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“Electricity is actually made up of extremely tiny particles called electrons, that you

cannot see with the naked eye unless you have been drinking.”

Dave Barry

“People Live their Lives bound by what they accept as correct and true. That is how they

define ”Reality” . But what does it mean to be ”correct” or ”true”? They are merely

vague concepts... Their ”Reality” may all be a mirage. Can we consider them to be

simply living in their own world, shaped by their beliefs?”

Itachi Uchiha

“When you are courting a nice girl an hour seems like a second. When you sit on a

red-hot cinder a second seems like an hour. That’s relativity.”

Albert Einstein
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Abstract

The main objective for this work was to calculate complex scaled nuclear attraction

integral for atoms and molecules. By splitting the one electron Coulomb interaction into

long-range and short-range components, the energy of a quantum electronic system is

decomposed into long-range and short-range contributions using error function. We used

Gaussian basis and the analytical form was solved using Gaussian product theorem and

Fourier transformation. This form is then complex scaled using appropriate rotations in

the complex plane for which Weierstrass transformation is performed to get a smooth

function. Now, after getting the appropriate function Gaussian integral is modified to

get all the analytical forms. Configuration interaction calculations are performed to get

the correlation energies for He atom using the basis “coemd-ref” for s, p and d Cartesian

Gaussian function is used because it gives us a good mix of high and low exponents of

Gaussian function which is useful to capture the resonances. We constructed the plots

for ground, first and doubly excited state for He atom.



Chapter 1

Introduction

In the standard electronic-structure methods of quantum chemistry, the electronic wave

function is expressed in terms of Slater determinants, either to describe interacting sys-

tems or non-interacting systems. The electronic structure is treated in such a way that

the wave function depends explicitly on the electronic separation term. The interaction

term < φ1|1r |φ2 > is split into a singular short-ranged term and a nonsingular but slowly

decaying long-ranged term [1]. A modification is done on the latter term while splitting:

the inclusion of an error function, which is very useful as the integral is in the form of

Gaussian functions. The Gaussian product rule which states that the product of two

Gaussians is another Gaussian centered somewhere on the line connecting the original

Gaussians, is applied for further simplification to get the atomic resonances.

One of the more attractive pictures of atomic resonances can be found through the

method of complex scaling. The dilation operator is considered in complex scaling. If

H is an atomic Hamiltonian then the discrete energy levels of H remain as discrete

energies of H(θ), where θ is the angle by which wavefunction is rotated during complex

scaling. Afterwards the continuum is rotated down around each atomic threshold by

an angle of −2Imθ. As the continuum rotates down it traces eigenvalues, whose real

parts are associated with the position and the imaginary parts with the width of atomic

resonances.[2]

Gaussian product theorem (GPT) is used for futher simplification of products for two

Gaussian functions. One electron integral splitting is considered using the error function

which gave Gaussian function on which GPT can be applied. This later got transformed

1



Chapter 1 Introduction 2

through complex scaling and subsequently Weierstrass transformation to get the appro-

priate analytical form for our function. The form was then used in the configuration

interaction (CI) calculation for He atom to get the correlation energy and ultimately

our atomic resonances.

1.1 One electron integrals

There are many types of one-electron integrals in quantum chemistry like:

1. The Overlap integral:

Sab =< a|b >=

∫
χa(r)χb(r)dr, (1.1)

2. Kinetic energy integral:

Tab = −1

2
< a|O2|b >= −1

2

∫
χa(r)O

2χb(r)dr (1.2)

3. Potential energy integral:

< a|r−1
1C |b >=

∫
χa(r)χb(r)

rC
dr (1.3)

where Sab is an overlap integral, Tab is a kinetic energy integral and < a|r−1
1C |b > is a

nuclear-electron attraction integral.[2]

The one electron nuclear-electron attraction integral is modified as follows:

V =

∫
dxφ1r

−1
ne φ2 = (χ1|r−1

ne |χ2) ≈ lim
µ→∞

(
χ1|

erf(µrne)

rne
|χ2

)
(1.4)

