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If—
Rudyard Kipling

If you can keep your head when all about you
Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you,
But make allowance for their doubting too;
If you can wait and not be tired by waiting,
Or being lied about, don’t deal in lies,
Or being hated, don’t give way to hating,

And yet don’t look too good, nor talk too wise:

If you can dream—and not make dreams your master;
If you can think—and not make thoughts your aim,
If you can meet with Triumph and Disaster
And treat those two impostors just the same;

If you can bear to hear the truth you’ve spoken
Twisted by knaves to make a trap for fools,

Or watch the things you gave your life to, broken,

And stoop and build "em up with worn-out tools:

If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,
And lose, and start again at your beginnings
And never breathe a word about your loss;
If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you

Except the Will which says to them: ‘Hold on!’

If you can talk with crowds and keep your virtue,
Or walk with Kings—nor lose the common touch,
If neither foes nor loving friends can hurt you,
If all men count with you, but none too much;
If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,
Yours is the Earth and everything that’s in it,

And—which is more—you’ll be a Man, my son!



Introduction

Never doubt that a small group of thoughtful,
committed citizens can change the world;
indeed, it’s the only thing that ever has.

-Margaret Mead

The International Diabetes Foundation estimates 72.9 million Indians to be currently suf-
fering from diabetes, with this number set to increase to 134.3 million by 2045.2" This
makes India the country with the second highest number of adults living with diabetes.
But, mean healthcare expenditure on diabetes per person in 2017 was only ID 426,2! far
behind countries other countries.

The International Diabetes Foundation’s 2045 conservative projections, assuming mean per
capita expenditure and diabetes prevalence rate remain constant, estimate global cost of
Diabetes to increase to USD 776 Billion, which represents a 7% growth.

Insurance exists to protect oneself against increasing and unforseen costs. Existing health
insurance plans were unable to appropriately cover expenses of diabetes.

Only recently have specific insurance plans for Diabetes sprung up but all seem to use age
as a proxy to classify patients into premium bands and then offer adjustments based on
medical state.

It is believed that doing so is convenient, but a more equitable solution exists which would
not only help patients by appropriately identifying their costs, but would also help insurance
companies make health classes in their diabetes insurance policy using medical indicators

as well as age.
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An existing dataset is used to identify important indicators of diabetes using various Ma-
chine Learning Classification techniques.

Machine Learning Classification Models would help us identify these indicators using vari-
able importance.

Collected data from GD Hospital & Diabetes Institute in Kolkata, is used to create a Gen-
eralized Additive Model (GAM) that links these indicators of diabetes to the annual expen-
diture of the patient.

GAM Models have been previously used to model new pricing systems and thus were
chosen due to their flexibility and wider range of applicability.

Clustering algorithms were subseuently cluster the patients into different health classes,

based on annual spending but categorized via medical attributes.
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Part I

Identification of Indicators of Diabetes






Chapter 1

Machine Learning Classification

Algorithms

Machine Learning Classification algorithms such as Logistic Regression, K- Nearest Neigh-
bours, Support Vector Machines, Naive Bayes, Decision Tree and Random Forest are used
to classify our dataset. The Varlmp function is used to see how important each variable is
in classifying the dataset.

All the algorithms used are Supervised Machine Learning Algorithms, i.e. these algorithms
require a training set of data which contains not only the attributes, X but also the correct
class, Y. These algorithms use this training set of data to shape the model in the required

fashion and are then able to classify the test set data.

1.1 Logistic Regression!

1.1.1 Introduction

Logistic Regression was developed by D. R. Cox in 19584% as a statistical method to find
the relation between independent variables and a target binary variable.

In the model, dependent variable prediction is given by a summation of products of the
independent variable and a coefficient. The value of the coefficient is a measure of the effect
of the independent variable on the dependent variable, adjusted for all other independent
variables.

Thus the model helps us predict the dependent variable for new values of the independent

3



variables and helps explain the relative contribution of each independent variable.

1.1.2 The Model

For a model with x;’s being the independent variables and y being the binary target variable,

the logit model can be written as -

logit(E(y)) = Bo + Biz1 + a2 (1.1)
where logit(E(y)) is nothing but log( fg&) ). This log transformation is necessary to avoid

values of x that will give y values not between 0 and 1.2

Thus equation (1.1) can be transformed into -

eﬁo-‘rﬁlxl +B2x2

E(y) (1.2)

- 1 + efotPrzi+paxs

Equation (1.2) ensures that the values produced are between 0 and 1, to represent the prob-

ability of y being equal to 1.

1.1.3 Assumptions & Requirements

e Binary Logistic regression may only be used for a binary dependent variable.

e As the model estimates the probability of an event occurring (P(Y = ”Occured”)),

the dependent variable must be coded accordingly.

e The model should not be over fitted with more than required and/or nonsensical vari-

ables.

e Logistic regression requires each record to be independent. The model should not
exhibit multicollinearity i.e. independent variables must not be linear functions of

other independent variables.

e Logistic regression requires that the independent variables be linearly related to the

log odds of the event to be modelled.

e Logistic regression needs larger sample sizes as the Maximum Likelihood Estimates
method is less powerful than the Ordinary Least Squares method, used to estimate

unknown parameters.



e Error terms need not be multivariate normally distributed—but multivariate normality

provides stabler solutions.

e Variance of Error terms may be heteroscedastic for different levels of independent

variables.

e Logistic regression is able to handle both continuous data and discrete data as inde-

pendent variables.

1.1.4 Fitting the Model

Logistic Regression model fitting is based on the Maximum Likelihood Method. So for
each observation with independent variables, X; and target variable y;, we can let E(y;) =

p(X;). Therefore the likelihood for n observations can be written as -

n

L(B) = [ [ plwi)¥ (1 = plaz))* ¥ (1.3)

=1

Using the maximum likelihood method, we can get parameter estimates as well as variances

for each parameter in the model.

1.2 K-Nearest Neighbours*

1.2.1 Introduction

The K-Nearest Neighbours algorithm is a non-parametric classifier that classifies new data
on the basis of the most frequently represented class in the K-nearest neighbours of the new
point.

If two or more such samples exist of K-Nearest neighbours, the sample with the minimum
average distance to the new point is chosen.

As K — oo, the K-Nearest neighbours algorithm becomes the Bayes optimal decision

rule

1.2.2 Algorithm
The K-Nearest Neighbours algorithm was proposed by Cover® & Hart*® in 1968.
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Due to the ease and efficiency of the Euclidean distance measure, K-NN classifiers usually
use Euclidean distances.” Other measures such as Taxicab distance and Cosine distance
are also available.

When a new data point to be classified is provided to the K-NN algorithm, it calculates
the K closest points to that new point in the n-dimensional feature space (where n is the
number of independent variables). It finds the the dependent variable value that is the most
represented in the K neighbours and assigns that value to the new point.

K-NN being a lazy learning algorithm, i.e. it doesn’t have a true learning period and clas-
sifies the new point by actively using the training set at time of classification, is computa-
tionally intensive.

The most effective values of K are in the range of 30-45.%

1.3 Support Vector Machines®

1.3.1 Introduction

Support Vector Machines separate the classes by a hyperplane defined by a normal vector
and a bias term.

The most favourable separating hyperplane would be one that would maximizes the margin,
i.e. the distance between the hyperplane and the nearest points of both classes.

Kernel functions alongwith SVM can be used so as to make non-linear decision bound-
aries. This allows for much more precise decision functions, as real - world data is usually
non-linearly separable. The kernel function, maps the original non-linear observations into
a higher-dimensional space in which they might become separable, and then the SVM al-
gorithm is applied in this new higher dimensional space.

SVMs were originally designed for binary target variables, but using a one-against-one and

one-against-all approach, they can be extended for multiple target class classification.

1.3.2 The Model

The hyperplane can be specified by its normal vector, w and its bias term,b .

The kernel function is given by k and associated with the non-linear mapping function .

6



Then the formula becomes -

w.o(x)+b=0 (1.4)

which will yield the decision function -

f(z) =y = sgn({w.®(x) + b)) (1.5)

The sgn function here is the sign function which gives a value of +1 if the value is > 0 and
—1 otherwise. If y* = 1 then x belongs to the corresponding class and if y* = —1, then it

does not.

1.4 Naive Bayes*

1.4.1 Introduction

The Naive Bayes classifier works on the Bayes’ Theorem of posterior probability. It is
called Naive due to its strong independence assumption, that each variable’s effect is inde-
pendent of the other.

It is extremely fast and can be run quite well on small datasets as well but its strong inde-

pendence assumptions make it unsuitable for a lot of different natural models.

1.4.2 The Model

We have n independent attributes given by z1, s, ...x,, and let the target variable have m
classes given by ¢y, o, ..., Cpp.
Then to classify a new data point, represented by X, we need to find the maximum P(¢;|X).

This is obtained via Bayes’ Theorem as -

P(X]ei) P(ci)
P(c|X) = ——<+= 1.6
(€1X) = =55 (16)
As P(X) is just a normalizing factor and independent of class, it can be ignored.
From the independence assumption and given X = {x1, zo, ..., z,, }, we get -
P(X|e;) = [ [ P(xkles) (1.7)
k=1



Also, to calculate P(c;), we simply divide occurrences of ¢; seen in the training data(of say

N records), divided by the total data points, i.e.

s Lee
P(c;) = = i 1.8
() = &=L (18)
Here 1.—., is the indicator function taking a value of 1 if ¢ = ¢; and 0 otherwise.
So, when a new data point is presented to the algorithm, it calculates the probability of
the data point being in each class given its attributes using equation (1.6). It then finds the

maximum of these probabilities and classifies the new data point into that class.

1.4.3 Smoothing®

The Naive Bayes classifier in this form is susceptible to incorrect classification if it encoun-
ters an unseen value of an independent variable, as the probability P(z|c;) in such a case
is always 0. To solve this, we turn to smoothing.

We specifically use Laplace smoothing®® which adds a psedo-count, « in every probability
estimate as follows -

o] Fa

Plede) = 5 am

(1.9

By doing so, no value of ;. has zero probability.

1.5 Decision Trees®

1.5.1 Introduction

Decision trees divide the feature space into disjoint cells. Each disjoint cell would contain
atleast one point from the training set. The disjoint cell is classified into a particular class,
if that class has maximum representation in that cell.

Then, once a new data point is to be classified, it can be plotted on the feature space to
classify it.

In decision trees, we start from the top (root) node and then follow the branches as per the
feature criteria to get to branch nodes. We will reach, in the end, the leaf node that doesn’t
split any further and will be classified based on the class most represented in that leaf node

in the training set.



1.5.2 Algorithm’

Given a training sample, we use a set of non-negative integer valued weights, w = (wy, wo, ..

where n is the number of data points in the training sample.
Each node of the tree is defined by a vector of weights which have non-zero elements when
the corresponding observations are elements of the node and zero if they’re not.

For j = 1, 2,...m there are m (Number of features) partial hypotheses given by
o} : D(Y|X;) = D(Y)

where D(Y|X) is the conditional distribution of Y given X. The global null hypothesis is
thus given by Hy = ﬂ;-”:ng. These null hypotheses essentially say that the m covariates
and the response variable are independent. When we cannot reject this hypothesis at a pre-
specified « level, our algorithm should stop as if the covariates and response variable are
independent, there is no point in making further splits.

When we do reject this global null hypothesis, we subsequently choose the covariate X
that has the strongest association with Y.

In the feature space of X;, we then choose a set A* C X to split X into two parts -
AT & XN\A”
We use weights, w,.;g,; and wy.¢; given by

Wirighti = Wil (X, € A”) (1.10)

Wiepr = will (X ¢ A”) (1.11)

forall i = 1,2, ...,n where (-) is the indicator function.

We repeat these steps until we can no longer reject the global null hypothesis.

1.6 Random Forest

1.6.1 Introduction®

Random Forest is an ensemble-learning model which trains multiple classifiers and then

combines the results via a voting process.

Wy,)



Boosting®! is another ensemble training model,which uses iterative retraining, in which
incorrectly classified data points are given increased weightage as the iterations progress.*!
Bagging,** another model type trains multiple classifiers on bootstrapped samples from the
training set. Bootstrapped samples are smaller subsets of the original data sampled with
replacement multiple times to calculate each boostrapped sample’s required statistic. This
reduces the variance of the classification.

Boosting is much more computationally intensive and slower than bagging but, it is con-
siderably more accurate than bagging. Boosting can reduce both the variance and the bias
of the classification. But it also has costs - it is slow, prone to overtrain the model and can
be sensitive to noise.**

Random Forests use a better method of bootstrapping and show accuracy comparable to
boosting models, but without the drawbacks of boosting** They are even less computa-

tionally intensive.

1.6.2 Algorithm

Random Forest algorithm trains multiple Decision Trees,”” each trained on bootstrapped
samples of the training data, and chooses from a randomly chosen subset of the input vari-
ables to determine a split (for each node).

By limiting number of variables used to decide a split, computational complexity and cor-
relation between trees are reduced. Trees in the Random Forest are not pruned, which could
reduce the computational load even more.

For the classification, each tree casts a vote and the majority of votes decides the category

of the new input variable.

1.7 AdaBoost Classification Trees”

1.7.1 Introduction

AdaBoost?%2% uses boosting, a method which uses weights for each training set record and
updates them to a higher value for the next classification iteration if they are misclassified
in the previous one. Once the training is complete, the classifiers are combined into one,

powerful classifier, which is highly accurate on the training set. It thus, shows an extremely

10



high accuracy 2758

1.7.2 The Algorithm
Let the training set,D,, be given by -

Dn:{(Xla}/l)a(XQ;Yé)a"'v(XnaYn)} (112)

Here, Y takes values of —1 or 1. A weight, w,(7) is assigned to each observation, X;. At
the start of the algorithm, this is taken to be % This is the weight that will be updated after
every step.

A basic classifier,C,(X;) is built on Db. The error of the classifier is given by ¢, and

calculated as-

ev =Y wy(i)&(i) (1.13)
i=1
Here,
0 Cy(z;) =y
£ — b(zi) =y (1.14)

1 Cy(zi) # vi
The updated weights for the b + 1% classifier would be calculated as -

W41 (1) = wy(i).es® (1.15)

Here,

1—61,

ap, = In( ) (1.16)

€b

These new weights are subsequently normalized.

If the error of the classifier is small, the weight will be increased more than if the error
was larger. This is because more importance is given to the few mistakes made when the
classifier achieves a high level of accuracy. « is interpreted as a learning rate.

This process is repeated for b = 1,2, 3..., B. The final ensemble-classifier is built via a

linear combination of all the other classifiers, weighted by «,
B
C(x) = sgn(>_ aCi(x)) (1.17)
b=1

11



The sgn function here is the sign function which gives a value of +1 if the value is > 0 and

—1 otherwise.

1.8 eXtreme Gradient Boosting - Linear!’

eXtreme Gradient Boosting or XGBoost is relatively new but very popular ensemble-classifier.It
can use either tree based models or linear models as its base model.

The model initializes by fitting a simple classifier to the data. It then computes the gradient

of the loss function and fits a function to this gradient.

A new model is thus generated using the original model and the function, fit to the gradient

of the loss function. This new model will have a lower error than that of the original model.
After being run for n iterations, the final model is expected to be much better at classifying

the problem.

12



Chapter 2

Machine Learning Tools and

Performance Measures

2.1 Cross Validation

Cross Validation is a method of getting better parameter estimates of a model when data is
limited.

K-fold Cross Validation splits the dataset, Q into K mutually exclusive subsets Q1, Qo, ..., Qg
of equal size.

The algorithm is then both, trained and tested K times; for each time, ¢ € {1,2,3..., k}, it
is trained on the set O\ Q; and then it is tested on Q,. The estimate of accuracy is given
by the total number of correct classifications divided by number of records in the training
dataset.**

The estimates of parameters can therefore also be taken from each of these k estimates,

usually resulting in better estimates.

2.2 Predictive Accuracy!

2.2.1 Confusion Matrix

We can use a Confusion Matrix to find the predictive accuracy of the model. We select a
cutoff, usually 0.5. All predicted values > the cutoff are classified as 1 and similarly all

predicted values < cutoff are classified as 0. Then we make a 2x2 table that has on one axis

13



the observed values and on the other, the predicted values. The Confusion Matrix will be

similar to -

Predicted

1 0

1|a b
Observed 0l e d

Table 2.1: Confusion Matrix

2.2.2 Accuracy & Balanced Accuracy

In the confusion matrix, if the model is a good fit, the values of a(True Positives) & d(True

Negatives) will be high while b(False Negatives) & c(False Positives) will be low.
. . d

Accuracy is given by m.

Balanced Accuracy is a more accurate measure of accuracy when the test set is not balanced

in terms of number of instances of each class. Balanced accuracy is calculated as the

average of the proportion of correct classifications of each class. Thus, balanced accuracy

is given by 3(5% + 7%).

2.2.3 Sensitivity

Sensitivity measures the percentage of actual positive instances correctly identified as such.

It is therefore also known as the True Positive Rate.
It thus quantifies how well the classifier avoids false negatives.

Therefore sensitivity is given by —%-.

2.2.4 Specificity

Specificity measures the percentage of actual negative instances that are correctly identified

as such.It is therefore also known as the True Negative Rate.
It thus quantifies how well the classifier avoids false positives.

Therefore specificity is given by ﬁ:.
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2.2.5 RoC (Receiver operating characteristic) Curves

We also examine the complete range of cutoff values from O to 1. For every possible cutoff
value, a 2x2 table is made. Plotting the pairs of sensitivity(;57) and 1—speciﬁcity(c%d) on

a scatter plot gives us an ROC curve.

