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Abstract

In this thesis, we study some basic concentration inequalities and their applications to a
ranking problem. Concentration inequalities refer to the phenomenon of concentration of a
function of independent random variables around the mean. In this thesis, we mainly study
how the sum of independent random variables concentrate around the mean. These inequal-
ities are used to study error bounds for estimated ranks in the BTL model [SSD17], which
gives a framework to determine the ranks for n objects based on k pair-wise comparisons
between pairs of objects. We then study the effect of perturbing the transition matrix of a
defined Markov chain on the errors in the estimated rank. In some cases, we obtain an ex-
plicit lower bound on the number of comparisons k, in terms of the perturbations, needed to
obtain a “good” estimation for the underlying rank. Finally, through simulations, we study
what kind of perturbation matrices lead to larger errors.
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Introduction

Concentration inequalities provide bounds on how independent or “weakly dependent” ran-
dom variables or their functions deviate from a particular value. Such bounds are extremely
useful in applied probability and statistics. The law of large numbers states that the sum
of independent and identically distributed random variables converges to the common ex-
pectation as number of random variables increases. We also know, from the Central Limit
Theorem, that appropriately scaled sample mean converges to standard normal random vari-
able in distribution. Concentration inequalities for such sums essentially provide a bound
on how close does the mean of n random variables get to the common expectation µ . For
example, the simplest inequality in probability theory - the Markov’s inequality, deals with
the probability that a non-negative random variable is greater than a particular constant
a > 0. Markov’s inequality in turn gives us a bound on the deviation of montonically in-
creasing non negative functions of random variables from a positive constant. The Chernoff
bound is a concentration inequality that gives exponentially decreasing bounds on the tails
of sums of independent random variables. Such bounds on sums of random variables are
most elementary examples of concentration of random variables. Over the last few decades,
work done in this area demonstrates that such structured behaviour is exhibited by a much
larger category of general functions of independent random variables. In general, the idea
of concentration is to find appropriate (and hopefully sharp) bounds on deviation of a ran-
dom function f (X1, . . . ,Xn) from its expectation E[ f (X1, . . . ,Xn)]. This turns out to be very
useful in cases where one wants to study the behaviour of a very general function that might
be very complicated to compute.

While this project started as a study of various concentration inequalities including
bounds on variance of certain functions of random variables and functions with bounded
differences, we have chosen to omit most of these inequalities in interest of space. An
interested reader can refer to [SPG12] for details. We have only stated the concentration
results that are subsequently used in estimating errors in the ranking problem. The ranking
problem studied in this thesis is the BTL model described in [SSD17]. Suppose we have
n items and k pairwise comparisons between pair of items. It is assumed throughout that
k is same for each pair. This can be generalized to number of comparisons being different
for different pair of items. Based on these k pairwise comparisons, we want to determine
(upto certain error) the underlying ranking of items. In [SSD17], this estimate is obtained

xiii



by defining a Markov chain on the graph with nodes corresponding to each item and edges
corresponding to the pair of nodes for which the pairwise comparisons are available. The
stationary distribution of this Markov chain provides a “good” estimate for the ranks of
items. The advantage of using Markov chains is that they are well studied in literature, and
their convergence properties can be explicitly characterized. The error bounds for rank the
estimate are obtained using the tools from concentration inequalities. The crucial step is to
provide a “good” bound on the spectral radius of a matrix. While we have only discussed
concentration for random variables, a lot of results can be extended to sum of random ma-
trices [J11].

Our aim is to look at this ranking problem from an adversarial point of view and deter-
mine how much error should be introduced in the transition matrix corresponding to Markov
chain discussed above to produce significant and specific error in the final estimated rank.
We use the same methods as in [SSD17], and come up with new bounds for the error in
the estimated rank in presence of perturbations. The larger problem is to come up with
strategies for the adversary to perturb the rank in a specific pre-defined manner to obtain a
target rank that differs from the actual rank in a way desired by the adversary. For example,
an adversary might be interested in permuting the ranks of a subset of nodes. With this aim
in mind, we study some examples of perturbation matrices and explicitly compute the final
rank to illustrate how perturbation affects the rank.

This thesis is organized as follows: In chapter 1, we discuss some very basic and very
well-known concentration inequalities. An mentioned earlier, we have chosen to mention
only a few basic ones in this chapter. This has been done keeping in mind the usefulness of
these results in subsequent chapters and to maintain a more legible flow. More details on the
topic can be found in [SPG12]. The second chapter deals with the study of the BTL model
[SSD17], the estimation of pair-wise comparison ranks and comparing the bounds on spec-
tral radius of error matrix by using three different concentration inequalities. In the third
chapter, we discuss the effects of perturbation of the transition matrix of the Markov chain
defined to estimate the underlying rank of the objects. The final chapter details some exam-
ples and simulations done to disturb the actual rank, and illustrate what kind of perturbation
matrices lead to what kind of effects on the final estimated rank.

xiv



Chapter 1

Concentration Inequalities

Consider independent and identically distributed random variable X1,X2, . . . such that

E[Xi] = µ and var(Xi) = σ2 < ∞. Define Xn = 1
n

n
∑

i=1
Xi . We want to know near close

does Xn get to µ . Central limit theorem and Law of large numbers provide an asymptotic
understanding. Strong law of large numbers says that Xn converges almost surely to µ as
n→ ∞. Central limit theorem tells us that with appropriatly scaling the behaviour (in dis-
tance) is like a standard Gaussian. However, the asymptotic results are not so in real life
problems since in an actual problem we would want to know how close does the sum of
X ′i s get to the mean. In other words, we would like to have explicit bounds on the |Xn−µ|
in terms of n. The class of such bounds is known as “Concentration Inequalities”. In this
chapter, we discuss some basic concentration inequalities and reproduce the proofs of some
well-known results.

1.1 Markov’s Inequality

Theorem 1.1.1. (p.19, [SPG12]) Let X be a non-negative random variable and a≥ 0, then

P(X > a)6
E[X ]

a
.

Proof. Let 1 be an indicator function. It is clear that for all a≥ 0, E[a1X≥a]≤ E[X ]. Also,

aE[1X≥a] = a(1.P(X ≥ a)+0.P(X ≤ a))

= aP(X ≥ a),

which implies that

P(X > a)6
E[X ]

a
.

1



1.2 Chernoff Bound

Theorem 1.2.1. (p.21, [SPG12]) Let X be a non-negative and sum of independent random

variables. Then,

P(X ≥ a)≤ min{eta
∏

i
E[e−tXi]}t>0.

Proof. Consider etX . It is a nondecreasing and nonnegative function therefore, by Markov’s
inequality we get that for every t > 0

P(X > a) = P(etX > eta)

6
E[etX ]

eta

6
E
[

∏i etXi
]

eta

6
∏i E[etXi]

eta .

We get for any t,

P(X > a)6
∏i E[etXi]

eta .

This implies that

P(X > a)6 mint>o
∏i E[etXi]

eta .

1.3 Hoeffding’s Inequality

Theorem 1.3.1. (Theorem 2.8, [SPG12]) Let X0,X1, . . . be independent random variables

bounded by the interval [ai,bi]. Let YN =
n
∑

i=1
Xi. Then,

P(YN−E[YN ]≥ t)≤ 2exp

 −2t2

n
∑

i=1
(bi−ai)2

 .

Proof. Let YN = X1 +X2 + · · ·+Xn.

