
Continuum Suppression in Belle II

Jagmeet Singh

A dissertation submitted for the partial fulfilment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2019

Dedicated to my Family

Certificate of Examination

This is to certify that the dissertation titled Continuum Suppression in Belle

II submitted by Jagmeet Singh (Reg. No. MS14006) for the partial fulfillment

of BS-MS dual degree programme of the Institute, has been examined by the thesis

committee duly appointed by the Institute. The committee finds the work done by

the candidate satisfactory and recommends that the report be accepted.

Prof. Jasjeet Singh Bagla Dr. Anosh Joseph Dr. Vishal Bhardwaj

(Supervisor)

Dated: April 24, 2019

Declaration

The work presented in this dissertation has been carried out by me under

the guidance of Dr. Vishal Bhardwaj at the Indian Institute of Science

Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma,

or a fellowship to any other university or institute. Whenever contributions

of others are involved, every effort is made to indicate this clearly, with due

acknowledgement of collaborative research and discussions. This thesis is a

bonafide record of original work done by me and all sources listed within

have been detailed in the bibliography.

Jagmeet Singh

(Candidate)

Dated: April 24, 2019

In my capacity as the supervisor of the candidates project work, I certify that

the above statements by the candidate are true to the best of my knowledge.

Dr. Vishal Bhardwaj

(Supervisor)

Acknowledgment

Firstly, I would like to express my sincere gratitude towards my supervisor Dr.

Vishal Bhardwaj for his kind support, guidance, motivation and the immense

knowledge. Without his help and guidance, the project would not have been

possible. I am very thankful to him for giving me an opportunity to work under

his guidance.

Besides my advisor, I would like to thank the rest of my thesis committee members

Prof. Jasjeet Singh Bagla, and Dr. Anosh Joseph for their insightful comments and

encouragement.

I sincerely thank Belle II Collaboration for providing me necessary computing tools

and resources.

I would like to thank all my group members (Rajesh, Sourav, Renu) for guidance

and maintaining the cheerful and peaceful atmosphere in the group. I would also

like to thank my friends Keshav, Virinder, Pawan, Aman, Sanjay, Sukhwinder,

Ashish, Jaskaran, Gurdeep who always supported and motivated me.

I acknowledge IISER Mohali for providing me best Infrastructures and environment

for carrying out this project. I am also thankful to the “Department of Science and

Technology,” Govt. of India for supporting me with institute fellowship during the

past five years.

To conclude above all, it was almighty and my family which have been there all

these years strongly supporting and guiding me in life.

List of Figures

2.1 Belle II detector . 4

3.1 Relative cross-section of different events in e+e− collision at Υ-(4S) . 8

3.2 Event topology (Taken from [Li 15]) 8

3.3 Distributions of the magnitude of thrust axis 9

3.4 Distributions of the angular features 10

3.5 Distributions of the Cleo cones with largest separation 10

3.6 Some of the distributions of the KSFW moments 11

3.7 Some of the distributions of flavor tagging features 12

4.1 Schematic of supervised learning . 14

4.2 Schematic of a Decision Tree . 14

4.3 Schematic of a Random Forest . 15

4.4 Comparison of a biological and artificial neuron working 16

4.5 Schematic of the Neural Network . 17

4.6 Accuracy plot for the over train and under train models 21

4.7 Neural network without and with dropouts 22

4.8 Example of early stopping . 22

5.1 Decay mode analyzed . 23

5.2 Invariant mass of the reconstructed D0 from B+ −→ D0π+. The distri-

bution is in GeV . 24

5.3 Reconstructed ∆E (in GeV) . 25

5.4 Mbc distribution for B+ −→ D0π+ decay mode (in GeV/c2) 25

5.5 Reconstructed ∆E (in GeV) (continuum events) 26

5.6 Mbc distribution for continuum events(in GeV/c2) 26

i

6.1 Train and Test data split . 28

6.2 Sequence of commands in TMVA . 29

6.3 ROC curve by using different feature set 31

6.4 ROC curve by using different methods 32

6.5 Accuracy plot for train and test data sets 33

6.6 Loss plot for train and test data sets 34

6.7 Accuracy plots for different models 34

6.8 Loss function plots for different models 35

6.9 Optimal network architecture. The red colour corresponds to positive

weight values while green is for negative weight values and intensity

tells about the weight strength. 36

6.10 Accuracy and loss plots for the optimal network with dropout of 30% 37

6.11 Accuracy and loss plots for the optimal network with dropout in 20% . . . 37

6.12 Accuracy and loss plots for the optimal network with dropout of 10% 37

6.13 Separation plot for the optimal network 38

6.14 Mbc distribution after 0.6 DNN cut (in GeV/c2). 38

6.15 Accuracy plot after shuffling each data feature 40

6.16 Shap values for each data feature . 40

A.1 Distribution of the Thrust Features . 49

A.2 Distributions of the Cleo cones for signal and background events 50

A.3 Distributions of the FW and KSFW moments for signal and background

events . 52

A.4 Distributions of flavor tagging variables for signal and background events . 54

ii

List of Tables

5.1 Selection cuts on the particles to build B meson 24

5.2 Reconstructed background data . 26

6.1 Feature Count . 28

6.2 Train Test Split while using TMVA 30

6.3 Parameters used for Boosted Decision Tree in TMVA 30

6.4 Hyper-parameters used for neural network in TMVA 32

6.5 DNN cut vs Signal Purity . 38

6.6 Top eight ranks . 41

iii

Notation and Abbreviations

θi,j Weight matrix

bj Biased term for each layer

Fi Activation function of ith layer

ROE Rest of Events

MVA Multivariate Analysis

BDT Boosted Decision Tree

DNN Deep Neural Network

TMVA Toolkit for Multivariate Analysis

ROC Receiver Operating Curve

GPU Graphical Processing Unit

v

Contents

List of Figures ii

List of Tables iii

Notation v

Abstract ix

1 Introduction 1

2 The Belle II Experiment 3

2.1 Accelerator . 3

2.2 Detectors . 4

2.2.1 Vertex Detector (VXD) . 4

2.2.2 Central Drift Chamber (CDC) 5

2.2.3 Particle Identification system (TOP and ARICH) 5

2.2.4 Electromagnetic Calorimeter (ECL) 5

2.2.5 KL and Muon Detector (KLM) 5

2.2.6 Other Components . 5

2.3 basf2 and gbasf2 . 6

3 Continuum Suppression 7

3.1 Continuum . 7

3.2 Event Topology . 8

3.2.1 Thrust Features . 9

3.2.2 Angular Features . 9

3.2.3 Cleo Cones . 10

vii

3.2.4 Fox-Wolfram Moments . 11

3.2.5 Flavor Tagging Features . 11

4 Multivariate Analysis Methods 13

4.1 Boosted Decision Trees . 13

4.2 Artificial Neural Network . 15

4.2.1 Deep Neural Network . 16

4.2.2 Back Propagation Algorithm 17

4.2.3 Hyper-parameters for DNN 18

4.2.4 Learning Curves . 20

4.2.5 Regularization . 21

5 Event Reconstruction 23

5.1 Signal Events . 23

5.2 Continuum Events . 25

6 DNN for Continuum Suppression 27

6.1 Data Features . 27

6.2 TMVA . 28

6.2.1 TMVA - Results . 30

6.3 Keras and TensorFlow . 33

6.3.1 Optimal Network . 35

6.4 Feature Importance . 39

7 Summary & Conclusions 43

A Event Topology Features 49

A.1 Thrust . 49

A.2 Cleo Cones . 50

A.3 Fox-Wolfram Moments . 51

A.4 Flavor Tagging Variables . 53

viii

Abstract

B-factories (Belle I/II and Babar) are experiments that study the B mesons decay

in electron-positron annihilation at the energy of the Υ(4S) resonance (10.58 GeV).

