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Abstract

Quantum Cryptography allows us to do secure communication by exploiting the properties

of quantum mechanics. The basic idea behind the security of quantum cryptography comes

from no-cloning theorem. Whenever an eavesdropper tries to gain information by attacking

the quantum channel, one would end up disturbing the state. The communicating parties

can easily detect this error by introducing some check bits.

There are various applications of Quantum Cryptography, such as, Quantum Key Distri-

bution (QKD), Quantum Coin Flipping, Quantum Private Comparison (QPC), Quantum

Voting, etc. Here, we analyze the security of specifically QKD and QPC.

To render the security of our Quantum Cryptographic protocols, high fidelity of shared

quantum states is required. But in real world, quantum channels can be noisy (in addition

to the noise caused due to eavesdropping). Quantum Error-Correction allows us to over-

come the effects of noise and achieve very high fidelities, given the error rate is below a

certain threshold.

We first develop the formalism of error-correction, starting from classical linear codes; the

properties of which are exploited in several Quantum Error-Correcting codes. We look at

a particular class of such codes, known as CSS Codes; which we then use to prove the

security of BB84 QKD Protocol. Some QPC protocols under noiseless, as well as, noisy

conditions, are discussed. We then propose a three-party entangled state QPC Protocol

which uses CSS Codes to encode our state, and is unconditionally secure.

ix





Chapter 1

Classical Error Correction

Noise in communication systems is inevitable. We try to build our systems so as to avoid

noise from being acted on them. But whenever it’s not possible, we need to employ certain

strategy to overcome the effects of noise. This can be done by adding some redundant

information to the data, which can protect the encoded data while being transmitted, and

performing error correction to get the original data back. In this chapter, first we develop

the formalism for error-correction and then we’ll describe it’s working.

Figure 1.1: The basic idea behind error correction[Sain 00]

1.1 Formalism of Classical Linear Coding

A classical linear[] code can be represented in 2 different formalism:
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1.1.1 Generator matrix formalism

A classical linear code C encoding k-bit of information into an n bit code space can be

represented by an n× k generator matrix G with elements which belong to Z2

G : {0, 1}k 7→ {0, 1}n ; n ≥ k (1.1)

Here, we call C a [n, k] code.

For example, consider a 6-bit repetition code, where k = 2 and n = 6;

Gx encodes x as follows

00 7→ 000000, 01 7→ 000111,

10 7→ 111000, 11 7→ 111111

In matrix form, G can be written as

G =



1 0

1 0

1 0

0 1

0 1

0 1


The set of all possible codewords are spanned by the columns ofG. So for unique encoding,

we require columns of G to be linearly independent.

Here we can also see that encoding k bits in {0, 1}n space would require n.2k bits, whereas,

in linear encoding, we need only n.k bits by defining it with a n× k generator matrix.

1.1.2 Parity Check Formalism

By looking at a generator matrix, one can easily visualise the connection between a message

and its encoding. However, to perform error-correction, we require Parity-Check formal-

ism. The relation between an n× k generator matrix and n− k × n parity-check matrix is

such that if we write G ≡ [ Ik
A

], then H ≡ [A|In−k].

The interesting property of H for being used in error-correction is that if y (= Gx) is a

codeword of [n, k] linear code, then Hy = 0.

Hence, we can also say that codewords of a linear code [n, k] are kernel of H . We will see
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in the next section that how it is useful for error detection and correction.

In matrix form,



r1 . . . . . .

r1 . . . . . .

. . . . . . .

. . . . . . .

rn−k . . . . . .


n−k×n



c1

c2

.

.

.

.

cn


n×1

=



0

0

.

.

0


n−k×1

(1.2)

Here, ri represents a row of H and column c is a codeword generated by G.

1.2 Error detection and correction

For x ∈ {0, 1}k to be encoded by a linear code [n, k] defined by n× k generator matrix G,

we can write y = Gx, for y in G. Suppose a bit flip occurs on the jth bit, its representation

in matrix form is

ej =



0

0

.

.

1

0

.

.

0


n×1

where 1 is at jth position. Now because of error, the encoded bit y transforms to y′ = y+e.

The error syndrome can determined using H as follows

Hy′ = H(y + ej)

Hy′ = Hej

From the knowledge of Hej , we can know at which position the error has occurred, which

can be rectified to get y back.
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Definition [Hamming Distance] Let x, y ∈ {0, 1}n, then the hamming distance d between

x and y is the number of places at which they differ.

For example, d(10010, 01110) = 3

Definition [Hamming Weight] For x ∈ {0, 1}n, hamming weight w is the number of places

at which x is 1. In other words, it is the hamming distance between x and 0.

For example, wt(10010) = 2

It can be easily shown that d(x, y) = wt(x+ y).

Definition [Distance of a code] The distance of a code d(C) is the minimum hamming

distance between any two codewords x, y ;x 6= y. Or in other words, it is the minimum

possible hamming weight of a codeword.

d(C) = min
x,y∈C,x6=y

d(x, y)

= min
x,y∈C,x6=y

wt(x+ y)

= min
x′∈C,x′ 6=0

wt(x′)

A code C with distance d is written as [n, k, d] code. A code to be able to correct t errors

must have distance d = 2t+ 1, where t is an integer. Suppose d(yi, yj) ≥ 2t+ 1 ∀ x, y; and

y′ has a maximum distance of t with a codeword y, it can be corrected back to y.

Lemma 1.1 A code with parity check matrix H has distance d if H has d − 1 linearly

independent columns.

Proof If y ∈ C, then Hy = 0,

Hy =
∑
i

hiyi = 0

where hi are columns of H and yi are elements of y.

∑
For d values of i

hi = 0

Hence, these particular d columns are linearly independent.

If
∑

For d−1 values of i

hi = 0, it would imply that there exist a codeword which has hamming

weight d− 1, which contradicts the fact that the code has distance d. Therefore, any set of

d− 1 columns of H are linearly independent.
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1.3 Dual of a code

Suppose C is an [n, k] which has generator matrix G and parity check matrix H . Then we

define a dual of C, denoted by C⊥, which has generator matrix HT and parity check matrix

GT . CT is an [n, n− k] code.

C⊥ : {y ∈ C⊥; y.x = 0 ∀ x ∈ C}

If gi denotes a row of G, and hj denotes a column of H , then gi.hj = 0 ∀ i, j. This implies

that all columns of C and C⊥ are orthogonal to each other.