2



Then for all s, t > 0, the independence of Xi and Markov’s inequality implies that

P(YN−E[YN ]≥ t) = P(YN−E[YN ]≥ t)

= P(es(YN−E[YN ]) ≥ est)

≤ e−stE[es(YN−E[YN ])]

= e−st
Π

n
i=1E[es(Xi−E[Xi])]

≤ e−st
Π

n
i=1e

s2(bi−ai)
2

8 (by Hoeffding’s Lemma)

= exp

− st +
1
8

s2
n

∑
i=1

(bi−ai)
2

.

Now we will find the minimum of the k(s) =−st + 1
8s2

n
∑

i=1
(bi−ai)

2 in order to get the best

upper bound. As k achieves its minimum at s = 4t
n
∑

i=1
(bi−ai)2

, we get

P(YN−E[YN ]≥ t)≤ 2exp

 −2t2

n
∑

i=1
(bi−ai)2

 .

1.4 Martingales Concentration

So far we have assumed independence of random variable. In this section, we consider a
special class of random processes known as Martingales and state concentration results for
them.

Definition 1.4.1. A sequence X0,X1, . . .is said to be a martingale if for every n,

E[Xn+1|X1,X2, . . . ,Xn] = Xn.

Definition 1.4.2. A sequence X0,X1, . . . is said to be a supermartingale if for every n,

E[Xn+1|X1,X2, . . . ,Xn]≤ Xn.

Definition 1.4.3. A sequence X0,X1, . . . is said to be a submartingale if for every n,

E[Xn+1|X1,X2, . . . ,Xn]≥ Xn.

3



1.4.1 Bounded difference property

Theorem 1.4.1. (Lemma 5.1, [DA09]) Let X0,X1, . . . be a Martingale. The Xi’s satisfy the

bounded difference condition with parameters ai and bi if ai ≤ Xi−Xi−1 ≤ bi for some reals

ai,bi, i > 0. Consider a random variable Y with E[Y ] = 0 and a ≤ Y ≤ b for some reals a

and b. Then,

E[eλY ]6 e
Λ2(b−a)2

8 .

Proof. For any λ > 0, eλx is convex in the interval (a, b) , therefore its graph lies entirely
at a lower position than the line joining (a,eλa) and (b,eλb). Thus for a≤ Y ≤ b,

eλY 6
Y −a
b−a

eλa +
b−Y
b−a

eλb,

taking the expectation on both sides, we get

E[eλY ]6 E

[
Y −a
b−a

eλa +
b−Y
b−a

eλb

]
.

This implies that

E[eλY ]6
b

b−a
eλb− a

b−a
eλa.

Put s = −a
b−a and y = λ (b−a). We get

E[eλY ] = (1− s)esy + se(1−s)y.

Let K(x) =−sx− ln(1− s+ sex) = eK(y). Then

K
′
=−s+

s
s+(1− s)e−x ,

K
′′
=

s+(1− s)e−x

s+(1− s)e−x

2

6
1
4
,

also K(0) = 0 = K
′
(0).

At last by Taylor’s theorem, we get

K(y) = K(0)+K
′
(0)+K

′′
(k)

t2

2
6 0+0+

1
8

y2 =
λ 2(b−a)2

8
,

where 0 < k < y.

1.4.2 Azuma Hoeffding’s Inequality

Theorem 1.4.2. (Theorem 5.1, [DA09]) Let X0,X1, . . . be a sequence of random variables

that is martingale and have the bounded difference property with parameters ai,bi, i > 1.

4



Then

p(Xn > X0 + t),P(Xn < X0− t)≤ exp

 −2t2

n
∑

i=1
(bi−ai)2

 .

Proof. We will use Theorem 1.4.1 to prove this inequality. Consider a random variable K,
where

K = (Zn|Xn−1),

where Zn = Xn−Xn−1. Now a rapid calculation shown below shows that E[K] = 0.

E[K] = E[Zn|Xn−1]

= E[Xn−Xn−1|Xn−1]

= E[Xn|Xn−1]−E[Xn−1|Xn−1]

= Xn−1−Xn−1 = 0.

By bounded difference property ,
an ≤ K ≤ bn.

Hence K satisfies the hypothesis of the Theorem 1.4.1 and we get,

E[K]≤ e
λ2(bn−an)2

8 .

Which implies that

E[eλZn|Xn−1]≤ e
λ2(bn−an)2

8 .

By total law of expectation we get,

E[eλXn] = E[eλXn−1E[eλXn|Xn−1]

≤ E[eλXn−1]e
λ2(bn−an)2

8

=
n

∏
i=1

e
λ2(bn−an)2

8

= e
λ2 n

∑

i=1
(bn−an)2

8 .

Since e

λ2 n
∑

i=1
(bn−an)2

8

eλ t gain its minimum value at λ = 4t
n
∑

i=1
(bn−an)

2
,

5



we get

P(Xn > t)≤min
λ≥0

E[eλXn ]

eλ t

≤min
λ>0

exp


λ 2

n
∑

i=1
(bn−an)

2

8
−λ t



= exp

 −2t2

n
∑

i=1
(bn−an)

2

 .

There has been a alot of work in this area and concentration results have been obtained
for a large class of functions of independent random variables. We refer intrested reader to
[SPG12].
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Chapter 2

Ranking through pair-wise comparisons

Suppose we have n items and k pairwise comparisons between the pair of items. Based
on those pairwise comparisons, we want to estimate the underlying ranking of the items.
The ranking problem is a fairly well-known problem in applied mathematics and com-
puter science. We study the method used in [SSD17] to obtain the ranking from pair-wise
comparisons. In [SSD17], the authors start with the assumption that there is an unknown
underlying distribution over the ranking of objects and the outcome of pairwise compari-
son between items is generated as per this underlying distribution. The idea introduced in
[SSD17] is to define a Markov chain on the graph of nodes corresponding to each item with
edges connecting the nodes for which the pairwise comparisons are available. The station-
ary distribution of this Markov chain provides a “good” estimate for the ranks of n items.
One of the crucial steps in the proof of obtaining an error bound on the estimated rank
and the actual rank involves using concentration inequalities. The authors used Hoeffding’s
inequality to obtain this bound. In this chapter, we use three different concentration in-
equalities for obtaining a bound on the same object as in the proof of Lemma 4 in [SSD17],
and compare the results.

2.1 Model

In this section, we describe a model to estimate ranks using pair-wise comparisons between
n objects. Ranking problems, in particular, ranking via pair-wise comparisons have been
widely studied.
BTL Model.[SSD17] This model assumes that there is weight wi ∈ R+ ≡ {x ∈ R : x >

0} Corresponding to each item i ∈ [n], while comparing pair of items. The outcome of
pairwise comparison is ascertain by these wieghts ie. wi and w j decides the outcome of
a comparison for pair of items i and j. Let the outcome of the l-th comparison of the pair i

7



and j, denoted by Y l
i j in a way such that Y l

i j = 1 if j is wins over i and 0 otherwise. Then,

Y l
i j =

 1 with probability w j
wi+w j

0 otherwise.

In [SSD17], Authors assume that there are fixed k number of pairwise comparisons for all
those pairs that are considered. Consider a Markov chain on a weighted directed graph
G=([n],E,A), where a pair (i, j) ∈ E for which the pairwise comparison are available and
let di be the out degree of the ith node and d = maxi{di}
Let P be the transition matrix corresponding to above defined Markov chain, where

Pi j =


1
d

1
k

k
∑

i=1
Yi j

l if i 6= j

1− 1
d ∑

s 6=i

1
k

k
∑

i=1
Yis

l if i = j

for all (i, j) ∈ E and Pi j = 0 otherwise.
Let π be the stationary distribution corresponding to P.
P̃ is the ideal matrix (Expectation of P) which is defined as

P̃i j =


1
d

w j
wi+w j

if i 6= j

1− 1
d ∑

l 6=i

wl
wi+wl

if i = j

for all (i, j) ∈ E and P̃i j = 0 otherwise.
Let π̃ be the stationary distribution corresponding to P̃. π̃ gives the actual ranks whereas π

gives the estimated ranks.

