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Abstract

• Chapter 1 : Screening of different catalysts and conditions is presented for the hy-

droamination of terminal alkenes.

• Chapter 2 : Synthesis of Carbazoles through the formation of a palladium π allyl

complex is presented.
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Chapter 1

Hydroamination of Unactivated

Terminal Alkene

1.1 Introduction

Tetrahydro-β-carboline are very fascinating heterocycles, having variety of biological and

pharmacological activities. They show a broad range of pharmacological activities like

antiviral1, antitumor1, antimalarial1, antioxidant2, radical scavengers2, potential neuroactivity3

etc.

Figure 1.1: Biological and pharmaceutical activity range of tetrahydro-β-carboline
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Through an unprecedented one-pot triple-orthogonal-metal relay catalysis4 β-Carbolines

were synthesized by our group in 2016. So we hypothesized of getting the precursor to

β-carboline that is tetrahydro-β-carbolines by employing pi acids to bring about the hy-

droamination.

Scheme 1.1: Our hypothesis

Scheme 1.2: Some of the previous reports

We hypothesized from recent studies5,6 that a suitable pi acid will activate the terminal

alkene leading to the formation of the desired product.
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Figure 1.2: Pharmaceutical importance of the backbone

1.2 Results and Discussion

Starting from 2-aminobenzaldehydes A, n-Butyllithium mediated addition of alkynes to

amino benzaldehydes A afforded ynols B which upon IBX oxidation generated the ynones

C. Further addition of allylmagnesium chlorides to ynones C furnished enynols D which

on further treatment with silver acetate gave indolyl alcohol E. Treatment of this with acid

and NH2Ts furnished the starting material.
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Scheme 1.3: Synthesis of starting material

The screening was done with different pi acids to achieve successful conversion to tetrahydro-

β-carboline as discussed in Table 1.

Table 1: Screening of different catalysts and conditions.

Entry Catalyst(10 mol%) Solvent Temperature( oC) Time (hrs) Yield

1 NbCl5 ACN 60 24 a(31)

2 NbCl5 Toluene 100 24 a(29)

3 NbCl5 DMF 100 24 a(25)

4 NbCl5 DCE 60 24 a(34)

5 AgOAc ACN 60 24 -

6 AgOAc Toluene 100 24 -

7 AgOAc DMF 100 24 -

8 AgOAc DCE 60 24 -

9 AgBF4 ACN 60 24 -

10 AgBF4 Toluene 100 24 -

11 AgBF4 DMF 100 24 -

12 AgBF4 DCE 60 24 -
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Entry Catalyst(10mol%) Solvent Temperature(oC) Time(hrs) Yield

13 AuCl ACN 60 24 -

14 AuCl Toluene 100 24 -

15 AuCl DMF 100 24 -

16 AuCl DCE 60 24 -

17 AgOTf ACN 60 24 -

18 AgOTf Toluene 100 24 -

19 AgOTf DMF 100 24 -

20 AgOTf DCE 60 24 -

21 CuCl2 ACN 60 24 -

22 CuCl2 Toluene 100 24 -

23 CuCl2 DMF 100 24 -

24 CuCl2 DCE 60 24 -

25 CuOTf ACN 60 24 -

26 CuOTf Toluene 100 24 -

27 CuOTf DMF 100 24 -

28 CuOTf DCE 60 24 -

29 HgOTf ACN 60 24 -

30 HgOTf Toluene 100 24 -

31 HgOTf DMF 100 24 -

32 HgOTf DCE 60 24 -

33 HgCl2 ACN 60 24 -

34 HgCl2 Toluene 100 24 -

35 HgCl2 DMF 100 24 -

36 HgCl2 DCE 60 24 -

37 [Ir(OCH3)(C8H12)]2 ACN 60 24 -

38 [Ir(OCH3)(C8H12)]2 Toluene 100 24 -

39 [Ir(OCH3)(C8H12)]2 DMF 100 24 -

40 [Ir(OCH3)(C8H12)]2 DCE 60 24 -
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Entry Catalyst(10mol%) Solvent Temperature(oC) Time(hrs) Yield

