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Abstract

The combinatorial theory of species was introduced by Joyal in
1986.We can understand the use of generating series for both
labeled and unlabeled structures from this theory.The theory
of combinatorial species is an abstract,systematic method for
analysing discrete structures in terms of generating function.
First section covers some basic information about combinatorial
species, some examples and generating series for labeled and un-
labeled structures is defined.Concluding that cycle index series
contain more information then exponential and type generating
series.In second section defined that species of structure can be
combined to form new species by using set theoretical construc-
tions.Resulting a variety of combinatorial operations on species
including addition, multiplication, substitution etc.....
In 3rd section first we defined virtual species and explain the
species logarithm Ω .finally there is an exposition of Γ and quo-
tient species and calculate the cycle index series for Γ and quo-
tient species.Further more we want to compute the S2 cycle in-
dex ZS2

BC and also enumeration for species of point determining
bipartite graphs.
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Chapter 1

Species Theory

1.1 Introduction

This chapter contains the basic concepts of the combinatorial
theory of species of structures. A species is a way of thinking
about a set of combinatorial structures. Naturally speaking, a
species is a function that sends a set of labels to a set of struc-
tures. Species theory allows us to manipulate such structures in
ways we would not be able to otherwise. [1]

1.1.1 Notion

A structure S is a construction γ which one performs on a set
U. It consists of a pair

S = (γ, U)

Example: Here is a detailed description of the species C of
oriented cycle. For a finite set U = {x, 4, y, a, 7, 8} we denote by
C[U ] the set of all structure of oriented cycle on U . Let c ∈ C[U ]
is a structure of oriented cycle on U is a pair (U, γ). Where
γ = {(4, y), (y, a), (a, x), (x, 7), (7, 8), (8, 4)} is set of ordered pair
of element of set U.

1
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1.2 Definition and Example

1.2.1 Definition

A species is a rule F:

� F assigns to a finite set U the set F[U] of F structure along
α

� F assigns to a bijection α : U �V the bijection F[α] : F[U]
�F[V] called the Transport of F structure along α

� F preserves identity maps: F [Idu] = IdF [u]

� F preserves composition maps:F[α ◦ β] =F [α] ◦ F [β]

An element S ∈ F [U ] is called an F structure on U.
The function F [α] is called the transport of F structures along
α .

1.2.2 Observation

Let [n]={0,1,2,.....,n-1} F be a species and denote F[[n]]= F[n]

1.2.3 Conclusion

The cardinality of F[U] depends only on the cardinality of U,
not on nature of element.

1.2.4 Example

Given a set of vertices U, we define the species of simple graph
G[U] as:
G[U ] = {(U,E) |

(
U
2

)
⊇ E}

Where
(
U
2

)
is the set of unordered pairs of distinct elements of
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U.Here U is set of vertices and E is set of edges. Given {1,2,3}
as the set of labels, we obtain the set of all possible graphs on
three labels, G[{1, 2, 3}] are {(1), (2), (3)}, {(1, 2), (2, 3), (3, 1)},
{(1, 2), (3)} ,{(1, 3), (2)}, {(2, 3), (1)}, {(1, 3), (3, 2)}, {(1, 2), (2, 3)}
,{(1, 2), (1, 3)}.

1.2.5 Definition

Consider two F structures s ∈ F [U ] and t ∈ F [V ] . A bijection
σ : U�V is called an isomorphism of s to t if s = σ.t

1.2.6 Example

Consider the rooted tree S=(γ,U) , Whose underlying set is U =
{a, b, c, d, e} and γ = {d, (a, (c, (b, e, f)))} and via bijection σ :
U �V replace each element of U by σ(u) ∀u ∈ U . The bijection
σ allows the transport of the rooted tree S onto a corresponding
rooted tree T=(α,V ) on the set V = {x, 3, 4, v, 5, u} and α =
{σ(d), (σ(a), (σ(c), (σ(b), σ(e), σ(f))))} = {x, (3, (4, (v, 5, u)))}.
We can say that the rooted tree T has been obtained by trans-
porting the rooted tree S along the bijection σ .

1.3 Associated series

For a species of structures F , there exist three power series that
allow us to enumeration F structures. These power series are :

1.3.1 Exponential generating series

The theory of species allows us to count labeled structures using
exponential generating functions.
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Definition : The exponential generating series of a species of
structures F is defined as:

F (x) =

∞∑
n=0

(fn)
xn

n!

Where (fn) = |F [n]| the number of F structure on a set of n
elements (labeled structure).