C is called strictly self dual if C = C⊥, and weakly self-dual if C ⊆ C⊥.

Lemma 1.2: A code C denoted by [n, k] is weakly self dual iff GTG = 0.

Proof For y ∈ C, we have Gx = y; and since C ⊆ C⊥, all such y ∈ C⊥.

Also since GT is the parity check matrix of C⊥, we have

GTy = 0

GT (Gx) = 0

GTGx = 0

(1.3)

And for any x ∈ C, there is a y, hence above condition holds for all values of y. Hence,

GTG = 0.

Now, for its converse, we have

GTGx = GTy = 0

⇒ x ∈ C⊥

But we also have Gx = y, so x ∈ C, hence, C ⊆ C⊥.

Lemma 1.3 If x ∈ C, where C is a linear code, then

∑
y∈C

(−1)x.y =

|C|, ∀ x ∈ C
⊥

0 , ∀ x ∈ C⊥
(1.4)

5



Proof For y ∈ C and x ∈ CT , we have∑
y∈C,x∈C⊥

(−1)x.y =
∑
y∈C

(−1)0

=
∑
y∈C

1

= |C| ; x /∈ C⊥

And for x /∈ CT ,

For a particular x, the number of values of y for which x.y = 0(mod2) is equal to that of

for which x.y = 1(mod2). Thus,∑
y∈C

(−1)x.y =
∑

c(1 + (−1))

where c is a constant. Hence,∑
y∈C

(−1)x.y = 0 ; x /∈ C⊥

6



Chapter 2

Quantum Error-Correction

In real world, the existence of a perfectly closed quantum system is almost impossible. As

such, real quantum systems end up having unwanted interactions with the environment,

which shows up as noise. To control that noise, we need to understand how noise processes

occurs, and need to develop the formalism to correct those errors. In this chapter, we look at

the formalism of quantum operations, bit flip, phase flip and depolarizing channel. We then

illustrate how a general theory of quantum error-correction can be constructed. Then we

see how classical error correcting codes can be incorporated into quantum error correction,

and illustrate a particular class of quantum error-correcting codes, known as CSS codes.

2.1 Quantum Operations

Interaction between physical quantum systems and environment causes the system to un-

dergo completely arbitrary time evolution. We use Quantum Operation Formalism to model

this interaction.

Consider the state of a system is ρ. Upon interaction with the environment, our quantum

state transforms to

ρ′ = ε(ρ) (2.1)

Suppose the (environment + system) together form a closed quantum system. Assume the

environment to be in initial state |e0〉〈e0|, then their combined evolution can be represented

by an unitary transformation, which can be written as

U(ρ⊗ |e0〉〈e0|)U † (2.2)

7



To know the final state of the system, we just trace out the state of the environment as

follows [Nielsen 00]:

ρ′ = Trenv[U(ρ⊗ |e0〉〈e0|)U †] (2.3)

=
∑
i

〈ei|U(ρ⊗ |e0〉〈e0|)U †|ei〉 (2.4)

=
∑
i,j,k

〈ei|U |ek〉〈ek|(ρ⊗ |e0〉〈e0|)|ej〉〈ej|U †|ei〉 (2.5)

=
∑
i,j,k

〈ei|U |ek〉(ρ⊗ 〈ek|e0〉〈e0|ej〉)〈ej|U †|ei〉 (2.6)

=
∑
i,j,k

〈ei|U |e0〉ρ〈e0|U †|ei〉δk0δj0 (2.7)

=
∑
i

〈ei|U |e0〉ρ〈e0U †|ei〉 (2.8)

(2.9)

This can also be written as

ε(ρ) =
∑
i

MiρM
†
i (2.10)

where Mi ≡ 〈ei|U |e0〉. Mi are called operation elements of the quantum operation ε.

In general,
∑

iMiM
†
i ≤ 1, where the equality holds if the quantum operation ε is trace-

preserving. If the system is in a pure state, and the quantum operation is trace-preserving,

then the action of U on |ψ〉|e0〉 can be written as

U |ψ〉|e0〉 =
∑
i

Mi|ψ〉|e0〉 (2.11)

It can easily be shown that U preserves the norm, even when the system is in mixed state.

2.1.1 Bit flip and Phase flip channels

[Nielsen 00] Consider a bit flip occurs on a qubit with probability p which is exposed to

the environment. In quantum operation formalism, we can say that bit flip has operation

elements, M0 =
√
pI and M1 =

√
1− pX . In the operator sum representation, we have

ε
X−→ ε(ρ) = (1− p)ρ+ pXρX (2.12)

Similarly, for a phase-flip operation, we have

ε
Z−→ ε(ρ) = (1− p)ρ+ pZρZ (2.13)

8



2.1.2 Depolarizing Channel

Suppose a qubit having state ρ is depolarized with probability p, i.e. replaced by a com-

pletely mixed state I/2. The resultant state of the system after this noise has occurred

is

ε(ρ) = (1− p)ρ+ p
I

2
(2.14)

In operator-sum representation, we can write it as

ε(ρ) = (1− 3p

4
)ρ+

p

4
(XρX + Y ρY + ZρZ) (2.15)

Considering that the state remains unchanged with probability 1− p, by re-parameterizing

p we can also write the final state as

ε(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ) (2.16)

Thus the depolarizing channel has the operation elements {
√

1− pI,
√
p/3X,

√
p/3Y,

√
p/3Z}.

2.2 Theory of Quantum-Error Correction

[Nielsen 00]This basic idea in theory of quantum-error correction is to protect the quantum

states by encoding into a quantum error-correcting code by applying an unitary operation.

To develop a general theory of quantum error correction, we make 2 broad assumptions:

• Noise described−−−−→
by

ε (a quantum operation)

• Error-Correction operation described−−−−→
by

R (a trace-preserving quantum operation)

In order to perform error-correction successfully, we require:

(R ◦ ε)ρ ∝ ρ (2.17)

where ρ is a quantum state, encoded by C, and that is to be transmitted.

The only condition for quantum-error correcting code to be able to protect the state from a

particular noise ε , is as follows:

Theorem 2.1 (Quantum-Error Correction condition) [Nielsen 00] Suppose C is a quan-

tum code, P is a projector onto C. Consider ε to be a quantum operation which has operation

9



elements {Ei}. A sufficient and necessary condition for the existence of error-correction

operation R correcting error ε on C:

PEi
†EiP = αijP

where αij is an element of a Hermitian matrix.