Area Under the Curve(AUC)

The AUC is the area under the ROC curve. It provides a measure of fit of the model "

The AUC can vary from 0.5, where it has no predictive ability, to 1.0, where it has perfect
predictive ability. The higher the AUC the better the predictability of the model. Points
above the diagonal in the ROC space represent good classification results, whereas points

below it, represent poor results (worse than random).

2.2.6 Cohen’s Kappall

Cohen’s Kapppa compares the Observed Accuracy of the model with the Expected Accu-

racy(random chance).

a+d

Observed Accuracy is simply given by accuracy, ——4"="—.

Expected Accuracy is given by multiplying the marginal frequency of a class from the
observed values, by the marginal frequency of a class from the predicted values, and divided
by the total number of instances, and then summing this value across all classes and dividing

by the total number of instances again. So in our confusion matrix,

(a+c)(a+b) (b+d)(c+d) 1

FA= 2.1
<a+b+c+d a+b+c+d)a—|—b—l—c+d 2D
Kappa is then calculated using the following formula -
OA—-FEA
- 2.2
T _EA (2:2)

There is no universally agreed-upon way to interpret this statistic.

Landis & Koch,*! providing no evidence, stated values < 0 as being poor, 0 —0.20 as slight,
0.21 — 0.40 as fair, 0.41 — 0.60 as moderate, 0.61 — 0.80 as substantial, and 0.81 — 1 as
almost perfect.

Subsequently, Fleiss ™ published equally arbitrary guidelines of > (.75 as excellent, 0.40 —
0.75 as good, and < 0.40 as poor.
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2.2.7 No Information Rate

The No Information Rate(NIR) is the accuracy from a model that has no other information
provided to it other than the prevalence of the classes, in the training set. Given only
this information, this model would always choose the class that is in the majority and its
accuracy would be equal to the prevalence of that class.

Thus, if our model’s accuracy is lower than the NIR, that means that our model is doing a
worse job than the NIR model which chooses the majority class irrespective of the values
of the independent variables.

Thus, accuracy of a model should always be compared with the NIR so as to get a better

idea of how much better or worse our model is actually doing.

2.3 Varlmp

The varlmp function* calculates the importance of each variable for the classifiers. The
function scales the importance from 0 to 100, to provide a relative measure.

For Linear models, it returns the absolute value of the t-statistic for each model’s parameter.
For Random Forests, for each tree, the accuracy is calculated on the out-of-bag portion. It
then repeats this after permuting each predictor variable. The difference between these two
values is averaged over all trees and then normalized via the standard error.

For AdaBoost Classification Trees, the importance is summed over each boosting iteration
using the approach of the single tree model.

For other models, it conducts an ROC curve analysis for each variable. The area under the

curve is then used as a measure of variable importance.
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Chapter 3

Data and Preliminary Analysis

3.1 Provenance

The original dataset had been collected by the National Institute of Diabetes and Digestive
and Kidney Diseases between 1965 and 19694 A total of 2917 half and full blooded Pima
Indians were examined.

The subject was said to be diabetic according to WHO guidelines,* i.e. , if the 2 hour
post-load plasma glucose was at least 200mg/dl (11.1 mmol/l) at any examination or if the
Indian Health Service Hospital serving the community found a glucose concentration of at
46

least 200 mg/dl during the course of routine medical care.

We use a trimmed dataset obtained which filtered out entries based on the following crite-

1. The subject is female.
2. The subject is atleast 21 years of age.

3. Only subjects which had a non-diabetic Glucose Tolerance Test(< 200mg/dl follow-
ing ingestion of 75gm of Carbohydrate solution) and met either of the two following
criteria were included.

(a) Diabetes was diagnosed within 5 years of the examination
(b) A Glucose Tolerance Test done > 5 years later did not reveal diabetes.

4. If diabetes occurred within 1 year of the examination, that case was removed. Of the

excluded examination, 75% had Diabetes diagnosed within 6 months.
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This resulted in the trimming of the dataset from 2917 records to 768 records. Further, after

removing missing values, the dataset is trimmed down to 392 observations.

3.2 Parameters

There are a total of 8 independent variables. The final column marked ”Outcome” is a
class variable with 1s and Os depicting whether the subject developed diabetes ultimately

or not.The independent variables are-

—

. Age (in years)

2. Body Mass Index (= %)

3. 2-Hr Serum Insulin(xIU/ml)
4. Triceps Skin Fold Thickness(mm)
5. Diastolic Blood Pressure(mmHg)

6. Plasma Glucose Concentration at 2 Hours in an Oral Glucose Tolerance Test (OGTT)

(mg/dl)
7. Number of times pregnant

8. Diabetes Pedigree Function

Patients are given a 75gm Glucose solution and their plasma glucose concentration and
serum insulin levels are noted 2 hours later. The OGTT is meant to diagnose Type 2 Dia-
betes, while the serum insulin provides a measure of risk of developing diabetes.*’

Triceps skin fold thickness is a measure of innate obesity *®

The number of pregnancies can increase the risk of development of Type 2 Diabetes, par-

ticularly if they suffered from gestational diabetes.*>

3.2.1 Diabetes Pedigree Function'*

The Diabetes Pedigree Function aims to distill the family history of diabetes mellitus of the
subject into a numerical value. It uses information from parents, grandparents, full and half

siblings, full and half aunts and uncles, and first cousins.
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It gives a measure of the expected genetic influence of affected and unaffected relatives on

the subject’s eventual diabetes risk. It is given by

K;(88 — ADM;) + 20
ppF = 2l )+ SRy
Zj K;(ALC; — 14) + 50
Here,
1 ranges over all relatives, who developed diabetes by examination date
J ranges over all relatives, who did not developed diabetes by examination

date
K, percentage of genes shared with relative
= 0.500 when relative is parent or full sibling
= 0.250 when relative is half sibling, grandparent, aunt or uncle
= 0.125 when relative is a half aunt, half uncle or first cousin
ADM,; age of relative when diabetes was diagnosed
ACL; age of relative at last non-diabetic examination
88 Constant representing maximum age at which subject’s relatives devel-
oped diabetes
14 Constant representing minimum age at which subject’s relatives devel-
oped diabetes
20,50  Chosen so that
A subject with no relatives would have a DPF value slightly lower than
average
The DPF value would decrease relatively slowly as young relatives free
of Diabetes joined the database
The DPF value would increase relatively quickly as known relatives

developed Diabetes

The value of the DPF increases as the number of relatives who developed diabetes increases,
as the age at which those relatives developed diabetes decreases, and as the percentage of
genes that they share with the subject increases.

Also the value of the DPF decreases as the number of relatives who never developed dia-
betes increases, as their ages at their last examination increase, and as the percent of genes

that they share with the subject increases.
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3.3 Preliminary Analysis

Code for creating the visuals is in Appendix - Section A 1617

33.1 Age

Outcome D Non-Diabetic |:| Diabetic

0.100

0.075

0.050

Density

0.025

0.000

Figure 3.1: Density Plot of Age

3.3.2 Body Mass Index

Outcome |:| Non-Diabetic D Diabetic

0.08

0.06

Density

0.02

0.00

Figure 3.2: Density Plot of Body Mass Index

Statistic Value
Non- Diabetics | Overall
Diabetics
Mean 28.34 35.93 30.86
Std. Dev. 8.98 10.63 10.20
1%t Quantile | 22 27.25 23
Median 25 33 27
37% Quantile | 30 43 36
Min 21 21 21
Max 81 60 81
Table 3.1: Summary Statistics of Age
Statistic Value
Non- Diabetics | Overall
Diabetics
Mean 31.75 35.77 33.08
Std. Dev. 6.79 6.73 7.02
15¢ Quantile | 26.125 31.6 28.4
Median 31.25 34.6 33.2
374 Quantile | 36.1 38.35 37.1
Min 18.2 22.9 18.2
Max 57.3 67.1 67.1
Table 3.2: Summary Statistics of BMI




3.3.3 2-Hr Serum Insulin

outcome [_] Non-Diabetic [_| Diabetic

Statistic Value
0.006 Non- Diabetics | Overall

Diabetics
Mean 130.85 206.84 156.05
Std. Dev. 102.62 132.69 118.84

0.004

Density

15¢ Quantile | 66 127.5 76.75
0.002 Median 105 169.5 125.5
374 Quantile | 163.75 239.25 190
Min 15 14 14
0000 ! ! . — Max 744 846 846
0 200 Inst(l)ig il 600 800
Figure 3.3: Density Plot of 2-Hr Serum In- Table 3.3: Summary Statistics of Insulin
sulin
3.3.4 Triceps Skin Fold Thickness
outcome [_| Non-Diabetic [| Diabetic
0.04
Statistic Value
Non- Diabetics | Overall
o0 Diabetics
Mean 27.25 32.96 29.14
go_oz Std. Dev. | 10.43 9.64 10.51
° 1%t Quantile | 18.25 26 21
oo Median 27 33 29
374 Quantile | 34 39.75 37
Min 7 7 7
000 s . . Max 60 63 63

20 40
Triceps Skin Fold Thickness(mm)

Figure 3.4: Density Plot of Triceps Skin Table 3.4: Summary Statistics of Skin Thickness
Fold Thickness
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3.3.5 Diastolic Blood Pressure

Outcome |:| Non-Diabetic D Diabetic

008 Statistic Value
Non- Diabetics | Overall
Diabetics
0.02 Mean 68.96 74.07 70.66
] Std. Dev. | 11.89 13.02 | 12.49
° 1% Quantile | 60 66.5 62
0.01 Median 70 74 70
37¢ Quantile | 76 82 78
Min 24 30 24
QLD ; ; . . Max 106 110 110
20 40 60 80 100

Diastolic Blood Pressure(mmHg)

Figure 3.5: Density Plot of Diastolic Blood Table 3.5: Summary Statistics of Blood Pressure
Pressure

3.3.6 Plasma Glucose Conc. at 2Hrs in OGTT

outcome [ Non-Diabetic [_| Diabetic

Statistic Value
oots Non- Diabetics | Overall
Diabetics
Mean 111.43 145.19 | 122.62
20010 Std. Dev. | 24.64 29.83 30.86
5 1°! Quantile | 94 124.25 99
Median 107.5 144.5 119
o008 374 Quantile | 126 171.75 143
Min 56 78 56
0,000 Max 197 198 198
% Plasma G1|330s.e Conc. at 2Hrs iJSOOGTT(mg/dI)
Figure 3.6: Density Plot of Plasma Glucose Table 3.6: Summary Statistics of Glucose

Conc. at 2Hrs in OGTT
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3.3.7 Times Pregnant
outcome [_| Non-Diabetic [_| Diabetic
0.20
0.15
a 0.10

0.05

0.00
1 I 1 1

o
o

5 10
Number of Times Pregnant

Figure 3.7: Density Plot of Times Pregnant

3.3.8 Diabetes Pedigree Function

Outcome |:| Non-Diabetic D Diabetic

Statistic Yalue.
Non- Diabetics | Overall
Diabetics
Mean 2.72 4.46 3.3
Std. Dev. | 2.61 3.91 3.21
1%¢ Quantile | 1 1 1
Median 2 3 2
37¢ Quantile | 4 7 5
Min 0 0 0
Max 13 17 17

Table 3.7: Summary Statistics of Pregnancies

Statistic Value
e Non- Diabetics | Overall
Diabetics
” Mean 0.47 0.62 0.52
g Std. Dev. | 0.29 0.40 0.34
° 1% Quantile | 0.261 0.329 0.269
05 Median 0.413 0.546 0.449
374 Quantile | 0.624 0.786 0.687
Min 0.085 0.127 0.085
05 : . . Er— Max 2.329 2.42 2.42
0.0 0.5 1.0 1.5 2.0 2.5

Diabetes Pedigree Function

Figure 3.8: Density Plot of Diabetes Pedi- Table 3.8: Summary Statistics of Diabetes Pedigree
gree Function Function
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3.3.9 Outcome

200

Count

Class Count
Non-Diabetics | 262
Diabetics 130

100

Non-Diabetic Diabetic

Outcome

Figure 3.9: Bar Plot of Outcome Table 3.9: Summary Statis-

tics of Outcome
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3.4 Correlations®®

Correlations between independent variables
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Figure 3.10: Correlation between Independent Variables

The only three significant correlations are between Age and Pregnancies, Glucose level at 2
hrs in OGTT and Insulin levels at the same time and Triceps Skin Fold Thickness and Body
Mass Index. All of these are easily explained. The more the age, the more chances for the
subject to get pregnant. At 2 hours into an OGTT, diabetics would tend to have elevated
glucose and insulin levels whereas no-diabetics would have lower levels for both. Triceps

Skin Fold Thickness and Body Mass Index are both essentially measures of obesity.

25



26



Chapter 4

Results

All coding has been done in the statistical software, R.>"

Some basic packages we use are caTools>! for splitting the dataset into training and test
sets, pPROC>? for producing ROC curves and calculating the Area Under the Curve(AUC).
We use the caret* package throughout to train models using its trainControl function and
to find variable importance using its varlmp function

All codes are listed in Appendix - Section A.
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4.1 Regular Classification Models

4.1.1 Logistic Regression

Fitting a binomial Generalized Linear Model i.e. Logistic Regression Model to the training

data containing 314 observations(80%), we get the following results-

Metric Value
Accuracy 0.833
95% CI (0.7319,0.9082)
No-Information Rate 0.7051 Predicted
P-Value [Acc >NIR] 0.0068 1 0
Kappa 0.6139 118] 5
Sensi%pvity 0.8545 Observed 51— ——47
Specificity 0.7826
Balanced Accuracy 0.8186
AUC 0.8839
Table 4.1: Summary Results of Logistic Re- Table 4.2: Confusion Matrix of
gression Logistic Regression
= Variable Importance
Glucose 100.000
LS DPF 64.144
2 BMI 39.075
5. Age 27.252
Pregnancies 15.581
. Skin Thickness 12.333
- Insulin 1.427
) Blood Pressure 0.000

T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0

Specificity

Figure 4.1: ROC for Logistic Regression  Table 4.3: Variable Importance for
Logistic Regression
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4.1.2 K-Nearest Neighbours

Fitting a K-Nearest Neighbours Model to the training data containing 314 observations(80%),

we get the following results-

Metric Value
Accuracy 0.7949
95% CI (0.6884,0.878)
No-Information Rate 0.7692 Predicted
P-Value [Acc >NIR] 0.35177 1 0
Kappa 0.5 1114] 4
Sensilzilzzity 0.8000 Observed 57573
Specificity 0.7778
Balanced Accuracy 0.7889
AUC 0.848
Table 4.4: Summary Results of K-Nearest Table 4.5: Confusion Matrix of
Neighbours K-Nearest Neighbours
el Variable Importance
Glucose 100.000
= Age 74.030
: Insulin 66.133
5. Skin Thickness |  37.034
BMI 32.888
o DPF 26.669
- Pregnancies 5.316
) Blood Pressure 0.000

T T T T T T
1.0 0.8 0.6 04 0.z 0.0

Specificity

Figure 4.2: ROC for K-Nearest Neighbours Table 4.6: Variable Importance for
K-Nearest Neighbours
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4.1.3 Support Vector Machines

We try out two basic types of kernels®® - linear and radial. The polynomial kernel and the

linear kernel had given the same result.