Example : There are fn = n! linear ordering on a set of size
n. Thus exponential generating function for the species L of
linear orderings is

L(x) =

∞∑
n=0

n!
xn

n!

L(x) =
1

1− x
for species S of permutation fn = n!

S(x) =

infty∑
n=0

n!
xn

n!

S(x) =
1

1− x

1.3.2 Type generating series

The type generating series allows us to enumerate unlabeled f
structures. In other words this can be thought of as isomorphism
classes of labeled structures under permuting the labels.
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Example : There are four unlabeled G structures four shapes
on three vertices.
Wheres there are 8 labeled G structures on three vertices.(example
1.2.4)

Definition: Let T (fn) be the quotient set, denote F[n]/∼ ,
of isomorphism classes of F structures of order n. The type
generating series of a species of structures F is the formal power
series.

F̃ [U ] =

∞∑
n=0

f̃nx
n

Where f̃n = |T (fn)| is the unlabeled F structures of order n.

Example:

S̃(x) =
∞∏
k=0

1

1− (xk)

L̃(x) =
1

1− x

1.3.3 Cycle index series

Definition : The cycle index series of a species structures F
is the formal power series

Zf(p1, p2, .....) =

∞∑
n=0

1

n!

∑
σ∈Sn

(fixF [σ])Pσ

Where Sn denotes the permutation group of [n] , fixF [σ] =
(F [σ]), is the number of F structure on [n] fixed by f[σ] , Pσ is
the monomial term P σ1

1 P σ2
2 P σ3

3 .......P σn
n and σi is the number of

i-cycles of σ.
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Example : For n=2 G[{1,2}] contains only two graphs. the
complete graph on two vertices (k2) and its compliment (k2

c)
. so applying any permutation of S2 to these graphs leaves us
with the original graphs. [4] Thus we have∑

σ∈Sn

(fixG[σ])Pσ = 2P1
2 + 2P2

Note: This is a formal power series in a infinite number of vari-
ables P1, P2, P3....., Pn.

1.4 The example of basic species

Examples are from [1, 3]

1. (Simple graph structures) For each finite set U, let G[U]
denote the set of all graphs having vertex set U. Then G is
species of simple graphs.

2. (Connected simple graph structures) for each finite set U,
let Gc[U ] denote the set of all connected graphs having ver-
tex U.then Gc is species of connected graphs.

3. (Derangement structures Der) For each finite set U,letDer[U ]
denote the set of all derangement of the set U. Then Der is
species of derangements.

4. ( Partition) For each finite set U, let Par[U] denote the set of
all partition of U into nonempty subsets. If π : U → V is a
bijection then π assign a bijection par[π] : par[U ]→ par[V ]
When if U = ∪Uα is partition of set U then par[U] carries
this to the induced partition V = ∪π(Uα).

5. (Subset structure ρ) For each finite set U, ρ[U ] denote the
collection of subsets of U. Then ρ is species of subset.

ρ[U ] = {S | S ⊆ U}
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6. (Permutations structures S) For each finite set U, let S[U]
denote the set of all permutation of the set U. Ifπ : U → V
is a bijection of finite sets then every permutation σ : U →
U of U determines a permutation of V, given by the formula
V → π(σ(π−1(V ))). We therefore have

S[π] = π ◦ σ ◦ π−1

7. ( Linear order structures L) For each finite set U, let L[U]
denote the set of all linear order of the set U. If π : U → V
is a bijection of finite sets then π determines a bijection
L[π] : L[U ] → L[V ] , which carries an ordering {i1 < i2 <
....in} to the induced ordering {π(i1) < π(i2) < ....π(in)} of
the set U . The L is a species , called the species of linear
order.

8. The species E, of sets defined by E[U ] = {U} for each finite
set U.

9. The species ε, of elements defined by ε[U ] = U Where the
structures on U are the elements of U.

10. The species X for E, the species of singletons

X[U ] =

{
{U} if |U | = 1

0 otherwise
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Species E.G.S. T.G.S. C.I.S.
0 0(x) = 0 0 Z0(x1, x2, .....) = 0
I I(x) = 1 1 ZI(x1, x2, .....) = 1
X X(x) = x x ZX(x1, x2, .....) = x1

L L(x) = 1
1−x

1
1−x ZL(x1, x2, .....) = 1

1−x1
S S(x) = 1

1−x
∏infty

k=0
1

1−(xk)
ZS(x1, x2, .....) =

1
(1−x1)(1−x2)...

