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Abstract

The aim of the thesis is to study the potential theory of some subordinate Brownian

motions. More precisely, we establish the asymptotic behaviour of the Green function

and the Lévy density of some subordinate Brownian motions. We study the tools and

techniques used in [4] and use similar methods to prove the asymptotic behaviour of the

Green function and the Lévy density of two new subordinated Brownian motions. We

also try to compute the asymptotic behaviour using an alternative approach.
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Chapter 1

Introduction

In recent years subordinated stochastic processes are getting increasing attention due to

their wide applications in finance, statistical physics and biology. Subordinated stochas-

tic processes are obtained by changing the time of some stochastic process called as

parent or outer process by some other non-decreasing Lévy process called subordinator

or the inner process. Note that subordination is a convenient way to develop stochastic

models where it is required to retain some properties of the parent process and at the

same time it is required to alter some characteristics. Some well known subordinated

processes include variance gamma process [21, 22], normal inverse Gaussian process [23],

fractional Laplace motion [24], multifractal models [25], Student processes [26], time-

fractional Poisson process [27, 28, 29, 30] and space-fractional Poisson processes[31, 32]

etc. In this work we deal with the potential theory of some subordinate Brownian motion

where the parent process is Brownian motion and the subordinators are geometric stable

subordinator, tempered stable subordinator and inverse Gaussian subordinator.

The term “potential theory” has its origin in the physics of 19th century, where a

dominant belief was that the fundamental forces of nature were to be derived from po-

tentials which satisfied Laplace’s equation [33]. This theory has its origin in the two

well known theories of physics namely Gravitational and Electromagnetic theory. The

term potential function was first associated with the work done in moving a point charge

from one point of space to other in the presence of another external charge particle. The

basic potential function varies as 1
d
, where d is the distance between the particles and the

dimension of the space is greater than or equal to 3. This function has a property that

it satisfies Laplace equation and such functions are called harmonic functions. From a
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mathematical point of view, potential theory is basically the study of harmonic functions

[35]. Potential theory has intimate connection with probability theory. One important

connection is that the transition function of a Markov process can be used to define the

Green function related to the potential theory. In this project, we study the potential

theory of some subordinate stochastic processes by realizing them as Brownian motion

subordinated with different subordinators. Precisely, we study the asymptotic behaviour

of potential density and Lévy density associated with different subordinators and also

Green function and Lévy density associated with the subordinate processes. In easy lan-

guage, potential measure represents the average time stay of a subordinator in a Borel

subset of real numbers and Lévy measure quantifies the density of the number of jumps

per unit time of the subordinator. The Green function denoted by G(x, y) = G(x − y)

for the Markov process is the expected amount of time spent at y by the Markov process

started at x (see e.g. [34, 36]). The potential measure may be of interest to an investor,

who is concern for the average time the stock prices stay in a particular price range.

The content of this thesis work is organized as follows. In Chapter 1, we give an

introduction of the thesis work. In Chapter 2, we state all the basic definitions and

theorems which are used later in subsequent chapters. We have provided examples related

to the definitions and also have proved some of the examples. In Chapter 3, we prove

the results taken from [4] in more details. We use definitions and theorems from Chapter

2 to prove the results of section 3.1 of this chapter. Section 3.1 of this chapter deals

with the asymptotic behaviour of potential density and Lévy density associated with

the geometric stable subordinator which are used further to establish the asymptotic

behaviour of Green function and Lévy density associated with the Geometric stable

process in the next section. In Chapter 4, we use all the tools and techniques from

chapter two and Chapter 3 to prove the similar results for two new subordinated processes

namely Brownian motion time-changed by tempered stable subordinator and normal

inverse Gaussian process which are known to have financial applications. We also use

an alternative approach to prove these results. As per our knowledge, all the results

mentioned in chapter four are new. Atlast, we talk about our future work.
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Chapter 2

Preliminaries

2.1 Definitions

In this section we state all the important definitions. We first define Infinite divisible

distributions. These distributions are very important since they play an important role in

heavy-tail modelling of economic data, also, they are related to Lévy processes which we

define next. The sequence of random variables of a Lévy process are all Infinite divisible

random variables and with every Infinite divisible distribution we can uniquely define a

Lévy process.

Definition 2.1.1 (Infinite Divisibility). A real-valued random variable X with a cumu-

lative distribution function F is said to be Infinite divisible if for each n > 1 there exist

independent identically distributed random variables X1, X2, ..., Xn with a distribution

function Fn such that

X
d
= X1 +X2 + ...+Xn.

Example 2.1.1. Normal distribution, Poisson distribution, χ2 distribution are some

examples of Infinite divisible random variables.

Definition 2.1.2 (Lévy Process). A stochastic process X = (Xt : t ≥ 0) taking values

in Rd is called a Lévy Process in Rd if

1. X0 = 0

2. X has independent increments i.e for every s, t > 0, Xt+s −Xt is independent of Xt.

3. For any t, s > 0, Xt+s −Xt has the same distribution as Xs.
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Example 2.1.2. Brownian motion, Poisson process, gamma process, inverse gamma

process, inverse Gaussian process are some examples of Lévy processes.
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Figure 2.1: Sample paths of Poisson process and Brownian motion and see appendix for

the python code for the sample paths.

Definition 2.1.3 (Lévy Khintchine Representation). Lévy-Khintchine formula([8]): A

probability law µ of a real valued random variable is infinitely divisible with characteristic

exponent ψ, ∫
R

exp (iθx)µ(dx) = exp (−ψ(θ))

for θ ∈ R, if and only if there exists a triplet (a, b, l), a ∈ R, b ≥ 0 and l is measure

concentrated on R− {0} satisfying
∫

0c
(1 ∧ x2)l(dx) <∞, such that

ψ(θ) = iaθ +
1

2
b2θ2 +

∫
R

[
1− exp (−iθx) + iθx1|x|<1

]
l(dx)

for every θ ∈ R. l is called the Lévy measure and it is unique.

Lévy process has the property that for ∀ t ≥ 0,

E[exp (iθXt)] = exp(−ψt(θ)) = exp(−tψ(θ)),

where ψ(θ) := ψ1(θ) is the characteristic exponent of X1, which has an infinite divisible

distribution. ψ(θ) is also called the characteristic exponent of Lévy process.
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Next we show that the Lévy–Khintchine triplet of a drifted Brownian Motion is given

by (a, b, l) = (k, σ2, 0).

Let Xt = kt + σBt,∀t ≥ 0 be a drifted Brownian motion, where Bt is the standard

Brownian motion. As we know Bt is same in distribution as N(0, t), where N(0, t) is

a normal random variable with mean 0 and variance t, therefore, kt + σBt will be dis-

tributed as N(kt, σ2t). We know the exact form of characteristic function of a normal

random variable, which gives ψ(θ) = exp
(
iktθ − 1

2
σ2θ2t

)
. Now after comparing this

equation with the general form of Lévy–Khintchine formula for a Lévy process we get

the Lévy–Khintchine triplet to be (a, b, l) = (k, σ2, 0).

Next, we define subordinators since they play a very important role in the theory of

stochastic processes. Composition of a stochastic process with a subordinator is known as

subordinated stochastic process and subordinated stochastic processes have applications

in various areas of Mathematical finance.

Definition 2.1.4 (Subordinator). A subordinator is a 1-dimensional non-decreasing Lévy

process. A subordinator S = (St : t ≥ 0) is characterized by its Laplace transform

E [(−λSt)] = exp (−tφ(λ)) .

The function φ is called the Laplace exponent.
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Figure 2.2: Sample paths of Poisson, gamma and inverse Gaussian subordinators and see

appendix for the python code for the sample paths.
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Example 2.1.3. Poisson process, gamma process, α
2

-geometric stable subordinator ex-

amples of subordinators.

Next, we define slowly varying and regularly varying function. These two functions

play an important role in Karamata’s and de Haan’s theory(for details see [1]). We use

Karamata’s and de Haan’s Tauberian theorem([1]) to compute the asymptotic results in

chapter 2 and 3 so it is useful to define slowly varying and regularly varying function.

Definition 2.1.5 (Slowly Varying Function). Let l be a positive measurable function,

defined on some neighbourhood [x,∞) of infinity, and satisfying l(λx)
l(x)
→ 1 as (x → ∞)

∀λ > 0; then l is said to be slowly varying at infinity(in Karamata’s sense)(for details

see page 6, [1]).

Example 2.1.4. f(x) = c, where c is a constant, f(x) = [log(x)]−2 are some of the

examples of slowly varying functions.

Proposition 2.1.1. f(x) = [log(x)]−2 is a slowly varying function at infinity.

Proof. For any λ > 0 consider,

lim
x→∞

f(λx)

f(x)
= lim

x→∞

[log(λx)]−2

[log(x)]−2

= lim
x→∞

[
log(x)

log(λx)

]2

= lim
x→∞

1
x

1
λx
λ

(Using L’Hospital’s rule)

= 1

Thus, f(x) = [log(x)]−2 is slowly varying at infinity.

Definition 2.1.6 (Regularly Varying Function). A measurable(Baire) function f > 0

satisfying f(λx)
f(x)

→ λρ as (x → ∞) ∀ λ > 0 is called regularly varying[Baire regularly

varying] of index ρ; we write f ∈ Rρ. Since f is Baire measurable therefore, f(x) = xρl(x),

where l(x) is slowly varying at infinity(for details see [1]).

We next define Bernstein and complete Bernstein functions. These functions are

usually related with Laplace exponent in probability theory. There is a chapter 2 which

involves complete Bernstein function. To understand complete Bernstein function, we

first define Bernstein function.
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Definition 2.1.7 (Bernstein Function). Let φ : (0,∞) → [0,∞) be a C∞ function.

Then φ is said to be a Bernstein function if (−1)nφn≤0 for all n ∈ N, whereφn is the

nth derivative of φ(for details see [3] or [6]).

Example 2.1.5. f(x) = xα ∀ α ∈ (0, 1], f(x) = 1− exp(−x) are some of the examples

Bernstein function.

We now show f(x) = xα ∀ α ∈ (0, 1] is a Bernstein function.