The nuclear-electron interaction is decomposed in the following way as the long ranged

part contains information of atomic resonance states since it plays a part in charge

changing processes:

1

r
= νµne(r) + ν̄µne(r) (1.5)

where νµne(r) is long- range interaction, ν̄µne(r) is the complement short range interaction

and µ is a parameter controlling the length and width of the curve. [4]
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The nuclear attraction integral for potential experienced at a point r due to a set of

atoms and electrons with nucleus located at C is [5]:

< a|1
r
|b >=

∫
drφa

1

|r − C|
φb (1.6)

where φa and φb are normalized Gaussian functions of the form Ne−α|r−ra|
2

where N is

the normalization constant. Using Gaussian product rule it reduces to:

< a|1
r

(0)|b >=
2

π
1
2

∫ ∞
0

du < a|0C |b >, (1.7)

where;

< a|0C |b >=

∫
drφaφb × e−u

2(r−C)2 (1.8)

Here, nuclear attraction integral is defined with a non-negative integer m, which satisfies

the recurrence formula. The integral considering s-type functions is:

< 0A|
1

r
(0)|0B >(m)=

2

π
1
2

∫ ∞
0

du

(
u2

ζ + u2

)m( u2

ζ + u2

) 3
2

< 0A||0B > ×e−ζ(P−C)2 u2

�+u2(1.9)

where ζ = ζa + ζb and P = αarA+αbrB
αa+αb

Therefore,

< 0A|
1

r
(0)|0B >(m)= 2(

ζ

π
)
1
2 < 0A||0B > Fm(U) (1.10)

where U = ζ(P − C)2 and C is the atomic center.

This analytical form of the integral < φ1|1r |φ2 > is modified to get the analytical form

of our function:

< φ1|
erf(µrne)

rne
|φ2 > (1.11)

1.2 Splitting the interaction term

For the analytical term, the basis “coemd-ref” [6] for s, p and d Cartesian Gaussian

function is used because it gives us a good mix of high and low exponents of Gaussian

function which is useful to capture the resonances. The long ranged potential and the
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Gaussian product rule yield an analytical form of integral for our function. The final

form of the function is now computed for different µ values which is the parameter

controlling the height and width of the curve. The total energies are plotted in which

no cusp is observed for He atom.

The interaction term is in the following manner: [7]

1

|~r|
=
erf(r)

|~r|
+

1− erf(r)

|~r|
(1.12)

where erf(R) is the error function.

Here erf(r)
|~r| is a long ranged function while the other one 1−erf(r)

|~r| is a short ranged

function. Now, they can be treated separately. Only the long ranged part is considered

as not only does it contain information of the resonance states and it does not have any

singularity point, instead yielding a slowly decaying function as seen in the plot.

 0

 1

 2

 3

 4
-10 -5  0  5  10

f(
r)

r (in a.u.)

Figure 1.1: The given figure shows us the plot of |r| vs f(r) = 1
|r| and its splitting

terms using error function.
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1.3 Error Function (erf)

The normal distribution was introduced by De Moivre (1733) as an attempt to approx-

imate certain binomial distributions for large n. Laplace first used normal distribution

in analysis of errors of experiments in 1774.

The error function and the complimentary error functions are special functions that

appear in probability theory, the theory of errors and various other branches of mathe-

matical physics. The error function has a direct connection with the Gaussian function

and normalized Gaussian function (bell curve).

J.W.L Glaisher gave the term and the abbreviation for error function in 1871 because

of its connection with ”the theory of Probability” [8]. The fundamental solution of the

Schrödinger equation is Gaussian, so the probabilities of the fundamental solution will

be the magnitude of integrated Gaussian, which is basically our error function.The error

function is defined as :

erf(x) =
1√
π

∫ x

−x
e−t

2
dt =

2√
π

∫ x

0
e−t

2
dt (1.13)

-1

-0.5

 0

 0.5

 1

-4 -2  0  2  4

e
rf

(x
)

x (in a.u.)

