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Abstract

Polymer translocation is relevant to various biological processes, like passage of mRNA

from nucleus to cytoplasm through nuclear pores after transcription, horizontal gene

transfer in bacterial conjugation, transport of proteins and viral injection of DNA

into the host cells. Polymer translocation also finds application in gene therapy,

controlled drug delivery, and rapid DNA sequencing. Due to these technological ap-

plications, polymer translocation has gained considerable attention in the last two

decades both theoretically and experimentally. Experiments have demonstrated that

single-stranded DNA and RNA molecules can be electrophoretically driven through

biological and synthetic nanopores. By using S. aureus α-hemolysin to form a sin-

gle channel across a lipid bilayer separating two buffer-filled compartments, it was

found that the ionic current through pore depends strongly on the polynucleotide se-

quence passing through the pore and could be used for sequencing of DNA and RNA

molecules. Currently, three types of nanopores are used for sequencing purpose: bi-

ological, synthetic and hybrid nanopores. However, developing such a sequencing

devices is still a challenge mainly because of remarkably fast translocation rate of

ssDNA molecule through the nanopore (∼ 1 nucleotide/µs). Current research has

been focused on to the slowing down translocation of DNA molecule inside the pore.

One possible solution can be the introduction of pore-polymer interactions. Also,

these biopolymers and proteins are semiflexible in nature. However, most theoretical

studies on polymer translocation assume completely flexible polymers. In this the-

sis, we study theoretically the driven translocation of a semiflexible polymer through

narrow pores. The goal of this thesis is to study the effect of varying pore-polymer

interactions, pore geometry and hydrodynamics on the translocation time statistics

of semiflexible polymer to gain a deeper understanding of their fundamental role in

polymer translocation and devise better sequencing strategies.

In the first problem, we study the sequencing of semiflexible polymers of varying

bending rigidity using patterned pores. We first establish interplay between bending

rigidity and pore polymer interactions for the translocation of a homogeneously semi-

flexible polymer. We then consider a heteropolymer made up of alternate stiff and

flexible segments. We find that statistical fluctuations in the translocation time could

be utilised for efficient sequencing of heteropolymers with varying bending rigidity, by

suitably engineering pore-polymer interactions and combining readouts from multiple

pores.

In the second problem, we focus on the role of pore geometry in the translocation
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process. Experiments on translocation of a single stranded DNA through a protein

channel MspA, which has a nearly conical geometry, indicate that such a pore is a

promising candidate for nanopore DNA sequencing and other nanosensor applica-

tions. Here, we consider the driven translocation of a semiflexible polymer through

an interacting conical pore. We study the effect of (i) the apex angle of the pore, (ii)

the rigidity of the polymer, (iii) the stickiness of the pore, and (iv) the driving force,

on the translocation time. We show that the translocation time shows interesting

non-monotonic behavior as the pore geometry is altered by changing the apex angle

of the pore.

In the third problem, we study flow driven translocation of a polymer through a nar-

row channel. Experimental and theoretical studies have indicated the importance of

hydrodynamic interactions for driven polymer translocation through pores. Specif-

ically, flow driven translocation involve the crossing of a free energy barrier set by

the competition of the hydrodynamic drag and the entropic pressure due to the con-

finement of the polymer inside the pore. Theoretical and numerical studies indicate

that the critical flow rate to overcome this barrier is independent of the length of

the polymer and the pore geometry. We study fluid flow driven translocation of

semiflexible polymer chain through nanopore. To incorporate hydrodynamics, we im-

plement hybrid molecular dynamics-multiparticle collision dynamics algorithm. We

show that the critical flow rate shows a striking dependence on the bending rigidity

of the polymer as well as on the width of the pore.

We believe that in future, these studies on the dynamics of semiflexible polymer, will

be useful for designing nanopore based devices for sequencing purpose and also under-

standing the physical aspects of biomolecular transport in different pore geometries.
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Chapter 1

Introduction

Polymers play a very important role in life. The building blocks of life such as pro-

teins, nucleic acids (DNA and RNA), actin filaments and microtubules are biopoly-

mers. In many biological processes such as the passage of mRNA through nuclear

pores [4], transfer of DNA across bacterial membranes during bacteriophage infec-

tion [5], translocation of proteins through sub cellular membranes [6], and viral in-

jection of DNA into the host cells [4, 7–9], the biopolymer translocates from one

region to another through a very narrow pore whose diameter is of the order of a few

nanometers (10−9 m). This process is called polymer translocation.

The DNA contains genetic information and the knowledge of the genome, as

given by the DNA sequence, is needed to have an understanding of the fundamental

mechanisms of life occurring at the cellular level. The main difficulties in getting

this information are the size of the genome, the speed and the cost of sequencing

used by the current technology. The potential of polymer translocation as a low

cost rapid DNA sequencing technique [10] has revolutionized the field. Apart from

DNA sequencing, polymer translocation also finds applications in gene therapy and

controlled drug delivery [11], and making devices that uses micro- and/or nano-fluidics

for cheap medical investigations [12]. Due to these reasons, polymer translocation has

been studied extensively in the last two decades.

Let us first discuss important concepts from polymer physics that will be needed

to understand the physics of polymer translocation.

1.1 Polymer Physics

Polymers are large molecules made up of repeating structural units, called monomers,

connected by covalent bonds [13]. The monomers contain groups of atoms which

1
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Figure 1.1: Schematic representation of a linear polymer chain with N monomer units,
R is the end-to-end distance and Rg is radius of gyration. CM denotes the
center of mass of the chain.

can be either identical (as in polyethylene) or chemically different (as in a protein

or DNA). A polymer can take different conformations such as globular, coil-like, and

rod-like, which depends on the chemical properties, nature of solvent, and the number

of monomers present in the chain.

To describe the configuration of a polymer, one has to know the location of each

monomer in space. The simplest model of a polymer chain is Freely Jointed Chain

(FJC) model (Fig. 1.1), in which, the angular constraints between bonds and the

excluded volume interactions are ignored. In this model, the chain consisting of N

monomers and hence (N−1) bonds, each of length b, is able to orient in any direction

independent of each other. The conformation of the FJC is given by the set of N

position vectors {R1, . . . ,RN}, or equivalently by the set of (N − 1) bond vectors,

{r1, . . . , rN−1}, where

ri = Ri+1 −Ri, i = 1, 2, . . . , N − 1.

The end-to-end vector of the chain is given by

R = RN −R1 =
N−1∑
i=1

ri. (1.1)

There are two important quantities which characterize the size of the polymer:
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1. Mean square end-to-end distance: The mean square end-to-end distance is given

as

〈R2〉 =
N−1∑
i=1

N−1∑
j=1

〈ri · rj〉, (1.2)

where, 〈·〉 denotes average over an ensemble of chains with all possible confor-

mations. For FJC model,

〈R2〉 = (N − 1)b2. (1.3)

2. Radius of gyration: The square radius of gyration is defined as the average

square distance between monomers in a given conformation and the center of

mass of the polymer, RCM =
1

N

N∑
i=1

Ri. It is obtained as:

R2
g =

1

N

N∑
i=1

(Ri −RCM)2 =
1

2N2

N∑
i=1

N∑
j=1

(Ri −Rj)
2. (1.4)

For FJC model, there exist a relation between the mean square end-to-end

distance and the mean square radius of gyration in the limit of large N :

〈R2
g〉 '

〈R2〉
6

. (1.5)

• If we ignore the constant of proportionality in the above equations, and use the

generic symbol R, we can write

R ∼ N ν ,

where R is like the average size of the polymer and ν is the size exponent.

For FJC model, ν = 1/2. For real polymers, due to the excluded volume

interactions, two monomers cannot occupy the same space. In general, ν =

3/(d+ 2) is the size exponent in d dimensions, and is obtained by Flory within

a mean field approach [13]. In one, two and three dimensions, the values of ν are

1, 3/4, and 3/5 respectively, which are very close to the experimentally [14,15]

observed values and numerical simulations [16]. In Fig. 1.2 we have plotted the

end-to-end distance, R, and the radius of gyration, Rg, as a function of chain

length N for a flexible polymer in three dimensions. A straight line fitting to

the data gives us the size exponent as ν = 0.58±0.01 which is close to the value

predicted as 3/5. The simulation details are described later.
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Figure 1.2: Left Panel: 〈R2
g〉 and 〈R2〉 as a function of chain length N .

• The total number of conformations, Z, of a polymer chain with N monomers

are given by

Z(N) = z̄NNγ−1, (1.6)

where z̄ is the effective coordination number for the orientation of the adjacent

bonds, and γ is a critical exponent, which depends on the nature of the polymer,

the background fluid, and any spatial restriction imposed on the polymer. The

Helmholtz free energy FN of the chain is then given by

FN
kBT

= − lnZ(N) = −N ln z̄ − (γ − 1) lnN. (1.7)

The second term in the above expression plays a crucial role in constructing the

free energy landscape for polymer translocation.

• The FJC model fails to describe the behavior of a semiflexible polymer because

of relaxation of the angular constraints. A semiflexible polymer is generally

characterized by a large bending stiffness. This implies that there is a com-

petition between bending energetics, which favor a straight conformation, and

the entropic propensity of the polymer to crumple. To describe the physical

properties of semiflexible polymers, the worm-like chain (WLC), also known

as Kratky-Porod model, is used. The Hamiltonian for the semiflexible chain is
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Figure 1.3: Space curve representation: Conformation of a worm like chain is specified
by r(s), and u(s) is the local tangential vector.

given by [17]

H =
1

2
κb

∫ L

0

(
∂u(s)

∂s

)2

ds, (1.8)

where, κb is the bending rigidity, L is the contour length, and s is measured

along the contour from one of the chain ends (0 < s < L) (See Fig. 1.3). The

tangential unit vector u(s) at s is given by

u(s) =
dr(s)

ds
, (1.9)

which represents the local orientation of the segment in the semiflexible chain.

The correlation between tangent vectors u(s) and u(s′) of two segments at s

and s′, respectively, decreases to zero as:

〈u(s) · u(s′)〉 = exp

(
−|s− s

′|
`p

)
, (1.10)

where `p is known as the persistence length of the semiflexible polymer. The

worm like chain is described by two parameters, the persistence length, `p, and

the contour length L. The persistence length can also be expressed as

`p =
2κb

(d− 1)kBT
, (1.11)

where T is the absolute temperature, d is the dimension and kB is the Boltzmann

constant.

The mean square end-to-end distance for a semiflexible polymer is given by

〈R2〉 = 2`pL

[
1− `p

L

(
1− e−L/`p

)]
. (1.12)

The limiting cases of large persistence length with respect to contour length,
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and vice versa, follows from the above formula

〈R2〉 =

{
2`pL ≡ bL, `p � L

L2, `p � L,
(1.13)

where b = 2`p is defined as Kuhn segment length which is twice the persistence

length of the polymer. Hence, it is also a measure of the polymer chain stiffness.

Therefore, the WLC chain reduces to a rod-like polymer in the limit `p � L,

and a FJC for `p � L. Similar to Eq. 1.13, the limiting cases for the radius of

gyration of a WLC are given by

〈R2
g〉 =

{
bL/6, `p � L

L2/12, `p � L.
(1.14)

Therefore, for a semiflexible polymer, depending on the ratio of the persistence

length to the chain length, the same polymer behaves differently and have dif-

ferent size exponents.

1.2 Physics of polymer Translocation

We are now in a position to see what happens when a polymer situated in the left

compartment (cis side) tries to go to the right compartment (trans side) through a

narrow pore that connects the two compartments (See Fig. 1.4). The chain on the cis

side can have a large number of conformations N and therefore the chain has large

entropy. The free energy of the system is given by F = E−TS = E−kBT lnN , where

E is the energy of interaction between monomers and surrounding molecules. When

such a chain is placed in a restricted environment, such as inside a narrow pore, the

number of possible conformations are reduced. Hence, the chain entropy decreases

and the free energy of the chain increases [1]. This introduces a free-energy barrier in

the translocation process. The polymer must overcome this barrier for a successful

translocation to the trans side (right compartment). Let FL, FR, and FP represent the

free energies of the polymer in the left compartment, right compartment, and inside

the pore, respectively. Generally, FR 6= FL because the left and right compartments

may not have similar environments. The polymer has to overcome a barrier of height

(FP − FL) to successfully complete the translocation process. The barrier height can

be affected by introducing pore-polymer interaction. An external driving force is also

useful to overcome the barrier.

For the polymer which is placed in an ionic solution to complete the translocation
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Figure 1.4: (a) Idea of the entropic barrier in polymer translocation. (b) Various steps
of polymer translocation process: (1) drift-diffusion, (2) capture, and (3)
translocation. (c) Three stages of the translocation step. Adapted from
Ref [1]

process from the left compartment to the right across the nanopore (Fig. 1.4(b)), has

to go through three stages [1]: (1) drift-diffusion, (2) capture, and (3) translocation.

In the first stage, the polymer which is away from the pore entrance diffuses in the

solvent and could also drift depending on the presence of external fields. In the

second stage, the polymer which has drift-diffused close to the pore entrance, faces

an effective sucking force arising from potential gradients at the pore entrance. Once

the polymer is captured, it still has to come out of the pore exit, which involves

overcoming the entropic barrier. This third stage (Fig. 1.4(c)) is usually facilitated

by pore-polymer interactions, pore geometry and external forces in the form of field

gradients. In this thesis, we will ignore the first stage of drift-diffusion of the polymer.

In all the cases we study, one end of the polymer will always be placed at the pore

entrance, so that the capture and subsequent translocation stages are enforced.

1.3 Polymer Translocation through nanopore: A

brief survey

In the last two decades, the polymer translocation has attracted considerable at-

tention both theoretically and experimentally. In this section, we give a very brief

account of relevant experimental and theoretical work.
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1.3.1 Experimental studies

The first experimental study of translocation was done by Wallace Coulter in 1940

to count blood cells by passing them through a hole of size roughly 10 µm, slightly

larger than the size of blood cells [18]. His apparatus consisted of two compartments

separated by a hole. The compartments were filled with an electrolyte solution and a

voltage difference was applied. As the cells passed through the hole, the ionic current

through the hole drops which is proportional to the volume of cells. Experimental

studies on polymer translocation have largely used three different types of pore [19]:

(i) biological pores, (ii) solid state nanopores, and (iii) hybrid of the two.

1.3.1.1 Biological nanopores

Biological nanopores are formed by pore forming proteins. The most frequently used

biological pores are α-haemolysin and Mycobacterium Smegmatis porin A (MspA) [20].

In α-haemolysin pore, the channel is made up of a 3.6 nm diameter vestibule or cap,

which is connected to a 2.6 nm wide and 5 nm long transmembrane barrel like struc-

ture called the β barrel. The diameter of the region where vestibule and the β barrel

join is just 1.4 nm. Therefore, only a single stranded DNA molecule can pass through

this pore. The side and top view of α-haemolysin pore is shown in Fig. 1.5(A) (Left

panel).

In 1996, Kasianowicz, Brandin, Branton and Deamer [21] used a transmembrane

protein, an α−hemolysin channel, as a pore and translocated a homopolymer RNA

molecule. They used the same principle of Coulter and showed that the sequence of

nucleotide in RNA could be identified by observing the ionic current across the pore.

Using the same technique, they were able to show that it is possible to distinguish

between two different types of block copolymers A30C70 by monitoring both the am-

plitude and duration of the current signal. The translocation rate of DNA molecule

through α−hemolysin pore is remarkably fast: the time spent by a nucleotide inside

the pore is ∼ 1µs, which means that very few ions (around 100) are passing through

the pore. Therefore, the difference in the ionic current of different bases are over-

whelmed by the statistical fluctuations. Most of the work reported on this pore is to

regulate the ssDNA transport through the nanopore [22,23].

One drawback of α-haemolysin is that it cannot distinguish between 10–15 nu-

cleotides which are present inside the pore. As a result, the ionic current statistics

of each nucleotide becomes diluted and hence reducing the overall signal-to-noise

ratio in sequencing applications. Another example of a biological nanopore is the

Mycobacterium Smegmatis porin A (MspA) [24] which has a conical shape. MspA
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Figure 1.5: Left Panel: Ribbon representations of the α−hemolysin protein and MspA
channel. (A) Side and top view for α−hemolysin channel. (B) Side and top
view for MspA channel [2]. Right Panel: Different pore diameter formation
on SiN membranes by using high intensity electron beam of a field-emission
Transmission Electron Microscope (TEM) [3].

has constriction diameter ∼ 1.2nm (see Fig. 1.5(B) Left Panel). In MspA, only 3

nucleotides which are close to the constriction, are simultaneously affected by the

current and hence current statistics of the four bases are sufficiently wider. This pore

also faces the same challenges, like very fast translocation of ssDNA and the difficulty

to sequence in real time. Another important example for biopores is the phi29 viral

packaging motor, which was used to transporting dsDNAs [25].