Since

f(x) = xα,

which implies

f ′(x) = αxα−1

f ′′(x) = (α)(α− 1)xα−2.

In general

fn(x) = (α)(α− 1)(α− 2)...(α− (n− 1))xα−n.

Thus,

(−1)nfn(x) = (−1)n(α)(α− 1)(α− 2)...(α− (n− 1))xα−n.

Now α and xα−n both are greater than or equal to 0 and we can write (α − 1)(α −
2)...(α − (n − 1)) as (−1)n−1k where k is a positive constant. Therefore, (−1)nfn(x) =

(−1)n+n−1kαxα−n = (−1)2n(−1)kαxα−n ≤ 0

Hence, f(x) = xα ∀ α ∈ (0, 1] is a Bernstein function.

Remark 2.1.1. φ is a Bernstein function if and only if it has the representation i.e,

φ(x) = a+ bx+
∫∞

0
[1− exp(−xt)]µ(dt) where, a, b ≥ 0, and µ is a σ finite measure on

(0,∞). µ satiesfies
∫∞

0
(1∧t)µ(dt) <∞(for details see [3] or [6]).

Definition 2.1.8 (Complete Bernstein Function). A function φ : (0,∞) → (−∞,∞)

is called a complete Bernstein function if there exists a Bernstein function ξ such that

φ(x) = x2Lξ(x) for x > 0, where Lξ is the Laplace transform of ξ(for details see [3] or

[6]).

Example 2.1.6. φ(x) = xα ∀ α ∈ (0, 1], f(x) = x
x+1

, φ(x) = log(x+ 1), φ(x) =

log
(
1 + x

α
2

)
are some examples of Complete Bernstein functions.

7



Remark 2.1.2. Note that every complete Bernstein function is a Bernstein function but

converse is not true. For example- φ(x) = 1− exp(−x) is a Bernstein function but not

a complete Bernstein function.

Properties of complete Bernstein functions(for details see [3] or [6]):

1. The family of complete Bernstein functions is closed under compositions.

2. φ(x) : (0,∞)→ (0,∞), the following are equivalent,

a. φ is a complete Bernstein function

b. x→ x
φ(x)

is a complete Bernstein function.

Proposition 2.1.2. Laplace exponent of a α
2

- geometric stable subordinator, φ(x) =

log
(
1 + x

α
2

)
is a complete Bernstein function.

Proof. From discussion on page 12[13], we know that

φ(x) = x
α
2 =

sin
(
πα
2

)
π

∫ ∞
0

(
x

x+ t

)
t
α
2
−1dt,∀α ∈ (0, 2]

and

φ(x) = log(x+ 1) =

∫ ∞
0

(
x

x+ t

)
t−11(1,∞)dt.

Therefore, these two functions are complete Bernstein and hence, their composition

φ(x) = log
(
1 + x

α
2

)
is also a complete Bernstein function(page12, [13]).

2.2 Some Important Theorems

In this section we state some important theorems which will be used later to prove other

theorems. We start with Tauberian theorems however, we are not going to prove these

theorems since the proofs are beyond of the scope of this thesis. For more details and

proof of these theorems please refer ([1], Theorems 1.7.1, 1.7.2, 1.7.1′, 1.7.2b, 3.6.8 and

3.7.3). Tauberian theorems are useful when we want to know the asymptotic behaviour

at infinity and zero of a real valued non-decreasing function but we do not know the

exact form of it. However, we do know the exact form and asymptotic behaviour of its

Laplace transform.
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Theorem 2.2.1.

1. (de Haan’s Tauberian theorem)(Theorem 3.7.3,[1])Let U : (0,∞) → (0,∞) be an

increasing function. If l is slowly varying at ∞ (resp at 0+), c ≥ 0, the following are

equivalent:

a. As x→∞ (resp x→ 0+) U(λx)−U(x)
l(x)

→ clog(λ),∀λ > 0,

b. As x→∞ (resp x→ 0+)
LU( 1

λx)−LU( 1
x)

l(x)
→ clog(λ),∀λ > 0.

2. (de Haan’s monotone density theorem)(Theorem 3.6.8,[1]) Let U : (0,∞)→ (0,∞) be

an increasing function with dU(x) = u(x)dx, where u is monotone and non-negative

and, let l be slowly varying at ∞ (resp at 0+). Assume that c > 0. Then the following

are equivalent:

a. As x→∞ (resp x→ 0+) U(λx)−U(x)
l(x)

→ clog(λ),∀λ > 0,

b. As x→∞ (resp x→ 0+) u(x) ∼ cx−1l(x).

3. (Karamata Tauberian theorem)(Theorem 1.7.1,[1]) Let U be a non-decreasing right

continuous function on R with U(x) = 0 ∀ x < 0. If l slowly varies and c ≥, ρ≥ 0,

the following are equivalent:

a. As x→∞ U(x) ∼ cxρl(x)
Γ(1+ρ)

,

b. As x→ 0 LU(x) ∼ cx−ρl
(

1
x

)
.

4. (Karamata monotone density theorem)(Theorem 1.7.2,[1])Let U(x) =
∫ x

0
u(y)dy. If

U(x) ∼ cxρl(x)(x→∞) where c ∈ R, ρ ∈ R, l be a slowly varying function, and u is

ultimately monotone, then u(x) ∼ cρxρ−1l(x).

Theorem 2.2.2. Suppose that S = (St : t ≥ 0) is a subordinator whose Laplace exponent

φ(λ)= bλ+
∫∞

0
[1− exp (−λt)]µ(dt) is a complete Bernstein function. Assume that b > 0

or µ ((0,∞)) = ∞. Then the potential measure U has a density u which is completely

monotone on (0,∞).

The next chapter uses all the definitions and theorems stated in this chapter to prove

some of the results taken from [4].
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Chapter 3

Potential Theory of Geometric

Stable Processes

In Potential Theory of Geometric Stable Processes, we study the asymptotic behaviour

of potential density and Lévy density associated with different subordinators and also

the Green function and Lévy density associated with the geometric stable processess. All

the results mentioned in this chapter have been taken from [4].

In this thesis we use the following notation: If f and g are two function then f ∼ g

means f
g

converges asymptotically to 1.

Definition 3.0.1. (Potential measure and density) The potential measure of a subordi-

nator St is defined by

U(A) = E
[∫ ∞

0

1(St∈A)dt

]
,

where A is a Borel subset of (0,∞). The potential measure has a density which known as

the potential density u of the subordinator.

We next define Stable distributions since it will be helpful to understand geomet-

ric stable distributions, which we define next. Stable distributions are known for their

applications in many economic and physical systems [18]. They provide important prac-

tical models for asset returns however, geometric stable distributions are more practical

models for asset return since we can also incorporate market crashes in the models.

Definition 3.0.2 (Stable Distribution). A random variable X is called stable, if for any

a, b ∈ R+, ∃ c ∈ R+ and d ∈ R, such that aX1 + bX2
d
= cX + d, where X1 and X2

10



are independent copies of X and X
d
= Y means that X and Y have the same probability

distributions.

Example 3.0.1. Normal distribution, Cauchy distribution, Lévy distribution are some

examples of stable distributions.

Next, we show normal distribution is a stable distribution.

Let X be a normal random variable with mean µ and variance σ2 and X1 and X2 be

two i.i.d copies of X and φX(θ) = E [exp(iθX)] be the characteristic function of random

variable X. We know

E [exp(iθX)] = exp

(
iµθ − 1

2
σ2θ2

)
.

Now by the property of characteristic functions,

φaX1+bX2(θ) = φX1(aθ)φX2(bθ)

= exp

(
iµaθ − 1

2
σ2a2θ2

)
exp

(
iµbθ − 1

2
σ2b2θ2

)
= exp

(
iµ(a+ b)θ − 1

2
σ2
(
a2 + b2

)
θ2

)
.

If we take c =
√
a2 + b2 and d = (a+ b− c)µ, then

φX1(aθ)φX2(bθ) = exp(iθd) exp(iµθc− 1

2
σ2c2θ2) = φcX+d(θ).

Hence, for every a and b, aX1 + bX2
d
= cX + d for some c and d.

A geometric stable distribution has a similar property as stable distribution, but here

the number of elements in the sum is a geometrically distributed random variable.

Definition 3.0.3 (Geometric Stable Distribution). If X1, X2, X3, . . . are i.i.d random

variables taken from a geometric stable distribution, the limit of the sum Y = aNp(X1 +

X2 + X3 + · · · + XNp) + bNp approaches the distribution of Xis for some coefficient aNp

and bNp as p approaches 0, where Np is a geometrically distributed random variable with

parameter p independent of Xis. Its characteristic function, which has the form:

φ(θ, α, β, λ, µ) = (1 + λα|θ|αω − ιµθ)−1,

where

ω =

1− i tan(πα
2

)βsign(θ) if α 6= 0

1 + i 2
π
β log(|θ|)sign(θ) if α = 0.

11



3.1 Geometric Stable Subordinator

The Laplace transform of the Geometric stable subordinator is given by

E[(−λSt)] =
1(

1 + λ
α
2

)t .
In this section, we first show the existence of the potential density u of the geometric

stable subordinator. Next, we compute the asymptotic behaviour of potential density,

Lévy density and transitional density associated with the α
2
-geometric stable subordina-

tor using Tauberian theorems. We also prove a lemma taken from [4] since the lemma is

useful to prove the results in the next section.

Now we use Theorem 2.2.2 twice to show the existence of potential density of poten-

tial measures of the geometric stable subordinator as it was done in [4].

As the case discussed in [4], b = 0 and for a α
2
-geometric stable subordinator φ(λ)

= log(1 + λ
α
2 ) and lim

λ→∞
φ(λ)→∞. Because [1− exp(−λt)] is a bounded function on

(0,∞), lim
λ→∞

φ(λ)→∞ forces µ ((0,∞)) =∞, therefore, by above theorem the potential

measure U has a density u which is completely monotone on (0,∞).

