
Observational constraints on dark
energy parameters

A thesis

submitted by

Archana Sangwan

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Indian Institute of Science Education and Research (IISER)
Mohali

September, 2018



ii



Certificate of Examination

This is to certify that the dissertation titled Observational constraints on dark energy

parameters submitted by Ms. Archana Sangwan (Reg. No. PH12118) for the partial

fulfillment of Doctor of Philosophy programme of the Institute, has been examined by

the thesis committee duly appointed by the Institute.The committee finds the work done

by the candidate satisfactory and recommends that the report be accepted.

Professor Sudeshna Sinha Professor Jasjeet Singh Bagla Dr. Harvinder Kaur Jassal

(Supervisor)

iii



iv



Declaration

The work presented in this dissertation has been carried out by me under the guidance

of Dr. Harvinder Kaur Jassal at the Indian Institute of Science Education and Research

Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a fellow-

ship to any other university or institute. Whenever contributions of others are involved,

every effort is made to indicate this clearly, with due acknowledgement of collaborative

research and discussions. This thesis is a bonafide record of original work done by me

and all sources listed within have been detailed in the bibliography.

Archana Sangwan

(Candidate)

In my capacity as the supervisor of the candidates doctoral thesis, I certify that the

above statements by the candidate are true to the best of my knowledge.

Dr. Harvinder Kaur Jassal

(Supervisor)

v



vi



Acknowledgements

I would like to express my deep gratitude and sincere thanks to my thesis supervisor,

Dr. Harvinder Kaur Jassal, for her guidance and support in every step of my research

work at Indian Institute of Science Education and Research, Mohali. I would also like

to thank her for being supportive of every crazy idea that I had present her during our

innumerable discussions. She has always emphasized on the development of intuitive

understanding of a problem which has helped me look beyond the numbers and equations.

Her curiosity and positive approach towards every problem has been a great source of

motivation for me. I will always be grateful to her for this.

I am thankful to my doctoral committee members, Prof. Jasjeet Singh Bagla and Prof.

Sudeshna Sinha for giving me invaluable time, support and sharing their knowledge. I am

grateful to all the faculty members in the department of physical sciences for their direct

and in-direct encouragement and support.

I am also thankful to IISER mohali for providing the financial support, high-performance

computing facility, softwares and other resources useful for research.

No journey is fun without the a good company of friends. I would like to begin by thank-

ing my friend and colleague, Ashutosh Tripathi who has helped me with both academic

and non-academic problems and for expressing his genuine concern at various stages of

my PhD. I would also like to thank my friend Shradha Gandhi who always acted like a

sister and has been very supportive and kept on encouraging me throughout. My sincere

thanks to all my friends Renu, Pranay, Chandrakala, Gaurav, Ashutosh (Tiwari), Richa,

Khushbu and Nisha for moral support and making life at IISER lively and happily going.

I also acknowledge my colleagues Sandeep, Ankit, Avinash, Manvendra, Ranbir, Ashish,

Juhi, Ankan, Varinder and others for their moral support and delightful discussions.

Finally, I would like to thank my parents for always believing in me. All could have

been possible only because of their unconditional love, care, support and patience. I espe-

cially want to thank my Mother for always being with me and my Father for providing me

invaluable guidance. I shall be forever grateful to my elder sister, Kalpana and younger

brother, Ankit for their amazing understanding and taking care of almost everything so

that I could concentrate on my research.

vii



viii



Preface

Our universe is undergoing an accelerated expansion. This acceleration has been

confirmed by various observations. The acceleration of the expansion is caused by a

component of universe with negative pressure; this component is called dark energy which

contributes to almost three-quarters of the total energy of the universe. How the dark

energy came to be or the nature of dark energy is still a mystery, and is the most pertinent

question in cosmology at present. In the lack of a fundamental theory explaining such a

component, a large number of models have been proposed to explain dark energy.

The models include the cosmological constant which has had a history of being

favoured and unfavoured. Observations, however, favour the cosmological constant model

and this is also the most elegant explanation of dark energy. For a cosmological constant,

the equation of state parameter is constant and is always equal to −1. Theoretically, this

model suffers from the fine tuning problems, i.e., the value predicted from field theory

vacuum energy is 121 orders of magnitude larger than the value required by observations.

To circumvent this problem, many other models were proposed and have been studied in

order to understand dark energy.

The condition for acceleration is that the ratio of pressure to energy density, which is

equation of state parameter, must be w = P/ρ ≤ −1/3. The equation of state parameter

can be a constant or a function of time. It can be that of a barotropic fluid and within this

description, the equation of state parameter can also be a function of time. Alternatively,

scalar fields naturally have a negative equation of state parameter with the condition

that the kinetic energy is subdominant to the potential energy. The potential dominated

scalar field, requires a fine tuning of its own; the amplitude and the shape of the potential

needs to be fine tuned. The work in this thesis focuses on studying fluid models of dark

energy, and canonical scalar field models. We also attempt to reconcile the two different

descriptions of dark energy by way of using parametric forms of dark energy to obtain

information about the form of scalar field models.

To study these models, we first solve the cosmological equations for the models men-

tioned above and determine their respective parameters using different datasets. We fo-

cus mainly on the low redshift data constraints, namely Supernova type Ia data, Baryon

Acoustic Oscillation data and direct measurements of Hubble parameter dataset. The

constraints are based mainly on distance measurements, based on standard candles and

standard rulers. We also check the consistency of constraints obtained with distant mea-

surements namely the Cosmic Microwave Background (CMB) observations. We introduce
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and review the Friedmann Robertson Walker (FRW) cosmology and distance measure-

ments in the first chapter of the thesis.

In the second chapter, we study the fluid dark energy models in the context of present

observations. We consider four different scenarios; a constant equation of state parameter

of dark energy, and three different dramatization’s of dark energy equation of state param-

eter, i.e., with a variable equation of state parameter. The case with a constant equation

of state consists of two parameters (equation of state of dark energy, and matter density

parameter ) description of dark energy, and is called wCDM model. We have assumed

the universe to be spatially flat, which is a reasonable assumption as CMB observations

severely constrain the curvature to be very near flat. We show that the constraints are

consistent with the ΛCDM model while a small range in the equation of state is allowed.

The variable equation of state, is described by the present day value of the equation of

state parameter and its first derivatives at present or a parameter of a function of the

scale factor. We consider three different parametric forms, one with allows only a slow

variation and becomes a constant at large redshifts (CPL parameterization), one which

allows a large variation at low redshifts and reverts back to its original value at high

redshift and one which increases slowly and monotonically as a function of redshift.

At lower redshifts, all the parameterizations are equivalent but at higher redshifts

they show different behaviour in the evolution of equation of state parameters. The dark

energy parameters are then constrained using different observations. We concentrate on

dark energy equation of state parameter value and its evolution at low redshifts and study

whether one functional form of the dark energy parameters is preferred over the others

by observations. We find that the combined analysis from these datasets constrain the

allowed range of parameters significantly. The constraints obtained from observations are

consistent with a cosmological constant.

Scalar fields in cosmology provides another viable description of dark energy. In

this case, equation of state parameter for the field changes as the field evolves. There

are different types of scalar fields which have been introduced in extensive literature.

We study the quintessence scalar field, which is a minimally coupled canonical scalar

field. The equation of state parameter for quintessence is a function of time; the value

of the equation of state parameter depends upon the functional form of the potential

and the kinetic energy of the field. To obtain the accelerated expansion, the scalar field

potential must be dominant over the kinetic energy. The scalar fields, in general, have

been categorised into two broad classes depending upon the evolution of equation of

state parameter; ”freezing” and ”thawing” scalar fields. In thawing case, at early times,
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the scalar field is frozen at the initial state due to large Hubble damping term and the

equation of state of the field is same as that of the cosmological constant. Very recently,

when the Hubble damping decreases, the field begins to roll towards the minimum of

the potential and the equation of state starts to deviate from that of a cosmological

constant like equation of state. In the freezing behaviour, the field is already rolling

towards the minimum of its potential and hence the kinetic energy term is non-zero.

The scalar potential becomes shallower at later times and the field comes to a halt and

kinetic term becomes negligible and the value of the equation of state parameter freezes.

Using the same three different observations as before, i.e., type Ia supernova (SNIa) data,

Baryonic Acoustic Oscillation(BAO) data and Hubble parameter (H(z)) data, we present

constraints on the scalar field parameters in chapter 3.

In continuation, we reconcile the two above mentioned approaches to dark energy. In

this work, we study the form of potentials which are consistent with different param-

eterizations mentioned in Chapter 2. We reconstruct the evolution of the scalar field

associated with the canonical and phantom scalar field using current data considered

above. we reconstruct the quintessence and phantom scalar field potentials and study

the evolution of the scalar field as a function of scale factor. Then, using the three

observations mentioned earlier, show the limits on the reconstructed potential and field

parameters. We find that the wCDM model prefers a slow rolling potential and a tracker

behaviour can not be accommodated in the reconstructed potential, for CPL and loga-

rithmic dark energy equation of state. The quintessence and phantom class of dark energy

tend to converge to a cosmological constant as the scale factor increases. In chapter 4,

we study these aspects of dark energy.

The work in the thesis explores different aspects of dark energy, in the light of currently

available observational datasets. In the lack of a fundamental theory, it is imperative to

study different models of dark energy, and to constrain its parameter from observations.