The biological nanopores have both advantages and disadvantages:

• The main advantages of using biological nanopores are the atomic precision of

their assembled structure and that they can be tuned easily through genetic

modifications [26]. Another advantage of biological pores are that they rarely

exceed 2nm in diameter and allow translocation of single-stranded DNA or RNA

as well as unfolded protein chains.

• The main disadvantage of biological nanopores are the fixed size of the pore,

loss of stability when experimental conditions such as pH, temperature or salt

concentration are changed, and difficulty in integrating them into large-scale

arrays.
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1.3.1.2 Synthetic nanopores

Synthetic nanopores were designed to address some of the difficulties posed by biolog-

ical nanpores. The disadvantages of biological pores paved the path for engineering

of synthetic nanopores. These pores are more stable, the pore diameter (1-20 nm)

can be changed with nanometer precision, have tailored surface properties, and can

be very easily integrated to large-scale arrays. The solid state nanopores are gener-

ally fabricated by making a very narrow hole in thin silicon compound (such as SiN)

membranes, by ion beam sculpting and electron beam. In Fig. 1.5(Right Panel) the

solid state nanopores of various diameters (ranging from 1-20 nm) are shown [3].

In 2001, Li et al. [27] were able to fabricate a solid-state nanopore having diameter

of 1.8 nm using ion-beam sculpting technique which they used to detect the passage

of DNA molecules. In 2003, Storm et al. [28] gave a technique to fabricate solid

state nanopores by drilling hole through a silicon membrane using electron beam

lithography. The translocation time of long DNA molecules (up to 97000 base pairs)

through a solid state nanopore was measured by Dekker’s group [29] in 2005. More

recently, graphene has been used as a material for solid state nanopores [30] due to

its remarkable mechanical, electrical and thermal properties. The translocation speed

of polymer through nanopores is quite large and needs to be controlled. To achieve

this, different groups have used different techniques. For example, Keyser et al. [31]

used optical tweezers, while Movileanu’s group [32] used electrostatic trapping.

1.3.1.3 Hybrid nanopores

A major drawback of solid state nanopore is the lack of chemical specificity – it

can not differentiate between chemical species of nearly same size. This drawback

is overcome by a recent technique in which a protein pore is attached to solid state

nanopore to create a hybrid nanopores. For example, a genetically engineered α-

haemolysin protein has been attached to the nanopore in a SiN membrane [33].

1.3.2 Theoretical studies

The experimental study of Kasianowicz et al. [21] inspired several theorists to develop

analytical and numerical approaches to the problem. In this section, we briefly discuss

some fundamental theoretical studies and focus on the ones relevant to this thesis.

Theoretical studies on polymer translocation mostly focuses on the statistics of

translocation time, τ , i.e. the time taken by the polymer to successfully move from

the cis to the trans side of the pore. Sung and Park [34] studied the translocation
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of a Gaussian polymer through a pore in the absence of any external force in the

equilibrium limit. Their approach was to treat translocation dynamics as a diffusion

process across a free energy barrier. It was found that the translocation time τ scales

with the chain length N as τ ∼ N3 and τ ∼ N2.5 for chain obeying Rouse and

Zimm dynamics, respectively. Muthukumar [35,36] also considered translocation as a

diffusion process across a free energy barrier and used nucleation theory arguments to

solve the mean first-passage time problem for the chain through the channel. He found

that the translocation time for a self avoiding chain scales as τ ∼ N2. It was argued

by Chuang et al. [37] that the translocation time for unbiased translocation cannot

be smaller than the Rouse equilibration time (τR ∼ N1+2ν), where ν is the Flory

exponent (ν3D = 0.58 and ν2D = 0.75), and showed using Monte Carlo simulations

that τ scales as τ ∼ N1+2ν .

In the case of a driven translocation, an externally applied force F is also a

parameter in the scaling relation along with the chain length N . In majority of

experiments, the source of driving force is an applied electric field. However, there

are some experiments that considers the bias due to the interactions between the

attractive particles present in the trans side and the translocating polymer. In most

theoretical studies of driven translocation a constant force at the pore is put by hand

irrespective of its origin.

The scaling laws for the forced translocation of very long polymer chains were

derived by Storm et al. [29]. They argued that depending on the polymer length,

there are different dominating frictional regimes. For short chains, the friction of the

chain is dominated by the friction inside the pore, and the translocation time scales

linearly with N . For longer chains, the hydrodynamic drag of the subchains outside

the channel dominates over the friction inside the channel, and the translocation time

scales as τ ∼ R2
gN

2ν or τ ∼ N1+ν for Rouse or Zimm dynamics, respectively. This

was consistent with their experimental translocation exponent of 1.27 measured for

long dsDNA.

Luo, Ala-Nissila and collaborators [38–40] present results from Monte Carlo and

Langevin dynamics simulations of biased and unbiased polymer translocation. For

the unbiased translocation, the chain is initially placed halfway through the channel

and can escape on either side of the pore. The translocation time for both the models

scales as τ ∼ N1+2ν in the absence of a driving force. For an unbiased translocation

from a very long pore as compared to the chain length, it was found that τ ∼ N . In the

presence of an external driving force they observed two scaling laws with both models:

(i) τ ∼ N2ν for relatively short chains, and (ii) τ ∼ N1+ν for longer chains. It was

also observed that the biased translocation time is inversely proportional to the field
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strength. There have been a plethora of later studies predicting different exponents

using arguments like dynamical scaling [37, 41], mass and energy conservations [42]

and tension propagation (TP) along the length of the polymer [43–45]. The TP theory,

introduced originally by Sakaue [43] for an infinite chain and subsequently modified

by Ikonen et. al. [46, 47] and Dubbeldam et. al. [48] to finite chains have proved to

be successful in explaining the non-equilibrium facets of driven translocation. Ikonen

et. al. [46] introduced the Brownian dynamics tension propagation theory (BDTP),

which correctly accounted for the role of pore friction and thermal fluctuations due to

the solvent and their effects on the scaling exponent. Further, it explained the various

values of the scattering exponents observed in previous studies, thereby providing a

unifying picture of polymer translocation. The BDTP theory was recently modified

with a constant monomer iso-flux approximation by Sarabadani et. al. [49,50], which

leads to self consistent theory for polymer translocation with effective pore friction

as the only free parameter. Bhattacharya and others [51–54] studied translocation

dynamics of a semiflexible polymer and showed the dependence of mean translocation

time on the stiffness of the polymer. They showed from their simulations that the

underlying TP picture along the polymer backbone is valid for semiflexible chains as

well.

A large number of the results discussed above were for pores where the inter-

actions of the polymer with the pore were negligible. The translocation process is

inherently stochastic in nature and poses a challenge to devise efficient sequencing

strategies without compromising on the speed of the translocation process. Solid

state nanopores with tailored surface properties [28, 55] make it possible to regulate

the interactions of the polymer with the pore as well as reducing noise [56–60]. The-

oretically, this has been achieved by typically looking at extended channels where

the interaction of the pore with the channel is tuned. Luo et. al. [61–63] showed

that the mean translocation time of a polymer across an attractive channel increases

with the strength of attraction. This suggests a possibility to separate polymers with

varying interactions with the pore. Furthermore, the translocation dynamics of a het-

erogeneous polymer show a strong dependence on the sequence. The heterogeneity

has been introduced in a variety of ways. Luo et. al. [64] considered heteropoly-

mers which are distinguished by the driving force they experience inside the pore.

The residence time of each bead inside the pore was found to be a strong function

of the sequence. Mirigian et. al. [65] considered polymers with differing frictional

interaction with the pore and charge. The mean translocation time of the multiblock

polymers depends on the fraction as well as the arrangement of the blocks. At a cer-

tain optimum length of the charged block, the mean translocation rate is the slowest.
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de Haan et al. [54] considered the chain heterogeneity based on their bending rigidity

(rod-coil polymers). They observed distinct plateaus for the rod-coil polymer in the

progression towards complete translocation. They showed that, in the quasi-static

limit where pore-friction dominated translocation (low viscosity), the stiff segment

translocates faster than the flexible ones. Later, Adhikari et al. [53] studied the effect

of these rod-coil segments on the total translocation time and found that at high

viscosity the stiffer segments translocate slower than the flexible segments.

Recent theoretical studies [66–68] considered channels with varying pore-polymer

interactions along its length. The translocation time distributions showed significant

variations across the differently decorated channels. Katkar and Muthukumar [68]

showed that translocation time across a nanpore of alternate charged and uncharged

sections, depends non-monotonically on the length of the charged section. In the

studies by Cohen et. al. [66, 67], it was shown that the statistical fluctuations in the

translocation time could be utilised for efficient sequencing of heteropolymers. We

extend the idea in the context of semiflexible polymers with varying bending rigidity

along the polymer backbone in Chapter 2 of the thesis.

Recently, Nikoofard et al. [69,70] has studied the translocation of a flexible polymer

through a cone shaped channel in the absence of external driving. They start with

an initial configuration of the chain in which the monomers are arranged along the

axis of the conical channel in such a way that the two parts of the chain, which are

outside the pore, are of equal lengths. It was found that due to the asymmetry of the

channel, an effective driving force of entropic origin acts on the polymer such that the

polymer always translocates from the end with larger diameter. The authors used

local equilibrium assumptions to obtain the equilibrium free energy for the polymer

inside the channel. They found the translocation time is nonmonotonic function of

the apex angle of the channel. However, translocation processes mostly occur in

the presence of an external drive and with significant pore-polymer interactions. We

present a study of such a situation through a conical nanopore in Chapter 3 of this

thesis.

Recent theoretical works of Sakaue and collaborators [71–73] have reported the

translocation of the polymer through narrow pores in the presence of fluid flow. It was

found that the translocation is controlled by the competition between the entropic

and the hydrodynamic forces. In 2005, Sakaue et. al. [71] derived a theoretical

expression for the threshold velocity flux of the fluid flow based on the de Gennes

polymer blob model [74]. Below the threshold flux the probability of translocation

of the polymer is zero. Furthermore, it was claimed that the threshold velocity flux

for a linear polymer chain is independent of the length of the chain, and also of
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the dimensions of the pore, but depends only on the temperature of the system and

the viscosity of the fluid. In recent years, several mesoscopic techniques have been

developed to simulate the dynamics of fluid particles such as, lattice gas automata

(LGA) [75], lattice Boltzmann (LB) [76], dissipative particle dynamics (DPD) [77],

multiparticle collision dynamics (MPCD) [78]. In 2009, Yeomans et al. [73] obtained

the threshold velocity flux using lattice Boltzmann simulation, which which were in

very good agreement to the theoretical prediction of Sakaue. In 2010, Nikoubashman

and Likos [79] showed that this expression is also valid for the branched polymer.

In 2012, Ledesma-Aguilar et al. [80] showed that this expression is valid only for

polymers with longer chain lengths. In the case of smaller chain lengths, it was

found that the threshold velocity flux depends on the polymer chain length. All

the studies reported above are for flexible polymer chain. It is of interest to know

how the threshold velocity flux behaves if the underlying polymer in the fluid flow

is semiflexible. Therefore, we attempt to study the effect of semiflexiblity on the

threshold velocity flux in the presence of fluid flow using MPCD, which we presented

in Chapter 4 of this thesis.

1.4 Simulation techniques

We used the bead-spring model proposed by Grest and Kremer [81] in our simulations.

In this model, each bead on the polymer chain represents a group of molecules, such as

nucleotides or nucleic acid. The consecutive beads are connected by a spring which

mimics the bond between the respective groups. In addition, there is a bending

potential to account for semiflexiblity of the chain.

1.4.1 Interaction potentials

The beads of the polymer experience an excluded volume interaction modeled by the

Weeks-Chandler-Andersen (WCA) potential of the form

Ubead(r) =

4ε

[(σ
r

)12
−
(σ
r

)6]
+ ε for r ≤ rmin

0 for r > rmin,

(1.15)

where, ε is the strength of the potential and σ is the diameter of the polymer bead.

The cutoff distance, rmin = 21/6σ, is set at the minimum of the potential. Consecutive

monomers in the chain interact via the finite extension nonlinear elastic (FENE)
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potential of the form

Ubond(r) = −1

2
kR2

m ln

(
1− r2

R2
m

)
, (1.16)

where k is the spring constant which controls the strength of the bond, and Rm is

the maximum allowed separation between the consecutive monomers of the chain.

The bending potential is obtained by discretizing the WLC Hamiltonian

Ubend =
κb
2σ

N−2∑
i=1

[ti+1 − ti]
2, (1.17)

where κb is the bending rigidity of the polymer, σ is the equilibrium bond length and

ti = [ri+1− ri]/bi is the local tangent. Here, bi = |ri+1− ri| is the instantaneous bond

length. κb represents the stiffness of the polymer, and in two dimensions it is related

to the persistence length as κb/kBT = lp/2, where kB is the Boltzmann’s constant

and T is the temperature.

Attractive interaction between the polymer monomers and the pore beads are

modeled by the standard LJ potential of the form:

Upore(r) =

4εpore

[(σ
r

)12
−
(σ
r

)6]
for r ≤ rc

0 for r > rc,

(1.18)

where εpore denotes the potential depth and rc = 2.5σ is the cutoff distance. Repulsive

interaction between pore beads and the polymer (Upore(r)) is the same as the WCA

interaction (Ubead). The interaction between the wall beads and of the polymer (Uwall),

is also the same as the WCA interaction (Ubead).

1.4.2 Langevin Dynamics

To integrate the equation of motion for the monomers of the polymer, we use Langevin

dynamics. The Langevin equation is a stochastic differential equation to describe the

erratic motion of a Brownian particle colliding with molecules in the fluid medium in

which it moves [82]. Two additional forces are introduced in the Newton’s equations.

The first is a viscous force arising from the friction experienced by the particles

colliding with the fluid particles and is proportional to the velocity of the particle.

The other force is the random force due to the collision whose time average is zero.

The equation of motion for an individual particle obeying Langevin dynamics is then
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written as:

mi
d2ri
dt2

= −∇Ui − ζvi + f ext + ηi = F i. (1.19)

In our system, ri and vi the position and velocity vectors, respectively, of the ith

monomer with mass mi. The first term on the right hand side of Eq. 1.19 is the total

force caused by different potentials Ui experienced by the ith monomer,

Ui = Ubend + Ubond + Ubead + Uwall + Upore. (1.20)

The second term is the frictional force experienced by the monomer with ζ as friction

coefficient, the third term f ext is the externally applied force, and the last term ηi is

the random force which satisfy the fluctuation-dissipation theorem

〈η(t)〉 = 0 and 〈ηi(t) · ηj(t′)〉 = 2ζkBTδijδ(t− t′), (1.21)

where, T is the temperature of the fluid bath.

There are many methods to numerically solve Eq. 1.19. In the absence of friction

and noise terms in the force field of Eq. 1.19, one of the most popular method to

obtain monomers trajectories {ri(t),vi(t)} over time, is velocity Verlet algorithm.

According to this algorithm, given the positions and velocities at time t, the position

and velocity for the next time step t+ ∆t are updated as:

ri(t+ ∆t) = ri(t) + ∆tvi(t) +
1

2m
∆t2F i(t), (1.22)

and

vi(t+ ∆t) = vi(t) +
1

2m
∆t[F i(t) + F i(t+ ∆t)], (1.23)

where F i denotes the total force term in the R.H.S. of Eq 1.19.

To solve the Langevin equation of motion in presence of friction and noise term

numerically, we used Ermak’s algorithm [83]. Ermak’s algorithm treats both system-

atic dynamics and stochastic elements of the Langevin dynamics (Eq. 1.19) properly.

In this approach, updates of the particle positions and velocities are given as

ri(t+ δt) = ri(t) + c1δtvi(t) + c2δt
2ai(t) + δrGi , (1.24)

vi(t+ δt) = c0vi(t) + (c1 − c2)δtai(t) + c2δtai(t+ δt) + δvGi , (1.25)

where ri,vi, ai are the position, velocity and acceleration, respectively, of particle

i and the numerical coefficients are given as c0 = e−ζδt, c1 = (ζδt)−1(1 − c0), c2 =
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(ζδt)−1(1−c1), and δrGi , δv
G
i are random variables. Each pair of vectorial components

of δrG, δvG is drawn from a bivariate Gaussian distribution with zero mean and

variances σr and σv as follows.