Since from proposition 2.1.2 we know , φ(λ) = log
(
1 + λ

α
2

)
is a complete Bernstein

function therefore, ψ(λ) = λ
φ(λ)

is also a complete Bernstein function. Let T be the sub-

ordinator with Laplace exponent ψ and V be the potential measure associated with it.

Since lim
λ→∞

ψ(λ)
λ

= lim
λ→∞

1
φ(λ)

= 0 and lim
λ→∞

ψ(λ) =∞, therefore, the Lévy measure ν of T

must satisfy ν(0,∞) =∞. Hence, by theorem 2.2.2, the potential measure V of T has a

density v which is completely monotone on (0,∞).

We now start proving the results. As we know from Theorem 2.2.2 that the potential

measure of α
2
-geometric stable subordinator has a monotone density u, so now we will

use Tauberian theorems to get the asymptotic behaviour of u.

Theorem 3.1.1. For any α ∈ (0, 2], we have

1. u(x) ∼ 2
αxlog(x)2

, x→ 0+,

2. u(x) ∼ x
α
2 −1

Γ(α
2

)
, x→ +∞.
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Proof.

1. We know from discussion on page 4, [4] that the Laplace transform of potential

measure of the α
2
-geometric stable subordinator is given by

LU(x) =
1

φ(x)

=
1

log(1 + x
α
2 )
.

Now

lim
x→0+

[
LU

(
1

xt

)
−LU

(
1

x

)]
= lim

x→0+

[
1

φ( 1
xt

)
− 1

φ( 1
x
)

]

= lim
x→0+

 1

log
[
1 + 1

(xt)
α
2

] − 1

log
[
1 + 1

(x)
α
2

]


= lim
x→0+

 1

log
[

1+(xt)
α
2

(xt)
α
2

] − 1

log
[

1+(x)
α
2

(x)
α
2

]


= lim
x→0+

log
[

1+(x)
α
2

(x)
α
2

]
− log

[
1+(xt)

α
2

(xt)
α
2

]
log
[

1+(xt)
α
2

(xt)
α
2

]
log
[

1+(x)
α
2

(x)
α
2

]

= lim
x→0+

log
[

(xt)
α
2

1+(xt)
α
2

1+(x)
α
2

(x)
α
2

]
[
log
[
1 + (xt)

α
2

]
− log

[
(xt)

α
2

]] [
log
[
1 + (x)

α
2

]
− log

[
(x)

α
2

]]
=

log(t
α
2 )[

0− α
2
limx→0+ log(xt)

] [
0− α

2
lim
x→0+

log(x)

]
=
α

2

log t

(α
2
)2 [limx→0+ log(x)]

[
lim
x→0+

log(x)

]
=

2 log(t)

α

[
lim
x→0+

log(x)

]2

(
because as lim

x→0+
log(xt) ∼ log(x)

)
.

Now if we take a slowly varying function l(x) = [log(x)]−2 , then

lim
x→0+

[
LU( 1

xt
)−LU( 1

x
)
]

[log(x)]−2 → 2

α
log(t). (3.1)

13



Applying Theorem 2.2.1(1), Chapter 2 in equation 3.1 we get

lim
x→0+

[U(xt)− U(x)]

[log(x)]−2 → 2

α
log(t), (3.2)

Now applying Theorem 2.2.1(2), Chapter 2 in equation 3.2 we get

u(x) ∼ 2

αx(log(x))2
, x→ 0+.

2. We know that LU(x) = 1

log(1+x
α
2 )
, now as x→ 0+, log

(
1 + x

α
2

)
∼ x

α
2 therefore,

LU(x) ∼ 1

x
α
2

= x−
α
2 l(x), (3.3)

where l(x) = 1 ∀ x ∈ (0,∞) be a slowly varying function at 0+. Applying Theorem

2.2.1(3), Chapter 2 in equation 3.3 we get

U(x) ∼ x
α
2

Γ
(
1 + α

2

) (3.4)

Now applying Theorem 2.2.1(4), Chapter 2 in equation 3.4 we get

u(x) = U ′(x) ∼ αx
α
2
−1

2Γ
(
1 + α

2

)
=
x
α
2
−1

Γ(α
2
)
,

(using the properties of gamma function).

Next, we compute the asymptotic behaviour of Lévy density of the α
2
-geometric stable

subordinator. Before that we need to know the existence of the Lévy density.

Since the Laplace exponent of the α
2
-geometric stable subordinator, φ(x) = log

(
1 + x

α
2

)
is a complete Bernstein function therefore, the Lévy measure has a completely monotone

density µ(x) (for details see [3] or [6]).
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Theorem 3.1.2. For any α ∈ (0, 2], we have

µ(x) ∼ α
2x
, x→ 0+.

Proof. Let Gα
2
(x) be a function. If Gα

2
(x) =

∞∑
n=0

x
nα
2

Γ(1+nα
2 )
, then Gα

2
(x) is a Mittag-Leffler

function(for details see [7]). Since

φ(λ) =

∫ ∞
0

[1− exp(−λx)]µ(dx) = log
(
1 + λ

α
2

)
,

differentiating both sides we get

φ′(λ) =
dφ

dλ
=
α

2

λ
α
2
−1

1 + λ
α
2

. (3.5)

Now ∫ ∞
0

exp(−λx)Gα
2
(−x)dx =

∫ ∞
0

exp(−λx)
∞∑
n=0

(−x)
nα
2

Γ
(
1 + nα

2

)dx
=
∞∑
n=0

∫ ∞
0

exp(−λx)
(−x)

nα
2

Γ
(
1 + nα

2

)dx
(by Dominated Convergence theorem).

Let λx = u which implies dx = du thus,∫ ∞
0

exp(−λx)Gα
2
(−x)dx =

∞∑
n=0

∫ ∞
0

exp(−u)
1

λ

(
−u
λ

)nα
2 1

Γ
(
1 + nα

2

)du
=
∞∑
n=0

1

λ

(
−1

λ

)nα
2
∫ ∞

0

exp(−u)u
nα
2

+1−1 1

Γ
(
1 + nα

2

)du
=
∞∑
n=0

1

λ

(
−1

λ

)nα
2
(

using,Γ(k) =

∫ ∞
0

exp(−u)uk−1du

)
=

1

λ

∞∑
n=0

(−1)n
1

λ
α
2

=
1

λ

1

1 + 1

λ
α
2

=
λ
α
2
−1

1 + λ
α
2

.

Therefore, ∫ ∞
0

exp(−λx)Gα
2
(−x)dx =

λ
α
2
−1

1 + λ
α
2

. (3.6)
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Now using equations 2.5 and 2.6 we get

φ′(λ) =
α

2

∫ ∞
0

exp(−λx)Gα
2
(−x)dx.(3.7)

Also on differentiating φ(λ)=
∫∞

0
[1− exp(−λx)]µ(dx) w.r.t to λ we get

φ′(λ) =

∫ ∞
0

x exp(−λx)µ(dx)(3.8)

On comparing equations 3.7 and 3.8 we get

µ(x) =
α

2

Gα
2
(−x)

x
. (3.9)

Now let

G(x) = 1−Gα
2
(−x)

=
∞∑
n=1

(−1)n−1 x
nα
2

Γ
(
1 + nα

2

) . (3.10)

Then

LG(λ) :=

∫ ∞
0

exp (−λx)G(dx)

= λ

∫ ∞
0

exp (−λx)
[
1−Gα

2
(−x)

]
dx

= λ

∫ ∞
0

exp (−λx)dx+ λ

∫ ∞
0

exp(−λx)Gα
2
(−x)dx

= 1− λ
α
2

1 + λ
α
2

=
1

1 + λ
α
2

= exp
[
− log(1 + λ

α
2 )
]

= E
[
exp−λS1

]
.

Therefore, G is the distribution function of S1 and from equations 3.9 and 3.10 we get

µ(x) =
α

2x
[1−G(x)] .

Hence,

lim
x→0

µ(x) =
α

2x

[
1− lim

x→0
G(x)

]
=

α

2x
.
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Theorem 3.1.3. For any α ∈ (0, 2), we have

µ(x) ∼ α

2x
α
2 +1Γ(1−α

2 )
, x→∞.

Proof. Since the potential measure V (x) of the subordinator T has a Laplace exponent

ψ(λ) = λ

log(1+λ
α
2 )
. Therefore,

LV (λ) =
1

ψ(λ)
=

log
(
1 + λ

α
2

)
λ

∼ λ
α
2
−1, λ→ 0+. (3.11)

Then applying Theorem 2.2.1(3), Chapter 2 in equation 3.11 we get

V (x) ∼ x1−α
2

Γ
(
2− α

2

) , x→∞
Now using Theorem 2.2.1(4), Chapter 2 to get the asymptotic behaviour of the density

of the potential measure at infinity,

v(x) ∼
(

1− α

2

) 1

x
α
2

Γ
(

2− α

2

)
=

1

x
α
2 Γ
(
1− α

2

) , x→∞.
By corollary 2.4.8 of [5], we know that µ ((x,∞)) = v(x) , x > 0 which implies

µ((x,∞)) ∼ 1

x
α
2 Γ
(
1− α

2

) , x→∞. (3.12)

Now applying Theorem 2.2.1(4), Chapter 2 in equation 3.12 we get

µ(x) ∼ α

2x
α
2

+1Γ
(
1− α

2

) , x→∞.

We know(see for instance [11]) that the distribution G of S1 is absolutely continuous

and has a decreasing density gα
2
(x) on (0,∞). The exact form of the density gα

2
(x) is

known(page 7, [4]) for α = 2 but not for α ∈ (0, 2). In the next theorem, we will compute

the asymptotic behaviour of gα
2
(x) by using Tauberian theorems again.

Theorem 3.1.4. For any α ∈ (0, 2), we have

1. gα
2
(x) ∼ 1

Γ(α2 )
x
α
2
−1, x→ 0+,

2. gα
2
(x) ∼ 2πΓ

(
1 + α

2

)
sin
(
πα
4

)
x−

α
2
−1, x→∞.
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Proof.