2.2 Estimating Pair-wise comparison ranks via Markov
Chain Convergence

In this section, we discuss the method from [SSD17] and state their main theorem.

Theorem 2.2.1. (Theorem 2,[SSD17]) Given n objects and a connected comparison graph

G = ([n],E), let each pair (i, j)∈ E be compared for k times with outcomes produced as per

a BTL model with parameters w1, . . . ,wn . Then, for some positive constant C≥ 8 and when

k≥ 4C2
(

b2k5

dξ 2

)
logn, the following bound on the normalized error holds with probability at

least 1−4n−C/8:

||π− π̃||
||π̃||

≤ b1/5κ

ξ
δ (4) (2.1)

8



where δ (4)≤C
√

logn
kd , π̃(i) = wi

∑
l

wl
, b = maxi, j{wi/w j}, and κ = d/dmin

Definition 2.2.1. Let λ1, . . . ,λn be the eigenvalues of a matrix M ∈Cn×n. Then its spectral

radius δ (M) is defined as: δ (M) = max
{
|λ1|, . . . , |λn|

}
.

The crucial step in providing the bound between the stationary distributions is obtaining a
bound on spectral radius of ∆. In [SSD17], the bound is obtained by Azuma hoeffding’s
inequality. In the next section, we use different concentration inequalities to obtain a bound
on a δ (4) and we compare these bounds.

2.3 Comparison of bounds on δ (4)

In this section, we shall compare various inequalities and understand the resulting bounds
corresponding to each inequality with respect to the model discussed above.
To bound δ (4), where4= P− P̃ so that for 1≤ i, j ≤ n,

4i j = Pi j− P̃i j

=
1

kd

k

∑
i=1

(Y l
i j− kpi j)

=
1

kd
Ci j, (2.2)

where Ci j =
k
∑

i=1
Yi j

l− kpi j and Ci j = 0 for (i, j) /∈ E for 1≤ i≤ n,

4ii = Pii− P̃ii

=

(
1−∑

j 6=i
Pi j

)
−

(
1−∑

j 6=i
P̃i j

)
= ∑

j 6=i
(P̃i j−Pi j)

=−∑
j 6=i
4i j.

Let D be the diagonal matrix with Dii =4ii for 1≤ i≤ n and4=4−D. Then

δ (4)≤ δ (D+4)≤ δ (D)+δ (4).

Bounding δ (D):
δ (D) = max

i
|Dii|= max

i
|4ii |

The aim of Lemma 4 in [SSD17] is to provide a bound on the spectral radius of ∆. This is
done by splitting the analysis into different cases: d ≥ logn and d < logn, part of which

9



involves giving a bound on δ (D). In the following sections, we provide three different
bounds for δ (D) using three different concentration inequalities in case of d < logn. As
mentioned before, the aim of this chapter is to compare these bounds and conclude which
inequality works better in this case.

2.3.1 Hoeffding Inequality

Let X1, . . . ,Xk be random variables such that

X1 = Y 1
i j− pi j

...

Xk = Y k
i j− pi j.

Therefore,
k

∑
i=1

Xi =
k

∑
l=1

Y l
i j− pi j which implies

∑
i 6= j

k

∑
i=1

Xi = ∑
i 6= j

Ci j.

Then we have

P(|∑
i6= j

Ci j|> t)< 2exp

 −2t2

kd
∑

i=1
(12)


≤ 2exp

(
−t2

2kd

)
,

which implies

P(kd|4ii | ≥ t)≤ 2exp
(
−t2

2kd

)
.

Put t =C(kd logn)
1
2 where C is appropriately large constant,

P(δ (D)≥C
(

logn
kd

) 1
2

)≤
n

∑
i=1

P
(
4ii >C

(
logn
kd

) 1
2
)

≤ 2nn
−C2
2kd

≤ 2nn
−C2

2

= 2n
−C2

2 +1.

10



2.3.2 Chernoff’s Inequality

Let Z be the sum of independent random variable. Then by Chernoff’s inequality we have

P(Z ≥ t)≤ min

{
E[eλZ]

eλ t

}
t>0

for all λ ≥ 0.

Let Z = ∑
i6= j

Ci j. Then

P

(
∑
i 6= j

Ci j ≥ t

)
≤

E
[
exp(λ ∑

i6= j
Ci j)

]
eλ t

, for all λ ≥ 0.

To compute E

[
e

λ ∑
i 6= j

Ci j
]

:

E

[
e

λ ∑
i 6= j

Ci j
]
= E

[
e

λ ∑
i 6= j

∑(Y l
i j−kpi j)

]

= e−λkpi jE

[
e

λ ( ∑
i 6= j

k
∑

l=1
Y l

i j)
]

= e−λkpi j ∏
j 6=i

s=k

∑
s=1

eλ s
(

k
s

)
(ps

i j)(1− pi j)
k−s

 k

∑
l=1

Y l
i j ≈ Bin(k,s)


= e−λkpi j ∏

j 6=i
∑

(
k
s

)
eλ (pi j)

s(1− pi j)
k−s

≤ e−λkpi j ∏
j 6=i

(pi jeλ +1− pi j)
k by Binomial Theorem

Now we have

P

(
∑
i6= j

Ci j ≥ t

)
≤∏

j 6=i

(pi jeλ +1− pi j)
k

eλkpi jeλ t

≤∏
j 6=i

(eλ +1)k

eλ t

≤ (eλ +1)kd

eλ t
.

Let

t =
kd log(eλ +1)

λ
+

log(nC)

λ
,

11



then,

P(|4ii | ≥
t
d
) = P

|4ii | ≥
log(eλ +1)kd

λkd
+

log(nC)

λkd

≤ n−C for all λ ≥ 0.

2.3.3 Azuma Hoeffding’s Inequality

For a fixed i , construct a sequence of random variables X0,X1,X2, . . . ,Xk, . . . as follows:
X0 = 0
X1 = Y 1

i, j1− pi, j1

X2 = (Y 1
i, j1− pi, j1)+(Y 2

i, j1− pi, j1)

X3 = (Y 1
i, j1− pi, j1)+(Y 2

i, j1− pi, j1)+(Y 3
i, j1− pi, j1)

...
Xk = (Y 1

i, j1− pi, j1)+(Y 2
i, j1− pi, j1)+(Y 3

i, j1− pi, j1)+ · · ·+(Y k
i, j1− pi, j1)

Xk+1 = Xk +(Y 1
i, j2− pi, j2)+(Y 2

i, j2− pi, j2)

X2k+1 = X2k +(Y 1
i, j3− pi, j3)

so on up to Xdk and let Xdk+n = Xdk for all n≥ 1.
By Azuma Hoeffding’s inequality, it follows that

P

(∣∣∑
i 6= j

Ci, j
∣∣≥ t

)
≤ P(|Xdk| ≥ t)

≤ 2exp

 −t2

2 ∑
i 6= j

cn2


≤ 2exp

(
−t2

2kd

)
,

which implies

P(kd|4ii | ≥ t)≤ 2exp

(
−t2

2kd

)
.

Put t =C(kd logn)
1
2 where C is appropriately large constant,

P

(
δ (D)≥C

(
logn
kd

) 1
2
)
≤

n

∑
i=1

P

(
4ii >C

(
logn
kd

) 1
2
)

≤ 2nn
−C2
2kd

≤ 2nn
−C2

2

= 2n
−C2

2 +1.

