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Abstract

The real world signal are analogue in nature but the computation is done digital. The

process that makes it possible is known as the sampling process. Without the sampling

process we cannot store, use, reuse or modify the real world signals. Nyquist sampling

theorem tells us about how the continuous signals can be converted to digital signals,

It provides a good approximation of the original signal. This approach restricts the

class of signals that can be sampled and perfectly reconstructed to bandlimited sig-

nals. During the past few years, a new framework has emerged that overcomes these

limitations and extends sampling theory to a broader class of signals named signals

with Finite Rate of Innovation (FRI).

In this work I have used Finite Rate of Innovation to reconstruct an undersam-

pled ultrasound signal.The FRI technique allow us to sample signals that are non-

bandlimited and cannot be generally sampled using classing sampling theory that is,

Nyquist sampling rate. That is, if we want to sample and reconstruct a signal back

perfectly it has to be sampled at 7-10 times faster. The sampling rate directly affects

the cost of the system, duration of sampling the signal and error produce from sam-

pling the signal at high rates

The advantage that FRI gives us that it uses few sample points compared to the

Nyquist theorem and by doing this we reduce the complexity of the acquisition device.

Low sampling rate means less number of samples so less data space is used. To have a

high sampling rate you need costly devices so looking at a technique which can lower

the cost of instrument is also needed. In using FRI it gives all the above advantages.

The process of sampling has allowed us to manipulate, store and transmit vast amount

of data with increasing convenience. However, in data-intensive and/or power-limited

applications such as sensor networks, the information contained is normally far less

than the data observed, therefore, efficient sampling techniques is vital and necessary

in such applications

In this thesis we consider the sampling of FRI signals and extend the results in to

Ultrasound signal which is sampled at sub-Nyquist rate. We then try to reconstruct

the original signal from those samples.
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Chapter 1

Introduction

1.1 Signal Processing

What is Signal?

Signal is something that conveys information. Information about the state or be-

haviour of the system. The type of signal related to my work are Continuous signal

and Discrete-time Signal. Continuous Signal are continuous in both amplitude and

time domain. Discrete-time signal are discrete in time domain. Discrete-time signals

can represented as sequence of numbers and can be written as

g = g[n], −∞<n<∞, (1.1)

where n is an integer. In case we have obtained the discrete-time signal from a

continuous signal

g[n] = g(nT ), −∞<n<∞, (1.2)

1.2 Sampling

Sampling is the measurement of the signal taken at frequent intervals. Therefore

sampling converts a continuous signal to a discrete signal. We sample a signal so it

can be stored in, we can modify it or later it can be used for a different purpose. In
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sampling it is important to sample a signal such that it is a good representation of

the original signal.

T is the sampling period i.e, after what interval of time are we measuring the value

of the signal. Sampling period is important as we will see in the next section. The

reciprocal of sampling period is sampling frequency which tells the number of samples

taken in a unit time or the frequency of the samples.

Therefore, the acquisition device for converting a continuous-time signal to a discrete-

time signal can be made up of a sampler which samples the signal(g(x) after an interval

of T and gives us sampled or discrete signal g[n] = g(nT ).

Figure 1.1: Block diagram representation of an ideal continuous-to-discrete-
time(C/D) converter.

1.3 Nyquist Theorem

A continuous-time signal can be completely reconstructed from the knowledge of its

values at points equally spaced in time. This surprising property follows from a result

that is referred to as the sampling theorem.

If a function g(x) contains no frequencies higher than W cycles per second, it is

completely determined by giving its ordinates at a series of points spaced 1/2W seconds

apart.

Denoting fs = 2W the sampling rate is measured in Hz, the nyquist interval T = 1
fs

correspond to the sampling period in seconds. In the ideal bandlimited case, we can

obtain an unambiguous discrete-time representation of the signal by just storing its
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values every T seconds:

g[n] = g(t)|t=nT

From samples x[n], we can perfectly reconstruct the original signal as follows:

g(x) =
∞∑
n=1

g[n]sinc(
x− nT
T

), (1.3)

where sinc(x) = sin(πx)/πx

This approach does not apply strictly to real world signals since it is well known that

for a function to be bandlimited it must have infinite time duration. Moreover, in

practice Shannon’s reconstruction formula is rarely used due to the slow decay of the

sinc function that is, it has infinite support. If g(x) is not bandlimited, prefiltering

with an ideal lowpass filter (h(x) =sinc(x/T ) and reconstructing applying provides a

lowpass approximation of g(x). However, it is an approximation, and perfect recon-

struction of the original signal is not achieved. Moreover, the ideal lowpass filter is

not realisable.