E E(x) = ex 1
1−x ZE(x1, x2, .....) =

exp(x1 + x2
2 + x3

3 ...)
ε ε(x) = x.ex x

1−x Zε(x1, x2, .....) =
x1.exp(x1 + x2

2 + x3
3 ...)

C C(x) = −log(1− x) x
1−x

ρ ρ(x) = e2x 1
(1−x)2

Combinatorial equality: When Two species of structures F
and G are isomorphic.They said to be combinatorially equal .

Note: Consider the species of linear ordering (L) and the
species of permutation (S). Their exponential generating series
is same,but their type generating series and cycle index series
are not equal. So they are not combinatorially equal.

We will end this section with a fact : if F and G two
isomorphic species written F ∼= G then the generating series
and type generating series are equal.

1.5 The cycle index series as a generalization

Theorem : For any species of structures F: [1]

a)F (x) = ZF (x, 0, 0, 0.....)
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b)F̃ (x) = ZF (x, x2, x3....)

Proof: a) Substituting x1 = x and xi = 0 for all i ≥ 2 in eq
[1]

ZF (x, o, o, o.....) =

∞∑
n=0

1

n!

∑
σ∈Sn

(fixF [σ])xσ10σ2.......

Now for each fired value of n ≥ 0 , xσ10σ2.... = 0 except if σ1 = n
and σi = 0 for i ≥ 2

ZF (x, o, o, o.....) =

∞∑
n=0

1

n!
(fixF [Idn])x

n

=

∞∑
n=0

1

n!
fnx

n

= F (x)

Since all structures are fixed by transport along the identity.

Proof: b)

ZF (x, x2, x3....) =

∞∑
n=0

1

n!

∑
σ∈Sn

(fixF [σ])xσ1x
2σ2.......

=

∞∑
n=0

1

n!

∑
σ∈Sn

(fixF [σ])xn

= |F [n]/ ∼ |xn

= F̃ (x)
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Example:

ZS(x, 0, 0, 0.....) =
1

1− x
= S(x)

ZS(x, x2, x3....) =
1

(1− x)(1− x2)(1− x3).....
= S̃(x)



Chapter 2

Algebraic operations on species

There are several important operations on species. We may
build a species out of other species by defining operations such
as addition and multiplication on species. We now make a se-
quence of definitions, each followed by explanation and examples
that illuminate its underlying meaning [1] and [4].

2.1 Addition

Definition: Let F and G be species. Then their sum F+G is
the species where

(f +G)[U ] = F [U ] +G[U ]

Where A ∪B disjoint union of A and B

(F +G)[σ](s) =

{
(F )[σ](s) if s ∈ F [U ]

(G)[σ](s) if s ∈ G[U ]

It is easily seen that addition of species is associative and com-
mutative.

11
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2.1.1 Proposition

� (F +G)(x) = F (x) +G(x)

�
˜(F +G)(x) = F̃ (x) + G̃(x)

� ZF+G(p1, p2, .....) = ZF (p1, p2, .....) + ZG(p1, p2, .....)

The number of (F+G) structures on n elements is

|(F +G)[n]| = |(F )[n]|+ |(G)[n]|

2.1.2 Example

1. If A is the species of trees, B is the species of forests, and
B* is the species of disconnected forests, then B = A+B∗.

2. A simpler example is 1 + X. Since 1 is the species of the
empty set and X is the species of singleton sets, 1 + X is
the species of sets of size at most 1.

2.2 Multiplication

Definition: Let F and G be species. Then their product F ·G
is the species such that:
(F ·G)[U ]={(s,t) :there s ∈ F [U1] and t ∈ G[U2]}
Where U1 ∪ U2 = U and U1 ∩ U2 = φ.
and (F ·G)[σ](s, t) = (F [σ1](s), G[σ2](t)) Where σ1 and σ2 are
the restriction of σ to the label sets of s and t respectively.

2.2.1 Proposition

For any two species F and G series associated with the species
F ·G

� (F ·G)(x) = F (x) ·G(x)
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�
˜(F ·G)(x) = (F̃ (x)) · (G̃(x))

� ZF ·G(p1, p2, .....) = ZF (p1, p2, .....) · ZG(p1, p2, .....)

The number of F ·G structures on n elements is |(F ·G)[n]|

=
∑
i+j=n

n!

i!j!
|F [i]||G[j]|

Note: That (FG)[U] is not same as (GF)[U] , but the species
FG and GF are isomorphic . We usually identify species that
are isomorphic.