Discretization of errors

In Theorem 2.1, we illustrated the condition for protection of the encoded quantum infor-

mation against a specific noise operation ε, but in reality, we don’t have the knowledge of

what type of error has occurred to the quantum system. We want the quantum information

to be protected against an entire class of noise operations. Luckily, the linearity of quantum

mechanics allows the condition to be adapted to provide this sort of protection.

Theorem 2.2 [Nielsen 00] Let C be a quantum code , and R is the error-correction opera-

tion from Theorem 2.1, which can recover from noise operation ε with operation elements

{Ei}. Let us define the combination of all classes of noise processes with a quantum op-

eration F , having operation elements {Fj}, where Fj is a linear combination of Ei, i.e.,

Fj =
∑

imjiEi, where mji are the elements of a matrix with complex entries. Then R can

also correct the state against the effects of noise operation F on code C.

2.3 Quantum-Error Correcting Codes

In some respects, quantum error-correcting code are quite related to classical linear codes;

encoded state undergoes noise, then error is recognized by measuring the error syndrome,

and then correcting it as appropriate.

Assume that we want to encode our quantum information into n qubits. We define an error-

correcting code space which is a subspace of Hilbert space C2n which can protect a small

number (t) of qubits against any arbitrary error by measuring the error and subsequently

correcting it, without disturbing the encoded state.

10



2.3.1 CSS Codes

CSS codes [Calderbank 96] is one of the prominent example of large class of quantum

error-correcting codes. CSS codes exploits the properties of classical linear codes to detect

the quantum errors and correct it.

Suppose C1 and C2 are [n, k1] and [n, k2] classical linear codes such that C2 ⊂ C1 ⊂ F n
2 ,

where C1 and C2 both can correct upto t errors. We define CSS(C1, C2), which is an

[n, k1 − k2] quantum code, which can correct errors on upto t qubits, through following

construction:

Suppose x ∈ C1, we define our quantum state |x+ C2〉 by

|x+ C2〉 ≡
1√
|C2|

∑
y∈C2

|x⊕ y〉 (2.18)

Suppose x′ ∈ C1 , such that x− x′ = y′ ∈ C2, then

|x′ + C2〉 ≡
1√
|C2|

∑
y∈C2

|x′ ⊕ y〉

=
1√
|C2|

∑
y∈C2

|(x− y′)⊕ y〉 ; y′ ∈ C2

=
1√
|C2|

∑
y∈C2

|x⊕ y′′〉 ; y′′ = y − y′ ∈ C2

≡ |x+ C2〉

So if x and x′ belong to same coset of C2, that is, x − x′ = y′ ∈ C2, then |x′ + C2〉 and

|x + C2〉 represent the same code state. And if x and x′ belong to different cosets of C2,

then x+ y 6= x′+ y′ ∀ y, y′ ∈ C2, and hence |x′+C2〉 and |x+C2〉 are orthonormal states.

The total number of different code states is the total number of cosets of C2 in C1, which

is equal to |C1|/|C2| = 2k1−k2 , and we say that CSS(C1, C2) is an [n, k1 − k2] code. Now

let’s look at how our encoded state can be used to detect and correct the errors.

Suppose e1 is an n-bit string which have 1′s in places where bit-flips have occurred and

similarly, e2 is an n-bit string which have 1′s in places where phase-flips have occurred.

If |x+ C2〉 was the original encoded state, then the corrupted state would be

1√
|C2|

∑
y∈C2

(−1)(x⊕y).e2|x⊕ y ⊕ e1〉 (2.19)

To detect the error-syndrome, we introduce the ancillary qubits, and correct it to our original

state. Given that wt(e1) ≤ t and wt(e2) ≤ t.

11



Bit-flip correction

We take ancillary qubits, initially all in state |0〉 . We apply unitary operation corresponding

to the parity check matrix H1 of C1, and since, x+ y ∈ C1, our resultant state is

1√
|C2|

∑
y∈C2

(−1)(x⊕y).e2|x⊕ y ⊕ e1〉 7→
∑
y∈C2

(−1)(x⊕y).e2|x⊕ y ⊕ e1〉|H1.e1〉 (2.20)

With the knowledge of the error syndrome, H1.e1, we can deduce e1. By applying σz gates

to qubits at positions where e1 is 1, we remove the bit-flips occurred and get the following

state
1√
|C2|

∑
y∈C2

(−1)(x⊕y).e2|x⊕ y〉 (2.21)

Phase-flip correction

To detect the phase flips occurred to the encoded state, we apply Hadamard transformation

to each qubit, and get the state

H⊗n[
1√
|C2|

∑
y∈C2

(−1)(x⊕y).e2|x⊕ y〉] =
1√
|C2|

∑
y∈C2

(−1)(x⊕y).e2
1

2n/2

∑
z

(−1)(x⊕y).z|z〉

=
1

2n/2
√
|C2|

∑
y∈C2

∑
z

(−1)(x⊕y).(e2⊕z)|z〉

Suppose z′ ≡ z ⊕ e2

=
1

2n/2
√
|C2|

∑
y∈C2

∑
z

(−1)(x⊕y).z
′ |z′ ⊕ e2〉

From Lemma 1.3, we have

∑
y∈C2

(−1)y.z
′
=

|C2|, ∀ z′ ∈ C⊥2

0 , ∀ z′ /∈ C⊥2

Using this, we can rewrite the state as√
|C2|

2n/2

∑
z′∈C⊥

2

(−1)x.z
′|z′ ⊕ e2〉 (2.22)

This is similar to the case of bit-flip errors with error e2. Similarly, here also we introduce

an unitary operation corresponding to parity check matrix H2 for C⊥2 (HT
2 is the generator

matrix for C2), to get the error-syndrome H2.e2 and correct it to get the following state√
|C2|

2n/2

∑
z′∈C⊥

2

(−1)x.z
′ |z′〉 (2.23)
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We apply Hadamard transformation to each qubit, and get back

1√
|C2|

∑
y∈C2

|x⊕ y〉

which is our original encoded state.

