Comparative structural studies of peptide transporters and their roles in physiological processes.

Shubham Bhojane

A dissertation submitted for the partial fulfilment of BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali April 2019

Certificate of Examination

This to certify that the dissertation titled **"Comparative structural studies of peptide transporters and their roles in physiological processes"** submitted by **Mr. Shubham Bhojane** (Reg. No. MS14020) for the partial fulfilment of BS-MS dual degree programme of the Institute, has been examined by the thesis committee duly appointed by the Institute. The committee finds the work done by the candidate satisfactory and recommends that the report be accepted.

Dr. Debrina Jana

Dr. Sanchita Sengupta

Dr. Monika Sharma

(Supervisor)

Dated: April --, 2019

Declaration

The work presented in the dissertation has been carried by me under the guidance of Dr.Monika Sharma at the Indian Institute of Science Education and Research Mohali.

This work has not been submitted in part or in full for a degree, or diploma, or a fellowship to any other University or Institute. Whenever contribution of others are involved, every effort is made to indicate this clearly, with due acknowledgement of collaborative research and discussions. This thesis is a bonafide record of original work done by me and all sources listed within have been detailed in bibliography.

> Shubham Bhojane (Candidate)

Dated: April --, 2019

In my capacity as the supervisor of the candidate's project work, I certify that the above statements by the candidate are true to the best of my knowledge

Dr. Monika Sharma

(Supervisor)

Acknowledgement

I would like to take the opportunity to thank to all those who have helped and supported me directly or indirectly throughout my BS-MS time. Without them this thesis would not have been possible.

First and foremost I would like to express my deepest sense of gratitude to Dr. Monika Sharma ma'am for allowing me to complete my final year project under her guidance. It has been such a pleasure to work with her. She always took time for me and gave me invaluable advises.

I also wants to thank my all friends from MS14 batch with particular mention of Ajay, Apoorv, Indrajeet, Neetish, Ravi, Rohit, Suresh, Tinku, Varun, Vishal, Yogendra, for their moral and emotional support during my good and bad time.

And last but not least, I am most thankful to my parents Mayadevi Dnyanobarao bhojane, my sister Dipali & brother Sagar who gave me love, support and strength to get here.

List of figures

- 1. Diagram depicting different ways of transportation used by of xenobiotic molecules.
- 2. Diagram depicting peptide transporter mediated drug delivery.
- 3. Figure 3: structure of U9UKY5_RHIID Uncharacterized protein OS=Rhizophagus irregularis modelled using Phyre2.
- 4. Figure 4: structure of Q9SPU1_ORYSA Nitrate transporter OS= Oryza sativa (Rice) modelled using Phyre2.
- 5. Figure 5: P46059|S15A1_HUMAN Solute carrier family 15 member (PepT1) protein structure modelled using Phyre2.
- Figure 6: Q16348|S15A2_HUMAN Solute carrier family 15 member 2 (PepT2) protein 3D structure modelled using Phyre2.

List of Tables

List of POT family members having 8 transmembrane α-helical spanners.
 List of POT family members having 9 transmembrane α-helical spanners.
 List of POT family members having 10 transmembrane α-helical spanners.
 List of POT family members having 11 transmembrane α-helical spanners.
 List of POT family members having 12 transmembrane α-helical spanners.
 List of POT family members having 13 transmembrane α-helical spanners.
 List of POT family members having 14 transmembrane α-helical spanners.

Abstract

The POT family of membrane transporter proteins shows remarkable feature of diverse substrate promiscuity. This promiscuity has led to development of peptide based pro-drugs that us PepT1 and PepT2, mammalian homologues, to improve oral drug delivery¹. Here I tried to classify 46 POT family transporters on the basis of transmembrane α -helical spanners and to establish evolutionary relationship between POT family members and by sequence alignment technique looked into residues conserved in POT family members.

Contents

List of figures	5
List of Tables	6
Abstract	7
1. Introduction	9
1.1 Cell membrane its function and composition	
1.2 Membrane transport	
2. Peptide transporter proteins	13
3. Methods used	15
4. Result	18
5. References	26
6. Appendices	27

Tables showing sequence alignment results

Chapter 1: Introduction

1.1 Cell membrane its function and composition

Both prokaryotic and eukaryotic cells are enclosed in a semipermeable membrane also known as the cell membrane or the plasma membrane. cell membrane has four important functions function number one is, it creates a protective barrier between the outside and the inside environment of the cell it basically prevents toxins and other pathogenic agents from entering the cell and it prevents molecules from spontaneously exiting the cell in the first place, now function number two is transport, that is it only allows the Selective movement of certain things outside or into that cell so this is a semipermeable membrane and what that means is the cell actually picks and chooses what to allow into the cell and what to not allow into the cell, function number three is signal transduction what that means is certain molecules for instance hormones can actually interact with the outside portion of the cell membrane and that will create many different types of signals and processes inside the cell, function number four energy storage. Therefore cell membrane is an extremely important type of structural component of the cell. Plasma membrane found in prokaryotes and eukaryotes is a phospholipid bilayer means it has two layers of phospholipid. A phospholipid is a molecule that consists of a polar phosphate group attached to a nonpolar fatty acid tail via a group known as the glycerol group. Inside a cell membrane, we also have proteins which give the cell membrane its functionality. They are embedded in the cell membrane. These proteins are of two types' first integral proteins and second peripheral proteins. Integral proteins extend throughout the entire bilayer membrane and their usual function because they extend through the entire membrane is to transport things from the inner portion to the outer portion of our cell and vice versa from the outside to inside of the cell. Peripheral proteins bind via electric forces to either the integral proteins themselves or they bind to phospholipid bilayer. Because these

proteins do not actually span the entire bilayer that means they usually do not act as transport proteins, so they function in cell recognition, cell signalling or cell communication.

In reality, integral proteins embedded in phospholipid bilayer gives the cell membrane its semipermeable character. Which basically means certain materials will pass across the membrane while others will be blocked. Two factors influence the ease with which any external molecule or atom passes across the cell membrane and these factors include the size of a molecule as well as the polarity of that molecule. Size aspect is a bit intuitive so the larger the molecule less likely it will pass through that cell membrane. Since cell membrane is a phospholipid bilayer that means there are two layers of phospholipids and phospholipids themselves are predominantly fatty acids so that means predominant portion of the cell membrane is nonpolar inside, in fact, the entire intermediate space between these heads is basically nonpolar and so that means nonpolar molecules no matter how large will be able to move across our cell membrane but even a very small atom that has a full positive or full negative charge such as the sodium atom will not be able to move across the membrane, because it is very polar and contains a full charge.

1.2 Membrane transport

Membrane transport is about how exactly molecules make their way across the cell membrane from one side to the other side of that cell membrane. In doing so molecules use different transport mechanisms or methods and these methods that they use to cross the membrane really depends on the properties of those molecules. To begin let's focus on nonpolar and small molecules. cell membrane consists predominantly of a hydrophobic region so the entire core of the membrane is hydrophobic nonpolar because of the presence of hydrocarbon tails², part of the phospholipid molecules now because a non-polar molecule can easily dissolve in a hydrophobic nonpolar solution what that means is if a small non polar molecule wants to make its way across the cell membrane all it has to do is dissolve inside that cell membrane and this process by which a small nonpolar molecule will move down its concentration gradient from a high to low potential through the core of that membrane by dissolving in that cell membrane this is known as simple diffusion. For example, way cell membrane of the cells found inside our lungs facilitates the movement of O₂ and CO₂ molecules easily. Inside the

cells of our lungs we know we have a high concentration of CO_2 inside and a low concentration on the outside conversely we have a low concentration of O_2 on the inside but a high concentration of O_2 on the outside. Both carbon dioxide and oxygen are small nonpolar molecules and therefore these two molecules will have no problem making their way and dissolving into the hydrophobic core of that membrane. These oxygen molecules will naturally move spontaneously from a high potential concentration to a low potential concentration from the outside to the inside. they will pass and dissolve inside and through membrane likewise these carbon dioxide's being nonpolar will also dissolve and move through that membrane via simple diffusion but they will move from the inside to the outside down their concentration gradient.

Now, what about if the molecule is polar? What if it has some type of charge? For instance, let's say we're looking at ions like sodium ions or chloride ions and molecules that don't have a charge yet they're very polar for instance sugar molecules. Sugar molecules are large enough and polar enough to not be able to pass across the membrane via simple diffusion. In this case, if a molecule is polar and large for example sugars and sodium they will not be able to simply dissolve inside the hydrophobic core of cell membrane³ and in this particular case they have to use another method and what they use is integral proteins that exist inside the membrane of our cells membrane. These are also known as transport membrane proteins because we find these proteins in the plasma membrane and their function is to transport such polar or charged molecules across the two sides of the membrane.