2.2.2 Example

This is a typical example of the product of species of structures.
let |U | = n the generating series of species S ,of permutation on
the finite set U is

S(x) =
∞∑
n=0

|S[n]|x
n

n!
=

∞∑
n=0

n!
xn

n!
=

1

1− x

The generating series of species E, of set on U is

E(x) =
∞∑
n=0

|E[n]|x
n

n!
=

∞∑
n=0

1
xn

n!
= ex

We can divide the structure of species S into two disjoint struc-
tures
(i) A set of fixed points.
(ii) A derangement of the elements.
We say that the species S of permutation is product of the
species E of set with species Der of derangement. Here we use

S = E ·Der
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asF = E ,G = Der and F ·G = S so

∞∑
n=0

|S[n]|x
n

n!
=
∑
n≥0

∑
i+j=n

n!

i!j!
|E[i]| · |Der[j]|x

(i+ j)

n!

∞∑
n=0

n!
xn

n!
=
∑
n≥0

∑
i+j=n

xi

i!
|E[i]| · |Der[j]|x

j

j!

1

1− x
= ex ·Der(x)

Der(x) =
e−1

1− x
in this example we using definition of the generating series of
species of structure to obtain the exponential generating func-
tion Der(x) = e−1

1−x . Even though we can not make direct com-
binatorial sense out of Der = S/E .

2.3 Composition

Definition: Let F and G be species such that G[φ] = φ. We
will define a species F ◦ G called the composition of F and G.
Its structure set (F ◦G)[U ] is given by:

(F ◦G)[U ] =
∑

πpartitionofU

F [π]× Πp∈πG[p]

2.3.1 Proposition

� (F ◦G)(x) = F (G(x))

�
˜(F ◦G)(x) = (F̃ (G̃(x), G̃(x2), G̃(x3).....)

� ZF◦G(p1, p2, .....) = ZF (ZG(p1, p2, .....), ZG(p2, p3, .....)....)
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2.3.2 Example

Every permutation is a set of disjoint cycles we have the combi-
natorial equation.

S = E ◦ C

2.3.3 Example

The endofunction ℘ can naturally be identified with a permuta-
tion of disjoint rooted trees. [3] so End = S ◦ A

End(x) = S(A(x)∑
n≥0

nn
xn

n!
=

1

1− A(x)

Let me define one more species SV er if I is nonempty , then
SV er[I] is the collection of all triples (T,i,j) where i and j are
element of I and T is a tree with vertex set I.
The exponential generating series of SV er and SEnd is same so
for every nonempty finite set I, the sets SEnd[I] and SV er[I] have
the same number of elements. so |SEnd[I]| = nn = |SV er[I]| and
SV er = Tn · n2

nn = Tn · n2

nn−2 = Tn

Tn is the number of trees on n vertices.

Note: The species G of graphs is related to the species GC

of connected graphs by the combinatorial equation

G = E(GC)

, Since every graph is an assembly of connected graphs.
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2.4 Differentiation and pointing

2.4.1 Differentiation

Differentiation is most important in that it allows us to root or
point a species. For instance, the species A of rooted tree can
be expressed in terms of the species a of unrooted trees by the
formula A = X · a′

Definition: Given a species F, define its derivative F ′ to be
the species such that if ∗ /∈ U then

F ′[U ] = F [U ∪ {∗}]

and
F ′[σ](s) = F [σ+](s)

Where σ+(∗) = ∗ and σ+(∗) = σ(x) if x ∈ U
Thus we take a derivative by additing a star to the label set
and requiring that the star remain fixed by isomorphism. this
definition equality |F ′[n]| = |F [n+ 1]| for all n.

Proposition

For any species F,

� F ′(x) = d
dxF (x)

� F̃ ′(x) = ( ∂
∂xZF )(x, x2, x3, ....)

� Z ′F (p1, p2, .....) = ∂
∂p1
ZF (p1, p2, .....)

Example

L denote the species of linear orderings. We denote using the
species of cyclic ordering by C. The generating series for C can
be calculated using species differentiation. It turns out that the
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generating series of the derivative of cycle orderings in C ′(x) =
L(x) = 1

1−x . That is, a C ′-structure on a set U is a C-structure
on the set U ∪ ∗. Thus, we naturally imagine the derivative of
a cylic ordering as a linear ordering, forgetting ∗, on the set U.
Therefore, in terms of its generating series,

C(x) =

∫ ∞
0

dx

1− x
= log

1

1− x

L = C ′

Note: The operation of differentiation can be iterated. For
F ′′ = (F ′)′ We simply add successively two distinct elements ∗1

and ∗2

Remark: To underlying how the combinatorial differential
calculus of species agree with the classical differential calculus
of formal power series, we mention that the chain rule admits
the combinatorial equivalent

(F ◦G)′ = (F ′ ◦G) ·G′

Now we define the operation of pointing. The effect of point-
ing is to take an unrooted structure and turn it into a rooted
structure.