In this thesis, we obtain constraints on dark energy parameters in different scenarios

using a diverse set of observations.
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Chapter 1

Introduction

Cosmology attempts to answer the questions related to the origin and evolution of the

Universe and its properties at large scales. This branch of astronomy and astrophysics

is based on the cosmological principle where one assumes a homogeneous and isotropic

Universe at large scale. This leads to formulation of the standard model of cosmology. The

standard cosmological model is well studied and is consistent with different observations.

Observations have confirmed the standard model, and more and more observations have

substantiated our understanding of the Universe. The observations are broadly based on

distance measurements or based on observations of the large scale structures. Various

surveys are currently on and are planned to further our understanding and to validate

the standard model of cosmology to higher precision. Various unresolved issues remain.

For instance, the nature of dark matter and dark energy are two such pertinent ones.

Dark energy derives the current acceleration of the Universe and is the most dominant

component. A large amount of effort is going on to understand its nature. The attempts

to understanding from high energy particle physics are largely unsuccessful as the energy

scales are very low in the case of dark energy. Therefore, the approach to its under-

standing is phenomenological and is largely model building based. In this chapter we

discuss the background cosmology, the Friedmann equations and solution of Friedmann

equations for different scenarios. We also review a few viable models of dark energy.

This chapter is organised as follows. In the first section (1.1) we discuss the Friedmann-

Robertson-Walker (FRW) metric that explains the homogeneous and isotropic Universe.

In the second section (1.2), Einstein’s field equations are explained which tell about the

effect of gravity on a particle. The study of field equations require the understanding
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of the concepts such as energy momentum tensor or stress tensor and the conservation

of energy momentum tensor, which we discuss in detail in this section. In section three

(1.3), we discuss the concept of redshift and the Hubble law. In fourth section (1.4), we

discuss Friedmann equations and their solutions and in section (1.5), we focus on different

types of distance measurements to the position of objects in the Universe such as the lu-

minosity distance and the angular diameter distance. We then briefly review the current

observations and how cosmological parameters are determined using the observational

datasets.

1.1 Friedmann-Robertson-Walker (FRW) metric

Despite having high density structures (stars, galaxies etc.), at large scales the matter in

the Universe is uniformly distributed. If we observe in any direction, the Universe appears

to be the same. The structure of the Universe is identical in all the directions, i.e., there

is no special direction, the Universe is isotropic. Isotropy at different points implies that

the Universe is also homogeneous. The Universe will be the same no matter where the

observer is located. These two properties together define the cosmological principle. In

brief, the cosmological principle is stated as ‘Universe is homogeneous and isotropic’. We

assume this principle to be true at large scales and so far, there is no observation which

disproves this assumption.

The cosmological principle describes a highly symmetric Universe. In four dimensions,

it is described by the Friedmann-Robertson-Walker (FRW) metric (also called Friedmann-

Lematre-Robertson-Walker (FLRW)) which is a maximally symmetric metric in four

dimensions. A metric, represented by a rank-2 tensor, is a mathematical quantity which

tells us about the geometry of spacetime and its dynamics is described by Einstein’s field

equations, discussed in Sec. (1.2). In spherical co-ordinate system (t, r, θ, φ), the line

element for FRW metric in comoving coordinates is given by

ds2 = dt2 − a2(t)
(

1
1−kr2dr

2 + r2(dθ2 + sin2 θdφ2)
)

. (1.1)

Here, cosmic time is represented by t and a(t), called the scale factor, contains information

about the nature of evolution of Universe i.e whether it is expanding or contracting. The

scale factor is a function of time. Coordinates r, θ and φ are the comoving coordinates.

The constant k determines the curvature of space. If k = 0, the FRW metric describes a

spatially flat Universe (open and infinite), if k = +1, the Universe has positive curvature
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(finite and closed Universe). If k = −1, then the metric describes a Universe with a

negative curvature (infinite and open Universe). Comoving coordinates remain constant

in an observer’s frame i.e. an observer at rest will continue to be at rest in the comoving

frame for all t. The scale factor, a(t), describes the dynamics of the Universe.

1.2 Einstein’s Field Equation

According to Einstein’s General Relativity, the force of gravity is a result of the curvature

introduced in spacetime due to matter and energy and it is governed by Einstein’s field

equations, a set of ten equations[1]. The Einstein field equation is

Rµν −
1

2
Rgµν = κ2Tµν (1.2)

where the metric tensor is denoted by the covariant tensor gµν and Rµν represents Ricci

tensor, R = gµνRµν is called Ricci scalar which is a result of contraction of the Ricci

tensor and the energy momentum tensor is denoted by Tµν [2]. The energy momentum

tensor describes the matter distribution in the Universe [3]; it contains all the information

about mass, temperature, shear, momentum etc. In four dimensions, it is represented by

a 4× 4 matrix and, as it is symmetric, it has only ten independent components[4]. The

constant, κ2 = 8πG
c4

in natural units (c = 1 ~ = 1). The tensor gµν is a contravariant

metric tensor. Covariant and contravariant tensors are inverse of each other.

The right hand side of the equation contains information about energy and momentum

density in the form of a symmetric tensor which is also conserved and the left hand side

also has symmetric tensors which are obtained from gµν and its derivatives. We can also

write this equation as

Gµν = κ2Tµν (1.3)

where Gµν = Rµν − 1
2
Rgµν is called the Einstein’s tensor. The field equation relates 4×4

tensors which are symmetric in nature and have ten independent components each.

1.2.1 Energy-Momentum Tensor

As explained above, the energy momentum tensor is represented by a 4× 4 matrix, and,

in general, it is given by
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T µν =













T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33













. (1.4)

It is a tensor of rank two, which has sixteen components in four dimensional spacetime.

The component T 00 represents the density of relativistic mass and is called the energy

density. T 0i is the flux energy in xi and i varies from 1 to 3. The components T i0

determine momentum density in directions i. The stress component with i = j, that is,

T ii denotes the pressure, which is the normal stress. When i 6= j, the components T ij

denotes the shear stress. As this tensor is symmetric, T ij = T ji and T i0 = T 0i (see [3],

page 141). Therefore, we have only ten independent components representing the energy

momentum tensor.

Vacuum: In vacuum, the components of the energy momentum tensor do not con-

tribute, i.e.,

T µν = 0 (1.5)

and the Einstein’s tensor vanishes. As, in the absence of any form of matter, there is

nothing to cause gravitation and nothing to experience the effects of gravitation, therefore

one can assume the gravitational field to be zero in vacuum.

Dust: It is a distribution of non-interacting particles of identical masses. There does

not exist any internal motion, heat conduction or stress. Since these are non-interacting

particles, it implies that they are electrically neutral so that there are no electrostatic

forces influencing these particles. As these ‘identical’ particles have same rest mass,

they must experience the gravitational force due to other particles. Since these particles

are non-interacting, we assume that the particles are very small in size compared to

the distance between them and the gravitational effects can be ignored. For this fluid,

pressure is zero.

The energy momentum tensor for dust is given by

T µν = ρuµuν (1.6)

here uµ describes a tangent to the world lines of particles. If we consider the rest frame of
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dust, then 4-velocity becomes uµ = (1, 0, 0, 0) and the energy-momentum tensor becomes

T µν =













ρ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













. (1.7)

In earlier times, during matter domination era, dust was the main component of the

Universe, which existed between radiation dominated era and the current dark energy

dominated era.

Perfect fluid: An ideal fluid is characterised by the absence of heat conduction

(which means T i0 = T 0i = 0) and no viscosity (implying T ij = 0 if i 6= j) . Similar to

dust particles, the particles in the fluid exhibit rest mass, but unlike dust particles, fluid

particles also have internal motions and hence the pressure is non-zero. This fluid, in its

rest frame, is described by its mass density ρ and a pressure P .

The energy momentum tensor for perfect fluid is

T µν = (ρ+ P )uµuν + Pgµν (1.8)

In the rest frame of the fluid, uµ = (1, 0, 0, 0) and the energy momentum tensor can be

rewritten as

T µν =













ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P













. (1.9)

If there is no pressure or internal motion of particles, a perfect fluid becomes dust like.

At earlier times, when the Universe was radiation dominant, the main component of the

Universe was a perfect fluid which is characterized only by its mass density and by its

pressure.

5



1.2.2 Conservation of Energy Momentum Tensor

The conservation equation is given as

∇αT
µν ≡ T µν;α = 0. (1.10)

This equation tells us about the conservation of energy and momentum both and for a

flat spacetime it can be rewritten as

∂T µν

∂xα
= T µνα = 0. (1.11)

Energy Evolution: From the conservation law, Eq. (1.10), we can determine the

evolution of components of the stress tensor. Let us consider the case of perfect fluid.

The mixed energy momentum tensor in this case is given by

T µν =













ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P













. (1.12)

The conservation equation for energy momentum tensor can be written as

∇µT
µ
ν ≡ T µν;µ ≡ T µν,µ + ΓµαµT

α
ν − ΓαµνT

µ
α = 0, (1.13)

which generates four separate equations. Using,

gµν =













1 0 0 0

0 −a(t)2 0 0

0 0 −a(t)2 0

0 0 0 −a(t)2













, (1.14)

the FRW metric tensor for expanding flat spacetime and Christoffel symbols, we can find

out how the components evolve. The Christoffel symbol (Γαµν) is defined as

Γαµν =
1

2
gαβ(gνβ,µ + gβµ,ν − gµν,β). (1.15)
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where g’s represent the components of the metric. In case of ν = 0 component, the

equation becomes:
∂T µ0
∂xµ

+ ΓµαµT
α
0 − Γα0µT

µ
α = 0. (1.16)

Since the Universe is assumed to be isotropic, the off-diagonal terms in the energy

momentum tensor are zero, i.e. T µν = 0 if µ 6= ν. The only term that contributes is T 0
0 ,

and all other terms (T 1
0 , T

2
0 and T 3

0 ) vanish. This implies that µ = 0 in first term and

α = 0 in second term. Therefore,

∂T 0
0

∂x0
+ Γµ0µT

0
0 − Γα0µT

µ
α = 0. (1.17)

Coordinate x0 is the time coordinate and T 0
0 is the energy density denoted by ρ.