Now there are two types of transport membrane proteins, membrane channels, and membrane pumps. Membrane channels essentially create a passageway in the plasma membrane which basically lack or doesn't contain the hydrophobic core. In other words, membrane channel removes that hydrophobic core and facilitate the spontaneous diffusion of ions in some cases molecules, down their electrochemical gradient. This type of transport is known as facilitated diffusion. And since membrane channels don't use any energy molecules for instance ATP molecules to carry out the process this type of transport is known as passive transport. Membrane channels and membrane pumps both transport membrane proteins basically move large and polar molecules but the difference is that channels do not use energy and they always move molecules down their electrochemical gradient from a high to low potential. But membrane pumps actually use energy to move molecules against their electrochemical gradient from a low potential to a high potential. Therefore such type of molecular transport carried out by protein pumps using energy stored in the chemical bonds of ATP molecules is known as active transport.

Chapter 2: Peptide transporter proteins

Peptide transport may be defined as the process by which peptides of two to eight amino acid residues are transported across the cell membrane into a cell. Transport of peptides into cells is a well-documented process which is carried out by specific, energy dependent transporters found in vide variety of organisms⁴ as diverse as bacteria and human including fungi, plants and mammals. Peptide transport is an important route for the cellular acquisition of nitrogen and amino acids⁵. Thus obtained nitrogen and amino acids are subsequently used by cell for metabolism and growth. Therefore cellular uptake of peptides is an important physiological process mediated by the PTR family of proton-coupled peptide transporters⁶. PTR family proteins are members of the major facilitator superfamily (MFS) of secondary active transporters⁷. Proteins of proton-dependent oligopeptide transporter (POT) family also known as peptide transport family (PTR) are of about 450-600 amino acyl residues in length with the eukaryotic proteins in general being longer than the prokaryotic bacterial proteins. They exhibit 12 to 14 established or putative transmembrane α -helical spanners. Remarkable characteristic of POT family protein is their diverse substrate promiscuity meaning POT family proteins recognise and transport diverse library of peptides. This promiscuity has led to development of peptide based pro-drug that use PepT1 and PepT2, the mammalian homologues, to improve oral drug delivery⁸. Therefore interest in peptide transporters of mammalian members increased recently after the discovery that both PepT1 and PepT2 are able to recognise and transport a large number of orally administered drug molecules⁹, including beta-lactam antibiotics, antiviral and anticancer drugs. Major challenges in drug delivery system are poor intestinal absorption & distribution of drug molecule, missing desired target eventual side effect or breakdown of drug & excretion, poor bioavailability. A successful strategy to tackle this problem has been to develop prodrug molecules, which could target the intestinal peptide transporter, mammalian members of POT family transporters for active transport into the body¹⁰. Prodrugs are bioreversible derivatives of drug molecules that undergo an enzymatic or chemical transformation in vivo to release the active parent drug¹¹. This ability

Of PepT1 and PepT2 to recognise and transport peptide based prodrug molecules resulted into increased attention of mammalian homologues by pharmaceutical industry.

Chapter 3: Methods used

3.1 Protein sequence alignment: aligned protein sequences of 46 peptide transporter family member proteins using Uniprot database.

In bioinformatics sequence alignment is considered as basic fundamental procedure to compare given sequence with other sequence available in biological database either it can be RNA, DNA or Protein. By sequence alignment we can understand about sequence homology whether the sequence is ortholog or paralog? Or whether the given sequence has very good sequence identity with other sequence in database? Or sequence conservation whether the active site residues are conserved? Or motifs are conserved? Such information we get by sequence alignment. Protein sequence alignment gives more information than DNA sequence alignment because protein sequence contain 20 different characters like 20 Amino Acid having each different chemical properties therefore protein sequence alignment is more complicated as compare to DNA sequence alignment¹², where only 4 characters A,T,G,C are present. Which can be easily analysed but information we get by DNA sequence alignment is may not be reliable as compare to that of protein sequence alignment.

Why we need sequence alignment? By sequence alignment we can identify changes or differences at the individual base level or amino acid level between two or more sequences. Sequence alignment helps us to organise and analyse sequence data to check the sequence homology and identity between sequences¹³. Sequence alignment help us to phylogenetic trees from homologues sites. It helps use to estimate and establish evolutionary relationship. And we can identify and highlight the conserved and variable sites and regions. It also used to test and hypotheses about protein fold, motifs, domains and their three dimensional structures.

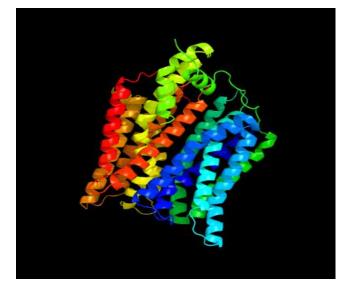
Uniprot which stands for universal protein resource is an online freely accessible database. It aims to provide various types of information about proteins for example protein sequence including isoforms and variants if present. It also provides detailed information on protein function, interaction, pathways, involvement in diseases and other such biological areas of interest. It also provides stable identifiers and accessions. Uniprot provides "Align" tool for multiple sequence alignment. End result of sequence alignment depends upon algorithms used for alignment. Uniprot website can be accessed at the URL <u>http://www.uniprot.org/</u>.

3.2 Protein structure prediction:

Used web based tool Phyre2 to predict structure of PepT1 and PepT2 proteins. This server can be accessed at the URL <u>http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index</u>.

Phyre2 or a Protein Homology/Analogy Recognition Engine is an online web service to predict three dimensional structures of proteins¹⁴. At present we have around fifteen thousand structures of proteins in protein data bank, on the other hand the available information regarding protein sequences in Uniport database is about eighty nine million sequences. If we compare the availability of amino acid sequences and structures available, sequences are about six thousand fold than the availability of the structures. The protein structures is helpful in understanding function, identifying active sites, antigenic sites and different binding sites with other complexes. Therefore it is very important to have the structures of proteins than sequence information. Due to the availability of more number of sequences and less number of structures it is important to predict the structures of proteins from just amino acid sequence. Deciphering the native conformation of protein from amino acid sequence is called a protein folding problem. From the unfolded state, protein finally folds into the stable three dimensional structure. So how to obtain 3D structure from the amino acid sequence. There are various methods to predict the 3D structures just from amino acid sequence. One of the most popular methods is homology modelling. Which is also used by Phyre2 an online 3D structure predicting web service. Homology modelling is based on the principle that if two sequences share high sequence identity or sequence similarity then the assumption is that the structures are also similar.

3.3 Phylogenetic tree: used Uniprot to establish evolutionary relationship between 46 POT family members.


All species are related to one another. Which could be easily observed by looking at the species in itself. There are similarities which are progressing in a hierarchical way from a unicellular organism to multicellular organisms. When we observe, we could see there is a hierarchical progress in several levels which eventually ends up with evolved organisms like humans or other animals. Having explained in a qualitative way it is also possible to explain this relationship between the species in quantitative manner. A tree structure representing this relationship in a quantitative manner is called as a phylogenetic tree. In earlier studies morphological characteristics were recorded from existing or fossilized species which were used to obtain this quantitative relationship and was represented by means of phylogenetic trees. Recently revolution in sequencing technologies and development of efficient bioinformatics algorithms has allowed us to use DNA or protein sequences for phylogenetic analysis. So earlier morphological traits were used for building phylogenetic trees but with the various bioinformatics methods and sequencing methodologies that we have today we can use molecular information and describe similarities and dissimilarities between sequences in terms of phylogeny. With the set of DNA or protein sequences from different species we are able to infer the phylogenetic relationship among the species. This follows an underlying assumption that the sequence considered has evolved from a common ancestral gene such set of sequences which comes out from a common ancestor gene are known as orthologous sequences¹⁵. It is also possible that two sequences considered are similar because of some gene duplication events and it could be present in the same species such sequences are called as paralog they might even have the same function but they don't have a common ancestor. Therefore phylogenetic informations are usually derived from an ortholog a set of gene.

Chapter 4: Result

1] Classification of POT family proteins based on number of transmembrane α -helical spanners

No of			
transmembrane α-	Protein name	Organism	Gene
helical spanners			
8	Uncharacterized protein	Rhizophagus irregularis	GLOINDRAFT_34 3346
		•	Table 1

Table 1.

Figure	3:	structure	of
U9UKY5_	RHIID	Uncharacteriz	zed
protein	(OS=Rhizophag	gus
irregularis	modelle	ed using Phyre	2.

No	of			
transmembrane	α-	Protein name	Organism	Gene
helical spanners				
9		Nitrate transporter	Oryza sativa (Rice)	NRT1

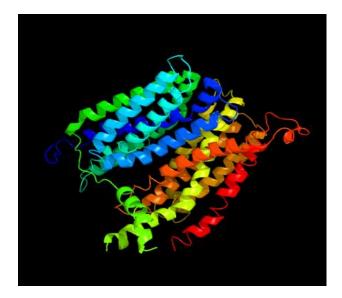


Figure4:structureofQ9SPU1_ORYSANitratetransporterOS=Oryzasativa(Rice)modelled using Phyre2.