1. From theorem 3.1.2, we know that the Laplace transform of the distribution G of

S1, is LG(λ) = 1

1+λ
α
2

. Using Theorem 2.2.1(3), Chapter 2 we get

G(x) ∼ x
α
2

Γ
(
1 + α

2

) , x→ 0+.

Now using Theorem 2.2.1(4), Chapter 2 we get

gα
2
(x) ∼ αx

α
2
−1

2Γ
(
1 + α

2

) , x→ 0+

=
x
α
2
−1

Γ
(
α
2

) , x→ 0+,

(Using the property of Gamma functions).

2. It is known that if Y = (Yt : t ≥ 0) is a Lévy process with characteristic function Φ

and an exponential random variable χ with parameter 1 independent of Y . Then

Z = (Y (χ)) is a geometrically infinite divisible random variable. The characteristic

function of this random variable is 1
log(1+|Φ|) .

Therefore,

gα
2
(x) =

∫ ∞
0

exp (−t)qα
2
(t, x)dt,

(where qα
2
(t, x) is the transition density of α

2
-stable subordinator)

=

∫ ∞
0

exp (−t)t
−2
α qα

2

(
1,
x

t
2
α

)
,

(using the scaling property of transition density page88-89, [15]).

We know(see for instance [14]) that

qα
2
(1, x) ∼ 2πΓ

(
1 +

α

2

)
sin
(πα

4

)
x−

α
2
−1, x→∞

and

qα
2
(1, x) ≤ d

(
1 ∧ x

−α
2
−1
)
,

where d is a positive constant.
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Now using Dominated convergence theorem we get

gα
2
(x) ∼

∫ ∞
0

exp (−t)t
2
α

+12πΓ
(

1 +
α

2

)
sin
(πα

4

)
x−

2
α
−1dt, x→∞,

gα
2
(x) ∼ 2πΓ

(
1 +

α

2

)
sin
(πα

4

)
x−

α
2
−1, x→∞.

Now we proof the lemma taken from [4], this lemma will be used in the next chapter

to establish the asymptotic behaviour of Green function and Lévy density associated

with the Geometric stable process. Before proving the lemma, we will define an auxiliary

function. Let l be a slowly varying function at infinity and β > 0, then define

fl,β(y, t) =


l( 1
y )

l( 4t
y )

if y < t
β

0 if y ≥ t
β
.

Lemma 3.1.5. Suppose that w : (0,∞)→ (0,∞) be a decreasing function satisfying the

following two assumptions:

1. There exist a constant k0 > 0 and a continuous function l : (0,∞)→ (0,∞) slowly

varying at +∞ such that

w(t) ∼ k0

tl
(

1
t

) , t→ 0+,

2. If d = 1 or 2, then there exist a constant k∞ > 0 and γ < d
2

such that

w(t) ∼ k∞t
γ−1, t→ +∞.

Let g : (0,∞)→ (0,∞) be a function such that∫ ∞
0

t
d
2
−1 exp (−t)g(t)dt <∞

If there is β > 0 such that fl,β(y, t) ≤ g(t) for all y, t > 0, then

H(x) :=

∫ ∞
0

(4πt)−
d
2 exp

(
−(|x|)2

4t

)
w(t)dt ∼

k0Γ
(
d
2

)
π
d
2

1

|x|dl
(

1
(|x|)2

) , |x| → 0.

Proof. The assumptions of the lemma clearly shows that H(x) <∞.
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Let |x|
2

4t
= u which implies − |x|

2

4t2
dt = du. Therefore,∫ ∞

0

(4πt)−
d
2 exp

(
−|x|

2

4t

)
w(t)dt =

∫ 0

∞
(4π)−

d
2 exp(−u)

(
|x|2

4u

)− d
2

w

(
|x|2

4u

)
−|x|2

4u2
du

=
1

4π
d
2 |x|d−2

∫ ∞
0

u
d
2
−2 exp(−u)w

(
|x|2

4u

)
du

=
1

4π
d
2 |x|d−2

[∫ β|x|2

0

u
d
2
−2 exp(−u)w

(
|x|2

4u

)
du+

∫ ∞
β|x|2

u
d
2
−2 exp(−u)w

(
|x|2

4u

)
du

]
,

(breaking the integral into two parts),

=
1

4π
d
2 |x|d−2

(H1 +H2)

When d = 1 or 2, then by using the assumption (2), we know that w
(
|x|2
4u

)
≤ k1u

γ−1

for some positive constant k1 and ∀ |x|
2

4u
≥ 1

4β
. Therefore,

H1 ≤
∫ β|x|2

0

u
d
2
−2 exp(−u)k1

(
|x|2

4u

)γ−1

du

≤ k2|x|2γ−2

∫ β|x|2

0

u
d
2
−γ−1dt = k3|x|d−2,

and thus,

lim
|x|→0

1

4π
d
2 |x|d−2 1

|x|dl
(

1
|x|2

)H1 ≤ lim
|x|→0

k2|x|d−2

4π
d
2 |x|d−2 1

|x|dl
(

1
|x|2

) = 0

Now for d ≥ 3, we have w
(
|x|2
4u

)
≤ w

(
1

4β

)
for |x|

2

4u
≥ 1

4β
. Therefore,

H1 ≤
∫ β|x|2

0

u
d
2
−2 exp(−u)w

(
1

4β

)
du

≤ w

(
1

4β

)∫ β|x|2

0

u
d
2
−2du = k4|x|d−2

Again following the same steps as for d = 1 or 2 we get

lim
|x|→0

1

4π
d
2 |x|d−2 1

|x|dl
(

1
|x|2

)H1 = 0 (3.13)

Now consider H2:

1

4π
d
2 |x|d−2

H2 =
1

4π
d
2 |x|d−2

∫ ∞
β|x|2

u
d
2
−2 exp(−u)w

(
|x|2

4u

)
du
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=
1

π
d
2 |x|dl

(
1
|x|2

)∫ ∞
β|x|2

u
d
2
−1 exp(−u)

w
(
|x|2
4u

)
1

|x|2
4u

l
(
|x|2
4u

)
l
(

1
|x|2

)
l
(

4t
|x|2

)du
From assumption (1), we know that

w
(
|x|2
4u

)
1

|x|2
4u

l
(
|x|2
4u

) < k

for some constant k, ∀ u and x such that |x|
2

4u
≤ 1

4β
. As we know l is slowly varying at

infinity therefore,

lim
|x|→0

l
(

1
|x|2

)
l
(

4t
|x|2

) = 1,∀t > 0.

Because
l
(

1
|x|2

)
l
(

4t
|x|2

) = fl,β(|x|2, u),

therefore,

u
d
2
−1 exp(−u)

w
(
|x|2
4u

)
1

|x|2
4u

l
(
|x|2
4u

)
l
(

1
|x|2

)
l
(

4t
|x|2

) = u
d
2
−1 exp(−u)

w
(
|x|2
4u

)
1

|x|2
4u

l
(
|x|2
4u

) fl,β(|x|2, u)

≤ ku
d
2
−2 exp(−u)g(u),

[Using the assumption that fl,β(|x|2, u) ≤ g(u)] and∫ ∞
0

ku
d
2
−2 exp(−u)g(u) <∞,

(again from the assumption).

Thus, by Dominated Convergence theorem we get

lim
|x|→0

∫ ∞
β|x|2

u
d
2
−1 exp(−u)

w
(
|x|2
4u

)
1

|x|2
4u

l
(
|x|2
4u

)
l
(

1
|x|2

)
l
(

4t
|x|2

)du =

∫ ∞
β|x|2

u
d
2
−1 exp(−u) lim

|x|→0

w
(
|x|2
4u

)
1

|x|2
4u

l
(
|x|2
4u

)
l
(

1
|x|2

)
l
(

4t
|x|2

)du
= k

∫ ∞
0

u
d
2
−1 exp(−u)du

= kΓ

(
d

2

)
.
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Therefore,

lim
|x|→0

1

4π
d
2 |x|d−2

H2

1

π
d
2 |x|dl

(
1
|x|2

) = k0Γ

(
d

2

)
. (3.14)

Now using equations 3.13 and 3.14 we get

lim
|x|→0

H(x)

|x|dl
(

1
|x|2

) =
k0Γ

(
d
2

)
π
d
2

Hence, ∫ ∞
0

(4πt)−
d
2 exp

(
−(|x|)2

4t

)
w(t)dt ∼

k0Γ
(
d
2

)
π
d
2

1

|x|dl
(

1
(|x|)2

) , |x| → 0.

3.2 Geometric Stable Processes

Let α ∈ (0, 2]. A Lévy process X = (Xt, Px) is called a geometric strictly α-stable

process if its characteristic exponent ψ(θ) = log (Ex [(iθ (X1 −X0)]) is given by ψ(θ) =

− log (1 + φ(θ)) , θ ∈ Rd, with exp(φ) being the characteristic function of some strictly

α-stable distribution. Let S = (St, t ≥ 0) be a geometric α
2
-stable subordinator and Y be

a d dimensional Brownian motion. Assuming Y and S to be independent, the symmetric

geometric stable process X can be obtained by Xt = Y (St).

In [4] the author is mainly interested in the rotationally invariant geometric strictly

α-stable process in Rd, that is, in the case when,

ψ(θ) = log (1 + |θ|α) ,∈ Rd.

We next define α-potential of a function f associated with a standard process(for

details please see page45, [19]]) X. For α = 0, the 0-potential operator has a density

which is known as Green function associated with the standard process.

Definition 3.2.1. (α-Potential of a Function f or Potential Operator)(page 69, [19])

Let X be a standard process, f be a real valued function on R and α ≥ 0. Then the

α-potential Uαf of a function f is given by

Uαf(x) = Ex
[∫ ∞

0

exp(−αt)f(Xt)dt

]
,

where the process is starting at x.
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Now we define kernels as they are useful to transform a measurable function.

Definition 3.2.2. (Kernel)(page 303, [20]) Let Ω be a subset of Rn then a function

k : Ω× Ω→ R

is called as kernel. It can be used to transform a measurable function

f : Ω→ R

to a new function

g : Ω→ R

by putting

g(x) =

∫ ∞
0

k(x, y)f(y)dy, x ∈ Ω,

provided that the integral is defined.