12



From above results we conclude that Azuma Hoeffding’s gives better results than Chernoff
bound and Hoeffding’s gives the same bound as Azuma Hoeffding’s.
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Chapter 3

Effects of Perturbation

In this chapter, we look at the problem of ranking n objects from an adversarial point of
view. As an adversary, we want to introduce perturbations in the transition matrix for
the Markov chain whose stationary distribution provides the estimate for the rank. For
convenience, we assume throughout that the perturbations are made such that the resulting
matrix remains stochastic and therefore, we get a new (perturbed) stationary distribution
that provides a new estimate for the rank. The larger idea is to obtain strategies in terms
of perturbation matrices that produce specific kind of perturbations. For example, if one
wants to only flip the ranks of the lth and kth nodes, what kind of perturbation matrix is
required? Unfortunately, as of now, we are unable to provide any general answers to these
questions. In the next chapter, we illustrate some examples of perturbation matrices that
lead to such specific perturbations in the rank. In this chapter, following the results and
tools in [SSD17], we obtain a new lower bound for number of pairwise comparisons k in
terms of the perturbations introduced in the transition matrix P. Subsequently, for d < logn,
we also obtained a new version of Theorem 1 in [SSD17].

3.1 Setup

Define perturbation matrix S,

Si j = εi j for 1≤ i, j ≤ n,

where εi j =−εi j and for a fixed i,
n
∑
j=1

εi j = 0

In this chapter, we study the consequences of perturbation of P matrix, say P∗ where, P∗ is

15



defined as P∗ = P+S ie.

P∗i j =


1
d

1
k

k
∑

i=1
Yi j

l + εi j if i 6= j

1− ∑
s 6=i

(
1
d

1
k

k
∑

i=1
Yis

l + εis

)
if i = j

for all (i, j) ∈ E and P∗i j = 0 otherwise. Note that because of the conditions on S, P∗ is still
a stochastic matrix. We denote the corresponding stationary distribution by π∗. In the next
section, we will determine a lower bound (in terms of εi j) on k to obtain “good” estimated
rank despite the perturbation.

3.2 Main results

Lemma 3.2.1. For some constant C ≥ 2, when d < logn, the error matrix 4∗ = P∗− P̃

satisfies δ (4∗)≤ 2C
√

logn
kd +2d|εi j| with probability at least 1−4n−

C2
2 +1.

Proof. Our interest is in bounding δ (4∗). Now 4∗ = P∗− P̃ so that for 1 ≤ i, j ≤ n, we
have

4∗i j = P∗i j− P̃i j

=
1
d

k

∑
i=1

(Yi j
l +dεi j− pi j)

=
1

kd

(
k

∑
i=1

Yi j
l + kdεi j− kpi j

)
=

1
kd

C∗i j, (3.1)

where C∗i j =
k
∑

i=1
Yi j

l +kdεi j−kpi j and C∗i j = 0 for (i, j) /∈ E and let Ci j =
k
∑

i=1
Yi j

l−kpi j. For

1≤ i≤ n,

4∗ii = P∗ii − P̃ii

= (1−∑
j 6=i

P∗i j)− (1−∑
j 6=i

P̃i j)

= ∑
j 6=i

(P̃i j−P∗i j)

=−∑
j 6=i
4∗i j.

Let D∗ be the diagonal matrix with D∗ii =4∗ii for 1≤ i≤ n and4∗ =4∗−D∗ Then

16



δ (4∗)≤ δ (D∗+4∗)≤ δ (D∗)+δ (4∗).

Bounding δ (D∗):
δ (D∗) = max

i
|D∗ii|= max

i
|4∗ii |.

For a fixed i, construct a sequence of random variables X0,X1,X2, . . . ,Xk, . . . as follows:

X0 = 0

X1 = Y 1
i, j1− pi, j1

X2 = (Y 1
i, j1− pi, j1)+(Y 2

i, j1− pi, j1)

X3 = (Y 1
i, j1− pi, j1)+(Y 2

i, j1− pi, j1)+(Y 3
i, j1− pi, j1)

...

Xk = (Y 1
i, j1− pi, j1)+(Y 2

i, j1− pi, j1)+(Y 3
i, j1− pi, j1)+ · · ·+(Y k

i, j1− pi, j1)

Xk+1 = (Y 1
i, j1− pi, j1)+(Y 2

i, j1− pi, j1)+(Y 3
i, j1− pi, j1)+ · · ·+(Y k

i, j1− pi, j1)+(Y 1
i, j2− pi, j2)

Xk+1 = Xk +(Y 1
i, j2− pi, j2)+(Y 2

i, j2− pi, j2)

X2k+1 = X2k +(Y 1
i, j3− pi, j3)

so on up to Xdk and let Xdk+n = Xdk for all n≥ 1

Lemma 3.2.2. The sequence of random variable defined above is a Martingale with

bounded difference property.

Proof. E[Xn] = 0 as Y l
i, j is a Bernoulli random variable and E[Y l

i, j] = pi j

E[Xn|Xn−1] = E[(Y l
i, j− pi j)+Xn−1|Xn−1] for some j and l

= E[(Y l
i, j− pi j)|Xn−1]+E[Xn−1|Xn−1]

= E[(Y l
i, j− pi j)]+E[Xn−1|Xn−1]

= Xn−1

Moreover, Xn−Xn−1 = Y l
i, j− pi j, for some j and l.

Therfore, |Xn−Xn−1| ≤ cn = 1 for all n.
Also, Xdk = ∑

i6= j,l
(Y l

i, j− pi j) = ∑
i 6= j

Ci, j.

Therefore by an application of Azuma Hoeffding’s inequality, it follows that:

P(kd|4∗ii | ≥ t)≤ P

(∣∣∣∣∑
i 6= j

C∗i j

∣∣∣∣≥ t

)

≤ P

(∣∣∣∣∑
i 6= j

Ci j

∣∣∣∣+ ∣∣∣∣∑
i6= j

kdεi j

∣∣∣∣≥ t

)
.
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Moreover,

P

(∣∣∣∣∑
i6= j

Ci j

∣∣∣∣+ ∣∣∣∣∑
i6= j

kdεi j

∣∣∣∣≥ t

)
≤ P

(∣∣∣∣∑
i 6= j

Ci j

∣∣∣∣+ kd2|εi j| ≥ t

)
≤ P(|Xdk| ≥ t− kd2|εi j|)

≤ 2exp

−(t− kd2|εi j|)2

2 ∑
i 6= j

cn2


≤ 2exp

−(t− kd2|εi j|)2

2kd

,

which implies

P(kd|4∗ii | ≥ t)≤ 2exp

−(t− kd2|εi j|)2

2kd

.

Put t=C(kd logn)
1
2 + kd2|εi j| where C is appropriately large constant,

P

(
δ (D∗)≥C

(
logn
kd

) 1
2

+d|εi j|

)

≤
n

∑
i=1

P

(
|4∗ii | ≥C

(
logn
kd

) 1
2

+d|εi j|

)

≤ 2nexp

−(C(kd logn)
1
2 + kd2|εi j|− kd2|εi j|)2

2kd


= 2nn

−C2
2

= 2n
−C2

2 +1.

To Bound δ (4∗):
As we know‖M‖2≤

√
‖M‖1‖M‖∞

for any square matrix M, where‖M‖1 =maxi ∑
i j
|Mi j| and ‖M‖

∞
=∥∥MT

∥∥
1. Clearly, It is suffices to get a bound for maximal row-sum of absolute values of

4∗. We know
4∗ =4∗−D∗.

