system are excellent model systems for statistical physics. With

the recent advances in the field of synthetic active matter, it is useful to divide colloidal

systems into two parts : (i) Passive colloids and (ii) Active colloids.
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1.5.1 Passive Colloids

As obtained in the previous section, the time scales for a colloid of micron size to diffuse

over a length scale similar to its size would take seconds. This is a considerably large

time scale to observe the dynamics of such systems as opposed to atomic systems.

Further, the pairwise interaction of passive colloids can be easily tuned. This makes

them ideal systems to study using computer simulations. Indeed a plethora of studies

have revealed several interesting static and dynamic collective behavior of passive

colloids.

1.5.2 Active Colloids

Active colloids on the other hand are far from equilibrium systems. Active colloidal

suspensions consist of self propelling particles moving in a viscous fluid either by con-

suming self generated energy or by extracting the energy from ambient environment.

One of the key features of such colloidal suspensions is that they exhibit dynamic self

assembly, forming structures like the plasma membrane of a living cell. Such features

make active colloidal suspensions a good starting point to model active systems.

1.6 Plan of the Thesis

In this thesis, we first look at a colloidal system of soft discs in two dimensions, which

are self propelled. As in [Redner 13] we look at the effect of activity on the collective

dynamics of these particles. Then we look at a mixture of active and passive discs

and look at the effect of activity on clustering in this system.



Chapter 2

Phase Seperation in Active

Colloids

In this chapter we look in to a colloidal system in two dimensions comprising of

self propelled particles interacting by an excluded volume interaction. In the first

section a minimalistic theoretical discription of the model introduced by [Redner 13]

is discussed. Later using molecular dynamics simulations, activity induced phase

separation into a dense solid like phase is studied.

2.1 Model Description - Self Propelled Particles

The system comprises of a large number of self propelled smooth discs immersed in a

fluid of viscousity η confined in a two dimensional plane. The particles interacts each

other by purely repulsive Weeks-Chandler-Anderson (WCA) potential. TheN particle

system is completely specified by the positions (ri) and self propulsion directions (θi)

of the particles. The system evolves in time with the following overdamped Langevin

equation

ṙi = Dβ[Fex(ri) + Fpv̂i] +
√

2DηηηTi (2.1)

9
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θ̇i =
√

2Drη
R
i (2.2)

where, Fex(r) = −dUex(r)
dr

, is the repulsive force due to the WCA potential,Uex(r).

Uex(r) is given by,

Uex(r) =

4ε[(σ
r
)12 − (σ

r
)6] + ε if r < 2

1
6σ

0 otherwise

(2.3)

which prevents the particles from overlapping. Here, σ is particle diameter and ε ≡

kBT is the strength of the potential. D and Dr are translational and rotational

diffusion constants respectively. In the low Reynolds number limit, they are related

as

Dr =
3D

σ2
(2.4)

The self propulsive force which moves each particle with speed vp = DβFp, drive

the system out of equillibrium. The direction of the particle is specified by v̂i =

(Cosθi, Sinθi). Here β = 1
kBT

and ηT , ηR are uncorrelated Gaussian noise with

〈η〉 = 0 and 〈ηi(t)ηj(t
′
)〉 = 2Dδijδ(t− t

′
) (2.5)

The density of the particles is set by ρ = N
L2 . The active drive is controlled by the

dimensionless Peclet number, Pe = vpτ

σ
. This is the ratio of advection to diffusion at

the scale of particle size. Here τ is translational relaxation time.

2.2 MD Simulation

We used σ, kBT and (τ = σ2

D
) as basic units of length, energy and time scales re-

spectively. These are used to make the equations of motion(2.1) and (2.2) dimension-

less. Simulations were carried out by numerically integrating the equations of motion

((2.1) and (2.2)) using stochastic Runge-Kutta method [Brańka 99]. The system com-

prises of (N=2500) particles arranged homogeneously (ρ = 0.7) in a square box with
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periodic boundary conditions and random self propulsion directions. In each time step

the total force on each particle is calculated and the particle positions are updated

accordingly. First 106 time steps were left for the system to reach steady state and

particle configurations were analyzed at constant intervals in the next 106 time steps.

The most time consuming part in the simulation is the force calculation which scales

as N2 where N is the number of particles. In order to reduce this, we parallelized the

force calculation by threading the loops using OPENMP.