Figure 1.2: The plot of error function.

The complementary error function denoted by erfc is defined as:

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−t
2
dt (1.14)
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1.3.1 Properties of error functions

1. Error function is an odd function as the integrand of e−t
2

is an even function.

erf(−z) == erf(z)

2. For a complex number z,

erf(z) = erf(z)

where z is complex conjugate of z.

3. The Taylor series expansion of error function always converges.

erf(z) = 2√
π

∑∞
n=0

(−1)nz2n+1

n!(2n+1)

4. The derivative of error function is given as:

d
dz erf(z) = 2√

π
e−z

2

and the integration is obtained by using integration by parts.[9]

∫
erf(z) = zerf(z) + e−z

2

√
π

1.4 Complex Scaling

Resonance is a common phenomenon in various areas of atomic physics and chemical

physics. A method known as complex coordinate rotation (complex scaling) or the

method of dilation analyticity was developed to calculate atomic resonances which was

based on the mathematical developments by Aguilar and Combes (1971) [10], Balsve

and Combes (1971) [11] and Simon (1972) [12].

It is a convenient and efficient method to calculate observables: it basically diverts

the divergent resonance wavefunctions into the physical domain of square integrable

wavefunctions [13]. Using this, the coordinate along which the divergence occurs which
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is rotated into the complex plane and thus evaluation of observables is achieved. The

transformation is:

r → reiθ (1.15)

When the coordinate is rotated into the complex plane, it is scaled by a complex phase:

Ŝ = ei
�
2 eiθ

@
@x (1.16)

For a many-particle three-dimensional system the scaling operator is defined by the

scaling of all the different spatial coordinates of all the particles:

Ŝ =
∏
j

ei
�
2 eiθrj .Oj (1.17)

Complex scaling operator can be applied only if the potential V̂ is an analytic function

for which all the high-order derivatives are well defined.

For atoms, the complex scaled Hamiltonian operator becomes:

Ĥatom = e−2iθT̂e + e−iθ(V̂eN + V̂ee) (1.18)

where T̂e is the kinetic energy operator scaled by e(−2iθ) whereas V̂eN and V̂ee are electron-

nuclear and electron-electron potential energy operators respectively, both scaled by

e(−iθ) .

1.4.1 Problem with molecules

It is not possible to complex scale molecular resonances by this method as we require

the potential to be an analytic function within the spatial region where the resonance

wavefunctions are localized, but the coupling between electronic and nuclear coordi-

nates through the electron-nuclei potential energy terms are non-analytic operators.

Therefore, it is not possible to otain complex potential energy surface by applying the

transformation rj → eiθrj while keeping the nuclei position Rα fixed and unscaled.
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Molecular autoionization resonances can be calculated within the framework of the Born-

Oppenheimer approximation using analytical continuation of the Hamiltonian matrix

elements.[13]

1.5 Weierstrass Transformation

1.5.1 Calculation of molecular resonances by complex scaling. [2]

(by John D Morgan III and Barry Simon)

Weierstrass transform of a function f(x) is a smoothed version of that function by

averaging the values of function f(x) weighted with a Gaussian centered at x. It is

named after Karl Weierstrass.

Three dimensional Gaussian for ε > 0 is given by:

gε(r) = (2πε)−
3
2 exp

(
− |r|

2

2ε

)
(1.19)

which, as ε ↓ 0, approximates a δ function:

V (ε)(r) =

∫
gε(x)|r − x|−1d3x (1.20)

This convolution technique is known as Weierstrass transform. It maps functions f(x)

with
∫
dxf(x)exp(−α|x|2) <∞ to analytic functions. For each ε > 0, V (ε)(r) will be an

entire function of r :

V (ε)(r) =
1

|r|
erf

(
|r|√
2ε

)
(1.21)

where erf(r) is the error function.