41 Rh2(OOCCH3)4 ACN 60 24 -

42 Rh2(OOCCH3)4 Toluene 100 24 -

43 Rh2(OOCCH3)4 DMF 100 24 -

44 Rh2(OOCCH3)4 DCE 60 24 -

45 AuCl3 ACN 60 24 a(27)

46 AuCl3 Toluene 100 24 a(30)

47 AuCl3 DMF 100 24 a(29)

48 AuCl3 DCE 60 24 a(32)

49 Ni(COD)2 ACN 60 24 -

50 Ni(COD)2 Toluene 100 24 -

51 Ni(COD)2 DMF 100 24 -

52 Ni(COD)2 DCE 60 24 -

53 AuCl3/K2CO3 DCE 60 24 a(40)

54 AuCl/K2CO3 DCE 60 24 -

55 AuCl/AgBF4 Methanol r.t. 24 -

56 AgOTf 1,4-Dioxane 100 24 -

57 CuBr2 ACN 60 24 -

58 CuBr2 Toluene 100 24 -

59 CuBr2 DMF 100 24 -

60 CuBr2 DCE 60 24 -

To our dismay the desired product could not be synthesized and halo-prins annulated com-

pound formed as the undesired product(a).
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1.3 Experimental Procedures

General experimental methods: All the starting compounds and catalysts employed in

this study were procured from Sigma-Aldrich and were used without further purification.

For thin layer chromatography (TLC), silica aluminium foils with fluorescent indicator 254

nm (from Aldrich) were used and compounds were visualized by irradiation with UV light

and/or by treatment with a solution of p-anisaldehyde (23 mL), conc. H2SO4 (35 mL),

and acetic acid (10 mL) in ethanol (900 mL) followed by heating. Column chromatography

was performed using SD Fine silica gel 100-200 mesh (approximately 15–20 g per 1 g of the

crude product). Dry THF was obtained by distillation over sodium and stored over sodium

wire. IR spectra were recorded on a Perkin–Elmer FT IR spectrometer as thin films or KBr

pellet, as indicated, with max in inverse centimetres. Melting points were recorded on a

digital melting point apparatus Stuart SMP30 and were uncorrected. 1H NMR and 13C

NMR spectra were recorded on a 400 MHz BrukerBiospinAvance III FT-NMR spectrometer.

NMR shifts are reported as delta (δ) units in parts per million (ppm) and coupling con-

stants (J) are reported in Hertz (Hz). The following abbreviations are utilized to describe

peak patterns when appropriate: br=broad, s=singlet, d=doublet, t=triplet, q=quartet

and m=multiplet. Proton chemical shifts are given in δ relative to tetramethylsilane (δ 0.00

ppm) in CDCl3. Carbon chemical shifts are internally referenced to the deuterated solvent

signals in CDCl3 (δ 77.1 ppm). High-resolution mass spectra were recorded on a Waters

QTOF mass spectrometer. Enantiomeric excess was determined by using Waters Chiral

HPLC.

Representative procedure for step-I: To a stirred solution of the alkyne (2.2 equiv.)

in anhydrous THF at -78oC, was added n-butyllithium (2.0 M in cyclohexane solution, 2.2

equiv.) drop wise, and the resulting solution was allowed to stir at the same temperature

for 10 min. The reaction was warmed to -40oC. The resulting mixture was stirred at the

same temperature for 1 h. After 1 h, reaction mixture was cooled to -78oC. The N-(2-

formylphenyl)- 4-methylbenzenesulfonamide A (1 mmol) was dissolved in THF (2 mL) and

added to the reaction mixture drop wise at -78oC and allowed to stir for 1 h at the same

temperature. The reaction mixture was slowly warmed up to room temperature and stirred

for a further 1 h. Upon completion, the reaction mixture was quenched by adding saturated

aq. NH4Cl (1 mL) and extracted with EtOAc. The combined organic layers were washed

with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was

purified by silica gel column chromatography (20-30% EtOAc/hexane) to afford B (80-90%
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yields).