No	of			
transmen	nbr			
ane	α-	Protein name	Organism	Gene
helical				
spanners				
		Probable peptide transporter ptr2	Schizosaccharomyces pombe	ptr2
			(Fungus)	
		Protein NRT1/ PTR FAMILY 8.1	Arabidopsis thaliana (Mouse-ear	NPF8.1
			cress)	
10		Protein NRT1/ PTR FAMILY 8.2	Arabidopsis thaliana (Mouse-ear	NPF8.2
			cress)	
		Protein NRT1/ PTR FAMILY 1.2	Arabidopsis thaliana (Mouse-ear	NPF1.2
			cress)	
		Peptide transporter PTR3-A	Aegilops tauschii (Tausch's	F775_27357
			goatgrass)	
		Peptide transporter family 1	Drosophila melanogaster (Fruit fly)	yin
L			Tab	1. 2

No of			
transmembran			
e α-helical	Protein name	Organism	Gene
spanners			
	Peptide transporter PTR2	Saccharomyces cerevisiae (Baker's yeast)	PTR2
	Putative peptide transporter	Trichoderma harzianum (Fungus)	ptr2
	Ptr22p	Candida albicans (Yeast)	PTR22
	Protein NRT1/ PTR FAMILY	Arabidopsis thaliana (Mouse-ear cress)	NPF8.3
	8.3		
	RCH2 protein	Brassica napus (Rape)	N/A
	Protein NRT1/ PTR FAMILY	Arabidopsis thaliana (Mouse-ear cress)	NPF5.2
11	5.2		
	Solute carrier family 15 member	Homo sapiens (Human)	SLC15A
	5		5
	Protein NRT1/ PTR FAMILY	Arabidopsis thaliana (Mouse-ear cress)	NPF2.12
	2.12		
	Protein NRT1/ PTR FAMILY	Arabidopsis thaliana (Mouse-ear cress)	NPF7.3
	7.3		
	Oligopeptide transporter PEPT1	Fundulus heteroclitus macrolepidotus	SLC15A
			1b
	Peptide transporter family 1	Caenorhabditis elegans (Roundworm)	pept-1
.		Tabla	

No of			
transmembrane			
α-helical	Protein name	Organism	Gene
spanners			
	Di-/tripeptide transporter	Lactococcus lactis (Bacteria)	dtpT
	Di-tripeptide ABC transporter	Geobacillus kaustophilus	GK2020
	Protein NRT1/ PTR FAMILY 6.3	Arabidopsis thaliana	NPF6.3
	Protein NRT1/ PTR FAMILY 2.7	Arabidopsis thaliana	NPF2.7
	Protein NRT1/ PTR FAMILY 3.1	Arabidopsis thaliana	NPF3.1
	Solute carrier family 15 member 3	Homo sapiens (Human)	SLC15A3
	Solute carrier family 15 member 4	Homo sapiens (Human)	SLC15A4
	Protein NRT1/ PTR FAMILY 4.2	Arabidopsis thaliana	NPF4.2
	Protein NRT1/ PTR FAMILY 2.13	Arabidopsis thaliana	NPF2.13
12	Protein NRT1/ PTR FAMILY 4.6	Arabidopsis thaliana	NPF4.6
	Protein NRT1/ PTR FAMILY 2.10	Arabidopsis thaliana	NPF2.10
	Protein NRT1/ PTR FAMILY 6.2	Arabidopsis thaliana	NPF6.2
	Protein NRT1/ PTR FAMILY 2.11	Arabidopsis thaliana	NPF2.11
	Solute carrier family 15 member 1	Rattus norvegicus (Rat)	Slc15a1
	Peptide transporter family 2	Caenorhabditis elegans	pept-2
	Solute carrier family 15 member 2	Mus musculus (Mouse)	Slc15a2
	Solute carrier family 15 member 2	Danio rerio (Zebrafish)	slc15a2
	Solute carrier family 15 member 2	Homo sapiens (Human)	SLC15A2
	Solute carrier family 15 member 1	Homo sapiens (Human)	SLC15A1
	Peptide transporter 3	Caenorhabditis elegans	pept-3
			11 5

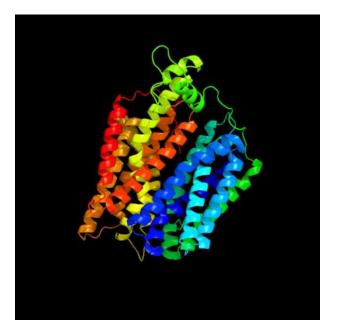


Figure 5: P46059|S15A1_HUMAN Solute carrier family 15 member (PepT1) protein structure modelled using Phyre2.

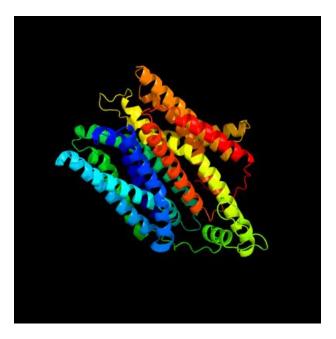
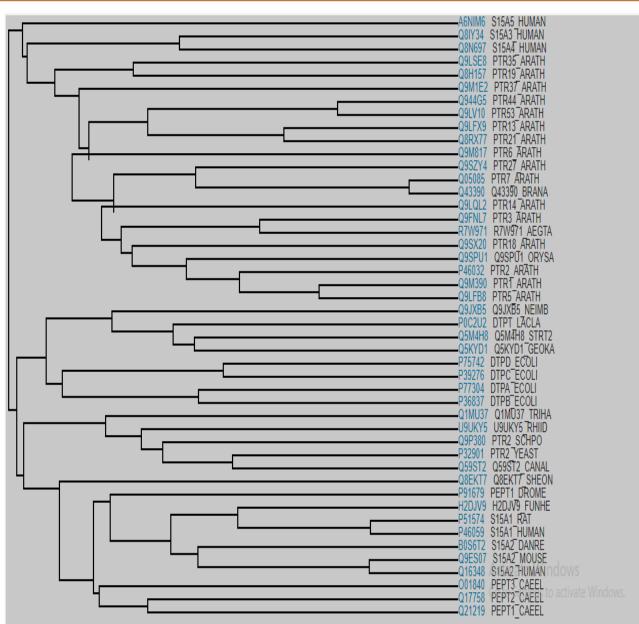



Figure 6: Q16348|S15A2_HUMAN Solute carrier family 15 member 2 (PepT2) protein 3D structure modelled using Phyre2.

No of			
transmembrane			
α-helical	Protein name	Organism	Gene
spanners			
	Di-or tripeptide:H+	Streptococcus thermophiles	dtpT
13	symporter	(Bacteria)	
	Glutathione uptake	Shewanella oneidensis	SO_0002
	transporte	(Bacteria)	
			Table 6

Table 6

No of			
transmembrane	Protein name	Organism	
α-helical			Gene
spanners			
	Dipeptide and tripeptide	Escherichia coli (Bacteria)	dtpA
	permease A		
	Dipeptide and tripeptide	Escherichia coli (Bacteria)	dtpB
	permease B		
	Dipeptide permease D	Escherichia coli (Bacteria)	dtpD
14	Dipeptide and tripeptide	Escherichia coli (Bacteria)	dtpC
	permease C		
	Peptide transporter	Neisseria meningitidis	NMB2136
		serogroup B (Bacteria)	

2] Phylogenetic tree establishing evolutionary relationship between POT family members.

Tree

As we can see in above phylogenetic tree, peptide transporter protein which is root protein in this case has evolved mainly into two branches. From tree we can deduce POT members of eukaryotic organisms are more closely related to one another as compare to prokaryotic organisms.

REFERENCE:

- 1. Simon newstead Current Opinion in Structural Biology 2017, 45: 17-24
- Lodish H, Berk A, Zipursky SL, *et al. New York: W. H. Freeman;* 2000. Section
 3.4Membrane Proteins
- Lodish H, Berk A, Zipursky SL, *et al. New York: W. H. Freeman;* 2000. Section 15.1Diffusion of Small Molecules across Phospholipid Bilayers.
- 4. Steiner HY, Naider F, Becker JM, molecular microbiology 16(5):825-34, July 1995
- 5. Simon newstead, Biochim Biophys Acta. 2015 Mar;1850(3):488-99
- 6. Simon newstead, Biochim Biophys Acta 2015 Mar; 1850(3): 488–499.
- 7. Stephanie S. Pao, Ian T. Paulsen, and Milton H. Saier Jr. *Microbiol Mol Biol Rev.* 1998
 Mar; 62(1): 1–34.
- 8. Simon newstead, Curr Opin Struct Bio. 2017 Aug; 45:17-24.
- 9. Simon newstead, Biochim Biophys Acta 2015 Mar; 1850(3): 488–499.
- Gurdeep S. Minhas and Simon Newstead, *Proc Natl Acad Sci U S A* 2019 Jan 15; 116(3): 804–809.
- 11. Jarkko Rautio, Krista Laine, Mikko Gynther, and Jouko Savolainen AAPS J. 2008 Mar; 10(1): 92–102.
- **12.** Matthias branssch ilka knutter eva bosse-*doenecke journal of pharmacy and pharmacology 60(5):543-85*
- **13.** Simmonds, P. BMC *Res Notes* (2012) 5: 50.
- 14. Vijay Nema, Sudhir Kumar Pal, *Bioinformation* 9(15): 796-801 (2013)
- Barry G. Hall *Molecular Biology and Evolution*, Volume 30, Issue 5, May 2013, Pages 1229–1235.