In classic way of sampling and reconstruction. We take an input signal which is usually

continuous. The signal is sampled at regular intervals of times using a sampler. The

to reconstruct the original signal from the samples that we have, the reconstruction

is done using sinc function. The signal is reconstructed by multiplying each sample

with sinc function. This gives us the continuous signal.

Figure 1.2: The bandlimited signal g(x) in (a) is sampled at regular intervals of time
(black dots) leading to the discrete-time signal g[n]. The reconstruction is performed
using the sinc function (b). The signal is reconstructed by weighting shifted versions
of the sinc function with the discrete-time signal g[n].
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1.4 Fourier Transform

These signal representations basically involve the decomposition of the signals in terms

of sinusoidal (or complex exponential) components. With such a decomposition, a

signal is said to be represented in the frequency domain. Representation of sequences

using Fourier Transform, many sequences can be represented by a Fourier integral of

the form

x[n] =
1

2π

∫ π

−π
X(eiω)eiωndω (1.4)

X(eiω) =
∞∑

n=−∞

x[n]eiωn (1.5)

1.5 Z-Transform

In this section we will see what a Z-transform is and what it does? It is an important

concept in the annihilation filter. It is defined as:

X(z) =
∞∑

n=− inf

x[n]z−
n

(1.6)

This is an infinite sum equation and z is a complex variable. The sequence x[n] is

converted to a continuous complex variable. This can be represented by

x[n]↔ X(z)

4



Chapter 2

Finite Rate of Innovation

2.1 Introduction

Some classes of signals can be defined by a few number of parameters per unit time.

The idea behind FRI is that if I can find these parameters I can construct the original

signal back from these parameters. The number of parameters or degrees of freedom

per unit time of signal is defined as Rate of Innovation. FRI technique allows us to

even sample and reconstruct signals that are non-bandlimited e.g, Stream of Diracs.

The number of samples or sampling rate depends on the number of parameters of that

particular signal. FRI allow us to sample and reconstruct signals at lower rates than

the classic Nyquist theory suggest i.e., twice the maximum frequency of the signal.

But in practice it is 7-8 times the maximum frequency. But when we take the example

of stream of Diracs which are an example of non-bandlimited signals we can see it is

almost impossible to sample such kind of signal.

2.2 Classes of Signals

Here we will look at the different type or classes of signals that can be sampled

uniquely. We consider a known form f(t) and the form of the signal is can be written

as

g(x) =
∑
nεz

anf(x− xn) (2.1)
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Here an and xn are the amplitudes or the weight of the Diracs and time-instants or

the location of the Diracs. There are n number of an and n number of tn therefore

there are 2n number of parameters and thus the sampling rate is 2n.

Figure 2.1: Examples of signals with FRI. When the shape of the pulse is known the
signal depends only on the amplitude and location of such pulses.

The FRI technique requires a suitable sampling Kernel and an annihilation filter

for the reconstruction. There are a few sampling kernels like the sinc filter(used

in the original FRI paper) but the problem with such kind of filter is that it has

an infinite support which makes the reconstruction process unstable. Therefore we

would be looking at the class of kernels that have compact support e.g., Polynomial

and exponential reproducing Kernels.

The annihilation filter or the Prony’s method is a technique use to extract valuable

information from the uniformly sampled signal.
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Chapter 3

Sampling Kernels

In this section we will discuss the type of Kernels that can be used and we’ll see the

difference between them on their reproducing ability.

3.1 Infinite support Kernel

The original paper on FRI used the sinc Kernel and Gaussian for reconstruction of

the signal. However as we discussed the problem with them is there infinite support

which lead to unstable algorithms.