σr
2 =

mkBT

ζ2
[2ζt/m− 3 + 4e−ζt/m − e−2ζt/m], (1.26)

σv
2 =

kBT

m
(1− e−2ζt/m). (1.27)

The correlation coefficient crv is given by

crvσrσv =
kBT

ζ
(1− e−2ζt)2. (1.28)

Once δrGi , δv
G
i are drawn, we calculate ri(t + δt) and vi(t + δt) and the algorithm

proceeds from one time step to the next.

A polymer in the cis side compartment would diffuse and take a significant time to

reach the pore entrance. As explained before, we will not be interested in this stage

of the translocation process. Rather, we start with a chain configuration with its

first bead placed at the entrance of the pore. This bead is fixed while the remaining

beads of the chain are allowed to fluctuate to obtain the initial equilibrium chain

conformation. The first bead is then released and the potential gradients at the pore

entrance coming from external forces or pore-polymer interactions sucks the polymer

inside the pore. Then the translocation of the polymer continues.

1.4.3 Multi-Particle Collision Dynamics

In Langevin dynamics, although the effect of the fluid bath is present in the form

of the frictional and random forces, the solvent particles are not modeled explicitly.

In the study of polymer translocation occurring in the presence of fluid flows, the

solvent needs to be incorporated explicitly. This is done in this thesis using Multi-

Particle Collision Dynamics (MPCD), also known as Stochastic Rotation Dynamics

(SRD). MPCD is a mesoscopic simulation technique to solve linearized Navier-Stokes

equations for fluid particles conserving local mass, energy and momentum, which

satisfies hydrodynamic equations [78,84]. It is a particle based method in which both

positions and velocities are continuous variables, but the time evolves in discrete

steps. It is important to mention that particle here do not necessarily mean the

actual particles of fluid but, can be interpreted as energy and momentum carriers. In

MPCD, the solvent particles are modeled by N point-like particles, each of mass m,

which move in space and time.
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R̂

vi − vcmvi

vcm

(c)(b)(a)

Figure 1.6: Schematic diagram of MPCD algorithm. (a) Streaming Step: Particles mov-
ing ballistically. (b) Collision Step: Sorting of particles inside the cells. (c)
Rotation of relative velocity vector about random axis by an angle α

The MPCD algorithm consists of two steps: (1) Streaming, and (2) Collision. In

the streaming step, the particles move ballistically (Fig. 1.6 (a)), and in time step h,

their positions change according to

ri(t+ h) = ri(t) + hvi(t). (1.29)

Therefore, in this step, the particles move without interacting with each other. During

the streaming step, additional external forces can be applied to the particles if needed.

If there is gravitational force, then an extra term (1/2)gh2, where g is the gravitational

force, will be added to Eq. 1.29 to simulate a gravity-driven flow.

The streaming step is followed by the collision step. In this step, the particles are

first sorted into cubic cells of side length a (a = 1) (Fig. 1.6 (b)). Then the velocity

vi of each particle relative to the center of mass velocity vc.m., i.e., (vi − vc.m.), is

rotated about a random axis chosen independently in each cell (Fig. 1.6 (c)). The

velocity of ith particle in the cell is given by,

vi(t+ h) = vc.m.(t) +R(α)(vi(t)− vc.m.(t)), (1.30)

where R(α) is a stochastic rotation matrix with rotation angle α, which is fixed
throughout the simulation. In this model, the local momentum and kinetic energy
is conserved. In two-dimensions, the rotation of relative velocities are carried by
an angle ±α, where the sign is chosen randomly for each cell. In three-dimensions,
there are various schemes for performing rotation [85, 86]. The one we use in this
thesis consists of choosing a random direction in space for each cell, around which
the relative velocities are rotated by an angle α. This scheme is shown in Fig. 1.7(a).
If a randomly chosen unit axis is denoted by R̂ = [R̂x, R̂y, R̂z], then the stochastic
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α

u
u||u′

u′
⊥

u⊥

R̂

u⊥ × R

(a) (b)

Figure 1.7: (a) Rotation of vector u = (v − vc.m.) around the unit vector axis R̂ by an
angle α and get new vector after rotation as u′ = R(α)u. (b) Shifting of cell
randomly by [−a/2 : a/2].

rotation matrix R(α) is given by

R(α) =

 R̂2
x + (1− R̂2

x)cosα R̂xR̂y(1− cosα)− R̂zsinα R̂xR̂z(1− cosα) + R̂ysinα

R̂xR̂y(1− cosα) + R̂zsinα R̂2
y + (1− R̂2

y)cosα R̂yR̂z(1− cosα)− R̂xsinα

R̂xR̂z(1− cosα)− R̂ysinα R̂yR̂z(1− cosα) + R̂xsinα R̂2
z + (1− R̂2

z)cosα

 .
(1.31)

For the algorithm to satisfy Galilean invariance, the grid is randomly shifted in each

time step [87,88]. The shifting of grid redistributes particles in the neighboring cells

and ensures that the particles do not have memory of previous collisions and are un-

correlated in space and time. Such memory effects can occur, when the same particles

remain in the particular cell for long time and therefore collide among themselves re-

peatedly. This effect is more prominent when the time step is very small. The range

of shifting is [−a/2 : a/2] (Fig. 1.7 (b)). If the mean free path λ is larger than a/2,

the violation in Galilean invariance is negligible, and grid shift is not necessary.

The following boundary conditions are imposed depending on the system under

consideration:

• If no walls are present in the system, the conventional periodic boundary con-

ditions are used.

• If walls are present, the no-slip boundary conditions are used. This is achieved

by the simple bounce-back rule.

When the walls are present in the system, a few cells that are near to the walls,

remain partially filled after the grid shifting, and the simple bounce-back rule fails
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Figure 1.8: (a) Poiseuille flow through a channel of size height, H=30 and length L=50,
for ρ = 35. kBT = 0.01275, corresponding to λ = h(kBT/m)1/2, with
h = m = 1 in 2D. Open circles are for simple bounce back rule and filled
circles for generalized bounce-back rule. The dashed and dotted lines are fits
to a parabolic flow profile. (b) Normalized velocity autocorrelation function
as a function of dimensionless time for λ = 1 and λ = 0.1. Dashed lines
correspond to exponential decay in Eq. 1.34.

to guarantee no-slip boundary conditions. In such a scenario, Lamura et. al. [89]

suggested a generalization of the bounce-back rule. According to it, all the partially

filled cells are filled with sufficient number of virtual particles (ghost particles) so

that the effective density of (real + ghost) particles equals the average density of the

bulk fluid. The velocities of the wall particles are taken from the Maxwell-Boltzmann

distribution with zero mean, keeping the temperature same as that of the fluid. The

collision step is then carried out using the mean velocity of all particles in the cell.

The average velocity in Eq. 1.30 rewritten as vc.m = (1/ρ)
n∑
i=1

(vi + va), where n

is the number of real particles in the partially filled cells, and va is a vector whose

components are numbers from a Maxwell Boltzmann distribution with zero mean

and variance (ρ − n)kBT , where ρ is the average number of particles inside the cell.

Using this procedure, the results obtained for Poiseuille flow with grid shifting, found

to be in agreement with the correct parabolic profile as shown in Fig. 1.8(a). Here,

the direction of the flow is along x-axis and two walls are placed along y = 0 and

y = H planes. For the case of simple bounce back rule, the velocity profile does not

extrapolate to zero at the walls (i.e., there is a strong slip), whereas there is no slip

for the case of generalized bounce-back rule.

The properties of the fluid are characterized by six parameters in MPCD algo-

rithm: (i) the mean free path λ, (ii) the mass of the fluid particle m, (iii) the size of

a grid cell a, (iv) the average number of particle per cell ρ, (v) the rotation angle α,
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and (vi) the thermal energy of the fluid kBT . For given values of λ, m and kBT , the

size of the time step h can be obtained as:

h = λ

√
m

kBT
. (1.32)

The simplicity of MPCD method allows the analytical expressions for many trans-

port coefficients, e.g., the kinematic viscosity of the fluid ν, which is the sum of two

contributions, the kinetic viscosity νkin due to streaming of the fluid particles, and

the collisional viscosity νcoll contributed by collision of the fluid particles. In general,

ν = νkin + νcoll, whose analytical expressions [85,87,90,91] are as follows:

νcoll√
kBTa2/m

=
1

λ

(1− cosα)

18

(
1− 1

ρ

)
, (1.33a)

and
νkin√

kBTa2/m
= λ

[
1

(4− 2 cosα− 2 cos 2α)

5ρ

ρ− 1
− 1

2

]
. (1.33b)

It is evident from Eqs. 1.33a, 1.33b that for small time step h and large angle

α, collisional contribution dominates, which corresponds to a fluid-like behavior and

for larger h and smaller α, kinetic contribution dominates, which corresponds to a

gas-like behavior.

To benchmark our codes, we calculated velocity autocorrelation function (VACF)

of the fluid particles (Fig. 1.8(b)) and found exact agreement with previously ob-

served results [92]. The VACF is the time correlation function of velocity of the

fluid particles. The time correlation function have been extensively used to describe

the dynamic properties and transport processes of the fluid [93]. The expression for

VACF is given by [92]

Cv(nh) =
〈vi(nh)vi(0)〉

v2i (0)
' (1− γ)n, (1.34)

where γ is a decorrelation factor defined as

γ =
2

3
(1− cos(α))

(
1− 1

ρ

)
≡ γαγρ. (1.35)

As can be seen from fig. 1.8(b), for λ = 1 the exponential decay predicted in

Eq 1.34 is obtained. For λ = 0.1, exponential decay is followed only in the first

collision. For λ = 0.1, collisional contribution to the total kinematic viscosity is more

than the kinetic one and the system behaves like fluid where VACF decay much slower
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than the one given by the molecular chaos assumption. So, λ = 0.1 corresponds to

fluid-like behavior and λ = 1.0 corresponds to gas-like behavior [92] .

1.4.4 Thermostat

To keep the temperature of the fluid constant, we apply Maxwell-Boltzmann scaling

(MBS) thermostat [94]. In this method, the distribution of the kinetic energy of

the MPCD ideal-gas particles is used to calculate the scale factor Υ . The relative

velocities ui = (vi − vc.m.) of each fluid particles in collision cells is rescaled by Υ ,

i.e., u′i = Υui to achieve the constant temperature. Such scaling does not change the

total momentum of the collision cell.

The distribution of the kinetic energy of the MPCD ideal-gas particles (Γ distri-

bution) [95] given by,

P (El) =
1

ElΓ(f/2)

(
El
kBT

)f/2
exp

(
− El
kBT

)
, (1.36)

where, f = 3(Nc − 1) is the numbers of degree of freedom of the particles in the cell,

Nc is the number of particles in each collision cell, and Γ(x) is the gamma function.

Note that in the limit of very large Nc (i.e., f → ∞), the Γ function becomes a

Gaussian with mean 〈El〉 = fkBT/2 and variance f(kBT )2/2. The scale factor for

the velocities in each collision cell can therefore be set to

Υ =

√
Êl/El.

where

El =
1

2

Nc∑
i=1

mu2
i . (1.37)

is the instantaneous kinetic energy of the collision cell before rescaling the velocities.

After rescaling, the average kinetic energy of the particles in the cell is given by

〈El〉 = 〈1
2

Nc∑
i=1

mu′2i 〉 = 〈Υ
2

2

Nc∑
i=1

mu2
i 〉 = 〈Êl〉,

which means that the average of the kinetic energy of a collision cell is equal to the

required mean of the distribution function (Eq. 1.36). This approach to keep the

temperature constant gives the correct distribution function of the particle velocities

at the level of collision cell [95].
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1.4.5 Hybrid MPCD-MD method

The polymer is introduced into the MPCD algorithm by adding N point particles,

each of mass M and connected by bonds. The MPCD fluid provides the friction and

random force required for the MD to work properly. The time evolution of the chain

monomers are determined by Newton’s equations of motion, using the velocity Verlet

algorithm (Eqs.1.22, and 1.23 with no friction, noise and external force terms in the

force field of Eq. 1.19). The time step of MD for polymer, ∆tMD is chosen to be

smaller than the time step for MPCD fluid particles, h, so that the efficiency of the

algorithm gets improved. The monomer-solvent interaction is taken into account by

taking monomer mass M = ρm in the collision step. In this step, the center of mass

velocity of the cell is calculated as

vc.m. =

∑
i∈cell

mvi +
∑
p∈cell

MV p∑
i∈cell

m+
∑
p∈cell

M
, (1.38)

and velocity of the MPC fluid particles and that of monomers are changed by the

same as in Eq. 1.30. The MPCD algorithm is able to correctly reproduce the effect

of hydrodynamic in the complex fluids. This method is particularly well suited for:

• Studying phenomena where both thermal fluctuations and hydrodynamics are

important.

• Systems with Reynolds numbers and Peclet numbers of order 0.1–10.

• If the exact analytical expressions for the transport coefficients and consistent

thermodynamics are needed.

1.5 Organization

The thesis is organized as follows:

In Chapter 2, we study the translocation of a semiflexible polymer through an

extended pore. We first explain the dependence of mean waiting time of monomers

on the stiffness for a homopolymer using iso-flux tension propagation theory when it

is translocated a pore of unit length. We then explain our results for the extended

patterned pores. In our study, we have considered three different pores: (1) Pore α,

which is an uniformly attractive pore, (2) Pore β, which has an attractive entrance

and exit, but a repulsive interaction in between, and (3) Pore γ, which has an at-

tractive entrance but repulsive exit. We show potential energy landscapes for all the
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three pores and discuss the effect of pore patterning on the translocation time of the

polymer. We then discuss a sequencing strategy which exploits the statistical nature

of translocation time. We argue that it could be utilised for an efficient sequenc-

ing of heteropolymers, made up of alternate stiff and flexible segments, by suitably

engineering pore-polymer interactions and combining readouts from multiple pores.

In Chapter 3, we study the driven translocation of a semiflexible polymer through

an interacting conical pore. We derive theoretical expression for the free energy due

to confinement of a flexible polymer and its interaction with the pore. Based on

this, we discuss results for the driven translocation of a flexible polymer, and explain

the effect of driving force, and the pore stickiness on mean translocation time as a

function of pore apex angle to explain its non-monotonic behavior. We also discuss

the numerical results obtained for the driven translocation of a semiflexible polymer

and explain the effect of bending rigidity on the translocation process.

In Chapter 4, we study the flow driven translocation through an extended narrow

pore using hybrid molecular dynamics-multiparticle collision dynamics (MD-MPCD)

simulations. We review the results for a flexible polymer and obtain an expression for

the threshold velocity flux using de Gennes blob picture. We present our simulation

results for the flow driven translocation of semiflexible polymer and establish the

dependence of threshold velocity flux on the persistence length of the polymer and

diameter of the pore.

Finally, in Chapter 5 we summarize the main results obtained in this thesis.



Chapter 2

Sequencing of semiflexible

polymers of varying bending

rigidity using patterned pores

In this chapter, we study the translocation of semiflexible polymers through extended

pores with patterned stickiness, using Langevin dynamics simulations. Extending the

iso-flux tension propagation theory (IFTP) to homogeneous semiflexible polymers

translocating through a pore of unit length, we first explain the dependence of the

mean waiting time of monomers on stiffness. For extended patterned pores, we show

that the consequence of pore patterning on the translocation time dynamics is dra-

matic and depends strongly on the interplay of polymer stiffness and pore-polymer

interactions. For heterogeneous polymers with periodically varying stiffness along

their lengths, we find that variation of the block size of the sequences and the ori-

entation, results in large variations in the translocation time distributions. We show

how this fact may be utilized to develop an effective sequencing strategy.

The chapter is organized as follows: In Sec. 2.1 we define our model and the various

pore patterns studied. In Sec. 2.2 we discuss results for the driven translocation

of semiflexible polymer of homogeneous stiffness through pores of unit length and

extended patterned pores. The results for the driven translocation of semiflexible

polymer consisting of alternate blocks of stiff and flexible segments and the sequencing

method are discussed in Sec. 2.3. Finally we draw our conclusions in Sec. 2.4.