Belle II is a successor of the Belle experiment and is expected to collect 50 times more

data than Belle. Besides the desired collision containing a B meson pair (signal),

Belle II also generates other events (u, d, s, c). These udsc events (known as contin-

uum events) acts as background if one is studying B decays. If one has to search

for rare decays such as B → K∗µ−e− (Lepton Flavor Violation) in search for New

Physics, continuum needs to be suppressed in order to achieve sufficient sensitivity.

Multivariate analysis methods are used to separate the signal and continuum events.

Machine learning algorithms particularly neural networks have been quite successful

in various classification problems. In this thesis, different machine learning algorithms

are tested and compared for the continuum suppression using various libraries.

ix

Chapter 1

Introduction

The Standard Model (SM) describes the basic building blocks of the universe called

fundamental particles and explains about the three of the four fundamental forces

which govern them. Emerged in the 1970s, it has revealed almost all the phenomenon

with outstanding accuracy. However, the SM has limitation. Moreover, to answer the

existence of dark matter and other phenomena in astrophysics and cosmology, there

is a need for physics beyond the Standard Model.

The collider experiments like Belle and BaBar, in which B mesons are produced

and detected are termed as B -factories. The experiments involve the collision of

electron-positron particles at the center of mass energy of Υ(4S) resonance peak which

decays to form two B-mesons. Thus, new rare decays can be analyzed which can give

hint of new physics beyond the Standard Model. The first large signals of CP violation

were observed by B -factories and thus supported the theory [Kobayashi 73] of Makoto

Kobayashi and Toshihide Maskawa. They were awarded the Nobel Prize in Physics

in the year 2008. One of the origins of the dominance of matter over anti-matter is

assumed of CP violation.

The CP violation measured by the experiments was not sufficient to explain the

defined asymmetry. Therefore, a more profound understanding is required for the

phenomenon. Belle II is an upgradation of Belle experiment in which the instanta-

neous luminosity will increase by a factor of 40 to get luminosity of 8× 1035cm−2s−1

[Aushev 10]. It will collect 50 times more data than the Belle experiment and B -

mesons decays can be analyzed more accurately. Apart from B mesons formation

after annihilation, many other events are also generated which do not contain the B

1

meson pair, thus do not contribute for the analysis part and are termed as continuum

events. These events need to be removed or suppressed from the data to ensure the

analysis of the proper data set.

In this thesis, the problem of ‘continuum suppression’ is analyzed using machine

learning algorithms and frameworks. The Belle II data is simulated and reconstructed

for signal and continuum events. The primary focus is to apply the neural network

deep learning techniques using various open source libraries and to get an optimal

model for the separation of continuum and signal. Some new features are added, and

their importance is also measured to suppress the background.

Chapter 2 provides a brief introduction to the Belle II experiment. Different

detectors, their importance and the software supplied by KEK are discussed. Chapter

3 gives an overview of the continuum suppression and the features that are being used

to analyze this problem. Different multivariate analysis methods and their algorithms

are discussed in Chapter 4. The implementation of the neural network for classification

problem and its parameters are also discussed. Chapter 5 emphasis on the data that

has been used for continuum suppression and the ways by which it has been simulated

and reconstructed. The results using different methods and frameworks are given in

Chapter 6.

2

Chapter 2

The Belle II Experiment

Belle II experiment is an upgradation of Belle experiment to study the decay of B

mesons formed by the collision of electron and positron at the center of mass energy

of Υ− [4S]. It is located in Tsukuba, Japan at the High Energy Accelerator Research

Organisation (KEK) and is designed to have the highest luminosity in the world. The

first collision took place on 26 April 2018 and events are recorded from the electron-

positron collision. The design and build team of Belle II detector at SuperKEKB

comprises of the international collaboration of about 750 researchers from 25 countries.

The experiment will accumulate data for around ten years and about 50 billion BB

meson pair production is expected within this period. The experiment aims to search

the physics beyond Standard Model in rare decays and also to examine the exotic

states.

This Chapter gives a brief introduction of the Belle II accelerator and detectors,

Section 2.1 describes the accelerator at SuperKEKB. Section 2.3 provides an overview

of basf2 software which is provided by KEK server for the computation and also about

gbasf2 which provides an interface between the local server and GRID server.

2.1 Accelerator

The accelerator design at SuperKEKB is “nano-beam” [Kurokawa 03] scheme which

was high current version in Belle. The cross section of the beam is decreased and

thus increasing the luminosity by a factor of 20. The number of particles per beam

is also increased to get an overall luminosity rise by a factor of 40. The same tunnel

3

is used as that of KEKB. The beam energies are 4.0 GeV in the low energy ring

(LER) and 7.0 GeV in the high energy ring (HER) for the positron and electron

particles respectively. The collision takes place at 10.58 GeV which is center of mass

energy of Υ− [4S]. More dipole, quadrupole, and sextupole magnets are added to the

accelerator.

2.2 Detectors

The Belle II detector is given in the Figure 2.1 with various detectors within it. A

brief introduction of the different detectors is given in the following sections.

Figure 2.1: Belle II detector

2.2.1 Vertex Detector (VXD)

Vertex detectors consists of two detectors, one is silicon pixel detector (PXD), and

the other is silicon strip detector (SVD) [Adachi 18]. The main purpose of the vertex

detectors is tracking of the particles.

The PXD detector is two layers with layer 1 (L1) at radius 14 mm and layer 2

(L2) with radius 22mm. It is based on Depleted p-channel Field Effect Transistor

(DEPFET) technology. The SVD detector is rectangular and trapezoidal and con-

stitutes the four outer layers of VXD. It has four layers with double-sided silicon

microstrip detectors (DSSDs). Thus the VXD has total of six layers around the beam

4

pipe. The total power consumption of the vertex detector is very high, and it is

supported with proper cooling channels using −20◦ liquid CO2.

2.2.2 Central Drift Chamber (CDC)

The purpose of Central Drift Chamber (CDC) is to reconstruct the trajectories of

charged particles and thus to determine the momenta and particle identification in

the low momentum region [Adachi 18]. It consists of a large volume gas drift chamber

filled with Helium-Methane mixture with drift cells. The CDC cell is 1200 mm wide

and 250 mm thick and consists of a lot of anode and cathode wires.

2.2.3 Particle Identification system (TOP and ARICH)

The time-of-propagation (TOP) counter is used for particle identification in the outer

region of the CDC, and it uses the Cerenkov principle for the identification. This

detector provides a separation between kaons and pions. In the end-cap region, a

Cherenkov imaging detector ARICH with aerosol as a radiator is used to identify

charged particles [Adachi 18].

2.2.4 Electromagnetic Calorimeter (ECL)

The purpose of electromagnetic calorimeter (ECL) is to detect γ rays (photons) along

with identification of electrons. It consists of a heavily-segmented array of Thallium-

doped Cesium Iodide CsI(Tl) crystals and is located at the top end region and barrel

region.

2.2.5 KL and Muon Detector (KLM)

The KL and muon detector (KLM) is located outside the superconducting solenoid

and consists of an alternating sandwich of 4.7 cm thick iron plates and detector layers.

It is used to provide a separation between hadrons and muons.

2.2.6 Other Components

The axial magnetic field is 1.5 T and is provided by superconducting solenoid [Adachi 18].

The trigger system rejects the large background events coming from beam scattering

5

and Bhabha scattering. The data is transferred from the detector using the data

acquisition system (DAQ). FPGA’s and high-speed fiber optics are used to transfer

the data, and the final data is then moved to the KEK computing center (KEKCC)

and GRID for processing.