2.4.2 Pointing

A typical F • structure can be represented graphically by circling
the pointed element.

Definition: Given a species F,the species of pointed F struc-
tures is the species F • , called F dot, is defined as follows;
An F • structure on U is a pair s = (f, u) where



CHAPTER 2. ALGEBRAIC OPERATIONS ON SPECIES 18

1. f is an F structure on U,

2. u ∈ U

also
F •[U ] = F [U ]× U
|F •[n]| = n|F [n]|

Proposition

Let F be a species of structures

� F •(x) = x d
dxF (x)

� F̃ •(x) = x( ∂
∂xZF )(x, x2, x3, ....)

� Z•F (p1, p2, .....) = p1
∂
∂p1
ZF (p1, p2, .....)

Note: The operations of pointing and derivation are related
by the combinatorial equation

F • = X · F ′

Example

Let us point the species a of tree . We obtain the species A of
rooted trees

a• = A

because we have
|F •[n]| = n|F [n]|

|a•[n]| = n|a[n]| = |A[n]|
= |A[n]| = n · nn−2 = nn−1

A rooted tree is nothing more than a tree with a distinguished
element. It is important to note that the distinguished element
u of an F • structure belongs to the underlying set U.
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2.5 Cartesion product of species of structures

Definition : Let F and G be two species of structures , The
species F ×G, called the cartesian product of F and G is defines
as follow,
An F ×G structure an a finite set U is a pair s = (f, g) where

1. f is an F structure on U

2. g is an G structure on U

also
(F ×G)[U ] = F [U ]×G[U ]

|(F ×G)[n]| = |F [n]| · |G[n]|

2.5.1 Proposition

Let F and G be two species of structures Then series associated
to the species F ×G satisfy the equalities

� (F ×G)(x) = F (x)×G(x)

� F̃ ×G(x) = (ZF × ZG)(x, x2, x3, ....)

� ZF×G(p1, p2, .....) = ZF (p1, p2, .....)× ZG(p1, p2, .....)

2.5.2 Example

Consider the species C of oriented circles and the species a of
trees , there is difference between an (a×C) structure and (a·C)
a structure on a finite set . each of the structures a and c appear-
ing in the formation of an (a×C) structure on U has underlying
set U but for (a · C) structure (a, c) on U, the underlying sets
U1 and U2 of a and c are disjoints.
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2.6 Functorial composition

Definition Let F and G be two species of structures. The
species F�G called the functorial composite of F and G, is de-
fined as follows:

(F�G)[U ] = F [G[U ]]

for any finite set U

|(F�G)[n]| = |F [G[n]]|

2.6.1 Proposition

For any two species F and G,

� (F�G)(x) = F (x)�G(x)

� F̃�G(x) = (ZF�ZG)(x, x2, x3, ....)

� ZF�G(p1, p2, .....) = ZF (p1, p2, .....)�ZG(p1, p2, .....)

2.6.2 Example

Using functorial composition of species we can express a variety
of graph classes in terms of simple species of structure. For
example the species of all simple graphs can be expressed as:

G = ρ�ρ2

Where ρ = E · E species of subsets and ρ2 = E2 · E Structure
on a set amounts to considering a pair of elements.
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Virtual species

We define the concept of a virtual species as a subtraction of two
species. Addition ,multiplication work on virtual species as they
do on regular species. We can find more details about section
3.1 and 3.2 in [1].

3.1 Virtual species

Virtual species allow us to give combinatorial meaning to the
multiplicative inverse 1/E of species E of sets.

Definition: Let F and G be species . then we define the
virtual species F-G as the element (F,G) in {(A,B):A and B are
species}/∼, Where ∼ is the equivalence relation

(A,B) ∼ (C,D)⇐⇒ A+D = B + C

The additive inverse of F , denoted -F is given as -F=0-F

Note: That in this case that B is a subspecies of A, A-B
may be thought of as the ordinary species of a structures that
are not B structures .