Representative procedure for step-II: Ynol B (1 mmol) was dissolved in EtOAc (5 mL),

and IBX (1.5 mmol) was added. The resulting suspension was stirred at 75oC until alcohol

A disappeared as monitored by TLC. Cooled the reaction mixture to room temperature

and filtered through celite. The residue was washed with ethyl acetate (32 mL). Organic

extracts were combined and washed with saturated aq. NaHCO3 solution to remove excess

iodobenzoic acid. The combined organic layers were washed with brine, dried over Na2SO4,

and concentrated under reduced pressure. The residue was purified by silica gel column

chromatography (20-30% EtOAc/hexane) to afford C (in 75-85% yields).

Representative procedure for step-III: An oven dried round bottom flask was charged

with ynone C (1.0 mmol), 5 mL dry THF and placed at 0oC. Allylmagnesium chloride (2.2

mmol) were added drop wise at the same temperature and stirred for 1h. Upon completion,

the reaction mixture was quenched by adding saturated aq. NH4Cl (1 mL) and extracted

with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4,

and concentrated under reduced pressure. The residue was purified by silica gel column

chromatography (10-20% EtOAc/hexane) to afford D (in 90-95% yields).

Representative procedure for step-IV: A 5 mL glass vial was charged with D (0.1

mmol) in 1,2-DCE and AgOAc (2 mol%) was added to the reaction mixture. The reaction

mixture was allowed to stir at 60oC until the starting material D disappears, as monitored

by TLC. The reaction mixture was quenched with water and extracted with EtOAc. The or-

ganic extracts were combined, dried over anhydrous sodium sulphate and concentrated. The

crude mixture was purified by silica gel column chromatography using ethyl acetate/hexane

(15:85) as an eluent to afford E (in 80-90% yield).

Representative procedure for step-V: To an oven dried round bottom flask was added E

and stirred at 0oC in 1,2-DCE. To it p-Toluenesulfonamide (2.0 mmol) was added followed

by the addition of Trimethylsilyl trifluoromethanesulfonate (0.1 mmol) after 15 minutes.

The reaction was monitored by TLC until all starting material disappeared. The reaction

mixture was quenched with water and extracted with EtOAc. The organic extracts were

combined, dried over anhydrous sodium sulphate and concentrated. The crude mixture

was purified by silica gel column chromatography using ethyl acetate/hexane (20:80) as an

eluent to afford F (in 75-85 % yield).
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1.4 Summary

Even after extensive screening of different conditions we were unable to achieve the desired

product and an undesired halo-prins annulated product was obtained.
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Chapter 2

Substituent-Guided Palladium-Ene

Reaction for the Synthesis of

Carbazoles

2.1 Introduction

Carbazoles are very interesting heterocycles having profound application in industries and

medicine. Some of the interesting properties are antifungal, antibacterial, anti-inflammatory,

optoelectronic properties, use in polymers and dyes.

Figure 2.1: Activity7 range of carbazoles
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We hypothesized of getting carbazoles from allyl acetates through the formation of a π allyl

complex.

Scheme 2.1: Synthesis of carbazoles

2.2 Results and Discussion

All the (3-allyl-1H-indol-2-yl)methyl acetates employed in this study were prepared follow-

ing a four-step protocol starting from 2-aminobenzaldehydes A. n-Butyllithium mediated

addition of alkynes to amino benzaldehydes A afforded ynols B which upon IBX oxidation

generated the ynones C. Further addition of allylmagnesium chlorides to ynones C gave

3-(2-aminophenyl)hex-5-en-1-yn-3-ols D. Subsequent acetyl protection using triethylamine,

acetic anhydride and DMAP , furnished allyl acetates.

Scheme 2.2: Synthesis of starting material (General Procedure 1)
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Table 2: Optimization of reaction parameters