Example [The Steane Code] Let’s look at an important example of CSS codes, where we

have C1(≡ C) which is a [7, 4, 3] Hamming code, whose parity check matrix is

H =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 (2.24)

and generator matrix is

G =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1


(2.25)

Suppose C2 ≡ C⊥. Then by definition of a dual code, we have

H[C2] = G[C1]
T =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

 (2.26)

We also notice that C2 ⊂ C1. We can now write the encoded states of [7, 1, 3] CSS code as

|0〉L =
1

2
√

2
[|0000000〉+ |0011101〉+ |0101011〉+ |0110110〉

+|1000111〉+ |1011010〉+ |1101100〉+ |1110001〉]
(2.27)

|1〉L =
1

2
√

2
[|1111111〉+ |1100010〉+ |1010100〉+ |1001001〉

+|0111000〉+ |0100101〉+ |0010011〉+ |0001110〉]
(2.28)

Here, the classical bit 0 is encoded as |0〉L and 1 as |1〉L.
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2.3.2 Generalized CSS Codes

Let’s generalize the discussion for CSS[C1, C2] quantum code using two n-bit strings x

and z, where C1 and C2 are [n, k1, d] and [n, k2, d] classical codes respectively. The code

state can be written as

|vk + C2〉 ≡
1√
|C2|

∑
y∈C2

(−1)y.z|vk ⊕ y ⊕ x〉 (2.29)

We denote this quantum code as Qs with s ≡ (x, z). Here the m-bit string (= k1 − k2) is

indexed by an n-bit string vk ∈ C1. It can easily be seen that if we put x = 0 and z = 0, we

get back our simple CSS(C1, C2) code.

From equation(2.21), we have the error-syndromes H1.e1 (H2.e2) for bit-flips (phase-flips)

for the simple CSS(C1, C2); similarly, for the quantum code Qs, notice that errors syn-

dromes are H1.(x + e1) (H2.(z + e2)) for bit-flips (phase-flips). So after measuring the

error syndrome, we just subtract H1.x and H2.z, to get the knowledge of e1 and e2, and

correct it subsequently.

We use these code states in various Quantum Cryptographic protocols.
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Chapter 3

Quantum Key Distribution

3.1 Introduction

Quantum Key distribution (QKD) protocols allows two separated parties (say, Alice and

Bob) to share secure private key over a public channel. The security of the key is guaran-

teed by the laws of quantum mechanics, given that the error rate is below a certain threshold.

Following is the basic idea behind QKD: An eavesdropper (Eve) cannot gain any informa-

tion from the quantum state transmitted by Alice to Bob without causing a disturbance in

their state.

Proposition 3.1 (Information gain implies disturbance) In order to distinguish between 2

non-orthogonal states, any information gain is possible only at the cost of introducing dis-

turbance to the state.

Proof Suppose |ψ1〉 and |ψ2〉 are two non-orthogonal quantum states, and Eve is trying

to gain their information. Without any loss of generality, we can assume that while obtain-

ing the information, Eve unitarily interacts its own system with the states |ψ1〉 and |ψ2〉 by

introducing an ancilla. And assuming it does not disturb the states, we have

|ψ1〉|u〉 → |ψ1〉|v〉

|ψ2〉|u〉 → |ψ2〉|v′〉
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In order to gain any information, Eve would want |v〉 and |v′〉 to be different. Now since

unitary transformation will preserve norm, we can write

〈ψ2|ψ1〉〈u|u〉 = 〈ψ2|ψ1〉〈v|v′〉

〈v|v′〉 = 〈u|u〉

= 1

and hence, v and v′ must be identical. Thus, distinguishing between two non-orthogonal

will certainly disturb atleast one of the two states.

We use this idea of transmitting non-orthogonal states from Alice to Bob. And by checking

the disturbance caused in the transmitted states, an upper bound can be established on the

noise (or eavesdropping) that’s being occurring in the channel, such that, if the noise is be-

low a certain threshold, they perform information reconciliation and privacy amplification

to get a shared secret key; and if it’s above that, they discard the key and start it over again.

The threshold for the maximum amount of tolerable error depend upon the efficacy of our

information reconciliation and privacy amplification protocols.

3.2 QKD Protocols

We discuss here two conventional QKD Protocols of each type, that is, prepare and measure

(BB84 protocol) and entanglement based (The EPR protocol).

3.2.1 BB84 Protocol

This protocol was the first quantum cryptographic protocol. It was developed by Bennett

and Brassard in 1984, as the name suggests. Photon polarization states are used to transmit

the information. The protocol[Nielsen 00] is as follows:

• Alice creates two strings a and b each of 4n-random classical bits. She encodes the

strings as a block of 4n qubits.

ψ =
4n⊗
i=1

|ψaibi〉 (3.1)
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where ai(bi) is the ith bit of a(b) , and each of the qubits is one of these four states:

|ψ00〉 = |0〉 (3.2)

|ψ10〉 = |1〉 (3.3)

|ψ01〉 = |+〉 =
1√
2

(|0〉+ |1〉) (3.4)

|ψ11〉 = |−〉 =
1√
2

(|0〉 − |1〉) (3.5)

(3.6)

• After encoding these bits, she sends the resulting state to Bob.

• Upon receiving the qubits, Bob announces this fact, and measures the qubits ran-

domly in X or Z basis.

• Alice announces b.

• Over the public channel, they check and discard the bits in which Bob measured in

different basis than the one in which Alice prepared. Given n is very large, they are

left with 2n bits.

• Alice randomly selects n bits that serve as check bits. They check their values corre-

sponding to the that. If the error rate is above a certain threshold, then they’ll abort

the protocol, otherwise they’ll continue.

• Alice and Bob together performs information reconciliation and privacy amplification

on their remaining n bits to get an m-bit shared key.

3.2.2 The EPR Protocol

This scheme uses entangled pairs of photons, and are distributed such that one pair of

photon is with Alice, and other pair with Bob. The entangled states should be perfectly

correlated. The protocol is as follows:

• Alice prepares 4n pairs of the following EPR state,

|ψAB〉 =
1√
2

(|01〉 − |10〉) (3.7)

(We use this state because it’s rotationally invariant, and will give perfect correlations

no matter in which basis they are being measured.)
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• Alice sends the second pair of the qubit to Bob over a quantum channel.

• Alice and Bob measures their qubits randomly in Sz {|+〉, |−〉} or Sx {|0〉, |1〉} basis.

• Over the public channel, they do basis reconciliation. Given that n is very large, they

are left with 2n bits.