Smoothing effect of the Weierstrass transform can be seen in the momentum space as a

singular kernel with exponential growth at infinity gets replaced as:

4πe
−i

(
p−e−i�q

)
|p− e−iθq|2

→ 4πe
−i

(
p−e−i�q

)
|p− e−iθq|2

(
2

π

) 3
2

e

(
−2ε|p−e−i�q|2

)
(1.22)
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For 0 < |Im(θ)| < π
4 the new equation has exponential fall off as q becomes large.

For fixed nuclear positions R1, ..., Rk, let H(ε) be the electronic Hamiltonian for the

fixed nuclear positions with Coulomb potentials |x − y|−1 replaced by V (ε)(x − y). For

R0 > maxj |Rj |, consider the exterior scaled hamiltonian H
(ε)
R0

. For |Im(θ)| < 1
4π , the

potentials V
(ε)
R0

(θ) converge uniformly to the Coulomb potential as ε ↓ 0:

||(H(ε)
R0

(θ)− z)−1 − (HR0(θ)− z)−1|| → 0 (1.23)

Thus, by general principles, eigenvalues E(ε) of H
(ε)
R0

(θ) converge to eigenvalues E of

HR0(θ)

For N ×N approximations, let EN and E
(ε)
N denote the corresponding eigenvalues. By

the above mentioned convergence of potentials, the equations converge so that for any

finite N:

E
(ε)
N → EN as ε ↓ 0

Now, V (ε) is entire and has fall-off in the region |arg(r)| < 1
4π. Thus, the usual complex

scaling theory applies to the Hamiltonians H(ε).
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Chapter 2

Methods Used

Complex scaling operator can be applied only if, the potential V̂ is an analytic function

for which all the high-order derivatives are well defined. For atoms, our Hamiltonian

operator becomes:

Ĥatom = exp(−2iθ)T̂e + exp(−iθ)(V̂eN + V̂ee) (2.1)

where T̂e is the kinetic energy operator scaled by exp(−2iθ) whereas V̂eN and V̂ee are

electron-nucleus and electron-electron potential energy operators respectively which are

both scaled by exp(−iθ).

It is not possible to complex scale molecular resonances by this method as we require

the potential to be an analytic function within the spatial region where the resonance

wavefunctions are localized, but the coupling between electronic and nuclear coordinates

through the electron-nuclei potential energy terms are non-analytic operators. There-

fore, it is not possible to obtain complex potential energy surface by applying the trans-

formation rj → exp(iθ)rj while keeping the nuclei position Rα fixed and unscaled.[1]

Weistrass transform averages the values of a function resulting in a smooth version of

that function which leads to convergence.

11



Chapter 2 Methods Used 12

2.1 Nuclear Attraction Integral

The Nuclear Arttraction Integral (NAIs) for the contracted Gaussian functions is written

as [2] :

V C
ij = ZC

∫
dτ1φi(1)r−1

1Cφj(2) (2.2)

where, φi and φj are Gaussian functions for s, p and d orbitals, r1C is the nuclear-electron

distance and ZC is the nuclear charge.

The Gaussian product theorem permits a separation in the Cartesian components of the

Gaussian type functions (GTFs) and after normalization, the potential for the contracted

Gaussian function is:

V C
ij = ZC

∑
a,b

cacbN1N2

∫
dτ1ηa(1)r−1

1Cηb(2) (2.3)

The product for the functions in the equation 2.2 was simplified using the Gaussian

product theorem. The product of two 1s-type Gaussian type orbitals is another scaled

1s-type Gaussian:

sAsB = e−α|r−A|
2
e−β|r−B|

2
= ke−(α+β)|r−P |2 (2.4)

It expresses the product as a multilinear combination of the functions that share a

common center. The Gaussian product theorem gives us a final compact expression for

the product of a number of Cartesian Gaussian type orbitals.