2.3 Phase Separation

To understand the dynamics of the system, we calculate the local density distribution

and look at the variation of with change in activity. From the particle configurations

and the local density distribution, we observe that the particles are homogeneously

distributed as a single phase with local density distribution peaked around ρ = 0.7

which is the equilibrium density of the system. Increasing peclet number to Pe =

50, we observe that the system still remains in single phase but the local density

distribution spreads showing the formation of small clusters due to the increase in

activity. Further increasing peclet to Pe = 90, the local density distribution becomes

bi-modal with one peak around 1.3 corresponding to a dense clustered phase and

the other one around 0.4 corresponding to homogeneous liquid phase. Finally for

Pe = 150, the peaks spreads more corresponding to increased density of clustered

phase (peaked around 1.5) and the less dense liquid phase (peaked around 0.4). Even

when there are no attractive interaction between the particles, the system exhibits

non equilibrium clustering similar to the equilibrium phase separation in presence of

attractive interaction seen in passive systems. System goes from a homogeneous liquid

phase to a solid-liquid coexisting phase as we increase the control parameter Pe which

accounts for the activity.
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Figure 2.1: Left:- Snapshots of the system after reaching steady state for different
Peclet numbers(10, 50, 90, 150) , Right:- Local density distribution for different

Peclet numbers
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Figure 2.2: Variation of bond orientation order parameter Ψ6 with Pe.

2.3.1 Bond Orientation Order Parameter

To characterize the system further, we look at structural properties of the system,

using bond orientational order parameter. To understand what it means, consider a

periodic crystal in which particles are fixed on a lattice. In such a crystal, one can

specify the position of nearest neighbours using a discrete set of directions defined

by the vectors between the position of neighbours. This set of direction is universal

throughout the crystal giving rise to a long range order which is often known as bond

orientation order. The local orientational order of a particle located at a position

ri = (xi,yi) can be specified by a local value of bond orientational order parameter

which is defined as

Ψ6,i =
1

Nb

j=Nb∑
j=1

exp
(
i6θij) (2.6)

where Nb is the number of neighbouring particles and θij is the angle made by the

inter-particle vector of particles i and j and a fixed axis [Mazars 08]. A global bond

orientational order parameter can be calculated by taking an ensemble average of the

local bond orientational order parameter (2.6).

〈Ψ6〉 =
〈 1

N

i=N∑
i=1

∣∣Ψ6,i

∣∣〉 (2.7)

where N is the total number of particles in the system. In figure 2.2 we show the
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variation of 〈Ψ6〉 as the activity is increased. For lower Pe, the system shows liquid

like behaviour with a very small orientational order parameter value. As the activity

is increased, there are large regions of clustered phase which leads to a high 〈Ψ6〉,

indicative of a hexatic ordering in the system.

2.4 What Gives Rise to Clustering?

To answer this question, we follow the argument given in [Cates 13]. Let us consider

a suspension of active particles. In the presence of concentration gradient, the flux of

the particles is given by Fick’s law as ,

~J = −D~∇ρ (2.8)

where D is the diffusion constant. If D is spatially uniform, the system relaxes to a

homogeneous state given by ~∇ρ = 0. If however D is space dependant, then the flux

is modified to

~J = −D(r)~∇ρ− kρv(r)~∇v (2.9)

where k is a constant depending on dimensionality and the frequency of rotational

relaxation events. For interacting particles, the speed of the particles depends on the

local density of the particles, ie:- v(r) = v(ρ(r)). Thus equation (2.9) becomes

~J = −
[
D(ρ) + kρv(ρ)

dv

dρ

]
~∇ρ

= D
′
(ρ)~∇ρ

and
∂ρ

∂t
= −~∇ ~J = ~∇(̇D

′
(ρ)~∇ρ)

Thus the speed of particles can change steeply with density and then D
′
(ρ) can become

negative which can lead to non-uniform steady states. This is the idea of motility

induced phase separation (MIPS) where a local density fluctuation can lead to particle
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slowing down which acts as a feedback and can lead to more particles accumulating,

giving rise to a large cluster.





Chapter 3

Binary Mixture of Active and

Passive Colloids

In the previous chapter, we considered the case of active particles of one type. The

natural question to ask is what will happen when we have two types of particles with

different motility or size. To answer this we looked at a binary mixture of active and

passive particles. By passive we mean that they are non motile.This part of thesis is

based on the paper by Stehammar et al.. [Stenhammar 15]. The first section deals

with the modifications made in the model from the one discussed in Chapter 2. In the

consequent sections, we discuss the activity induced phase separation and the phase

behaviour.

3.1 Model Description

The system comprises of active particles whose time evolution is given by over damped

Langevin equations (2.1) and (2.2). The passive particles in the system time evolves

based on Langevin equation (2.1) with Fp = 0. Despite from directly increasing the

swim speed, here we employ a different implementation for increasing the activity of

the system [Stenhammar 14] which is detailed below.