Therefore, we can write the above equation as

∂ρ

∂t
+ Γµ0µρ− Γα0µT

µ
α = 0. (1.18)

For the metric given in Eq. (1.14), the only surviving Christoffel symbols are Γi0i = ȧ/a

for i = 1, 2 or 3, where a is the scale factor and ȧ is the derivative of scale factor with

time component.
∂ρ

∂t
+ 3

ȧ

a
ρ− Γα0µT

µ
α = 0 (1.19)

Here, µ is a dummy index and can be replace by α. As only Γi0i components contributes

and T ii = −P , the above equation becomes

∂ρ

∂t
+ 3

ȧ

a
(ρ+ P ) = 0. (1.20)

This equation describes the evolution of the Universe; how the energy density scales

as a function of a depending upon the content of the Universe. For example, in the case of

non-relativistic (dust) particles, the pressure is zero, the conservation equation (1.20)

is
∂ρ

∂t
+ 3

ȧ

a
ρ = 0 (1.21)

Integrating equation (1.21) will give

ρm = ρ0

(a0
a

)3

(1.22)
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where ρ0 is the energy density at a0 (the subscript ’0’ is used for values of different

quantities at the present epoch). If we consider a0 to be the value of scale factor at present

then a0 = 1. The subscript ’m’ is for the nonrelativistic matter. The above equation

(Eq. 1.22) implies that if the Universe consists of only matter then energy density of the

Universe will scales as ρm ∝ a−3. As the number of particles, nm, in the Universe is fixed

and the volume of the Universe will scale as V ∝ a3, which gives ρm = (nm/V ) ∝ a−3

and the result remains the same.

For relativistic particles (radiation), the pressure is one third of the energy density,

P = ρ/3, which gives
∂ρ

∂t
+ 3

ȧ

a
(ρ+ ρ/3) = 0 (1.23)

On integration of this equation we have

ρR = ρ0

(a0
a

)4

(1.24)

the subscript ’R’ denotes radiation or relativistic matter. In this case, energy density

evolves as ρR ∝ a−4. The volume of this Universe evolves in the same manner as in the

case of nonrelativistic Universe, i.e., V ∝ a3. The difference in the evolution of energy

density, when compared to energy density of non-relativistic matter, arises because of

the nature of the particles. For relativistic particles, say photons, the energy is given by

E ∝ hν ∝ h/λ. Therefore, energy density becomes ρR ∝ (h/V λ). As, λ is proportional

to the scale factor, a, we have ρ ∝ a−4. The energy density of a Universe with radiation

as its sole component decreases faster than a Universe which is composed of only non-

relativistic matter.

So far we have discussed the energy density evolution in case of non-relativistic and

relativistic matter. A generalized expression for any fluid with equation of state P = P (ρ)

is determined as follows. Consider a perfect fluid with P = wρ, where w is the equation

of state parameter. The energy conservation equation (Eq. 1.20) takes the form,

∂ρ

∂t
+ 3

ȧ

a
(ρ+ wρ) = 0 (1.25)

and the energy density as a function of scale factor is given by

ρ = ρ0

(a0
a

)3(1+w)

(1.26)

These are the necessary elements required to understand Einstein’s field equation to
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understand the behaviour of particles under the influence of gravity and the gravitational

effects of particles. For a particular stress-energy tensor, we can find out the metric tensor

of that spacetime using Einstein’s field equations.

1.3 Hubble’s Law

In 1929, Edwin Hubble studied distances and the recession velocities of twenty-five galax-

ies and concluded that the galaxies are receding from us and this leads to the discovery

that the Universe is expanding[5]. He found that these galaxies are moving away from

each other at a speed that is proportional to the distance between them. This was dis-

covered as a redshift in the galaxy spectra. Redshift of a galaxy tells about its radial

velocity. The further away a galaxy is, faster it recedes and the larger is the redshift

introduced in the spectrum. Consider a galaxy at a distance r from earth, it will move

away with a velocity v ∝ r, or

v = H0r (1.27)

the proportionality constant H0 is called the Hubble constant or Hubble parameter. At

a particular time H assumes a value that is same at all points in space, in that sense it

is a constant. It is more appropriate, therefore, to use the term Hubble parameter.

The Hubble parameter is a measure of the rate at which Universe is expanding and

its units is time inverse. At present, H(present) ≡ H0 and its value ranges between 65-75

km/s/Mpc [6, 7]. This means that a galaxy which is 1Mpc away from us will be moving

with a speed of 65-75 km/s. Although the receding velocity of a galaxy can be calculated

from its redshifted spectrum, it is very difficult to measure the exact value of Hubble

parameter today because of the uncertainty in measurements of distance to the galaxy.

The inverse of the Hubble constant gives the age of Universe to be about 13 billion years.

The Proper distance is the actual or physical distance that separates two objects. It

is represented as r as in Eq. (1.27). It changes with time as the Universe undergoes

expansion. On the other hand, the comoving distance or the coordinate distance is not

a function of time. In an expanding or a contracting Universe, it remains the same. It

acts as label of points and is denoted by x. The relation between physical distance and

the comoving distance is given by

r(t) = a(t)x (1.28)

9



where a(t) is scale factor which is a function of time, as described earlier. The information

about the evolution of Universe is contained in the scale factor and it is a dimensionless

quantity. At present, a(t = t0) = a0, and is assumed to be unity, implying that comoving

distance is same as physical distance. On differentiating Eq. (1.28) w.r.t. time, we get

ṙ(t) = ȧ(t)x (1.29)

v = ȧ(t)x =
ȧ(t)

a(t)
a(t)x (1.30)

v =
ȧ(t)

a(t)
r(t). (1.31)

Compare this equation with Eq. (1.27), we get Hubble parameter in terms of scale

factor

H =
ȧ(t)

a(t)
(1.32)

The information of motion of galaxies relative to us is embedded in their spectra.

When a galaxy is moving away from us, the photons emitted by the galaxies have a lower

frequency. The resulting spectral lines have a longer wavelength. This is redshifting of

photons and is denoted by redshift, z. If λo and λe are the observed wavelength and

emitted wavelength of photons from a galaxy, then the redshift is defined as the change

in wavelength divided by the wavelength of emitted photons

z =
λo − λe
λe

(1.33)

1 + z =
λo
λe
. (1.34)

The redshift can be related to scale factor[8] as

1 + z =
a(t0)

a(t)
=

a0
a(t)

=
1

a(t)
(1.35)

here, a0 = a(t0) is the scale factor at present which is equal to unity. Once redshift is

known, we can easily see if objects are moving away from each other or coming closer i.e.

if the Universe is expanding or contracting. If z is negative, the photons are blueshifted

and Universe is contracting. If z is positive, the Universe is undergoing expansion.
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1.4 Friedmann Equations and Solutions

Friedmann equations describe a relativistic, homogeneous and isotropic Universe. Fried-

mann first derived these equations by solving Einstein’s field equations using the Friedmann-

Robertson-Walker (FRW) metric. (These equations can also be derived by using New-

tonian mechanics[8, 9, 10].) From the solution of Einstein’s equations, we obtain a set

of coupled differential equation. These coupled equations are described in terms of scale

factor, a(t), energy density of matter, ρ(t) and pressure, P (t).

ȧ2 + k =
8πG

3
ρa2. (1.36)

This equation is obtained from the 00 component of the Einstein equations. Scale fac-

tor, a(t), describes the relative expansion of the Universe and k in this equation, is the

curvature of the Universe. The equation (1.36) can be rewritten as

ȧ2

a2
+
k

a2
=

8πG

3
ρ. (1.37)

The contribution of the diagonal component of the metric in Einstein’s equation yields

another equation

ä+
2ȧ2

a
− 2k

a
= 4πG(ρ− P )a. (1.38)

Using Eq. (1.37), we can rewrite this equation as

ä

a
= −4πG

3
(ρ+ 3P ), (1.39)

this is also called acceleration equation. When ä is positive, or the quantity (ρ + 3P )

is negative, the expansion of the Universe is undergoing acceleration. If (ρ + 3P ) is

positive or ä is negative, the Universe is decelerating. For a fluid with equation of state

P = wρ, if w > −1/3, according to equation (1.39), the Universe undergoes a decelerated

expansion. For non-relativistic or relativistic matter, pressure is either zero or positive,

therefore these two components account only for a decelerated expansion, and cannot

account for an accelerated expansion.