Next, we define Green function and Lévy density associated with the subordinated

process. When the kernel is a Gaussian kernel then it transforms the potential density

and Lévy density associated with the subordinator into Green function and Lévy density

respectively associated with the subordinated process.

Let Y = (Yt, t ≥ 0) be a d-dimensional Brownian motion with transitional density

given by

p2(t, x, y) = (4πt)−
d
2 exp

(
−|x− y|

2

4t

)
, x, y ∈ Rd, t > 0,

where p2(t, x, y) is the Gaussian kernel.

Definition 3.2.3. (Green function for Markov process) The Green function for the

Markov process is defined by

G(x, y) =

∫ ∞
0

p(t, x, y)dt,

where p(t, x, y) is the transition function of the Markov process. It is the expected amount

of time spent at y by the process started at x ([36]).

Definition 3.2.4. (Green function and Lévy density)(page 8, [4]) The potential operator

Gf(x) := Ex
[∫ ∞

0

f(Xt)dt

]
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of X has a density G(x, y) = G(y − x) with

G(x) =

∫ ∞
0

p2(t, 0, x)u(t)dt,

where u(t) is the potential density of the subordinator S and G(x) is called the Green

function of X.

The Lévy density of X is given by

J(x) =

∫ ∞
0

p2(t, 0, x)µ(t)dt,

where µ(t) is the Lévy density of S.

In this section we mainly deal with the Lévy density and the Green function of the

geometric stable process. We use theorems and lemma from the previous chapter to

prove the results of this section.

Theorem 3.2.1. For any α ∈ (0, 2], we have

1. G(x) ∼
Γ
(
d
2

)
2απ

d
2 |x|d

[
log
(

1
|x|

)]2 , |x| → 0,

2. G(x) ∼ 1

π
d
2 2α

Γ
(
d−α

2

)
Γ
(
α
2

) |x|α−d, |x| → ∞.
Proof.

1. Since

G(x) =

∫ ∞
0

(4πt)−
d
2 exp

(
−(|x|)2

4t

)
u(t)dt

therefore, we can apply lemma 3.1.5 with w(t) = u(t).

We know from Theorem 3.1.1(1) that u(t)∼ 2
αtlog(t)2

, as x→ 0+. Taking k0 = 2
α

and

l(t) = log2(t). Also Theorem 3.1.1(2), we know that u(x) ∼ x
α
2 −1

Γ(α2 )
, x → +∞, so

γ = α
2
< d

2
. Choose β = 1

2
and

fl,1/2(y, t) =


log2(y)

log2( y
4t)

if y < 2t

0 if y ≥ 0.
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Define

g(t) =


log2(2t)

log2(2)
if t < 1

4

1 if t ≥ 1
4
.

Now to apply the lemma, we will first show

fl,1/2(y, t) =
log2(y)

log2
(
y
4t

) ≤ g(t)∀t > 0.

For 0 < t < 1
4

and 0 < y < 2t,both log2(y) and log2( y
4t

) increasing are functions

but former is always greater than the latter therefore, fl,1/2(y, t) = log2(y)

log2( y
4t)

is an

increasing function thus,

sup

{
log2(y)

log2
(
y
4t

) : 0 < y < 2t

}
= fl,1/2(2t, t) =

log2(2t)

log2(2)
.

We know that sup
{

log2(y)

log2( y
4t

)
: 0 < y < 2t

}
≥ log2(y)

log2( y
4t)

by the definition of supremum

and thus,

fl,1/2(y, t) ≤ g(t) ∀ 0 < t < 1
4
.

For t = 1
4
,

fl,1/2

(
y,

1

4

)
= 1 = g

(
1

4

)
.

For t > 1
4

and 0 < y < 1, fl,1/2(y, t) is a decreasing function for because log(y) >

log( y
k
) ∀ y > 0 and k > 1 but log2(y) < log2( y

k
) ∀ 0 < y < 1 and k > 1. Therefore,

sup

{
log2(y)

log2
(
y
4t

) : 0 < y < min{2t, 1}

}
= lim

y→0

log2(y)

log2
(
y
4t

) = 1,
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which implies

fl,1/2(y, t) ≤ g(t),∀t ≥ 1

4
,

thus,

fl,1/2(y, t) ≤ g(t),∀y, t > 0.

Since t
d
2
−1 exp(−t) log2(2t)

log2(2)
is a bounded by an integrable function therefore,∫ ∞
0

t
d
2
−1 exp(−t) log2(2t)

log2(2)
dt <∞.

Hence,

G(x) ∼
Γ(d

2
)

2απ
d
2 |x|d

[
log
(

1
|x|

)]2 , |x| → 0.

2. As we know from Theorem 3.1.1(2) that u(t) ∼ t
α
2 −1

Γ(α2 )
, t → +∞, which implies ∃ a

constant t0 such that u(t) ≤ t−1 ∀ t0 ∈ (0, t0). Therefore, ∃ a constant D such that

u(t) ≤ max
(
t−1, t

α
2
−1
)
.

Let |x|
2

4t
= y =⇒ − |x|

2

4t2
dt = dy

∫ ∞
0

(4πt)−
d
2 exp

(
−|x|

2

4t

)
u(t)dt =

∫ 0

∞
(4π)−

d
2 exp(−y)

(
|x|2

4y

)− d
2

u

(
|x|2

4y

)
−|x|2

4y2
dy

=
1

4π
d
2 |x|d−2

∫ ∞
0

y
d
2
−2 exp(−y)u

(
|x|2

4y

)
dy

=
1

4π
d
2 Γ
(
α
2

)
|x|d−α

∫ ∞
0

y
d
2
−2 exp(−y)

u
(
|x|2
4y

)
1

Γ(α2 )

(
|x|2
4y

)α
2
−1

(
1

4y

)α
2
−1

dy

=
1

2απ
d
2 Γ
(
α
2

)
|x|d−α

∫ ∞
0

y
d
2
−α

2
−1 exp(−y)

u
(
|x|2
4y

)
1

Γ(α2 )

(
|x|2
4y

)α
2
−1
dy

Now let |x| ≥ 2 then

u
(
|x|2
4y

)
(
|x|2
4y

)α
2
−1
≤ D

[
max

((
|x|2

4y

)−α
2

, 1

)]
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≤ D
[
max

((
s
α
2 , 1
)]
,

(because |x| ≥ 2). Therefore,

∫ ∞
0

y
d
2
−α

2
−1 exp(−y)

u
(
|x|2
4y

)
1

Γ(α2 )

(
|x|2
4y

)α
2
−1
dy

≤
∫ ∞

0

y
d
2
−α

2
−1 exp(−y)

D(max(s
α
2 , 1))

1
Γ(α

2
)

dy <∞,

(because the integral is a gamma function).

Hence, applying Dominated Convergence theorem on the integral we get

lim
|x|→∞

1

|x|α−d

∫ ∞
0

(4πt)−
d
2 exp

(
−|x|

2

4t

)
u(t)dt

= lim
|x|→∞

1

2απ
d
2 Γ
(
α
2

) ∫ ∞
0

y
d
2
−α

2
−1 exp(−y)

u
(
|x|2
4y

)
1

Γ(α2 )

(
|x|2
4y

)α
2
−1
dy

=
1

2απ
d
2 Γ
(
α
2

) ∫ ∞
0

y
d
2
−α

2
−1 exp(−y) lim

|x|→∞

u
(
|x|2
4y

)
1

Γ(α2 )

(
|x|2
4y

)α
2
−1
dy

=
1

2απ
d
2 Γ
(
α
2

) ∫ ∞
0

y
d
2
−α

2
−1 exp(−y)dy

=
Γ
(
d−α

2

)
2απ

d
2 Γ
(
α
2

) .
Hence,

G(x) ∼ 1

π
d
2 2α

Γ
(
d−α

2

)
Γ
(
α
2

) |x|α−d, |x| → ∞.

Theorem 3.2.2. For every α ∈ (0, 2], we have

J(x) ∼ αΓ( d2)
2|x|d , |x| → 0.

Proof. We know from Definition 2.1.13, Theorem 3.1.2 and Theorem 3.1.3 that

J(x) =

∫ ∞
0

(4πt)−
d
2 exp

(
−(|x|)2

4t

)
µ(t)dt,
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µ(t) ∼ α

2t
, t→ 0+

and

µ(t) ∼ α

2t
α
2

+1Γ
(
1− α

2

) , t→∞.
Therefore, applying lemma 3.1.5 with w(t) = µ(t), γ = −α

2
, c0 = α

2
and l(t) = 1.

Choosing β = 1
2

then fl,1/2(y, t) = 1, y < 2t. Let g(t) = 1 then fl,1/2(y, t) = 1 ≤ g(t) ∀
y, t > 0.

Now ∫ ∞
0

t
d
2
−1 exp(−t)g(t)dt =

∫ ∞
0

t
d
2
−1 exp(−t)dt <∞,

(because it is a gamma function). Hence,

J(x) ∼
αΓ
(
d
2

)
2|x|d

, |x| → 0.

Theorem 3.2.3. For every α ∈ (0, 2), we have

J(x) ∼ α

2α+1π
d
2

Γ( d+α2 )
Γ(1−α

2 )
|x|−d−α, |x| → ∞.

Proof. We know that

µ(t) ∼ α

2t
, t→ 0+

and

µ(t) ∼ α

2t
α
2

+1Γ
(
1− α

2

) , t→∞,
therefore, ∃ a positive constant D such that µ(t) ≤ Cmax

(
t−1, t−

α
2
−1
)
. Let |x|

2

4t
= y

which implies − |x|
2

4t2
dt = dy. Therefore,∫ ∞

0

(4πt)−
d
2 exp

(
−|x|

2

4t

)
µ(t)dt

=

∫ 0

∞
(4π)−

d
2 exp(−y)

(
|x|2

4y

)− d
2

µ

(
|x|2

4y

)
−|x|2

4y2
dy

=
1

4π
d
2 |x|d−2

∫ ∞
0

y
d
2
−2 exp(−y)µ

(
|x|2

4y

)
dy
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=
α

8π
d
2 Γ
(
1− α

2

)
|x|−d−α

∫ ∞
0

y
d
2
−2 exp(−y)

µ
(
|x|2
4y

)
α

2Γ(1−α
2 )

( |x|
2

4y

−α
2
−1(

1

4y

)−α
2
−1

dy

=
α

2α+1π
d
2 Γ
(
1− α

2

)
|x|−d−α

∫ ∞
0

y
d
2

+α
2
−1 exp(−y)

µ
(
|x|2
4y

)
α

2Γ(1−α
2 )

(
|x|2
4y

)−α
2
−1
dy.