17
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3.1.1 Variation of Peclet

In the previous chapter when we looked into purely active systems, we used Fp as a

free parameter to vary Peclet. Looking from an energy perspective Pe is the ratio

between the ballistic energy Fpσ and the thermal energy kBT . These two are the

only kinds of energy scale in the case of hard spheres and hence Pe can uniquely

determine the balance between the two. However the particles in our systems are not

infinite hard spheres and a new energy scale arises from the steepness of the WCA

potential which is controlled by ε. Thus ratio ε/kBT which specifies the hardness of

the particles also come into picture and Pe alone will not be sufficient to describe the

system [Stenhammar 15]. In Chapter 3, we fixed ε/kBT = 1 and varied Fp directly.

But in this case Fpσ

ε
is no longer constant and at higher Pe this can lead to increased

overlap between the particles which can lead to non physical scenarios. In order to

overcome this hurdle we keep the active force at a constant value Fp = 24ε
σ

and vary

the rotational diffusion time scale to vary Pe.

Pe ≡ 3v0τr
σ

(3.1)

Equation (3.1) is in accordance with the definition in chapter 2. Thus a higher Pe

value leads to a small Dr, and hence rather than exerting more force on the self

propulsion direction, a constant force is being applied to the self propulsion direction

for an increased time.

3.2 MD Simulation

Simulations were started by switching on active force Fp using a quench from equi-

librated passive colloidal configurations. The system comprised of 2500 brownian

particles in a square box with periodic boundaries and overall density (ρ = 0.6). Out

of the 2500 particles, Xa fraction of particles were active while the remaining were

passive. Total forces acting on each particles were calculated at each time step and
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Figure 3.1: Top:- Snapshots of particle configurations Xa = 0.25, 0.5, 0.75 re-
spectively, Middle:- Surface density plot of passive particles Xa = 0.25, 0.5, 0.75
respectively, Bottom:- Surface density plot of active particles Xa = 0.25, 0.5, 0.75

respectively, ρ = 0.6, P e = 300

positions were updated accordingly. First 4× 107 time steps were left for the system

to reach steady state and the next 107 particle configurations were analyzed at regular

intervals.

3.3 Phase Separation

We look at the local density plots of both active and passive particles and system

configurations of these particles. The system remains homogeneous for lower active

particle fraction (Xa). The first column of figure 3.1 depicts the particle configuration

as well as local density of active and passive particles of a system with active particle

fraction (Xa=0.25). Increasing the active particle fraction Xa to 0.5 results in the

formation of clusters. An interesting observation here is that the spatial distribution
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Figure 3.2: Variation of bond orientation order parameter Ψ6 with Xa (Pe =
300, ρ = 0.6)

of active and passive particles are not homogeneous. Passive particles are mostly

concentrated inside the cluster whereas active particles are distributed towards the

periphery. Within the cluster, small clusters of passive particles can also be observed

(second column of figure 3.1). Further increasing the active particle fraction Xa to

0.75, the clustering increases and becomes more dense (third column of figure 3.1).

Then, there is a spontaneous segregation of active and passive particles although the

segregation is naturally different from that observed in passive binary mixtures.This

segregation is induced by the activity. Further, unlike the situation of single active

particle suspension showing MIPS, here the clusters constantly move and break up

and fuse. In the single particle case, the cluster once formed is mostly stationary

although there are fluctuations. The bond orientational order parameter (figure:-3.3)

shows an increase as the active particle fraction is increased at a given Pe. This is

expected since the clustering and segregation becomes more pronounced at higher

activity.
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Figure 3.3: Phase diagram in Xa − Pe plane.

3.4 Phase Behaviour

In the phase diagram in Pe − Xa plane (figure 3.3), we see spontaneous separation

of phases for small particle fractions (Xa ≡ 0.3) as well. This happens at higher Pe.

For very small Pe, phase separation is not observed even for higher active particle

fractions. The phase bounndary is supposed to follow a functional form, (Xa ∼ 1
Pe

)

[Stenhammar 14]. However due to the smaller number of particles considered in this

simulation, we do not observe the same behaviour.





Chapter 4

Summary

In this work, we started with a minimal model describing the active self propelling par-

ticles in two dimensions. Using molecular dynamics (Langevin dynamics), we showed

that the system comprising of particles interacting with purely repulsive interactions

exhibit activity induced clustering which eventually facilitates a solid-liquid phase

separation. We have looked at the structural properties of dense phase by calculat-

ing the bond orientation order parameter and showed that dense cluster approaches

hexagonal packing. In the second part of the work, we introduced passive particles

into system and looked at the structural and phase behaviour by varying active par-

ticle fraction Xa and Pe. An interesting finding is that the spatial distribution of

active and passive particles are not homogeneous within cluster. Passive particles

are located towards the interior of the clusters while active particle are concentrated

towards the periphery. While exploring the phase behaviour in Xa − Pe plane, we

showed that the system still exhibits phase separation above a threshold activity and

Xa.
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