3.2 Polynomial and Exponential reproducing Ker-

nels

A kernel ϕ(t) is said to be a Polynomial reproducing kernel if it satisfies the following

condition ∑
nεz

cm,nϕ(t) = xm, m = 0, 1, 2..., P (3.1)

that is sum of different weighted functions of ϕ(t) gives a polynomial. This type of

Kernel is compact in support

Similarly, A kernel ϕ(t) is said to be a Polynomial reproducing kernel if it satisfies

7



the following condition

∑
nεz

cm,nϕ(t) = eαmt, m = 0, 1, 2..., P (3.2)

that is sum of different weighted functions of ϕ(t) gives a eαmt. The Polynomial and

exponential reproducing kernel will happen only if they satisfy Strang-Fix conditions.

3.3 Strang-Fix conditions

A function ϕ(t) is said to be a Polynomial reproducing kernel that is

∑
nεz

cm,nϕ(t) = xm, m = 0, 1, 2..., P (3.3)

if and only if ˆϕ(0) 6= and ˆϕ(0)
m

(2πl) for

l ∈ Z 0,

m = 0, 1, 2..., P.

The superscript (m) at ˆϕ(ω) stands for the mth derivative and nothing is mentioned

then we follow the convention ˆϕ(0)(ω) = ˆϕ(ω).

There is a whole lot of amount of information available and from that we know classes

of family that satisfies these conditions. And Basis spline is a family of functions

that satisfy these conditions. They were initially developed for designing vehicles and

ultimately found their way in Signal Processing also. Generally, a spline is a piecewise

polynomial function by which we mean that it is made up of different polynomial

function or different type of polynomial function constitutes it. The extreme points

of the spline refers to knots.

Consider the following function:

β0(t) =

1, 0 ≤ t < 1,

0, Otherwise,

This is the rectangular pulse or box function.

8



Figure 3.1: B-splines of orders P = 0,1,2. Note that the support of a B-spline of
order P is [0,P + 1].

The Fourier Transform of this function can be written as

β̂0(t) =
1− e−iω

iω
(3.4)

This is the classic sinc filter and from this filter we can create the rest of high degree

polynomial reproducing function ϕ(t). The degree of this polynomial spline is zero.

Also, this function satisfies the Strang-fix conditions. Since it is a zero order repro-

ducing spline it can produce constant functions as it can be visibly seen that it is a

box function and if all the weights are same it will a constant value. Higher order

B-spine are created by convolution of lower degree splines, that is,

βp(t) = βp−1(t) ∗ β0(t) (3.5)

and we know that convolving functions in one domain that is in this case time-domain

will multiply in other domain that is in this case frequency domain.

β̂P (ω) = β̂p−1(ω) ∗ β̂0(ω) = (
1− e−iω

iω
)p+1 (3.6)

These all satisfy the strang-fix conditions up to order P. As the name Polynomial

reproducing Kernel, these functions can reproduce a specific polynomial tm, we just

have to find the values of the weight cm,n that are applied to ϕ(t− n). The steps to

compute these cm,n are given at the end of this chapter.
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3.4 Strang-Fix conditions for Exponential repro-

ducing case

As we saw in the case of polynomial reproducing kernel, the same can be extended

to exponential reproducing kernel that is, withe different weighted functions ϕ(t) we

can reproduce exponential functions.

A function ϕ(t) is said to be a Exponential reproducing kernel that is

∑
nεz

cm,nϕ(t− n) = xreiωm t, (3.7)

if and only if

ˆϕ(ω) 6= 0 and ˆϕ(ω)
r
(ωm + 2πl) = 0,

for lε Z0, r = 0, 1, ...Rm and m = 0, 1, ...P

where the different values of r have some positive integer values. Similarly, as in the

case of polynomial here also exists a family that is suitable for exponential reproduc-

tion, these are exponential B-Spline or E-Splines.

Consider the following function

βα(t) =

e
αt, 0 ≤ t < 1,

0, Otherwise,

and the Fourier transform of this function is given by

β̂α(ω) =
1− eα−iω

iω − α
(3.8)

This function too satisfies the generalized Strang-Fix conditions and is able to repro-

duce eαt. βα(t) corresponds to the zero order E-Spline. As in the case of Polynomial

spline, high-order splines are created by convolving zero order ones.