Entry Catalyst(10 mol%) Solvent Temperature( oC) Time(hrs) Yield

1 Pd(PPh3)4 Toluene 100 72 -

2 Pd2(dba)3 Toluene 100 72 -

3 Pd(OAc)2 Toluene 80 72 20

4 [Ir(cod)Cl2]2 Toluene 100 72 33

5 Ni(cod)2 Toluene 100 72 -

6 Pd(PPh3)Cl2 Toluene 80 72 -

7 [PdCl(allyl)]2 Toluene 80 72 15

8 PdCl2 Toluene 80 26 74

9 PdCl2 1,2-DCE 80 72 52

10 PdCl2 DMF 80 72 -

11 PdCl2 CH3CN 80 72 69

12 PdCl2 1,4-dioxane 80 24 83

13 PdCl2 1,4-dioxane 80 36 45

14a PdCl2 1,4-dioxane 80 18 85

15 PdCl2 1,4-dioxane 80 29 66

a20 mol % of PdCl2 was employed. While Pd(0) catalyst were unsuccessful, Pd(OAc)2

successfully provided the product but with poor yields. PdCl2 promoted reaction gave

good yields with 1,4-Dioxane being the most optimal solvent. Reaction with higher catalyst

loading completed faster.

Entry 12 was taken as the optimized condition and we proceeded to substrate scope.

12



Some of the Starting materials were prepared.

Scheme 2.3: Starting materials prepared

2.3 Experimental Procedures

General experimental methods: All the starting compounds and catalysts employed in

this study were procured from Sigma-Aldrich and were used without further purification.

For thin layer chromatography (TLC), silica aluminium foils with fluorescent indicator 254

nm (from Aldrich) were used and compounds were visualized by irradiation with UV light

and/or by treatment with a solution of p-anisaldehyde (23 mL), conc. H2SO4 (35 mL),

and acetic acid (10 mL) in ethanol (900 mL) followed by heating. Column chromatography

was performed using SD Fine silica gel 100-200 mesh (approximately 15–20 g per 1 g of the

crude product). Dry THF was obtained by distillation over sodium and stored over sodium

wire. IR spectra were recorded on a Perkin–Elmer FT IR spectrometer as thin films or KBr

pellet, as indicated, with max in inverse centimetres. Melting points were recorded on a

digital melting point apparatus Stuart SMP30 and were uncorrected. 1H NMR and 13C

NMR spectra were recorded on a 400 MHz BrukerBiospinAvance III FT-NMR spectrometer.

NMR shifts are reported as delta (δ) units in parts per million (ppm) and coupling con-

stants (J) are reported in Hertz (Hz). The following abbreviations are utilized to describe

peak patterns when appropriate: br=broad, s=singlet, d=doublet, t=triplet, q=quartet
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and m=multiplet. Proton chemical shifts are given in δ relative to tetramethylsilane (δ 0.00

ppm) in CDCl3. Carbon chemical shifts are internally referenced to the deuterated solvent

signals in CDCl3 (δ 77.1 ppm). High-resolution mass spectra were recorded on a Waters

QTOF mass spectrometer. Enantiomeric excess was determined by using Waters Chiral

HPLC.

Representative procedure for step-I: To a stirred solution of the alkyne (2.2 equiv.)

in anhydrous THF at -78oC, was added n-butyllithium (2.0 M in cyclohexane solution, 2.2

equiv.) drop wise, and the resulting solution was allowed to stir at the same temperature

for 10 min. The reaction was warmed to -40oC. The resulting mixture was stirred at the

same temperature for 1 h. After 1 h, reaction mixture was cooled to -78oC. The N-(2-

formylphenyl)- 4-methylbenzenesulfonamide A (1 mmol) was dissolved in THF (2 mL) and

added to the reaction mixture drop wise at -78oC and allowed to stir for 1 h at the same

temperature. The reaction mixture was slowly warmed up to room temperature and stirred

for a further 1 h. Upon completion, the reaction mixture was quenched by adding saturated

aq. NH4Cl (1 mL) and extracted with EtOAc. The combined organic layers were washed

with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was

purified by silica gel column chromatography (20-30% EtOAc/hexane) to afford B (80-90%

yields).

Representative procedure for step-II: Ynol B (1 mmol) was dissolved in EtOAc (5 mL),

and IBX (1.5 mmol) was added. The resulting suspension was stirred at 75oC until alcohol

A disappeared as monitored by TLC. Cooled the reaction mixture to room temperature

and filtered through celite. The residue was washed with ethyl acetate (32 mL). Organic

extracts were combined and washed with saturated aq. NaHCO3 solution to remove excess

iodobenzoic acid. The combined organic layers were washed with brine, dried over Na2SO4,

and concentrated under reduced pressure. The residue was purified by silica gel column

chromatography (20-30% EtOAc/hexane) to afford C (in 75-85% yields).