21
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Example: The combinatorial equation

G = Gc +Gd

allows us to define subtraction G−Gc by setting

G−Gc = Gd

This combinatorial subtraction is possible because Gc is a sub-
species of G.

Note: The set of virtual species is a commutative ring under
addition and multiplication.

Example: The multiplicative inverse of the species E, con-
sider the species E of sets

1

E
=

1

1/1 + E+

=
∞∑
n=0

(−1)n(En
+)

we can only write this equation if the family is summable.
Every virtual species Φ can be written in reduce form.

Φ = Φ+ − Φ−

3.1.1 Composition of virtual species

Definition: Let F,G,H and K be species of structures. one
sets , for virtual species Φ = F −G and Ψ = H −K

1. Φ′ = F ′ −G′

2. Φ• = F • −G•

3. Φ×Ψ = (F ×H +G×K)− (F ×K +G×H)

4. Φ�H = F�H −G�H



CHAPTER 3. VIRTUAL SPECIES 23

Multisort species

The theory of species can be extended by considering structure
constructed on sets containing several sorts of elements.

Example: The species of rooted tree constructed on a set
having two sorts of element: leaves and internal vertex.
The transport are carried out along bijection preserving the sort
of the elements. The transport of a rooted tree on two sorts
(internal vertices and leaves).
The bijection σ : U1 +U2 → V1 +V2 along which the transport is
carried , send each internal vertex (∈ U1) to an internal vertex
(∈ V1) and each leaf (∈ U2) to a leaf (∈ V2).

Definition: Let m ≥ 1 be an integer . A species of m sorts
is a rule F which

� Produces for each finite multi setU = (U1, U2, ......Um) , a
finite set F [U1, U2, ......Um].

� produces for each bijective multi function

σ = (σ1, σ2, ....σm) : (U1, U2, ......Um)→ (V1, V2, ......Vm)

a function

F [σ] = F [(σ1, σ2, ....σm)] : F [(U1, U2, ......Um)]→ F [(V1, V2, ......Vm)]

Note the following combinatorial equation

F (mX,nY, .....) = F (X, Y )× E(mX + nY....)

= F (X, Y )× (Em(X) · En(Y ).....)
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Definition: The virtual species F(X-Y) on two sorts X,Y is
defined by

F (X, Y ) = F (X + Y )× (E(X)E−1(Y ))

because we have this formula

F (mX,nY ) = F (X + Y )× (Em(X)En(Y ))

More generally for a virtual species

Φ = Φ(x) = F (x)−G(x)

Φ(X − Y ) = Φ(X + Y )× (E(X)E−1(Y ))

Φ ◦Ψ = Φ(X + Y )× (E(X)E−1(Y ))

3.2 The species logarithm Ω

Let Ω be the com-positional inverse of ε+, that is Ω is the virtual
species that satisfies the equation

ε+ ◦ Ω = Ω ◦ ε+ = X

And Ω this species exist and it is unique .
The species B = Ω ◦A is known as the combinatorial logarithm
of A.
This means that A = ε+ ◦ B often Ω ◦ A can be thought of as
connected A structures.

Example: Lets take the species of graphs Ω ◦ G = Gc this
is true because arbitrary graphs are disjoint collections of con-
nected graphs.

G = ε ◦Gc

and by left composing Ω

Gc = Ω ◦G
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in some cases there is no concept of connected A structures, and
for some species , like linear order the species Ω ◦ L is strictly
virtual.

Definition: Let Φ be a virtual species . The species Φ+ in
the reduced form of Φ is called the positive part of Φ . if Φ− 6= 0
one says that Φ is strictly virtual. If Φ = Φ+ one says that Φ is
positive.
Example the species Ω◦L is strictly virtual ( has negative terms).
Ω ◦G is positive ( has no negative terms).

3.2.1 Proposition

Let F be a species of structure satisfying the condition F (0) = 1
. Then there exist a unique virtual species Γ satisfying the com-
binatorial equation

F = E(Γ)

Where E denote species of sets.

1 + F+ = (1 + E+) ◦ Γ

F+ = E+ ◦ Γ

Γ = E
(−1)
+ ◦ F+

This suggests the terminology which consists of saying that
Γ is the combinatorial logarithm of the species F.
Γ = F c The virtual species of connected F structures.
and from this equation F = E(F c) we know

F (x) = eF
c

(x)

so
F c(x) = logF (x)
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and we also define this earlier that F c = Ω ◦ F now we can see
this

(Ω ◦ F )(x) = logF (x)

The species logarithm Ω We utilize the concept of virtual
species and the combinatorial logarithm to build other species.