• Alice randomly selects n bits that will serve as check bits. Then they’ll check their

values corresponding to them. If the error rate is above a certain threshold, then

they’ll abort the protocol, otherwise they’ll continue.

• Alice and Bob together performs information reconciliation and privacy amplification

on their remaining n bits to get an m-bit shared key.

3.3 Privacy and coherent information

We have discussed about the basic QKD protocols and argued that it’s secure. Now let’s

look at the quantitative bounds, in terms of quantitative measures of quantum information,

and it’s connection with obtainable security of Quantum Cryptography.

[Nielsen 00] The lower bound ability to send private information through a quantum chan-

nel is given by quantum coherent information I(ρ, ε) . Let’s consider the most general

case, where Alice prepares states ρAk ; k is a non-negative integer, which indicates differ-

ent possible states that Alice can send with respective probabilities pk. Bob receives the

state ρBk = ε(ρAk ) which may differ from ρAk because of the channel noise that might have

occurred because of an eavesdropper or any other environmental effects. The mutual infor-

mation HAlice:Bob between Alice and Bob is bounded by Holevo’s bound.

HAlice:Bob ≤ χB (3.8)

= S(ρB)−
∑
k

pkS(ρBk ) (3.9)

where ρB =
∑

k pkρ
B
k and χB is the Holevo’s quantity. Similarly, mutual information

between Alice and Eve is bounded above,

HAlice:Eve ≤ χE (3.10)

= S(ρE)−
∑
k

pkS(ρEk ) (3.11)
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Any excess information that Bob has in relative to Eve can be exploited by Alice and Bob

to obtain a shared a secret key through techniques like privacy amplification. Let’s define

the quantity

S = sup[HAlice:Bob −HAlice:Eve] (3.12)

This is the guaranteed privacy of the channel, where the supremum is over all strategies that

Alice and Bob may utilize. Alice and Bob can use a strategy so that HAlice:Bob = χB, and

for any strategy that Eve can use, HAlice:Eve ≤ χE . This implies, S ≥ χB − χE when a

suitable strategy is employed.

Lower bound on S can be obtained by transmitting pure states ρAk = |ψA
k 〉〈ψA

k | . Assuming

all interactions that occur are due to Eve, to give her the greatest possible advantage.

Now since the combined state of Eve and the one that Alice sends, is a pure state, ρBk and

ρBk have same non-zero eigenvalues, and so the entropies, S(ρBk ) = S(ρBk ). We have

S ≥ χB − χE (3.13)

= S(ρB)−
∑
k

pkS(ρBk )− S(ρE) +
∑
k

pkS(ρEk ) (3.14)

= S(ρB)− S(ρE) (3.15)

= I(ρ, ε) (3.16)

This is the lower bound for the guaranteed privacy of channel ε.

3.3.1 The security of QKD

The fact that an eavesdropper causes disturbance in order to gain information, is the basis

of security of QKD. Let’s quantify the security if the final key that Alice and Bob share.

Criterion 3.1 [Nielsen 00] A QKD protocol is secure, if for security parameters s ≥ 0 and

l ≥ 0 that’s being chosen by Alice and Bob; and any eavesdropping strategy that Eve may

employ; either the protocol aborts, or succeeds with probability of atleast 1− O(2−s), and

assure that Eve’s mutual information with the key is less than 2−l. Also, the key string

should be completely random.

It explicitly bounds the knowledge that Eve may have with the final key, given Alice and

Bob employ several strategies to achieve suitable values of s and l.

In the next chapter, we specifically look at the security of BB84 and also prove it.
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Chapter 4

Security proof of BB84 Protocol

In this chapter, we analyze the BB84 protocol under noisy conditions, and look at its secu-

rity proof[Shor 00]. We first discuss the Modified Lo-Chau protocol, where Alice and Bob

share high fidelity EPR states. Given that Alice and Bob agree to use the protocol when the

error rate is below a certain threshold, these high fidelity states inhibit Eve from gaining

more than exponentially small amount of information. Then we see connection between

Modified Lo-Chau Protocol and the CSS-based Protocol. We then modify the CSS-Based

Protocol and get the protocol which is equivalent to, we say, a modified version of BB84

protocol.

4.1 Modified Lo-Chau Protocol

We define the following four Bell states

|ψ±〉 =
1√
2

(|01〉 ± |10〉

|φ±〉 =
1√
2

(|00〉 ± |11〉

Recall from Section 2.3.1, we have, C1 and C2 as [n, k1, d] and [n, k1, d] classical linear

codes, where both can correct upto t[= (d − 1)/2] errors. Also H1 is the parity check

matrix for C1, and H2 is the parity check matrix for C⊥2 . CSS(C1, C2) is an [n, k1 − k2]

quantum code which can correct errors on upto t qubits.
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Protocol 4.1

1. Alice creates 2n EPR pairs in the state |φ+〉⊗2n.

2. Alice creates a random 2n-bit string b, and apply Hadamard transform on second half

on those EPR pair corresponding to which b = 1.

3. Alice randomly selects n of the 2n pairs which would serve as check bits for Eve’s

interference.

4. Alice sends each of the second half of EPR pair to Bob.

5. Upon receiving, Bob announces this fact publicly.

6. Alice announces the bit string b and position of EPR pairs which are to be used as

check bits.

7. Bob performs Hadamard transform on qubits wherever b = 1.

8. Alice and Bob measure their check bits in computational {|0〉, |1〉} basis. If the error

rate turns out to be above a certain threshold (t), they abort the protocol, otherwise

they continue.

9. Alice and Bob perform entanglement purification using CSS codes, to correct the

states nearest to the codeword for CSS(C1, C2). They use ancillary qubits to perform

syndrome measurement corresponding to H1, and similarly for H2. Suppose Alice

gets bit and phase flip syndromes x and z , and because of noise in the channel, Bob

gets different bit and phase syndromes, say, x′ and z′. Assume Alice’s syndrome

define the CSS Code Qs where s ≡ (x, z). Alice and Bob publicly share the results.

10. Bob computes the syndromes he got with respect to Qs and correspondingly trans-

forms his state so to obtain m = k1 − k2 almost perfect EPR pairs.

11. Alice and Bob measure their respective halves of EPR pairs in computational basis

to obtain an m-bit shared secret key.

In step 8, since they only use the protocol if the error rate is below t and from Section 2.3.1,

error-correction can be preformed to overcome the effects of noise and get back the original

encoded state whenever error rate is less than t; we say, the m-bit key shared between Alice
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and Bob has very high fidelity.