Detailed sequence alignment of 46 POT family transporters highlighting conserved residues.

POC2U2 DTPT LACLA	34	GMRAILVYYLYA-LTTADNAGLGLPKAQAMAIVSIYGALVYLSTIVGGWV	82
P77304 DTPA ECOLI	39	GLQGIMAVMLVKQLGMSEADSITLFSSFSALVYGLVAIGGWL	80
P36837 DTPB ECOLI	32	GVQGVLAVFFVKQLGFSQEQAFVTFGAFAALVYGLISIGGYV	73
P75742 DTPD_ECOLI	27	GMRALLILYLTNQLKYNDTHAYELFSAYCSLVYVTPILGGFL	68
P39276 DTPC ECOLI	26	GMRALLILMLTHQLGFDDNHAISLFSAYASLVYVTPILGGWL	67
Q5M4H8 Q5M4H8 STRT2	31	GMRAILLYYMWF-LISTGDLHITRATAASIMAIYASMVYLSGTIGGFV	77
Q5KYD1 Q5KYD1 GEOKA	41	GMRAILVYMMYY-EVSKGGLGLDEHLALAIMSIYGALVYMSGIIGGWL	87
Q9JXB5 Q9JXB5 NEIMB	36	GMQGILLIYLYY-TADKGGLGIDKTLAGGIVGAYSGSVYLSTILGAWF	82
Q9P380 PTR2 SCHPO	101	GLTVPFQNMMQF-GPKDATPGALNLGESGADGLSNFFTFWCYVTPVGAALI	150
P32901 PTR2 YEAST	98	GLSAPFQNYMEY-GPNDSPKGVLSLNSQGATGLSYFFQFWCYVTPVFGGYV	147
U9UKY5 U9UKY5 RHIID	61	GASGPFONYVQY-PPPAVKFGQAGAIGAGQETATALIYFFSAIV	103
_			
Q1MU37 Q1MU37 TRIHA	39	GSSVLYTNFVNR-PLPPGSTTGSAPDGRPGALGMGPKAAQGISLFNQFFAYIMPLVGAWI	97
Q59ST2 Q59ST2 CANAL	85	GLSAPFQNYMQF-TPEHSPKGMLGLKQQGATALSYFFQFWCYVTPILGGWI	134
Q05085 PTR7 ARATH	50	GIGVNLVTMLTG-TMHLGNATAANTVTNFLGTSFMLCLLGGFI	91
P46032 PTR2 ARATH	64	GIAGNLITYLTT-KLHQGNVSAATNVTTWQGTCYLTPLIGAVL	105
Q43390 Q43390 BRANA	49		90
		GIGVNLVTMLTG-TMHLGNATAANTVTNFLGTSFMLCLLGGFI	
Q9FNL7 PTR3_ARATH	50	GISSNLFIYMTT-KLHQGTVKSSNNVTNWVGTSWLTPILGAYV	91
Q9M1E2 PTR37 ARATH	45	GWLLNLIVYLIE-EFNVKSIAAAQIANIVSGCICMVPAVAAIA	86
Q9SX20 PTR18 ARATH	46	GFHANMISYLTT-QLHLPLTKAANTLTNFAGTSSLTPLLGAFI	87
09M390 PTR1 ARATH	47	GMGTNLVNYLES-RLNQGNATAANNVTNWSGTCYITPLIGAFI	88
Q9LFB8 PTR5 ARATH			
	48	GMSTNLINYLEK-QMNMENVSASKSVSNWSGTCYATPLIGAFI	89
Q8IY34 S15A3 HUMAN	51	GVTANLVLMLNSTNFNWTGEQATRAALVFLGASYLLAPVGGWL	93
A6NIM6 S15A5 HUMAN	59	EVVCNMIP CTI-KLGYHNCQAAILNLCFIGTSILTPVFVRWL	100
08N697 S15A4 HUMAN	53	GITSNLVLFLNGAPFCWEGAQASEALLLFMGLTYLGSPFGGWL	95
09LSE8 PTR35 ARATH	44		85
		ANGFNFVKWFMG-SMHYTPATAANMVTNFMGTSFLLTLFGGFI	
Q9M817 PTR6 ARATH	44	GLLPNMIMYLIR-DYRFGVAKGTNVLFMWSAASNFTPLLGAFL	85
Q9LFX9 PTR13 ARATH	37	GVSANFMLMLRN-VFHMEPVEAFNVYYLWMGLTNFAPLLGALI	78
Q8RX77 PTR21 ARATH	74	GLLANFMVMLTK-VFHLEQVDAANVINIWSGFTNLTPLVGAYI	115
Q8H157 PTR19 ARATH	48	ANASNLVLYLRE-YMHMSPSKSANDVINFMGTAFLLALLGGFL	89
Q944G5 PTR44 ARATH	84		125
		GTLSNLLVMLTS-VFNLKSYTAATIINAFSGTINFGTFIAAFL	
Q9SZY4 PTR27 ARATH	47	GIAVNLVTYLME-TMHLPSSTSANIVTDFMGTSFLLCLLGGFL	88
Q9LQL2 PTR14 ARATH	60	GVGVNLVLFLTR-VLQQNNADAANNVSKWTGTVYIFSLVGAFL	101
Q9LV10 PTR53 ARATH	66	GTLSNLLVYLTA-VFNLKSITAATIINAFSGTINFGTFVAAFL	107
Q9SPU1 Q9SPU1 ORYSA	64	SIVKNLVSYLTK-VLHETNVAAARDVATWSGTSYLAPLVGAFL	105
R7W971 R7W971 AEGTA			
_	56	GISSNLVLMLTT-ELHQGIVLSANNVTNWVGTIWMTPVIGAYI	97
P51574 S15A1_RAT	32	GMRALLVLYFRN-FLGWDDDLSTAIYHTFVALCYLTPILGALI	73
P91679 PEPT1 DROME	52	GMRTILVLMLTN-KLGYPRETATVLFHTFTMLVYIFPLIGALI	93
Q17758 PEPT2 CAEEL	50	GMRAVLTLYFFN-ILNFSQSFSTVLFHAFTVICYSSPLLGSIL	91
Q9ES07 S15A2 MOUSE		GMKAVLTLYFLY-FLHWNEDTSTSVYHAFSSLCYFTPILGAAI	103
B0S6T2 S15A2 DANRE		GMKAVLTLYFMN-YLHWDKNLSTAIYHAFSGLCYFTPLLGALI	89
H2DJV9 H2DJV9 FUNHE	33	GMRAVLVLYFKY-FLKWDDDFSTTIYHTFVALCYLSPILGAIV	74
Q8EKT7 Q8EKT7 SHEON	30	GMRNILTP IMT-ALLLSIPEELRGAVAKDVFHSFVIGVYFFPLLGGWI	77
Q16348 S15A2 HUMAN		GMKAVLILYFLY-FLHWNEDTSTSIYHAFSSLCYFTPILGAAI	103
P46059 S15A1 HUMAN		GMRAILLLYFTN-FISWDDNLSTAIYHTFVALCYLTPILGALI	73
001840 PEPT3 CAEEL		GMKTILFIYLIT-EHEFSPSKATFIYHLFTCIAYLTPLIGSIM	74
Q21219 PEPT1 CAEEL	64	GMRTVLTFYLLN-VLKFTDSQSTIFFNGFTVLCYTTPLLGSIV	105
=			
		•	

	DTPT_LACLA
P77304	DTPA ECOLI
	DTPB ECOLI
P75742	DTPD ECOLI
P39276	DTPC_ECOLI
O5M4H8	Q5M4H8 STRT2
	Q5KYD1 GEOKA
	Q9JXB5 NEIMB
	PTR2 SCHPO
D22001	DTD2 VEACT
F32301	PTR2 YEAST U9UKY5 RHIID
01/010	USUKIS KHIID
QIMU3/	Q1MU37 TRIHA
Q59512	Q59ST2 CANAL
Q05085	PTR7_ARATH
P46032	PTR2_ARATH
Q43390	Q43390_BRANA
Q9FNL7	PTR3 ARATH PTR37 ARATH
Q9M1E2	PTR37 ARATH
Q9SX20	PTR18 ARATH
Q9M390	PTR1 ARATH
Q9LFB8	PTR5 ARATH
08IY34	S15A3 HUMAN
	S15A5 HUMAN
08N697	S15A4 HUMAN
OPLSER	S15A4 ⁻ HUMAN PTR35 ⁻ ARATH
09M817	PTR6 ARATH
OOTEVO	PTR6 ARATH PTR13 ARATH
QUERT OODV77	PTR21 ARATH
Q0KA / /	PIRZI ARAIN
Q001107	PTR19 ⁻ ARATH PTR44 ⁻ ARATH
094465	PIR44 ARAIM
095214	PTR27 ARATH PTR14 ARATH
	PTR53 ARATH
	Q9SPUI_ORYSA
R7W971	R7W971_AEGTA
P51574	S15A1 RAT PEPT1 DROME
P91679	PEPT1 DROME
Q17758	PEPT2 CAEEL
Q9ES07	S15A2 MOUSE
B0S6T2	S15A2 DANRE
	H2DJV9 FUNHE
Q8EKT7	Q8EKT7 SHEON
016348	S15A2 HUMAN
P46059	S15A2 HUMAN S15A1 HUMAN
	PEPT3 CAEEL
021210	PEPT1 CAEEL
Apres2	