3.3 Γ and Quotient species

Our goal will be to compute the cycle index of the species F/Γ in
terms of that of F and information about the Γ - action , so that
enumerative data about the quotient species can be extracted.
The following concepts of Γ - species and quotient species can
be found in [4]

3.3.1 Γ species

Some species have structures that are best described as orbits
of another species structures under some group action.
For that we have to describe how a group can act on the struc-
tures.

Definition: For a Γ a group a Γ - species F is a combinatorial
species F together with an action of Γ on F structures by species
isomorphism.

Example: Let G denote the species simple graphs . Let the
group S2 act on such graphs by sending each graphs G to itself
via the identity and sending G to its compliment Gc via the
group element (1,2).

As an intermediate step to the computation of the cycle index
associated to this quotient species. We associate a cycle index
to a Γ species F.
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Theorem: For a Γ species F, define the Γ cycle index ZΓ
F ,

for each γ ∈ Γ

ZΓ
F (γ) =

∞∑
n=0

1

n!

∑
σ∈Sn

(fix(γ · F [σ]))Pσ

The algebraic relationship between ordinary species and their
cycle indices generally extend without modification to the Γ
species context.

3.3.2 Quotient species

Under the action by Γ , a Γ - species F pass to the quotient
species

Definition: Let Γ be a group and F be a Γ -species. We say
the Γ- orbit of an F structure s is the orbit of s under the group
action Γ.

Definition: For F a Γ - species, define F/Γ the quotient
species of F under the action of Γ to be the species of Γ or-
bits of F structure.

Example: By passing the S2- species G through its quotient,
we put a graph G and its compliment Gc into an equivalence
class. Thus , we have effectively constructed the species of pairs
of compliments as G/S2.
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3.3.3 Theorem

For a Γ species F , the ordinary cycle index of quotient species
F/Γ is given

ZF/Γ =
1

|Γ|

∑
γ∈Γ

ZΓ
F (γ)

=
1

|Γ|

∞∑
n=0

1

n!

∑
n≥0,σ∈Sn,γ∈Γ

(fix(γ · F [σ]))Pσ

. This formula comes from Burnside’s lemma and also we can
see the proof in [5].
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The species of bipartite blocks

The enumeration of point determinig bipartite graphs appear to
be absent from the literature. with the help of species theory
and Γ- species we can solve the problem.

4.1 Introduction

Through out this section we denote by BC the species of bicol-
ored graphs and BP the species of bipartite graphs.

Definition: A bipartite graph is a graph whose vertices can
be divided into two disjoint and independent sets U and V such
that every edge connects a vertex in V to one in U. A bipartite
graph is a graph that does not contain any odd length cycles.
we can denote a bipartite graph as
G = (U, V,E) whose partition has the parts U and V, with

E denoting the edges of the graph.

Definition: A bicolored graph is a graph of which each vertex
has been assigned one of two colors so that each edge connects
vertices of different colors.

29
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The number of bicolored graphs on n vertices

bn =
∑
i+j=n

(
n

i

)
2ij

4.2 Cycle index series for bicolored graph

Now we want to compute the S2 cycle index ZS2

BC , For

this we will compute separately ZS2

BC(e) and ZS2

BC(τ). a proof

of ZS2

BC(e) and ZS2

BC(τ) can be found in [5]
To compute the cycle index of a species, we need to enumerate
the fixed points of each σ ∈ Sn.
Recall the formula for the cycle index of a Γ species

ZF/Γ =
1

|Γ|

∞∑
n=0

1

n!

∑
σ∈Sn

γ ∈ Γ(fix(γ · F [σ]))Pσ

4.2.1 Computing ZS2

BC(e)

For each n > 0 and each permutation π ∈ Sn we omit
empty graph and define B(π) = π and let λ ` n .we wish to
count bicolored graphs for which a chosen permutation π of cy-
cle type λ is a color preserving automorphism.
Consider an edge connecting two cycles of length m and n, the
length of its orbit under the permutation is lcm(m,n) number
of orbits of edge between these two cycles is mn/lcm(m,n) =
gcd(m,n).
We may then construct any possible graph fixed by our permu-
tation by making a choice of a subset of these cycles to fill with
edges, so the total number of such graphs is Π2gcd(m,n) for a fixed
coloring.
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Now we focus on the possible coloring of the graph which are
compatible with a permutation of specified cycle type λ . Let
λ = U ∪ V here U corresponds to the white cycles and V the
black.