Linear Kernel

Fitting a Support Vector Machines Model with a Linear Kernel to the training data contain-

ing 314 observations(80%), we get the following results-

Metric Value
Accuracy 0.8462
95% CI (0.7467,0.9179)
No-Information Rate 0.7179 Predicted
P-Value [Acc >NIR] 0.0061 1 0
Kappa 0.64 118 4
Sensitivity 0.8571 Observed 51— ——7g
Specificity 0.8182
Balanced Accuracy 0.8377
AUC 0.8824
Table 4.7: Summary Results of SVM-Linear Table 4.8: Confusion Matrix of
Kernel SVM-Linear Kernel
= Variable Importance
Glucose 100.000
=h Age 74.030
2 Insulin 66.133
5. Skin Thickness |  37.034
BMI 32.888
o DPF 26.669
B Pregnancies 5.316
) Blood Pressure 0.000

T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0

Specificity

Figure 4.3: ROC for SVM-Linear Kernel = Table 4.9: Variable Importance for
SVM-Linear Kernel
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Radial Kernel

Fitting a Support Vector Machines Model with a Radial Kernel to the training data contain-

ing 314 observations(80%), we get the following results-

Metric Value
Accuracy 0.8333

95% CI (0.7319,0.9082)
No-Information Rate 0.6795
P-Value [Acc >NIR] 0.0016
Kappa 0.6214
Sensitivity 0.8679
Specificity 0.7600
Balanced Accuracy 0.8140
AUC 0.8898

Observed

Predicted
1 0

19| 6
7 | 46

Table 4.10: Summary Results of SVM-Radial Table 4.11: Confusion Matrix
of SVM-Radial Kernel

Kernel

Sensitivity
0.6 0.8 1.0
| |

0.4
|

0.2

oo

Figure 4.4: ROC for SVM-Radial Kernel

T
0.6

Specificity

T
0.4

0.2

0.0
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Variable Importance

Glucose 100.000
Age 74.030
Insulin 66.133
Skin Thickness 37.034
BMI 32.888

DPF 26.669
Pregnancies 5.316
Blood Pressure 0.000

Table 4.12: Variable Importance
for SVM-Radial Kernel



4.1.4 Naive Bayes

Fitting a Naive Bayes Model** to the training data containing 314 observations(80%), we

get the following results-

Metric Value
Accuracy 0.7564
95% CI (0.646, 0.8465)
No-Information Rate 0.6538 Predicted
P-Value [Acc >NIR] 0.03449 1 0
Kappa 0.4571 1117] 10
Sensilzilzzity 0.8235 Observed |5-—5——75
Specificity 0.6266
Balanced Accuracy 0.7266
AUC 0.8476
Table 4.13: Summary Results of Naive Table 4.14: Confusion Matrix
Bayes of Naive Bayes
el Variable Importance
Glucose 100.000
= Age 74.030
: Insulin 66.133
5. Skin Thickness |  37.034
BMI 32.888
o DPF 26.669
- Pregnancies 5.316
) Blood Pressure 0.000

T T T T T T
1.0 0.8 0.6 04 0.z 0.0

Specificity

Figure 4.5: ROC for Naive Bayes Table 4.15: Variable Importance
for Naive Bayes
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4.1.5 Decision Tree

Fitting a Decision Tree Model?? to the training data containing 314 observations(80%), we

get the following results-

Metric Value
Accuracy 0.7308
95% CI (0.6124,0.825)
No-Information Rate 0.6538 Predicted
P-Value [Acc >NIR] 0.09351 1 0
Kappa 0.4 1|16 11
Sensirt)iF:/ity 0.8039 Observed =5=—6747
Specificity 0.5926
Balanced Accuracy 0.6983
AUC 0.8129
Table 4.16: Summary Results of Decision Table 4.17: Confusion Matrix
Tree of Decision Tree
= Variable Importance
Glucose 100.000
L Age 74.030
: Insulin 66.133
5. Skin Thickness |  37.034
BMI 32.888
o DPF 26.669
° Pregnancies 5.316
3 Blood Pressure 0.000

T T T T T T
1.0 0.8 0.6 0.4 0.z 0.0

Specificity

Figure 4.6: ROC for Decision Tree Table 4.18: Variable Importance
for Decision Tree
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4.1.6 Random Forest

Fitting a Random Forest Model*® to the training data containing 314 observations(80%),

we get the following results-

Metric Value
Accuracy 0.8333
95% CI (0.7319,0.9082)
No-Information Rate 0.7051 Predicted
P-Value [Acc >NIR] 0.006897 1 0
Kappa 0.6139 1118 5
Sensitivity 0.8545 Observed |5-——177
Specificity 0.7826
Balanced Accuracy 0.8186
AUC 0.8754
Table 4.19: Summary Results of Random For- Table 4.20: Confusion Matrix
est of Random Forest
= Variable Importance
Glucose 100.000
=k Age 48.953
: Insulin 47.647
5. DPF 38.110
BMI 26.654
o Skin Thickness 10.856
° Pregnancies 0.665
3 Blood Pressure 0.000

T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0
Specificity

Figure 4.8: ROC for Random Forest Table 4.21: Variable Importance
for Random Forest
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4.2 Boosted Models

4.2.1 AdaBoost Classification Trees

Fitting a Bagged AdaBoost ModelP” to the training data containing 314 observations(80%),

we get the following results-

Metric Value
Accuracy 0.7821
95% CI (0.6741,0.8676)
No-Information Rate 0.6538 Predicted
P-Value [Acc >NIR] 0.0099 1 0
Kappa 0.5143 1118 9
Sensﬁivity 0.8431 Observed 5—g——73
Specificity 0.6667
Balanced Accuracy 0.7549
AUC 0.8536
Table 4.22: Summary Results of AdaBoost Table 4.23: Confusion Ma-
Classification Trees trix of AdaBoost Classification
Trees
=7 Variable Importance
Glucose 100.000
e Age 74.030
2 Insulin 66.133
5. Skin Thickness |  37.034
BMI 32.888
o DPF 26.669
- Pregnancies 5.316
) Blood Pressure 0.000

T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0

Specificity

Figure 4.9: ROC for AdaBoost Classifica- Table 4.24: Variable Importance
tion Trees for AdaBoost Classification Trees
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4.2.2 eXtreme Gradient Boosting-Linear

Fitting an eXtreme Gradient Boosting-Linear ModelP® to the training data containing 314

observations(80%), we get the following results-

Metric Value
Accuracy 0.8462

95% CI (0.7467,0.9179)
No-Information Rate 0.6923

P-Value [Acc >NIR] 0.001457

Kappa 0.6471
Sensitivity 0.8704
Specificity 0.7917
Balanced Accuracy 0.8310
AUC 0.8632

Observed

Predicted
1 0

19| 5
7| 47

Table 4.25: Summary Results of eXtreme Gra- Table 4.26: Confusion Matrix

dient Boosting-Linear

Sensitivity
0.G 0.a 1.0

0.4

0.z
|

T
0.6

Specificity

T
0.4

0.2

0.0

of eXtreme Gradient Boosting-

Linear
Variable Importance
Glucose 100.000
Age 34.405
BMI 29.444
DPF 22.032
Insulin 19.187
Blood Pressure 6.383
Skin Thickness 4.385
Pregnancies 0.000

Figure 4.10: ROC for eXtreme Gradient Table 4.27: Variable Importance
for eXtreme Gradient Boosting-

Boosting-Linear
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4.3 Comparison of Models

4.3.1 In terms of Accuracy

In terms of accuracy, comparing all models together we get the following table.

The best values for each column are coloured in green.

Model | Accuracy | Kappa | Sensitivity| Specificity | Balanced AUC

Accuracy
Logistic 0.833 0.6139 0.8545 0.786 0.8186 0.8839
K-NN 0.7949 0.5 0.8 0.7778 0.7889 0.848
SVM-L 0.8462 0.64 0.8571 0.8182 0.8377 0.8824
SVM-R 0.8333 0.6214 0.8679 0.76 0.814 0.8898
Naive 0.7564 0.4571 0.8235 0.6266 0.7266 0.8476
Bayes
Decision 0.7308 0.4 0.8039 0.5926 0.6983 0.8129
Tree

Random 0.8333 0.6139 0.8545 0.7826 0.8186 0.8754
Forest
AdaBoost 0.7821 0.5143 0.8431 0.6667 0.7549 0.8536
XGB- 0.8462 0.6471 0.8704 0.7917 0.831 0.8632
Linear

Table 4.28: Comparison of Models in terms of Accuracy

Thus, the best models were given by eXtreme Gradient Boosting - Linear and Support
Vector Machines - Linear.

While Support Vector Machines - Radial(AUC = 0.8898) has a slight advantage(0.0074) in
the AUC metric over the closest other value depicted by Support Vector Machines - Linear
(AUC = 0.8824), it fails by a larger margin in other metrics, and is thus not chosen as one

of the best models in terms of accuracy for the classification.
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4.3.2 In terms of Variable Importance

ancies

Linear

Table 4.29: Comparison of Models in terms of Variable Importance

Therefore, we see that Glucose is the most important classification criteria in all models.
Age appears to be a consensus second while Insulin is third. BMI and Skin Thickness
appear to fight for the fourth position. Diastolic Blood Pressure seems to be the most

inconsequential.
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Chapter 5

Generalized Linear Models and

Generalized Additive Models

5.1 Generalized Linear Models(GLMs)'#

5.1.1 Introduction

GLMs* are a general set of models that can be used to assess & quantify the relation-
ship between a dependent variable and a set of independent variables. GLMs differ from

ordinary linear regression modelling in two aspects -
e The distribution of the dependent variable is chosen to be from an exponential family.

e A transformation of the mean of the dependent variable is linearly related to the

independent variables.

If the distribution of the dependent variable is from the exponential family, it allows the
dependent variable to be heteroskedastic i.e. the variance is allowed to vary with the mean

which varies with the independent variables.

5.1.2 The Model

If the dependent variable is y, the GLM is given by -

y0—a(0)

fly) =cly,d)e (5.1)

g(p) =X"p (5.2)
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One can write popular probability distributions in the exponential form as given -

Distribution 6 a(0) ¢ E@y) V(="
B(n,p) I nlnl+e 1 np np(1l — p)
P (1) In e’ 1 p u
N(u,0?) 567 ot 1
G(u,v) — ~ln—0 5 pu s
I1G(u1, 0?) —# —/—20 ot w?
NB(p, x)  Ingfo —<Inl—re’ 1 p (14 k)

Table 5.1: Exponential Forms of Popular Distributions

Equation (5.1) describes the distribution of the dependent variable in the exponential fam-
ily canonical form. Equation(5.2) describes the transformation of the mean to be linearly
related to the independent variables in X.

The form of a(f) determines the exact distribution of the exponentially distributed depen-
dent variable.

The form of the link function, ¢g(x) describes how the mean of the dependent variable is
linked to the independent variables. g needs to be a monotonic and differentiable function,
such as a log function or square root.

Observations of y are assumed to be independent.

These equations work in the following fashion, given X, one can determine p from g(u).
Then one can determine 6 via a('Q) = 1. And now, given 6, y can be determined.

The word “linear” in GLM refers to the linearity of S and not X. Therefore it is known as

linear, because the coefficients of the model are linear.

5.1.3 Procedure of Generalized Linear Modelling

e A distribution f(y) and a(f) is chosen as in (3.1). This distribution chosen is cus-

tomized to the situation under consideration.

e A link function, g(4) is chosen. To simplify matters, one may choose the canonical”

link function corresponding to the different types of dependent variable distributions,

).

e The independent variables, X are then chosen, in terms of which g(u) is to be mod-

elled.
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e The model is fit to our training set data by estimating S and ¢. The fitting is done

using Maximum Likelihood Estimation.

e Prediction of the dependent variable values for our test set data is done and residuals

are checked.

5.1.4 The Link function

Canonical link functions are given in the table below.

The link function is canonical if g(1) = 6 = X* 3 corresponding to a(6).

Link function | ¢(u) | Canonical Link for

identity I Normal Distribution
log Inp | Poisson Distribution
power P Gamma(p=-1)

Inverse Gaussian(p=-2)

square root N/
logit In £~ | binomial

Table 5.2: Link Functions for Popular Distributions

5.1.5 Maximum Likelihood Estimation

The MLE for /5 and ¢ can be derived by maximizing the log-likelihood function given by -

yiti — a(0;)
¢

n

1B, 8) = In f(ys B,0) = 3 _{Ime(y:, 0) +

i=1

} (5.3)

which again assumes independent exponential family responses, y.
To find the maximum, Equation (5.3) is differentiated with respect to the parameters and

then the resulting equation is set to zero.

5.1.6 Assessing Fit of the Model

The best possible fit is obtained when the model is saturated, with the number of parameters

equal to the number of observations. The saturated log-likelihood is

(= 3 el 0+ 2= 20)

i=1

} (5.4)
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which is also the maximum possible log-likelihood value for y, given a(f).

The value obtained from (5.4) is compared to [, which is the maximum of the log-likelihood
value based on y and the given independent variables.

Deviance A is defined as the distance between the saturated model and fitted model, given

by -
A=2(0-1) (5.5)

Therefore, a large deviance indicates a poor fit.

The size of A is assessed relative to the x7._, distribution.%

5.2 Generalized Additive Models(GAMs)!®

5.2.1 Introduction

GAMs®! extends GLMs by including a sum of smooth functions of the covariates. The

general model structure for ¢ observations, is given by
9(i) = X70+ fr(z1) + folwa) + fs(wai, war) + ... (5.6)

where 11; = E(Y;) and Y;’s follow a distribution belonging to the Exponential Family.
Here, Y; is the dependent variable, X7 is a row vector representing strictly parametric
independent variables, 6 represents the corresponding parameter vector and the f;’s are
smooth functions of the smoothed independent variables.

Thus, the model provides considerable flexibility but the flexibility has a cost of two prob-
lems - We need to represent the smooth functions in some way and choose how smooth
they should be.

For simplicity, we consider only a simple model with upto 2 univariate smooth components.

5.2.2 Univariate Smooth Functions

Let us consider a model with only one smooth function of a covariate -

yi = f(zi) + & (5.7)
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where, y; is the dependent variable, z; is the independent variable, f is the smooth function
and ¢; are independent and identically distributed N(0, 0%) random variables. We assume

that z; lies in the interval [0, 1]

5.2.3 Regression Splines

For model to be linear, a basis (space of functions) containing the f is chosen such that the

i" basis function is b;(z) (assumed to be known), i = 1,2....q. Then,

ﬂm=§:M@& (5.8)

for some unknown parameter [3;

5.2.4 Cubic Splines

A cubic spline is a curve made by joining sections of a cubic polynomial joined so that the
resulting function is continuous and has continuous first and second derivatives.
Points of joining are known as knots, which must be chosen. Mostly, the knots are chosen

to be at evenly spaced points in the range of = values.

5.2.5 Controlling Smoothing

To control smoothing in the model, the basis dimension is kept constant, at a size larger
than is believed to be required so that the smoothing can be controlled by adding a penalty

to the least squares fitting objective. So instead of minimizing
Iy —X3 | (5.9)
we minimize

1
Iy — X5 [ +A / ()P de (5.10)

where the second term, representing the integrated square of the second derivative penalizes
models that are too wobbly. This trade off between model fitting and model smoothing is
determined by the value of the smoothing parameter, A. A straight line is obtained if A\ — oo
and an unpenalized regression spline estimate is obtained if A = 0.

Because f is linear in the parameters, 3;, one can write the penalty as a quadratic equation
47
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/0 (o) = 678

where S is a matrix of known coefficients. So our problem is now to minimize

Iy —XB |* +A\87Sp

with respect to 3.

It can be shown that minimizing (5.11), results in

B=(XTX+A8)"'X"y
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Chapter 6

Data and Preliminary Analysis

6.1 Provenance

The data were collected in two stretches from 26 December 2018 to 2"¢ January 2019
and from 18" March 2019 to 23"¢ March 2019. The data was collected at the Diabetology
department at GD Hospital & Diabetes Institute located at 139 A, Lenin Sarani, Bowbazar,
Kolkata, West Bengal-700013. The data was collected via face-to-face interviews with the

patients during the OPD hours between 10am and 1pm from Monday to Saturday.

6.2 Survey Methodology

We did not have access to trained medical personnel for the exercise and thus had to rely
on test reports and other measures which could be recorded without medical training.

Eye complications of diabetes such as Retinopathy, Glaucoma, Cataracts and Blindness
can lead to high costs of care.®” Similrly, kidney complications of diabetes such as Renal
insufficiency or Kidney failure can lead to high costs of care or even death >

Diabetic patients often have non-healing wounds®® due to neuropathy, vascular problems or
other complications. These can eventually lead to infections, gangrene and even result in
amputation.

All patients were asked to indicate if they had any eye complications, kidney complications
or any non-healing wounds.

Based on our own classification analysis, Age and number of pregnancies data was also

recorded.
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In terms of glucose tests, determination of glycated haemoglobin and fasting plasma glu-
cose concentrations alone is an acceptable alternative to measuring glucose concentration
two hours after challenge with 75 g glucose for the diagnosis of diabetes.®* Thus, HbAlc
(Glycated Haemogobin) levels along with both Fasting Plasma Glucose concentration and
Post-Prandial Glucose concentrations were recorded.

HDL and LDL Cholesterol levels are also recorded so as to asses the cardiovascular status
of the patients.

Sex of the patient is recorded as a further segmentation of the dataset.

Serum Creatinine levels, Albumin/Creatinine ratio were recorded which indicate severity
of kidney disease, if any.

Additionally, details of Alanine Transaminase (ALT), Aspartate Aminotransferase (AST),
Alkaline Phosphatase (ALP), Albumin/Globulin ratio and Gamma GT were recorded- all
of which are indicators of potential liver disease.

If the patient was currently prescribed insulin, this was recorded. The patients were en-
quired as to their annual expenditure on diabetes and if any recent major hospital spending
had been made by them, alongwith insurance information on the same.

The survey sheet is provided in Appendix - Section D

6.3 Collected Data

Being a low-cost clinic, GD Hospital & Diabetes Institute attracts diabetic patients in the
lower socio-economic strata. These patients usually do not have detailed medical tests such
as Liver function tests and kidney tests done and therefore do not possess that data.

Thus the variables relating to Liver Function test and Kidney function tests were removed.
Additionally, people do not possess diabetes insurance and therefore those questions had
to be disregarded in the final analysis as well. No patients with non-healing wounds were
encountered and therefore the variable was removed as it cannot be incorporated into any
model.

Finally, the data of the following variables -

1. Eye Complications (Y/N)

2. Kidney Complications (Y/N)
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3. Age (in years as of 15 Jan 2019)
4. Sex (M/F)
5. Height (in cms)
6. Weight (in kgs)
7. Body Mass Index
8. Number of Pregnancies
9. HbA1C level (in % terms)
10. Fasting Plasma Glucose Concentration (mg/dl)
11. Post-Prandial Glucose Concentration (mg/dl)
12. Blood Pressure Systolic
13. Blood Pressure Diastolic
14. HDL Cholesterol (mg/dl)
15. LDL Cholesterol (mg/dl)
16. Insulin Prescribed (Y/N)

17. Annual Spending on Diabetes (in INR)

A total of 44 records were collected but 3 records were discarded due to having more than

3 fields missing.
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6.4 Missing Data

No. of records | No. of Missing fields | Missing Fields
16 NIL -
HbA1C level in 3 records
6 ONE HDL Cholesterol in 2 records
FPGC in 1 record
1 TWO Systolic and Diastolic BP in 1 record
HDL and LDL Cholesterol in 10 records
3 THREE HbA1C, HDL and LDL Levels in 6 records

PP Glucose, HDL and LDL levels in 2 records

Table 6.1: Details of Missing Data

6.4.1 Dealing with Missing Data

The missing data in the 41 records were estimated using a Random Forest*® Regression

algorithm trained using 10-fold cross validation.