83	ADRLLGASRTIFLGGILITLGHIALATPF-GLSSL	116
81	GDKVLGTKRVIMLGAIVLAIGYALVAWSGHDAGIV	115
74	GDHLLGTKRTIVLGALVLAIGYFMTGMSLLKPDLI	108
69	ADKVLGNRMAVMLGALLMAIGHVVLGASEIHPSFL	103
68	ADRLLGNRTAVIAGALLMTLGHVVLGIDTNSTFSL	102
78	ADRIIGARPAVFWGGVLIMLGHIVLALPF-GASAL	111
88	ADRVFGTSRAVFYGGLLIMAGHIALAIPG-GVAAL	121
83	ADRVWGAEKTLFLSGIVVMLGHIVLAAAP-GLYGL	116
151	ADOFLGRYNTIVCSAVIYFIGILILTCTAIPSVI-DA	186
148	ADTFWGKYNTICCGTAIYIAGIFILFITSIPSVG-NR	183
104	ADQYFGRYNTILLFCIIYMVGLTVLTATATPMAI-AA	139
98	ADARMGRFWTLHLAIGISTIAHVILVASAAPGVIVKK	134
135	SDTYWGKYKTIFVFCVIYIVGIFLLFITSVPSIT-SK	170
92	ADTFLGRYLTIAIFAAIQATGVSILTLSTIIPGLRPPRCNPTTS-SHCEQ	140
106	ADAYWGRYWTIACFSGIYFIGMSALTLSASVPALKPAECIGDFCPS	151
91	ADTFLGRYLTIAIFAAIOATGVSILTLSTIIPGLRPPRCDPTTS-SHCVO	139
92	GDALLGRYITFVISCAIYFSGMMVLTLSVTIPGIKPPECSTTNV-ENCEK	140
87	SDSFFGTIPVISVSAFISLMGVALLTLTASLDTLRPRPCETASILCQS	134
88	ADSFAGRFWTITFASIIYQIGMTLLTISAIIPTLRPPPCKGEEVCVV	134
89	ADAYLGRYWTIATFVFIYVSGMTLLTLSASVPGLKPGNCNADTCHP	134
90	ADAYLGRYWTIASFVVIYIAGMTLLTISASVPGLTP-TCSGEETCHA	134
94	ADVYLGRYRAVALSLLLYLAASGLLPATAF-PDGRSSFCGEMPASPLGPACPSAGCPRSS	152
101	TDVYLGRNKLVYICLFLHFLGTALLSVVAF-PLE-DFYLGTYHAVNNI	146
96	ADARLGRARAILLSLALYLLGMLAFPLLAA-PATRAALCGSARLLNCTAPGPDA	148
86	ADSFVTHFTTFIVFCCIELMGLILLTFQAHNPKLLPEKDKTPS	128
86	SDSYLGRFLTISIASLSSFLGMVLLWLTAMLPOVKPSPCDPTAAGSHCGS	135
	-	
79	SDAYIGRFKTIAYASLFSILGLMTVTLTACLPQLHPPPCNNPHP-DECDD	127
116	SDTYVGRFKTIAFASFATLLGLITITLTASFPQLHPASCNSQDP-LSCGG	164
90	SDAFFSTFQIFLISASIEFLGLIILTIQARTPSLMPPSCDSPTCEE	135
126	CDTYFGRYKTLSVAVIACFLGSFVILLTAAIPSLHPVACGNKISCEG	172
89		
	ADSFLGRFKTIGIFSTIQALGTGALAVATKLPELRPPTCHHGEACIP	135
102	SDSYWGRYKTCAIFQVIFVIGLSSLSLSSYMFLIRPRGCGDEVTPCGS	149
108	CTYYFGRYKTLSVAVIACFLGSFVILLTAAVPQLHPAACGTAAD-SICNG	156
106	ADSYLGKYCTILIFCTIFIIGLMMLLLSAAVPLISTGPHSWIIWTD	151
98	ADAHLGRYRTFMVASIIYLLGMILLTMAVSLPSLKPAKCGLGTADPNC-DHK	148
74	ADSWLGKFKTIVSLSIVYTIGOAVISVSSINDLTDHDHDGSPN	116
94	ADGWLGKYKTILYLSLVYSLGAMVVSFGAVPLSGM	128
92	ADGYIGKFWTIFFISIFYACGQILLAFSSIAPSGS	126
104	ADSWLGKFKTIIYLSLVYVLGHVFKSLGAIPILGG	138
90	ADSWLGKFKTIIYLSIVYVIGHVVKSVGAIPDVGD	124
75	ADSWLGKFKTIVYLSVVYAAGQVVMAVSAIHDITDGNKDGTPD	117
78	ADRFFGKYNTILWLSLIYCVGHAFLAIFEHSVQGF	112
104	ADSWLGKFKTIIYLSLVYVLGHVIKSLGALPILGG	138
	A SWLGKFKTIVSLSIVYIGQAVTSVSSINDLTDHNHDGTPD	
74		116
75	ADSVFGRFKVILYGSSIYVVGHVLLSLGAVPFLSY	109
106	ADGYIGKFWTIFSVSILYAIGQVVLALASTKNFQS	140
	* .	