In 1998, two teams observing distant Type Ia Supernovae independently found that

the expansion of the Universe is accelerating[11, 12]. This discovery is one of the most

important development in Cosmology, which indicates existence of some form of fluid

responsible for this accelerated Universe[13]. Observations suggest that ordinary matter

or baryons (atoms) contributes to approximately 4% of the total energy of the Universe
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only, another 23% is some form of dark matter and the rest is 73% is some form of energy,

yet to be discovered, sometimes called dark energy. Equation (1.39) indicates that when

pressure is sufficiently negative or when the equation of state parameter for a fluid is

less than −1/3, then the Universe undergoes accelerated expansion. The evolution of the

Universe for these components is shown in figure 1.1.

To understand the accelerated expansion, many models have been proposed. One

such explanation is by way of a cosmological constant, which was introduced by Einstein

himself in an attempt to achieve a static, finite Universe. The cosmological constant, Λ

was invoked in general relativity in order to counter the gravitational repulsive terms,

which would, otherwise, gives a Universe that will eventually collapse. The cosmological

constant was introduced in 1917, but later in 1929, when Hubble discovered that the

Universe is expanding, it was dropped. The equation of state parameter for cosmological

constant is w = −1, therefore, if it is the component that describes dark energy then it

can, cause the recent cosmic acceleration. In particle physics, cosmological constant is

considered as the vacuum energy density. However, the energy scale of Λ in the field the-

ories is much larger than that of the present Hubble constant H0.This is the cosmological

constant problem [14]. A few more models have been proposed in support of dark energy

analysis. We will discuss a few of these models below.

1.4.1 Cosmological constant

Einstein first introduced the cosmological constant Λ in order to explain a static Universe.

It was assumed that the Universe is dominated by non-relativistic matter and the con-

tribution of relativistic component is negligible and, hence, the energy density is positive

but the pressure in the Universe is almost zero. However, the Universe containing only

matter cannot be static. Therefore, to have a static Universe, Einstein introduced an

additional term containing Λ in field equations, which became

Rµν −
(1

2
R− Λ

)

gµν = κ2Tµν . (1.40)

For the FRW spacetime, the Friedmann equations take the form

ȧ2

a2
+
k

a2
=

8πG

3
ρ+

Λ

3
, (1.41)
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here, ρ = ρm + ρR, P is the pressure and the acceleration equation becomes

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (1.42)

From equation (1.41) we can say that this addition of cosmological constant term is

equivalent to introducing another component in the Universe. The energy density of this

component is given by ρΛ ≡ Λ/8πG, which is constant. The fluid equation (1.20), which

remains unchanged by addition of Λ term, states that in order to have a constant energy

density, the pressure for cosmological constant must be

PΛ = −ρΛ = − Λ

8πG
. (1.43)

So, a static model of the Universe is achieved by introducing the Λ term. In this model,

ȧ is zero and ä also vanishes and equation (1.42) becomes

0 = −4πG

3
(ρ+ 3P ) +

Λ

3
. (1.44)

Therefore, Λ = 4πGρ for the case of static Universe. Using condition ȧ = 0, the equation

(1.41) becomes
k

a2
=

8πG

3
ρ+

Λ

3
= 4πGρ. (1.45)

This shows that the Einstein’s Universe which is dominated by non-relativistic matter,

is static and has a positive curvature. However, Hubble published his results on the

relationship between redshift-distance in 1929, which stated that the Universe is, infact,

expanding and not static. This discovery made Einstein drop the term cosmological con-

stant Λ term by taking the value of Λ to be zero in the field equations. In 1998, the

observations of redshift-distance relationship for Type-Ia supernovae suggested that the

Universe is undergoing accelerated expansion. In order to explain this accelerating ex-

pansion, the cosmological constant is reintroduced in the field equations.

Cosmological constant provides the simplest explanation of this accelerated expansion

but it is not the only candidate. The accelerated expansion of the Universe is caused by

a component of the Universe which has a negative pressure, called ’dark energy’. Many

other models have, also, been introduced that have an equation of state which is less than

−1/3 and gives rise to late time accelerated expansion.
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1.4.2 Dark energy

In the absence of any consensus on the model for the accelerated expansion, it is a

challenge to connect theory with observations. However, for dark energy, the equation of

state provides a useful phenomenological description. As equation of state is the ratio of

pressure to energy density, it is also closely connected to the underlying physics. We will

now discuss a variety of formalisms that have been used to describe dark energy.

Parameterizations: The simplest parameterization of dark energy is w = constant.

This form fully describes vacuum energy (w = −1) and together with ΩDE and Ωm, pro-

vides a two-parameter description of the dark energy for a flat Universe (three-parameter

description if curvature is assumed).

A number of two-parameter descriptions of w have been explored, a few are given

below:

• w(z) = w0+w
′ z
1+z

(the Chevallier-Polarski-Linder (CPL) parameterization [15, 16]),

• w(z) = w0 + w′ z
(1+z)2

, the Jassal-Bagla-Padmanabhan parameterization [17]

• w(z) = w0 + w′log(1 + z), the logarithmic parameterization[18],

• w(z) = w0 + w′sin(z), the sine parameterization [19],

• w(z) = w0 + w′z, the linear parameterization [20],

• w(z) = w0 + w′ z
1+z2

, Feng-Shen-Li-Li (FSLL) model[21].

For low redshift they are all essentially equivalent, but for larger redshift they exhibit

different behavior. The CPL parameterization is the most commonly used description of

dark energy. The cosmological parameters in all parameterizations mentioned above are

Ωm,ΩDE, w0 and w′.We try to understand whether the dark energy is a constant or if it

varies with time. we will discuss a few of these parameterizations and their cosmological

implications in chapter 2. There exists other models of dark energy in which the late-time

acceleration of the Universe is derived by the scalar field models.

Scalar fields: The fine tuning problem facing dark energy models with a constant

equation of state can be avoided if the equation of state is assumed to be time dependent.

Models based on scalar fields alleviates this problem. In these models the equation of

state evolves depending upon the form of scalar field potential. There are many types of
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scalar fields introduced in the literature such as quintessence [22, 23, 24, 25, 26, 27, 28],

phantom fields [29], tachyonic scalar fields [30, 31, 32, 33], etc. The scalar fields are

also divided into two categories depending upon the evolution of w; thawing fields and

freezing fields. In some freezing models, the scalar field energy density tracks that of

the dominant component (radiation or matter) at early times and then dominates at

late times, providing a dynamical origin for the coincidence. In thawing models, the

coincidence is transitory and reflects the mass scale of the scalar field. The motivation

for using scalar fields is that it is easy to arrive at conditions for the accelerating state of

the Universe using scalar fields and, also, for suitable choices of potentials, we see that

this model satisfies conditions for all the previous epochs, i.e., the radiation and matter

dominated epochs (see chapter 3).

1.4.3 Solutions of Friedmann equations

In a homogeneous and isotropic Universe, for a barotropic fluid with equation of state

P = wρ, the relationship between energy density ρ, pressure P , and scale factor a(t)

is given by Friedmann equation (1.37). Observations suggests that the curvature of the

Universe, although non-zero, is very small [34]. We will, therefore, assume a spatially flat

Universe. For a spatially flat Universe, k is zero, in which case Friedmann equation takes

the form

H2 =
ȧ2

a2
=

8πG

3
ρ. (1.46)

Here, ρ denotes the total energy density of the Universe. It can be written as

ρ = ρm + ρR + ρDE (1.47)

where, ρm, ρR and ρDE denotes the energy density of non-relativistic contents, relativistic

contents and the dark energy respectively. The density of the Universe when it is flat or

expanding critically, for a particular H is called the critical density, ρc, is given by

ρc =
3H2

8πG
. (1.48)

At present, if ρc,0 is the critical density, the Friedmann equation becomes

H2 = H2
0

ρ

ρc,0
= H2

0

(

ρm
ρc,0

+
ρR
ρc,0

+
ρDE
ρc,0

)

. (1.49)
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We can now define a dimensionless quantity called density parameter, Ωi (where i = m,R

or DE),

Ωi(a) =
ρi(a)

ρc(a)
. (1.50)

Then, we will get

H2 = H2
0

(

Ωm,0

a3
+

ΩR,0

a4
+

ΩDE,0

a3(1+w)

)

. (1.51)

At present time, H(a) = H0, if we use the definition of critical density in Friedmann

equation we get,

1 = Ωm,0 + ΩR,0 + ΩDE,0 (1.52)

this is true at all times. The total sum of all energy density parameter components is

equal to one. Now we will consider a Universe with only one kind of matter present in it.

1.4.4 Non-relativistic matter dominated flat Universe

In this case Ωm,0 = 1 while ΩR,0=ΩDE,0 = 0. The Friedmann equation becomes

H2 = H2
0Ωm,0 = H2

0

(a0
a

)3

(1.53)

(

da

dt

)2

= H2
0

1

a
(1.54)

a0 is the scale factor at present which is equal to one. In the limit of early time, that is,

at time t = 0 scale factor vanishes,a = 0, the solution of the above equation is

a(t) =

(

3

2
H0t

)2/3

(1.55)

or the age of the Universe is

t =
2

3H0

a3/2 (1.56)

and at present it is t0 = 2
3H0

. The evolution of scale factor with cosmic time is shown

in figure 1.1 by red solid curve. In this case H(t) ∝ (1/t) and hence it is a decelerating

Universe. This is Einstein-de Sitter Universe.
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1.4.5 Relativistic matter dominated flat Universe

In this case ΩR,0 = 1 while Ωm,0=ΩDE,0 = 0. The Friedmann equation becomes

H2 = H2
0ΩR,0 = H2

0

(

1

a

)4

. (1.57)

At t = 0, a = 0, the solution is

a(t) = (2H0t)
1/2 (1.58)

and the age of Universe is

t =
a2

2H0

. (1.59)

This is also a decelerating Universe as H(t) ∝ (1/t) and the age of Universe is t0 =

1/(2H0). For this case, the evolution of scale factor as a function of cosmic time is shown

in figure 1.1 by blue solid curve.