2.3 basf2 and gbasf2

basf2 is a software written for Belle II experiment analysis [Kuhr 18] . It replaces

the old basf which is provided for the computation in Belle experiment. The event

generation, simulation, and reconstruction are done using this software package, and

different modules are available to do these tasks easily. It comes up with a python

interface for users. The software is provided on the KEK computing work server.

Different releases are available and are updated from time to time. It also allows

submitting jobs at the Belle cluster where multiple jobs can be submitted at the same

time.

gbasf2 provides an interface between local work server and the GRID server. It is

designed as an extension of basf2 to distributed computing system [Miyake 15]. The

grid server is used for reconstruction of background events. The grid data is accessed

by giving the unique guid of each root file available at the grid. It includes many

sites and jobs are submitted by setting up gbasf2. It uses the DIRAC Distributed

Computing Framework to submit jobs to the best available site. It takes the same

steering file as used by basf2. Jobs can be submitted by giving a unique job name,

the release to be used and a set of parameters.

6

Chapter 3

Continuum Suppression

Each data analysis problem should be done on the proper data and it becomes more

important when dealing with huge amount of data coming from experiments like

Belle II. Data that do not contribute to the analysis needs to be removed. To check

whether a data is important or not, different input features and methods are used.

This chapter provides an overview of background data for the Belle II analysis and

also the corresponding features which separate them from the signal data.

3.1 Continuum

The e+e− collision at SuperKEK takes place at the energy of 10.58 GeV which cor-

responds to the invariant mass of Υ-[4S]. The signal events at Belle are the events

which result in the formation of B meson pair on each collision. This is the desired

event for a collision so that B meson decay can be analyzed. Apart from the desired

event, the e+e− collision results in many other events that do not result in B meson

pair formation. These events are termed as continuum or background events. The

continuum events need to be suppressed/removed for further analysis [Weyland 02].

The major contribution of background events comes from the events that leads

to formation of uu, cc, ss and dd. The relative cross-section for different events is

given in Figure 3.1. The signal events occurs only around 22.2%, thus it becomes very

significant to remove the continuum events.

7

Figure 3.1: Relative cross-section of different events in e+e− collision at Υ-(4S)

3.2 Event Topology

The event topology for signal and continuum events is given in Figure 3.2. For signal

events, the B mesons have 0 spins and in the center of the mass frame, they decay

almost isotropically in all directions giving a spherical shape for the decay products.

For the background events, the light quark particles have high kinetic energy because

of which the decayed particles do not deviate much from the beam axis and thus

giving a jet-like structure for the final particles [Fox 78].

(a) Continuum events (b) Signal events

Figure 3.2: Event topology (Taken from [Li 15])

Each signal event results in the formation of an entangled pair of B mesons. The

final decayed particles detected at the detector are used to calculate different feature

of an event which is given in the sections below. The particles are combined to get

the B meson which corresponds to one of the pair while the rest of tracks (other B)

are termed Rest of Events (ROE).

8

3.2.1 Thrust Features

The axis that maximizes the sum of the longitudinal momenta of particles is defined as

the thrust axis. For each event two thrust axis are defined, one for the reconstructed

B meson and other for the Rest of Events (ROE). Two different thrust feature is

used which corresponds to the magnitude of the thrust axis. The magnitude of the

thrust axis is higher for the background events because of their high kinetic energy

while decaying. The distributions of thrust axis magnitude for signal and background

events are given in Figure 3.3.

(a) B thrust axis (b) Other B (ROE) thrust axis

Figure 3.3: Distributions of the magnitude of thrust axis

3.2.2 Angular Features

The two angular features which differentiate signal and background events are the:

1. cos (TBTO): Cosine of the angle between thrust axis of B and thrust axis of

the Rest of Events (ROE).

2. cos (TBz): Cosine of the angle between the thrust axis of B and the z-axis.

The distribution plots for both the angular features are given in Figure 3.4. The

cos (TBTO) for the background events shows a peak near 1.0 showing the angle

between the B and ROEs is almost 180◦ while the other angles correspond to the

events in which the products do not decay in the direction of the beam axis. The

cos (TBTO) distribution for the signal events, is almost equal for all the angles show-

ing the isotropic nature of the events. The cos (TBz) for the background events show

a peak at near about 1.0 which corresponds to the final products in the direction of

9

the beam axis. The jet formation is not always in the beam axis that is why there are

contributions from other angles also in the distribution plot. The signal distribution

plot shows the isotropic nature of the decay with almost equal contribution from all

the angles.

(a) cos(TBTO) (b) cos(TBz)

Figure 3.4: Distributions of the angular features

3.2.3 Cleo Cones

Cleo clones are the cones separated by the angular intervals of 10◦ and placed concen-

trically around the thrust axis. Each cone measures the scalar momentum flow around

the thrust axis. Total 9 Cleo cones features are defined, and two of the distributions

are given in Figure 3.5.

(a) Cleo cone 2 (b) Cleo cone 6

Figure 3.5: Distributions of the Cleo cones with largest separation

10

3.2.4 Fox-Wolfram Moments

The Fox-Wolfram moments are given as:

Hl =
N∑

i,j=1

|pi||pj|Pl(cos(θij))

where i, j are the charged and γ particles, pi, pj are the momentum of the particles,

Pl is Legendre’s Polynomial and θi,j is the angle between particles i and j.

The Kakuno-Super-Fox-Wolfram (KSFW) moments are the refined version of the

FW moments which are defined in the Ref[Aushev 10]. The missing mass square M2
m

and the transverse energy Et, which is defined as the sum of the transverse momenta

of the particles are also considered in KSFW moments. Thus the complete features

for the KSFW moments are 18 and are very good discriminant for the separation of

signal and background. Some of the distributions for the KSFW moments are given

in Figure 3.6.

(a) KSFW hoo2 moment (b) Transverse energy

Figure 3.6: Some of the distributions of the KSFW moments

3.2.5 Flavor Tagging Features

The flavor tagging features are defined using a multivariate analysis method FastBDT.

The principle is that if one of the entangled B -meson pair decays to CP eigenstate

and other to the flavor specific state, the flavor of the latter can be determined at the

time of its decay [Abudinn. 18]. Thirteen flavor tagging features have been described

till now. The distributions for the two of the flavor tagging features are given in the

Figure 3.7 and are different for signal and background events, thus can be used for

the problem of continuum suppression.

11

(a) FastHadron (π+,K− tagger) (b) IntermediateKinLepton (l− tagger)

Figure 3.7: Some of the distributions of flavor tagging features

The features described above can be used all together to classify an event signal or

background using the multivariate analysis methods (MVAs). Flavor tagging features

are new that are being introduced, and high accuracy results have been obtained by

using them with the previous ones as given in Chapter 6. The distributions of all the

44 variables are given in the Appendix A.

12

Chapter 4

Multivariate Analysis Methods

Multivariate Analysis (MVA) is used to analyze data sets having more than one

variable [Dempster 71]. In the problem of continuum suppression, these methods can

be used by loading the features and predicting the event as a signal or background.

These are more useful when there is a correlation between different variables. Many

different methods are being described for multivariate analysis like Fisher, Boosted

Decision Trees, Neural Networks, etc. The method needs to be trained on the labeled

training set so that it gets the best-fitted weights and then can be used on unknown

data sets. Each model is described by a set of hyper-parameters which are required

to be given by the user before training.

In this chapter, a brief introduction for Boosted Decision Trees and Deep Neural

Networks is provided which are two most used multivariate analysis methods. These

have been used for the problem of continuum suppression to separate signal and

background events.