Then the total number of graphs fixed by such a permutation
with a specified decomposition is

fix(U, V ) = Π2gcd(i,j)

Now Li,mi and ni are the multiplicities of the part i in the
partition λ, U and V respectively.Then the Li i cycles can be
colored in Li!

Mi!,Ni!
number of ways.

so in all there are

Π
Li!

mi!ni!
=

Zλ
ZuZv

fix(λ) =
Zλ
ZuZv

fix(u, v)

=
∑
u∪v=λ

Zλ
ZuZv

Πi∈uj∈v2
gcd(i,j)

Now we can obtain formula for ZS2

BC(e)

=
∑
n>0

∑
(u,v)(u∪v`n)

Pu∪v
zuzv

Πi,j2
gcd(ui,vj)

4.2.2 Computing ZS2

BC(Γ)

The nontrivial element of Γ ∈ S2 acts on bicolored graphs by
reversing all colors. we wish to count bicolored graph on [n] for
Γ.π is an automorphism. Which is to say that π itself is a color
reversing automorphism.
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Each cycle of vertices must be coloralternating and hence of even
length. So the partition λ must have only even parts..
The total number of possible white black edges is 2mn, each of
which has an orbit length of lcm(2m, 2n) = 2lcm(m,n). The
total number of orbits is 2mn

2lcm(m,n) = gcd(m,n) . Then the num-

ber of orbits for a fixed coloring of permutation of cycle type 2λ
is ∑

i

[λi/2] +
∑
i<j

2gcd(λi,λj)

. Thus total number of possible graph for a given vertex coloring
is

Πi2
[λi/2] + Πi<j2

gcd(λi,λj)

.

ZS2

BC(Γ) =
∑

n>0,neven

∑
λ`n/2

2l(λ) p2λ

Z2λ
Πi2

[λi/2] + Πi<j2
gcd(λi,λj)

4.3 Enumerating point-determining bipartite
graphs

In this section , we pass from bicolored to bipartite graphs by
taking a quotient under the color reversing action of S2 only in
the connected case.
For this we have to define some notation. We will refer to species
of bicolored graphs as BC, the species of bipartite graphs as
BP, the species of point determining graphs as P, the species
of connected point determining bipartite graphs as CPBP. The
following concepts of PBP , BP and CPBP species can be found
in [4]

4.3.1 Definition

Given a graph G, recall that the neighborhood of a vertex V ∈
V (a) is the set of vertices to which V connected by an edge. A
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point determining graph is a graph where no two vertices share
a neighborhood.

4.3.2 Lemma 1

This lemma proves that point determining bipartite graph is
connected bipartite graph. We can write PBP as

PBP = BP ◦ Ω

from the species logarithm Ω.

Proof: Consider a point determining bipartite graph p. Ev-
ery vertex in P has a unique neighborhood, but an arbitrary bi-
partite graph G can have many vertices sharing the same neigh-
borhood. Therefore each vertex in P corresponds to a nonempty
set of vertices in G, each of which has the same neighborhood
as the original vertex . This clearly respects transports so

PBP = BP ◦ Ω

4.3.3 Lemma 2

This lemma states: A connected bipartite graph is an orbit of
connected bicolored graphs under the action of S2. We can write
CBP as

CBP = CBC/S2

Proof: By operate S2 action on CBC we can flip the color
of each vertex to the opposite color and which produces another
bicolored graph and that action is an involution for any CBC
graph G. Let I be the image of G under the S2 action, and if we
remove the colors from G and I then we will get two copies of
same bipartite graph P.(if K is the number of connected compo-
nent of a bipartite graph G, then G may be properly bicolored



CHAPTER 4. THE SPECIES OF BIPARTITE BLOCKS 34

in 2k ways. ) So P has exactly 2 proper bi-coloring so the S2

-orbit of G is exactly the set of bicolored graphs that produce
P when we remove the colors. Thus we can associate P with
the S2 orbit of G. This clearly respects transports, so the result
holds.

4.3.4 Lemma 3

PBP = (ε ◦ ((Ω ◦BC+)/S2)) ◦ Ω

Proof: We know PBP = BP ◦ Ω. since CBP is connected
bipartite graphs, BP = ε ◦ CBP and also CBP = CBC/S2

.finally a nonempty bicolored graph is a nonempty set of con-
nected bicolored graphs, so by left composing Ω, we get CBC =
(Ω ◦BC+). From there we can get the desired result.
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