1.4.6 Cosmological constant dominated flat Universe

In this case ΩDE,0 = 1 while Ωm,0=ΩR,0 = 0.The Friedmann equation becomes

H2 = H2
0ΩDE,0 = H2

0 (1.60)

as for Λ dominated Universe w = −1. The solution of this equation is obtained by

assuming t = 0 at a = 1 , i.e. today, which is

a(t) = eH0t. (1.61)

In this case, the age of the Universe is infinite and it is a Universe which is exponentially

expanding. For a Λ dominated Universe, the evolution of scale factor with time is shown

in figure 1.1 by the gray solid curve.

The figure 1.2 represents the evolution of the Universe as a function of scale factor.

Here, we considered a flat Universe with non-relativistic, relativistic matter and dark

energy. The energy density parameter for relativistic component is obtained from the

non-relativistic one (Ωr = Ωm/3000). The different curves are obtained for different

Ωm values. Green curve represents a Universe with Ωm=0.1, black curve is drawn for

Ωm=0.27, red curve is for a Universe containing Ωm=0.4, the orange curve is for Ωm=0.6
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Figure 1.1: The scale factor as a function of cosmic time t is shown for an expanding
single component flat Universe. The cosmic time is plotted in terms of H0(t − t0). The
red curve is for a matter only flat Universe, the blue line shows the evolution of scale
factor in radiation only flat Universe, while the gray solid line is obtained by assuming a
flat Universe containing cosmological constant only.
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Figure 1.2: The figure shows the evolution of the Universe as a function of scale factor.
The y-axis shows the ’velocity’ of the Universe with which it expands and x-axis denotes
the scale factor. To obtain the plot a flat Universe with non-relativistic, relativistic matter
and dark energy is considered. The figure shows the expansion of Universe in radiation
dominated era (before a ∼ ×10−3, depending upon the value of Ωm), matter dominated
era (10−3 to 0.4) and then dark energy dominated era. The different curves shows are
drawn for Ωm= 0.1, 0.27, 0.4, 0.6, 1 respectively.

and the blue curve is for a Universe with Ωm=1. The slope of the curves at any time gives

us the value of Hubble parameter at that time, which in turn, gives us the information

about the rate of expansion of the Universe. The velocity of expansion decreases very

fast at smaller scale factor, this is because at earlier times the Universe is dominated by

relativistic matter and the Universe undergoes decelerated expansion (as ȧ ∝ 1
a
). After

radiation dominated era is the non-relativistic matter dominated era, in which ȧ ∝ 1
a1/2

and the Universe will continue to undergo decelerated expansion. But the rate of rate of

deceleration in this case is smaller than that in relativistic matter dominated case. Then,

at scale factor a ∼ 1, we have the dark energy dominated era in which the Universe enters

an accelerated expansion phase. The rate of acceleration depends upon the dark energy

content of the Universe, ΩDE = 1− Ωm − ΩR.
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1.5 Distance Measurements

To get a sense of separation of objects, we need a measure of distances in cosmology.

As it is not possible to directly measure the distance of objects from us, the distance

is associated with some observable quantity of the object such as its luminosity or the

redshift of galaxy or the angular diameter of an object etc. These observables depends

upon the electromagnetic radiation which is emitted by the object and collected by the

receiver or the observer.

Let’s consider a far away source located at r = re, which emits the light (electromag-

netic radiation) at time t = te and the receiver which (observer) is situated at position

r = r0 = 0 collects the radiation at time t = t0. The coordinates (te, re) are associ-

ated with the object, when the light is emitted, and the coordinates (t0, 0) describes the

observer. The coordinates of these two points ( when the light is emitted and when it

is observed) in spacetime are connected by null geodesic (ds2 = 0). If we assume the

radiation wave is propagating along θ = constant and φ = constant, the Eq. (1.1) gives

dt2 = a2(t)
dr2

1− kr2
, (1.62)

integrating this equation will give a relation between re and te

∫ te

t0

dt

a(t)
=

∫ re

0

dr√
1− kr2

. (1.63)

The function re(z) relates the radial distance of a light emitting source and the redshift

when the light emission occurs and hence its very useful. Now, we will define a quantity

that is also a function of redshift called the Hubble radius

dH(t) = dH(z) =
a

ȧ
(1.64)

and using the definition of Hubble radius we can easily interchange time derivatives to

redshift as

dt =
dt

da

da

dz
dz = −dH(z)

dz

1 + z
. (1.65)

So, the equation (1.63) becomes,

1

a0

∫ z

0

dH(z)dz = S−1
k (re) (1.66)

where S−1
k = [sinh−1(re), re, sin−1(re)] for k = −1, 0,+1 respectively. The function re
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Figure 1.3: In this figure the variation of luminosity distance dL as a function of redshift,
z, is shown. These curves are plotted for a flat wCDM model containing non-relativistic
matter (Ωm), relativistic matter (ΩR = Ωm

3000
) and dark energy ΩDE. The curves corre-

sponds to different values of Ωm. The pink curve is for Ωm= 0.1, black curve shows the
luminosity distance for Ωm=0.27, red, green , dark blue and light blue curve are drawn
for Ωm= 0.4, 0.6, 0.8 and 1 respectively. Luminosity distance is in units of c/H0.

can be written as

re(z) = Sk(α), α =
1

a0

∫

0

zdH(z)dz. (1.67)

The quantity re is of much use in cosmology as it helps us calculating two impor-

tant quantities. First quantity is the luminosity distance of cosmological objects. This

quantity relates the luminosity with the observed flux from which we can calculate the

luminosity distance. Also, the second quantity we can calculate using this function is

the angular sizes of objects. Consider a source of luminosity L which emits photons at
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redshift z, then the flux F observed is given by

F =
1

area

dEo
dto

(1.68)

where, dEo is the amount of energy observed in dto time. If ω is the frequency of photon

and intensity is denoted by I, then the quantity I/ω3 is invariant. As a consequence

of this, in the expanding Universe the intensity scales as a−3. In terms of redshift its

variation is represented as

I(ω(1 + z); z) = I(ω; 0)(1 + z)3. (1.69)

At instant t=0 or at a = a0, a sphere with radius re which is the coordinate radius, has

an area of 4πa20r
2
e . The flux observed is, then, given by

F =
1

4πa20r
2
e

1

(1 + z)2

(

dEe
dte

)

=
1

4πa20r
2
e

1

(1 + z)2
L (1.70)

where L = dEe/dte and dEe is the energy emitted in time dte. As the flux of any

object at a distance d is given as flux = luminosity/4r2, the luminosity distance, dL, can

be defined as

dL =

(

Luminosity

4πflux

)1/2

= a0re(z)(1 + z) = a0(1 + z)Sk(α). (1.71)

For a flat Universe with dark energy, non-relativistic and relativistic matter as its

constituents, the luminosity distance is given by

dL =
c(1 + z)

H0

∫ z

0

dz′
√

Ωm(1 + z′)3 + ΩR(1 + z′)4 + ΩDE(1 + z′)3(1+w)
, (1.72)

where w is the dark energy equation of state parameter. The behaviour of luminosity

distance is shown in figure 1.3. The figure shows luminosity distance dL in units of

c/H0 as a function of redshift, z. In the figure we consider a flat Universe containing

non-relativistic matter (Ωm), relativistic matter (ΩR = Ωm

3000
) and dark energy ΩDE. The

different curves corresponds to different values of Ωm considered. The pink curve is for

Ωm= 0.1, black curve shows the luminosity distance for Ωm=0.27, red, green, blue and

orange curve are drawn for Ωm= 0.4, 0.6, 0.8 and 1.0 respectively.

Another important quantity that make use of re(z) is the angular diameter of an

object. Consider a source with a physical size D. When observed from large distances it
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Figure 1.4: In this figure the variation of angular diameter distance dA as a function
of redshift, z, is shown. These curves are plotted for a flat wCDM model containing
non-relativistic matter (Ωm), relativistic matter (ΩR = Ωm

3000
) and dark energy ΩDE. The

different curves corresponds to different values of Ωm (from top to bottom curve corre-
sponds to Ωm = 0.1, 0.27, 0.4, 0.6, 0.8, 1 respectively).

subtends an angle δ. Let dA denotes the angular diameter distance to the source then δ

= D/dA. In the limits of small δ, D = rea(te)δ and angular diameter distance becomes

dA(z) = re(z)a(te) = a0re(1 + z)−1. (1.73)

From equations (1.71) and (1.73), we can see that dL = (1+ z)2dA. The figure 1.4 shows

the variation of angular diameter distance as a function of redshift for a flat Universe

containing non-relativistic matter (Ωm), relativistic matter (ΩR = Ωm

3000
) and dark energy

ΩDE. The angular diameter distance is plotted in units of c/H0. The different curves

shows the evolution of dA in a Universe with different value of non-relativistic contents.

Pink curve is drawn for Ωm=0.1, black corresponds to Ωm=0.27. The red, green, blue

and orange curves corresponds to Ωm = 0.4, 0.6, 0.8 and 1 respectively.