βα(t) = βiω0(t) ∗ βiω1(t) ∗ βiω2(t) ∗ ... ∗ βiωp(t), (3.9)
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and α = (iω0, iω1, ..., iωP ). And the generalized fourier transform for this can be

written as

ˆ

αω =
P∏

m=0

1− e−iωm−ω

i(ω − ωm)
(3.10)

3.5 Function reproduction with splines

In this section we provide an efficient way of computing the cmninvolved in the

reproduc- tion of polynomial functions. A polynomial reproducing kernel satisfies:

∑
nεz

cm,nϕ(t) = xm, m = 0, 1, 2..., P

∑
n∈z

Cm,nφ(t− n) = xm. (3.11)

Here we have expanded the polynomial tm in set of orthogonal basis function φ(t−n).

Coefficients Cm,n could be found by taking the inner product with the dual of φ̂(t−n),

where dual is defined as,

〈φ(t− n)φ̂(t− n′)〉 =

∫ ∞
−∞

φ(t− n)φ̂(t− n′)dt = δ(n− n′). (3.12)

Now to find Cm′n′, we take inner product with the above equation,

∑
n∈z

∫ ∞
−∞

Cm,nφ(t− n)φ̂(t− n′)dt =

∫ ∞
−∞

tmφ̂(t− n′)dt. (3.13)

⇒
∑
n∈z

Cm,nδ(n− n′) =

∫ ∞
−∞

tmφ̂(t− n′)dt. (3.14)

In the above equation Cm,nδ(n − n′) term is non-zero only when n = n′, hence the

summation disappears and only surviving term is Cm,n′ .

.Cm,n′ =

∫ ∞
−∞

tmφ̂(t− n′)dt. (3.15)
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Now changing the variable in integral as, t→ t−n′ and n→ n′. Therefore the above

equation could be written as,

.Cm,n =

∫ ∞
−∞

(t+ n)mφ̂(t)dt. (3.16)

Now expanding (t+ n)m binomially in the above equation we get,

.Cm,n =

∫ ∞
−∞

m∑
k=0

mCkn
m−ktkφ̂(t)dt. (3.17)

Now taking the summation out and seprating the constants from integral,

.Cm,n =
m∑
k=0

mCkn
m−k

∫ ∞
−∞

tkφ̂(t)dt. (3.18)

Now the integral part is nothing but Ck,0 by definition. hence above equation could

be written in terms of Ck,0 as ,

.Cm,n =
m∑
k=0

mCkn
m−kCk,0. (3.19)

Now plugging the value of Cm,n to our intial equation,

tm =
∑
n∈z

( m∑
k=0

mCkn
m−kCk,0

)
φ(t− n) (3.20)

Now writing
∑m

k=0
mCkn

m−kCk,0 as,

.
m∑
k=0

mCkn
m−kCk,0 =

m−1∑
k=0

mCkn
m−kCk,0 + Cm,0 (3.21)

Putting it on the above equation we get,

.tm =
∑
n∈z

(m−1∑
k=0

mCkn
m−kCk,0 + Cm,0

)
φ(t− n) (3.22)
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Seperating out Cm,0,

tm = Cm,0
∑
n∈z

φ(t− n) +
∑
n∈z

(m−1∑
k=0

mCkn
m−kCk,0

)
φ(t− n) (3.23)

Now using the above equation, we could get an expression for Cm,0,

Cm,0 =

tm −
∑

n∈z

(∑m−1
k=0

mCkn
m−kCk,0

)
φ(t− n)∑

n∈z φ(t− n)
(3.24)

Now, this gives a recursive set of expression for coefficients Cm,0 as, for m=0,

C0,0 =
1∑

n∈z φ(t− n)
. (3.25)

for m=1,

C1,0 =
t− C0,0

∑
n∈z nφ(t− n)∑

n∈z φ(t− n)
. (3.26)

for m=2,

C2,0 =
t2 − C0,0

∑
n∈z n

2φ(t− n)− 2C1,0

∑
n∈z nφ(t− n)∑

n∈z φ(t− n)
. (3.27)

Similarly rest of the coefficients of form Cm,0 could be found.