The R code for this is listed in Appendix - Section B.

6.5 Preliminary Analysis1¢18

The t-test carried out in the following tables is testing for significant differences in the

parameter values grouped by Sex.

6.5.1 Eye Complications

30

20

Count

Sex . Female . Male

Statistic Value
Males | Females | Overall
Yes 6 6 12
No 18 11 29

Eye Complications

Figure 6.1: Bar Plot of Eye Complications = Table 6.2: Summary Statistics of Eye Com-

plications
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6.5.2

40

30

Kidney Complications

Sex - Female - Male

Y

Kidney Complications

Statistic Value
Males | Females | Overall
Yes 0 1 1
No 24 16 40

Figure 6.2: Bar Plot of Kidney Complica- Table 6.3: Summary Statistics of Kidney

tions

6.5.3

60000

40000

20000

Annual Spending on Diabetes(in INR)

o

Age

Sex *©

Female -

Male

40

50

60
Age(in years)

70

80

Figure 6.3: Scatter Plot of Age
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Complications
- Value
Statistic Males | Females | Overall
Mean 57.25 52.29 55.19
Std. Dev. 12.60 10.18 11.78
1% Quantile | 46.75 44 45
Median 56 54 55
374 Quantile | 66.25 60 65
Min 40 37 37
Max 85 70 85
t-value df p-value
by Sex 1.38 38.23 0.1727

Table 6.4: Summary Statistics of Age




6.5.4

25

20

Count

Sex

6.5.5

Annual Spending on Diabetes(in INR)

60000

40000

20000

-20000

Figure 6.5: Scatter Plot of Height

Figure 6.4: Bar Plot of Sex

Kidney Complications

Height

Sex ° Female -*

Male

150

0 170
Height(in cms)
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Statistic Value
Males | Females | Overall
Count 24 17 41

Table 6.5: Summary Statistics of Sex

Statistic Value
Males | Females | Overall
Mean 166.41 | 153.29 160.97
Std. Dev. 4.94 7.47 9.20
1%t Quantile | 161.75 152 153
Median 166.5 152 161
37! Quantile | 170.25 155 168
Min 148 146 146
Max 185 165 165
t-value df p-value
by Sex 6.75 38.87 | 4.66x107°%

Table 6.6: Summary Statistics of Height




6.5.6 Weight

Sex Female * Male

Statistic Value
Males | Females | Overall
g soom Mean 64.91 | 57.88 62
g Std. Dev. 11.60 8.99 11.05
1°t Quantile | 57.75 54 55
2 Median 64.5 56 60
B - 3™ Quantile | 72.75 64 69
ED - ' Min 35 41 35
< Max 80 84 84
t-value df p-value
T % = w by Sex 2.18 | 38.62 | 0.0350
Weight(in kgs)
Figure 6.6: Scatter Plot of Weight Table 6.7: Summary Statistics of Weight
6.5.7 Body Mass Index
Sex Female « Male
60000 . .. Value
' . : Statistic Males | Females | Overall
/R Mean 23.34 24.63 23.88

Std. Dev. 3.58 3.67 3.63
1% Quantile | 21.70 22.07 21.77
Median 22.85 23.83 23.08
374 Quantile | 24.64 27.67 25.07

20000

Annual Spending on Diabetes(in INR)

Min 15.97 18.97 15.97

Max 32.40 32.45 32.45
20000 t-value df p-value
- o= - by Sex | —1.10 | 34.093 | 0.2706

Body Mass Index

Figure 6.7: Scatter Plot of Body Mass Index Table 6.8: Summary Statistics of Body Mass In-
dex
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6.5.8 Number of Pregnancies

Sex Female * Male

.. Value

= . Statistic
2 o003 Females
% Mean 2.41
Std. Dev. 1.73
S — 1%t Quantile 1
;@ Median 2
3 34 Quantile 2
% Min 1

Max 7

4
NUmber of Pregnancies

Figure 6.8: Bar Plot of Number of Pregnan- Table 6.9: Summary Statis-
cies tics of Number of Pregnan-
cies

6.5.9 HbAI1C level

Sex Female °* Male
60000 . .o Value
Statistic Males | Females | Overall
g . Mean 8.76 8.08 8.48
T s Std. Dev. | 2.83 | 153 | 238
£ . - 1% Quantile | 6.67 7.35 6.7
g ; Median 797 | 771 7.74
B 37 Quantile | 9.85 | 8.78 9.1
: Min 5.7 5.7 5.7
< Max 14.8 11.8 14.8
i t-value df p-value
° ’s 100 by Sex 0.98 36.90 | 0.3312

HbA1C Level(%)

Figure 6.9: Scatter Plot of HbAIC Level = Table 6.10: Summary Statistics of HbA1C Level
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6.5.10 Fasting Plasma Glucose Concentration

Sex Female * Male

60000 . Statistic Value
Males | Females | Overall
z . Mean 165.06 | 174.94 | 169.15
% 1000 Std. Dev. | 72.51 | 83.87 | 76.56
E ' 1°* Quantile | 114 112 112
5 Median 138 141 140
B \/\/—— 374 Quantile | 192 191 191
E £ Min 88 98 88
£ Max 350 348 350
: t-value df p-value
° o o by Sex —0.39 | 31.31 | 0.6973
Fasting Plasma Glucose Conc.(mg/dl)

Figure 6.10: Scatter Plot of Fasting Plasma Table 6.11: Summary Statistics of Fasting
Glucose Conc. Plasma Glucose Conc.

6.5.11 Post-Prandial Glucose Concentration

Sex Female °* Male

60000 . .o Value
Statistic Males | Females | Overall
g Mean 273.34 | 266.64 | 270.56
% soo0 Std. Dev. | 135.53 | 103.42 | 121.87
g ’ ' 15 Quantile | 194 176 194
m \/\/ Median 240 261 248
& o000 34 Quantile | 335.75 | 289 326
3 Min 119 154 119
£ i Max 663 522 663
o © t-value df p-value
1(IJO 2(;0 3;)0 4<|)o 5(IJO S(IJO by Sex 0.17 38.73 0.8586

Post-Prandial Glucose Conc.(mg/dl)

Figure 6.11: Scatter Plot of Post-Prandial Table 6.12: Summary Statistics of Post-Prandial
Glucose Conc. Glucose Conc.
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6.5.12 Blood Pressure Systolic

Sex Female * Male

60000 . Statistic Value
Males | Females | Overall
g Mean 126.91 | 126.28 | 126.65
g4 i Std. Dev. | 10.40 | 15.48 | 12.58
£ 1% Quantile | 120 120 120
. \N\ Median 123 120 120
g : . 374 Quantile | 132.5 130 130
. ; Min 110 100 100
%, : Max 150 160 160
t-value df p-value
o - o o by Sex 0.14 26.00 | 0.8846

Blood Pressure - Systolic(mmHg)

Figure 6.12: Scatter Plot of Systolic Blood Table 6.13: Summary Statistics of Systolic
Pressure Blood Pressure

6.5.13 Blood Pressure Diastolic

Sex Female * Male

Value
Males | Females | Overall
Mean 80.20 75.25 78.13
Std. Dev. 5.61 8.59 7.37

] ; 15 Quantile | 80 70 80
1000 : Median 80 70 80
: 34 Quantile | 80 80 80

Statistic

7 80000

Annual Spending on Diabetes(in INR]

i Min 70 60 60
i Max 100 90 100
t-value df p-value
p - % . 100 by Sex 2.10 25.50 0.04

Blood Pressure - Diastolic(mmHg)

Figure 6.13: Scatter Plot of Diastolic Blood Table 6.14: Summary Statistics of Diastolic
Pressure Blood Pressure

58



6.5.14 HDL Cholesterol

Sex Female * Male

HDL CHolesterol(mg/dl)

60000 Statistic Value
Males | Females | Overall
g Mean 60.12 | 64.83 | 62.08
g4 Std. Dev. | 22.76 | 24.10 | 23.14
5 1%t Quantile | 45.39 45.8 45.62
Median 53.09 | 65.84 | 53.18
34 Quantile | 74.61 | 87.90 | 82.59
Min 31 29 29
< Max 114.14 | 98.37 | 114.14
t-value df p-value
. by Sex —0.63 | 33.41 | 0.5324

Figure 6.14: Scatter Plot of HDL Choles- Table 6.15: Summary Statistics of HDL Choles-

terol terol
6.5.15 LDL Cholesterol
Sex Female * Male
60000 .o Value
Statistic Males | Females | Overall
g Mean 70.03 | 59.49 65.66
L Std. Dev. | 33.14 | 3592 | 34.29
g , 15t Quantile | 44.19 | 42.15 | 42.49
- Median 56.5 | 43.58 | 47.84
R . : 34 Quantile | 96.75 63 80
I Min | 40.32 | 34 34
<o Max 170 154 170
t-value df p-value
. o by Sex 0.95 32.81 | 0.3462
LDL Cholesterol(mg/dl)

Figure 6.15: Scatter Plot of LDL Cholesterol Table 6.16: Summary Statistics of LDL Choles-

terol
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6.5.16 Insulin Prescribed

Sex - Female - Male

30

20

Count

1
N Y
Kidney Complications

Figure 6.16: Bar Plot of Insulin Prescribed Table 6.17

Statistic Value
Males | Females | Overall
Yes 5 2 7
No 19 15 34

Prescribed

6.5.17 Annual Spending on Diabetes

Sex - Female - Male

O & & PSS S S S

S & & S & & S S S S

RN AN S S Sl ST
Annual Spending(in INR)

Figure 6.17: Histogram of Annual Spending
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: Summary Statistics of Insulin

Statistic Value
Males Females | Overall
Mean 24591.67 | 22852.94 | 23870.73
Std. Dev. 16569.56 | 14426.28 | 15552.03
1% Quantile 12000 12000 12000
Median 23500 22000 23000
37¢ Quantile | 36000 36000 36000
Min 2500 2500 2500
Max 60000 48000 60000
t-value df p-value
by Sex 0.35 37.24 0.7729

Table 6.18: Summary Statistics of Annual Spending



6.6 Correlations!?

Correlations between independent variables

0.61 0.30

160

0.33 .54 meoene s
100

Figure 6.18: Correlation between Independent Variables

On the basis of Fig 6.18, it is concluded that there exists

a) a positive correlation between

(1) Weight and Body Mass Index;

(i1) Weight and Height;

(iii) Post-Prandial Glucose Concentration and Fasting Plasma Glucose Concentra-

tion;
(iv) Diastolic Blood Pressure and Systolic Blood Pressure;
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(v) HbAlc Level and Post-Prandial Glucose Concentration;

(vi) HbAlc Level and Fasting Plasma Glucose Concentration.
b) anegative correlation between

(i) Number of Pregnancies and Height;

(i1) HDL Cholesterol and LDL Cholesterol.
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Chapter 7

Results

7.1 Generalized Linear Model

A 10-fold cross validation*¥ Generalized Linear Model with a split ratio®" of 80% in the
training data is run. Various diagnostic curves as well as prediction and fitted value curves'®1’
are plotted.

The models has been fitted to a Gaussian family with identity as link function. The response

variable is taken to be the natural logarithm in order to avoid negative predictions.

The code is provided in Section B of the Appendix.
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Fitted Values - Annual Spending(in INR)

Figure 7.1: Fitted Values vs Observed Val-

ues

120000

90000

60000

30000

Observed Values - Annual Spending(in INR)

1 1 1 1 1

(=]

30000 60000 90000 120001
Predicted Values - Annual Spending(in INR)

Figure 7.2: Predicted Values vs Observed

Values
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Variable Statistic
Estimate | Std Error | p-value

(Intercept) -54.24 4473 0.242
Eye Complications 0.50 0.40 0.229
Age 0.024 0.019 0.219
Sex -0.67 0.78 0.403
Height 0.37 0.28 0.209
Weight -0.48 0.36 0.197
BMI 1.34 0.93 0.169
Pregnancies -0.40 0.19 0.055
HbAIC level -0.06 0.13 0.614
FPGC 0.001 0.005 0.787
PPGC -0.0001 0.002 0.949
BP(D) -0.039 0.04 0.336
BP(S) 0.045 0.02 0.058
HDL -0.014 0.01 0.171
LDL 0.005 0.005 0.362
Insulin 0.075 0.63 0.906

Statistic Value df

Null Dev. 24.591 31

Residual Dev. 10.71 16

Pseudo-R? 0.564

Table 7.1: Summary Statistics of Gaussian GLM

0.75

Count

0.25

0.00
1 1

1

-1.0 -0.5

0.0
Residual Values

0.5

Figure 7.3: Histogram of Residuals
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Figure 7.4: Diagnostic Graphs for GLM

7.2 Generalized Additive Models

A Generalized Additive Model® with a split ratio®! of 80% in the training data is run.

Various diagnostic curves as well as prediction and fitted value curves'®!’

are plotted.

The models are fit to a Gaussian family. The natural logarithm of Annual Spending is used
as the response variable in order to avoid negative predictions.

The first model run includes a smoothing term for all our continuous variables and para-
metric forms for all other categorical data.

If the estimated degrees of freedom for any smoothed variable is 1.00, the smoothing term
of that variable is removed and it is added as a parametric variable in the model instead.This

step is repeated until all remaining smoothed variables have their estimated degrees of free-

dom > 1. Parametric variables which had very high p-values, i.e. > 0.7 were also removed
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as they served no purpose.

e 6 variables (HbAIC level, Fasting Plasma Glucose Conc., PP Glucose Conc., Sys-
tolic Blood Pressure. HDL Cholesterol and LDL Cholesterol) were removed from

smoothed terms to parametric form in model 2.

e 3 variables(Fasting Plasma Glucose Conc., HbAIC level and PP Glucose Conc.)

were removed completely from the model in model 3.

e Subsequently the Eye Complications parameter is removed in model 4, followed by

removal of HDL Cholesterol in model 5.

e With enough data points now not involved in estimating smoothing parameters, the

number of degrees of freedom of Age are increased in model 6.
e Sex is removed as a variable in model 7.

e Finally, Number of Pregnancies is moved from a smoothed term to a parametric term
and is retained there as it was significant but had 1.0 estimated degrees of freedom.

This was Model 8 our final model.
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7.2.1 Initial Model (Model 1)

)

[0}
o
[s]
S
[s]

40000

20000

Observed Values - Annual Spending(in INR]

20000 0000 60000
Fitted Values - Annual Spending(in INR)

Figure 7.5:
ues

60000

40000

20000

Predicted Values - Annual Spending(in INR)

20000 40000 60000
Observed Values - Annual Spending(in INR)

Figure 7.6: Predicted Values vs Observed
Values
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Variable Statistic

Estimate | Std. Dev. | p-value
(Intercept) 10.32 0.56 3.6e-12
Eye Com- 0.30 0.36 0.419
plications
Sex -1.11 0.85 0.209
Insulin 0.41 0.58 0.482

A EDF p-value

s(Age) 0.825 1.59 0.288
s(BMI) 0.480 1.78 0.029
s(Preg) 1.01 1.33 0.142
s(HbA1C) 209522 1.00 0.995
s(FPGC) 161524 1.00 0.667
s(PP) 117650 1.00 0.700
s(BP-D) 5.96 1.17 0.596
s(BP-S) 290822 1.00 0.066
s(HDL) 255081 1.00 0.248
s(LDL) 154677 1.00 0.243
Statistic Value
Adj. R? 0.37
Dev.  Ex- 67.3%
plained

Fitted Values vs Observed Val- Table 7.2: Summary Statistics of Gaussian GAM

Model 1

Count

0.5

0.0

1 1 1 1 1
-0.5 0.5

0.0
Residual Values

Figure 7.7: Histogram of Residuals
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7.2.2 Final Model(Model 8)

Variable Statistic
Estimate | Std. Dev. | p-value
_ (Intercept) 0.45 1.88 0.81
2 cooco Pregnancies | -0.23 0.07 | 0.005
: BP-S 0.06 0.01 0.000
& LDL 0.009 0.002 | 0.005
g oo Insulin 0.99 036 | 0.013
f A EDF | p-value
= s s(Age) 16.79 3.507 0.074
3 s(BMI) 14.84 2.387 0.010
° . s(BP-D) 0.17 1.897 | 0.004
o -" Statistic Value
tIJ izocl)oo 40(IJOO - 60(IJOO Ad_] . R2 0641
Fitted Values - Annual Spending(in INR) DeV_ EX- 77 ) 8 %
plained

Figure 7.10: Fitted Values vs Observed Val- Table 7.3: Summary Statistics of Gaussian GAM
ues Model 8
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The interaction of the smoothed functions of Age, BMI and Diastolic Blood Pressure are

shown here.

linear predictor linear predictor

BMI
Blood.Pressure..Diastolic.

Age Age

Figure 7.15: Interaction between smoothed Figure 7.16: Interaction between smoothed
Age and BMI terms Age and Diastolic Blood Pressure terms

linear predictor

BMI

60 T a0 a0 100

Blood Pressure. Diastolic.

Figure 7.17: Interaction between smoothed BMI and Diastolic Blood Pressure terms
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7.3 Conclusion

The histogram of residuals by the Generalized Linear Model (GLM) (Figure 7.4) is mostly
normal, but Predicted values are not in line with the Observed data points (Figure 7.3).
The Diagnostic curves (Figure 7.5) show that the residuals of the fitted/predicted values
are overall around zero, standard deviance residuals are mostly normal, the Scale-Location

graph as well shows a mostly straight line.