Now let |x| ≥ 2, then

u
(
|x|2
4y

)
(
|x|2
4y

)−α
2
−1
≤ D

[
max

((
|x|2

4y

)α
2

, 1

)]

∫ ∞
0

y
d
2

+α
2
−1 exp(−y)

µ
(
|x|2
4y

)
α

2Γ(1−α
2 )

(
|x|2
4y

)−α
2
−1
dy

≤
∫ ∞

0

y
d
2

+α
2
−1 exp(−y)

D

[
max

((
|x|2
4y

)α
2
, 1

)]
α

2Γ(1−α
2 )

dy <∞,

(because the integral is a gamma function). Thus, on applying Dominated Convergence

theorem we get

lim
|x|→∞

1

|x|−α−d

∫ ∞
0

(4πt)−
d
2 exp

(
−|x|

2

4t

)
µ(t)dt

= lim
|x|→∞

α

2α+1π
d
2 Γ
(
1− α

2

) ∫ ∞
0

y
d
2

+α
2
−1 exp(−y)

µ
(
|x|2
4y

)
α

2Γ(1−α
2 )

(
|x|2
4y

)−α
2
−1
dy

=
α

2α+1π
d
2 Γ
(
1− α

2

) ∫ ∞
0

y
d
2

+α
2
−1 exp(−y) lim

|x|→∞

µ
(
|x|2
4y

)
α

2Γ(1−α
2 )

(
|x|2
4y

)−α
2
−1
dy

=
α

2α+1π
d
2 Γ
(
1− α

2

) ∫ ∞
0

y
d
2

+α
2
−1 exp(−y)dy

=
αΓ
(
d+α

2

)
2α+1π

d
2 Γ
(
1− α

2

) .
Hence,

J(x) ∼ α

2α+1π
d
2

Γ
(
d+α

2

)
Γ
(
1− α

2

) |x|−d−α, |x| → ∞.
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Theorem 3.2.4. For α = 2, we have

J(x) ∼ 2−
d
2π−

d−1
2

exp(−|x|)

|x|
d+1
2

.

Proof. We know µ(t) = t−1 exp(−t)
2

therefore,

J(x) =
1

2

∫ ∞
0

(4πt)−
d
2 exp

(
−(|x|)2

4t

)
µ(t)dt

=
1

2

∫ ∞
0

(4πt)−
d
2 exp

(
−(|x|)2

4t

)
t−1 exp(−t)dt.

Let |x|
2

t
= u which implies − |x|

2

t2
dt = du. Then

J(x) =

∫ 0

∞

(
4π
|x|2

u

)− d
2

exp
(
−u

4

)( |x|2
u

)−1

exp

(
−|x|

2

u

)(
−|x|

2

u2
du

)
= 2−d−1π−

d
2 |x|−d

∫ ∞
0

u
d
2
−1 exp

(
−u

4
− |x|

2

u

)
du.

Let

H(p) = H(|x|)

=

∫ ∞
0

u
d
2
−1 exp

(
−u

4
− p

u

)
du

= exp(−p)
∫ ∞

0

(
√
u)d

u
exp

(
−
(√

u

2
− p√

u

)2
)
du. (3.15)

Also, let

y =

√
u

2
− p√

u

=
u− 2p

2
√
u

or
√
u =

u− 2p

2y
(3.16)

which implies

dy =

(
1

4
√
u

+
p

2u
3
2

)
du
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or

dy =

(
u+ 2p

4u
3
2

)
du

or

du =

(
4u

3
2

u+ 2p

)
dy (3.17)

Since y = u−2p
2
√
u

therefore,

(u− 2p)2 = 4uy2 (3.18)

or

u2 + 4p2 − 4up− 4uy2 = 0

Using quadratic equation formula we get

u = 2p+ 2y2 + 2y
√
y2 + 2p.

or
u− 2p

2y
= y +

√
y2 + 2p (3.19)

Using equation 3.18 we get

(u+ 2p)2 − 8up = 4uy2

or

u+ 2p = 2
√
u
√
y2 + 2p

or
2
√
u

u+ 2p
=

1√
y2 + 2p

(3.20)

From equations 3.16 and 3.19 we get

√
u = y +

√
y2 + 2p (3.21)

Using equations 3.17 and 3.20 we get

du =
2udy√
y2 + 2p

. (3.22)
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Using equations 3.15, 3.21 and 3.22 we get

H(p) = exp(−p)
∫ ∞
−∞

(
y +

√
y2 + 2p

)d
u

2u√
y2 + 2p

exp(−y2)dy

= 2 exp(−p)
∫ ∞
−∞

(
y +

√
y2 + 2p

)d
√
y2 + 2p

exp(−y2)dy

= 2 exp(−p)
∫ ∞
−∞

y +
√
y2 + 2p√

y2 + 2p

(
y +

√
y2 + 2p

)d−1

exp(−y2)dy

= 2 exp(−p)
∫ ∞
−∞

y +
√
y2 + 2p√

y2 + 2p
p
d−1
2

(
y
√
p

+

√
y2

p
+ 2

)d−1

exp(−y2)dy

Now using Dominated Convergence theorem we get

lim
p→∞

H(p)

exp(−p)p d−1
2

= 2

∫ ∞
−∞

lim
p→∞

y +
√
y2 + 2p√

y2 + 2p

(
y
√
p

+

√
y2

p
+ 2

)d−1

exp(−y2)dy

= 2
d
2

+1

∫ ∞
−∞

exp(−y2)dy = 2
d
2

+1
√
π.

Therefore,

H(p) ∼ 2
d
2

+1
√
π exp(−p)p

d−1
2 , p→∞,

or

H(|x|) ∼ 2
d
2

+1
√
π exp (−|x|) |x|

d−1
2 , |x| → ∞.

Hence,

J(x) ∼ 2−d−1π−
d
2 |x|−d2

d
2

+1
√
π exp(−|x|)|x|

d−1
2 , |x| → ∞,

or

J(x) ∼ 2
d
2π−

d−1
2

exp(−|x|)
|x| d+1

2

, |x| → ∞.

In this chapter, we mainly computed the asymptotic behaviour of potential density

and Lévy density associated with the geometric stable subordinator and also the Green

function and Lévy density associated with the geometric stable process. The tools and

techniques used in this chapter to prove the results will be helpful to prove the same

results in the next chapter.
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Chapter 4

Potential Theory of Brownian

Motion Time-Changed by Tempered

Stable Subordinator and Normal

Inverse Gaussian Process

In this chapter as per our knowledge, all the results mentioned are new and have never

been proved before. Precisely, we will find the asymptotic behaviour of potential density

and Lévy density associated with the two new subordinators and also the Green function

and Lévy density associated with the for two new subordinated Brownian motions. We

will try to use two approaches to prove the results. The first approach is same as what

we have used in previous chapter or the author have used in [4]. The other approach is

different. As we know Tauberian theorems are usually used for a non-decreasing function

whose exact form is not known but its Laplace transform’s exact form is known. So, in

the second approach we will try to compute the exact inverse Laplace transform of the

potential measure and then see its asymptotic behaviour. After knowing the exact form

of potential measure, we will try to compute the asymptotic behaviour of Green function

and similarly for Lévy density.

All the theorems in section 2.2 of chapter two are also valid for the two new processes

mentioned in this chapter.

The first process is Brownian motion subordinated with tempered stable subordinator
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and the second is Brownian motion subordinated with inverse Gaussian process.

4.1 Tempered Stable Subordinator

The Laplace transform of the Geometric stable subordinator is given by

E[(−λSt)] = exp [−t ((λ+ β)γ − βγ)] .

By the similar arguments of section 3.1, Chapter 3 to show the existence of the potential

density of the geomteric stable subordinator, we can also show the existence of potential

density of the tempered stable subordinator.

We now compute the asymptotic behaviour of the potential density of the tempered

stable subordinator using the first approach.

Theorem 4.1.1. For γ ∈ (0, 1) and β > 0, we have

1. u(x) ∼ γxγ−1

Γ(1+γ)
, x→ 0+,

2. u(x) ∼ 1
γβγ−1Γ(2)

, x→∞.

Proof.

1. The Laplace exponent of the Tempered stable subordinator is given by

φ(λ) = (λ+ β)γ − βγ,

where γ ∈ (0, 1) and β > 0. Therefore, the Laplace transform of the potential

measure U of tempered stable subordinator will be

LU(λ) =
1

φ(λ)
=

1

(λ+ β)γ − βγ
.

Now (λ+ β)γ − βγ = βγ
[(

1 + λ
β

)γ
− 1
]
, as λ→ 0+

(
1 + λ

β

)γ
∼ 1 + λγ

β
, therefore,

as λ→ 0+ φ(λ) ∼ βγ
[(

1 + λγ
β

)
− 1
]

= γβγ−1λ.

Hence,

LU(λ) ∼ 1

γβγ−1λ
, λ→ 0+.
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Therefore, by Theorem 2.2.1(3), Chapter 2 the potential measure

U(x) ∼ 1

γβγ−1Γ(2)
x, x→∞.

Hence, by Theorem 2.2.1(4), Chapter 2 the potential density

u(x) ∼ 1

γβγ−1Γ(2)
, x→∞.

2. As λ ∼ ∞ φ(λ) ∼ λγ, therefore, LU(λ) ∼ 1
λγ
. Thus, by Theorem 2.2.1(3), Chapter

2, we have

U(x) ∼ xγ

Γ(1 + γ)
, x→∞.