Representative procedure for step-III: An oven dried round bottom flask was charged

with ynone C (1.0 mmol), 5 mL dry THF and placed at 0oC. Allylmagnesium chloride (2.2

mmol) were added drop wise at the same temperature and stirred for 1h. Upon completion,

the reaction mixture was quenched by adding saturated aq. NH4Cl (1 mL) and extracted

with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4,

and concentrated under reduced pressure. The residue was purified by silica gel column

chromatography (10-20% EtOAc/hexane) to afford D (in 90-95% yields).
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Representative procedure for step-IV: A 5 mL glass vial was charged with D (0.1

mmol) in 1,2-DCE and AgOAc (2 mol%) was added to the reaction mixture. The reaction

mixture was allowed to stir at 60oC until the starting material D disappears, as monitored

by TLC. The reaction mixture was quenched with water and extracted with EtOAc. The or-

ganic extracts were combined, dried over anhydrous sodium sulphate and concentrated. The

crude mixture was purified by silica gel column chromatography using ethyl acetate/hexane

(15:85) as an eluent to afford E (in 80-90 %).

Representative procedure for step-V: (0.1 mmol) was taken in an oven dried RB flask,

DCM was added followed by triethylamine (0.15 mmol) at 0oC. The reaction mixture was

then allowed to stir for 5 mins at the same temperature and acetic anhydride (0.15 mmol)

was introduced to the reaction mixture, followed by DMAP (5 mol%). The resultant solution

was then allowed to stir at 0oC for the next 1 hour. The reaction mixture was quenched

with aq. NH4Cl and extracted with DCM. The organic extracts were combined, dried over

anhydrous sodium sulphate and concentrated. The crude compound was purified by silica

gel column chromatography using ethyl acetate/hexane (10:90) as an eluent to afford the

starting material (in 70-90% yield).
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(3-(2-Methylallyl)-1-tosyl-1H-indol-2-yl)(o-tolyl)methyl acetate : 

This compound was isolated as transparent viscous liquid by following the general procedure 

1. Rf = 0.5 (Hexane/EtOAc = 9/1). IR (thin film, neat): νmax/cm-1 3065, 1741, 1220, 719. 1H 

NMR (400 MHz, CDCl3): δ 8.17-8.15 (m, 2H), 7.7 (d, J = 8.3 Hz, 2H), 

7.44 (d, J = 7.1 Hz, 1H), 7.36-7.33 (m, 1H), 7.30-7.25 (m, 3H), 7.14 (d, 

J = 8.3 Hz, 2H), 7.10-7.06 (m, 1H), 7.04-7.02 (m, 1H), 4.74 (s, 1H), 

4.22 (s, 1H), 3.64 (d, J = 17.4 Hz, 1H), 3.35 (d, J = 17.4 Hz, 1H), 2.43 

(s, 3H), 2.33 (s, 3H), 2.07 (s, 3H), 1.83 (s, 3H). 13C NMR (100 MHz, 

CDCl3): δ 170, 144.6, 142.6, 137.6, 136.3, 135.5, 135.4, 133.7, 131, 

130.7, 129.5 (2CH), 128.8, 127.8, 127.06 (2CH), 125.9, 125, 123.4, 121.7, 119.6, 115.08, 

111.4, 69.2, 32.8, 23.4, 21.5, 20.8, 19.1. HRMS (ESI): m/z calcd for C29H31NO4S (M+H)+: 

488.1896, Found: 488.1889. 

 

(4-Isopropylphenyl)(3-(2-methylallyl)-1-tosyl-1H-indol-2-yl)methyl acetate : 

This compound was isolated as transparent viscous liquid by 

following the general procedure 1. Rf = 0.5 (Hexane/EtOAc = 9/1). 