Let Ri be the sum of the absolute of the ith row-sum of4∗.

then,Ri =
1

kd ∑
j 6=i
|C∗i, j|

For a fixed i and ξ ji ∈{−1,1} , construct a sequence of random variables X0,X1,X2, . . . ,Xk, . . .
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as follows:
X0 = 0
X1 = ξ j1(Y

1
i, j1− pi, j1)

X2 = ξ j1(Y
1
i, j1− pi, j1)+ξ j1(Y

2
i, j1− pi, j1)

X3 = ξ j1(Y
1
i, j1− pi, j1)+ξ j1(Y

2
i, j1− pi, j1)+ξ j1(Y

3
i, j1− pi, j1)

...
Xk = ξ j1(Y

1
i, j1− pi, j1)+ξ j1(Y

2
i, j1− pi, j1)+ξ j1(Y

3
i, j1− pi, j1)+ · · ·+ξ j1(Y

k
i, j1− pi, j1)

Xk+1 = Xk +ξ j2(Y
1
i, j2− pi, j2)+ξ j2(Y

2
i, j2− pi, j2)

...
X2k+1 = X2k +ξ j3(Y

1
i, j3− pi, j3)

...
so on up to Xdk and let Xdk+n = Xdk for all n≥ 1

Lemma 3.2.3. The sequence of random variable defined above is a Martingale with

bounded difference property.

Proof. E[Xn] = 0 as Y l
i, j is a Bernoulli random variable and E[Y l

i, j] = pi j.

E[Xn|Xn−1] = E[ξ j(Y l
i, j− pi j)+Xn−1|Xn−1] for some j and l.

= E[ξ j(Y l
i, j− pi j)|Xn−1]+E[Xn−1|Xn−1]

= E[ξ j(Y l
i, j− pi j)]+E[Xn−1|Xn−1]

= Xn−1.

Hence the above sequence is a martingale.
Moreover, Xn − Xn−1 = ξ j(Y l

i, j − pi j) for some j and l. Therefore, |Xn − Xn−1| ≤ cn =

1 for all n. Also
Xdk ≥ ∑

i6= j,l
ξ j(Y l

i, j− pi j) = ∑
i 6= j

ξ jCi, j.

Therefore by an application of Azuma Hoeffding’s inequality, it follows that :

P(Ri > s) = P

(
∑
j 6=i
|C∗i j|> kds

)

≤ P

(
∑
j 6=i
|Ci j|+ kd|εi j|> kds

)

≤ P

(
∑
j 6=i
|Ci j|+dk|εi j|> kds

)
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Also,

P

(
∑
j 6=i
|Ci j|+dk|εi j|> kds

)
= P

(
∑
j 6=i
|Ci j|> kd(s−d|εi j|)

)

≤ ∑
j∈δi

∑
ξ∈{−1,1}

P

(
∑

j
ξ jCi j > kd(s−d|εi j|)

)
by union bound,

≤ ∑
j∈δi

∑
ξ∈{−1,1}

exp

−2k2d(s−d|εi j|2)
2kd


Now, as the number of terms in the above summation is 2di , and also, di ≤ d. Thus we get

∑
j∈δi

∑
ξ∈{−1,1}

exp

−k2d(s−d|εi j|2)
kd


≤ exp(−kd(s−d|εi j|)2 +d log2).

By union bound, we get

P(δ (4)≥ s)≤ 2nP(Ri ≥ s)

≤ 2nexp(−kd(s−d|εi j|)2 +d log2).

If we put

s = d|εi j|+
√

d log2+C logn
kd

,

then,

P

δ (4∗)≥ d|εi j|+
√

C logn+d log2
kd

≤ 2n−(C
2/2−1).

As we assumed d < logn, so we get

δ (4∗)≤C

√
logn
kd

+d|εi j|,

with probability atleast 1−2n−
C2
2 +1. Also

δ (4∗)≤ δ (D∗+4∗)≤ δ (D∗)+δ (4∗),
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implies that

P

(
δ (4∗)

2
≥C

√
logn
kd

+d|εi j|

)
≤ P

(
δ (4∗)+δ (D∗)

2
≥C

√
logn
kd

+d|εi j|

)

=≤ P

(
δ (4∗)+δ (D∗)≥ 2C

√
logn
kd

+2d|εi j|

)

≤ P

({
δ (4∗)≥C

√
logn
kd

+d|εi j|

}
⋃{

δ (D∗)≥C

√
logn
kd

+d|εi j|

})

≤ P

(
δ (4∗)≥C

√
logn
kd

+d|εi j|

)

+P

(
δ (D∗)≥C

√
logn
kd

+d|εi j|

)
≤ 2n−

C2
2 +1 +2n−

C2
2 +1

= 4n−
C2
2 +1.

Therefore we get

P

(
δ (4∗)≤ 2C

√
logn
kd

+2d|εi j|

)
≥ 1−4n−

C2
2 +1.

We recall the notation from [SSD17]:
ρ = λmax(P̃)+δ (4∗)

√
π̃max
π̃min

and ξ ≡ 1−λmax(Q) where Qi j =
1
di

for (i, j) ∈ E.

Theorem 3.2.4. Given n objects and a connected comparison graph G = ([n],E), let each

pair (i, j) ∈ E be compared for k times with outcomes produced as per a BTL model with

parameters w1, . . . ,wn. Then, for some positive constant C ≥ 2, when d < logn and k ≥
4C2b5d logn

(ξ dmin+|εi j|d(4b2d
√

b))2 , the following bound on the normalized error holds with probability at

least 1−4n−
C2
2 +1:

||π∗− π̃||
||π̃||

≤ 4b1/5κ

ξ

C

√
logn
kd

+ |εi j|d


where π̃(i) = wi

∑
l

wl
,b = maxi, jwi/w j, and κ = d/dmin
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Proof. By Lemma 3.2.1, we have that for some C ≥ 2 and d < logn,

1−ρ = 1−λmax(P̃)−δ (4∗)
√

b

> 1−λmax(P̃)−

(
C

√
logn
kd

+ |εi j|d

)
2
√

b,

with probability atleast 1−4n−
C2
2 +1. Lemma 6 in [SSD17] says

1−λmax(P̃)≥
ξ dmin

b2d
.

Also for k ≥ 4C2b5d logn
(ξ dmin+|εi j|d(4b2d

√
b))2 , we have

2C

√
b logn

kd
+2|εi j|d

√
b≤ ξ dmin

2b2d

which implies that

1−ρ ≥ 1−λmax(P̃)−2C

√
b logn

kd
−2|εi j|d

√
b

≥ ξ dmin

b2d
− ξ dmin

2b2d

=
ξ dmin

2b2d

By Lemma 2 [SSD17], we get

‖π∗− π̃‖
‖π̃‖

≤ 1
1−ρ

δ (4)
π̃max

π̃min

≤ 2b2d
ξ dmin

(
2C

√
logn
kd

+2|εi j|d

)
b1/2

=
4b

5
2 d

ξ dmin

(
C

√
logn
kd

+ |εi j|d

)
.

with probability atleast 1−4n−
C2
2 +1.

Lemma 3.2.5. For some constant C ≥
√

lognkd + 1, when d ≥ logn the matrix 4∗ =
4∗−D∗ satisfies δ (4∗)≤C

√
logn
kd +d|εi j| with probability at least 1−2n

−C√
lognkd+1 .