Applying Gaussian product theorem in equation 2.2 gives:

V C
ij = ZC

∑
ab

cacbN(1)N(2)e

(
−�1�2AB

2

1

)
lx1+lx2∑
i=0

ly1+ly2∑
j=0

lz1+lz2∑
k=0

f(x)f(y)f(z)

∫
d1x

i
py
j
pz
k
pr
−1
1Ce

(−γ1r2p)(2.5)

Now, Fourier transform for r−1
1C is required for the evaluation of the integral above. In

one dimension, the Fourier transform of a function F (x) is defined as:

F (x) =
1

2π

∫ ∞
−∞

dkf(k)eixk (2.6)
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2.1.1 Modifications done

Weierstrass transform maps functions f(x) with
∫
dxf(x)exp(−α|x|2) < ∞ to analytic

functions. For each ε > 0 , V (ε)(r) will be an entire function of r :

V (ε)(r) =
1

|r|
erf(

|r|√
2ε

) (2.7)

where erf(z) is the error function. For |Im(θ)| < 1
4π , the potentials V

(ε)
(R0)(θ) converge

uniformly to the Coulomb potential as ε ↓ 0:

||(H(ε)
R0

(θ)− z)−1 − (HR0(θ)− z)−1|| → 0 (2.8)

Thus, by general principles eigenvalues E(ε) of H
(ε)
R0

(θ) converge to eigenvalues E of

HR0(θ)

For N ×N approximations , let EN and E
(ε)
N denote the corresponding eigenvalues. By

the above mentioned convergence of potentials, our equation converge so that for any

finite N;

E
(ε)
N → EN as ε ↓ 0

Now, V (ε) is entire and has fall-off in the region |arg(r)| < 1
4π. Thus, the usual complex

scaling theory applies to the Hamiltonians H(ε). [3]

The potential terms are:

Vr(r) = ZC

∫
dτ1φi(1)

1

r
φj(1) (2.9)

and

Verf (r) = ZC

∫
dτ1φi(1)

erf(µr)

r
φj(1) (2.10)

The analytical form is taken from [1], checked using GAMESS US and the values for

∆ = V code
r − V GAMESS

r are calculated with ∆ ≈ 10−6 or less. For these two analytical
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forms it is observed that for large values of µ:

lim
µ→∞

Verf (r)→ V (r) (2.11)

Modification is done to the analytical form V (r) to get the value for Verf (r). The

modification is done to the NAI integral for s, p and d functions where a factor of 1
µ is

added:

The overlap integral for V ss is:

V ss(a, b) =< Sa|Sb >= NaNb

(
π

α′p

) 3
2

exp

(
− ab

α′p
AB

2
)
F0(t) (2.12)

where t = (A + B)(P − C)2; Px = aAx+bBx
a+b ; A , B are Gaussian centers & C is atomic

center while a, b are exponents of Gaussian function and F0(t) are incomplete gamma

function.

Now, the modification is done by replacing 1
r with erf(µr)

r and, [4]

1

α′p
→ 1

αp
+

1

µ2
(2.13)

So, the analytical integral form needs to be multiplied by a factor of

(
α
′
p

αp

)m
, where the

value of m will be 0,1 and 2 for s, p and d respectively.
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Figure 2.1: Plots for different µ values
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From the plot above, it can be observed clearly that as the value of µ increases our

analytical form converges to the one expected for 1
r and for smaller values it is different.

This shows that the anallytical form is correct.

2.2 Modified one electron Gaussian integral

1. For two s− s type Gaussian attraction integral the analytical for NAI is [2] :

V ss
r (a, b) =< Sa|

1

rc
|Sb >= Θ

∑
c

Sss(a, b)Lss(c; a, b) (2.14)

2. Similarly, For s− p type Gaussian attraction integral the analytical for NAI is :

V pxs
r (a, b) =< Ppxa|

1

rc
|Sb >= Θ

∑
c

{
Spxs(a, b)Lss(c; a, b) + Sss(a, b)Lpxs(c; a, b)

}
(2.15)

3. For px − py type Gaussian attraction integral the analytical for NAI is:

V pxpy =< Ppxa|
1

rc
|Ppyb >= Θ

∑
c

{
Spxpy(a, b)Lss(c; a, b) + Spxs(a, b)Lspy(c; a, b)

+Sspy(a, b)Lpxs(c; a, b) + Sss(a, b)Lpxpy(c; a, b)

}
(2.16)

where: Θ = 2

π
1
2

(a+ b)
1
2 , constant that depends on a, b.