4.1 Boosted Decision Trees

Boosted Decision Tree (BDT) method is used for many problems in high energy

physics. The problem of continuum suppression is a supervised learning problem be-

cause we have labeled data-set (events) which can be used for training. The schematic

of supervised learning problem is given in Figure 4.1. The methods (BDT, Neural

Network, etc.) are trained using the training data, and then the trained model can

be used to classify unknown events.

13

Figure 4.1: Schematic of supervised learning

Decision Trees consists of a consecutive set of nodes. These are used as a binary

classifier [Drucker 95]. Each node has two outputs and a feature which is used for

classification as given in Figure 4.2. The cut at each node and architecture of the tree

is done by Classification And Regression Trees (CART) algorithm.

Figure 4.2: Schematic of a Decision Tree

Statistical fluctuations in the data can lead to an overtraining problem. Also, a

single tree is not robust to problems with multiple features. To overcome this problem,

a set of small decision trees are combined to form a forest known as random forest as

given in Figure 4.3. The final decision is the majority of votes from all the trees. The

small decision tree is called as a weak learner; thus a sum of weak learners results to

a strong learner.

14

Figure 4.3: Schematic of a Random Forest

The most common method for training the random forest is Adaptive Boosting

(AdaBoost) [Ke 17]. In this algorithm, higher weights are given to misclassified events

and weights for correctly classified are reduced after each training. This is done to

ensure that trees will do better on misclassified events in the following iterations.

The hyper-parameters that need to be defined by the user are the number of

trees, the node size, the maximum depth of the decision tree and type of algorithm

for boosting. By specifying the best parameters according to the problem, a good

model can be constructed.

4.2 Artificial Neural Network

The concept of artificial neural network is inspired by the biological neural network.

The mammal brain consists of about 100 billion neurons connected via dendrites.

Neurons talk with each other via electrical signals that mediate through dendrites.

There are thousands of connections between neurons which finally reach the cell body

which consists of nucleus [Tang 07].

When the incoming signals from dendrites exceed some threshold value, the neuron

will respond by generating a voltage impulse which is transmitted to other neurons

by the axon. The generation of impulse depends upon the type of neurons that are

being inputted. Some signals tend to prevent the impulse generation or firing while

others encourage the firing. Thus the work of each neuron is to decide whether to

15

generate impulse or not to depend on input signals and strength of its connections

with other neurons.

(a) Biological neuron
(b) Artificial neuron (perceptron)

Figure 4.4: Comparison of a biological and artificial neuron working

In an artificial neural network, the nodes are equivalent to the neurons. The

strength of a signal from input nodes is modeled by giving a weight to each input

connection which gets multiplied by its value. The weighted signals are summed and

then fed to the node which applies activation function. The output of the node after

applying activation function is then transmitted to other neurons [LeCun 15]. The

Figure 4.4 shows the equivalence between a biological and artificial neuron and the

working of one artificial node/neuron. The ‘network’ term in neural network implies

how the nodes are connected and its architecture. A different architecture is defined

depending upon the problem and its complexity. Neural networks can be used to

solve various problems like regression, classification, pattern recognition, object and

anomaly detection. The problem can be categorized to supervised or unsupervised

learning. Supervised learning problem includes the availability of labeled training

data while in unsupervised learning, there is no labeled data but the algorithm looks

for patterns in the data by its own to solve the problem.

4.2.1 Deep Neural Network

A deep neural network is defined as a set of layers which are connected to each other.

Each layer has a defined number of nodes and connections runs between nodes of ith

layer and jth layer. The network consists of an input layer, a set of hidden layers and

an output layer as shown in Figure 4.5. A bias term (value) is given to each layer

and is added to the weighted sum of nodes in the next layer. So each neuron works

16

as ‘Input times weights, add bias and then activate it using the activation function’.

The output of neural network with single hidden layer is given as:

y = F2(
∑

ajθ
(2)
j + b)

and

aj = F1(
∑

xiθ
(1)
i,j + bj)

where i, j runs over number of features and number of nodes in the hidden layer

respectively, b is the biased term. θi,j are the weights defined from layer i to layer j

and F is the activation function [Schmidhuber 14].

Figure 4.5: Schematic of the Neural Network

The input layer represents the features which are being used for training and

testing. The nodes in the input layer equal the number of features. The nodes in

the output layer depend upon the number of classes. For binary classification, the

output layer can have 1 or 2 nodes depending on the activation of the output layer

whereas for more than two classes the nodes are equal to the number of classes. The

user defines the hidden layer and the number of nodes in each layer before training.

4.2.2 Back Propagation Algorithm

The algorithm used in multilayer neural network training is feed-forward backpropa-

gation algorithm. It includes three stages:

1. Feed forward input features.

2. Calculating Error Term.

17

3. Re-weighting the weights depending on the error.

The data is first divided into training and testing set. The model (network) is then

trained on the training data set using the backpropagation algorithm. In one cycle of

algorithm one training example is used and then the next training example is used as

an input feature vector, and the loop goes over all the training data. This makes the

training time expensive as it includes much computation for each training example.

In the first stage, the input feature vector is fed into the network. All the weights

are initialized randomly. Each hidden node gets the weighted sum over the input

vector, and then it applies the activation function by adding a bias term. In this

way, each hidden node in ith layer works, and it gives an output which is used for the

(i+ 1)th layer as the input vector. Thus the feedforward propagates and gives output

in the output layer.

After the feed forward, the output value of the training example is compared with

the labeled or true value of that training example, and an error is calculated using

a loss function. The user defines the loss function before training. The error is then

used to re-weight the weights by the optimizer which is the application of gradient

descent. The re-weighting is done by going backward in the network, and the weights

for the last hidden layer are re-weighted first and finally for the input layer. That is

why the algorithm is termed as Feed-forward Back-propagation algorithm. An epoch

in a neural network is defined when all the training data is used for training once.

Epoch number can be specified by the user to use the same training data to train the

model again and again and thus getting better accuracy results [Bishop 06].

When dealing with a large amount of training data, it is better to divide the

training data sets into batches. Then the algorithm works on each batch instead of

each training example and makes the training faster and computationally efficient.

The batch size should be based on the training data set size. By default, a batch size

of 32 is considered in most of the deep learning frameworks.

4.2.3 Hyper-parameters for DNN

While defining the neural network, some parameters need to be specified by the user

and are termed as hyper-parameters. These includes:

18

• Number of hidden layers

• Number of nodes in each hidden layer

• The activation function for each node

• Connection architecture in the network

• The loss function

• Optimizer

• Batch size

• Number of Epochs

• Regularization terms

It is important to choose these parameters sagaciously depending on the problem.

The performance of the neural network relies on these. There is no hard rule defined

to chose them, but it is possible to define a good network by looking at the best

models already given for the different type of problems.

Hidden Layers: The parameters that need to be defined first are the number

of hidden layers and nodes in each hidden layer. The hidden layers in the network

range from one to five usually. The nodes in the hidden layer are equal or higher

than the number of features in the input layer and can be different for each hidden

layer. Higher the number of hidden layers or the nodes, more the network is prone to

overtraining.

Activation Function: Many activation functions has been defined for the neural

networks but the most commonly used are hyperbolic tangent (Tanh), rectified linear

units (ReLu), sigmoid and softmax. Tanh and ReLu are preferably used for hidden

layers while sigmoid and softmax are used for the outer layer. Sigmoid is used for

problems with only one node in the output layer and softmax is used when there are

more than one nodes (classes) for the output layer.

Optimizer: Optimizer plays an important role in the stability of the neural net-

work. The optimizer used for most of the deep learning problems are stochastic gra-

dient descent (SGD), Nesterov accelerated gradient (NAG), AdaGrad, AdaDelta and

19

adaptive moment estimation (Adam). Each of them is used based on the structure of

the data set available.