25
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Figure 2.1: A schematic diagram of a semiflexible polymer with uniform bending rigidity
κb translocating from the cis to the trans side through (a) Pore of unit length
(L = σ) and three extended patterned pores (b) Pore α (c) Pore β, and (d)
Pore γ of length L and width W . The driving force f ext = f x̂ acts on
every monomer inside the pore. The potential energy landscape in the center
(y = 0) along the length of the pore for various pore types is also shown.

2.1 Model and Simulation Details

2.1.1 Homopolymer model

The polymer is modeled as a self-avoiding semiflexible polymer by using beads and

springs in two dimensions (Fig. 2.1). The excluded volume interaction between

any two monomers is given by Weeks-Chandler-Andersen (WCA) potential Ubead(r)

(Eq. 1.15). The consecutive monomers in the chain interact via the finite extension

nonlinear elastic (FENE) potential Ubond(r) (Eq. 1.16). The semiflexibility of the

polymer is introduced by the bending potential Ubend(r) (Eq. 1.17). The strengths of

FENE, and bending interactions are characterized by the spring constant k, and the

bending rigidity κb, respectively. The length of the polymer is given by (N − 1)σ,

where N is the number of beads in the chain. We chose a dimensionless parameter

λ = `p/` to characterize the stiffness of the polymer, where ` is the average contour

length of the polymer.

2.1.2 Heteropolymer model

The heteropolymer is modeled similarly by using beads and springs with the polymer

segment representing n monomers each of stiff (S) and flexible (F ) beads arranged
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Figure 2.2: (a) Schematic diagram of a polymer with alternate blocks of stiff (S) and
flexible (F) segments SnFn each having n = 4 bonds. The stiff (S) and
flexible (F) bonds are shown by straight and zig-zag lines, respectively. (b)
and (c) Polymer S4F4 translocating through Pores α and β, respectively, with
the stiff end entering the pore first. (d) Polymer F4S4 translocating trough
Pore γ with the flexible end entering the pore first.

in symmetric blocks SnFn. A schematic diagram of such a polymer with n = 4 is

shown in Fig. 2.2(a). As an example, for a polymer with N = 128, the minimum

value of n = 1 is for (S1F1)64, i.e., 64 repeat units of S1F1, and the maximum value

of n = N/2 = 64 is for a single unit of S64F64. For a heteropolymer, it makes a

difference whether a flexible or a stiff end enters the pore first (Figs. 2(b), 2(c), 2(d)).

2.1.3 Pore model

The pore and the wall are made from stationary monomers separated by a distance

of σ from each other. The pore is made up of two rows of monomers symmetric

about the x-axis. The length of the pore is taken to be L with a diameter W . For a

pore of unit length, L = σ (Fig. 2.1(a)). In this case, the interaction of the polymer

with the pore is given by the WCA potential with ε replaced by εpore = 1.2ε. For

patterned pores, we choose an extended pore of length L = 5σ with three different

pore patterns:

(1) Pore α is an attractive pore. All the monomers of the pore interact with the

polymer by the LJ potential Upore(r) (Eq. 1.18).

(2) Pore β has an attractive entrance and exit. The first two and the last two

monomers of the pore interact with the polymer by the LJ potential, and the

middle monomer by WCA potential as in the pore of unit length.

(3) Pore γ has an attractive entrance and repulsive exit. The first two monomers

of the pore interact with the polymer by the LJ potential and the last three
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monomers of the pore by WCA potential as above.

We have used repulsive walls to avoid the penetration of polymer through it. There-

fore, the interaction between the wall beads and of the polymer (Uwall), is taken same

as the intra-monomer interaction (Ubead(r)).

To facilitate the transfer of polymer from the cis to the trans side of the pore, the

polymer experiences a driving force, f ext = f x̂ directed along the pore axis with mag-

nitude f . This mimics the electrophoretic driving of biopolymers through nanopores.

Due to the larger entropic cost involved in confining the polymer in extended pores,

the pore entrance in such cases are chosen to be attractive to initiate the translocation

successfully. A schematic diagram of semiflexible polymers translocating from the cis

to the trans side through the pore of unit length and pores α, β, and γ are shown in

Fig. 2.1(b)-(d), respectively.

To integrate the equation of motion for the monomers of the chain we use Langevin

dynamics (Eq. 1.19) with Ermak’s algorithm (Eqs. 1.24, 1.25).

The unit of energy, length and mass are set by the familiar LJ units ε, σ and m

respectively. This sets the unit of time as
√
mσ2/ε. Following Luo et al. [63], we

assume the bead size in our coarse-grained polymer model as σ = 1.5 nm. This is

equal to the Kuhn length of a single-stranded DNA, which is approximately three

nucleotide bases. Hence the mass of the bead is m ≈ 936 amu (given that the mass

of a base in DNA is ≈ 312 amu) and charge of the bead q ≈ 0.3 e (each base

having a charge of 0.1 e effectively [63]). To allow comparison with known results,

we set ζ = 0.7 and kBT = 1.2. At T = 295 K, the interaction strength is given by

ε = kBT/1.2 ≈ 3.4 × 10−21 J, which gives a time scale of (mσ2/ε)1/2 ≈ 30 ps and

force scale of ε/σ ≈ 2.4 pN.

In these units, we choose N = 128, L = 5, W = 2.25, εpore = 1.2 (homopolymer)

and 2 (heteropolymer), rc = 2.5, ζ = 0.7, k = 30, R = 1.5 and kBT = 1.2, in our

simulations to allow comparison with known results. We have used f = 5 and f = 1

for analysis with pore of unit length and extended pore, respectively. A time step of

∆t = 0.001 is used in all simulation runs. Our choice of pore width W = 2.25σ is

to ensure single-file translocation of the polymer and avoid the formation of hairpin

configurations inside the pore. To calculate statistical properties, we have considered

1500− 2000 successful translocation events.
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2.2 Translocation of Homogeneous semiflexible poly-

mer

The role of stiffness of the polymer chain on the translocation dynamics is best ad-

dressed by decoupling it from the energetics of the extended pore. We therefore,

first considered the translocation of a homogeneous semiflexible polymer with stiff-

ness through a pore of unit length. We first provided a theoretical description of

the translocation process by extending the analysis of the tension propagation (TP)

theory to account for the stiffness of the polymer for the case of unit length pore,

and subsequently provide a qualitative description of the observations for patterned

pores by analyzing the effect of pore-polymer interactions.

2.2.1 Case I: Waiting time for unit length pore

2.2.1.1 Iso-flux tension propagation theory

The idea of tension propagation was first proposed by Sakaue [43] in the context

of nonequilibrium driven translocation. In TP theory, the translocation process is

described in terms of a single variable, the monomer number at the pore, s. The

translocation of the polymer in the presence of entropy, driving and pore-polymer

interactions can therefore be considered as a barrier crossing problem of the “translo-

cation coordinate” s. Hence, for a pore of unit length, the polymer is considered as

translocated once s = Nσ. The corresponding Langevin equation Eq. 1.19 in the

overdamped limit reduces to

ζ̃(t̃)
ds

dt̃
= (1− γ′)

[
1

N − s −
1

s

]
+ f̃ + η̃(t̃) ≡ f̃tot, (2.1)

where ζ̃ is now an effective friction coefficient, f̃(t̃) includes the various forces, η̃ is

a Gaussian white noise and f̃tot is the total force and γ′ is the surface exponent (γ′

≈ 0.69, for self-avoiding chains in two dimensions). Note that, in this limit, we use σ,

kBT and ζ to set the units of length, energy and friction. This is different from the LJ

units which we described in the previous section, and are used in our simulations. In

these new units, ζσ2/kBT sets the unit of time, kBT/σ the unit of force and kBT/(ζσ
2)

the unit of flux. To distinguish from the LJ units, all dimensionless parameters except

for length (where the unit is the same), are denoted by tilde.

For driven translocation, with sufficiently strong driving forces, the force propa-

gates along the backbone of the polymer, resulting in a non-trivial time dependent

drag. This forms the basis of the argument of tension propagation. According to
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this, the part of the polymer on the cis-side is divided into two distinct domains.

The external driving force that acts inside the pore, pulls the monomers nearer to the

pore and sets them in motion. The remaining monomers that are farther away from

the pore, do not experience the pull and on average remain at rest. As the polymer

gets sucked inside, more and more monomers on the cis side start responding to the

force, with a tension front separating the two domains propagating along the length

of the polymer. At time t̃, the drag experienced by a monomer inside the pore, can

be written as the sum of the friction due to the length of the chain in the cis side (ζ̃c)

up to which the tension has propagated, that due to the trans side segment (ζ̃t) and

the pore friction (ζ̃p) as ζ̃(t̃) = ζ̃c + ζ̃t + ζ̃p. It is then easy to see that ζ̃(t̃) increases

as the tension front propagates and more number of monomers on the cis side get

involved.

To derive the equation of motion for semiflexible polymer, we have taken the

assumption of constant monomer flux [42]. Here, the flux of monomers, φ̃ = ds/dt̃,

through the pore and the mobile domain in the cis side is assumed constant in space,

but evolving in time. Defining the pore location as x̃ = 0, the tension front is at a

distance x̃ = −R̃(t̃) from the pore. For sufficiently strong external forces, a small

portion of the chain close to the pore is straightened while the portion behind is

coiled, giving rise to the stem-flower regime.The magnitude of the tension force at

distance x̃ can be obtained as f̃(x̃) = f̃0 − φ̃(t̃)x̃ where f̃0 = f̃tot − ζ̃pφ̃(t̃) is the force

at pore entrance (see Appendix A for details). Integrating the force balance equation

over the mobile domain in the cis side, we get

φ̃(t̃) =
f̃tot

ζ̃t + ζ̃p + R̃(t̃)
. (2.2)

From Eqs. 2.1 and 2.2 and since φ̃ = ds/dt̃, we get the effective friction as

ζ̃(t̃) = R̃(t̃) + ζ̃t + ζ̃p. (2.3)

To get the full solution, we need to find the equation of motion for the tension

front, R̃(t̃), which is done in two stages. In the TP stage, we assume that in time

t̃, the tension in the chain has propagated to M monomers of the chain. Then, R̃

can be evaluated as the root-mean-square of the end-to-end distance of a semiflexible

chain of length M . The end-to-end distance of a semiflexible self-avoiding chain in

the limit M/lp � 1, scales as [50], R̃ = Aν ˜̀νp
p M

ν = Aν ˜̀νp
p (l + s)ν , where l is the

number of mobile monomers in the cis side, and in two dimensions [96], νp = 1/4 and

ν = 3/4. The equation of motion satisfied by the tension front in the propagation
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stage is obtained by taking the derivative of R̃(t̃) and is given by (see Appendix A

for derivation)

˙̃R(t̃) =
AR̃(t̃)

ν−1
ν

[
(BSF + CSF )× ˙̃ftot(t̃) + φ̃(t̃)

]
1 +AR̃(t̃)

ν−1
ν BSF × φ̃(t̃)

, (2.4)

where,

A =

{
νA1/ν

ν , for λ = 0

νA1/ν
ν

˜̀νp/ν
p , for λ 6= 0,

˙̃ftot is the time derivative of f̃tot and BSF and CSF are function of φ̃, ζ̃p, ζ̃t, and ν and

given by

BSF = − 1

φ̃(t̃)
+

ν − 1

(2ν − 1)[ζ̃p + ζ̃t + R̃(t̃)]φ̃(t̃)2
, (2.5)

and

CSF =
1

φ̃(t̃)
. (2.6)

In the post propagation stage, the tension front has reached the last monomer of

the chain in the cis side, i.e., M = N . We therefore have s+ l = N , which gives the

equation of motion for the tension front as (see Appendix A for details)

˙̃R(t̃) =
(BSF + CSF )× ˙̃ftot(t̃) + φ̃(t̃)

BSF × φ̃(t̃)
. (2.7)

We finally solve for the IFTP equations ignoring noise. Further, in our solutions, we

have assumed that the friction from the trans side of the chain is negligible and can

be absorbed into the constant pore friction ζ̃p. Although earlier numerical results [49]

suggest that this is a good approximation for a flexible pore, it is not so for a semi-

flexible chain [50]. However, for our analysis, we have considered the fairly flexible

limit N/lp � 1, and our approximation is meaningful. Thus, in our solutions for the

IFTP equations, ζ̃p is the only free parameter which we fixed by fitting to the result

for λ = 0.

2.2.1.2 Dependence of the mean waiting time on the stiffness of polymer

In Fig. 2.3, we have shown the mean waiting time as a function of translocating

coordinate s for different values of λ, calculated from both simulation and theory.

Mean waiting times, w(s), defined as the amount of time a monomer s spends on

average inside the pore. The results from the simulation of a homopolymer passing

through a pore of unit length, shows an initial increase with s, implying that subse-
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Figure 2.3: The mean waiting times, w(s), for monomers of a semiflexible polymer of
length N = 128 for various stiffness, λ, translocating through a pore of unit
length with an external force of magnitude f = 5. The points show the MD
simulation data for λ = 0 (�), λ = 0.03 (©), and λ = 0.05 (4), and the
lines are the results from IFTP theory with pore friction ζ̃p = 5.5 and in the
absence of noise.

quent monomers spends more time inside the pore. This increase in waiting time is

because of the additional drag ζ̃(t̃) from the moving monomers on the cis-side. As

we have discussed above, ζ̃(t̃) increases as more monomers translocated through the

pore which also results in the increase of the waiting times. This continues until ζ̃(t̃)

becomes maximum when the tension front reaches the last monomer. The time at

which this happens, is called the tension propagation time (t̃tp). At t̃tp, maximum

number of monomers at the cis-side participate in the translocation process and the

monomer s, which is inside the pore at that instant, has maximum waiting time w(s).

For t̃ > t̃tp, the system enters the tail retraction stage or the post propagation (PP)

stage, where the monomers on the cis side starts decreasing and therefore ζ̃(t̃) de-

creases, and so does the waiting time w. As the stiffness of the polymer increases,

the waiting times for every monomer increases indicating that a stiffer chain takes

longer to translocate. Also the peak of the waiting time distribution, and hence t̃tp,

shifts to the left indicating that tension propagates faster with increasing chain stiff-

ness. We got the same behavior from our theoretical analysis which is shown by solid

lines in Fig. 2.3. The simulation data matches well with the results obtained for the

deterministic case from the IFTP theory. It correctly reproduces the dependence on

the stiffness (λ) of the chain, observed in the simulations, as well as the gradual shift

of the peak of the distribution towards lower s as λ increases.
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2.2.2 Case II: Mean waiting time for extended patterned

pores

For extended patterned pores, the assumption of a constant pore friction is no longer

valid. Moreover, the friction from the trans side is also a complicated function of the

pore patterning, bending rigidity and the external force. It is difficult to analytically

incorporate these effects within the IFTP theory. In what follows, we gave a qualita-

tive description of the effects of pore patterning on the mean waiting times and the

translocation time distributions, based on the surface energetics of the pores.

0

120

240

360

480

600

720

0 0.2 0.4 0.6 0.8 1

w
(s
)

s/N

(a)

40

80

120

160

0 0.2 0.4 0.6 0.8

0

30

60

90

120

150

180

0 0.2 0.4 0.6 0.8 1

s/N

(b)

30

90

150

0.95 1

0

30

60

90

120

150

180

0 0.2 0.4 0.6 0.8 1

s/N

(
)

60

90

0 0.05 0.1

λ = 0.0
λ = 0.1
λ = 0.2
λ = 0.6
λ = 1.0

Figure 2.4: Mean waiting times w(s) for monomers of a semiflexible polymer of various
stiffness λ for (a) Pore α, (b) Pore β, and (c) Pore γ. The inset in (a)
represents w(s) for Pore α excluding the end monomers. Inset (b) shows
the end monomers region for Pore β while inset (c) shows the behavior for
the initial monomers entering the pore for Pore γ. Note that error bars are
smaller than the point size and are not shown here.

For the extended patterned pores in our simulations, we calculated the mean

waiting time of a monomer as it translocates from the cis to the trans side, for

small external forces. We observed that the gross features, like a peak in the waiting

times and the dependence on chain stiffness, observed for the pore of unit length, are

reproduced. Further, there are additional features near s = 1 and s = N , which can

be attributed to the pore polymer interactions. For Pore α, w(s) shows a sharp rise in

the large s limit (Fig. 2.4(a)). This feature persists for Pores β and γ as well, although

it is less pronounced. Pore γ shows an initial dip in w(s)(Fig. 2.4(c)). For monomers

in the bulk of the polymer, the non-monotonic variation of w(s) as predicted from

the TP theory persists. In order to understand these features, we focus on the surface

energetics of the various patterned pores.