Now we show that sharing a high fidelity key also implies its security.

Lemma 4.1 (High fidelity implies low entropy) [Nielsen 00] If F 2 =⊗m 〈φ|ρ|φ〉⊗m ≥

1 − 2−s, where s is a parameter and F is the fidelity between states ρ and |φ〉⊗m, then

S(ρ) < (2m+ s+ 1/ln2)2−s.

Proof Since F 2 =m⊗ 〈φ|ρ|φ〉⊗m ≥ 1 − 2−s, the largest eigenvalue of ρ is greater than

1− 2−s. Also

S(ρ) = −tr(ρlog2(ρ)) (4.1)

Suppose a diagonal matrix ρmax which has maximum entropy, has diagonal entries {1 −

2−s, 2−s/(22m − 1), 2−s/(22m − 1), ......., 2−s/(22m − 1)}, we have

tr(ρmax) = 1− 2−s + (22m − 1)
2−s

22m − 1

= 1

(4.2)

Now S(ρ) ≤ S(ρmax),

S(ρ) ≤ −(1− 2−s) log2(1− 2−s)− (2−s) log2 2−s + 2−s log2(2
2m − 1) (4.3)

≤ −(1− 2−s)(−2−s) + s2−s + 2−s log2(2
2m − 1) [Using log(1 + x) ≤ x] (4.4)

≤ 2−s(1 + s+ log2(2
2m − 1))− 2−2s (4.5)

≤ 2−s(2m+ s+ 1) +O(2−2s) (4.6)

(4.7)

By Holevo’s Bound, we know that the accessible information to Eve is upper bounded by

S(ρ). Hence, the mutual information that Eve has with key is exponentially small, in the

case where Alice and Bob agree to use the protocol (when error rate is less than t).

4.2 CSS based Protocol

Now we’ll see how the Modified Lo-Chau protocol can be made equivalent to quantum

error correction protocol. We see that Alice can also measure her check bits and then send

the encoded state to Bob through the channel. Also note that Alice could have performed

syndrome measurements before sending the states.
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To measure the check bits before sending the pair to Bob is equivalent to the fact that Alice

choosing randomly from states |0〉 and |1〉. Also, measuring the error syndrome first is

equivalent to sending m halves of EPR pairs, encoded in CSS Code Qs, where s ≡ (x, y),

and H1.x and H2.z are bit and phase syndromes respectively.

Now in Step 11 of protocol 4.1, Alice and Bob measure their halves of EPR pairs. Since

it doesn’t matter in which order their halves are measured, Alice can instead measure her

halves before sending the EPR pairs, which is like, Alice choosing a random m bit key and

encoding it usingQs. Thus we have following protocol equivalent to the Modified Lo-Chau

protocol.

Protocol 4.2 [Nielsen 00]

1. Alice creates a random m-bit key k, a random check bit string of length n and a

random 2n-bit string b.

2. Alice also creates 2 random n-bit strings x and z to generate s ≡ (x, z).

3. Alice encodes the key |k〉 using CSS Code Qs.

4. Alice randomly chooses n positions (out of 2n positions) and puts the code bits in

these positions and check bits in remaining positions.

5. Alice applies Hadamard transform to the qubits corresponding to which b = 1.

6. Alice send the resulting state to Bob. Upon receiving, Bob announces this fact.

7. Alice announces the positions of check bits, b and s.

8. Bob performs Hadamard transform wherever b is 1.

9. Alice and Bob perform measurement on check bits and if the error rate is above a

particular threshold (t), then they abort the protocol, otherwise they continue.

10. Bob decodes the remaining n qubits using Qs.

11. Bob measures the remaining qubits in computational basis, to get an m-bit shared

secret key.

So as long as the error rate is below t, Alice and Bob can share very high fidelity states,

which results in the security of the shared key.
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4.3 Modified BB84 Protocol

We now see how the CSS based Protocol can be converted into a modified version of BB84

protocol. Note that Bob does not care about the phase values, but only about the bit values.

So performing phase correction is not required, and as such, Alice doesn’t need to send z.

We can say, Bob would receive a mixed state averaged over all z. From equation 2.29, we

have

|vk + C2〉 ≡
1√
|C2|

∑
y∈C2

(−1)y.z|vk ⊕ y ⊕ x〉 (4.8)

where vk ∈ C1, where m-bit key k is indexed by n-bit key vk. Now the state that Bob

receives can be written as

1

2n|C2|
∑
z

∑
y1,y2∈C2

(−1)(y1+y2).z|vk ⊕ y1 ⊕ x〉〈vk ⊕ y2 ⊕ x| (4.9)

On solving, the expression becomes

1

|C2|
∑
z

∑
y∈C2

(−1)(y.z|vk ⊕ y1 ⊕ x〉〈vk ⊕ y2 ⊕ x| (4.10)

The above state is equivalent to a mixture of states |vk ⊕ y ⊕ x〉 with y being chosen

randomly from C2. Alice tells Bob x (the error-correction information) and sends the state

|vk ⊕ y ⊕ x〉 through a quantum channel. Given the value of n is very large, these are just

random variables in F n
2 with vk +y ∈ C1. Bob would receive the state vk +y+x+e, where

e is bit flip error. Bob subtracts x from the value he gets and corrects e from H1.e and gets

vk + y ∈ C1. Alice has the knowledge of vk, but not of y. To share the same key, Alice

and Bob calculate vk + y + C2, which is the coset of C2 in C1, and both will get the same

coset. This is equivalent to getting an m-bit string, using which we can have 2m, which is

also equal to the number of cosets of C2 in C1.

Now let c = vk + y+ x, d = vk + x ∈ C1, so that, c+ d = x. Alice sends |d〉 to Bob, with

x = c+ d being the error correction information. Bob obtains d+ e and subtracts c+ d to

correct the error and get d ∈ C1. The final key is a coset of c+ C2.

Protocol 4.3 [Nielsen 00]

1. Alice creates (4 + δ) random bits.

2. Alice also creates a (4 + δ)-bit string b. For which, if b = 0, she creates a state

randomly in {|0〉, |1〉} basis, otherwise in {|+〉, |−〉} basis.
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3. Alice sends the resulting state to Bob. Upon receiving, Bob announces this fact.