We see a huge jump in p-values, adjusted R? and Deviance Explained values between
Model 1 and Model 8 of the Generalized Additive Models (GAMs). Apart from 2 values,
the predicted values are close to the observed values. We see that the smoothed functions

of all three smoothed functions - Age, BMI and Diastolic Blood Pressure are non-linear.

Also, overall GAM fits better to the data than GLM. It is seen that
1. there is a negative relationship between
(i) the number of pregnancies has an inverse relationship to the annual spending.
2. there is a positive relationship between
(i) Systolic Blood Pressure and Annual Spending (probably functioning as an in-
dicator cardiovascular disease)
(i1) LDL Cholesterol and Annual Spending
(iii) Insulin Prescription and Annual Spending
The smoothed functions of BMI indicate that both high and low BMIs add more to the
annual spending.
Similarly for Diastolic Blood Pressure, low values cause a higher prediction of annual
spending than the average values. The curve also tilts upward as the diastolic blood pressure
increases.

For Age, we see an increasing trend in spending once age crosses 50, which only reverses

when the age crosses 68.
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Part 111

Annual Spending Clustering based on

Medical Indicators
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Chapter 8

Machine Learning Clustering

Algorithms

We divide our dataset into different classes so as to create Health Groups and provide an
insurance premium band to the customers. This is done via clustering algorithms discussed

below:

8.1 K-Means Clustering

8.1.1 Introduction

K-means clustering® is a partitional clustering algorithm that uses the Squared Error cri-
terion. It is one of the simplest algorithms that employ the squared error criterion.®” Par-
titional algorithms are best suited for large sets, where dendrograms are computationally
expensive. But, with such partitional algorithms comes the problem of choosing the num-
ber of desired output clusters. This problem is solved by the Modified Hubert’s I' (MH)
Statistic.®® The algorithm is run multiple times with different starting states and the best

criterion value is then used as the output cluster.

8.1.2 The Algorithm

The squared error criterion for clustering is given by

K nj
e=>> a2 —¢ | (8.1)

=1 i=1
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()

where z;” is the i" pattern that belongs to the j cluster and ¢; is the centroid of the ;%
cluster.
Steps

e Given a particular K, the algorithm chooses K cluster centers at random points inside

the hypervolume of observations.

The algorithm then assigns each observation to its closest cluster center.

The cluster centers are then recomputed using the current cluster memberships in an

effort to minimize the squared error criterion.

When the decrease in the squared error criterion falls below a certain threshold, the

convergence criteria is met and the algorithm stops.

8.1.3 Elbow method

The Elbow method creates a graph of the number of clusters vs the Weighted Sum-of-
Squares. The optimum number of clusters would be the one that would be closest point to

the origin.

8.1.4 NbClust

The NbClust®™ method uses 30 different indices to score the optimum number of clusters.

The number of clusters is then chosen based on majority vote of the 30 indices.

8.2 Hierarchical Clustering®

Hierarchical clustering is sequentially agglomerative i.e. it merges clusters at every step
until only 1 cluster remains. This generates a strictly nested hierarchy of n partitions (n =
number of observations). We can then select a clustering level that represents the specific
number of clusters of interest.

Methods for agglomeration are minimum variance method,”!' complete and single-link

methods’? and non-parametric U statistic.”
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The other method of hierarchical clustering is the divisive method, a top-down approach
where all observations are in one cluster and are subsequently broken until there are n

clusters. This method is based on minimizing the within cluster error sum of squares.”
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Chapter 9

Results

9.1 Finding the correct number of Clusters

The annual spending data is clustered using the hierarchical clustering and K-means clus-
tering methods. A decision tree using the medical variables as independent variables and
the cluster number as the dependent variable is also run. The resulting decision tree is di-
vided based on medical variables and has end nodes as the cluster number, which are mostly
homogenous classes of annual spending.

Both the elbow method and the NbClust majority rule recommend 3 clusters. Thus our
annual spending data is divided into 3 clusters.

The Code!®170MHTT ig in Appendix - Section C.

Optimal number of clusters
Elbow method
700

800

* Among all indices:

* 6 proposed 2 as the best number of clusters
* 10 proposed 3 as the best number of clusters
* 1 proposed 4 as the best number of clusters
* 1 proposed 5 as the best number of clusters
* 1 proposed 6 as the best number of clusters
* 1 proposed 8 as the best number of clusters
D * 1 proposed 9 as the best number of clusters
h * 1 proposed 12 as the best number of clusters
* 2 proposed 15 as the best number of clusters

500

“* Conclusion *#¥

TotalWithin Sum of Square

* According to the majority rule, the best number of clusters is 3

'
'
I
1 2 3 4 5 (-] 7 i B 10
MNumber of clusters k

Figure 9.1: Elbow Method Figure 9.2: NbClust Results
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9.2 Clustering Results

The annual spending thus clustered is represented as -

clusters [_] First [] Second [] Third

0.00020
0.00015

0.00010

Density

0.00005

0.00000
1 I
60000

0 20000 40000
Annual Spending

Figure 9.3: Clustered Annual Spending

9.3 Decision Tree-Clustering Results

From our decision tree, we get the following -

First First
46 AT 37 _?ﬁ.':g”d
100% Ir

Age <55

—BMI < 25— ——HDL.Cholesterol >= 80

HbA1C.level < 8.8

HDL.Cholesterol >= 45

First Third First Second Third Third
82 00 08|25 14 57| |67 A7 17| |.00 B0 20| (.00 25 7¥5||.17 .00 .83
32% 1% 15% 12% 10% 15%

Figure 9.4: Final Decision Tree
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9.4 Conclusions

For Annual Spending, three clusters are obtained. The major medical indicators that place
patients in particular categories are Age, BMI, HDL Cholesterol and HbA1C Level.

One can easily see that when Age< 65 and BMI< 25, people are relegated into the lowest
annual spending cluster.

Better medical indicators lead to the decision tree classifying one into a lower mean annual

spending cluster.
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Chapter 10

Conclusions

In conclusion, from the first part of our thesis, it can be obtained that indicators including
Plasma Glucose Concentration 2hrs into an OGTT, Age, Body Mass Index, Triceps Skin
Fold Thickness and Diastolic Blood Pressure have the most predictive power in terms of
predicting onset of diabetes.

Thus, a non-diabetic should make sure that these quantities are kept in check so as to mini-

mize risk of diabetes.

In the second part of our thesis Annual spending on diabetes is succesfully linked to medical
indicators of diabetes. The most important medical indicators here turn out to be Number
of Pregnancies, Systolic and Diastolic Blood Pressure, LDL Cholesterol, Prescription of
Insulin, Age and BMI. All variables except Number of Pregnancies are positively correlated
with annual spending, indicating that to keep costs down, one should control their BMI,

Diastolic and Systolic Blood Pressure and LDL Cholesterol.

The third part of our thesis shows that Annual Spending data can be clustered into three
distinct patches. After running a decision tree through the same, based on medical indica-
tors, better health is usually a sign of lower annual spending. The main deciding features
here used were Age, BMI, HDL Cholesterol and HbA1C level values.

Thus, Glucose measuring quantities, Fasting Plasma Glucose Concentration, Post-Prandial
Glucose Concentration and HbA1C levels are not correlated with annual spending but
HbAIC levels make a hyperplane that divides our data well in terms of annual spending

clusters.
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Chapter 11

Future Work

Seeing as the thesis has been plagued with lack of data, we recommend a long-term in-
depth study of 18 — 24 months, where monthly patient data is noted along with monthly
spending.

Doing so will result in a time-series dataset via which we can find causes of spikes and lulls
in spending based on medical data.

One can include variables such as the Triceps Skin Fold thickness, Liver,Kidney and car-
diovascular disease indicators as well as listing other diabetic problems such as podiatric
problems.

Spending itself can be broken down by drug, procedure or physician visits etc. to give a
clearer picture.

With such a study, we believe a much more concrete link can be established between Spend-
ing on diabetes and patients’ medical indicators which would allow widespread diabetes’

insurance penetration by offering patients competitive and affordable plans.
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Appendix A

Section A

Al

df <—

3 df <—

df <—
df <—
df <—

7 df <—

df$Outcome [ df$Outcome ==

Preliminary Analysis

read.csv(” diabetes.csv”)

df [!(df$BloodPressure==0) ,]
df [!(df$SkinThickness==0) ,]
df [ (df$Glucose==0) ,]

df [!(df$BMI==0) ,]

df [!(df$Insulin==0),]

df$Outcome [ df$Outcome == ”1”] <— ”Diabetic”

df$Outcome <— as.factor (df$Outcome)

”0”] <— ”"Non—Diabetic’

df$Outcome <— factor (df$Outcome, levels = c(”Non—Diabetic”,” Diabetic ™))

library (ggplot2)

library (ggthemes)

library (corrgram)

H#

ggplot () +geom_density (aes(x = df$Age, fill= df$Outcome), alpha =

0.4) +

theme_economist ()+ theme(legend. position="top”)+ xlab(”Age”)+ylab(”

Density )+

scale_fill_discrete (name = ”Outcome”, labels

99

=c(”Non—Diabetic”,”



Diabetic”))

3 ggsave (" Age.png”)

mean (df$Age)

aggregate (df$Age " df$Outcome , FUN=mean)

sd(df$Age)

aggregate (df$Age ~df$Outcome , FUN=sd)

quantile (df$Age)

H#

> aggregate (df$Age~df$Outcome , FUN=quantile)

ggplot() +geom_density (aes(x = df$BMI, fill= df$Outcome), alpha = 0.4) +
theme_economist ()+ theme(legend. position="top”)+ xlab(”BMI”)+ylab (”
Density ”)+

scale_fill _discrete (name = ”QOutcome”, labels =c(”’Non—Diabetic”,”

44

45

46

47

48

49

50

51

v
)

N

4

Diabetic”))
ggsave ("BMI. png”)

> mean (df$BMI)
; aggregate (df$BMI~df$Outcome , FUN=mean)

sd (df$BMI)

aggregate (df$BMI~df$Outcome , FUN=sd)

quantile (df$BMI)

aggregate (df$BMI~df$Outcome, FUN=quantile)

ggplot() +geom_density (aes(x =
0.4) +

theme_economist ()+ theme(legend. position="top”)+ xlab(” Insulin \

df$Insulin ,

100

fill= df$Outcome) ,



56

57

)
N

U003BCIU/ml”)+ylab (” Density ”)+

scale_fill _discrete (name = ”Outcome”,

Diabetic”))

ggsave (" Insulin.png”)

mean(df$Insulin)

labels =c(”Non—Diabetic”,”

aggregate (df$Insulin "df$Outcome , FUN=mean)

sd(df$Insulin)

quantile (df$Insulin)

s aggregate (df$Insulin “df$Outcome , FUN=sd)

7 aggregate (df$Insulin ~df$Outcome, FUN=quantile)

H#

ggplot () +geom_density (aes(x =
alpha = 0.4) +

df$SkinThickness , fill= df$Outcome),

theme_economist ()+ theme(legend. position="top”)+ xlab(” Triceps Skin

Fold Thickness (mm)”)+ylab (” Density ")+

scale_fill_discrete (name = ”Outcome”,

Diabetic”))
ggsave (” Skin.png”)

7 mean(df$SkinThickness)

labels =c(”Non—Diabetic”,”

aggregate (df$SkinThickness ~df$Outcome , FUN=mean)

sd (df$SkinThickness)

aggregate (df$SkinThickness ~df$Outcome , FUN=sd)

s quantile (df$SkinThickness)

aggregate (df$SkinThickness “df$Outcome , FUN=quantile)
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98

99

100

101

102

103

104

105

106

107

108

109

ggplot() +geom_density (aes(x = df$BloodPressure, fill= df$Outcome),
alpha = 0.4) +
theme_economist ()+ theme(legend.position="top”)+ xlab(” Diastolic Blood
Pressure (mmHg) ”)+ylab (” Density ")+
scale_fill_discrete (name = ”Qutcome”, labels =c(”Non—Diabetic”,”
Diabetic ™))
ggsave ("BP.png”)

; mean(df$BloodPressure)

aggregate (df$BloodPressure “df$Outcome , FUN=mean)

sd(df$BloodPressure)
aggregate (df$BloodPressure “df$Outcome , FUN=sd)

quantile (df$BloodPressure)
aggregate (df$BloodPressure "df$Outcome , FUN=quantile)

H#

ggplot () +geom_density (aes(x = df$Glucose, fill= df$Outcome), alpha =
0.4) +
theme_economist ()+ theme(legend. position="top”)+ xlab(”Plasma Glucose
Conc. at 2Hrs in OGTIT(mg/dl)”)+
ylab (” Density ”)+scale_fill_discrete (name = ”Outcome”, labels =c(”Non—
Diabetic”,” Diabetic”))

ggsave (" Glucose .png”)

mean (df$Glucose)
aggregate (df$Glucose " df$Outcome , FUN=mean)

> sd(df$Glucose)
3 aggregate (df$Glucose "df$Outcome , FUN=sd)

quantile (df$Glucose)
aggregate (df$Glucose "df$Outcome, FUN=quantile)
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ggplot() +geom_density (aes(x = df$Pregnancies, fill= df$Outcome), alpha
= 0.4) +
theme_economist ()+ theme(legend.position="top”)+ xlab (”Number of Times
Pregnant”)+ylab (” Density ”)+
scale_fill _discrete (name = ”Outcome”, labels =c(”’Non—Diabetic”,”
Diabetic”))

ggsave (" Preg.png”)

mean ( df$Pregnancies)

aggregate (df$Pregnancies “df$Outcome , FUN=mean)

sd(df$Pregnancies)
aggregate (df$Pregnancies “df$Outcome , FUN=sd)

» quantile (df$Pregnancies)

53 aggregate (df$Pregnancies “df$Outcome, FUN=quantile)

1

37

H#

ggplot() +geom_density (aes(x = df$DiabetesPedigreeFunction, fill=
df$Outcome ), alpha = 0.4) +
theme_economist ()+ theme(legend. position="top”)+ xlab(” Diabetes
Pedigree Function”)+ylab (” Density”)+
scale_fill _discrete (name = ”QOutcome”, labels =c(”’Non—Diabetic”,”
Diabetic”))

ggsave ("DPF.png”)

> mean(df$DiabetesPedigreeFunction)

s aggregate (df$DiabetesPedigreeFunction ~df$Outcome, FUN=mean)

sd(df$DiabetesPedigreeFunction)

, aggregate (df$DiabetesPedigreeFunction “df$Outcome , FUN=sd)

; quantile (df$DiabetesPedigreeFunction)

aggregate (df$DiabetesPedigreeFunction ~df$Outcome, FUN=quantile)
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156

159

160

161

162

163

16:

165

166

167

168

169

)

ggplot() +geom_bar(aes (df$Outcome, fill = df$Outcome), color = ”black”)+
ylab (" Count”) + xlab (”Outcome”)+ theme_economist()+
scale_fill _discrete (name = ”Outcome”, labels =c(”’Non—Diabetic”,”
Diabetic”))+ theme(legend.position="none”)

ggsave (7 Outcome . png”)

length (df$Outcome [df$Outcome=="Diabetic ’])
length (df$Outcome [ df$Outcome=="Non—Diabetic ”’])

H#

png(filename="Corr.png”)

corrgram (df, order=TRUE,
main="Correlations between independent variables”,
lower.panel=panel.cor, upper.panel=panel.pie,
diag.panel=panel .minmax, text.panel=panel.txt)

dev.off ()

A.2 Logistic Regression

library (pROC)

library (caret)

s library (caTools)

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data

df <— df[!(df$BloodPressure==0),]
df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]

df <— df[!(df$BMI==0),]

df <— df[!(df$Insulin==0),]

3 set.seed(06061968)
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#Categorical Data
df$Outcome <— as.factor (df$Outcome)

df$Outcome <— factor (df$Outcome ,labels = c¢(”’No”,”Yes”))

#Splitting data into training and test sets.

split = sample.split (df$Outcome, SplitRatio = 0.75)
training_set = subset(df, split == TRUE)

3 test_set = subset(df, split == FALSE)

#Fitting the Model

fitControl <— trainControl (method = “cv”,number =10, summaryFunction=
twoClassSummary ,
classProbs=T, savePredictions = T)
Ireg<—train (Outcome ™., data=training_set ,method="glm”,family=binomial (),

trControl=fitControl)

#Making Predictions on test set

13 pred <— predict(lreg ,newdata = test_set ,type="prob”)

pred2 <— predict(lreg ,newdata = test_set ,type="raw”)

;7 #Confusion Matrix

confusionMatrix (test_set$Outcome , pred2)

#ROC Curve

rocCurve.lreg <— roc(test_set$Outcome ,pred[,”Yes”])

3 png ("ROC-Lreg.png”)

plot(rocCurve.lreg ,col=c(4))

s dev.off ()

#AUC metric

¢ auc(rocCurve.lreg)

#varlmp

varlmp (lreg)
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A.3 K-Nearest Neighbours

library (pROC)

> library (caret)

s library (caTools)

28

)

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data

df <— df[!(df$BloodPressure==0),]
df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]

df <— df [!(df$BMI==0) ,]

df <— df[!(df$Insulin==0),]

3 set.seed (06061968)

#Categorical Data

, df$Outcome <— as.factor (df$Outcome)

df$Outcome <— factor (df$Outcome , labels = c(”No”,”Yes”))

#Splitting data into training and test sets.