The potential energy landscape in the center (y = 0) of the pore and along its

length for various pore types are shown in the bottom panel of Fig. 2.1. It is obtained

by placing stationary test point particles inside the pore along (y = 0) which are

separated by a small distance ∆x (∆x � 1). We then calculated the potential
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Pore λ s ttp 〈τ〉 ttp
〈τ〉

Pore α

0.0 54 845.9 1938.2 0.43

0.1 43 782.3 2212.5 0.35

0.2 39 768.2 2347.4 0.32

0.6 37 815.7 2729.1 0.29

1.0 34 791.9 3079.2 0.25

Pore β

0.0 56 780.6 1717.7 0.45

0.1 43 710.2 1935.9 0.36

0.2 39 698.3 2030.4 0.34

0.6 36 732.0 2270.8 0.32

1.0 34 741.4 2484.5 0.29

Pore γ

0.0 55 666.4 1445.3 0.46

0.1 44 637.6 1644.9 0.38

0.2 39 638.1 1778.3 0.35

0.6 36 680.1 2004.0 0.33

1.0 33 668.9 2194.6 0.30

Table 2.1: The tension propagation time ttp, the translocation coordinate s at which
the tension front reaches the last monomer, mean translocation time 〈τ〉, and
ratio ttp/〈τ〉, for semiflexible polymer of length N = 128 with various stiffness
λ for different pore types.

experienced by these particle from the wall beads which has been shown along y-axis

in Fig. 2.1. Pore α is a uniformly attractive pore. Although this makes it easier to pull

the polymer inside the pore, the attractive interactions makes it difficult to exit the

pore from the trans side for small external forces. Pore β has a shallower potential

well compared to Pore α. Therefore, the waiting times for the end monomers are

significantly less for this pore. For Pore γ, which has a repulsive exit, this effect is

the least. However, since Pore γ has a large potential barrier beyond the cis side, the

waiting times for the first few monomers as they enter the pore shows a dip. Naively,

one would expect that the Pore γ will have the longest filling time, which is indeed

correct. However, once the first monomer crosses the energy barrier, the repulsive

interaction immediately ejects it out of the pore. It drags a few monomers following

it, resulting in their ejection and a waiting time scale less than the first one. This is

the cause of the dip in the waiting times for the first few monomers. Once there are

monomers on the trans side, the usual tension propagation argument ensures that

the waiting time start increasing until the post propagation stage.
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In Table 2.1 we have shown the tension propagation time ttp, the translocation co-

ordinate at which the tension front reaches the last monomer, the mean translocation

time 〈τ〉, and the ratio ttp/〈τ〉 for a chain of length N = 128 for various chain stiffness

λ and the three different pore types. This table clearly shows that, for all pore types,

the ratio ttp/〈τ〉 decreases as the stiffness λ of the polymer increases, which indicates

that the tension propagates relatively faster for the stiff chain.
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Figure 2.5: Translocation time statistics for semiflexible polymers with homogeneous
bending rigidity. First, second and third rows : Translocation time distribu-
tions for pores α, β and γ respectively, for f = 1.0, as λ is varied. Not only
are the the three distributions different in their moments across the three
pores, they also vary with varying λ. Fourth row : Average (a) filling time,
〈τ1〉 (b) transfer time, 〈τ2〉 , (c) escape time, 〈τ3〉 and (d) mean transloca-
tion time 〈τ〉 as a function of λ. This corroborates the observation from the
distributions.

2.2.3 Translocation times and their distributions

We have divided the total translocation time in three stages as τ = τ1 + τ2 + τ3 where

(i) τ1 is the initial filling time, the time taken by the first monomer of the polymer
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Figure 2.6: Density plots of average translocation time as a function of strength of pore
polymer interaction, εpore, and bending rigidity λ = `p/`. (k in colorbox
stands for thousand (1k=1000)).

to reach the exit without returning to the pore, (ii) τ2, the transfer time, the time

taken from the exit of the first monomer into the trans-side to the entry of the last

monomer from the cis-side and (iii) τ3, the escape time, the time between the entry

of the last monomer in the pore and its escape to the trans-side. We compare the

average time scales for filling, transfer and escape for the three different pore patterns

to investigate the effect of changing pore-polymer interactions. In first three rows of

(Fig. 2.5), we have shown the distributions for the various λ values along three pores.

These distributions are quite distinct from each others which indicated the possibility

of detecting bending rigidity dependent sequences of heteropolymer.

In the fourth row of (Fig. 2.5), we have shown various times as a function of

the stiffness λ of the polymer. We observed that all time scales show a monotonic

increase with increasing stiffness. This behavior is expected from the discussion of

waiting times which increases with increasing λ. The attractive nature of Pore α

ensures that its filling time, 〈τ1〉 is the minimum of the three pores. Pore γ which

has a repulsive exit has the largest 〈τ1〉 due to the large potential barrier encountered

by the monomers entering the pore. The distributions of 〈τ1〉 also reveals these

characteristics, with longer tails observed for Pore γ (Fig. 2.5). The transfer time 〈τ2〉
shows more regular behavior, the repulsive exit of Pore γ ensuring that monomers

leave the pore to the trans side faster than the other pores. Evidently, Pore α has the

longest 〈τ2〉. The escape time, 〈τ3〉 is determined by the pore-polymer interaction at

the exit. The strong attractive interactions near the exit for Pores α and β ensures

longer times compared to that of Pore γ. The total translocation time shows clearly

that the transfer and escape times dominate with Pore α taking the longest time to

translocate followed by pores β and γ (Fig. 2.5(d)).
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2.2.4 Translocation time for different pore polymer interac-

tion

We have also explored the dependence of translocation time on εpore and λ, keeping

the driving force same. In Fig. 2.6, we show the density plots of average translocation

time as a function of the strength of pore-polymer interaction εpore and the bending

rigidity λ = `p/` for the driving force f = 1.0 for Pores α, β and γ. From Fig. 2.6,

we can easily see that the average translocation time increases (irrespective of pore)

as

1. the strength of pore-polymer interaction εpore is increased for a translocating

polymer of constant stiffness λ.

2. the stiffness λ of the translocating polymer increases keeping the pore-polymer

interaction εpore constant.

We will utilize this fact to detect a heteropolymer sequence consisting of repeat units

of stiff and flexible segments by translocating through multiple pores.

2.3 Translocation of heterogeneous polymer

As elaborated earlier, we have introduced heterogeneity by varying the stiffness of

the polymer along the chain backbone. The heterogeneity introduced in our polymer

model is periodic with alternate flexible and stiff segments. We first discuss the

effect of heterogeneity and orientation on mean waiting times and translocation time

dynamics and then discuss about our sequencing strategy. We have chosen λ = 0.5

as the rigidity of the stiff segments and εpore = 2.0 as the strength of pore polymer

interactions so that the translocation time of flexible and stiff segments are fairly

separated and can be distinguished easily.

2.3.1 Dependence of Waiting times

In Fig. 2.7, we have shown the waiting times w(s) of individual monomers with index

s translocating through Pores α, β, and γ for heteropolymers S8F8 and F8S8. We

observed oscillations in the waiting times in all the three cases, except near the end

when the pore synergetics becomes dominant. From our analysis of waiting times of

monomers of a homogeneous polymer we know that (i) tension propagates faster for

chains with increasing stiffness and hence (ii) leads to larger waiting times. In the

case of heterogeneous polymers, tension propagates intermittently through blocks of
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Figure 2.7: Waiting times for heteropolymers, S8F8 and F8S8, translocating through (a)
Pore α, (b) Pore β, and (c) Pore γ. The open and filled symbols represent
flexible (F) and stiff (S) segments, respectively. The results for heteropoly-
mers, F8S8 and S8F8, are shown by circles and diamonds, respectively.

stiff and flexible segments leading to the oscillations in the waiting time distribution.

A stiff block has a larger waiting time, followed by a flexible block with lower waiting

time and so on. When the orientation of the chain is reversed, the oscillations for

S8F8 and F8S8 are exactly out of phase as expected. The waiting times for the end

monomers of the chain however show distinct features for different orientations of the

chain.

In sync with its homopolymer counterpart, the end chain dynamics of heteropoly-

mers is strongly influenced by the pore-polymer interactions. For Pores α and β,

the attractive interactions near the trans side of the pore dominate, leading to large

waiting times. Evidently, the waiting times for the end monomers of the chain are

significantly larger for pore α compared to pore β. This effect is significantly less for

Pore γ which has a repulsive exit.

The end chain dynamics for the reversed conformation S8F8 is not significantly

affected by these interactions. Pore α due to the large potential barrier does make

it difficult for the end monomers to exit the pore leading to larger waiting times.

However, the waiting times are considerably less compared to F8S8. Pore β and γ

are largely unaffected. This is expected from our earlier analysis of larger waiting

times for stiffer chains. Polymer in the conformation S8F8 enters the pore with the

stiffer block entering first followed by a flexible block. This implies that a flexible

block exits the pore last in this conformation. In contrast, in the conformation F8S8,

it is a stiff block which exits the pore last from the trans side in the translocation

process leading to much larger waiting times. Note that in both conformations, in

the final stages of the tail retraction stage of the translocation process, pore polymer

interactions start playing a significant role.
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segments. (a) Polymer translocating through Pore α, and (b) Pores β (cir-
cles) and γ (squares). Results for polymer entering the pore through the
stiff (flexible) end, represented by SnFn (FnSn), are shown by filled (open)
symbols. The inset in (a) zooms the data for the case where the polymer
enters the Pore α through the stiff end.

2.3.2 Dependence of the mean translocation time on the

segment length

In Fig. 2.8, we have shown the mean translocation time 〈τ〉 as a function of segment

length n for heteropolymers translocating through Pores α, β and γ. For the case

of polymer entering the pore from the flexible end (i.e.,FnSn), it is the stiff segments

that leave the pore at the end (or vice versa). We have seen earlier (Fig. 2.7) that the

waiting times of the last few monomers for the polymer entering the pore from the

flexible end (F8S8) are usually larger than the waiting time for the polymer entering

the pore from the stiff end (S8F8).

The dependence of the mean translocation times on segment length n for the het-

eropolymers as they pass through the patterned pores can be understood by looking

at the mean waiting times of individual monomers of the heteropolymer. For Pore α,

the difference in the mean translocation times for the two different orientations (i.e.,

SnFn and FnSn) is significant and increases with increasing block length n (Fig. 2.8).

For pore β, the effect of the longer waiting times for end monomers on the total

translocation time is less significant while for pore γ, it is effectively the same for

both orientations of the polymer during the translocation.
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Figure 2.9: Translocation time distribution for heteropolymers. Comparison of filling,
transfer and escape time distribution for Pores β and γ for four different
sequences of the heteropolymer. First two rows show the translocation
time distribution for Pores β and γ when polymer enters the pore from the
flexible end (FnSn). Last two rows show the translocation time distribution
for Pores β and γ when polymer enters from the stiff end (SnFn).

2.3.3 Sequencing of polynucleotide with varying bending rigid-

ity

The sensitivity of the translocation dynamics on the varying bending rigidity of het-

eropolymers and the patterning of pores opens up the possibility of sequencing het-

eropolymers based on their unique translocation time statistical properties. For ex-

ample, Fig. 2.9 shows the translocation time distributions for four different sequences

of types SnFn and FnSn translocating through Pores β and γ. These translocation

time distributions exhibit distinct features corresponding to the variation in the block

lengths of the heteropolymer. Also, the translocation time distributions of the same

sequence, but entering the pore from different orientation (SnFn/FnSn), show clear

distinction, as the length of the segment increases (Fig. 2.10). We calculate the mean

translocation time (〈τ〉) and the standard deviation (
√
〈τ 2〉 − 〈τ〉2) from these dis-

tributions, and construct scatter plots by plotting mean translocation time along the

x-axis and standard deviation along y-axis, as shown in Fig. 2.11. The scatter plots
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Figure 2.10: Translocation time distribution for heteropolymers for three segment
lengths, n=2,8 and 16. Comparison of filling, transfer and escape time dis-
tribution for different orientation of the heteropolymer for Pores β (first
three rows) and Pore γ (last three rows). Violet/gold color represent
flexible(FnSn)/stiff (SnFn) end entering the pore first. As the segment
length increases, one can see a clear distinction in the distributions for dif-
ferent orientation

reveal several interesting features. For example, Pore γ cannot distinguish between

(S32F32)2 and (S64F64)1, but Pore β can. Similarly, Pore β cannot distinguish between

(S2F2)32 and (F2S2)32, but Pore γ can. These differences in the scatter plots for var-

ious pores, clearly show that the combination of translocation time measurements
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across different pores could be utilized to differentiate, and thus identify, sequences

which would otherwise be difficult to distinguish using measurements from a single

pore.

Our simulation methodology for sequence detection is as follows. We choose a

sequence of the heteropolymer (say SkFk, with a specific orientation) from the set of

all available sequences (defined as the training set) used to plot Figs. 2.11(a-c) and

call it an “unknown” sequence. This sequence is then passed through a single pore of

α, β or γ type. For each pore type, the heteropolymer is passed multiple times and

successful translocation events are registered (say m). For every attempted translo-

cation, the chain configuration of the heteropolymer is chosen from the equilibrated

configurations obtained in accordance with the simulation strategy discussed before

(Sec. 2.1). Having registered the successful translocation events across each pore, the

mean translocation time and standard deviation are calculated for each pore type,

which correspond to respective points in the scatter plots. These numbers are then

compared with those of the training set for the corresponding pore using a “distance”

metric. The larger the distance between the point corresponding to the “unknown”

sequence is from a particular known sequence in the scatter plot, the greater is the

relative error for that sequence. The total error, which is the sum of the distance from

a particular known sequence in all the plots, is minimized to predict the “unknown”

sequence. If the predicted sequence matches the sequence we started with, then this

marks a successful detection.

The ratio of the number of times a sequence is correctly detected to the total num-

ber of attempts, gives the accuracy of the measurement process (see Fig. 2.11(d)-(f)).

For full algorithm, see Appendix B. The samples per pore type merely indicate the

number of registered successful translocation events chosen for the unknown sequence

across each pore type. Evidently, if we use a very large number of samples for a given

pore type, the sequence detection would be accurate. However, this scheme suggests

that a combination of different pore types gives very high accuracy of prediction for a

relatively small number of copies of each pore. In Fig. 2.11, we have used the statisti-

cal data for only two pore types, Pores β and γ, to test our hypothesis. Employing the

above scheme we found, for example, that the accuracy of detection for the sequence,

F64S64 (Fig. 2.11(d)), reaches 100%, even for ∼ 130 samples per pore type. It is im-

portant to note that in our method of sequence detection, we have used only the first

two moments of the probability distribution of translocation times. As observed from

the results of the distributions, this is far from accurate. Inclusion of higher moments

would most definitely improve the accuracy of the scheme and lead to a more rapid

convergence. Further, our method has considered only a few possible pore types. It
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Figure 2.11: [(a) - (c)] Scatter plots showing mean and standard deviation of transloca-
tion times for Pores α, β and γ. The inset in (a) shows the zoomed bottom
left portion for Pore α. In each of these plots, the polymer entering the
pore from the stiff end (SnFn) is shown by symbol half yellow filled circle
(right), while the polymer entering from the flexible end (FnSn) is shown
by half yellow filled circle (left). The accuracy of detecting heteropolymers
(d) F64S64 (pink inverted triangles) and (e) S16F16 (blue triangles) through
Pores β and γ. (f) Accuracy of detection by including Pore α to distinguish
orientation of the heteropolymer S16F16.

would be interesting to design pores leading to even more distinguishable translo-

cation time statistics, which when used in conjunction with varying semiflexibility

across the polymer backbone, would lead to enhanced sequence detection.

From the set of pores chosen for this study, it is evident that for Pore α, there is an

order of magnitude difference in the translocation times of stiff and flexible segments.

Therefore, this pore is an ideal candidate to detect the difference in orientation be-

tween SkFk and FkSk and make the detection process even more precise. Indeed, we

find that the accuracy of detecting the correct orientation is almost 100 percent even

for a small number of copies of Pore α (Fig. 2.11(f)). We would like to stress that

it is not necessary to distinguish the orientation of the polymer before passing them

through the pores. Our statistical analysis simply suggest that it requires far less

samples per pore type if we manage to do so.
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Our result needs to be compared with the case where heterogeneous segments

were distinguished by their relative interactions with the pore [66]. It turns out

that in such a scenario, the translocation time distributions have sharper and more

distinguished features, leading to better sequencing accuracy. Our analysis shows

that using different patterned pores can lead to efficient sequencing strategies for

such cases.