4. Bob measures the qubits randomly in {|0〉, |1〉} or {|+〉, |−〉} basis.

5. Alice announces b.

6. Bob keeps only those results where he measured in the same basis in which Bob

prepared. With high probability, they’ll be left with 2n bits, and if not, they’ll abort

the protocol.

7. Alice randomly selects the positions for check-bits and announces it. They publicly

compares their values, and if error threshold is more than t, they abort the protocol,

otherwise they continue.

8. Alice announces c + d, where c is the string of remaining non-check bits, and d is a

random codeword in C1.

9. Bob subtracts c + d from d + e (code qubits), and subsequently corrects c + e to get

a codeword in C1.

10. Alice and Bob computes the coset of c+ C2 to get a shared secret key k.

We have systematically proven the security of BB84 protocol.
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Chapter 5

Quantum Private Comparison

5.1 Introduction

Secure multi-party computation [Yao 82] allows multiple parties to compute a function,

without disclosing their private information to any other party. Let’s look at a particu-

lar case, where two parties want to compare their private information without sharing it.

Quantum Private Comparison(QPC) allows us to do that.

Suppose Alice and Bob have private information MA and MB respectively. In QPC, we

compute the following function f(MA,MB) where

f(MA,MB) =

0, if MA = MB

1, if MA 6= MB

(5.1)

Also, Alice and Bob don’t want to share their private information with each other. Lo

[Lo 97] pointed out that this is possible only if this process is facilitated through a third

party (Charlie). Now the problem is that Alice and Bob don’t want to share their infor-

mation with anyone, including Charlie. For our purpose, we assume that Charlies is semi-

honest, such that she may try to gain the information about Alice and Bob’s information,

but cannot be corrupted by the adversary (i.e. Alice or Bob).

In this chapter, we first discuss QPC protocols under noiseless conditions, then we look

at a CSS-based QPC protocol which works under noisy conditions. Then we propose a

protocol which uses three-party entangled state and is robust against noise (upto a certain

threshold). The high fidelity of these states, that’s being achieved by encoding our states
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with CSS codes; also guarantees the security of the QPC protocol.

5.2 QPC Protocols under noiseless conditions

5.2.1 EPR based QPC Protocol

Suppose Alice and Bob are connected by a quantum channel, which is vulnerable to eaves-

dropping, as well as a public classical channel. Alice and Bob have private information MA

and MB each of length The QPC protocol using EPR pairs, is as follows:

Protocol 5.1 [Tseng 12]

1. Charlie creates a random n bit string CT . For each bit, he prepares a quantum state. If

the bit value is 0, he prepares anyone of the states |φ±〉. If bit value is 1, he prepares

anyone of the states |ψ±〉. First half of the sequence is labelled by TA, and the second

half by TB.

2. To check error rate, Charlie prepares n qubit decoy states DA and DB randomly in

the following states: {|0〉, |1〉, |+〉, |−〉}. He randomly arranges qubits corresponding

DA andDB in between of TA and TB respectively, to form sequences SA and SB, and

sends them to Alice and Bob respectively.

3. Alice and Bob receives the qubits and announces this fact. Charlie, in turn announces

the positions of DA and DB, and the basis [{|0〉|1〉} or {|+〉, |−〉}] in which they’re

prepared.

4. Alice and Bob measure their decoy states in appropriate basis and compare it publicly.

If the error rate is above an acceptable rate, they abort the protocol, otherwise they

continue.

5. Alice and Bob measures their remaining qubits in {|0〉, |1〉} basis, and get the se-

quences RA and RB respectively. In the absence of noise, these sequences are equal

to TA and TB. And hence, RA ⊕RB = CT .

6. Alice and Bob calculate CA = RA ⊕MA and CB = RB ⊕MB respectively.

7. They cooperate to calculate C = CA ⊕ CB, and send the resultant string to Charlie.
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8. Charlies calculates RC = C ⊕ CT . The output will be non-zero iff MA 6= MB,

otherwise it’s equal to 0. Charlie announces the output publicly.

The function f(MA,MB) has successfully been computed, given the quantum channel is

noiseless.

5.2.2 QPC Protocol with W states

Here, a QPC Protocol which uses W-states[Zhang 14] is being presented. W-states are

much more robust against noise. Also, the techniques involving preparation of W-states are

much more mature, as compared to GHZ states. Following four W states are used in the

protocol:

|w1〉 =
1√
3

(|100〉+ |010〉+ |001〉)

|w2〉 =
1√
3

(|110〉+ |000〉+ |110〉)

|w3〉 =
1√
3

(|000〉 − |110〉+ |110〉)

|w4〉 =
1√
3

(|100〉 − |111〉 − |010〉)

(5.2)

An ensemble of these four states is used with equal probability, that is to be transmitted

through a quantum channel. Alice and Bob has private information MA and MB. The

protocol is as follows:

Protocol 5.2

1. Charlie prepares n W states, which are chosen randomly from states mentioned in

Equation 5.2. Here, if ith state is |w1〉 or |w4〉, then ri = 0, i ∈ [0, n], otherwise

ri = 1. Upon measurement, the first particle would form the sequence TA, second

one forms TB, and the third one forms TC .

2. Charlie introduces 2 sequences of decoy qubits DA and DB randomly chosen from

states: {|0〉, |1〉, |+〉, |−〉}, and randomly intersperse between TA and TB to form the

sequences SA (sends to Alice), SB (sends to Bob) and SC (keeps with himself).

3. Alice and Bob receives the qubits and announces this fact. Charlie, in turn announces

the positions of decoy qubits and the basis in they were prepared.
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4. Alice and Bob measure the decoy qubits. If the error rate is above an acceptable rate,

they abort the protocol, otherwise they continue.

5. Alice, Bob and Charlie measure their code qubits in computational basis, and get the

sequence RA, RB and RC respectively. In the absence of noise, these sequences are

equal to TA, TB respectively, and RC is anyway equal to TC .

6. Alice and Bob calculate CA = RA ⊕MA and CB = RB ⊕MB respectively. They

cooperate to calculate C = CA ⊕ CB. They send the resulting string to Charlie.

7. Charlies computes R = CA ⊕ CB ⊕ CC ⊕ r. The output will be non-zero iff MA 6=

MB, otherwise it’s equal to 0. Charlie announces the output publicly.