Proof. We will use Corollary 3.7 in [J11] to prove concentration results on4∗=4∗−D∗=

∑
i< j

Zi j∗ where

Zi j∗ = (eieT
j − e jeT

i )(P
∗
i j− P̃)

for (i, j) ∈ E, and Zi j∗ = 0 if i and j are not connected. Above defined Zi j∗ are independent,
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but they are not self adjoint. First we symmetrize it to get self adjoint random matrix.

˜Zi j∗ =

 0 Zi j∗

Zi j∗ 0


As hypothesis of the Corollary 3.7 [J11] is satisfied we can apply it to these self-adjoint and
independent random matrices.

Let Ai j =

 0 eieT
j − e jeT

i

e jeT
i − eieT

j 0


if (i, j) ∈ E and zero otherwise. Then Z̃i j∗ =4∗Ai j. In the following, we showed that

Eeθ Z̃i j∗
6 e(θ |εi j|)Ai j2

for 0.5 < |θ |< 1.

Ee(θ Z̃i j∗) = I +θE(Z̃i j∗)+
∞

∑
p=2

θ pE[(Z̃i j∗)p]

p!

6 I +θ |εi j|Ai j +
∞

∑
p=2

θ pE[(4∗i jA
i j)p]

p!

6 I +θ |εi j|Ai j2 +
∞

∑
p=2

θ pE[|4∗i j |p](Ai j)2

p!

To Solve E(|4∗i j |p):

E[|4∗i j |p] =
∫

∞

0
P(|4∗i j |p > x)dx

=
∫

∞

0
P

(
|C∗i j|p

(kd)p > x

)
dx

=
∫

∞

0
pxp−1P

(
|C∗i j|
kd

> x

)
dx

6
∫

∞

0
pxp−12exp

(
−(x−|εi j|)2kd2

2

)
dx
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Let x = t + |εi j|. Then we have,

E(|4∗i j |p)6 2p
∫

∞

−c
(t + |εi j|)p−1exp

(
− t2kd2

2

)
dt

6 2p
∫

∞

−|εi j|

((
p−1

0

)
t p−1 +

(
p−1

1

)
t p−2|εi j|+ · · ·

+

(
p−1

0

)
|εi j|p−1

)
e

(
− t2kd2

2

)
dt +2p

∫
∞

1

((
p−1

0

)
t p−1

+

(
p−1

1

)
t p−2|εi j|+ · · ·+

(
p−1

0

)
|εi j|p−1

)
e

(
− t2kd2

2

)
dt

6 2p
∫ 1

−|εi j|
2p−1exp

(
t2kd2

2

)
dt +2p

∫
∞

1
2p−1t p−1exp

(
t2kd2

2

)
dt.

First we will solve first part of the above integral.

2p
∫ 1

−|εi j|
2p−1exp

(
t2kd2

2

)
dt ≤ 2p p

3√
π

√
π +1

2
√

kd/2

= 2p p
3√
π

√
π +1√
2kd

.

Now we will solve second part of the above integral.
Let u = t2(kd2)

2 . Then,

2p
∫

∞

1
2p−1t p−1exp

(
t2kd2

2

)
dt = 2p p

∫
∞

1
e−u

(√
2u
kd2

)p−1
1√

2ukd
du

= 2p p
∫

∞

1
e−u (
√

2u)p−2

(
√

kd)p
du

≤ 2p p(
√

2)p−2

(
√

kd)p

∫
∞

1
e−u(
√

u)p−2

≤ 2p p(
√

2)p−2

(
√

kd)p

(
p
2

)
!

≤ 2p p(
√

2)p−2

(
√

kd)p

(
p!
2

)

≤ 2p+p/2−2

(
√

kd)p
p(p!).
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Therefore we get,

E[|4∗i j |p]≤ 2p p
3√
π

√
π +1√
2kd

+
2p+p/2−2

(
√

kd)p
p(p!)

≤ 2p p
5√
2kd

+
2p+p/2

(
√

kd)p
p(p!)

≤ 2p+p/2 p(p!)

(
5√
2kd

+
1

(
√

kd)p

)

≤ 2p+p/26p(p!)√
kd

≤ 22p6p(p!)√
kd

.

Now we have

Ee(θ Z̃i j∗) 6 I +θ |εi j|(Ai j)2 +

(
∞

∑
p=2

θ p22p6p(p!)
(p!)
√

kd

)
(Ai j)2

= I +θ |εi j|(Ai j)2 +

(
∞

∑
p=2

6p(4θ)p
√

kd

)
(Ai j)2

= I +θ |εi j|(Ai j)2 +
6(Ai j)2
√

kd

(
−4θ +

4θ

(1−4θ)2

)

= I +

(
θ |εi j|−

24θ√
kd

+
24θ

(1−4θ)2
√

kd

)
(Ai j)2.

Let
θ |εi j|−

24θ√
kd

+
24θ

(1−4θ)2
√

kd
= g(θ).

A quick calculation shows that g(θ)6 θ |εi j| for 0.5 < |θ |< 1. we get

Eeθ Z̃i j∗
6 e(θ |εi j|)(Ai j)2

, for 0.5 < |θ |< 1.

for 0.5 < |θ |< 1.
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Also

∑
i< j

(Ai j)2 = ∑
i< j

1(i, j)∈E

eieT
i + e jeT

j 0
0 eieT

i + e jeT
j


6

n

∑
i=1

di

eieT
i 0

0 eieT
i


6 d

n

∑
i=1

eieT
i 0

0 eieT
i



Therefore, δ

(
∑

i< j
(Ai j)2

)
6 d.

By Lemma 3.2.5 we get,

P(δ (Z̃i j∗)> t)6 2n.exp(−θ t +θ |εi j|d).

Let θ = 1
1+ 1√

lognkd
. we get

P(δ (Z̃i j∗)> t)6 2n.exp

(
−θ t +θ |εi j|d

)

6 2n.exp

− 1
1+ 1√

lognkd

(t−|εi j|d)

 .

Let

t =C

√
logn
kd

+ |εi j|d.

Then

P

(
δ (Z̃i j∗)>C

√
logn
kd

+ |εi j|d

)
6 2n.exp

(
− 1

1+ 1√
lognkd

(
C

√
logn
kd

))

= 2n.exp

(
−
√

lognkd√
lognkd +1

(
C

√
logn
kd

))

= 2n.exp

(
− C√

lognkd +1
logn

)
= 2nn

C√
lognkd+1

= 2n
C√

lognkd+1+1
.
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which implies

P

(
δ (4∗)6C

√
logn
kd

+ |εi j|d

)
> 1−2n

C√
lognkd+1+1

It turns out that the bound on δ (4∗) obtained for d ≥ logn above is not very useful when it
comes to obtaining a “good” error bound for ||π∗−π||. We hope to improve this bound by
using alternate techniques in future.
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Chapter 4

Effects of Perturbation: Simulations

In this chapter, we consider some specific example of perturabation matrix S and try to
understand how the estimated rank depends on the perturbation. We do not have explicit
theoretical results supporting our observation.
We define the following notations:
Let r∗ denote the stationary distribution of P∗ (To recall P∗, see chapter 3)
We use the following norms to ascertain the error between the actual ranks (denoted by r)
and the estimated rank (denoted by r∗).

• p−norm: ‖r− r∗‖p =

(
∑
i

∣∣r(i)− r∗(i)
∣∣p) 1

p

,

• sup-norm: ‖r− r∗‖m = maxi{|r(i)− r∗(i)|}

• The following norm is used in [SSD17]:
D′r(r

∗) =
√

1
2n||r||2 ∑

i< j
(ri− r j)21||(ri−r j)|−|(r∗i −r∗j )||>δ .

All the examples in this chapter have the following parameter fixed.