POC2U2 DTPT LACLA	150	DTGENIFVVGINMGSLIAPLIVGTVGQGVNYHLGFSLAAIGMIFALFAYWYG	201
P77304 DTPA ECOLI	149	DGAFTMYYMSVNIGSFFSMIATPWLAAKYGWSVAFALSVVGLLITIVNFAFC	200
P36837 DTPB ECOLI	142		193
P75742 DTPD ECOLI			188
_	137	DGG SLMYAAGNVGSIIAPIACGYAQEEYSWAMGFGLAAVGMIAGLVIFLCG	
P39276 DTPC ECOLI	136	DGGFSLLYAAGNIGSIAAPIACGLAAQWYGWHVGFALAGGGMFIGLLIFLSG	187
Q5M4H8 Q5M4H8 STRT2	145	DAGESIFVFGINLGAFIAPLIVGAAQEAAGYHVAFSLAAIGMFIGLLVYYFG	196
Q5KYD1 Q5KYD1 GEOKA	155	DAGFSIFYMGINLGAFLAPLVVGTAGMKYNFHLGFGLAAVGMFLGLVVFVAT	206
Q9JXB5 Q9JXB5 NEIMB	152	DAG SIFYIAINIGGFLGPLLTGLLQENIGFHYGFGAAAVGMAFGLWRYSLG	203
Q9P380 PTR2_SCHPO	244	SRAYMIFYWSINVGSLS-VLATTSLESTKGFVYAYLLPLCVFVIPLIILAVS	294
P32901 PTR2 YEAST	241	QNVFMFFYFMINVGSLS-LMATTELEYHKGFWAAYLLPFCFFWIAVVTLIFG	291
U9UKY5 U9UKY5 RHIID	196	QSLFHWFYLAINVGSLS-PILTTYIEKYHSFWLAFLIPLAMFFGAIAVLVIF	246
Q1MU37 Q1MU37 TRIHA	192	TRIFLYFYFAINIGSLAGQIAMVYVEKYVGFWVAFLIPTGMFLLAPVVLWSQ	243
Q59ST2 Q59ST2 CANAL		QNV_MFFYLMINIGSLS-VIATTQMEAHIGFWSSYLLTFCFFFIAIAALIVG	278
	228		
Q05085 PTR7_ARATH	187	TYFFNRFFFCINVGSLLAVTVLVYVQDDVGRKWGYGICAFAIVLALSVFLAG	238
P46032 PTR2 ARATH	198	ASFFNWFYFSINIGALVSSSLLVWIQENRGWGLGFGIPTVFMGLAIASFFFG	249
Q43390 Q43390 BRANA	186	TYFFNRFFFCINVGSLMAVTVLVYIQDDVGRKWGYGICALAIVLSLSIFLAG	237
Q9FNL7 PTR3 ARATH	187	LSF NWWMFSIFFGTLFANTVLVYVQDNVGWTLGYGLPTLGLAISITIFLLG	238
Q9M1E2 PTR37 ARATH	176		200
		GSFINWFFFTTYLAGAISATAIVYTEDNISWTLGFGLSVAANFFSFLVFVSG	
Q95X20 PTR18 ARATH	181	WNYENWYYFCMGAAVLLAVTVLVWIQDNVGWGLGLGIPTVAMFLSVIAFVGG	232
Q9M390 PTR1 ARATH	180	SSFFNWFYFSINVGALIAATVLVWIQMNVGWGWGFGVPTVAMVIAVCFFFFG	231
09LFB8 PTR5 ARATH	180	SSFFNWFYFVINVGAMIASSVLVWIQMNVGWGWGLGVPTVAMAIAVVFFFAG	231
Q8IY34 S15A3 HUMAN	196	RRFINWFYWSINLGAVLSLLVVAFIQONISFLLGYSIPVGCVGLAFFIFLFA	247
A6NIM6 S15A5 HUMAN	190	MSFINWFYWLMNLNATIVFLGISYIQHSQAWALVLLIPFMSMLMAVITLHMI	241
Q8N697 S15A4 HUMAN	192	RRFFNWFYWSINLGAILSLGGIAYIQQNVSFVTGYAIPTVCVGLAFVVFLCG	243
Q9LSE8 PTR35 ARATH	170	SRFEDWLYFSICSGCLLAVTVVLWIEEKKGWIWSFNISVGILATALCIFTVG	221
Q9M817 PTR6 ARATH	183	ESFFGWYYASSAVAVLIAFTGIVYIQEHLGWKIGFGVPAVLMLIAALLFILA	234
09LFX9 FTR13 ARATH		ASF NWYYLTLTMVLIFSHTVVVYLQ-TVSWVIGFSIPTSLMACAVVLFFVG	224
Q8RX77 PTR21 ARATH			
		ASF-NWYYMTFTVVLIITQTVVVYIQDQVSWIIGFSIPTGLMALAVVMFFAG	262
Q8H157 PTR19 ARATH	182	STFFNYFVFCLACGALVAVTFVVWLEDNKGWEWGFGVSTIAIFVSILIFLSG	233
Q944G5 PTR44 ARATH	219	NSFENWYFFTFTFAQIISLTAVVYIQSNVSWTIGLIIPVALMFLACVIFFAG	270
Q9SZY4 PTR27 ARATH	182	AFFFNRFFFFISMGTLLAVTVLVYMQDEVGRSWAYGICTVSMAIAIVIFLCG	233
09L0L2 PTR14 ARATH	196	IAF SYFYLALNLGSLFSNTILGYFEDEGMWALGFWASTGSAIIGLILFLVG	247
09LV10 PTR53 ARATH			254
	203	DSFFNWYFFTFTFAQILSLTLVVYVQSNVSWTIGLTIPAVLMFLACLIFFAG	
Q9SPU1 Q9SPU1_ORYSA	198	SSFFNWTYFVANAGSLISGTVIVWVQDHKGWIWGFTISALFVYLGFGTFIFG	249
R7W971 R7W971 AEGTA	195	LSFFNWWMFSIFFGPLFANTVLVYIQDKIGWTVGYALPTVGLAVSIAVFSAG	246
P51574 S15A1 RAT	160	NRFFSIFYLAINAGSLLSTIITPILRVQQCGIHSQQACYPLAFGVPAALMAVALIVFVLG	219
P91679 PEPT1 DROME	170	AKF SLFYFAINAGSLISTTFTPILRADVHCF-GDQDCFSLAFGVPAILMIFSVIIFMAG	228
-	168	SLFFSMFYFSINAGSLISMWLTPYFRS-MSCF-GHDSCYPLAFGIPAILMIVATLVFMAG	225
Q17758 PEPT2_CAEEL			
Q9ES07 S15A2 MOUSE	181	TRYFSVFYLSINAGSLISTFITPMLRGDVKCFGEDCYALAFGIPGLLMVLALVVFAMG	238
B0S6T2 S15A2 DANRE	167	RKFFSIFYMSINAGSVLSTIITPILRGDVQCFGGDCYALAFGVPAALMVIALVVFISG	224
H2DJV9 H2DJV9 FUNHE	161	STFFSIFYLSINAGSLLSTVITFILRAQKCGIHTKQQCYPLAFGVPAALMVVALIVFILG	220
Q8EKT7 Q8EKT7 SHEON		OKAFDMFYFTINFGSFFASLSMPLLLKNFGAAVAFGIPGVLMFVATVFFWLG	198
016348 S15A2 HUMAN		TRY SVFYLSINAGSLISTFITPMLRGDVQCFGEDCYALAFGVPGLLMVIALVVFAMG	238
P46059 S15A1 HUMAN		NRF-SIFYLAINAGSLLSTIITPMLRVQQCGIHSKQACYPLAFGVPAALMAVALIVFVLG	219
001840 PEPT3 CAEEL		SQFFSFFYFAINGGSLFAIIITPILRGRVQCF-GNAHCFPLAFGVPGVLMLLALILFLMG	209
Q21219 PEPT1 CAEEL	182	SLFFSMFYFSINAGSMISTFISPIFRS-QPCL-GQDSCYPMAFGIPAILMIVATLVFMGG	239

			0.04
POC2U2 DTPT_LACLA		DPTWFGITFHIDPSWYQLLNPLFIVLLSPIFVRLWNKLGERQ	364
P77304 DTPA ECOLI	310	SILGLAVEPEQYQALNPFWIIIGSPILAAIYNKMGDT	346
P36837 DTPB_ECOLI	303	EILGFSINPVSFQALNPFWVVLASPILAGIYTHLGNK-GKD	342
P75742 DTPD_ECOLI	302	DMFGYTVPTAMFQSINAFAVMLCGVFLAWVVKESVAG-NRT	341
P39276 DTPC ECOLI	299	QAFNIEVPTALFQSVNAIAVMLAGVVLAWLASPESRG-NST	338
Q5M4H8 Q5M4H8 STRT2	316	FAWLWTAWKKNQ	350
Q5KYD1 Q5KYD1 GEOKA	327	DVAGIHLSPAWFQSLNPLFIIILAPVFAWMWVKLGKRQ	364
Q9JXB5 Q9JXB5 NEIMB	317	TIGSFTVPVAWKDSMQSLWVILFSGLMAAMWTKMGRKQ	354
Q9P380 PTR2 SCHPO	391	CONTRACTOR	426
P32901 PTR2 YEAST	383	FIPNDFLQAFDSIALIIFIPIFEKFVYPFIRRY-TP	417
U9UKY5 U9UKY5 RHIID	343	TUPNDLIMNLNPISLIILVPFTDHVIYPTLRRFGIT	378
01MU37 01MU37 TRIHA	344	GVPNDIIQNLNPISIVIMIPLIDHLLYPGLRKIGVA	379
Q59ST2 Q59ST2 CANAL	369	DIPNDFLTVFDSVAIIVFIPIFERFLYPFVRHF-TP	403
005085 PTR7 ARATH	374	IGSFEIPPASMAVFYVGGLLLTTAVYDRVAIRLCKKLFNY-P	414
P46032 PTR2 ARATH	382	STOLPPAALGTFDTASVIIWVPLYDRFIVPLARKFTGV-D	422
Q43390 Q43390 BRANA			413
	373	IGSFEIPPAAMAVFYIGGLLLTTAVYDRLAIPLCKKLFNY-P	
Q9FNL7 PTR3 ARATH	364	VTGSFSIPPASLSGFVTLSMLISIVLYDRVFVKITRKFTGN-P	405
Q9M1E2 PTR37 ARATH		LGPSFKIPAGSLQVITLLSTCLFIIVNDRVLYPFYQKLTGK	391
Q9SX20 PTR18 ARATH		LTNSFQIPAGSMSVFTTVAMLTTIIFYDRVFVKVARKFTGL-E	407
Q9M390 PTR1 ARATH	364	MGKNFEIPSASLSLFDTVSVLFWTPVYDQFIIPLARKFTRN-E	405
Q9LFB8 PTR5_ARATH		MGPNFKIPSASLSLFDTLSVLFWAPVYDKLIVPFARKYTGH-E	405
Q8IY34 S15A3 HUMAN	352	ANPANISVALRAQGSSYTIPEAWLLLANVVVVLILVPLKDRLIDPLLLRCKLL	404
A6NIM6 S15A5 HUMAN	341	LDGFLLPIAVMNAISSLPLLILAPFLEYFSTCLFPSKR	378
Q8N697 S15A4 HUMAN	357	ITTTPHTLPAAWLTMFDAVLILLLIPLKDKLVDPILRRHGLL	398
Q9LSE8 PTR35 ARATH	332	LFHSFEIPVPSLTAIPLIFMLLSIPLYEFFGKKISS-GNNN-R	372
Q9M817 PTR6 ARATH	365	LSRHGSSFQVPAGSFGMFTIIALALWVILYDRAVIPLASKIRGR-P	409
Q9LFX9 PTR13 ARATH	358	MGPHFEIPAASITVISYITIGIWVPIYEHLLVPFLWRMRK	397
Q8RX77 PTR21 ARATH	396	LGPKFEIPAGSLSVISLLTIGIFLPFYDRVFVPFMRRITGH-K	437
Q8H157 PTR19 ARATH	379	IGSLKIPPASLPIFPVVFIMILAPIYDHLIIPFARKATKT-E	419
0944G5 PTR44 ARATH	403	LGSGGFRIPAATYVVFLMTGMTVFIIFYDRVLVPSLRRVTGL-E	445
09SZY4 PTR27 ARATH	364	IGSFKIPAGSLTVFFVAAILITLAVYDRAIMPFWKKW-KG-K	403
09LOL2 PTR14 ARATH	385	VSDFKIPPASMSSFDILSVALFIFLYRRVLEPVANRFKKNGS	426
09LV10 PTR53 ARATH	387	LGSGGFVIPAATYVVFLMTGMTVFIVVYDRVLVPTMRRITGL-D	429
09SPU1 09SPU1 ORYSA	382	IGSFEIPAASFQSIDVIAVLILVPVYERVLVPVFRKFTGR-A	422
R7W971 R7W971 AEGTA	375	LHFEIPPASLQGFVTISMLVSVVLYDRLFVPFMRRLTKN-P	415
P51574 S15A1 RAT	315	IGTIEIOPDOMOTVNAILIVIMVPIVDAVVPLIAKCGFN	354
P91679 PEPT1 DROME			361
017758 PEPT2 CAEEL	322	GFQIKPDQMQVVNPLLILGFLPLFDYIIYPALARCGIR	
		FGFEILPDQMGVLNAFLILFFIPIFQSIVYPTIEKLGFQ	374
Q9ES07 S15A2 MOUSE		EGFFVLQPDQMQVLNPFLVLVFIPLFDLVIYRLISKCGVN	373
BOS6T2 S15A2 DANRE		FGGGFIIKPDQMQMLNALLILVFIPIFDMGIYPLVGLCRIK	359
H2DJV9 H2DJV9_FUNHE		FGLMVIQPDQMQTVNPILILIMVPVVDFIIYPLISKCKLN	355
Q8EKT7 Q8EKT7 SHEON		QWFEPAMMQALNPLLVMLLIPFNNFVLYPAIERMGVK	369
Q16348 S15A2 HUMAN		LGFFVLQPDQMQVLNPLLVLIFIPLFDFVIYRLVSKCGIN	373
P46059 S15A1 HUMAN		IGALEIQPDQMQTVNAILIVIMVPIFDAVLYPLIAKCGFN	354
001840 PEPT3 CAEEL		VGHFSILPEQIHAINPVCVLILVPIFEGWVYPALRK-ITR	343
Q21219 PEPT1 CAEEL	354	LSDTLLLPDQMQTLNAVLILLFIPLFQVIIYPVAAK-CVR	393
—		· · · ·	