Once we find Cm,0, Cm,n could be found using,

.Cm,n =
m∑
k=0

mCkn
m−kCk,0. (3.28)

Hence we could get all the coefficients using the above equations.
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Chapter 4

Sampling and Perfect

Reconstruction of FRI Signals

Till here we have seen how to construct a filter. Now we will see how to use the

properties of the polynomial and exponential reproducing kernels and see how to use

those properties to create the signal. We have chosen our input signal as stream of

Diracs because many signals can be converted to this shape after sampling

4.1 Reconstruction Algorithm

As we defined earlier the input signal is given by

g(x) =
∑
nεz

anf(x− xn) (4.1)

it consists of n Diracs with amplitudes an located at xn) locations. This signal is

sampled using the setup. The sampling Kernel ϕ(t) is used, it modifies the signal and

the sampling rate is 2n as there are 2n unknown variables. The samples yn are given

by

y[n] =

〈
g(x), ϕ(x/T − n)

〉
(4.2)

In the original FRI paper they have shown how to reconstruct it using sinc and

Gaussian filter. Still the form that we have obtained above we cannot separate the

14



time-dependent part and the time-independent part. Therefore we will use the prop-

erty of the filter that they can create polynomial of varying degree. That is, we

will multiply the samples obtained with the coefficients cm,n and consider the case of

weighted samples.

τm =
∑
n

cm,nyn (4.3)

Now we substitute the value of yn in above equation.

τm =
∑
n

g(x)

〈
cm,n, ϕ(x/T − n)

〉
(4.4)

Here we have used the property of linearity of the inner product to move the sum

operator inside the inner product. Now we will also replace the the second term

defined by the filter that we are using and in this case it is polynomial reproducing

kernel.

τm =

∫ ∞
−∞

g(x)xmdx (4.5)

=

∫ ∞
−∞

N∑
n=1

anf(x− xn)xmdx

=

∫ ∞
−∞

N∑
n=1

anδ(x− xn)xmdx

=
N∑
n=1

anx
m
n , n = 0, 1, ..., N (4.6)

We can solve this for the case of a exponential reproducing kernel also, the moments

of signal,τm obtained will be given by.

τm =

∫ ∞
−∞

g(x)eαxdx

=

∫ ∞
−∞

N∑
n=1

anf(x− xn)(t)eαxdx

15



=
N∑
n=1

ane
αmxndx

=
N∑
n=1

ânu
m
n dx (4.7)

where ân is given by ane
α0xn and un is given by eλx−k. The solution for this type of

equation where one part in time-dependent and other is non time-dependent or in gen-

eral case to extract valuable information from uniformly sampled signal. Annihilation

filter or Prony’s method gives the solution for this kind of problem.

4.2 Annihilation Filter Method

We begin by assuming n data samples x[1], x[2],...x[n]. These we have obtained

as we saw earlier from the multiplication of different cm,n weights to data samples

obtained after passing through the filter ϕ(t). we consider here M-exponent discrete-

time function

x[n] =
N∑
n=1

kkz
n−1
k

We can express this above equation in a matrix form
z01 z02 ... z0N

z11 z12 ... z1N

. . ... .

zN0 zN2 ... zNN − 1




h1

h2

.

hN

 =


x[1]

x[2]

.

x[N ]


This equation can be solved for the unknown value of the amplitudes. Now we propose

a polynomial with roots zk that is the value goes zero for the equation when we put

zk. This is why the name of the filter is annihilation filter. The new polynomial F (z)

can be written as

f(z) =
M∏
k=1

(z − zk)

= (z − z1)(z − zk)...(z − zk)

and if we further simplify this above equation and can be written as the sum:
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f(z) =
M∑
m=0

a[m]zM−m

= a[0]zM + a[1]zM−1 + ...+ a[M ]

Now the shifting the index in the first equation that we wrote in this section from n

to n-m and multiplying the parameter a[m] gives us:

a[m]x[n−m] = a[m]
M∑
k=1

hkzn−m−1k

Modifying this equation

M∑
m=0

a[m]x[n−m] =
M∑
k=1

hkzn−mk

M∑
m=0

a[m]zM−m−1k

This right-hand summation in nothing but the polynomial defined by us f(z) evalu-

ated at each of its roots zk yielding the result O

M∑
m=0

a[m]x[n−m] = 0

4.3 Moments of signal

Thus using the annihilation filter we get

hm ∗ τm

The filter f(z)] is called the annihilating filter as it annihilates the observed signal τm.

The zeroes of such a filter define the distinct locations un. To retrieve the locations

we write the convolution equation in following form.
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τ.F =



τK τK−1 ... τ0

τK+1 τK ... τ1

. . ... .