The Overlap integrals S(a, b) used in the analytical form for NAI is :

1. For s− s type Gaussian function:

Sss(a, b) =< Sa|Sb >= NaNb

(
π

a+ b

) 3
2

e

(
− ab
a+b

AB
2

)
(2.17)

2. For px − s type Gaussian functon:

Spxs(a, b) =< Ppxa|Sa >= − b

a+ b
(Apx −Bpx)Sss(a, b) (2.18)

3. For s− py type Gaussian function:

Sspy(a, b) =< Sa|Ppyb >=
a

a+ b
(Apy −Bpy)Sss(a, b) (2.19)
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4. For px − py type Gaussian function:

Spxpy(a, b) =< Ppxa|Ppyb >=

{
1

2
(a+ b)δpxpy −

ab

a+ b

2

(As −Bs)

·(Apy−Bpy )

}
Sss(a, b) (2.20)

and, the intermediate functions L(c; a, b) used in the calculations for NAI is:

1. For s− s type Gaussian function:

Lss(c; a, b) = F0(t) (2.21)

where, Fν(t) are incomplete gamma function which is defined as:

Fν(t) =

∫ 1

0
dxx2νe−tx

2
(2.22)

and for Fν(0) = (2ν + 1)−1

2. For px − s type Gaussian function:

Lpxs(c; a, b) = Lspx(c; a, b) = (Cpx − Ppx)F1(t) (2.23)

3. For px − py type Gaussian funcion:

Lpxpy(c; a, b) = (Ppx − Cpx)(Ppy − Cpy)F2(t)− 1

2(a+ b)
δpxpyF1(t) (2.24)

The analytical form for the function< φ(a)| erf(µr)
r |φ(b) > is modified. For< φ(a)|1r |φ(b) >

calculations we consider 1
αp

which is αp = a + b, used in incomplete gamma function

calculations. For < φ(a)| erf(µr)
r |φ(b) > we use α

′
p:

1

α′p
=

1

αp
+

1

µ2
(2.25)

which gives:

α
′
p =

αpµ
2

µ2 + αp
(2.26)

and the Θ for our attraction integral is modified to Θ̀ = 2(
ὰp
π )

1
2 .
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The following table shows us the modifications done to the incomplete gamma functions.

Here Y = (a+b)µ2

(a+b)+µ2
and Z = a+ b.

S.No. Fν(t) (for 1
r ) Fν(t) (for erf(µr)

r )

1. F0(t) (YZ )0F0(t
′
)

2. F1(t) (YZ )1F1(t
′
)

3. F2(t) (YZ )2F2(t
′
)

4. F3(t) (YZ )3F3(t
′
)

5. F4(t) (YZ )4F4(t
′
)

Table 2.1: Modified incomplete gamma functions

The final analytical form for the potential for different bases are:

S.No. Vr Verf

1. s-s Θ∑
c

Sss(a ,b)F0(t) Θ̀∑
c

Sss(a ,b)F0(t)

2. s-px Θ∑
c

[S px s(a ,b)F0(t)+S
ss
(a ,b)(C px

−P px)F1(t )] Θ̀∑
c

[S px s(a ,b)F0(t)+Sss(a ,b)(C px
−P px)F1(t )(YZ )

1

]
3. py-pz

Θ∑
c {

[Sp x py(a ,b)F0(t )+S
px s(a ,b)(C p y−Pp y)F1( t)]+

[Ss py(a ,b)(Cp x−Ppx)F1( t)]+

[Sss(a ,b)(Ppx−C px
)(Pp y−C py

)F2(t)−
1

2(a+b)
δijF1(t)]} Θ̀∑

c {
[Sp x p y(a ,b)F0( t)+S px s(a ,b)(Cp y−Pp y)F1( t)(YZ )

1

]+

[Ss py(a ,b)(Cpx−Ppx)F1( t)(YZ )
1

]+

[Sss(a ,b)(Ppx−C px
)(Pp y−C py

)F2(t)(YZ )
2

−
1

2(a+b)
δijF1(t)(YZ )

1

]}
Figure 2.2: Initial and modified potential functions
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Chapter 3

Configuration Interaction(CI)

calculations for He atom with

varying µ

3.1 Configuration Interaction

For the calculation of correlation energy the method of configuration interaction is used.