POC2U2 DTPT LACLA	365	PSTIVKFGLGLMLTGISYLIMTLPGLLNNNN	392
P77304 DTPA ECOLI		LPMPTKFAIGMVMCSGAFLILPLGAKFFFF	373
P36837 DTPB ECOLI	343	LSMPMKFTLGMFMCSLGFLTAAAAGMWFFFF	370
P75742 DTPD ECOLI	342	VRIWGKFALGIGIMSAGFCILTISARWSSS	369
P39276 DTPC ECOLI	339	LRVWLKFAFGLLLMACGFMLLAFDARHAAAA	366
Q5M4H8 Q5M4H8 STRT2		PSSPTKFAVGLMFAGLSFLLMAIPGALYYYY	378
Q5KYD1 Q5KYD1 GEOKA		PTIPQKFALGLLFAGLSFIVILVPGHLSSS	392
Q9JXB5 Q9JXB5 NEIMB			381
Q9P380 PTR2 SCHPO	427	FKPILRITLGFMFATASMIYAAVLQAKIYQRGPCYAN	463
P32901 PTR2 YEAST	418	LKPITKIFFGFMFGSFAMTWAAVLQSFVYKAGPWYNE	454
U9UKY5 U9UKY5 RHIID		VRPITRMFIGFMLASLAMAYTAIIQHVIYTTGPCFVN	415
Q1MU37 Q1MU37 TRIHA		FTPIKRMTTGFFIASLSMVASAVMQHYIYKMSPCGDH	416
Q59ST2 Q59ST2 CANAL		FKPITKIFWGFMFGSGAMVYAAVLQHYIYKAGPCYDH	440
Q05085 PTR7 ARATH	415	HGLRPLQRIGLGLFFGSMAMAVAALVELKRLRTAHAH	451
P46032 PTR2 ARATH	423	KGFTEIQRMGIGLFVSVLCMAAAAIVEIIRLHMANDL	459
Q43390 Q43390 BRANA		HGLRPLQRIGIGLLLAAMGMAVAALVEIKRLRTAHAH	450
Q9FNL7 PTR3 ARATH	406	RGITLLQRMGIGLIFHILIMIVASVTERYRLKVAADH	442
09M1E2 PTR37 ARATH	392	-HLTPLQRVGIGHAFNILSMAVTAIVEAKRLKIVQKGHF	429
Q95X20 PTR18 ARATH	408	RGITFLHRMGIGFVISIIATLVAGFVEVKRKSVAIEH	444
Q9M390 PTR1 ARATH	406		442
Q9LFB8 PTR5 ARATH	406	RGFTQLQRIGIGLVISIFSMVSAGILEVARLNYVQTH	442
Q8IY34 S15A3 HUMAN	405	PSALQKMALGMFFGFTSVIVAGVLEMERLHYIHHNET	441
A6NIM6 S15A5 HUMAN	379	VGSFLSTCIIAGNLFAALSVMIAGFFEIHRKHFPAVEQP	417
Q8N697 S15A4 HUMAN	399	PSSLKRIAVGMFFVMCSAFAAGILESKRLNLVK-EKT	434
Q9LSE8 PTR35 ARATH	373	SSSFNLKRIGLGLALSSVSMAVSAIVEAKRKHEVV	407
Q9M817 PTR6 ARATH	410	FRLSVKLRMGLGLFMSFLAMAISAMVESFRRKKAISQ	446
Q9LFX9 PTR13 ARATH	398	FRVTLLQRMGIGIVFAILSMFTAGFVEGVRTRA	431
Q8RX77 PTR21 ARATH	438	SGITLLQRIGTGIVFAIFSMIVAGIVERMRRIRSINA	474
Q8H157 PTR19 ARATH	430	TGVTHLQRIGVGLVLSILAMAVAALVEIKRKGVAKDS	456
Q944G5 PTR44 ARATH	446	TGISLLQRIGAGFTFAIMSLLVSGFIEERRRNFALTKPT	484
Q95ZY4 PTR27 ARATH	404		438
Q9LQL2 PTR14 ARATH	427	KGITELHRMGIGLVIAVIAMIAAGIVECYRLKYADKS	463
Q9LV10 PTR53 ARATH	430	TGITLLQRIGTGIFFATASLVVAGFVEERRRTFALTKPT	468
Q9SPU1 Q9SPU1 ORYSA		NGITPLQRMGIGLFFSMLSMVSAALVESNRLRIAQDE	459
R7W971 R7W971 AEGTA		RGISLLQRMGVGLVFHIVIMVIASLTERHRLRVAMEN	452
P51574 S15A1 RAT	355	-	410
P91679 PEPT1 DROME	362	RPLOKLTLGLLLAALGFFLSAGLEMKMEQAAYRATPIEPDMTHLRIYNGMPCRYEIS	418
017758 PEPT2 CAEEL		MTMLRKMAGGGILTAVSFFVCGIVQLFVNPTLPYIPMANEAHLTIINTIP-SCDFN	429
09ES07 S15A2 MOUSE		FSSLRKMAVGMILACLAFAVAALVEIKINGMIHPOPASOEIFLOVLNLADGEIEVT	429
B0S6T2 S15A2 DANRE		LTPLKKMATGMILAALAFCAATAVEVIVIKTVVEPPPAKESLVQVINLMDSDVTVQ	415
H2DJV9 H2DJV9 FUNHE		FTPLRKMTGGMFLAALAFVAAALVOLOIDATLPTFPSSNEOOAKFINMVNRNLSIA	413
Q8EKT7 Q8EKT7 SHEON		ITALRKMGAGIAITGLSWIVVGTIOLMMDSKLQQAKFINMVNKKLSIA	398
Q16348 S15A2 HUMAN		FSSLRKMAVGMILACLAFAVAAAVEIKINEMAPAQPGPQEVFLQVLNLADDEVKVT	429
P46059 S15A1 HUMAN		FTSLKKMAVGMILACLAFAVAARVEIKINEMAFAQFGFQEVFLQVLNLADDEVKVI FTSLKKMAVGMVLASMAFVVAAIVOVEIDKTLPVFPKGNEVQIKVLNIGNNTMNIS	410
001840 PEPT3 CAEEL		VTPLRKMAVGGLLTAFSFALAGVLQLKVNETMEFPPSLGRIYLQRVGNESLISDFR	399
Q21219 PEPT1 CAEEL		ITPLRKMVGGLIAFSFALAGVLQLKVNEIMEFFFS-LGAIILQRVGNESIISDFR ITPLRKMVTGGLIASLAFLITGFVQLQVNTTLPTLPEEGEASISFWNQFETDCTIT	449
VALATS FEFTI CALED	351	PILINGAA LOODINOTHEDI LOE AÕDÕAMILDELDEEROEKOIOLMMÕEDIDELLI	113