Distance Modulus: The apparent magnitude, m, of a celestial object is the apparent
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flux of the object with respect to some reference flux,

m = −2.5 log10

(

F
Fref

)

. (1.74)

It measures how bright an object appear to us. The absolute magnitude, M , is defined

as the magnitude the object would have if it were located at a distance of 10 pc away

from the observer. The difference between apparent magnitude and absolute magnitude

is called distance modulus and is given by:

µ ≡ m−M = −2.5 log10

(

F
Fref

)

− (−2.5) log10

(

F10 pc

Fref

)

,

= −2.5 log10

(

L

4πd2L
· 4π(10 pc)2

L

)

,

= 5 log10

(

dL
10 pc

)

. (1.75)

Using the definition of luminosity distance (Eq. (1.72)), distance modulus can be written

as

µ = 5 log10

(

dL
10 pc

)

,

= 5 log10





c

H0

(1 + z)

∫ z

0
dz′√

Ωm(1+z′)3+ΩR(1+z′)4+ΩDE(1+z′)3(1+w)

10 pc



 . (1.76)

This is the equation we will use in the supernovae (SNIa) analyses.

1.6 Observational data

In this section, we discuss the different types of observations that we used in our analysis.

These observations include Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations

(BAO) data and the Hubble parameter (H(z)) measurements.

1.6.1 Type Ia supernovae data

The evidence for recent accelerating expansion came from the study of Type Ia supernova

observations. Two independent groups, the Supernova Cosmology Project (SCP) [11] and

the High-z Supernova Search Team [12], studied these cosmic objects and reported the
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same discovery, individually. In the original observations, the SCP team had observed

42 Type Ia supernovae (SNIa), while the other team had studied 34 closeby SNIa and

16 high-z supernovae. With improved technology, the number of SNIa observed has

improved drastically.

Supernovae are believed to be created by two types of processes: (i) a massive star

in later stages of its life undergoing gravitational collapse of core, or (ii) a thermonu-

clear explosion in a white dwarf star [35]. The first mechanism is called the core collapse

mechanism and the second mechanism is powered by the great amount of energy released

during the nuclear reaction undergoing in the interior of the star under extreme condi-

tions, and its called the thermonuclear mechanism.

Classification of supernovae

The supernovae are classified observationally by studying their lightcurves and the ab-

sence of spectral lines associated with different chemical elements. If hydrogen lines are

absent in the spectra, the supernova is classified as Type I supernova, else, the presence

of H-lines indicates a Type II supernova. Type I supernovae are further sub-classified

into three categories; spectra of Type Ia has strong Si absorption lines, Type Ib has He-

lium lines, and Type Ic have none of hydrogen, silicon or helium lines in their spectra.

Similarly, further sub-classification of Type II supernovae are there depending upon their

light curves. All the supernovae except Type Ia are understood to be caused by core

collapse of massive stars [35].

Type Ia Supernova is the result of a thermonuclear runaway in a Carbon-Oxygen white

dwarf (WD) star. This star is an accreting white dwarf star in a binary system with a

companion star, which could be a main sequence staror another white dwarf star.Because

of the large gravity of WD, it pulls material from the binary companion, and consequently,

the mass of WD increases. As the white dwarf star approaches the Chandrasekhar mass

limit, the electron degeneracy pressure cannot hold the gravitational collapse any longer,

and the temperature of the core increases. This leads to the fusion of Carbon inside the

star, which increases the temperature even further. This gives rise to a fusion of nuclei

inside the star. As a result, carbon and oxygen nuclei convert into more stable heavier

elements (56Ni, 56Co or 56Fe), releasing vast amounts of energy. The resulting energy is

more than enough to unbind a star and the star explodes. The energy of this explosion

is so large that it can outshine the host galaxy of the white dwarf.

Type Ia supernovae belong to a special class of objects, called the ‘standard candles’[36].

These objects have a uniform intrinsic brightness, which is known. By comparing the lu-
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minosity of the object to the observed brightness, one can easily calculate the distance to

the object. The uniformity is believed to be due to the similarity in mass limitthe Chan-

drasekhar mass limit.The SNIa are not ”exactly” standard candles. They have similar but

not the same light curves; their peak brightness varies by a factor of two. However, as their

luminosities are found to be closely related, SNIa can be standardized using empirical

methods and correlations using supernovae luminosity and other variables. Two com-

monly used techniques for this purpose are: (i) light curve width-luminosity relationship

[37] and (ii) luminosity and SN color relationship [38]. Hence, SNIa are ‘standardizable’

candles. They are powerful tools to measure very large distances in Universe as they are

visible at very large distances because of their extreme brightness.

We quantify the brightness of an object by way of ‘magnitude’. The brighter an object

is, the smaller is its magnitude and vice-versa. Apparent magnitude is the magnitude of

an object measured from earth. Consider two objects A and B with apparent fluxes FA

and FB. The apparent magnitude of these objects are defined as

mA = −2.5log10

(

FA
Fref

)

, mB = −2.5 log10

(

FB
Fref

)

. (1.77)

If we subtract the two, we get

mA −mB = −2.5 log10

(

FA
FB

)

. (1.78)

This equation implies that if mA = 3.5 and mB = 1, then star A is 10 times fainter than

the star B. Now, we define a ‘absolute magnitude’, which is the apparent magnitude of

an object which is placed at a distance of parsecs from the Earth. (1 parsecs = 3.26 light

years.) Using Eq. 1.75, the absolute magnitude M of an object in terms of an apparent

magnitude m and luminosity distance dL is

µ = m−M = 5 log10

(

dL
10pc

)

, (1.79)

where µ is the distance modulus. From the above equation we see that by comparing the

apparent magnitude of an unknown object with the object located at 10 pc away from us,

we can find an estimate of distance to the unknown object. In other words, the absolute

magnitude and the apparent magnitude of the object are the same if it were located at a

luminosity distance ofdL = 10 pc from the Earth.
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When distance is expressed in units of Mega-parsecs the Eq. 1.79 can be rewritten as

m−M = 5 log10dL + 25. (1.80)

At the peak brightness, the absolute magnitude of SNIa is observed to be approximately

M = −19. If we know the apparent magnitude of a SNIa, we can calculate the luminosity

distance by using Eq. 1.80 (as SNIa are standardized candles, M is the same for all, i.e.∼
-19).

These observations are used in studying the expansion history of the Universe. By

studying the spectral data of a SNIa and evaluating the frequency or wavelength of the

photons, the redshift corresponding to a particular SNIa can be estimated. The luminosity

distance or distance modulus of a SNIa is a function of redshift. So by calculating the

luminosity distance theoretically and comparing it with observed data, we can conclude

the expansion history of Universe.

Consider a Universe with non-relativistic matter and dark energy as its dominant

components. The evolution of the Universe is then given by the Hubble parameter as

H(z) = H0



Ωm0
(1 + z)3 + ΩDE0

exp







z
∫

0

3
[

1 + wDE(z
′)
]

1 + z′
dz′







+
(

1− ΩDE0 − Ωm0

)

(1 + z)2





1/2

, (1.81)

where, H0 is the present day value of Hubble parameter, wDE is the equation of state of

dark energy, Ωm0
, ΩDE0

are the energy density of non-relativistic matter and dark energy

at present. The third term describes the curvature of the Universe. When redshift is very

small (i.e. z ≪ 1), the luminosity distance is given by

dL(z) =
1

H0

[

z +
1

4

(

1− 3wDEΩDE0
+ Ωk0

)

z2 +O(z3)

]

. (1.82)

For a flat Universe (k=0) without dark energy (ΩDE0
= 0), then the luminosity distance

for small redshift range (z ≪ 1) can be written as

dL(z) =
1

H0

[

z +
1

4
z2 +O(z3)

]

. (1.83)

If we consider only non-relativistic matter (ΩDE = 0), then the luminosity distance to
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an object is smaller than the case when dark energy component contributes to the total

energy density of the Universe (for dark energy w < −1/3). For a fixed set of parameters,

a smaller wDE leads to a larger value of dL, and the higher the value of dark energy density

parameter, larger is the luminosity distance. Also, if all other parameters are fixed, and

only Ωk is varied, then an open Universe will have a higher value of luminosity distance

than in the case of a flat Universe.

In case of a flat Universe (Ωk = 0), where only non-relativistic matter and dark energy

(with EoS wDE = constant) contributes to the total density of the Universe, the Hubble

parameter is given by

H(z) = H0

√

Ωm0
(1 + z)3 + ΩDE0

(1 + z)3(1+wDE), (1.84)

and the luminosity distance is given by

dL(z) =
(1 + z)

H0

∫

dz′
[

Ωm0
(1 + z′)3 + ΩDE0

(1 + z′)3(1+wDE)
]1/2

, (1.85)

which we solve numerically. We calculate luminosity distance for 580 data points corre-

sponding to each SNIa in the Union2.1 Supernovae dataset [39] and compare the theo-

retically calculated distance modulus to the observed one. Using this, we constrain the

parameters Ωm and wDE (which we denoted by Ωm and w respectively, in chapter 2) and

the results of which are reported in next chapter.

1.6.2 Baryonic Acoustic Oscillation (BAO) Measurements

When the Universe was very young, its made up of hot plasma of photon and baryons.

Photons were trapped between the atoms, bouncing back and forth. This produced

density perturbations in the plasma which travelled with the speed of sound [40]. As

space expanded, the density of the Universe decreases and temperature dropped low

enough that the baryons could combine and become electrically neutral. Tt which point

the Universe became transparent and the photons were released. The photons have been

propagating freely ever since, forming the cosmic microwave background (CMB) which

we can detect today. This epoch is called the epoch of ”recombination.”