Calculation

Following are possible outcomes, each of which results in TA ⊕ TB ⊕ TC ⊕ r = 0.

ri TAi
TBi

TCi

0 0 1 1

0 0 0 0

0 1 1 0

0 1 0 1

0 1 1 0

0 0 0 0

1 0 0 1

1 0 1 0

1 0 0 1

1 1 1 1

1 0 1 0

1 1 0 0

R = CA ⊕ CB ⊕RC ⊕ r

R = (RA ⊕MA)⊕ (RB ⊕MB)⊕RC ⊕ r

In the absence of noise,

R = (TA ⊕ TB ⊕ TC ⊕ r)⊕MA ⊕MB
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From above table, we have

R = MA ⊕MB

R = f(MA,MB) (5.3)

5.3 QPC Protocols under noisy conditions

In the last section, we have discussed protocols which works perfectly fine when the quan-

tum channel is noiseless. But in reality, quantum channels are prone to noise in many ways.

So, we need to design our protocols such that effects of noise can be overcome. One way is

to encode the quantum states with error-correcting codes to preserve the encoded informa-

tion. Here, we use CSS Codes to encode our states and their subsequent error correction.

First we look at the EPR-based QPC protocol[Siddhu 15] which uses CSS Codes to encode

the information.(Recall CSS based Protocol 4.2). Then we propose a three-party entangled

state QPC Protocol which also uses CSS Codes.

5.3.1 EPR-based QPC protocol using CSS Codes

1. Charlie creates two random n-bit strings RA and RB and uses CSS-based Protocol

(4.2) separately for both and send it to Alice and Bob respectively.

2. Charlie computes r = RA ⊕RB.

3. Alice and Bob calculate CA = RA ⊕MA and CB = RB ⊕MB respectively.

4. They cooperate to calculate C = CA + CB, and send the resultant string to Charlie.

5. Charlies calculates RC = C ⊕ r. The output will be non-zero iff MA 6= MB, other-

wise it’s equal to 0. Charlie announces the output publicly.

The above protocol works as long as error rate is less than a particular threshold (t).
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5.3.2 Three-party entangled state QPC Protocol using CSS Codes

Figure 5.1: The schematic diagram of the protocol[Siddhu 15]

The protocol is as follows:

Protocol 5.4

1. Charlie creates a randomm-bit string r, two random 2n-bit strings bA and bB and two

another n-bit strings c and d.

2. Then he prepares the state Ψ as shown in the circuit diagram using

3. Corresponding to each bit ri, there is a codeword vri (of length n) which belongs to

the coset of C2 in C1 [For example, if ri = 0, vri = 0000....0(n times), similarly for

ri = 1]. At positions where ri = 0(1), Charlie switches the button to left (right).

(Switch acts on all qubits).

4. Charlie randomly chooses n positions (out of 2n) and puts check bits c(d) in the 1st

block (2nd block) in these positions, and in the remaining positions, he puts code bits.
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5. Charlie performs Hadamard transform on qubits where bA = 1 (bB = 1) on the 1st

block (2nd block) and sends it to Alice (Bob).

Ψ =
2n∑
j=0

|j〉|j〉|j〉 =
∑
vk,x,z

|χvk,x,z〉|χvk,x,z〉|χvk,x,z〉 (5.4)

6. Charlie announces bA and bB and the positions of check bits. Alice (Bob) will per-

form Hadamard transform where bA = 1 (bB = 1).

7. Alice (Bob) and Charlie will perform measurement on check bits in the computational

basis, and if more than t error occurs, they abort the protocol, otherwise they continue.
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8. All 3 perform syndrome measurement on their code bits corresponding to H1 and

H2. All 3 of them will get random values for x, z (which would be same for all

3 of them). Since Charlie did not send her qubit through the quantum channel and

kept with himself, we can assume that no bit-flip and phase-flip errors would have

occurred to his qubits. Her syndromes will be H.x and H.z, whereas Alice (Bob)

will get syndrome H1.(x + eA1 ) and H2.(z + eA2 ) (H1.(x + eB1 ) and H2.(z + eB2 )).

Charlie will announce publicly the sequences x and z.

9. All 3 of them decode their qubits from CSSx,z(C1, C2).

10. Alice(Bob)(Charlie) measure their resultant states in computational basis and get the

sequence vkA(vkB)(vkC ), and hence kA(kB)(kC) (which we refer as RA(RB)(RC), to

follow similar notation). Their corresponding values will be as follows:

r RA RB RC

0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1

11. Alice (Bob) calculates CA = MA ⊕RA (CB = MB ⊕RB).

12. Alice and Bob cooperate to calculate C = CA ⊕ CB and send it to Charlie.

13. Charlie computes R = C ⊕RC . The output will be 0 if MA = MB, otherwise it will

be non-zero. Charlie will announce whether their information is equal or not.

Calculation

R = C ⊕RC

= CA ⊕ CB ⊕RC

= MA ⊕RA ⊕MB ⊕RB ⊕RC

= MA ⊕MB

= f(MA,MB)
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Security Analysis

If the protocol is secure against any insider’s attacks, it will definitely be secure against any

outsider’s attacks. So let’s analyze the security for only the former case.

Alice (Bob) can either gain information by attacking the quantum channel or directly trying

to know MA or MB. Now since Alice(Bob) has no information about RB (RA), she(he)

cannot know MA (MB) without attacking the channel. Similarly, Charlie has no informa-

tion about RA, RB, CA and CB, so the situation is similar for him.

Now, performing error-correction using CSS Codes has enabled the party to achieve high

fidelity of shared qubits, given the error rate is below a particular threshold (and anyway

they abort the protocol whenever the error rate is greater than t). Now recall from 4.1, that

high fidelity of shared qubits establishes an upper bound on the mutual information than

any eavesdropper might have with the shared key. Thus, we can say that the qubits being

shared between Alice (Bob) and Charlie are securely transmitted. Hence, we conclude that

our QPC Protocol is unconditionally secure.

Conclusion

We proposed a CSS-based three-party entangled state QPC protocol which is robust under

noise, as long as the noise is under a particular threshold rate.

While performing QPC under noise, we performed error-correction using CSS Codes to

achieve high fidelity shared states, inhibiting the eavesdropper from gaining more than ex-

ponentially small amount of information, thus allowing us to render unconditional security

of QPC.

In future, we may explore Quantum Multi-Party Comparison, which has many applications

such as private auctions, secret ballot elections etc. We can use the same technique to

encode the information using CSS Codes to ensure its security.
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