In this method diagonalisation of an N-electron Hamiltonian is achieved in a basis of

N-electron functions which will be the Slater determinants. This represents the wave

functions as a linear combination of N-electron functions and the linear variation method

follows. If the basis is complete then the exact energies can be obtained for ground state

and for all excited states of the system. [1]

Due to the use of an average potential for the calculations of electron-electron inter-

actions, even the best energies obtained using the Hartree-Fock are still inaccurate.

Configuration Interaction that is, the interaction of different states, helps us overcome

this limitation of Hartree-Fock energy calculations.

The motion of electrons in an atom is correlated due to the attractive and repulsive forces

acting on them. When one electron comes close to the nucleus, the other one tends to

move away. But, the exact wavefunction depends on the coordinates of both the elec-

trons at the same time. In CI, while calculating energies, this correlation is neglected

and the used wavefunctions that depend upon the coordinates of only one electron un-

der the assumption that the electrons move independently. This approximation gives us

reasonably good values for the energies which can later be correlated.

19
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3.2 Plots for He atom

The long range nuclear-electron attraction integral is used for complex scaling and used

for the calculation of resonances as it has a numerical advantage that they remain

reflection-free even for large values of the complex scaling parameter. They are also

effective for fast moving particles. The resonances is associated with a single cusp

which is obtained when all parameters are held fixed and only θ is varied. In this

θ trajectory calculation, each one of the resonances is associated with a single curve

where the absolute value of the velocity of the θ trajectory achieves a minimal value.

Almost cusp behavior is obtained in the θ trajectory and is very stable to variation of

the parameter.

The reference orbitals for the configuration interaction calculations were obtained from

a standard Hartree-Fock calculation on the ground state of the physical Hamiltonian.

Using these Hartree-Fock orbitals determinants for full CI calculations of ground state,

first and the doubly excited state was constructed. For kinetic energy and potential

energy matrix elements of electronic hamiltonian full configuration interaction code was

implemented in the GAMESS US quantum chemical package [2].

3.2.1 Ground State
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Figure 3.1: Ground state θ trajectory
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The ground state of an atom is the state in which the total energy can not be lowered by

transferring one or more electrons to different orbitals. It has a longer lifespan because

of the stability. The given plot shows us the θ trajectory for Ground state of He atom.

The state is bound so we do not observe any kind of cusp (transition between states)

instead we get a continuum.

3.2.2 First Excited State
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Figure 3.2: First excited state θ trajectory

First excited state is the lowest unoccupied energy level state after the ground state.

First excited state for He is given as 1s 2s. For this state the plot for θ trajectory, we

gets a continuum curve and the cusp was not observed.

3.2.3 Doubly Excited State

Doubly excited state for He atom is given by 2s 2p. In the θ trajectory calculations

each resonance is associated with a single curve. Here, also a continuum was observed

instead of cusp.
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Figure 3.3: Doubly excited state θ trajectory

3.3 Observation and Conclusion

By using the Gaussian basis set, the complex scaling can be implemented and provides

the Feshbach resonances of the atom. Although the complex scaling depends on several

parameters, resonance is associated with the single point on the θ trajectory where the

absolute velocity of the trajectory gets a minimal value. There is a cusp associated with

a resonance state. The complex scaling should be introduced in the region where the

ionized electron does not feel the attractive force of Coulomb potential [2].

We did not get the cusp which would have given us the information about the resonances

instead we got a continuum for first and doubly excited states. For ground state as it is

a bound state the cusp won’t be observed. Further calculations are going on to improve

the observations we got.
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