IR (thin film, neat): νmax/cm-1 2962, 1742, 1229, 577. 1H NMR (400 

MHz, CDCl3): δ 8.22 (d, J = 8.4 Hz, 1H), 8.12 (s, 1H), 7.72 (d, J = 

8.1 Hz, 2H), 7.47 (d , J = 7.8 Hz, 1H), 7.38-7.32 (m, 3H), 7.29-7.23 

(m, 3H), 7.14 (d, J = 8.2 Hz, 2H), 4.76 (s, 1H), 4.27 (s, 1H), 3.76 (d, 

J = 17.2 Hz, 1H), 3.42 (d, J = 17.2 Hz, 1H), 2.96 (dt, J = 13.8 and 6.9 

Hz, 1H), 2.3 (s, 3H), 2.11 (s, 3H), 1.82 (s, 3H), 1.31 (d, J = 7 Hz, 6H). 13C NMR (100 MHz, 

CDCl3): δ 169.9, 149, 144.6, 142.8, 136.5, 135.56, 135.52, 134.6, 131.01, 129.5 (2CH), 127.9 

(2CH), 127.0 (3CH), 126.2 (2CH), 125.09, 123.5, 121.5, 119.7, 115.3, 111.4, 70.9, 33.8, 33.01, 

24, 23.2, 21.5, 20.9. HRMS (ESI): m/z calcd for C31H34NO4S (M+H)+: 516.2209, Found: 

516.2195. 
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(5-Bromo-3-(2-methylallyl)-1-tosyl-1H-indol-2-yl)(phenyl)methyl acetate : 

 This compound was isolated as colourless viscous liquid by following the general procedure 

1. Rf = 0.5 (Hexane/EtOAc = 9/1). IR (thin film, neat): νmax/cm-1 2961, 1750, 1225, 570. 1H 

NMR (400 MHz, CDCl3): δ 8.09-8.07 (m, 2H), 7.71 (d, J = 8.4 Hz, 

2H), 7.57-7.55 (m, 1H), 7.45-7.43 (m, 1H), 7.39-7.33 (m, 5H), 7.20-

7.16 (m, 2H), 4.75 (s, 1H), 4.22 (s, 1H), 3.66 (d, J = 17.3 Hz, 1H), 

3.32 (d, J = 17.2 Hz, 1H), 2.35 (s, 3H), 2.11 (s, 3H), 1.8 (s, 3H). 13C 

NMR (100 MHz, CDCl3): δ 169.8, 145.09, 142.3, 137.9, 135.8, 

135.2, 135.1, 132.7, 129.7 (2CH), 128.6 (2CH), 128.3, 128, 127.6 (2CH), 127 (2CH), 122.4, 

120.8, 117.1, 116.8, 111.7, 70.6, 32.8, 23.2, 21.6, 21. HRMS (ESI): m/z calcd for 

C28H27BrNO4S (M+H)+: 552.0844, Found: 552.0851. 

 

 

(6-Chloro-3-(2-methylallyl)-1-tosyl-1H-indol-2-yl)(phenyl)methyl acetate : 

This compound was isolated as colorless viscous liquid by following the general procedure 1. 

Rf = 0.5 (Hexane/EtOAc = 9/1). IR (thin film, neat): νmax/cm-1 2950, 1742, 1228, 575. 1H 

NMR (400 MHz, CDCl3): δ 8.21 (d, J = 1.7 Hz, 1H), 8.01 (s, 1H), 

7.7 (d, J = 8.4 Hz, 2H), 7.35-7.29 (m, 6H), 7.2 (dd, J = 8.2 and 1.8 

Hz, 1H), 7.18 (d, J = 8.3 Hz, 2H), 4.71 (s, 1H), 4.21 (s, 1H), 3.61 (d, 

J = 17.2 Hz, 1H), 3.31 (d, J = 17.1 Hz, 1H), 2.36 (s, 3H), 2.09 (s, 

3H), 1.73 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 169.8, 145, 

142.5, 137.9, 136.7, 135.2, 135.03, 131.1, 129.7 (2CH), 129.2, 

128.5 (2CH), 128.2, 127.5 (2CH), 127 (2CH), 124.1, 121.2, 120.5, 115.4, 111.5, 70.5, 32.8, 

23.1, 21.5, 20.9. HRMS (ESI): m/z calcd for C28H26ClNNaO4S (M+Na) +: 530.1169, Found: 

530.1151. 
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