• Total number of objects, n = 8

• Actual rank r=[2 3 4 1 5 7 6 8]

• For D′r norm, δ is fixed to be 0.5

• We assume that we have a complete graph and d=7.

Given below is the algorithm to find the stationary distribution of the perturbed matrix.
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Algorithm 1: Stationary distribution of perturbed matrix P∗

Inputs: r = [2,3,4,1,5,7,6,8], d = 7, 0≤ i, j ≤ 8, k , S;

generate Y l
i j =

 1 with probability r( j)
r(i)+r( j)

0 with probability 1− r( j)
r(i)+r( j)

;

For i < j, Pi j =
1

kd

k
∑

i=1
Y l

i j and Pji =
1
d −Pi j;

For i = j, Pii = 1− ∑
i 6= j

Pi j;

Compute perturbed probability matrix Q:
Q = P+S

Compute stationary distribution, r∗

r∗ = Left eigen vector of Q with respect to eigen value 1;

Compute p-norm: ‖r− r∗‖p = (∑
i

∣∣r(i)− r∗(i)
∣∣p) 1

p ;

Compute max-norm: ‖r− r∗‖m = maxi{|r(i)− r∗(i)|};
Compute Dr-norm:

Dr(r∗) =
√

1
2n‖r‖2 ∑

i< j
(r(i)− r( j))21‖(r(i)−r( j))|−|(r∗(i)−r∗( j))‖>0.5;

Output: r∗,‖r− r∗‖ 1,‖r− r∗‖2,‖r− r∗‖m,‖r− r∗‖Dr
;

Now, we illustrate the behaviour of r∗ and the error in various cases.

I. As expected, error increases with increased perturbation and decreases with increasing
k. This is illustrated in figure 4.1 and figure 4.2 . The obtained rank r∗ and corresponding
errors are listed/tabulated below:
Case 1: Fix k=1000 and S such that:

Si j =


ε for i=4, j=8

−ε for i=8, j=4

0 otherwise

We have:

ε r∗

0.003 [1.8824 2.9507 3.8607 1.0232 4.9613 7.2273 6.0074 7.9337]
0.002 [1.8800 2.9477 3.8570 1.0116 4.9569 7.2214 6.0022 7.9506]
0.001428 [1.8786 2.9459 3.8549 1.0050 4.9544 7.2180 5.9993 7.9603]
0.00028 [1.8758 2.9423 3.8506 0.9917 4.9493 7.2112 5.9933 7.9798]
0.00014 [1.8755 2.9419 3.8501 0.9901 4.9487 7.2104 5.9926 7.9822]
0.00009 [1.8753 2.9417 3.8499 0.9895 4.9485 7.2101 5.9924 7.9830]
0.0000001 [1.8751 2.9414 3.8496 0.9885 4.9481 7.2096 5.9919 7.9846]

Table 4.1: Estimated rank table
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ε ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
0.003 0.6690 0.3062 0.2273 0
0.002 0.6430 0.3017 0.2214 0
0.001428 0.6297 0.2999 0.2180 0
0.00028 0.6283 0.2980 0.2112 0
0.00014 0.6294 0.2979 0.2104 0
0.00009 0.6298 0.2979 0.2101 0
0.0000001 0.6304 0.2978 0.2096 0

Table 4.2: Error table

Figure 4.1: Effect of ε on error (||r− r∗||2)

Case 2: For S given by

Si j =


0.001428 for i=4, j=8

−0.001428 for i=8, j=4

0 otherwise

,

We have:

k r∗

100 [1.7918 2.9763 4.3360 1.1675 4.6508 6.8869 5.3924 8.5855]
1000 [1.9956 3.0614 3.9340 1.0196 5.1867 7.1017 6.0297 7.7794]
10000 [1.9769 2.9952 4.0156 0.9946 5.0689 6.9826 5.9601 8.0072]

Table 4.3: estimated rank table

k ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
100 2.3909 1.0157 0.6076 0.1892
1000 0.6901 0.3214 0.2206 0.2996
10000 0.1823 0.0867 0.0689 0

Table 4.4: Error table
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Figure 4.2: Effect of k on error(||r− r∗||2 )

II. Here we compare the error in estimation when the perturbation introduced is concen-
trated at one pair (i,j) and when it is spread out across the matrix P.
Fix ε = 0.000028, k = 10000 and the perturbation matrices S and S′ given by:

Si j =


ε for (i, j) = (a,b)

−ε for (i, j) = (b,a)

0 otherwise

and

S′i j =


ε/2 for (i, j) ∈ {(a,b),(c,d)}
−ε/2 for (i, j) ∈ {(b,a),(d,c)}

0 otherwise

,

We make following observations:

Entry perturbed ||r− r∗||1 ||r− r∗||2 ||r− r∗||m
(1,5) and (4,8) 0.1525 0.0614 0.0404
(1,5) 0.1520 0.0627 0.0425
(4,8) 0.1531 0.0604 0.0383

Table 4.5: Error table

Entry perturbed ||r− r∗||1 ||r− r∗||2 ||r− r∗||m
(3,4) and (5,6) 0.1572 0.0631 0.0427
(3,4) 0.1571 0.0638 0.0433
(5,6) 0.1574 0.0629 0.0422

Table 4.6: Error table
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Entry perturbed ||r− r∗||1 ||r− r∗||2 ||r− r∗||m
(1,2) and (4,8) 0.1536 0.0618 0.0406
(1,2) 0.1541 0.0633 0.0429
(4,8) 0.1531 0.0604 0.0383

Table 4.7: Error table

We observe that the error obtained when two entries are perturbed is very close to the
average of the error obtained when those entries are perturbed independently in different
experiments.

III. Now, we consider matrix S that perturb only one comparison. The question we want to
answer is with full knowledge of actual rank, should the adversary perturb (i, j) such that
ranks of i and j are far apart or the entry (k,l) such that ranks of k and l are close.

Fix k=100000 and S is as follows:

Si j =


0.002 for (i, j) = (a,b)

−0.002 for (i, j) = (b,a)

0 otherwise.

We want to observe the dependence of estimated rank r∗ on the difference of the ranks
corresponding to the entry perturbed, ie. on r(a)− r(b), when (a,b) is perturbed.

1. |r(a)− r(b)|= 7

(a,b) r∗

(4,8) [2.0080 3.0030 4.0065 0.9979 4.9868 7.0039 5.9943 8.0081]

Table 4.8: Estimated rank table table

(a,b) ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
(4,8) 0.0504 0.0202 0.0132 0

Table 4.9: Error table
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2. |r(a)− r(b)|= 6

(a,b) r∗

(1,8) [2.0055 3.0021 4.0054 0.9961 4.9856 7.0023 5.9928 8.0132]
(4,6) [2.0074 3.0022 4.0055 0.9949 4.9858 7.0052 5.9931 8.0098]

Table 4.10: Estimated rank table

(a,b) ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
(1,8) 0.0539 0.0227 0.0144 0
(4,6) 0.0565 0.0222 0.0142 0

Table 4.11: Error table

3. |r(a)− r(b)|= 5

(a,b) r∗

(2,8) [2.0074 2.9997 4.0054 0.9961 4.9856 7.0023 5.9928 8.0135]
(1,6) [2.0074 2.9997 4.0054 0.9961 4.9856 7.0023 5.9928 8.0135]
(4,7) [2.0075 3.0023 4.0057 0.9950 4.9859 7.0027 5.9954 8.0100]

Table 4.12: Estimated rank table

(a,b) ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
(2,8) 0.0544 0.0234 0.0144 0
(1,6) 0.0539 0.0215 0.0142 0
(4,7) 0.0519 0.0211 0.0141 0