Loss Function: The loss (cost) function calculates the error term, and its value

needs to decrease with each epoch for a good training model. Mean squared er-

ror, mean absolute error, categorical cross-entropy, binary cross-entropy, and squared

hinge are some of the loss functions that are often used in deep learning problems.

Epochs and Batch size: The batch size depends on the training data. A fewer

number of training data requires less batch size and vice-versa. The epoch number is

chosen after checking the initial trend of accuracy and loss for a few numbers of epochs.

If the accuracy for both training and testing data sets keeps increasing consistently,

a higher value of epoch number can be set to get high accuracy results.

Regularization terms: Regularization terms are added to get rid of the over-

training problem. It includes adding a penalty to the cost function known as L1 and

L2 regularization, adding dropouts, early stopping, maximum norm constraint, gra-

dient clipping, and batch normalizing. Regularization is mostly done after checking

the initial results from the model and to get an excellent model for a given problem.

4.2.4 Learning Curves

When building a neural network model, the main concern is to reduce the error (loss)

and increase accuracy. The major problem in any neural network is over training or

under training. Overtraining refers to a problem when the model performs better on

the training examples, but the performance goes worst for the testing data set. It is

also termed as high variance and low bias problem in data science. Under training is

the case when the model performs badly on both the training and test data set. To

check over training or under training, learning curves are plotted which tells about

the performance of the model on training and test data set [Perlich 11]. The accuracy

or loss is plotted against epoch number for both the train and test data set together.

The Figure 4.6 shows the learning curve plot of the overtrained and undertrained

model. The ideal model is the model in which the accuracy has a overall increase for

both train and test data set consistently.

20

(a) Overtrained Model (b) Undertrain Model

Figure 4.6: Accuracy plot for the over train and under train models

4.2.5 Regularization

When there is a large number of features, or the network architecture is complex, the

neural network will probably prone to overtraining. Regularization involves methods

to overcome the overtraining problem. The common methods to regularize the net-

work are L1/L2 regularization, dropout regularization, and early stopping [Zhang 16].

The L1/L2 regularization works by penalizing the cost function. Extra terms are

added to the cost function which prevents the model from overfitting. The cost func-

tion with regularization is defined as

J(w, b) =
1

m

m∑
i=1

L(yi, ŷi) + L1/L2

where m is the number of training examples, w is weight, b is bias term, L is the loss

function and L1, L2 regularization terms are defined as:

L1 Regularization
λ

m

n∑
i=1

|wi|

L2 Regularization
λ

m

n∑
i=1

|wi|2

where wi are the weights for ith layer and λ is a regularization parameter can be set

based on the amount of regularization needed.

Dropouts are added to a layer, and it involves removing a fraction of nodes ran-

domly while training the data. By removing nodes, the contribution of those nodes

becomes zero for that batch size and thus helps in preventing the model from over-

training. The nodes removed are different and random when training is done over

21

the next batch size. The dropout fraction is given as a parameter which tells about

the percentage (probability) of nodes to be removed [Srivastava 14]. The Figure 4.7

shows the network before and after giving nodes.

(a) without dropouts (b) with dropouts

Figure 4.7: Neural network without and with dropouts

Early stopping means to stop the training of data when the model starts behaving

badly, or it becomes overtrained. This is done by checking the deviation of training

and testing cost or accuracy plots and is shown in Figure 4.8. This way the weights

Figure 4.8: Example of early stopping

do not get overtrained values, but there are cases when the model behaves overtrained

for only a few iterations and then restores, so early stopping needs to be implemented

by knowing the behavior for a certain number of iterations only.

22

Chapter 5

Event Reconstruction

The data used for training and testing purposes for different multivariate methods

is generated using Monte Carlo simulations using EvtGen package [Lange 01]. The

signal events (collisions which results in bb production) are reconstructed using basf2

and Belle cluster whereas the background events (collisions which do not results in bb

production) are reconstructed using data available at GRID servers.

5.1 Signal Events

The decay mode reconstructed for the signal events is given in Figure 5.1:

Figure 5.1: Decay mode analyzed

This mode is chosen for its high branching fraction. The decay mode is written

in the decay.dec file and Monte Carlo events are generated using the EvtGen pro-

gram. After the completion of the events generation, detector simulation is done

using Geant4 (gsim) simulator detector [Agostinelli 03]. The output of the detector

simulator is used for the reconstruction of the events which are specified in the python

file for reconstruction. Events are generated parallelly using the Belle II cluster where

many jobs are submitted simultaneously. Each job includes generation of 500 events,

23

target cut

D0 1.835 ≤M ≤ 1.885 (GeV/c2)

B+ 5.26 ≤Mbc ≤ 5.29 (GeV)

B+ −0.15 ≤ ∆E ≤ 0.15 (GeV)

Table 5.1: Selection cuts on the particles to build B meson

and thus many jobs are submitted to obtain the required number of events. It en-

sures different seed for each job and thus making the signal data more robust. The

final output root file contains the reconstructed features in the trees for training and

testing purposes.

Number of signal events reconstructed : 12 Million

The ∆E and beam constrained mass (Mbc) are defined as

∆E = Ebeam − Eb

Mbc =
√

(E2
beam − p2b)

where Ebeam is the beam energy and pb, Eb are the momentum and energy of de-

cay particles respectively. The selection criteria for the event generation is given in

Table 5.1

Figure 5.2 shows the invariant mass of the D0 obtained from the reconstructed

signal events.

Figure 5.2: Invariant mass of the reconstructed D0 from B+ −→ D0π+. The distribu-

tion is in GeV

24

The peak around 1.8 corresponds to the mass of D0. Cutting down D0 mass

around this region and plotting ∆E and Mbc gives the following plots in Figure 5.3

and Figure 5.4 respectively.

Figure 5.3: Reconstructed ∆E (in GeV)

Figure 5.4: Mbc distribution for B+ −→ D0π+ decay mode (in GeV/c2)

5.2 Continuum Events

The simulated continuum (background) data is available at the GRID. The events

are reconstructed using gbasf2 and the GRID server. Around 12 million events are

reconstructed which includes almost equal number of the uu, dd, ss and cc events

as given in Table 5.2. All are concatenated to form a single file which contains all

the background/continuum data [MC9]. The ∆E and Mbc plots from the continuum

events obtained are given in Figure 5.5 and 5.6 respectively.

25

Event Type Number of Events

uu 3 Million

ss 3 Million

cc 3 Million

dd 3 Million

Total 12 Million

Table 5.2: Reconstructed background data

Figure 5.5: Reconstructed ∆E (in GeV) (continuum events)

Figure 5.6: Mbc distribution for continuum events(in GeV/c2)

26

Chapter 6

DNN for Continuum Suppression

The continuum suppression is a binary classification with two outputs and a set of

input features. Various machine learning algorithms and methods are being used for

the problem. Many new features have been introduced to get better accuracy results.

The open source framework like TensorFlow, Keras has been constructive in applying

different deep learning models more efficiently and quickly. Deep learning refers to

using the neural networks to get the optimal model for the classification with good

accuracy and thus, can be used to classify the unknown events.

This chapter explains about different methods that are being used for continuum

suppression and the results obtained from them. Section 6.1 provides information

about the data set and the features that has been used in the problem. Section 6.2

provides information on TMVA package which is used for deep neural network and

boosted decision trees. Section 6.3 focuses on deep neural network framework Keras

and Tensorflow which are used for training and testing the different models and the

results obtained. In the last section, some methods to extract the feature importance

is discussed.

6.1 Data Features

The features that are described in Chapter 3 are used for the problem of continuum

suppression and it consists of total 44 features as given in the Table 6.1.