With the freeing of the photons, the pressure that caused the baryons to oscillate

was lifted, and the baryons were frozen in position. As the Universe expanded, the

small density perturbations formed structures. The imprint of the acoustic peaks is still
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visible in the distribution of galaxies today. The cosmological surveys have found that

the galaxies tend to have excess clustering on scales of about 150 Mpc. This is the first

acoustic peak.

This provides us with a new cosmological test. The length at which this excess

clustering is found, is a ”standard ruler” - a fixed length that doesn’t change (apart from

the change due to the expansion of the Universe). So this gives us a way to measure

distances corresponding to different redshifts, which is quite independent of supernovae

and the other distance ladder techniques. One can compare all the lengths measured

directly to the size of the acoustic peak in the microwave background, and therefore

much earlier times can be probed by those by any other methods. The sound horizon

at which baryons became transparent to photons determines the location of the baryon

acoustic oscillation peak length scale. This epoch, called the drag epoch, occurs at the

redshift zd and the length scale is

rs(zd) =

ηdrag
∫

0

cs(η) dη, (1.86)

where cs is the speed of acoustic wave and η is conformal time. The constraints on

zd [41, 42] and rs(zd) [42] from WMAP fata are found to be zd ≈ 1020.5 ± 1.6 and

rs(zd) = 153.3± 2.0 Mpc.

In principle, we can measure the angle distribution orthogonal to the line of sight

θs(z) and the oscillation along the line of sight δzs(z) given by [43]

θs(z) =
rs(zd)

(1 + z)dA(z)
, δzs(z) =

rs(zd)H(z)

c
, (1.87)

where c is the speed of light.

The ratios θs(z) and δzs(z) are obtained together from a spherically averaged spectrum

as they cannot be measured independently [44]. The combined distance scale ratio for

θs(z) and δzs(z) is given as

[

θ2s(z)δzs(z)
]1/3

=
rs(zd)

[

(1 + z)2d2A(z)c/H(z)
]1/3

, (1.88)
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or an effective distance ratio

DV (z) =

[

(1 + z)2d2A(z)
c

H(z)

]1/3

. (1.89)

In 2005, Eisenstein et al. [44] obtained DV (z) = 1370± 64 Mpc at z = 0.68.

In 2007, Percival et al. [45], measured the effective distance ratio (sometimes in litu-

rature it is denoted by dz) defined by

rBAO(z) =
rs(zd)

DV (z)
, (1.90)

at two different redshifts. This is based on data from the 2-degree Field (2-dF) Galaxy

redshift survey. In 2010, Percival et al. used SDSS data to determine the same quantity

[46] and in 2011, using 6dF Galaxy Survey (6dFGS) measurements, Beutler et al.[47]

provide another observation. Then in 2011, Black et al.[48] considered the acoustic pa-

rameter introduced by Eisenstein et al.[44], and based on the data from WiggleZ Dark

Energy Survey found A(z) at three different redshifts.

1.6.3 Hubble parameter H(z) measurements

The Hubble parameter data is a data showing cosmological expansion rate as a function

of redshift. The data that we used has 28 data points corresponding to redshifts ranging

from z ∼ 0.07 to 2.3. The data points are taken from a number of sources (for details see

[49, 50, 51, 52, 53, 54, 55, 56, 57]).
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Chapter 2

Fluid models of Dark energy

In this chapter, we constrain dark energy model parameters using different observations

at low redshifts. Consider the dark energy as a barotropic fluid, with the equation of

state a constant as well the case where dark energy equation of state is a function of

time. We compare constraints obtained from the observations (discussed in chapter 2)

and also do a combined analysis. The combined observational constraints put strong

limits on variation of dark energy density with redshift. In previous chapter we discussed

the ΛCDM model and its shortcomings. Subsequently we discuss some other models of

dark energy. This chapter is adapted from A. Tripathi, A. Sangwan, and H. K.

Jassal, JCAP, 1706(06):012, 2017[58].

2.1 wCDM model of dark energy

The cosmological constant, time-independent dark energy is a spatially homogeneous

fluid with equation of state parameter given by wΛ = PΛ/ρΛ = −1, where ρΛ and PΛ

are the fluid energy density and pressure respectively. We can model dark energy as a

spatially-homogeneous fluid with equation-of-state parameter w = PDE/ρDE < −1/3, an

arbitrary constant, where ρDE and PDE are the energy density and pressure of the fluid

denoting dark energy respectively. When w = −1 the wCDM parameterization reduces
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to ΛCDM. The evolution of the universe for a homogeneous and isotropic universe is

given by the evolution of Hubble parameter, which is

H(z) = H0

[

Ωm(1 + z)3 + ΩDE(1 + z)3(1+w) + Ωk(1 + z)2
]1/2

. (2.1)

k is the curvature at present. Since Ωm+Ωk+ΩDE = 1, we can write Eq. (2.1) explicitly

in terms of the three free parameters as

H(z) = H0

[

Ωm(1 + z)3 + (1− Ωm − Ωk)(1 + z)3(1+w) + Ωk(1 + z)2
]1/2

. (2.2)

Here, Ωm, w,Ωk) are the parameters that defines the model. For a spatially flat universe,

Ωk = 0. In this case the rate of expansion of the Universe is given by

(

ȧ

a

)

= H0

[

Ωm(1 + z)3 + (1− Ωm)(1 + z)3(1+w)
]1/2

. (2.3)

For the flat case, the wCDM model is described by parameters Ωm and w. The second

Friedmann equation or the acceleration equation in terms of energy density parameters,

is
(

ä

a

)

= −1

2
H2

0

[

Ωm

a3
+

ΩDE

a3(1+w)
(1 + 3w)

]

. (2.4)

For zero cosmological acceleration at the present time we set a = a0 = 1, ä = 0 at present

time we set a = a0 = 1 in Eq. (2.4), and get

Ωm + ΩDE (1 + 3w) = 0. (2.5)

Using ΩDE = (1− Ωm), in spatially-flat wCDM parameterization we can write the above

equation as

ωDE =
1

3 (Ωm − 1)
. (2.6)

In general, the energy density for any fluid with an equation of state w(z) is given by

ρ = exp

{

3

∫ z

0

dz

1 + z
[1 + w(z)]

}

. (2.7)

For dark energy with a constant equation of state, the above equation yields

ρDE = ρDE(z = 0)(1 + z)3(1+w). (2.8)
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Here ρDE(z = 0) is the present value of dark energy density. In the analysis we have con-

sidered a spatially flat universe with non-relativistic matter and dark energy as its main

components. As at smaller redshifts radiation is negligible, the relativistic component

can be ignored.

2.1.1 Constraints on cosmological parameters

By solving the cosmological equation 2.3 we get the evolution of the universe and to

constrain the parameters we use different observations discussed in previous chapters.

For the analysis we use χ2 technique,(see 5). For the wCDM model, the only parameters

we have to constrain are matter density parameter Ωm and equation of state of dark

energy w. The priors considered are listed in table 2.1. However, the evolution of the

universe also depends upon the present value of Hubble parameters. So we will also see

the variation in constraints as the value of Hubble parameter is changed. The Hubble

parameter is taken to be equal to 70 km/s/Mpc. This is because the absolute magnitude

of supernova is a nuisance parameter and as the determination of absolute magnitude

is degenerate with determination of the value of Hubble constant, and the latter is also

then a nuisance parameter [39]. Therefore, for consistency with the earlier analyses we

fix the value of H0 to 70 km/s/Mpc. Similarly, while analyzing the BAO observations,

the Dv(z) and A(z) have been determined using H0= 70 km/s/Mpc. But in case of H(z)

data we marginalize over the present value of Hubble parameter.

Constraints from Supernova Type Ia (SNIa) data: We minimize χ2 for supernovae

data with respect to the model parameters to find the best-fit parameter values and

constraint contours. Figure 2.1 shows constraints obtained from SNIa data on the dark

energy model we consider here. This figure shows 1σ, 2σ and 3σ contours corresponding to

67.3%, 95% and 99% confidence levels in the Ωm-w plane. Different contours corresponds

to different confidence levels.

The contours are obtained when Hubble parameter is considered to be equal to H0 =

70 km/s/Mpc. The minimum value χ2
m = 562.29 corresponds to the values w = −1.04

and Ωm = 0.29. The allowed range for equation of state parameter is −1.57 to −0.66

and Ωm = 0.05 to 0.43. This model is consistent with cosmological constant. Also, we

found that for SNIa data, if the value of Hubble parameter at present increases, the 3σ

allowed range decreases. From the results we found that if H0 = 70 km/s/Mpc, the

model is consistent with the cosmological constant model but as we go away from this

value, in both directions, our model shows less and less agreement with cosmological
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Figure 2.1: In figure we show the 1σ, 2σ and 3σ confidence contours obtained from the
analysis of SNIa data in Ωm-w plane. To obtain these contours we set Hubble parameter
H0=70 km/s/Mpc.

constant model.

The figure 2.2 represents dark energy density versus redshift. To obtain this figure

we assumed H0 = 70 km/s/Mpc. The white region in the middle is the allowed range

of dark energy density at 1σ level and the regions with slanted lines (Blue) and hatched

lines (red) allowed 2σ and 3σ ranges respectively. The solid blue region is ruled out. The

dotted line corresponds to w = −1/3 and the dotted-dashed line is drawn for w = −1,

cosmological constant.