Therefore, by Theorem 2.2.1(4), Chapter 2, we have

u(x) ∼ γxγ−1

Γ(1 + γ)
, x→ 0+.

We have tried to use the second approach to find the asymptotic behaviour of potential

density however, we were not successful. We tried to compute the exact form of the

potential measure but we were finally stuck at a point where we were unable to integrate

a function. We are still finding a way to compute the asymptotic behaviour of the

complicated integral we got. We now show the steps we have tried to reach the desire

result.

Theorem 4.1.2. For γ ∈ (0, 1) and β > 0, we have

U(t) = exp(−βt) sin(πγ)
π

∫∞
0

exp(−xt)xγ
[x2γ+β2γ−2 cos(πγ)xγ ]

dx.

Proof. Let φ(s) = f(s + β) = (s + β)γ − βγ be the Laplace exponent of the tempered

stable subordinator, where f(s) = sγ − βγ. Then using the properties of inverse Laplace

transform we have

L−1

[
LU(s) =

1

φ(s)

]
(t) = exp(−βt)L−1

[
1

f(s)

]
(t),

where L−1[LU(s)] is the inverse Laplace transform of the potential measure related to

the tempered stable subordinator.

Now to find the inverse Laplace transform of the potential measure we will first find
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Figure 4.1: Contour C anti-clockwise, Figure 4.8, [2]

L−1
[

1
f(s)

]
(t) using complex inversion formula([2]). Since s = 0 is a branch point of 1

f(s)

so we take a branch cut along non-positive real line to make the function single valued as

shown in the figure 4.1. Inside and on the contour the function is analytic so by Cauchy’s

theorem
1

2πi

∫
C

exp(st)

f(s)
ds = 0.

Now
1

2πi

∫
C

exp(st)

f(s)
ds = (4.1)

1

2πi

∫
AB

exp(st)

f(s)
ds+

1

2πi

∫
BC

exp(st)

f(s)
ds+

1

2πi

∫
CD

exp(st)

f(s)
ds

+
1

2πi

∫
DE

exp(st)

f(s)
ds+

1

2πi

∫
EF

exp(st)

f(s)
ds+

1

2πi

∫
FA

exp(st)

f(s)
ds = 0,

also ∫
AB

exp(st)

f(s)
ds =

∫
CD

exp(st)

f(s)
ds =

∫
EF

exp(st)

f(s)
ds = 0,
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(see [2] for details). We know from [2] that as r → 0 and R→∞

1

2πi

∫
FA

exp(st)

f(s)
ds = L−1

[
1

f(s)

]
(t), (4.2)

therefore, from equations 3.1 and 3.2 we get

L−1

[
1

f(s)

]
(t) = −

(
1

2πi

∫
BC

exp(st)

f(s)
ds+

1

2πi

∫
DE

exp(st)

f(s)
ds

)
. (4.3)

Consider, ∫
BC

exp(st)

f(s)
ds =

∫
BC

exp(st)

sγ − βγ
ds =

∫ −r
−R
− exp(st)

sγ − βγ
ds,

let s = x exp(iπ) then ds = −ds, thus,∫
BC

exp(st)

sγ − βγ
ds =

∫ r

R

−exp(−xt)
sγ − βγ

dx.

Taking the limits r → 0 and R→∞ on both side of the above equation we get∫
BC

exp(st)

sγ − βγ
ds =

∫ ∞
0

exp(−xt)
xγ exp(iπγ)− βγ

dx. (4.4)

Now ∫
DE

exp(st)

f(s)
ds =

∫
DE

exp(st)

sγ − βγ
ds =

∫ −R
−r
− exp(st)

sγ − βγ
ds,

let s = x exp(−iπ) then ds = −ds, thus,∫
DE

exp(st)

sγ − βγ
ds =

∫ R

r

−exp(−xt)
sγ − βγ

dx.

Again we take the limits r → 0 and R→∞ on both side of the above equation we get∫
DE

exp(st)

sγ − βγ
ds =

∫ ∞
0

− exp(−xt)
xγ exp(−iπγ)− βγ

dx. (4.5)

From equations 3.3, 3.4 and 3.5 we get

L−1

[
1

f(s)

]
(t) = − 1

2πi

[∫ ∞
0

exp(−xt)
xγ exp(iπγ)− βγ

dx−
∫ ∞

0

exp(−xt)
xγ exp(−iπγ)− βγ

dx

]

= − 1

2πi

[∫ ∞
0

exp(−xt)
[

1

xγ exp(iπγ)− βγ
− 1

xγ exp(−iπγ)− βγ

]
dx

= − 1

2πi

∫ ∞
0

exp(−xt) [xγ exp(−iπγ)− βγ − xγ exp(iπγ)− βγ]
[xγ exp(iπγ) + βγ] [xγ exp(−iπγ)− βγ]

dx

= − 1

2πi

∫ ∞
0

exp(−xt) [xγ [exp(−iπγ)− exp(iπγ)]]

[x2γ + β2γ − xγ [exp(−iπγ) + exp(iπγ)] ]dx
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= − 1

2πi

∫ ∞
0

exp(−xt) −2i sin(πγ)xγ

[x2γ + β2γ − 2 cos(πγ)xγ] ]dx

=
sin(πγ)

π

∫ ∞
0

exp(−xt)xγ

[x2γ + β2γ − 2 cos(πγ)xγ]
dx

Thus, the potential measure U(t) = L−1 [LU(s)](t)=

exp(−βt)sin(πγ)

π

∫ ∞
0

exp(−xt)xγ

[x2γ + β2γ − 2 cos(πγ)xγ]
dx.

Unfortunately, we could not find a method to compute the above integral although we

have tried to see the asymptotic behaviour(as t → ∞) of this integral using Watson’s

lemma, still we were unsuccessful because the integral is too complicated. We are still

finding a way to get the asymptotic behaviour of the above integral.

4.2 Brownian Motion time-changed by Tempered Sta-

ble Subordinator

In this section we compute the asymptotic behaviour of the Green function and Lévy

density associated with the Brownian motion time-changed by tempered stable subordi-

nator.

Theorem 4.2.1. For γ ∈ (0, 1) and β > 0, we have

1. G(x) ∼ Γ( d−2γ
2 )

π
d
2 4γΓ(γ)

|x|2γ−d, |x| → 0+,

2. G(x) ∼ Γ( d−2
2 )

4π
d
2 γβγ−1λ

|x|2, |x| → ∞.

Proof.

1. As λ→∞, φ(λ) ∼ λγ, then it follows directly from Theorem 3.1 of [6] that

G(x) ∼
Γ
(
d−2γ

2

)
π
d
2 4γΓ(γ)

|x|2γ−d, |x| → 0+.

2. As λ→ 0+, φ(λ) ∼ γβγ−1λ, then it follows directly from Theorem 3.3 of [6] that

G(x) ∼ 1

π
d
2 22γβγ−1λ

Γ
(
d−2

2

)
Γ
(

2
2

) |x|2, |x| → ∞
or

G(x) ∼
Γ
(
d−2

2

)
4π

d
2γβγ−1λ

|x|2, |x| → ∞.
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We now find the asymptotic behaviour of the and Lévy density J(x) of the subor-

dinated process. We can not use the same method as in [4] because the asymptotic

behaviour of Lévy density µ(x) of the Lévy measure µ associated with the tempered

stable subordinator does not follow assumption 2 of lemma 3.1.5 so we use the other

method. The exact form of Lévy density associated with the subordinator is already

known([16]).

Theorem 4.2.2. For γ ∈ (0, 1) and β > 0, we have

1. J(x) ∼ 4γ+1

π
d
2

(
γ + d

2

)
c|x|−(2γ+d), |x| → 0,

2. J(x) ∼ 2
2γ−d+1

2 β
2γ+d−1

4

π
d−1
2

c|x|− 2γ+d−1
2 exp

(
−
√
β|x|

)
, |x| → ∞.

Proof. The Lévy density associated with the tempered stable subordinator is given

by([16])

µ(t) =
c exp(−βt)

tγ+1
,

thus, the Lévy density associated with the subordinated process

J(x) =

∫ ∞
0

p2(t, 0, x)µ(t)dt

=

∫ ∞
0

(4πt)−
d
2 exp

(
−(|x|)2

4t

)
c exp(−βt)

tγ+1
dt

=
c

2dπ
d
2

∫ ∞
0

t−(γ+1+ d
2) exp

(
−(|x|)2

4t
− βt

)
dt

=
c

2dπ
d
2

∫ ∞
0

t−(γ+1+ d
2) exp

[
−1

2

(
(|x|)2

2t
+ 2βt

)]
dt

Let t = |x|y
2
√
β

then dt = |x|dy
2
√
β

thus ,

J(x) =
c

2dπ
d
2

∫ ∞
0

[
|x|y
2
√
β

]−(γ+1+ d
2)

exp

[
−1

2

(√
β|x|y +

√
β|x|y
y

)]
|x|dy
2
√
β

=
c

2dπ
d
2

[
|x|

2
√
β

]−(γ+ d
2) ∫ ∞

0

y−(γ+1+ d
2) exp

[
−1

2

√
β|x|

(
y +

1

y

)]
dy

=
2(γ− d2)β

1
2(γ+ d

2)

π
d
2

c|x|−(γ+ d
2)
∫ ∞

0

y−(γ+1+ d
2) exp

[
−1

2

√
β|x|

(
y +

1

y

)]
dy

=
2(γ− d2)β

1
2(γ+ d

2)

π
d
2

c|x|−(γ+ d
2)2K−λ(ω), (4.6)
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where

K−λ(ω) =
1

2

∫ ∞
0

y−(γ+1+ d
2) exp

[
−1

2

√
β|x|

(
y +

1

y

)]
dy,

λ =
(
γ + d

2

)
and ω =

√
β|x|. Now K−λ(ω) is a modified Bessel function of third type and

K−λ(ω) = Kλ(ω)([17]).

1. As |x| → 0, ω → 0 thus, using A.7 of [17] we get

Kλ(ω) ∼ Γ

(
γ +

d

2

)
2γ+ d

2
−1(
√
β|x|)−(γ+ d

2).