The data obtained by Monte Carlo simulation as described in Chapter 5 is used

as the benchmark dataset. It contains around 12 million signal events and an almost

27

Feature Type Number of features

Thrust 2

Angular 2

Cleo-Cones 9

KSFW Moments 18

Flavor tagging 13

Total 44

Table 6.1: Feature Count

equal amount of background events which has all the four major background events.

A total of around 24 million labeled data set is used for training and testing purpose.

The data is shuffled before training to ensure a better result. The shuffled data is

divided into 70% training set and 30% as the testing set as given in Figure 6.1. While

Figure 6.1: Train and Test data split

training only the training data set is used, and the independent testing set is used for

testing and finding the accuracy and other metrices.

6.2 TMVA

The toolkit for multivariate data analysis (TMVA) is provided with ROOT to do mul-

tiple variable analysis in high energy physics problems. The package includes different

methods and algorithms for example likelihood estimation, artificial neural network,

28

support vector machine, boosted decision tree, etc. to do the data analysis. The code

implementation is object-oriented in C++/ROOT for different multivariate analysis

(MVA). It comes with different scripts for training, testing, and visualization of data

including different scripts for regression and classification problems. This package is

useful to compare different models and algorithms by using the same training and

test data. The package also includes a graphical user interface (GUI) to analyze the

output of the model [Hocker 07].

Pre-processing in TMVA includes applying different transformations to the data

set before doing training and testing. The pre-defined transformations available in

TMVA are uniform, identity, Gaussian, decorrelation, principal component analysis

(PCA) and these transformations can be applied one after another in a sequence.

The method to check the efficiency of any model in TMVA is given by Receiver

Operating Characteristic (ROC) curves which tell about the true positive rate versus

the false positive rate. ROC curve is a plot between signal efficiency and background

rejection and the area under the curve (AUC) tells about the performance of given

model (more the area under the curve better the performance) [Fawcett 06].

Figure 6.2: Sequence of commands in TMVA

The multivariate analysis methods in TMVA are implemented by first instantiating

a Factory object. The data set is then given to the Factory object by initializing the

training and testing Trees. The MVA methods are implemented by using BookMethod

29

of Factory object. Different transformations can be done by giving the options for

transformations as arguments while booking the MVA methods. The training and

testing are done by the train and test instances of factory object. The sequence of

commands to train methods in TMVA is given in Figure 6.2.

6.2.1 TMVA - Results

A small set of data is used for the initial analysis in TMVA. The data set includes

equal amount of signal and background events as given in Table 6.2.

Type Number of events

Signal Training Events 52000

Background Training Events 52000

Signal Testing Events 22000

Background Testing Events 22000

Table 6.2: Train Test Split while using TMVA

Boosted Decision tree (BDT) method using Adaptive boosting is used to compare

the performance of the model by using a different set of features. The parameters of

the BDT method is given in Table 6.3.

BDT method parameters

Decision Trees Trained 850

Boosting Method Adaptive Boosting

Separation Index Gini

Table 6.3: Parameters used for Boosted Decision Tree in TMVA

The Figure 6.3 shows the ROC curve for the BDT-Adaptive Boosting method

and compares different features. The blue curve is for the case when only thrust and

angular features (total 4) are used for the training and testing. The green curve shows

the performance when Cleo-cones are used along with thrust and angular features.

The purple curve uses thrust, angular, Cleo cones and KSFW moments as features for

30

the method. The last curve, the red one is for the case when all the 44 features which

include thrust, angular, Cleo-cones, KSFW moments and flavor tagging variables are

being used for the BDT method.

Figure 6.3: ROC curve by using different feature set

The area under the curve (AUC) get larger when more features are added and

thus supporting the contribution of each feature in the classification. The area is

maximum when all the 44 features are used together thus confirming the addition of

flavor tagging as one of the critical features in the continuum suppression.

By using all the features, different methods can be compared to check the best

method to classify the events. Figure 6.4 shows the ROC curve in which the per-

formance of different methods is given. The methods compared are Fisher, BDT-

Gradient boosting, BDT-Adaptive boosting and PyKeras. PyKeras refers to the

artificial neural network with parameters given in Table 6.4.

The area under the curve for PyKeras method is maximum among all the methods.

Thus, artificial neural networks perform best for continuum suppression, and this

method can be optimized more by setting the best parameters and analyzing the

outputs. Neural networks implementation is given in more detail in Section 6.3 where

open source library Keras is used to train and test the model.

31

PyKeras parameters

Input layer 44 nodes

Hidden Layer 1 64 nodes Activation - ReLu

Hidden Layer 2 64 nodes Activation - ReLu

Hidden Layer 3 64 nodes Activation - ReLu

Output Layer 2 nodes Activation - Softmax

Loss Function Categorial Crossentropy

Optimizer SGD (Stochastic Gradient Descnet)

Table 6.4: Hyper-parameters used for neural network in TMVA

Figure 6.4: ROC curve by using different methods

32

6.3 Keras and TensorFlow

Keras and TensorFlow are the open source frameworks designed specifically to solve

deep learning problems using neural networks. Keras uses TensorFlow at the backend,

and it provides an easy implementation for the neural networks. In this thesis work,

Keras is used to implement all the neural network models. The network architecture,

optimizer, loss function, regularization terms, and epochs are defined in the model

class of the Keras library. Keras and TensorFlow libraries are designed to use all the

computer resources including GPUs efficiently and thus minimize the time taken by

the neural network to train [Abadi 16]. The whole data set as given in Section 6.3 is

used to train and test models in Keras. The data has around 24 million signal and

background events and 70 : 30 split is done for training and testing respectively.

The Figure 6.5 shows the accuracy plot for the model that has four hidden layers

with no dropouts. The nodes in the hidden layers are 64, 32, 32 and 64 respectively

and activation function for each hidden layer is rectified linear unit (ReLu). The

output layer has two nodes with softmax as the activation function. The loss function

used for the model is cross-entropy, and the optimizer is Stochastic gradient descent

(SGD). The blue line corresponds to the training data accuracy, and the red line is

for the testing data accuracy. Both the train and test curves are consistent which

10 20 30 40 50
Epoch

0.85

0.86

0.87

0.88

0.89

0.90

0.91

A
cc

u
ra

cy

train
test

Figure 6.5: Accuracy plot for train and test data sets

ensures that the model is trained properly. The model around epoch 12 can be said

to be overtrained because the training accuracy is high while the testing accuracy

drops, but the model regains the accuracy again and becomes consistent. The decline

33

at around epoch number 30 can be seen as undertrained as both the test and train

accuracy drops. The maximum accuracy obtained is about 90% for this model.

The loss plot for the same model as described above is shown in Figure 6.6 . The

accuracy and loss plots are opposite and consistent for both train and test data. The

minimum loss obtained from the model is about 0.25.

0 10 20 30 40 50
Epoch

0.26

0.28

0.30

0.32

0.34

0.36

Lo
ss

train
test

Figure 6.6: Loss plot for train and test data sets

Different models are compared by training on the same data set. Figure 6.7 shows

the accuracy plot for the training data set for different models. The labels tells about

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

u
ra

cy

Adadelta_44_64_64_64_2_nodropout_train

Adam_44_64_64_64_2_nodropout_train

SGD_44_128_32_64_2_nodropout_train

SGD_44_64_32_32_64_2_nodropout_train

SGD_44_64_32_64_2_nodropout_train

SGD_44_64_64_0.2_64_64_2_dropout_train

SGD_44_64_64_64_2_nodropout_train

SGD_44_64_64_64_64_2_nodropout_train

SGD_44_64_64_64_64_64_2_nodropout_train

Figure 6.7: Accuracy plots for different models

the network architecture and fraction term specify the dropout added to that layer.