	40.0		455
POC2U2 DTPT_LACLA	403	LVLMFAVQMAGELLVSPVGLSVSTKLAPVAFQSQMMAMWFLADST-SQAINAQI	455
P77304 DTPA_ECOLI	385	LVASYGLQSIGELMISGLGLAMVAQLVPQRLMGFIMGSWFLTT-AGANLIGGYVAGMMAV	443
P36837 DTPB ECOLI	382	IVLVYLFQSLGELFISALGLAMIAALVPQHLMGFILGMWFLTQ-AAAFLLGGYVATFTAV	440
P75742 DTPD ECOLI	380	MVLGLAVMGFAELFIDPVAMSQITRIEIPGVTGVLTGIYMLLSGAIANYLAGVIADQTSQ	439
P39276 DTPC ECOLI	377	MISGLALMGFA LFIDPVAIAQITRLKMSGVLTGIYMLATGAVANWLAGVVAQQTTE	433
Q5M4H8 Q5M4H8 STRT2	389	LVGSWALVILGEMLISPVGLSVTTKLAPKAFNSQMMSMWFLSSSV-GSALNAQL	441
Q5KYD1 Q5KYD1 GEOKA	402	LVLSYFIVVLG LCLSPVGLSATTKLAPAAFSAQTMSLWFLSNAA-AQAINAQL	454
Q9JXB5 Q9JXB5 NEIMB	390	FALIVLAITIGELMISPIALSISTKIAPPLFKTQMVALNFLAFSL-GFTLGGVLF	443
Q9P380 PTR2 SCHPO	478	QIPAYVLIAFS IFASITGLEFAFTKAPPSMKSIITALFLFTNA-FGAILSICISSTAVN	536
P32901 PTR2 YEAST	469	QIPAYVLISFS IFASITGLEYAYSKAPASMKSFIMSIFLLTNA-FGSAIGCALSPVTVD	527
U9UKY5 U9UKY5 RHIID	434	OSPSYVLIGFSEVFASVTGLSYAYERAPDEMKSTVMAIFLTMSA-FGSALGFAFVPLSKD	492
Q1MU37 Q1MU37 TRIHA	440	QSLFYILIGFAEIFANVTSYEYAYSKAPENMKSLVMSVNLFMSA-ISAAIGEAFTPLSDD	498
		-	
Q59ST2 Q59ST2 CANAL	455	QTPAYVLIAIS ILASITGLEYAYTKAPVQMKSLVMAMFLLTNA-VGAAIGIALSSVSVD	513
Q05085 PTR7_ARATH	465	LIPQYLIVGIGEALIYTGQLDFFLRECPKGMKGMSTGLLLSTLA-LGFFFSSVLVTIVEK	523
P46032 PTR2 ARATH	475	QIPQYFILGAAEVFYFIGQLEFFYDQSPDAMRSLCSALALLTNA-LGNYLSSLILTLVTY	533
Q43390 Q43390 BRANA	464	LIPQYLIVGIGEALIYTGQLDFFLRECPKGMKTMSTGLLLSTLA-LGFFFSSVLVTIVEK	522
Q9FNL7 PTR3 ARATH	459	LLPOFVLMGMADSFLEVAKLEFFYDOAPESMKSLGTSYSTTSLA-IGNFMSSFLLSTVSE	517
09M1E2 PTR37 ARATH	443	LFPPLVIVGIGEAFHFPGNVALCYQEFPESMRSTATSITSVVIG-ICFYTSTALIDLIQR	501
Q9SX20 PTR18 ARATH	461	LIPQYGLHGVAEAFMSIGHLEFFYDQAPESMRSTATALFWMAIS-IGNYVSTLLVTLVHK	519
Q9M390 PTR1 ARATH	457	QIPQYLLIGCAEVFTFIGQLEFFYDQAPDAMRSLCSALSLTTVA-LGNYLSTVLVTVVMK	515
Q9LFB8 PTR5 ARATH	457	QVPQYFLVGCAEVFTFIGQLEFFYDQAPDAMRSLCSALSLTAIA-FGNYLSTFLVTLVTK	515
Q8IY34 S15A3 HUMAN	461	QIPQYLLIGISHIFASIPGLEFAYSEAPRSMQGAIMGIFFCLSG-VGSLLGSSLVALLSL	519
A6NIM6 S15A5 HUMAN	433	LILQYVLLGVA TLVNPALSVISYRFVPSNVRGTSMNFLTLFNG-FGCFTGALLVKLVYL	491
Q8N697 S15A4 HUMAN	454	QVPQYLLIGISEIFASIAGLEFAYSAAPKSMQSAIMGLFFFFSG-VGSFVGSGLLALVSI	512
Q9LSE8 PTR35 ARATH	418	LVFQYLMLSVSDMLTLGGMLEFFYREAPSNMKSISTALGWCSTA-LGFFLSTTLVEVTNA	476
Q9M817 PTR6 ARATH	463	LVPQYVLHGLAFALTAIGQTEFFYTEFPKSMSSIAASLFGLGMA-VASLLASVVLNAVNE	521
Q9LFX9 PTR13 ARATH	442	LALPLILMGLCESFNFIGLIEFFNSQFPEHMRSIANSLFPLSFA-AANYLSSLLVTTVHK	500
Q8RX77 PTR21 ARATH	488	LSPQLILMGLC AFNIIGQIEFFNSQFPEHMRSIANSLFSLSFA-GSSYLSSFLVTVVHK	546
08H157 PTR19 ARATH	472	IALQYLFLGSADLFTLAGLLEYFFTEAPSSMRSLATSLSWASLA-MGYYLSSVIVSIVNS	530
Q944G5 PTR44 ARATH	502	LIPQLTLAGIAFAAAIGQMEFYYKQFPENMKSFAGSIFYVGAG-VSSYLASFLISTVHR	560
-			
Q9SZY4 PTR27 ARATH	452	LVPQFFLVGAGEAFIYTGQLDFFITQSPKGMKTMSTGLFLTTLS-LGFFVSSFLVSIVKR	510
Q9LQL2 PTR14 ARATH	478	QAPQYSLIGASEVFMYVGQLEFFNAQTPDGLKSFGSALCMMSMS-MGNFVSSLLVTMVVK	536
Q9LV10 PTR53 ARATH	486	LIPQLSLAGVAFAFAAIGQMEFYYKQFPENMRSFAGSIFYVGGG-VSSYLGSFLIATVHR	544
Q9SPU1 Q9SPU1 ORYSA	475	QGPQYFLIGVG VFSNIGLTEFFYQESPDAMRSLCLAFSLANVS-AGSYLSSFIVSLVPV	533
R7W971 R7W971 AEGTA	469	LLPQFVLMGVADAFLEVAKIEFFYDQAPEGMKSLGTSYSMTSLG-IGNFLSSFLLSTVSR	527
P51574 S15A1 RAT	586	QIPQYFLLTCGEVVFSVTGLEFSYSQAPSNMKSVLQAGWLLTVA-IGNIIVLIVAEA	641
P91679 PEPT1 DROME			
	596	QLPQIVVMTAAEVMFSVTGLEFSYSQSPPSMKSVLQACWLLSVA-IGNMLVVVIAEF	651
Q17758 PEPT2 CAEEL	673	QIPQYVILTAG VLFSITGLEFAYTEASPQLKSVVQALWLFTTA-IGDLIVVVIFML	728
Q9ES07 S15A2 MOUSE	611	QLPQYVLVTAAEVMFSVTGLEFSYSQAPSSMKSVLQAAWLLTVA-VGNIIVLIVAQF	666
B0S6T2 S15A2 DANRE	594	QIPQYVFLTAGEVMFSITGLEFSYSQAPASMKSVLQAGWLMTVA-FGNVIVLIVAEG	649
H2DJV9 H2DJV9 FUNHE		QIPQYFLMTSGEVFFSVTGLEFSYSQAPSNMKSVLQAGWLLTVA-VGNIIVLIVAEA	636
OSEKT7 OSEKT7 SHEON		QILPYALLTFGEVLVSATGLEFAYSQAPKAMKGTIMSFWTLSVT-VGNLWVLLANVSVKS	466
Q16348 S15A2 HUMAN		OLPOYALVIAGIVMFSVIGLEFSYSOAPSSMKSVLOAAWLLIA-VGNIVVLOVAOF	666
P46059 S15A1 HUMAN		QIPQYFLLTCGEVVFSVTGLEFSYSQAPSNMKSVLQAGWLLTVA-VGNIIVLIVAGA	639
001840 PEPT3 CAEEL		SLPQYIIITLGEVLLSVTGLEFAYSQAAPNMKSVLTAMWLLTVF-AGNLIDMMISGT	633
Q21219 PEPT1 CAEEL	700	QIPQIVVITAAFILFSITGYEFAYSQSAPSMKALVQALWLLTTA-AGDSIIVVITIL	755
-			