2.4 Conclusions

In this chapter, we studied translocation of homogeneous semiflexible polymer and

heteropolymer through single-slit and extended nanopore. We extended IFTP theory

for homogeneous semiflexible polymer for single-slit nanopore which correctly cap-

tured the dependence of mean waiting time of monomers on the polymer stiffness.

We have demonstrated that for extended pore, not only waiting times increases and

peak shifts toward left, as stiffness increases, but last few monomers take longer time

to translocate through the pore and show a sharp increase in the mean waiting time

of monomers towards the end of the chain which was missing in single-slit nanopore

and this increase in the waiting time for last few monomers is attributed to the pore

polymer interaction which is shown in escape time of the polymer. As we increase the

strength of pore polymer interaction, last few monomer will take longer and longer

time to translocate. Thus for extended pores, the breakup of the total translocation

time into the filling, transfer and escape times proves useful and in this context re-

veal interesting features for semiflexible polymer translocation hitherto unobserved

for single-slit nanopores.

It has been found in experimental studies that the sequence dependent bending

rigidity is important for DNA-protein interaction and nucleosome positioning [97,98].

Such a dependence is confirmed from cyclization studies of short DNA fragments,

which allows accurate measurement of persistence length [99]. Other examples of

polymers with varying bending rigidity includes partially melted DNA and proteins

which exhibit stiff and flexible segments along the polymer backbone [100–103].

The strong dependence of translocation time on the bending rigidity of the poly-

mer and the distinguishable translocation time statistics generated by translocation

through pores with different patterned stickiness, allows us to efficiently detect poly-

mers with varying bending rigidity.

The sequencing theme proposed in this chapter, could be experimentally realized

using fabricated nanofluidic channels with surface decoration. Arrays of nanochan-

nels interfaced with microfludic loading channels have been shown to be a highly



2.4. CONCLUSIONS 45

parallel platform for the restriction mapping of DNA [104–106]. The first task is

to construct the set of translocation time distributions for known sequences. This

requires passing sequences with a particular orientation multiple times through these

functionally modified nanofluidic channels. Solid state nanopores are other highly

plausible candidates to achieve the same. With the training set characterised, the

sequencing of heteropolymers with “unknown” sequences can be efficiently achieved

in limited time by passing them through these channels using our purely statistical

analysis. The detection of the orientation of the polymer could be achieved using a

fluorescent dye on either the stiff or flexible end of the polymer [107].
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Chapter 3

Driven translocation of a

semiflexible polymer through an

interacting conical pore

In this chapter, we study the driven translocation of a semiflexible polymer through

an interacting conical pore. There has been experimental studies of polymer translo-

cation through conical pores, which report better distinguishability of ionic current

signatures from DNA sequences, making them promising candidates for sequencing

applications [20]. A few theoretical studies on translocation through such pores have

focused on the effective driving achieved due to pore asymmetry in the absence of

an external drive [69, 70]. However, for all practical applications, the translocation

process is driven and pore-polymer interactions are significant. In this study, we focus

on the effects of pore-polymer interactions and flexibility of the polymer in a driven

translocation process.

The chapter is organized as follows. In Sec. 3.1 we define our model and the

the geometry of pore studied. In Sec. 3.2, we derive theoretical expression for the

free energy due to confinement of the polymer and its interaction with the pore. In

Sec. 3.3 we discuss results for the driven translocation of flexible polymer, where

we explain the effect of driving force, and the pore stickiness on the translocation

process. We study the mean waiting times of monomers for different values of the

driving force, and for different pore apex angles. In Sec. 3.4 we discuss the numerical

results obtained for the driven translocation of a semiflexible polymer and explain the

effect of bending rigidity on the translocation process. Finally, in Sec. 3.5, we draw

our conclusions.

47
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Figure 3.1: Schematic diagram of a semiflexible polymer translocating through a conical
pore with an apex angle θ = 2α. The width (at the apex) and the length of
the pore is W0 = 2.25σ and L = 16σ, respectively.

3.1 Model

As before, our model for the polymer is a self-avoiding semiflexible chain made up

of beads and springs in two dimensions. We have used WCA potential Ubead(r)

(Eq. 1.15), FENE spring potential Ubond(r) (Eq. 1.16), and a bending potential

Ubend(r) (Eq. 1.17) to mimic the excluded volume, the bond stretching between two

consecutive monomers, and, the stiffness of the polymer chain, respectively. The

stiffness of the polymer is changed by changing the bending rigidity parameter κb in

Eq. 1.17. The pore and walls are made from stationary monomers separated by a

distance of σ from each other. The conical pore is made up of two rows of monomers

symmetric about the x-axis with an apex angle θ = 2α. Henceforth, we will refer to

α as the apex angle. The length of the pore is taken to be L with a width W0 at the

apex. This pore width allows only single-file translocation of the polymer and avoid

the formation of hairpin configurations at the apex opening. The interaction of the

pore with the polymer is chosen to be the standard LJ potential Upore(r) (Eq. 1.18).

In addition, the polymer experiences a driving force, f ext = f x̂ directed along the

pore axis with magnitude f , which mimics the electrophoretic driving of biopolymers

through nanopores. A schematic diagram of semiflexible polymers translocating from

the cis to the trans side of a conical pore is shown in Fig. 3.1.

The translocation time τ is defined as the time elapsed between the entrance of

the first bead of the polymer and the exit of the last bead from the pore. All failed

translocation events are discarded. We use Langevin dynamics (Eq. 1.19) with Er-

mak’s algorithm (Eq. 1.24, 1.25) to integrate the equation of motion for the monomers.
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3.2 Theoretical Results for a flexible polymer (κb =

0)

Consider a linear polymer chain made up of N monomers of diameter σ. In equi-

librium, the size of the free chain in is given by R ' σNν , where ν is the Flory

exponent. In two-dimensions ν = 3/4. It is well known that the size of the polymer

chain changes when it is confined in a channel of width less than the size of the free

chain R.

To understand the process of translocation, we need to estimate the free-energy

change due to the confinement, Fc, of the polymer inside the conical channel. Let us

consider a partly confined chain in the channel in the presence of an external driving

force f ext. The confinement of the polymer inside the pore costs entropy. We assume

that the part of the polymer chain that is inside the pore breaks up into blobs of size

ξ(x) = W0 cosα + 2x sinα that are tangent to the pore walls as shown in Fig 2.2.

Then, the entropic penalty due to the confinement of chain in the conical channel is

of the order of kBT per blob. If Nb(y) represents the number of blobs that penetrate

a distance y into the channel, we have Fc(y) ∼ kBTNb(y). To count Nb(y), we use

the scheme given by Nikoofard et al. [69]. As can be seen from Fig. 3.2, the two

consecutive blobs inside the conical pore at positions xj and xj+1 with diameters

ξ(xj) and ξ(xj+1), respectively, satisfy the relation

xj+1 = xj +
1

2
[ξ(xj) + ξ(xj+1)] . (3.1)

Using this recursion relation, one can easily obtain an expression between the position

of the blob xj and its number j along the pore as

xj = Qj−1
(
x1 +

W0

2 tanα

)
− W0

2 tanα
, (3.2)

where Q = (1 + sinα)/(1 − sinα). The first blob is tangent to the beginning of the

pore and its location along the axis is given by x1 = ξ(x1)/2. The last (say nth) blob

is tangent to the pore at a distance y from the pore entrance, hence its location xn

along the axis is given by xn = y − ξ(xn)/2. The blob number n, and hence Nb(y),

can be obtained by Using Eq. 3.2 along with x1 and xn, and hence the free-energy

cost due to the confinement as a function of distance y along the pore axis is given

by
Fc(y)

kBT
∼ Nb(y) ∼ logP

logQ , (3.3)



503. DRIVEN TRANSLOCATION OF A SEMIFLEXIBLE POLYMER THROUGH AN INTERACTING CONICAL PORE

x1ξ( )

2

x1
0

(b)

nxξ( )

2

nx L
0

y

(c)

+1ixix

ixξ( )

2

+1ixξ ( )

2

W0

α

L

(a)

0

Figure 3.2: (a) Two consecutive blobs inside the conical pore. The diameter ξ(xi) of a
blob depends on the position xi along the pore axis. This figure also shows
the relation satisfied by two consecutive blobs. (b) The location of the first
blob is tangent to the begnining of the conical pore. (c) The location of the
nth blob is at a distance y from the entrance of the conical pore.

where P = 1 + 2y tanα/W0.

The other contribution to the free-energy is due to the constant external force, f ,

experienced by the segment of the polymer which is inside the pore, denoted by Ff .

The value of Ff changes with the number of monomers which are present inside the

pore. The free energy change corresponds to the work done to displace the chain by

a distance y inside the pore and is given by

Ff (y)

kBT
∼ −

∫ y

0

fNb(x)dx

∼ − f

2 logQ

[
2y −

(
2y +

W0

tanα

)
logP

]
, (3.4)

where f is the magnitude of the external force f ext acting inside the pore towards the

trans direction.

There is one more contribution to the free-energy due to the attractive interaction

with the walls of the channel. To find this, we need to determine the number of

monomers in the blobs that are in contact with two walls of the conical channel. In

2D, the number of monomers in jth blob is given by m(xj) = (ξ(xj)/σ)4/3. The total

number of monomers Nn in n blobs that are penetrated up to distance y inside the

channel can then be obtained from the constraint Nn(y) =
n∑
j=1

m(xj). Substituting

xj from the recursion relation Eq. 3.2, and number of blobs Nb(y), we get

Nn(y) = σ−
4
3

(2y sinα +W0 cosα)
4
3 − (W0 cosα)

4
3

(1 + sinα)
4
3 − (1− sinα)

4
3

. (3.5)
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Figure 3.3: (Color online) (a) Sum of free energy contributions due to confinement and
external force (Fc+Ff )/kBT , (b) Free energy due to pore interaction Fp/kBT ,
(c) Total free energy Ftot/kBT , as a function of distance y from the pore apex
along the pore axis for different half-apex angle α for a polymer of length
N = 64 with an external force f = 0.1. The inset shows the data near the
peak region.

The fraction of monomers that are in contact with a wall of the channel is then

given by Nn(y)(σ/ξ(y)). If V (y) denotes the interaction energy, which is due to the

pore-polymer interaction and given by the LJ potential (Eq. 1.18), the free energy

contribution due to the attractive interaction for a polymer that has entered the pore

up to a distance y is given by

Fp(y)

kBT
∼ V (y)Nn(y)

(
σ

ξ(y)

)
. (3.6)

The total free energy is then given by

Ftot(y)

kBT
=

1

kBT
(Ff (y) + AFp(y) + CFc(y)) , (3.7)

where A and C are undetermined factors.

In Fig. 3.3, we have plotted the total free energy Ftot/kBT , given by Eq (3.7), for

parameter values A = 0.035 and C = 1, as a function of distance y along the pore

axis for different half-apex angle α ranging from α = 0.5◦ to α = 5◦ for a polymer of

length N = 64 with an external force f = 0.1 and pore polymer interaction energy

strength εp = 1. The free energy exhibits a barrier that needs to be overcome by the

polymer to translocate towards the trans side successfully. As α increases, the barrier

height also increases indicating that it is relatively more difficult for the polymer

to translocate towards the trans end. The free energy barrier attains a maximum

height at α = 2◦ and on increasing α further, the barrier starts decreasing showing

that polymer can easily translocate from the conical pore for larger apex angle. This

clearly explains qualitatively the hump in the average translocation time plotted in

Fig.3.4.
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Figure 3.4: (a) Average translocation time 〈τ〉 as a function of pore apex angle α for a
fixed pore-monomer strength εpore = 1. (b) Same as (a) for higher values of
driving forces.

3.3 Case I: Numerical results for a flexible poly-

mer

We next consider the simulation results for the translocation of a flexible polymer.

In this case, κb = 0, hence Ubend = 0. We discuss the effect of driving force and the

pore-monomer interaction strength εpore on translocation time of the polymer. We

also discuss the mean waiting time of monomers at different pore apex angles and

driving forces.

3.3.1 Translocation time of flexible polymer

3.3.1.1 Effect of driving force

In Fig. 3.4, we have plotted the mean translocation time 〈τ〉 for a flexible polymer

as a function of apex angle α, for a fixed εpore and for different driving forces, f .

For low driving forces, we observe a non-monotonicity in the variation of 〈τ〉 as the

apex angle is changed. For small apex angles, 〈τ〉 initially falls and then rises as α

increases. For large α, there is a monotonous decrease. For example, for f = 0.05, as

the pore apex angle is increased from 0◦, the filling time first decreases and shows a

minimum at 0.25◦, after that it increases up to a maximum value at 1.50◦ and then

decreases monotonically as pore angle is further increased. This non-monotonicity

gradually disappears with increasing driving force.

We attempt to give a qualitative explanation of this behavior from our theoretical

analysis of the free energies of confinement and pore-polymer interaction. As observed

in Fig 3.3, the confinement free energy of the polymer exhibits a barrier. This barrier
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Figure 3.5: Potential energy landscape for various pore apex angles α used in our sim-
ulations. Potential depth increases from blue to red.

is closer to the pore exit for small apex angles and shifts towards the pore entrance as

α increases. The height of the barrier also decreases with increasing α. Therefore, one

would expect that the time taken to translocate would fall as α increases. However,

the free energy due to pore-polymer interactions indicate that free energy becomes

shallower near the entrance as α increases. The free energy barrier at the exit also

decreases with increasing α as expected. Therefore, the pull that the polymer experi-
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ences near the cis side of the pore due to the strong attractive interactions, decreases

as the apex angle (and hence the asymmetry of the pore) is increased. This would

then indicate that it will take the polymer longer to complete the translocation pro-

cess. It is this competition between the force due to confinement and external drive

and the force due to pore-polymer interactions for small apex angles, that sets an

angle α∗ where the translocation time is a minimum. Beyond α∗, the translocation

time again increases until up to α∗∗. For α > α∗∗, the effect of confinement is again

negligible. The polymer needs only to overcome the barrier posed near the exit which

reduces with increasing α. Hence the mean translocation time keeps on decreasing

beyond α∗∗.

The effect of pore-polymer interactions can be captured from the potential energy

landscape for an attractive conical pore. Fig. 3.5 shows the potential energy landscape

for various apex angles shown with the color gradient. Blue to red represents an

increase in the potential strength (depth of the potential well). For very small values

of apex angle, the position of the potential barrier is nearer to the trans side of pore,

which corroborates the free energy picture. So for small apex angles, the translocation

process is an interplay between confinement effects and interactions of the polymer

with the pore. But as the pore apex angle increases, position of the potential barrier

start moving towards the apex of the pore as can be seen from the red region moving

close to the pore entry.

As the driving force is increased, the translocation is faster. The polymer will

take less time to overcome the barrier as compared to the smaller values of driving

forces. At sufficiently strong driving force, effect of pore-polymer interaction becomes

negligible and translocation time decreases monotonically with the apex angle of the

pore (Fig. 3.4(a)).

3.3.1.2 Effect of pore stickiness

In Fig. 3.6, we plot the variation of mean translocation time 〈τ〉 as a function of α for

different strengths of pore-polymer interaction, εpore, at a fixed value of the external

force f . As is evident from the free energy argument, Fp dominates the translocation

process as εpore increases. Therefore, the non-monotonicity in the mean translocation

times with varying α, gradually disappears at higher values of εpore. Here, the free

energy barrier near the exit of the pore is high and the polymer spends longer time

inside the pore. As α increases, this barrier falls drastically and the translocation

times are significantly less. For low εpore, the competition between confinement and

interaction is significant and the non-monotonicity persists.
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Figure 3.6: Average translocation time 〈τ〉 as a function of pore apex angle α for various
strength of pore-polymer interaction εpore. The external driving force is f =
0.1.