34

For instance, the plot labelled as ‘SGD 44 64 64 0.2 64 64 2 dropout’ refers to the

model which uses SGD as optimizer and has 4 hidden layers with 64 nodes for each

hidden layer and 20% dropout for the second hidden layer. The loss function used

for all the models is cross-entropy with ReLu as the activation layer for each hidden

layer. The model with Adam as an optimizer is more stable than other. The loss for

the model is given in Figure 6.8

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.20

0.25

0.30

0.35

0.40

Lo
ss

CC_Adadelta_44_64_64_64_2_nodropout_train

CC_Adam_44_64_64_64_2_nodropout_train

CC_SGD_44_128_32_64_2_nodropout_train

CC_SGD_44_64_32_32_64_2_nodropout_train

CC_SGD_44_64_32_64_2_nodropout_train

CC_SGD_44_64_64_0.2_64_64_2_dropout_train

CC_SGD_44_64_64_64_2_nodropout_train

CC_SGD_44_64_64_64_64_2_nodropout_train

CC_SGD_44_64_64_64_64_64_2_nodropout_train

Figure 6.8: Loss function plots for different models

6.3.1 Optimal Network

The different network models described in the previous section are unstable to some

extent. More models with different parameters are compared to check for the pos-

sible best combination of hyper-parameters for continuum suppression. The optimal

network architecture which has been obtained in this thesis work is given in the Fig-

ure 6.9. It includes three hidden layers with 256, 128 and 64 nodes for the hidden

layer 1, 2 and 3 respectively and rectified linear unit (ReLu) as the activation function

for each layer. The output layer has one node with sigmoid as the activation function.

The loss function used for this model is the root mean square error and optimizer is

Adam. Dropouts are added to each layer for regularization.

35

Figure 6.9: Optimal network architecture. The red colour corresponds to positive

weight values while green is for negative weight values and intensity tells about the

weight strength.

The accuracy and loss plots for the optimal model with different dropouts are

shown in Figure 6.10, Figure 6.11 and Figure 6.12. The high separation between

the train and test plot for the models with 30% and 20% dropouts is due to the

under training. Thus, by reducing dropouts to 10%, gives a better model with higher

accuracy results of about 93%. The test accuracy is higher than the training accuracy

due to the addition of dropouts. The reason for this is that while training the fraction

of nodes are completely removed randomly as given by the dropout term and their

contribution becomes zero, but when testing, all the nodes are used which gives higher

accuracy for the test data set.

The separation plot for the signal and background events is given in Figure 6.13.

The signal purity is defined as

Signal Purity =
No. of true positive(signal) above cut

Total no. of events

36

0 50 100 150 200 250
Epochs

0.87

0.88

0.89

0.90

0.91

0.92

0.93

A
cc

u
ra

cy

Dropout30%

Train
Test

(a) Accuracy plot

0 50 100 150 200 250
Epochs

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

Lo
ss

Dropout30%

Train
Test

(b) Loss plot

Figure 6.10: Accuracy and loss plots for the optimal network with dropout of 30%

0 50 100 150 200 250
Epochs

0.88

0.89

0.90

0.91

0.92

0.93

A
cc

u
ra

cy

Dropout20%

Train
Test

(a) Accuracy plot

0 50 100 150 200 250
Epochs

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

Lo
ss

Dropout20%

Train
Test

(b) Loss plot

Figure 6.11: Accuracy and loss plots for the optimal network with dropout in 20%

0 100 200 300 400 500
Epochs

0.88

0.89

0.90

0.91

0.92

0.93

0.94

A
cc

u
ra

cy

Dropout10%

Train
Test

(a) Accuracy plot

0 100 200 300 400 500
Epochs

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

Lo
ss

Dropout10%

Train
Test

(b) Loss plot

Figure 6.12: Accuracy and loss plots for the optimal network with dropout of 10%

37

Figure 6.13: Separation plot for the optimal network

DNN Cut Signal Purity

0.5 94.53%

0.6 96.06%

0.7 97.12%

0.8 97.97%

0.9 98.71%

Table 6.5: DNN cut vs Signal Purity

Figure 6.14: Mbc distribution after 0.6 DNN cut (in GeV/c2).

The Table 6.5 shows the Signal purity values after applying different cuts. The

Mbc distribution for the sample test data is given in Figure 6.14 after applying neural

network cut at 0.6. The background rejection in this case is found to be around 95%.

38

6.4 Feature Importance

There has not been a proper package or method available yet to check the importance

of each variable in the classification problem. The most preferred method is to remove

each feature in the neural network and then check the accuracy of the model. The

decrement in the accuracy by removing a feature tells about the importance of that

feature. The only problem in this approach is the time taken for each model to train

and test particularly in the continuum suppression problem when there are 44 input

features and big data set. It is useful if a good amount of computation resources are

available so that all the models with different features can be tested simultaneously.

In this thesis work, two different approaches have been used to check the importance

of each feature.

In the first approach, the trained model is used to check feature importance. The

trained model uses all the 44 features while training. The model is used to test the

accuracy on a test data set by shuffling the data of each feature one by one. Shuffling

the data means to shuffle the data column of one feature at a time and to keep all

other features data same; thus it gives an error to that feature for each training event.

In this way, each feature data is shuffled one at a time and accuracy is plotted. The

feature for which the accuracy decreases most by shuffling can be seen as an important

feature. This may not be a proper method, but at least it tells that if there is some

error in some particular feature while measurement or in the calculation, it can lead

to wrongly classifying the events. The Figure 6.15 gives the plot of accuracy and the

feature that is shuffled.

The second approach is based on the Shapley variables as defined in [Lundberg 17].

It uses the concept of game theory to check for feature importance. A small number

of data set is used as a background, and the events are tested using that background

data set by the DeepExplainer method of shap. The Figure 6.16 shows the shap

values of each data feature. The features with a lower value can be seen as important

features.

A similar trend can be seen in the two plots obtained from different approaches to

get the feature importance. The Pearson correlation is 0.89 for the output values from

the two approaches. Thus, Cleo cones 1,2,3 along with missing mass square features

can be considered important for the problem of continuum suppression.

39

Figure 6.15: Accuracy plot after shuffling each data feature

Figure 6.16: Shap values for each data feature

The top 8 ranks of the features are given in Table 6.6. All other features are also

important but the major contribution in continuum suppression is coming from these

features.

40

Rank From Shap Value Shuffling Method

1 B cc2 B cc2

2 B mm2 B cc1

3 B cc3 B mm2

4 B hso10 B cc3

5 B cc1 B et

6 B cc4 B cc4

7 B cc9 B hso10

8 B et B hso00

Table 6.6: Top eight ranks

41

Chapter 7

Summary & Conclusions

In this thesis work, the problem of continuum suppression has been analyzed using

various algorithms and frameworks. The flavor tagging features are newly added to

the analysis along with thrust, Cleo cones and KSFW moments and thus comprising

of total 44 features. The B+ −→ D0(K+π−π0)π+ decay mode is used as a signal event.

The data is simulated using EvtGen package provided in basf2. An equal amount of

continuum (background) data is reconstructed from the GRID server. The complete

data set is simulated, and no real data is being used to test for the performance.

The initial analysis is done using the TMVA (Toolkit for multivariate analysis)

package provided by root. The flavor tagging features contribute significantly to

continuum suppression. Various methods are compared, and the performance of the

deep neural network is found to be best among all. Extensive work has been done on

the implementation of neural network using open source libraries specifically Keras

with Tensorflow at backend. Many network architecture is trained and tested to get

optimal hyper-parameters. PyTorch (an open source deep learning library) is also

used to analyze the data, but it was not optimal to use all the computer resources

efficiently, and the performance was almost the same as that of Keras. The importance

of features is discussed using two independent methods, and a significant correlation

is found among the two methods.