τ2K τ2K−1 ... τK

. . ... .

τM τM−1 ... τM−K


×


h0

h1

.

hK

 = 0

The size of the Toeplitz matrix is (M −K + 1)× (K + 1), the length of the column

vector H is K+1 and M ≥ 2K − 1as at least 2K consecutive values of the sample

τm are required. We convert the set of above equations to Yule-Walker system by

assuming h0 = 1



τK−1K τK−2 ... τ0

τK τK ... τ1

. . ... .

τ2K τ2K−1 ... τK

. . ... .

τM−1 τM−1 ... τM−K


×


h1

h2

.

hK

 =


τK

τK+1

.

hM



Solving this will give the roots which gives the locations of the Diracs. The system of

the equations above gives a unique solution for uk since the filter coefficients hm are

unique for a given signal. After finding the locations uk we can find the weights ak

from the power series expression. It can be written in the matix form such as.

1 1 ... 1

u1 u2 ... uK

u21 u22 ... u2K

. . ... .

uK−11 uK−12 ... uK−1K


×


a1

a2

.

aK

 =


τ0

τ1

.

hK−1



The above system is also known as Vandermonde system and leads to a unique solution

for the amplitude ak and uk. Here we conclude that perfect reconstruction of a stream

of K Diracs is possible with any kernel able to reproduce polynomials and exponential.
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4.4 Sampling with FRI

Now, we have defined everything that is required in FRI. We will assemble all the

steps together and see it’s working. The signalg(x) is passed through through the

filterh(x) which modifies the signal g(x) and filters the signal with unwanted frequen-

cies to the predefined property of the filter. After that the modified signal is sampled

regularly. The number of samples or the sampling rate is determined by the number

of parameters in the signal. The moments of signal which are obtained after sampling

are passed through an Annihilation filter. The working of Annihilation filter has been

shown in the previous section. What is basically does is it itself depends on these

moment of signals. It will work in such a way that it destroy these moments of signals

and will give us the location of the Diracs. After finding the location of Diracs we can

find the amplitude of these Diracs. and this is what FRI says a signal can be created

if we know all its parameters and essentially we have find these parameters and recon-

struct the signal back. Here, we have assumed a signal consisting of four Diracs. The

Figure 4.1: A typical sampling setup for 1-D FRI signals. Here, g(x) is the
continuous-time input signal, h(x) the impulse response of the acquisition de- vice,
ϕ(x) the sampling kernel and T the sampling period.

idea is to find the locations and amplitudes of all the four Diracs. We pass the sig-

nal through the exponential reproducing function. The filter gives a continuous-time

signal as the weight of Diracs are multiplied to the exponential reproducing function.

This continuous time signal is sampled at regular intervals which gives us moment of

samples, from this pass these moments of signals to a an annihilation filter to give us

information about the location of Diracs and consequently about amplitudes. Thus

allowing us to reconstruct the signal.
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Figure 4.2: Sampling and perfect reconstruction of a stream of Diracs. (a) is the
continuous-time stream of Diracs, (b) the sampling kernel h(t). is the continuous-time
signal y(x) = g(x)h(x) and the corresponding discrete samples
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Chapter 5

Summary & Conclusions

5.1 Concluding Remarks

Using FRI technique we nearly obtained the Ultrasound signal from the few samples

we took. There was one considerable error noted in our that the reconstructed signal

was stretched which it should not be.

Here, we took the Ultrasound signal and took few samples of this Ultrasound. Now

our objective was to reconstruct the original signal from these few samples using

FRI. The signal was passed through the FRI acquisition device. The exponential

reproducing gives the continuous form of the signal that is, the reconstructed form.

But still we want to see the accuracy of our reconstruction technique so we sample

it at regular intervals and obtain the samples. Here what we observed the starting

sample of the signal was reconstructed with zero error but as the other points were

reconstructed too, the error in location and amplitude also increased, thus stretching

our signal. Further improvement of this technique can help us improve the quality

of signal at lower rates.
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Figure 5.1: The original Ultrasound signal

Figure 5.2: The Ultrasound signal which is sampled at a lower rate

Figure 5.3: Reconstruction of Ultrasound signal using FRI technique
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