3.3.2 Waiting times of flexible polymer for fixed pore-polymer

interaction strength

As argued before, in the context of driven translocation, the mean waiting time, w(s)

plays an important role in understanding the translocation process. As defined in

Chapter 2, mean waiting time, w(s), of a monomer s is the total time spent by it inside

the pore while translocating from the cis to the trans side of the pore. In Fig. 3.7, we

have shown the mean waiting time w(s) for a flexible polymer as function of monomer

index s when it is translocated through conical pores of different apex angles α, and

for various external driving forces f . The pore-polymer interaction strength, εpore is

kept fixed. We first consider the case of a small directed drive (Figs. 3.7(a-b)). For

α = 0, i.e. for a flat pore, w(s) shows a hump near the pore entrance. This hump

can be explained on the basis of tension propagation theory. According to this, the

part of the polymer on the cis-side is divided into two distinct domains. The external

driving force and the attractive interactions of the pore with the polymer, pulls on the

monomers nearer to the pore and sets them in motion. The remaining monomers that

are farther away from the pore, do not experience the pull and on average remain at

rest. As the polymer gets sucked inside, more and more monomers on the cis side start

responding to the force, with a tension front separating the two domains propagating

along the length of the polymer. The time dependent drag experienced by a monomer

ζ(t) increases as the tension front propagates and more number of monomers on the cis
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Figure 3.7: The mean waiting time 〈w(s)〉, for a flexible polymer of length N = 64 as
a function of s/N for various pore apex angles α for external driving forces
(a) f = 0.1, (b) f = 0.3, and (c) f = 1.0. The strength of pore-monomer
interaction is εpore = 1.

side get involved. This increase in the effective friction is manifested in the waiting

times which show an initial increase with s, implying that subsequent monomers

spends more time inside the pore. This continues until ζ(t) becomes maximum when

the tension front reaches the last monomer, maximum number of monomers at the

cis-side participating in the translocation process. Beyond this, the system enters

the tail retraction stage where the monomers on the cis side starts decreasing and

therefore ζ(t) decreases and so does the waiting time w(s). For a short pore, this

hump spreads across the polymer length. In this situation, since the pore is long,

the tension propagation effect is seen upto N ≈ 16, beyond which w(s) saturates .

The effect of pore-polymer interactions is again observed near the pore exit, when

the attractive nature of the pore makes it difficult to pull the polymer out of it.

As we start increasing α, we observe several interesting effects which can only

be attributed to the conical nature of the pore. For α = 0.25, we note that the

characteristic features observed for α = 0 are preserved. However, w(s) falls sharply

for the end monomers of the chain. The marginal entropic gain in increasing the pore

width near the exit, facilitates translocation. As we increase α further, for example

at α = 1.5, there is a dramatic change. The increasing width of the pore implies

that the effect of the interactions of the polymer with the pore walls reduces sharply.

Therefore, the effective pull on the polymer is substantially less than that for smaller

α. It takes longer time for the tension to propagate to the end monomers of the chain

to set them in motion. Eventually, once the tail retraction stage is reached, w(s)

starts to drop. Note that, for these pore angles, the large width near the trans side

means that the attractive interactions which drags the end monomers has no effect.

On increasing the pore angle further, for example α = 4.5, the entropic gain is large
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enough to ensure smooth polymer translocation with smaller w(s) for all s.

For large forces, for example f = 1.0, this subtle competition between entropy and

pore synergetics is absent. At these forces, tension propagates almost instantaneously

to the end monomers of the chain and therefore we do not observe the initial hump.

The waiting times of the monomer mimics the potential energy profile of the pore

with an initial decrease for small s, a predominantly flat region afterwards and finally

the increase near the exit. The entropic gain with increasing α is also applicable in a

global sense with the decreasing w(s) for all s (Fig. 3.7(c)).

3.4 Case II: Numerical results for a semiflexible

polymer

In this section, we discuss the effect of bending rigidity, κb, of the polymer on the

translocation dynamics across the conical pore. To facilitate the description, we divide

translocation time τ into two parts :

1. The filling-time, denoted by τf , is the time elapsed between the entrance of the

first and the last monomers of the polymer chain in the conical pore from the

cis side.

2. The escape-time, denoted by τe is the time taken between the entrance of the

last monomer of the polymer in the pore, and the exit of all the monomers from

the trans end of the conical pore.

With these definitions, we clearly have τ = τf + τe. Note that the transfer time

discussed previously in Chapter 2, is included in the expression for the pore filling

time in this approach.

3.4.1 Translocation time as a function of pore apex angle

From our previous study of driven translocation through a pore of unit length and

extended interactive pores, we have seen that the translocation time increases with

increasing bending rigidity, i.e. increasing stiffness. The mean translocation time

〈τ〉 as a function of α for different polymer rigidities show this expected behavior

(Fig. 3.8(a)). The translocation time 〈τ〉 for a given α increases with increasing κb.

However, it shows the opposite behavior in the low bending rigidity regime. For small

bending rigidity, filling time dominates the total translocation process. Therefore,

translocation time will decrease as bending rigidity increases initially. Note that
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Figure 3.8: (a) Mean translocation time, 〈τ〉 (b) Mean filling-time, 〈τf 〉, and (c) Mean
escape-time 〈τe〉, as a function of pore apex angle α for a semiflexible polymer
of various bending stiffness κb. The external driving force is f = 0.2 and the
strength of pore-polymer interaction is εpore = 1.
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Figure 3.9: Same as Fig. 3.8 but for small bending stiffness κb.

this effect vanishes for α ≈ 0, which is consistent with our earlier study reported in

Chapter 2. For further increase in the bending rigidity, escape time starts dominating

the translocation process and hence, polymer with higher bending rigidity will take

higher time to translocate. The non-monotonic behavior in the translocation times

as α is varied, observed for the flexible polymer, is absent for very stiff polymers. The

break up of the mean translocation time into the filling and escape times provides

useful information. As seen in Fig. 3.8(b), the filling time does exhibit the non-

monotonic feature as α is varied. The feature gradually disappears as the stiffness

increases with decreasing effect of confinement for stiffer polymers. Moreover, as

Fig. 3.8(b) suggests, 〈τf〉 actually decreases with increasing κb for a given α. This

suggests that the filling time statistics for a semiflexible polymer is still dependent on

the same competition between confinement effects and pore-polymer interaction as

observed for a flexible polymer. However, as Fig. 3.8(c) indicates, the translocation
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Figure 3.10: Mean waiting time w(s) as a function of s/N for semiflexible polymer of
various stiffness κb for three different pore apex angles α.

time for the semiflexible polymer is dominated by the escape time 〈τf〉 which exhibits

a monotonically decreasing behavior as α is increased. A blow-up of the small κb

region indicates that the non-monotonic feature in the translocation times persists,

the behavior at small κb resembling the situation for a flexible polymer (Fig. 3.9(a-c)).

3.4.2 Waiting time for semiflexible polymer

In Fig. 3.10, we plot the waiting time w(s) distribution for a monomer inside the pore

for varying polymer stiffness and for three different apex angles. Monomers of the

polymer, except for those at the end, exhibit a rise of waiting time as κb is increased.

This is consistent with the behavior observed for the mean filling times 〈τf〉. It takes

lesser time to fill as the stiffness is increased. The end monomers of the polymer show

a completely different behavior with a decrease in mean waiting times as the stiffness

of the polymer is increased. Escape is difficult for stiffer polymers. For very large

stiffness (not shown here), the mean waiting times for monomers shows a monotonic

increase with increasing κb and the chain takes longer to translocate.

3.4.3 Translocation of semiflexible polymer at low and high

driving force

We also studied the effect of driving force on the τ − α curve at small and large

values of κb. In Fig. 3.11, we have shown various translocation time as a function of

α for small stiffness and for three different driving forces. At small force, τ −α curve

shows non-monotonic dependence and this non-monotonicity vanishes as the strength

of driving force is increased (Fig. 3.11(c)).

In Fig. 3.12, we have shown various translocation time as a function of α for high
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Figure 3.11: (a) Mean translocation time, 〈τ〉 (b) Mean filling-time, 〈τf 〉, and (c) Mean
escape-time 〈τe〉, as a function of pore apex angle α for a semiflexible poly-
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Figure 3.12: Same as Fig. 3.11 but for a semiflexible polymer of bending stiffness κb = 32.

stiffness and for three different driving forces. For very stiff polymers, the translo-

cation times at a given α shows a continuous decrease with increasing driving force.

The behavior across 〈τf〉, 〈τe〉 and 〈τ〉 remains the same.

3.5 Conclusions

We numerically studied the driven translocation of a flexible and semiflexible polymer

through an interacting cone shaped pore. We calculated the free energy of (confine-

ment + external force) and that due to pore-polymer interactions and showed that a

competition between the two can give rise to non-monotonic features in the transloca-

tion time distributions as the pore apex angle α is changed. From our earlier studies

on semiflexible polymers translocating through parallel pores, we expect that stiffer

polymers will take longer time to translocate. While this is in general true for translo-
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cation dynamics across a conical shaped pore as well, there are additional interesting

features observed at small κb. Here, the translocation time actually decreases as κb

is increased, a feature which requires a detailed theoretical investigation.
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Chapter 4

Flow driven translocation through

a narrow channel

In this chapter, we present results for the fluid flow induced translocation of a semiflex-

ible polymer through an extended narrow pore using multi-particle collision dynamics

(MPCD) simulation. Sakaue et al. [71] used the blob picture by de Gennes, to predict

the threshold velocity flux to push a polymer inside a narrow channel as

jthv = kBT/η, (4.1)

where kB is the Boltzmann’s constant, T is the temperature and η is the viscosity

of the solvent. This suggests that the velocity flux is independent of the length of

the polymer or the dimensions of the channel. Markesteijn et. al. [73] verified this

prediction using mesoscale simulations where the fluid was modeled using Lattice

Boltzmann. In this study we investigate the effect of stiffness of the polymer on this

threshold flux.

In Sec. 4.1, we review the calculation of Sakaue et. al. for threshold velocity

flux for a flexible polymer using de Gennes blob model. In Sec. 4.2 we define our

model for both polymer and fluid particles and give simulation details. In Sec. 4.3

we discuss numerical results for the flow driven translocation of semiflexible polymer

through a narrow pore where we establish the dependence of threshold velocity flux

on the persistence length of the polymer and diameter of the pore. Finally we draw

our conclusions in Sec. 4.4.

63
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4.1 Theoretical results for a flexible polymer

We briefly review the theoretical analysis to calculate the threshold flux in flow driven

translocation for a flexible polymer. Here we follow the analysis by Ledesma-Aguilar

et. al. [80]. In the blob picture of de Gennes, a chain of length L confined inside

a channel of width W breaks up into Nb blobs of size ξ. From the Flory theory it

follows that the size of the blob is comparable to the pore size i.e.,

ξ ≈ W. (4.2)

Let us assume that in the presence of a weak driving, the polymer has entered the

channel partially upto a length y. The confinement of the polymer inside the channel

costs entropic penalty of the order kBT per blob. The number of blobs, given that

the chain has penetrated a distance y inside the channel, is given as Nb ∼ yW 2/ξ3.

Then the energy cost is

FC ∼ kBT
yW 2

ξ3
∼ C1kBT

( y
W

)
, (4.3)

where we have used Eq. 4.2. Here C1 is a numerical prefactor.

The fluid flow drags the polymer inside the channel giving rise to hydrodynamic

drag per blob as ηuξ, where u = jv/W
2 is a typical velocity inside the channel, j

being the velocity flux. Therefore, for Nb blobs, the free energy contribution is given

as the work done by the fluid to displace the polymer a distance y:

FH ∼ −
C2ηjv

2

( y
W

)2
, (4.4)

where C2 is another constant prefactor. We can see that the two free energy terms

compete with each other setting a length scale y∗ for which the difference

∆F = C1kBT
( y
W

)
− C2ηjv

2

( y
W

)2
, (4.5)

is a minimum. That length is

y∗ =

(
C1

C2

)
kBTW

ηjv
. (4.6)

This gives

∆F ∗ =
C3

2

(kBT )2

ηjv
, (4.7)
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where C3 = C2
1/C2. Sakaue et al. [71] assumed that the strength of the barrier is of

the order of thermal fluctuations, i.e. ∆F ∗ ∼ kBT . This gives y∗ ∼ W and hence the

critical flow rate jthv ∼ kBT/η.

4.2 Model and Simulation Details

In this section we introduce our model. We simulated the fluid particles by MPCD

method and polymer chain by conventional Molecular dynamics (MD) simulations.

We have used WCA potential Ubead(r) (Eq. 1.15), FENE spring potential Ubond(r)

(Eq. 1.16) and a three body bond bending potential Ubend(r) (Eq. 1.17) to mimic

excluded volume, bond stretching between two consecutive monomers, and stiffness

of the chain, respectively. The persistence length of a semiflexible polymer is changed

by changing the bending rigidity parameter κb in Eq. 1.17.

The solvent is modeled explicitly in this study. The fluid particles evolve in time

according to the MPCD algorithm that we have discussed in Chapter 1. To induce

flow in the system, we employed gravitationally driven flow in which each fluid particle

experiences a force g = gx̂, acting along x-axis. In order to incorporate flow in the

system, the streaming step given by Eqs. 1.29 can be rewritten as:

ri(t+ h) = ri(t) + hvi(t) +
h2

2
gx̂, (4.8)

vi(t+ h) = vi(t) + hgx̂. (4.9)

Periodic boundary conditions are applied along the x- and z-axes, and no-slip bound-

ary conditions in the y-direction. To simulate such conditions, conventional bounce-

back rule is employed in which the velocities of each particle that collide with the

walls are inverted after the collision. For planar walls coinciding with the boundaries,

such conditions are conveniently simulated by employing a bounce-back rule, i.e., the

velocities of particles that hit the walls are inverted after the collision. But due to cell

shifting, some of the cells remain partially filled near the wall and simple bounce-back

rule fails to guarantee no-slip boundary conditions. So we use a generalization of the

bounce-back rule which has been detailed in the introduction.

The polymer is introduced into the solvent by adding Np point particles, each of

mass M and connected by bonds. The time evolution of the chain monomers, namely

positions Rp and velocities V p, are determined by solving Newton’s equations of

motion using the velocity Verlet update (Eq. 1.22, 1.23). The time step of Molecular

dynamics for polymer, ∆tMD is chosen to be smaller than the time step for MPCD
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Figure 4.1: The geometry used in simulations of flow driven translocation of a semi-
flexible polymer through a narrow pore. The green dotted line indicates the
velocity flow profile inside the pore.

fluid particles, h. The monomer-fluid interaction is taken into account by taking

monomer mass M = ρm, where ρ is the number density of fluid particles in each cell.

In the collision step, the center of mass velocity of the cell is calculated as

vc.m. =

∑
i∈cell

mvi +
∑
p∈cell

MV p∑
i∈cell

m+
∑
p∈cell

M
, (4.10)

and velocities of fluid particles and that of monomers are given by

vi(t+ h) = vc.m.(t) +R(α)(vi(t)− vc.m.(t)), (4.11a)

V p(t+ h) = vc.m.(t) +R(α)(V p(t)− vc.m.(t)). (4.11b)

where R(α) is the stochastic rotation matrix introduced in Chapter 1.

4.2.1 Simulation details

The cell length, a, and the energy kBT , sets the length and energy scales respectively.

The unit of time is set by τ = h, i.e., the time step of MPCD step.

The dimensions of the simulation box is chosen as: Lx×Ly×Lz. In this geometry,

a narrow pore of size (Lpx×W ×Lpz). The schematic diagram of the geometry used in

the simulation is shown in Fig. 4.1. Periodic boundary conditions are imposed along

x-, and z-axes, and the no-slip boundary conditions along the y-axis and other wall
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surfaces. For a Poiseuille flow within the pore, the mean velocity flux per unit width

of the pore can be calculated by solving Navior-Stokes equation with the boundary

conditions, which is given as:

j0v =
W 3g

12η
. (4.12)

By putting the parameters values, for W, η and g, we get the reference value for the

velocity flux j0v .

We start with a chain configuration with the first monomer placed at the entrance

of the pore. This monomer is kept fixed and the remaining monomers of the chain

are allowed to fluctuate to relax the polymer to its equilibrium configuration. The

equilibration time for the polymer chain is taken to be 5× 104 steps in MPCD units

h (equal to 2.5 × 106 steps in MD units ∆tMD). A virtual wall is place inside the

pore to prevent the monomers to enter the pore during equilibration. The wall is then

removed and the first monomer is released from its fixed position, and a gravitationally

driven flow is applied. The translocation of the polymer across the pore is than

monitored. For a successful translocation, all the monomers of the polymer chain must

translocate to the other side of the pore. To calculate the probability of translocation,

we have taken 100 equilibrated samples.

4.3 Numerical results

4.3.1 Dependence on persistence length of the polymer

Fig. 4.2 shows the probability of translocation as a function of the applied velocity

flux, for different values of the persistence length lp. All other parameters are kept

fixed.