The performance has increased by around 4% which is equivalent to 2 months

of data taking. This helps in improving the sensitivity of the experiment. It is

importance for this experiment which is going to run for next ten years.

The performance of neural networks can be improved by implementing different

43

network architectures and training over more number of events. This will require

a high-performance computer resource which has sufficiently high RAM and GPU’s

memory. New features can be extracted that can be added to the analysis part, and

thus a more robust network can be attained. The model implementation on real data

will provide new insights, and more accurate results can be obtained. Further one

can test this method in data for the control sample.

Future work

To implement the general framework for training and testing of neural network in the

basf2 and testing the optimal model on real data set.

44

Bibliography

[Abadi 16] Mart́ın Abadiet al. TensorFlow: A System for Large-Scale Machine

Learning. In 12th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 16), pages 265–283, Savannah,

GA, 2016. USENIX Association.

[Abudinn. 18] Fernando Abudinn. The Belle II flavor tagger. Jul 2018. 12+3

min.

[Adachi 18] I. Adachi, T.E. Browder, P. Krian, S. Tanaka & Y. Ushiroda. De-

tectors for extreme luminosity: Belle II. Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrom-

eters, Detectors and Associated Equipment, vol. 907, pages 46 –

59, 2018. Advances in Instrumentation and Experimental Methods

(Special Issue in Honour of Kai Siegbahn).

[Agostinelli 03] S. Agostinelliet al. GEANT4: A Simulation toolkit. Nucl. Instrum.

Meth., vol. A506, pages 250–303, 2003.

[Aushev 10] T. Aushevet al. Physics at Super B Factory. 2010.

[Bishop 06] Christopher M. Bishop. Pattern recognition and machine learn-

ing (information science and statistics). Springer-Verlag, Berlin,

Heidelberg, 2006.

[Dempster 71] A.P. Dempster. An overview of multivariate data analysis. Journal

of Multivariate Analysis, vol. 1, no. 3, pages 316 – 346, 1971.

[Drucker 95] Harris Drucker & Corinna Cortes. Boosting Decision Trees. vol-

ume 8, pages 479–485, 01 1995.

45

[Fawcett 06] Tom Fawcett. An Introduction to ROC Analysis. Pattern Recogn.

Lett., vol. 27, no. 8, pages 861–874, June 2006.

[Fox 78] Geoffrey C. Fox & Stephen Wolfram. Observables for the Analysis

of Event Shapes in e+ e- Annihilation and Other Processes. Phys.

Rev. Lett., vol. 41, page 1581, 1978.

[Hocker 07] Andreas Hockeret al. TMVA - Toolkit for Multivariate Data Anal-

ysis. 2007.

[Ke 17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen,

Weidong Ma, Qiwei Ye & Tie-Yan Liu. LightGBM: A Highly Effi-

cient Gradient Boosting Decision Tree. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R. Garnett,

editeurs, Advances in Neural Information Processing Systems 30,

pages 3146–3154. Curran Associates, Inc., 2017.

[Kobayashi 73] Makoto Kobayashi & Toshihide Maskawa. CP-Violation in the

Renormalizable Theory of Weak Interaction. Progress of Theoreti-

cal Physics, vol. 49, no. 2, pages 652–657, 02 1973.

[Kuhr 18] Thomas Kuhr, Christian Pulvermacher, Martin Ritter, Thomas

Hauth & Nils Braun. The Belle II Core Software. Jul 2018.

[Kurokawa 03] S. Kurokawa & Eiji Kikutani. Overview of the KEKB accelerators.

Nucl. Instrum. Meth., vol. A499, pages 1–7, 2003.

[Lange 01] D. J. Lange. The EvtGen particle decay simulation package. Nucl.

Instrum. Meth., vol. A462, pages 152–155, 2001.

[LeCun 15] Yann LeCun, Y Bengio & Geoffrey Hinton. Deep Learning. Nature,

vol. 521, pages 436–44, 05 2015.

[Li 15] Yao Li. Analysis on B± → π±π+π−. PhD thesis, Virginia Tech.,

2015.

[Lundberg 17] Scott M Lundberg & Su-In Lee. A Unified Approach to Interpreting

Model Predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

46

lach, R. Fergus, S. Vishwanathan & R. Garnett, editeurs, Advances

in Neural Information Processing Systems 30, pages 4765–4774.

Curran Associates, Inc., 2017.

[MC9] DESY Confluence. https://confluence.desy.de/display/BI/

DataProductionMC9.

[Miyake 15] Hideki Miyake, Rafal Grzymkowski, Radek Ludacka & Malachi

Schram. Belle II production system. Journal of Physics: Con-

ference Series, vol. 664, no. 5, page 052028, dec 2015.

[Perlich 11] Claudia Perlich. Learning Curves in Machine Learning. 01 2011.

[Schmidhuber 14] Jürgen Schmidhuber. Deep Learning in Neural Networks: An

Overview. CoRR, vol. abs/1404.7828, 2014.

[Srivastava 14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever

& Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neu-

ral Networks from Overfitting. Journal of Machine Learning Re-

search, vol. 15, pages 1929–1958, 2014.

[Tang 07] W. K. S. Tang, M. Yu & L. Kocarev. Identification and monitoring

of biological neural network. In 2007 IEEE International Sympo-

sium on Circuits and Systems, pages 2646–2649, May 2007.

[Weyland 02] Dennis Weyland. Continuum Suppression with Deep Learning tech-

niques for the Belle II Experiment. Master’s thesis, KIT, Karlsruhe,

ETP, 2017-11-02.

[Zhang 16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht &

Oriol Vinyals. Understanding deep learning requires rethinking gen-

eralization. CoRR, vol. abs/1611.03530, 2016.

47

Appendix A

Event Topology Features

A.1 Thrust

Figure A.1: Distribution of the Thrust Features

49

A.2 Cleo Cones

Figure A.2: Distributions of the Cleo cones for signal and background events

50

A.3 Fox-Wolfram Moments

51

Figure A.3: Distributions of the FW and KSFW moments for signal and background events

52

A.4 Flavor Tagging Variables

53

Figure A.4: Distributions of flavor tagging variables for signal and background events

54

Index

B -factories, 1

accelerator, 3

activation function, 19

Adaptive Boosting, 15

angular features, 9

area under the curve AUC, 29

Artificial neural network, 15

Back Propagation Algorithm, 17

basf2, 6

batch size, 18

Belle II, 3

Belle II detector, 4

bias term, 16

Boosted Decision Tree, 13

Central Drift Chamber, 5

cleo cones, 10

Continuum, 7

continuum data, 25

CP violation, 1

decay mode, 23

Decision Trees, 14

deep neural network, 16

dropouts, 21

early stopping, 22

electromagnetic calorimeter, 5

event topology, 8

EvtGen, 23

feature importance, 39

flavor tagging, 11

gbasf2, 6

Geant4, 23

GRID, 25

hyper-parameters, 18

input layer, 17

jet-like structure, 8

Keras and TensorFlow, 33

KSFW moments, 11

learning curve, 20

loss function, 20

Multivariate Analysis, 13

muon detector, 5

optimal network, 35

optimizer, 19

55

Receiver Operating

Characteristic-ROC curve, 29

Regularization, 21

relative cross-section, 7

Rest of Events, 8

signal data, 24

spherical shape, 8

supervised learning, 13

thrust axis, 9

thrust features, 9

time-of-propagation, 5

TMVA, 28

Vertex detectors, 4

weights, 18

56