split = sample.split(df$Outcome, SplitRatio = 0.75)
training_set = subset(df, split == TRUE)

test_set = subset(df, split == FALSE)

fitControl <— trainControl (method = “cv”,number =10, summaryFunction=
twoClassSummary ,
classProbs=T, savePredictions = T)
knnFit <— train (Outcome ~ ., data = training.set , method = “knn”,
trControl = ctrl ,
preProcess = c(”center”,”scale”))

#Making Predictions on test set

pred <— predict(knnFit,newdata = test_set ,type="prob”)

2 pred2 <— predict(knnFit,newdata = test_set ,type="raw”

@

O

#Confusion Matrix

confusionMatrix (test_set$Outcome , pred2)
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)

#ROC Curve

rocCurve .knn <— roc(test_set$Outcome ,pred[,” Yes”])

png ("ROCKNN. png”)

plot(rocCurve .knn,col=c(4))

> dev.off ()

#AUC metric

s auc(rocCurve .knn)

#varlmp

varlmp (knnFit)
A.4 Support Vector Machines

A.4.1 Linear Kernel

library (caTools)

library (caret)

:» library (pROC)

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data

7 df <— df[!(df$BloodPressure==0),]

df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]

df <— df[!(df$BMI==0) ,]

df <— df[!(df$Insulin==0),]

3 set.seed(06061968)

s #Categorical Data

df$Outcome <— as.factor (df$Outcome)

7 df$Outcome <— factor (df$Outcome , labels

#Splitting data into training and test

split = sample. split(df$Outcome, SplitRatio

training_set = subset(df, split == TRUE)

107
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test_set = subset(df, split == FALSE)

#Fitting the Model

tL)

fitControl <— trainControl (method = “cv”,number =10, summaryFunction=

twoClassSummary ,

classProbs=T, savePredictions = T)

7 svmfit_lin <—train (Outcome ™., data=training._set ,method="svmLinear”,

preProcess = c(”center”, ”scale”),

tuneLength = 10,trControl=fitControl)

#Making Predictions on test set

pred <— predict(svmfit_lin ,newdata = test_set ,type="prob”)

13 pred2 <— predict(svmfit_lin ,newdata = test_set ,type="raw”)

48

4

)

#Confusion Matrix

confusionMatrix (test_set$Outcome , pred2)

#ROC Curve

rocCurve.svm_lin <— roc(test_set$Outcome ,pred[,” Yes”])

png ("ROC-SVML. png ™)

plot(rocCurve.svm_lin, col=c(4))

s dev. off ()

s #AUC metric

auc (rocCurve.svm_lin)

#varlmp

varlmp (svmfit_lin)

A.4.2 Radial Kernel

library (pROC)

library (caret)

5 library (caTools)

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data
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df <— df[!(df$BloodPressure==0),]
df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]

df <— df [!(df$BMI==0) ,]

df <— df[!(df$Insulin==0),]

3 set.seed(06061968)

#Categorical Data
df$Outcome <— as.factor (df$Outcome)

df$Outcome <— factor (df$Outcome , labels = c(”No”,”Yes”))

#Splitting data into training and test sets.

split = sample.split(df$Outcome, SplitRatio = 0.75)
training_set = subset(df, split == TRUE)

; test_set = subset(df, split == FALSE)

#Fitting the Model
fitControl <— trainControl (method = ”cv”,number =10, summaryFunction=
twoClassSummary ,

classProbs=T, savePredictions = T)

svmfit_rad <—train (Outcome ™. ,data=training_set ,method="svmRadial”,
preProcess = c(”center”, ”scale”),

trControl=fitControl)

5 #Making Predictions on test set

pred <— predict(svmfit_rad ,newdata = test_set ,type="prob”)

pred2 <— predict(svmfit_rad ,newdata = test_set ,type="raw”)

#Confusion Matrix

confusionMatrix (test_set$Outcome , pred2)

#ROC Curve

> rocCurve.svm_rad <— roc(test_set$Outcome ,pred[,” Yes”])
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png ("ROC-SVMR. png ™)
plot(rocCurve.svm_rad, col=c(4))

dev.off ()

#AUC metric

auc (rocCurve.svm_rad)

#varlmp

varlmp (svmfit_rad)

A.5 Nave Bayes

library (pROC)

> library (caret)

s library (caTools)

26

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data

df <— df[!(df$BloodPressure==0),]
df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]

df <— df [!(df$BMI==0),]

df <— df[!(df$Insulin==0),]

3 set.seed(06061968)

#Categorical Data

df$Outcome <— as.factor (df$Outcome)

7 df$Outcome <— factor (df$Outcome ,labels = c(”No”,”Yes”))

#Splitting data into training and test sets.

split = sample. split (df$Outcome, SplitRatio = 0.75)
training_set = subset(df, split == TRUE)

test_set = subset(df, split == FALSE)

#Fitting the Model
fitControl <— trainControl (method = “cv”,number =10, summaryFunction=
twoClassSummary ,

classProbs=T, savePredictions = T)

110



nbfit <—train (Outcome . ,data=training_set ,method="nb”,preProcess

center”, ”scale”),

trControl=fitControl)

#Making Predictions on test set

pred <— predict(nbfit,newdata = test_set ,type="prob”)

13 pred2 <— predict(nbfit ,newdata = test_set ,type="raw”)

s #Confusion Matrix

confusionMatrix (test_set$Outcome , pred2)

#ROC Curve

rocCurve.nb <— roc(test_set$Outcome ,pred[,”Yes”])

png ("ROGNB. png™)

> plot(rocCurve.nb,col=c(4))
3 dev. off ()

#AUC metric

, auc (rocCurve .nb)

s #varlmp

varlmp (nbfit)

A.6 Decision Tree

library (pROC)

> library (caret)

s library (caTools)

library (party)

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data

df <— df[!(df$BloodPressure==0),]
df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]

df <— df[!(df$BMI==0),]

> df <— df[!(df$Insulin==0),]
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set.seed(06061968)

#Categorical Data
df$Outcome <— as.factor (df$Outcome)
df$Outcome <— factor (df$Outcome ,labels = ¢(”No”,”Yes”))

#Splitting data into training and test sets.

split = sample.split(df$Outcome, SplitRatio = 0.75)

> training_set = subset(df, split == TRUE)
» test_set = subset(df, split == FALSE)

#Fitting the Model

tL)

fitControl <— trainControl (method = “cv”,number =10, summaryFunction=

twoClassSummary ,

classProbs=T, savePredictions

dtree <—train (Outcome”™ .,data=training_set ,method="ctree”,trControl=

fitControl)

#Plotting the Decision Tree

2 png(filename = ”DT.png”, width = 1600, height = 1200)
35 plot(dtree$finalModel)

46

47

49

dev.off ()

#Making Predictions on test set

pred <— predict(dtree ,newdata = test_set ,type="prob”)

pred2 <— predict(dtree ,newdata = test_set ,type="raw”)

#Confusion Matrix

confusionMatrix (test_set$Outcome , pred2)

#ROC Curve

s rocCurve . dtree <— roc(test_set$Outcome ,pred[,” Yes”])

png ("ROCDT. png”)
plot(rocCurve . dtree ,col=c(4))
dev.off ()
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#AUC metric

s> auc(rocCurve . dtree)

#varlmp

varlmp (dtree)

A.7 Random Forest

library (pROC)

> library (caret)

s library (caTools)

library (randomForest)

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data

df <— df[!(df$BloodPressure==0),]
df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]

df <— df[!(df$BMI==0),]

> df <— df[!(df$Insulin==0),]

set.seed (06061968)

#Categorical Data
df$Outcome <— as.factor (df$Outcome)
df$Outcome <— factor (df$Outcome , labels = c¢(”No”,”Yes”))

#Splitting data into training and test sets.
split = sample. split(df$Outcome, SplitRatio = 0.75)
training_set = subset(df, split == TRUE)

;s test_set = subset(df, split == FALSE)

#Fitting the Model
fitControl <— trainControl (method = ”cv”,number =10, summaryFunction=
twoClassSummary ,

classProbs=T, savePredictions = T)

rfFit <— train (Outcome ~ ., data = training_set , method = "rf”,
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trControl = fitControl ,

9 9

preProcess = c(”center”,”scale”))

3 #Making Predictions on test set

pred <— predict(rfFit ,newdata = test_set ,type="prob”)

pred2 <— predict(rfFit ,newdata = test_set ,type="raw”)

#Confusion Matrix

confusionMatrix (test_set$Outcome , pred2)

#ROC Curve

> rocCurve . rf <— roc(test_set$Outcome ,pred[,”Yes”])

png ("ROC—RF. png ™)

s plot(rocCurve.rf,col=c(4))

dev.off ()

#AUC metric

auc (rocCurve.rf)

#varlmp

s> varlmp (rfFit)

)

A.8 Boosted Models

A.8.1 AdaBoost Classification Trees

library (pROC)

library (caret)

s library (caTools)

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data

7 df <— df[!(df$BloodPressure==0),]

df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]
df <— df[!(df$BMI==0),]
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df <— df[!(df$Insulin==0),]

3 set.seed(06061968)

#Categorical Data

df$Outcome <— as.factor (df$Outcome)

7 df$Outcome <— factor (df$Outcome ,labels = c(”No”,”Yes”))

#Splitting data into training and test sets.

split = sample. split (df$Outcome, SplitRatio = 0.75)
training_set = subset(df, split == TRUE)

test_set = subset(df, split == FALSE)

#Fitting the Model

fitControl <— trainControl (method = “cv”, summaryFunction=
twoClassSummary ,
classProbs=T, savePredictions = T)
ab. fit <— train (Outcome”™., data = training_set , method = “adaboost”,
trControl = fitControl , metric = ”Accuracy”)

#Making Predictions on test set

5 pred <— predict(ab.fit ,newdata = test_set ,type="prob”)

pred2 <— predict(ab.fit ,newdata = test_set ,type="raw”)

7 #Confusion Matrix

44

45

46

48

confusionMatrix (test_set$Outcome , pred2)

#ROC Curve

rocCurve.ab <— roc(test_set$Outcome ,pred[,”Yes”])

3 png ("ROC-ab . png”)

plot(rocCurve.ab,col=c(4))
dev.off ()

7 #AUC metric

auc (rocCurve.ab)
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W

#varlmp

varlmp (ab. fit)
A.8.2 eXtreme Gradient Boosting - Linear

library (pROC)

> library (caret)

3 library (caTools)

df = read.csv(’diabetes.csv’) #importing dataset

#Removing missing data

df <— df[!(df$BloodPressure==0),]
df <— df[!(df$SkinThickness==0),]
df <— df[!(df$Glucose==0),]

df <— df[!(df$BMI==0),]

df <— df[!(df$Insulin==0),]

3 set.seed (06061968)

#Categorical Data
df$Outcome <— as.factor (df$Outcome)

df$Outcome <— factor (df$Outcome ,labels = c¢(”No”,”Yes”))

#Splitting data into training and test sets.
split = sample.split (df$Outcome, SplitRatio = 0.75)
training_set = subset(df, split == TRUE)

» test_set = subset(df, split == FALSE)

#Fitting the Model
fitControl <— trainControl (method = ”cv”, summaryFunction=
twoClassSummary ,

classProbs=T, savePredictions = T)

xgbL. fit <— train (Outcome™., data = training_set , method = ”xgbLinear”,

trControl = fitControl , metric = ”Accuracy”)

3» #Making Predictions on test set
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s pred <— predict(xgbL.fit ,newdata = test_set ,type="prob”)

5 pred2 <— predict(xgbL.fit ,newdata = test_set ,type="raw”

#Confusion Matrix

confusionMatrix (test_set$Outcome , pred2)

#ROC Curve

rocCurve . xgbL <— roc(test_set$OQutcome ,pred[,” Yes”])

3 png ("ROC—xgbL . png™)

plot(rocCurve.xgbL, col=c(4))
dev.off ()

#AUC metric

¢ auc (rocCurve.xgblL)

#varlmp

varImp (xgbL . fit)
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Appendix B

Section B

B.1 Dealing with Missing Data

B.1.1 Records missing 1 variable

Predicting Fasting Plasma Glucose Concentration

library (caret)

library (caTools)

s library (randomForest)

#loading datasets
dfl <— read.csv(”Complete.csv”™)
df2 <— read.csv(”FBS.csv”)

#Removing Kidney Complications here as
Spending

dfl <— dfl[,—c(2,17)]

df2 <— df2[,—c(2,17)]

#Splitting complete cases to test model

all

are N & removing Annual

s split = sample. split(dfl1$Fasting.Blood.Sugar, SplitRatio = 2/3)

training_set = subset(dfl, split == TRUE)

test_set = subset(dfl, split == FALSE)

7 #Fitting the Model

set.seed(12071804)

29

fitControl <— trainControl (method = ”"cv”,number =10)
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rfFit <— train (Fasting.Blood.Sugar ~ ., data = training_set, method = ”

rf”, trControl = fitControl ,

% 9

preProcess = c(”center”,”scale”))

#Making prediction on test set

pred <— predict(rfFit ,newdata = test_set ,type="raw”)
pred

test_set$Fasting .Blood. Sugar

MSE= c ()

for (i in c¢(1:6)){
a = (pred[i] — test_set$Fasting.Blood.Sugar[i])"2
MSE = c(MSE, a)

}

sum (MSE)

pred2 = predict(rfFit ,newdata = df2)
pred2

df2$Fasting . Blood. Sugar = pred2

write .csv (df2 ,” predicted.csv”)

Predicting HbA1C level

library (caret)

> library (caTools)

3 library (randomForest)

#loading datasets

5 dfl <— read.csv(” Complete.csv”)

df2 <— read.csv(”HbAlc.csv”)

#Removing Kidney Complications here as all are N & removing Annual

Spending
dfl <— df1[,—c(2,17)]
df2 <— df2[,—c(2,17)]

> #Splitting complete cases to test model

3 split = sample. split(dfl1$Fasting.Blood.Sugar, SplitRatio

training_set = subset(dfl, split == TRUE)
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test_set = subset(dfl, split == FALSE)

7 #Fitting the Model

set.seed(12071804)

29

fitControl <— trainControl (method = ”cv”,number =10)

rfFit <— train (HbAIC.level ~ ., data = training_set, method = "rf”,

trControl = fitControl ,

EXEEE Y]

preProcess = c(”center”,” scale”))

#Making prediction on test set

pred <— predict(rfFit ,newdata = test_set ,type="raw”)

pred

7 test_set$SHbA1C . level

MSE= ¢ ()
for (i in c¢(1:6)){
a = (pred[i] — test_set$HbAI1C .level[i])"2
MSE = c¢(MSE, a)

}
sum (MSE)

pred2 = predict(rfFit ,newdata = df2)
pred2

df2$HbA1C . level = pred2

write .csv(df2 ,” predicted.csv”)

Predicting HDL Cholesterol level

library (caret)

> library (caTools)

s library (randomForest)

#loading datasets
dfl <— read.csv(”Complete.csv”™)
df2 <— read.csv(”HDL.csv”)

#Removing Kidney Complications here as all

Spending
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dfl <— dfl[,—c(2,17)]
df2 <— df2[,—c(2,17)]

> #Splitting complete cases to test model

3 split = sample. split(dfl1$Fasting.Blood.Sugar, SplitRatio
training_set = subset(dfl, split == TRUE)
s test_set = subset(dfl, split == FALSE)
» #Fitting the Model
set.seed(12071804)
fitControl <— trainControl (method = ”cv”,number =10)
rfFit <— train (HDL. Cholesterol = ., data = training_set ,
trControl = fitControl ,
preProcess = c(”center”,”scale”))

#Making prediction on test set

pred <— predict(rfFit ,newdata = test_set ,type="raw”)

pred
test_set$HDL . Cholesterol

MSE= c ()
for (i in c(1:6)){

a = (pred[i] — test_set$HDL . Cholesterol[i])"2

MSE = ¢(MSE,a)
}

s sum (MSE)

pred2 = predict(rfFit ,newdata = df2)
pred?2

df2$HDL . Cholesterol = pred2

write .csv (df2 ,” predicted.csv”)

B.1.2 Records missing 2 variables

Predicting Blood Pressure Systolic and Diastolic

122

method = "rf”,
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)

library (caret)

library (caTools)

s library (randomForest)

#loading datasets

5 dfl <— read.csv(”Complete.csv”™)

df2 <— read.csv(”BP(S), BP(D).csv”)

s df2$Sex <— F”
df2$Sex <— as.factor (df2$Sex)

#Removing Kidney Complications here as all are N & removing Annual
Spending

> dfl <— dfl[,—c(2,17)]

3 df2 <— df2[,—c(2,17)]

#Predicting BP(S)

s #Splitting complete cases to test model

split = sample.split(dfli$Blood.Pressure.. Systolic., SplitRatio = 2/3)
training_set = subset(dfl, split == TRUE)

test_set = subset(dfl, split == FALSE)

s #We remove BP(D) from the set
training_set = training._set[,—11]

s test_set = test_set[,—11]

7 #Fitting the Model

s set.seed(12071804)

]

fitControl <— trainControl (method = ”cv”,number =10)
rfFit <— train (Blood.Pressure.. Systolic. ~ ., data = training_set ,
method = ”rf”, trControl = fitControl ,
preProcess = c(”center”,”scale”))

#Making prediction on test set
s pred <— predict(rfFit ,newdata = test_set ,type="raw”)
pred

7 test_set$Blood.Pressure .. Systolic.