Using equation 3.6 we get

J(x) ∼ 2(γ− d2)β
1
2(γ+ d

2)

π
d
2

c|x|−(γ+ d
2)2Γ

(
γ +

d

2

)
2γ+ d

2
+1(
√
β|x|)−(γ+ d

2), |x| → 0,

or

J(x) ∼ 4γ+1

π
d
2

(
γ +

d

2

)
c|x|−(2γ+d), |x| → 0.

2. As |x| → 0, ω → 0 thus, from [17] we get

Kλ(ω) ∼
√
π

2
exp

(
−
√
β|x|

)(√
β|x|

)− 1
2
.

Using equation 3.6 we get

J(x) ∼ 2(γ− d2)β
1
2(γ+ d

2)

π
d
2

c|x|−(γ+ d
2)2

√
π

2
exp

(
−
√
β|x|

)(√
β|x|

)− 1
2
, |x| → ∞,

or

J(x) ∼ 2
2γ−d+1

2 β
2γ+d−1

4

π
d−1
2

c|x|−
2γ+d−1

2 exp
(
−
√
β|x|

)
, |x| → ∞.

4.3 Inverse Gaussian Subordinator

The Laplace transform of the Geometric stable subordinator is given by

E[(−λSt)] = exp
[
−t
(
δ
(√

2λ+ γ2 − γ
))]

.

By the similar arguments in section 3.1, Chapter 3 to show the existence of the potential

density of the geomteric stable subordinator, we can also show the existence of potential

density of the inverse Gaussian subordinator.

In this section we again prove some of the previous results for the Inverse Gaussian

subordinator using the approach mentioned in [4] using both the approaches.
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Theorem 4.3.1. For δ, γ > 0, we have

1. u(x) ∼ 1

2δΓ( 3
2)
√
x
, x→ 0+,

2. u(x) ∼ γ
δΓ(2)

, x→∞.

Proof.

1. The Laplace exponent of the Inverse Gaussian subordinator is given by

φ(λ) = δ
(√

2λ+ γ2 − γ
)
,

where γ ∈ (0, 1) and β > 0. Therefore, the Laplace transform of the potential

measure U of tempered stable subordinator will be

LU(λ) =
1

δ
(√

2λ+ γ2 − γ
) .

Since δ
(√

2λ+ γ2 − γ
)

= δγ

[(
1 + 2λ

γ2

) 1
2 − 1

]
and as λ→ 0+

(
1 + 2λ

γ2

) 1
2 ∼ 1+ λ

γ2
,

therefore as λ→ 0+, φ(λ) ∼ δγ

[(
1 + λ

γ2

) 1
2 − 1

]
= δ

γ
λ, thus,

LU(λ) ∼ γ

δλ
, λ→ 0+.

Therefore, by Theorem 2.2.1(3), Chapter 2 the potential measure

U(x) ∼ γ

δΓ(2)
x, x→∞,

and hence, by Theorem 2.2.1(4), Chapter 2 the potential density

u(x) ∼ γ

δΓ(2)
, x→∞.

2. As λ ∼ ∞, φ(λ) ∼ δ
√

2λ, therefore, LU(λ) ∼ 1
δ
√

2λ
. Thus, by Theorem 2.2.1(3),

Chapter 1, we have

U(x) ∼ 1

δΓ
(

3
2

)√x, x→ 0+.

Therefore, by by Theorem 2.2.1(4), Chapter 2, we have

u(x) ∼ 1

2δΓ
(

3
2

)√
x
, x→ 0+.
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We still need to find a way to find the asymptotic behaviour of the potential measure of

the inverse Gaussian subordinator. We now use the alternative approach to compute the

exact form of the potential measure associated with the inverse Gaussian subordinator.

Theorem 4.3.2. For δ, γ > 0, we have

U(t) = 1√
2δ

[
exp

(
− γ

2t
2

)
√
πt

+ γ√
2
erf

(
−γ
√
t√

2

)]
.

Proof. Let φ(s) = f(s + γ2

2
) =

√
2δ

(√
s+ γ2

2
− γ√

2

)
be the Laplace exponent of the

inverse Gaussian subordinator, where f(s) =
√

2δ
(√

s− γ√
2

)
. Then using the properties

of inverse Laplace transform we get

L−1

[
LU(s) =

1

φ(s)

]
(t) = exp

(
−γ

2t

2

)
L−1

[
1

f(s)

]
(t), (4.7)

where L−1[LU(s)] is the inverse Laplace transform of the potential measure related to

the inverse Gaussian subordinator.

Now

L−1

[
1

f(s)

]
(t) = L−1

 1
√

2δ
(√

s− γ√
2

)
 (t)

=
1√
2δ

[
1√
πt

+
γ√
2

exp

(
γ2t

2

)
erf

(
−γ
√
t√

2

)]
(4.8)

using formula 128 on page 16 of [37]. Thus from equations 4.7 and 4.8 we get

L−1 [LU(s)] =
1√
2δ

exp
(
−γ2t

2

)
√
πt

+
γ√
2
erf

(
−γ
√
t√

2

) .

The Lévy density associated with the inverse Gaussain subordinator is already known

so Now we move to compute the asymptotic behaviour of Green function and Lévy density

associated with the inverse Gaussian subordinator.
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4.4 Normal Inverse Gaussian Process

The associated Lévy density of Normal inverse Gaussian process has a known exact form

but not the associated Green function has so, we compute the asymptotic behaviour of

Green function only using the first approach or the approach mentioned in [4].

Theorem 4.4.1. For δ, γ > 0, we have

1. G(x) ∼ 1

2
3
2 π

d
2 δ

Γ( d−1
2 )

Γ( 1
2)
|x|1−d, |x| → 0+,

2. G(x) ∼ γ

4π
d
2 δ

Γ( d−2
2 )

Γ(1)
|x|2−d, |x| → ∞.

Proof.

1. As λ ∼ ∞, φ(λ) ∼ δ
√

2λ, then it follows directly from Theorem 3.1 of [6] that

G(x) ∼ 1

2
3
2π

d
2 δ

Γ
(
d−1

2

)
Γ
(

1
2

) |x|1−d, |x| → 0+.

2. As λ→ 0+, φ(λ) ∼ δ
γ
λ, then it follows directly from Theorem 3.3 of [6] that

G(x) ∼ γ

4π
d
2 δ

Γ
(
d−2

2

)
Γ(1)

|x|2−d, |x| → ∞.

In this chapter, we mainly computed the asymptotic behaviour of potential density

and Lévy density associated with the tempered stable subordinator and inverse Gaussian

subordinator and also the asymptotic behaviour of Green function and Lévy density

associated with the Brownian motion timed changed by tempered stable subordinator

and inverse Gaussian process. We used two different approaches to prove the theorems

in this chapter.

4.5 Future Work

We plan to rigorously study how harmonic, subharmonic and superharmonic functions of

Classical Potential theory are related to martingale, submartinagle and supermartingale

of Probability Theory and Stochastic processes. Further, we want to study how Transient

Markov processes are related to Potential theory([19], [20]). Further, we are still trying

to use the second approach to compute the asymptotic behaviour of the potential density
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associated with the tempered stable subordinator and inverse Gaussian subordinator and

hence, for their associated Green function also. Precisely, we need to use Theorems 4.1.2,

and 4.3.2 and Theorem 2.2.1(4), Chapter 2 to compute the asymptotic behaviour of the

potential density associated with the tempered stable subordinator and inverse Gaussian

subordinator.

It is a well known that marginals of a continuous-time Lévy process is always infinite

divisible and we want to study the infinite divisibility of marginals of processes which

are not Lévy and generally arise from subordination. Researchers have proved some

non-Lévy processes to be non-infinite divisible and some to be divisible. We need more

mathematical tools to prove the infinite divisibility of some non-Lévy processes and that

is also one of the motivation behind studying the topic of the thesis. At the begining of

the thesis work we thought by the end, we can prove infinite divisibility of some non-Lévy

processes but due to time constrained we were unable to. However, hopefully in future we

can prove infinite divisibility of some non-Lévy processes using the tools and techniques

used in this thesis work. Brownian motion time changed with inverse stable subordinator,

Fractional Brownian motion time changed with inverse stable subordinator, etc are some

of the examples of non-Lévy processes which we will try to prove infinite divisible.
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processes, Communications in Statistics-Theory and Methods, Vol. 0, 1–5, 2017.

[8] Andreas E. Kyprianou, Notes on the Theorey of Lévy Processes,
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Appendix

This section contain the python codes used to generate figure 2.1 and 2.2.

import numpy as np

import matplotlib.pyplot as plt

import math

from math import sin, pow, pi, log

import pandas as pd

def poipaths(N = 1000, lam = .01, paths =5):

for i in range(paths):

rng = np.arange(0,1, 1.0/N)

rvs = np.random.poisson(lam*1.0/N, N)

incr = list(rvs)

incr.insert(0,0.0)

rng = list(rng)

rng.append(1.0)

ar = np.array(incr)

cms = ar.cumsum()

ff = plt.plot(np.array(rng), cms)

plt.xlabel(’t’)

plt.ylabel(’N(t)’)

title = ’Poisson Process Sample Paths with arrival rate plt.title(title)

plt.show(ff)

def bmpaths(N = 1000, paths =5):

for i in range(paths):

rng = np.arange(0, 1, 1.0/N)

rvs = np.random.normal(0, 1, N)

incr = list(map(lambda x: x*math.sqrt(1.0/N), rvs))

incr.insert(0,0.0)

rng = list(rng)

rng.append(1.0)

ar = np.array(incr)

cms = ar.cumsum()
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ff = plt.plot(np.array(rng), cms)

ub = list(map(lambda x: 3*math.sqrt(x), rng))

lb = list(map(lambda x: -3*math.sqrt(x), rng))

plt.plot(np.array(rng), ub)

plt.plot(np.array(rng), lb)

plt.xlabel(’t’)

plt.ylabel(’B(t)’)

plt.title(’Standard Brownian Motion Sample Paths’)

plt.show(ff)
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