Table 4.13: Error table

4. |r(a)− r(b)|= 4

(a,b) r∗

(3,8) [2.0074 3.0021 4.0024 0.9961 4.9856 7.0023 5.9929 8.0140]
(2,6) [2.0075 3.0000 4.0056 0.9962 4.9858 7.0059 5.9931 8.0098]
(1,7) [2.0060 3.0023 4.0057 0.9962 4.9859 7.0027 5.9957 8.0100]
(4,5) [2.0076 3.0024 4.0057 0.9952 4.9877 7.0029 5.9934 8.0102]

Table 4.14: Estimated rank table

(a,b) ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
(3,8) 0.0536 0.0232 0.0144 0
(2,6) 0.0538 0.0220 0.0142 0
(1,7) 0.0490 0.0203 0.0141 0
(4,5) 0.0525 0.0207 0.0123 0

Table 4.15: Error table
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5. |r(a)− r(b)|= 3

(a,b) r∗

(5,8) [2.0075 3.0022 4.0055 0.9962 4.9821 7.0024 5.9930 8.0144]
(4,7) [2.0075 3.0023 4.0028 0.9962 4.9858 7.0063 5.9931 8.0099]
(3,6) [2.0075 3.0003 4.0057 0.9962 4.9859 7.0027 5.9960 8.0101]
(2,5) [2.0076 3.0016 4.0060 0.9960 4.9880 7.0029 5.9934 8.0102]
(1,4) [2.0076 3.0024 4.0071 0.9954 4.9861 7.0030 5.9934 8.0103]

Table 4.16: Estimated rank table

(a,b) ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
(5,8) 0.0608 0.0263 0.0179 0
(4,7) 0.0537 0.0217 0.0142 0
(3,6) 0.0483 0.0207 0.0141 0
(2,5) 0.0471 0.0198 0.0140 0
(1,4) 0.0554 0.0220 0.0139 0

Table 4.17: Error table

6. |r(a)− r(b)|= 2

(a,b) r∗

(7,8) [2.0075 3.0023 4.0056 0.9962 4.9858 7.0026 5.9888 8.0150]
(5,6) [2.0075 3.0023 4.0057 0.9962 4.9826 7.0067 5.9932 8.0100]
(3,7) [2.0076 3.0024 4.0032 0.9962 4.9860 7.0028 5.9964 8.0101]
(2,5) [2.0071 3.0024 4.0032 0.9960 4.9883 7.0029 5.9934 8.0102]
(1,4) [2.0071 3.0025 4.0059 0.9968 4.9862 7.0031 5.9936 8.0105]
(4,2) [2.0076 3.0034 4.0059 0.9956 4.9862 7.0030 5.9935 8.0104]

Table 4.18: Estimated rank table

(a,b) ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
(7,8) 0.0621 0.0258 0.0150 0
(5,6) 0.0603 0.0246 0.0174 0
(3,7) 0.0476 0.0202 0.0140 0
(2,5) 0.0540 0.0200 0.0139 0
(1,4) 0.0526 0.0213 0.0138 0
(4,2) 0.0550 0.0218 0.0138 0

Table 4.19: Error table
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7. |r(a)− r(b)|= 1

(a,b) r∗

(4,1) [2.0082 3.0025 4.0059 0.9958 4.9862 7.0031 5.9935 8.0104]
(1,2) [2.0067 3.0036 4.0059 0.9962 4.9862 7.0031 5.9935 8.0104]
(2,3) [2.0076 3.0009 4.0076 0.9962 4.9861 7.0030 5.9935 8.0104]
(3,5) [2.0076 3.0025 4.0036 0.9962 4.9886 7.0030 5.9935 8.0103]
(5,7) [2.0076 3.0024 4.0058 0.9962 4.9830 7.0029 5.9968 8.0103]
(6,7) [2.0078 3.0026 4.0061 0.9963 4.9864 6.9990 5.9978 8.0107]
(6,8) [2.0076 3.0024 4.0057 0.9962 4.9860 6.9978 5.9933 8.0156]

Table 4.20: Estimated rank table

(a,b) ||r− r∗||1 ||r− r∗||2 ||r− r∗||m ||r− r∗||D′w
(4,1) 0.0546 0.0219 0.0138 0
(1,2) 0.0537 0.0214 0.0138 0
(2,3) 0.0537 0.0220 0.0139 0
(3,5) 0.0487 0.0195 0.0114 0
(5,7) 0.0530 0.0229 0.0170 0
(6,7) 0.0478 0.0206 0.0136 0
(6,8) 0.0580 0.0245 0.0156 0

Table 4.21: Error table

Diff of ranks average of ||r− r∗||2
7 0.202
6 0.02245
5 0.022
4 0.02155
3 0.0221
2 0.022
1 0.021828

Table 4.22: Average error table
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Figure 4.3

From the above table 4.22 and figure 4.3 we observe that the average error ||r− r∗||2 is
maximum when the difference of ranks of the pair (i,j) that is perturbed is 6.

IV. In this case we tried to construct a perturbation matrix P that results in flipping the
rank 5 and 8. In other words, for r=[2 3 4 1 5 7 6 8], We want to flip the rank of 5th and
8th item. We consider three different perturbation matrices, where we perturbed more and
more entries. Three such perturbation matrices are listed below followed by the estimated
ranks r∗.

• For

S1 =



0 0 0 0 0.0074 0 0 −0.0074
0 0 0 0 0.0153 0 0 −0.0153
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−0.0074 −0.0153 0 0 0 0 0 −0.0351
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.0074 0.0153 0 0 0.0351 0 0 0


,

r∗1 = [2.0703 3.0451 4.2446 1.0374 6.3079 7.3111 6.1429 6.3602].

• For

S2 =



0 0 0 0 0.0074 0 0 −0.0074
0 0 0 0 0.0153 0 0 −0.0153
0 0 0 0 0.0120 0 0 −0.0120
0 0 0 0 0.0074 0 0 −0.0074

−0.0074 −0.0153 −0.0120− 0.0074 0 0 0 −0.0351
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.0074 0.0153 0.0120 0.0074 0.0351 0 0 0


,
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r∗2 = [2.0703 3.0451 4.2446 1.0374 6.3079 7.3111 6.1429 6.3602].

• For

S3 =



0 0 0 0 0.0074 0 0 −0.0074
0 0 0 0 0.0153 0 0 −0.0153
0 0 0 0 0.0120 0 0 −0.0120
0 0 0 0 0.0074 0 0 −0.0074

−0.0074 −0.0153 −0.0120 −0.0074 −0.4777 −0.0220 −0.0154 −0.0351
0 0 0 0 0.0220 0 0 −0.0220
0 0 0 0 0.0154 0 0 −0.0154

0.0074 0.0153 0.0120 0.0074 0.0351 0.0220 0.0154 0


,

r∗3 = [2.0257 2.9663 4.1553 1.0087 7.8598 7.1379 6.0125 4.9009].

As expected, perturbing more entries (in a specifically chosen way) leads to flipping of rank.
Thus, an adversary with complete knowledge of actual rank can construct a perturbation
matrix that leads to flipping of ranks in his/her favour.
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Concluding Remarks and future directions

The aim of the thesis was to study the ranking problem from [SSD17] under perturbation
using tools from concentration inequalities. As mentioned earlier, one could generalise
the work in [SSD17] to a setup where number of comparisons of each pair of items is
distinct. For the perturbation part, we would like to get some theoretical results that help
the adversary to choose a suitable perturbation matrix. Another direction to explore is to
look at the case of random perturbations.
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