123



46

47

48

49

MSEl= c ()

for (i in c(1:5)){
a = (pred[i] — test_set$Blood.Pressure.. Systolic.[i])"2
MSEI = c(MSE1, a)

pred2 = predict(rfFit ,newdata = df2)
pred?2

#Predicting BP(D)

s3 #Splitting complete cases to test model

55

56

58

59

60

61

66

68

69

74

75

split = sample.split (dfl$Blood.Pressure .. Diastolic., SplitRatio = 2/3)
training_set = subset(dfl, split == TRUE)
test_set = subset(dfl, split == FALSE)

#We remove BP(S) from the set
training_set = training._set[,—12]

test_set = test_set[,—12]

> #Fitting the Model
;3 set.seed(12071804)

2

fitControl <— trainControl (method = ”cv”,number =10)

rfFit <— train (Blood.Pressure .. Diastolic. = ., data = training._set,
method = "rf”, trControl = fitControl ,

EEIEEE]

preProcess = c(”center”,”scale”))

#Making prediction on test set
pred3 <— predict(rfFit ,newdata = test_set ,type="raw”)

pred3

> test_set$Blood.Pressure .. Diastolic

MSE2= ¢ ()
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)

for (i in c¢(1:5)){

a = (pred3[i] — test_set$Blood.Pressure.. Diastolic.[1])"2

MSE2 = ¢(MSE2,a)

pred4 = predict(rfFit ,newdata = df2)

> pred4

s sum (MSE2)

sum (MSELl)
s df2$Blood . Pressure .. Diastolic. = pred4
df2$Blood . Pressure .. Systolic. = pred2

write .csv (df2 ,” predicted.csv”)

Predicting HDL and LDL Cholesterol

library (caret)

library (caTools)

s library (randomForest)

3 #Predicting HDL

#loading datasets
dfl <— read.csv(”Complete.csv”™)
df2 <— read.csv(”HDL,LDL.csv”)

#Removing Kidney Complications here as
Spending

dfl <— dfl[,—c(2,17)]

df2 <— df2[,—c(2,17)]

all are N & removing Annual

#Splitting complete cases to test model

split = sample.split(dfi$HDL. Cholesterol , SplitRatio = 2/3)

test_set = subset(dfl, split == FALSE)

#We remove LDL from the set
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training_set = training_set[,—14]

test_set = test_set[,—14]

#Fitting the Model

5 set.seed(12071804)

2

fitControl <— trainControl (method = ”cv”,number =10)

s TfFit <— train (HDL. Cholesterol = ., data = training_set , method = "rf”,
trControl = fitControl ,

ELIER ]

preProcess = c(”center”,”scale”))

#Making prediction on test set

> pred <— predict(rfFit ,newdata = test_set ,type="raw”)

13 pred

test_set$HDL . Cholesterol

7 MSEl= ¢ ()

s for (i in c(1:6)){

44

45

16

48

49

a = (pred[i] — test_set$HDL . Cholesterol[i])"2
c(MSEl,a)

predict (rfFit ,newdata

#Predicting LDL

#Splitting complete cases to test model
split = sample.split (dfISLDL. Cholesterol, SplitRatio = 2/3)
training_set = subset(dfl, split == TRUE)

53 test_set = subset(dfl, split == FALSE)

s #We remove HDL from the set

training_set = training_set[,—13]

test_set = test_set[,—13]
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#Fitting the Model
set.seed(12071804)

’

fitControl <— trainControl (method = ”cv”,number =10)

3 TfFit <— train (LDL. Cholesterol = ., data = training_set, method = “rf”,
trControl = fitControl ,

% 9

preProcess = c(”center”,”scale”))

#Making prediction on test set

7 pred3 <— predict(rfFit ,newdata = test_set ,type="raw”

test_set$LDL . Cholesterol

> MSE2= ¢ ()

s for (i in c(1:6)){

a = (pred3[i] — test_set$SLDL . Cholesterol[i]) "2
MSE2 = c(MSE2, a)

predict (rfFit ,newdata

> sum (MSE2)
5 sum (MSEI)

s df2$HDL . Cholesterol
df2$LDL. Cholesterol

)

¢ write.csv(df2,” predicted.csv”)

B.1.3 Records missing 3 variables

Predicting Post-Prandial Glucose Concentration, HDL and LDL Cholesterol levels

library (caret)
library (caTools)

3 library (randomForest)
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s #Predicting HDL

#loading datasets
dfl <— read.csv(”Complete.csv”™)
df2 <— read.csv(”PP,HDL,LDL.csv”)

#Removing Kidney Complications here as all are N & removing Annual
Spending

dfl <— dfl[,—c(2,17)]

df2 <— df2[,—c(2,17)]

#Splitting complete cases to test model

split = sample. split (dfi$HDL. Cholesterol , SplitRatio = 2/3)
training_set = subset(dfl, split == TRUE)

test_set = subset(dfl, split == FALSE)

#We remove LDL,PP from the set
training_set = training_set[,—c(10,14)]

test_set = test_set[,—c(10,14)]

#Fitting the Model
set.seed(12071804)

2

fitControl <— trainControl (method = “cv”,number =10)

rfFitl <— train (HDL. Cholesterol =~ ., data = training_set, method = "rf”,
trControl = fitControl ,

9 9

preProcess = c(”center”,”scale”))

#Making prediction on test set

2 pred <— predict(rfFitl ,newdata = test_set ,type="raw”)

13 pred

test_set$HDL . Cholesterol

MSEIl= c ()

for (i in c¢(1:6)){
a = (pred[i] — test_set$HDL . Cholesterol[i])"2
MSEI = c(MSEl, a)
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44

45

16

48

19

v

51

3 pred2 = predict(rfFitl ,newdata = df2)

pred?2

#Predicting LDL

#Splitting complete cases to test model
split = sample.split (dfISLDL. Cholesterol, SplitRatio = 2/3)
training_set = subset(dfl, split == TRUE)

53 test_set = subset(dfl, split == FALSE)

54

55

v

78

#We remove HDL,PP from the set
training_set = training_set[,—c(10,13)]

test_set = test_set[,—c(10,13)]

#Fitting the Model
set.seed(12071804)

fitControl <— trainControl (method = ”cv”,number =10)

3 TfFit2 <— train (LDL. Cholesterol = ., data = training_set, method = “rf”,

trControl = fitControl ,

5 9

preProcess = c(”center”,”scale”))

#Making prediction on test set

7 pred3 <— predict(rfFit2 ,newdata = test_set ,type="raw”)

s pred3

test_set$LDL . Cholesterol

MSE2= ¢ ()

s for (1 in C(16)){

a = (pred3[i] — test_set$SLDL . Cholesterol[i])"2
MSE2 = ¢(MSE2,a)

pred4 = predict(rfFit2 ,newdata = df2)
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79 pred4
80

si #Predicting PP

s3s #Splitting complete cases to test model

s split = sample. split (df1$PP.Sugar , SplitRatio = 2/3)
¢s training_set = subset(dfl, split == TRUE)

s test_set = subset(dfl, split == FALSE)

sz #We remove HDL,LDL from the set
g training_set = training._set[,—c(13,14)]

90 test_set = test_set[,—c(13,14)]

o #Fitting the Model

9 set.seed(12071804)

o fitControl <— trainControl (method = ”cv”,number =10)

95

o6 rfFit3 <— train (PP.Sugar ~ ., data = training_set, method = “rf”,
trControl = fitControl ,

97 preProcess = c(”center”,”scale”))

98

9 #Making prediction on test set

w0 predS <— predict(rfFit3 ,newdata = test_set ,type="raw”)

o1 predS

2 test_set$PP.Sugar

103

104

s MSE3= ¢ ()

e for (i in c¢(1:6)){

107 a = (pred3[i] — test_set$PP.Sugar[i])"2

s MSE3 = c¢(MSE3,a)

109 }

i1 pred6 = predict(rfFit3 ,newdata = df2)
1> pred6

114 sum (MSE2)
115 sum (MSEL)
116 sum(MSES)
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)

df2$HDL . Cholesterol = pred4
df2$L.DL. Cholesterol = pred2
df2$PP. Sugar = pred6

» write .csv (df2 ,” predicted.csv”)

Predicting HbA1C level, HDL and LDL Cholesterol levels

library (caret)

library (caTools)

s library (randomForest)

29

s #Predicting HDL

#loading datasets
dfl <— read.csv(”Complete.csv”™)
df2 <— read.csv(”HbAlc,HDL,LDL.csv™)

#Removing Kidney Complications here as all are N & removing Annual
Spending

dfl <— dfl[,—c(2,17)]

df2 <— df2[,—c(2,17)]

#Splitting complete cases to test model

split = sample. split (dfi$HDL. Cholesterol , SplitRatio = 2/3)
training_set = subset(dfl, split == TRUE)

test_set = subset(dfl, split == FALSE)

#We remove LDL,HbAlc from the set
training_set = training_set[,—c(8,14)]

test_set = test_set[,—c(8,14)]

#Fitting the Model
set.seed(12071804)

2

fitControl <— trainControl (method = ”cv”,number =10)

rfFitl <— train (HDL. Cholesterol =~ ., data = training_set, method = “rf”,
trControl = fitControl ,

ELIEEE]

preProcess = c(”center”,”scale”))
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#Making prediction on test set

2 pred <— predict(rfFitl ,newdata = test_set ,type="raw”

3 pred

@

¢ #Predicting LDL

test_set$HDL . Cholesterol

MSEl= c ()

for (i in c(1:6)){
a = (pred[i] — test_set$HDL . Cholesterol[i]) "2
MSE1 = c(MSEl, a)

3 pred2 = predict(rfFitl ,newdata = df2)

pred?2

#Splitting complete cases to test model
split = sample.split(dfi$SLDL.Cholesterol , SplitRatio = 2/3)
training_set = subset(dfl, split == TRUE)

53 test_set = subset(dfl, split == FALSE)

#We remove HDL,HbAlc from the set

training_set = training_set[,—c(8,13)]

57 test_set = test_set[,—c(8,13)]

#Fitting the Model
set.seed(12071804)

I

fitControl <— trainControl (method = “cv”,number =10)

3 TfFit2 <— train (LDL. Cholesterol = ., data = training_set, method = “rf”,

trControl = fitControl ,

5 9

preProcess = c(”center”,”scale”))

#Making prediction on test set

7 pred3 <— predict(rfFit2 ,newdata = test_set ,type="raw”)
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os pred3
o test_set$LDL . Cholesterol

72 MSE2= ¢ ()

72 for (i in c(1:6)){

74 a = (pred3[i] — test_set$LDL.Cholesterol[i]) "2
75 MSE2 = c(MSE2,a)

s pred4 = predict(rfFit2 ,newdata = df2)
79 pred4

si #Predicting HbAlc

g3 #Splitting complete cases to test model

s+ split = sample. split (dfI$HbAIC.level , SplitRatio = 2/3)
¢s training_set = subset(dfl, split == TRUE)

s test_set = subset(dfl, split == FALSE)

sz #We remove HDL,LDL from the set
g training_set = training._set[,—c(13,14)]

0 test_set = test_set[,—c(13,14)]

o #Fitting the Model
9 set.seed(12071804)

2

o fitControl <— trainControl (method = ”cv”,number =10)

o6 rfFit3 <— train (HbAIC.level = ., data = training_set, method = "rf”,
trControl = fitControl ,

97 preProcess = c(”center”,”scale”))

98

o #Making prediction on test set

o predS <— predict(rfFit3 ,newdata = test_set ,type="raw”)

101 predS

2 test_set$HbA1C . level

103

104

10s MSE3= ¢ ()
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e for (i in c¢(1:6)){
107 a = (pred3[i] — test_set$HbAI1C.level[i])"2
s MSE3 = ¢(MSE3,a)

109 }

i pred6 = predict(rfFit3 ,newdata = df2)
1> pred6

114+ sum (MSE2)
115 sum (MSEL1)
116 sum(MSE3)

s df2$HDL . Cholesterol = pred4
119 df2$LDL. Cholesterol = pred2
20 df2$HbAI1C.level = pred6

12 write.csv(df2,” predicted.csv”)

B.2 Preliminary Analysis
1 df <— read.csv(”Predicted.csv”)

; library (ggplot2)
4+ library (ggthemes)
s library (corrgram)

¢ library (dplyr)

H#

o ggplot(df, aes(x = df$fAge, y = df$Annual.Spending)) +geom_point(aes (
colour=df$Sex))+
geom_smooth (method=1oess )+theme_economist ()+ xlab(”Age(in years)”) +

ylab (” Annual Spending on Diabetes(in INR)”)+

I scale_colour_discrete (name = ”Sex”, labels =c(”Female”,”Male”))

> ggsave (" Age.png”)

13
4+ mean (df$Age)
s aggregate (df$Age~df$Sex , FUN=mean)
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29

he)

7 sd (df$Age)

aggregate (df$Age~df$Sex , FUN=sd)

quantile (df$Age)
aggregate (df$Age~df$Sex, FUN=quantile)

s t.test(df[df$Sex=="M",3],df[df$Sex=="F”,3],var.equal = FALSE)

3

ggplot(df, aes(x = df$Height , y = df$Annual.Spending)) +geom_point(aes(
colour=df$Sex))+
geom_smooth (method=loess )+theme_economist ()+ xlab(”Height(in cms)”) +
ylab (” Annual Spending on Diabetes(in INR)”)+
scale_colour_discrete (name = ”Sex”, labels =c(”Female”,”Male”))

ggsave (" Height.png”)

mean (df$Height)

v aggregate (df$Height “df$Sex , FUN=mean)

. H#
3 1

sd(df$Height)
aggregate (df$Height "df$Sex , FUN=sd)

quantile (df$Height)
aggregate (df$Height " df$Sex, FUN=quantile)

t.test(df[df$Sex=="M",5],df[df$Sex=="F”,5],var.equal = FALSE)

ggplot(df, aes(x = df$Weight , y = df$Annual.Spending)) +geom_point(aes (
colour=df$Sex))+
geom_smooth (method=loess )+theme_economist ()+ xlab (”Weight(in kgs)”) +
ylab (” Annual Spending on Diabetes(in INR)”)+
scale_colour_discrete (name = ”Sex”, labels =c(”Female”,”Male”))

ggsave (" Weight.png”)

mean (df$Weight)
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N

aggregate (df$Weight~ df$Sex , FUN=mean)

s> sd (df$Weight)

v

78

79

80

o0

s aggregate (df$Weight~df$Sex , FUN=sd)

quantile (df$Weight)
aggregate (df$Weight~df$Sex , FUN=quantile)

t.test (df[df$Sex=="M",6],df[df$Sex=="F” ,6],var.equal = FALSE)

s ggplot(df, aes(x = df$BMI, y = df$Annual.Spending)) +geom_point(aes(

colour=df$Sex))+
geom_smooth (method=1oess )+theme_economist ()+ xlab(”Body Mass Index”) +
ylab (” Annual Spending on Diabetes(in INR)”)+
scale_colour_discrete (name = ”Sex”, labels =c(”Female”,”Male”))

ggsave ("BMI. png”)

s mean (df$BMI)

aggregate (df$BMI~df$Sex , FUN=mean)

sd (df$BMI)
aggregate (df$BMI~df$Sex , FUN=sd)

quantile (df$BMI)
aggregate (df$BMI~df$Sex , FUN=quantile)

t.test (df[df$Sex=="M",7],df[df$Sex=="F”,7],var.equal = FALSE)

ggplot(df, aes(x = df$Number.of.Pregnancies, y = df$Annual.Spending)) +
geom_point(aes (colour=df$Sex) )+
geom_smooth (method=loess )+theme_economist ()+ xlab (”NUmber of
Pregnancies”) +ylab(” Annual Spending on Diabetes(in INR)”)+

scale_colour_discrete (name = ”Sex”, labels =c(”Female”,”Male”))
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®

94

95

96

98

99

100

101

102

103

104

105

106

107

108

109

ggsave (" Preg.png”)

; mean (df$Number. of . Pregnancies)

aggregate (df$Number. of . Pregnancies “df$Sex , FUN=mean)

sd (df$Number. of . Pregnancies)
aggregate (df$Number. of . Pregnancies ~df$Sex , FUN=sd)

quantile (df$Number. of . Pregnancies)

s aggregate (df$Number. of . Pregnancies "df$Sex , FUN=quantile)

t.test(df[df$Sex=="M",8],df[df$Sex=="F”,8],var.equal = FALSE)

H#

ggplot (df, aes(x = df$HbAIC.level , y = df$Annual.Spending)) +geom_point(
aes(colour=df$Sex) )+
geom_smooth (method=loess )+theme_economist ()+ xlab ("HbAIC Level(%)”) +
ylab (” Annual Spending on Diabetes(in INR)”)+
scale_colour_discrete (name = ”Sex”, labels =c(”Female”,”Male”))

ggsave ("HbAIC. png”)

mean (df$HbA1C . level)
aggregate (dfSHbA1C. level “df$Sex , FUN=mean)

sd (dfSHDAIC . level)
aggregate (df$SHbA1C . level “df$Sex , FUN=sd)

quantile (df$HbAIC. level)

> aggregate (df$SHbAIC. level "df$Sex, FUN=quantile)

t.test(df[df$Sex=="M",9],df[df$Sex=="F”,9],var.equal = FALSE)

1S

ggplot(df, aes(x = df$Fasting.Blood.Sugar, y = df$Annual.Spending)) +
geom _point(aes(colour=df$Sex))+

geom_smooth (method=1oess )+theme_economist()+ xlab(” Fasting Plasma
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146

147

148

149

Glucose Conc.(mg/dl)”) +
ylab (” Annual Spending on Diabetes(in INR)”)+scale_colour_discrete (name
= ”Sex”, labels =c(”Female”,”Male”))

ggsave ("FPGC.png”)