The simulation data is in units of the reference value for the velocity flux j0v . The

points are from our simulations and the solid lines are from fitting the data to a

functional form:

P (jv) =
1

2

[
1 + erf

{
jv − jv(1/2)

B

}]
, (4.13)

where jv(Pt) is the value of applied velocity flux for which threshold fraction Pt of

the polymer has been translocated, B is a fitting parameter and erf{·} is an error

function. On increasing the velocity flux jv, the drag increases, so the probability of

translocation of polymer chain also increases which is reflected in the transition from

a non-translocation (i.e., P = 0) to a successful translocation (P = 1) of the polymer

as velocity flux is increased (Fig 4.2). This transition is similar to the results obtained

by Markesteijn et. al. [73] for a flexible chain using lattice Boltzmann method. While
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Figure 4.2: Simulation results of the translocation probability as a function of applied
velocity flux for polymers of different persistence lengths `p. The points are
results from simulations and the solid lines are the best fit to the data.

this smooth transition from P = 0 to P = 1 as a function of applied velocity flux

jv holds for all polymer chains with different persistence length considered, we found

that the curves shift towards left as `p is increased. This indicates that the threshold

velocity flux needed to start the translocation of the chain gets lower as persistence

length of the polymer increases. To define this behavior more quantitatively, we

define a threshold velocity flux as jthv as jv(Pt = 0.5) (which means that value of jthv for

which 50% of polymer chains have been translocated) and calculate the corresponding

velocity flux using Eq. 4.13. The measured values of the threshold velocity flux for

different `p of the polymer is tabulated in Table 4.1. The threshold velocity flux, jthv

Persistence length (`p) Threshold velocity flux (jthv )

0 4.92
2 4.52
4 3.68
8 2.61
16 2.27
32 1.98
64 1.46

Table 4.1: Threshold velocity flux jthv for semiflexible polymer of different persistence
length `p.
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Figure 4.3: Log-Log plot of threshold velocity flux jthv as a function of persistence length
`p of the polymer.

as a function of `p when plotted in a log-log scale shows a straight line (see Fig. 4.3)

indicating a power law dependence between them:

jthv
jthv (`p = 0)

∼ Ls
1

`βp
, (4.14)

where Ls is some length scale to identified. Note that requirement of Ls to be a length

scale follows from dimensional analysis. On fitting the data with a straight line, we

obtain the exponent β = 0.315± 0.025 ∼ 1/3.

4.3.2 Dependence on diameter of the pore

In Fig 4.4, we have shown the probability, P , of translocation of polymer chain as

a function of applied velocity flux, jv, for different pore diameter and two different

values of the persistence length. To check the dependence of threshold velocity flux

on the diameter of pore, we choose respective values of W and `p in such a way,

so that the ratio W/`p remains constant. In Table 4.2, we have shown values of

threshold velocity flux for various pore diameter and two different persistence length

corresponding to each pore diameter.

We found that for the choosen values of W and `p, scaled threshold velocity

flux,jthv (`p)/j
th
v (`p = 0) remains the same which indicates that jthv is increasing func-

tion of W with the same exponent as we measured with the persistence length,
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Figure 4.4: Simulation results for the translocation probability as a function of applied
velocity flux for different pore widths and different persistence lengths `p of
the polymer.

W `p
W

`p
jthv (`p = 0) jthv (`p)

jthv (`p)

jthv (`p = 0)

2 8 0.25 4.92 2.61 0.528

3 12 0.25 2.89 1.51 0.522

4 16 0.25 1.53 0.80 0.523

Table 4.2: Threshold velocity flux jthv for semiflexible polymer of different persistence
lengths `p translocating through pores of different widths.

β = 0.315. This suggests that for semiflexible polymer, threshold velocity flux is

given by the following relation,

jthv
jthv (`p = 0)

'
(
W

`p

) 1
3

. (4.15)

4.4 Conclusions

In this chapter, we studied flow driven translocation of semiflexible polymer through

a narrow pore where we are looking for the translocation probability of polymer as a

function of applied velocity flux for different values of persistence lengths. We have

showed numerically that the threshold velocity flux of semiflexible polymer not only

depends on the temperature and viscosity of the fluid, but also on the persistence

length of the polymer and diameter of the pore, which sets a scale for confinement of

the polymer.



Chapter 5

Summary

In this thesis, we have studied theoretically the driven translocation of a semiflexible

polymer through narrow pores having different pore patterning and pore geometries.

We have also studied the flow induced driven translocation.

In Chapter 2, we studied the translocation of homogeneous and heterogeneous

semiflexible polymer through a slit (i.e., pore of unit length) and extended patterned

pores. For translocation through a slit, we found that the waiting time first increases,

reaches a maximum, and then decreases with the increase in monomer index. We

showed using IFTP theory, that as the stiffness of the semiflexible polymer increases,

the peak in the waiting time also increases, but shifts towards lower monomer index.

For the case of an extended pore, we have taken three different types of pores with

different patterned stickiness. We found that the pore-polymer interaction has a sig-

nificant effect on the total translocation time of homogeneous semiflexible polymer.

As the stiffness of the polymer increases, it is found that the waiting time increases

and the peak shifts towards the lower monomer index, same as reported for translo-

cation through a slit, but we also observed a sharp increase in the waiting time of last

few monomers. This increase in the waiting time is attributed to the pore polymer

interaction which slows down the escape of the polymer from the pore. The division

of total translocation time in three parts: filling, transfer and escape times, is found

to be useful which reveal many interesting features for semiflexible polymer translo-

cation through extended pores. We studied the translocation of heteropolymer which

consists of periodic blocks of stiff and flexible segments. Since the stiffer segments

took longer time to translocate through the pore than the flexible segments, we ob-

tained periodic patterns in the mean waiting times for heteropolymers. We proposed

a strategy for efficient sequencing of heteropolymers with varying bending rigidity

along the polymer backbone, which could be verified experimentally. We argue that

the statistical fluctuations in the translocation time could be utilized for efficient se-
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quencing of heteropolymers by suitably engineering pore-polymer interactions, and

combining the readouts from multiple pores.

In Chapter 3, we studied the driven translocation of a semiflexible polymer through

an interacting pore with cone shaped geometry. We obtained an expression for the free

energy due to partial confinement of a flexible polymer inside the pore and found that

the competition between the sum of free energy of confinement and external force,

and the free energy due to pore-polymer interactions can give rise to non-monotonic

features in the translocation time distributions as the pore apex angle α is changed.

From our studies on translocation of semiflexible polymers through extended pore

(Chapter 2), we expect that a stiffer polymer will take longer time to translocate.

While this is generally true for the translocation dynamics across a conical shaped

pore also, we observed additional interesting features at small stiffness κb. In this

region, we found that the translocation time actually decreases as κb is increased.

In Chapter 4, we studied flow driven translocation of a semiflexible polymer

through a narrow pore using hybrid MD-MPCD algorithm. We monitored the translo-

cation probability of semiflexible polymer as a function of applied velocity flux for

polymers of various stiffness, and the diameter of the pore. Earlier studies, on flex-

ible polymer, have indicated that the threshold velocity flux depends only on the

temperature and viscosity of the fluid, but independent of polymer properties. We

found that the translocation probability curves shift towards lower values of applied

velocity flux as the persistence length of polymer (i.e., stiffness) increases. We found

that the threshold velocity flux for a semiflexible polymer not only depends on the

temperature and viscosity of the fluid, but also on the pore diameter and persistence

length of the polymer as jthv ∼ (W/`p)
β, with exponent β ≈ 1/3.

In this thesis, we have found that the pore-polymer interactions affect the translo-

cation time significantly. This could be exploited in designing extended nanopores

with suitable pore patterning for rapid DNA sequencing in future.



Appendix A

Equation of motion for the tension

front

In this appendix, we give mathematical derivation of the equations of motion for the

tension front, i.e., Eqs. 2.4, 2.7, used in Chapter 2. In Sec. A.1, we calculate the force

experienced by monomers on the cis side as a function of distance from the pore and

in Sec. A.2, we derive the equations of motion for the tension front in the stem-flower

regime.

A.1 Force experienced by monomers on cis side

In order to calculate the force experienced by monomers on the cis side, we use iso-

flux assumption [42], i.e., the flux of mobile monomers (φ̃ = ds/dt̃) on the cis side and

passing through the pore is constant. The driving force acting on monomers inside

the pore, also pulls few monomers that are nearer to the pore entrance and set them

in motion. In our study, we have taken an external driving force f = 5. This force

is strong enough to straighten a small portion of the chain near the pore entrance,

but weak for the remaining monomers in the cis side up to which the tension has

propagated and hence the chain is still in coiled shape. The later is called a flower

and the straighten part is called a stem, and this regime is called stem-flower regime

(Fig A.1).

The estimation of the distance, x̃, to which tension has propagated is given by

R̃(t̃), i.e., x̃ = −R̃(t̃). At x̃ = r̃(t̃), which is the boundary between these two regions,

the tension force has the value of unity. Thus, by integrating the force balance relation

df̃(x̃′) = −φ̃(t̃)dx̃′, for a differential element for the stem region and solve for r̃(t̃),
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l + s < N

R̃ s
f

transcis

Figure A.1: Schematic diagram of driven translocation during tension propagation stage
in stem-flower regime. The driving force f acts on the monomer that is
inside the pore. The total number of monomers in the polymer chain is N
and s denotes the number of monomers that are translocated in the trans
side, and l represents the number of mobile monomers in the cis side. The
location of the last monomer from the pore entrance up to which the tension
is propagated is R̃.

one gets;

r̃(t̃) =
f̃0 − 1

φ̃(t̃)
. (A.1)

By integrating the force balance equation over the distance between r̃ and x̃, and

putting f̃(r̃) = 1, in the flower regime, one obtains the following relation:

f̃(x̃) = 1− φ̃(t̃)(x̃− r̃). (A.2)

Combining Eqs. A.1 and A.2, one gets the expression for the force as a function of

distance as

f̃(x̃) = f̃0 − φ̃(t̃)x̃, (A.3)

where f̃0 = f̃tot − ζ̃pφ̃(t̃) is the force at the entrance of the pore.

A.2 Equations of motion

The end-to-end distance of a semiflexible self-avoiding chain scales as [50],

R̃ = Aν ˜̀νp
p M

ν . (A.4)

In two dimensions, νp = 1/4 and ν = 3/4 [96]. Here, M is the sum of the number of

mobile monomers in the cis side l and the number of translocated monomers s. So,
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Eq. A.4 can be rewritten as,

R̃ = Aν ˜̀νp
p (l + s)ν . (A.5)

To calculate the equation of motion of the tension front located at R̃, one needs to

calculate l, s and then take the time derivative of R̃ which is given as

˙̃R(t̃) = νA1/ν
ν

˜̀νp/ν
p R̃(t̃)

ν−1
ν [l̇(t̃) + ṡ(t̃)], (A.6)

where by definition,
ds(t̃)

dt̃
= ṡ(t̃) = φ̃(t̃). (A.7)

The number of mobile cis monomers, i.e., l(t̃), is calculated by integrating the

linear monomer number density, σ̃(t̃), over the distance between 0 and R̃. Here, we

have used the blob theory to calculate σ̃(t̃). When a blob is formed by applying the

tension force on the backbone of the polymer chain, the blob size, ξ̃(x̃), is given by

ξ̃(x̃) = 1/|f̃(x̃)|. The number of monomers inside the each blob, g(x̃), also depends

on the position of the blob and is given by size scales as g(x̃) = ξ̃(x̃)1/ν . Thus

the monomer number density is given by σ̃(x̃, t̃) = g/ξ̃ = ξ̃−1+1/ν = |f̃(x̃)|1−1/ν .
Therefore, the number of mobile monomers in the cis side can be derived as

lSF (t̃) =

∫ R̃(t̃)

0

σ̃(x̃, t̃)dx̃,

=

∫ r̃(t̃)

0

σ̃(x̃, t̃)dx̃+

∫ R̃(t̃)

r̃(t̃)

σ̃(x̃, t̃)dx̃,

= r̃(t̃) +

∫ R̃(t̃)

r̃(t̃)

|f̃(x̃)|(ν−1)/νdx̃,

=
φ̃(t̃)R̃(t̃)− 1

φ̃(t̃)
+

∫ R̃(t̃)

r̃(t̃)

|φ̃(t̃)R̃(t̃)− φ̃(t̃x̃)|(ν−1)/νdx̃.

(A.8)

After solving the integral, lSF (t̃) becomes,

lSF (t̃) = R̃(t̃) +
1− ν

(2ν − 1)φ̃(t̃)
, (A.9)

where the subscript SF denotes the stem-flower regime. Taking time derivative

of Eq. A.9, the time derivative of the number of mobile beads, l̇(t̃) is given by

l̇SF (t̃) = BSF × [ ˙̃ftot(t̃)− φ̃(t̃) ˙̃R(t̃)] + CSF × ˙̃ftot(t̃), (A.10)
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where,

BSF = − 1

φ̃(t̃)
+

ν − 1

(2ν − 1)[ζ̃p + ζ̃t + R̃(t̃)]φ̃(t̃)2
, (A.11)

and

CSF =
1

φ̃(t̃)
. (A.12)

From Eqs. A.6, A.7 and A.10, the equation of motion of the tension front can be

written as

˙̃R(t̃) =
AR̃(t̃)

ν−1
ν

[
(BSF + CSF )× ˙̃ftot(t̃) + φ̃(t̃)

]
1 +AR̃(t̃)

ν−1
ν BSF × φ̃(t̃)

, (A.13)

where,

A =

{
νA1/ν

ν , for λ = 0

νA1/ν
ν

˜̀νp/ν
p , for λ 6= 0,

In the post propagation stage, the tension front has reached the last monomer of

the chain in the cis side. We therefore have s+ l = N and the time derivative of this

closure relation is given by

l̇ + ṡ = 0 (A.14)

From Eqs.. A.7, A.10 and A.14 the equation of motion for the tension front in

the post propagation stage is given by

˙̃R(t̃) =
(BSF + CSF )× ˙̃ftot(t̃) + φ̃(t̃)

BSF × φ̃(t̃)
. (A.15)



Appendix B

Algorithm for the sequence

detection of hetereopolymer

In this appendix, we give the details of the algorithm used in Chapter 2 for the detec-

tion of heteropolymer sequence having alternate blocks of stiff and flexible segments.

The sequence is passed through Pores β and γ multiple times, and the statistical

nature of readouts are used to predict the sequence. The orientation of the polymer

sequence can be detected by translocating it through Pore α.

The detailed algorithm of sequence detection is as follows:

Algorithm to find Accuracy of Detection

Step 1. Take m number of copies of Pore β and Pore γ.

Step 2. Choose a random sequence r from the set

r ∈ {(S2F2)32, (S4F4)16, (S8F8)8, (S16F16)4, (S32F32)2, (S64F64)}.

Step 3. Pass the polymer sequence r, m times from Pores β and γ and record the

translocation time through each pore independently. Thus, we will have m

values each for Pores β and γ.

Step 4. Let xβ,γr and yβ,γr represent the mean and the standard deviation, respectively,

calculated from the m values of the translocation times obtained for Pores β

and γ separately. Therefore, (xβr , y
β
r ) and (xγr , y

γ
r ) are the coordinates of a point

in the scatter plot for Pore β (Chapter 2 Fig. 9(b)) and Pore γ (Chapter 2 Fig.

9(c)), respectively.
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Step 5. Calculate the Euclidean distance of these points from the tabulated values xβ,γµ

and yβ,γµ (µ = 2, 4, 8, 16, 32, 64) of mean and standard deviation of the translo-

cation times of the above sequences through Pore β and Pore γ

(dSβ,γµ )2 =
(xβ,γr − xβ,γµ )2 + (yβ,γr − yβ,γµ )2

(xβ,γr )2 + (yβ,γr )2
.

The (dSβ,γµ )2 is a 1× 6 row matrix.

Step 6. The error matrix Rµ,ν is obtained using

(dSµ)2 = Rµ,ν(dS
β
µ)2(dSγµ)2.

The error matrix is diagonal as we are looking for a particular sequence r, in

both the pores. To get the sequence we need to minimize the above expression

(dSr)
2 = min[Rµ,ν(dS

β
µ)2(dSγµ)2].

If our unknown sequence matches with the detected sequence, we mark it as a

successful attempt. The accuracy of detection is thus is calculated as

Accuracy =
Number of successful attempts

Total numbers of attempts
× 100.

A similar algorithm, with multiple pores of type “Pore α”, is used to predict the

orientation of the polymer sequence.
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