»» mean(df$Fasting . Blood. Sugar)

aggregate (df$Fasting . Blood.Sugar~df$Sex , FUN=mean)

sd(df$Fasting .Blood. Sugar)
aggregate (df$Fasting . Blood. Sugar~df$Sex, FUN=sd)

quantile (df$Fasting . Blood. Sugar)
aggregate (df$Fasting . Blood. Sugar~df$Sex, FUN=quantile)

t.test(df[df$Sex=="M",10],df[df$Sex=="F”,10],var.equal = FALSE)

H#

ggplot(df, aes(x = df$PP.Sugar, y = df$Annual.Spending)) +geom_point(aes
(colour=df$Sex) )+
geom_smooth (method=1oess )+theme_economist ()+ xlab (”Post—Prandial
Glucose Conc.(mg/dl)”) +
ylab (” Annual Spending on Diabetes(in INR)”)+scale_colour_discrete (name
= ”Sex”, labels =c(”Female”,”Male”))

ggsave (" PPSugar.png”)

mean (df$PP . Sugar)

> aggregate (df$PP . Sugar~df$Sex , FUN=mean)

sd (df$PP. Sugar)
aggregate (df$PP. Sugar~df$Sex , FUN=sd)

quantile (df$PP. Sugar)
aggregate (df$PP. Sugar~df$Sex , FUN=quantile)

t.test(df[df$Sex=="M",11],df[df$Sex=="F”,11],var.equal = FALSE)

H#
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154

158

59

160

161

)

164

165

166

167

168

169

171

186

ggplot(df, aes(x = df$Blood.Pressure.. Diastolic., y = df$Annual.Spending
)) +geom_point(aes(colour=df$Sex))+
geom_smooth (method=1oess )+theme_economist ()+ xlab(”Blood Pressure —
Diastolic (mmHg)”) +
ylab (” Annual Spending on Diabetes(in INR)”)+scale_colour_discrete (name

= ”Sex”, labels =c(”Female”,”Male”))

57 ggsave ("BPD.png”)

mean (df$Blood . Pressure .. Diastolic .)

aggregate (df$Blood. Pressure .. Diastolic .”df$Sex , FUN=mean)

sd (df$Blood . Pressure .. Diastolic .)

s aggregate (df$Blood. Pressure .. Diastolic .7 df$Sex , FUN=sd)

quantile (df$Blood . Pressure .. Diastolic .)
aggregate (df$Blood. Pressure .. Diastolic .”df$Sex , FUN=quantile)

t.test(df[df$Sex=="M",12],df[df$Sex=="F”,12],var.equal = FALSE)

H#

» ggplot(df, aes(x = df$Blood.Pressure.. Systolic., y = df$Annual.Spending)

) +geom _point(aes(colour=df$Sex))+
geom_smooth (method=loess )+theme_economist ()+ xlab(”Blood Pressure —
Systolic (mmHg)”) +

ylab (” Annual Spending on Diabetes(in INR)”)+scale_colour_discrete (name

= ”Sex”, labels =c(”Female”,”Male”))

s ggsave ("BPS.png”)

mean (df$Blood . Pressure .. Systolic .)
aggregate (df$Blood. Pressure .. Systolic .7 df$Sex , FUN=mean)

sd (df$Blood. Pressure .. Systolic .)
aggregate (df$Blood . Pressure .. Systolic .7 df$Sex , FUN=sd)

s quantile (df$Blood. Pressure .. Systolic.)

aggregate (df$Blood. Pressure .. Systolic .7 df$Sex, FUN=quantile)

t.test (df[df$Sex=="M",13],df[df$Sex=="F”,13],var.equal = FALSE)
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189

190

191

192
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195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

ggplot(df, aes(x = df$HDL. Cholesterol , y = df$Annual.Spending)) +
geom _point(aes(colour=df$Sex))+
geom_smooth (method=loess )+theme_economist ()+ xlab (”HDL CHolesterol (mg/
dl)”) +ylab(” Annual Spending on Diabetes(in INR)”)+

scale_colour_discrete (name = ”Sex”, labels =c(”Female”,”Male”))

3 ggsave ("HDL. png”)

mean (df$SHDL. Cholesterol)
aggregate (df$HDL. Cholesterol “df$Sex , FUN=mean)

sd (dfSHDL . Cholesterol)
aggregate (dfSHDL. Cholesterol “df$Sex , FUN=sd)

quantile (dfSHDL. Cholesterol)
aggregate (dfSHDL. Cholesterol “df$Sex , FUN=quantile)

t.test(df[df$Sex=="M",14],df[df$Sex=="F”,14], var.equal = FALSE)

3

ggplot (df, aes(x = df$LDL.Cholesterol , y = df$Annual.Spending)) +
geom_point(aes (colour=df$Sex) )+
geom_smooth (method=loess )+theme_economist()+ xlab(”’LDL Cholesterol (mg/
dl)”) +ylab(” Annual Spending on Diabetes(in INR)”)+
scale_colour_discrete (name = ”Sex”, labels =c(”Female”,”Male”))

ggsave ("LDL. png”)

5 mean (df$LDL. Cholesterol)

aggregate (dfSLDL. Cholesterol "df$Sex , FUN=mean)

sd (dfSLDL . Cholesterol)
aggregate (dfSLDL. Cholesterol “df$Sex , FUN=sd)

quantile (df$LDL. Cholesterol)
aggregate (dfSLDL. Cholesterol "df$Sex, FUN=quantile)
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239

24(

241

243

244

246

247

248

t.test(df[df$Sex=="M",15],df[df$Sex=="F”,15],var.equal = FALSE)

H#

ggplot(df, aes(x = df$Eye.Complications)) + geom_bar(aes(fill=df$Sex),
color="black”)+ theme_economist()+xlab(”Eye Complications”)+
ylab (”Count”)+scale_fill_discrete (name = ”Sex”, labels = c(”Female”,”
Male ™))

ggsave ("Eye.png”)

df %%
group_by (df$Eye. Complications ,df$Sex) %%

summarise (no_rows = length (Eye.Complications))

ggplot(df, aes(x = df$Kidney.Complications)) + geom_bar(aes(fill=df$Sex)
,color="black”)+ theme_economist()+xlab(”Kidney Complications”)+
ylab (”Count”)+scale_fill_discrete (name = ”Sex”, labels = c(”Female”,”
Male”))
ggsave (" Kidney . png”)
df %%
group_by (df$Kidney.Complications ,df$Sex) %%

summarise (no_rows = length (Kidney.Complications))

s ggplot(df, aes(x = df$Sex)) + geom_bar(aes(fill=df$Sex),color="black”)+

theme_economist ()+xlab (”Kidney Complications ™)+
ylab (" Count”)+theme (legend . position = “none”)

ggsave (" Sex.png”)

ggplot(df, aes(x = df$Insulin)) + geom_bar(aes(fill=df$Sex),color="black
”)+ theme_economist ()+xlab (”Kidney Complications”)+

ylab (”Count”)+scale_fill_discrete (name = ”Sex”, labels = c(”Female”,

Male”))

53 ggsave (P Insulin.png™)
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260

261

263

264

265

266

df %%
group_by (df$Insulin ,df$Sex) %%

summarise (no_rows = n())

ggplot(df, aes(x = df$Annual.Spending)) + geom_histogram (aes(fill=df$Sex
) ,binwidth = 5000,color="black”)+
theme_economist ()+xlab (” Annual Spending(in INR)”)+ theme(axis.text.x =

element_text(angle=45,hjust=0.01))+

ylab (”Count”)+scale_fill_discrete (name = ”Sex”, labels = c(”Female”,”
Male™) )+
scale_x_continuous (breaks = round(seq(min(df$Annual.Spending), max(

df$Annual. Spending), by = 5000),1))
ggsave (” Spending .png”)
mean (df$ Annual . Spending)
aggregate (df$Annual. Spending “df$Sex , FUN=mean)

sd (df$Annual . Spending)
aggregate (df$Annual. Spending ~df$Sex , FUN=sd)

quantile (df$Annual . Spending)
aggregate (df$Annual. Spending “df$Sex , FUN=quantile)

t.test(df[df$Sex=="M",17],df[df$Sex=="F”,17],var.equal = FALSE)

png(filename="Corr.png”)

corrgram (df , order=TRUE,
main="Correlations between independent variables”,
lower . panel=panel.cor, upper.panel=panel.pie,

diag . panel=panel .minmax, text.panel=panel.txt)

3 dev.off ()

B.3 GAMSs and GLMs

GLM

library (caTools)
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)

library (caret)

s library (ggplot2)

library (ggthemes)

df <— read.csv(”Predicted.csv”™)

#Encoding categorical variables

df$Eye. Complications = factor (df$Eye.Complications, label = ¢(0,1))
df <— df[,—2]

df$Sex = factor (df$Sex, label

c(0,1))

> df$Insulin = factor(df$Insulin, label = ¢(0,1))

s #Splitting data into training and test sets.

set.seed(15031933)

split = sample.split(df$Annual.Spending, SplitRatio = 0.8)
training_set = subset(df, split == TRUE)

test_set = subset(df, split == FALSE)

#The Model (Gaussian)

29 2

> ctrl <— trainControl (method = ”cv”, number = 10)

model <— train (log(Annual.Spending)
,data = training_set , method = "glm”,family = gaussian(
link="identity ”) ,trControl = ctrl)
summary ( model)

1—(model$finalModel$deviance/ model$finalModel$null.deviance)

png (” GLM1 _Gaussian_Diag.png”, width = 1200, height = 1200)

» par (mfrow=c(2,2))
13 plot(model$finalModel)

dev.off ()

35 pred <— predict(model,newdata = test_set)

36

3

ggplot() + geom_point(aes(exp(model$finalModel$fitted . values),

training_set$Annual.Spending)) +theme_economist ()+
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38

39

)

xlab (” Fitted Values — Annual Spending(in INR)”)+ylab (” Observed Values
— Annual Spending(in INR)”)+ xlim(0,65000)+
ylim (0,65000)

ggsave (" GLM1_Gaussian_Fit.png”)

> ggplot() + geom_point(aes(exp(pred),test_set$Annual.Spending)) +

theme_economist ()+
xlab (” Predicted Values — Annual Spending(in INR)”)+ylab (” Observed
Values — Annual Spending(in INR)”)+
x1im (0,65000)+ylim (0,65000)
ggsave (" GLM1 _Gaussian_Pred.png”)

7 ggplot() + geom_histogram (aes(model$finalModel$residuals), fill = ”white

’9

, color="black”, binwidth = 0.1)+
theme_economist ()+ xlab(”Residual Values”) + ylab(” Count”)

ggsave ("GLM1_Gaussian_Res.png”)

GAM

library (caTools)
library (mgcv)

df <— read.csv(”Predicted.csv”™)
df <— df[,—2]

#Encoding categorical variables

df$Eye. Complications = factor (df$Eye.Complications, label = c(0,1))
df$Sex = factor (df$Sex, label = ¢(0,1))

df$Insulin = factor (df$Insulin, label = c(0,1))

» #Splitting data into training and test sets.

s split = sample. split (df$Annual.Spending, SplitRatio = 0.80)

training_set = subset(df, split == TRUE)
test_set = subset(df, split == FALSE)

7 #The Model

gamFitl <— gam(Annual.Spending ~ s(Age,k=3,fx=F, bs="cr”) +
s (BMI,k=3,fx=F, bs="cr”) +
s (HbAIC.level ,k=3,fx=F, bs="cr”) +
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s(Fasting .Blood. Sugar ,k=3,fx=F, bs="cr”) +
s(PP.Sugar ,k=3,fx=F, bs="cr”)+

s(Blood. Pressure .. Systolic.,k=3,fx=F, bs="cr”)+

s(HDL. Cholesterol ,k=3,fx=F, bs="cr”)+
s(LDL. Cholesterol ,k=3,fx=F, bs="cr”) +
Sex +

Eye.Complications +

Insulin ,
family = gaussian,
data=df)

13 gamFitl$sp

;5 par (mfrow=c(2,4)) #to partition the Plotting Window

45

46

48

49

55

56

58

plot.gam(gamFitl)
dev.off ()

predict_gamFitl <— predict(gamFitl ,test_set)
predict_gamFitl

test_set$Annual . Spending

3 plot(test_set$Annual.Spending, col="green’, ylim=c(9500,50000),

Amount™)

points (predict_gamFitl)

summary (gamFitl)

H

ylab

29

gamFit2 <— gam(Annual.Spending ~ s(Age,k=3,fx=F, bs="cr”) +
s (BMI,k=3,fx=F, bs="cr”) +
HbAIC. level +
Fasting . Blood. Sugar +
PP.Sugar+

Blood. Pressure .. Systolic.+ Blood.Pressure .. Diastolic .+

HDL. Cholesterol+
ILDL. Cholesterol+
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59

60

61

%

Sex +

Eye.Complications +

Insulin ,
family = gaussian,
data=df)

gamFit2$sp

; par (mfrow=c(1,2)) #to partition the Plotting Window

plot.gam(gamFit2)
dev.off ()

> predict_gamFit2 <— predict(gamFit2,test_set)
13 predict_gamFit2

test_set$Annual . Spending

plot (df$Annual . Spending, col="green’, ylim=c(min(df$Annual.Spending) ,max
(df$Annual. Spending)), ylab = ”Amount”)

points (gamFit2$fitted . values)

par (mfrow=c(2,2))
gam.check (gamFitl)

> anova(gamFitl , gamFit2,test = ”Chisq”)

summary (gamFit2)

s summary (gamFitl ) $r.sq

plot (gamFitl , shade = TRUE)
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Appendix C

Section C

C.1 Clustering

library (factoextra)

library (NbClust)

; library (ggplot2)

library (ggthemes)
library (dendextend)
library (rpart)

7 library (rpart.plot)

5

df <— read.csv(”Data.csv”)

df3 <—sapply (df,as.numeric)
df3 <— scale (df3)

; df3 <— as.data.frame (df3)

set.seed(14111889)

7 # Elbow method

png (" Elbow . png”)
fviz_nbclust (df3[,c(1:17)],

geom_vline ( xintercept = 3,

kmeans ,

method

linetype = 2)+

labs (subtitle = ”"Elbow method”)

» dev.off ()

#30 indices
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”wss”) + theme_economist ()+



]

NbClust(df3[,c(1:16)], distance = "euclidean”, method = “kmeans”)

#Hierarchial Clustering
dist_mat <— dist(df3[,17], method = ’euclidean ’)
hclust_avg <— hclust(dist_mat, method = ’average ’)

cut_avg <— cutree (hclust_avg , k = 3)

avg_dend_obj <— as.dendrogram(hclust_avg)

s avg_col_dend <— color_branches(avg_dend_obj, k = 3)

&

54

55

W

png ("HC. png™)
ggplot(avg_col_dend) + theme_economist() + xlab(” Cluster Number”) + ylab

(”Height”)+

ggtitle (" Three Clusters based on Hierarchial Clustering”)

dev.off ()

#K—Means Clustering
scluster <— kmeans(df3[,c(17)],3)

; df$SCluster <— scluster$cluster

df$SCluster <— as.factor (df$SCluster)

df4 <— df[,c(1:16)]

; df4$Scluster <— df$SCluster

levels (df4$Scluster) <— c¢(” First”, ”Second”, ”Third”)

#Decision Tree

> dtree <— rpart(Scluster”., df4, method="class”, control = rpart.control(

minbucket = 4, minsplit = 2))

png(filename = ”DT.png”)
rpart.plot(dtree)
dev.off ()

ggplot() + geom_histogram (aes(df$Annual.Spending ,.. density.., fill =
df4$Scluster), alpha = 0.4, binwidth = 2000)+
geom _density (aes (df$Annual.Spending, fill= df4$Scluster), alpha = 0.4)
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+xlab (” Annual Spending”)+ylab (” Density ”)+
6l scale_fill _discrete (name = ”Clusters”)+ theme_economist ()

o ggsave (” Annual Spending—Clustered.png”)
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Appendix D

Section D

D.1 Survey Questionnaire
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Qualification Questions

Do you have any complications relating to eyes?

Do you have any complications relating to
kidneys?

Do you have any non-healing wounds on your
body?

What is your Body Mass Index (BMI)?

What is your age?

Part A - Medical Questions

Age (in Years as of 1% Jan 2019)

Sex

Height

Weight

Number of Pregnancies (for Females)

Serum Creatinine level

Albumin/ Creatinine Ratio

HbA1C level

Fasting Blood Sugar

PP Sugar

Blood Pressure (Diastolic)

Blood Pressure (Systolic)

HDL Cholesterol

LDL Cholesterol

Alkaline Phosphatase (ALP)

Albumin/ Globulin Ratio

Gamma GT

Alanine Transaminase (ALT)

Aspartate Aminotransferase (AST)

Have you been diagnosed with diabetes ever?

Are you on Insulin?

Do you have any other diabetes-related complications?

Part B - Financial Questions (Only to be answered by people who have diabetes)

Do you have a Diabetes specific Health Insurance plan?

Which diabetes specific insurance plan do you have?

How much insurance cover do you have?

What is your current annual premium for this plan?

How much did you claim from your insurer in health expenses
relating to diabetes and complications in the past year?

How much do you actually spend in health expenses relating to
diabetes and complications per annum on average (incl. Lab tests,
drugs and consultations)?

Have you incurred any major expenses such as on surgery, hospital
admissions etc. relating to diabetes? If Yes, how much and when?
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Date: January 15, 2019
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This is to certify that Mr.Adeetya Vikrama Tantia, student of Indian Institute of
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For/GD Hospital & Diabetes Institute ‘

Dr. Arindam Chanda
Chief Operating Officer
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