Constraints from Baryon Acoustic Oscillation data: In an attempt to further tighten

the cosmological parameter constraints, we now include BAO data in the analysis. To

constrain cosmological parameters using BAO data we follow the procedure of Blake et
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Figure 2.2: The figure represents dark energy density versus redshift for the SNIa obser-
vations. The figure is plotted for H0 = 70 km/s/Mpc. The white region in the middle
is the allowed range of dark energy density at 1σ level and the regions with slanted lines
(Blue) and hatched lines (red) allowed 2σ and 3σ ranges respectively. The solid blue
region is ruled out. The dotted line corresponds to w = −1/3 and the dotted-dashed line
is drawn for w = −1, cosmological constant.

Parameter Lower Limit Upper Limit
Ωm 0.01 0.6
w -4.0 0.0

Table 2.1: This table lists the priors used for parameter fitting in case of wCDM model.
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Figure 2.3: The figure represents 1σ, 2σ and 3σ confidence contours obtained from the
analysis of Baryon Acoustic Oscillation data in Ωm-w plane. The contours are for H0=70
km/s/Mpc.
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Figure 2.4: The figure represents dark energy density versus redshift for the Baryon
Acoustic oscillation observations. The figure is plotted for H0 = 70 km/s/Mpc. The
white region in the middle is the allowed range of dark energy density at 1σ level and
the regions with slanted lines (Blue) and hatched lines (red) allowed 2σ and 3σ ranges
respectively. The solid blue region is ruled out. The dotted line corresponds to w = −1/3
and the dotted-dashed line is drawn for w = −1, cosmological constant.
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al [48]. To derive the BAO constraints we make use of the distance parameter DV (z), a

combination of the angular diameter distance and the Hubble parameter, given by:

DV (z) =

[

(1 + z)2dA(z)
2 c z

H(z)

]1/3

. (2.9)

Here dA(z) is the angular diameter distance (discussed in chapter 1). We use mea-

surements of the acoustic parameter A(z) from Blake et al,[48] where the theoretically-

predicted Ath(z) is given in Eq. (5) of Eisenstein et al.:[44]

Ath(z) =
100 DV (z)

√
Ωmh2

z
. (2.10)

We maximize the likelihood by minimizing χ2 for BAO data with respect to the model

parameters to get best-fit parameter values and constraint contours. Figure 2.3 shows

the constraints from the BAO data on the dark energy model parameters we consider

here. These value of Hubble parameter is considered to be 70 km/s/Mpc and the results

are shown in contours. The minimum value χ2
m = 0.96 corresponds to w = −1.17 and

Ωm = 0.27. 3σ allowed range for w is −2.19 to −0.42 and for Ωm is 0.19− 0.36.

Also, we found that as the value of H0 increases, the allowed range of parameter

increases. The model is consistent with the cosmological constant model at this values of

H0 considered in the analysis.

In figure 2.4, we show the variation of dark energy density versus redshift for BAO

observations. The figure is plotted for H0 = 70 km/s/Mpc. The white region in the

middle is the allowed range of dark energy density at 1σ level and the regions with

slanted lines (Blue) and hatched lines (red) allowed 2σ and 3σ ranges respectively. The

solid blue region is ruled out. The dotted line corresponds to w = −1/3 and the dotted-

dashed line is drawn for w = −1, cosmological constant. In this case we found that the

allowed range of dark energy is bigger than that we obtained for SNIa case. The wCDM

parameterization constraints shown in this figure are in good agreement with those shown

in Blake et al [48].

Constraints from Hubble Parameter (Hz) measurements: The H(z) data contains the

value of Hubble parameter at different redshifts along with errors associated with it. We

minimize χ2 for the model parameters to get the best fit value. Figure 2.5 shows the

constraints from the Hubble parameter measurements data on the dark energy model

considered. The contours are obtained when Hubble parameter is marginalised. For this
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Figure 2.5: The figure represents 1σ, 2σ and 3σ confidence contours obtained from the
analysis of Hubble parameter measurement data in Ωm-w plane. The contour is obtained
by marginalising over H0.

case, χ2
m = 16.27 for w = −1.12 and Ωm = 0.28. Allowed range for Ωm is 0.2 to 0.35 and

for equation of state parameter it is given by −1.78 to −0.72. The cosmological constant

model is consistent within 3σ limit.

The figure 2.6 represents dark energy density versus redshift for Hubble parameter

measurements. The different region corresponding to white color or blue and red colors

with lines show the allowed range of dark energy density at 1σ level, 2σ and 3σ ranges

respectively. The solid blue region is ruled out. The dotted line corresponds to w = −1/3

and the dotted-dashed line is drawn for w = −1, cosmological constant.

Combined Constraints: To constrain cosmological parameters from a joint analysis of
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Figure 2.6: The figure represents dark energy density versus redshift for Hubble parameter
measurements. The figure is plotted for when we marginalised the present value Hubble
parameter. The different region corresponding to white color or blue and red colors
with lines show the allowed range of dark energy density at 1σ level, 2σ and 3σ ranges
respectively. The solid blue region is ruled out. The dotted line corresponds to w = −1/3
and the dotted-dashed line is drawn for w = −1, cosmological constant.
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Figure 2.7: The figure represents 1σ, 2σ and 3σ confidence contours obtained from the
analysis from the combination of all the three data sets in Ωm-w plane. The contours
in red, green and blue corresponds to constraints from SNIa, BAO and Hz data sets
respectively. The black contours are the constraints obtained by combination of the data
sets. In the figure, the contours for SNIa and BAO are obtained for H0=70 km/s/Mpc,
for Hz data we have marginalised over the value of Hubble constant.

41



Figure 2.8: The figure represents dark energy density versus redshift for the combined
analysis of all the data sets. The figure is plotted for H0 = 70 km/s/Mpc for SNIa and
BAO data while for Hz data we have marginalised over the range of H0. The figure
shows the allowed range of dark energy density at 1σ level, 2σ and 3σ ranges. The colour
scheme in the figure is same as in 2.2 and 2.4. The solid blue region is ruled out. The
dotted line corresponds to w = −1/3 and the dotted-dashed line is drawn for w = −1,
cosmological constant.
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Parameter Lower Limit Upper Limit
Ωm 0.1 0.6
w0 -5.0 2.0

w′(z = 0) -10.0 10.0
H0 65.0 75.0

Table 2.2: This table lists the priors used in the parameter fitting, when w is a function
of redshift.

the H(z), SNIa, and BAO data we compute:

χ2(p) = χ2
H(p) + χ2

SN(p) + χ2
BAO(p) (2.11)

for each of the three cosmological models considered here. We minimize χ2(p) with

respect to model parameters p to get best-fit parameter values p0 and constraint contours.

Figure 2.7 shows constraints on the cosmological parameters for the wCDM, from a

joint analysis of the BAO, SNIa and H(z) data. The minimum χ2 for the case H0 = 70

km/s/Mpc is 580.81 corresponding to Ωm = 0.28 and w = −1.03. The allowed range

for matter density is 0.25 < Ωm < 0.31 and for equation of state parameter is −1.13 <

w < −0.95. The contours (corresponding to H0 = 70 km/s/Mpc) is consistent with

cosmological model within 3σ confidence level. As the present value of Hubble parameter

increases, the models prefers the phantom models and allows larger negative values of

equation of state parameters. The figure 2.8 represents the variation in dark energy

density as a function of redshift for the combined analysis of all the data sets. The figure

is plotted for H0 = 70 km/s/Mpc. The different region corresponding to white color

or blue and red colors with lines show the allowed range of dark energy density at 1σ

level, 2σ and 3σ ranges respectively. The solid blue region is ruled out. The dotted line

corresponds to w = −1/3 and the dotted-dashed line is drawn for w = −1, cosmological

constant. Here, we see that for H0 = 70 km/s/Mpc the cosmological model is allowed.

2.2 Chevallier-Polarski-Linder (CPL) model

The evolution of dark energy is determined by its equation of state (EoS), which can

be obtained in a particular model or constructed directly from observational data. In

the second case, we usually make some assumptions on the form of the equation of

state as a parameterization for the dark energy model, then extract the information

from observations. A most wildly used parameterization is called the Chevallier-Polarski-
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Figure 2.9: The figure represents equation of state of dark energy as a function of redshift
for the three types of parameterizations considered. The red line is plotted for w(z) = w0+
w′(z = 0) z

(1+z)
(CPL) parameterization. The blue line is drawn for w(z) = w0 + w′(z =

0) z
(1+z)

parameterization and the green line represents the Logarithmic parameterization.
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Figure 2.10: The plots represent the confidence contours for SNIa, BAO, H(z) and a
combination of the datasets for the CPL parameterization with marginalization over w′.
The top left and top right contours are obtained for SNIa and BAO data sets and the
bottom left and bottom right contours are obtained for H(z) data and a combination of
data sets.
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Figure 2.11: The plots represent the variation of dark energy density as a function of
redshift allowed at 1, 2 and 3-σ confidence levels for the CPL parameterization with
marginalization over w′. The scheme of the plots is same as in Fig. 2.10.
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Figure 2.12: The plots represent the confidence contours for SNIa, BAO, H(z) and a
combination of the datasets for the w(z) = w0 + w′(z = 0) z

(1+z)
parameterization with

marginalization over Ωm. The scheme of the plots is same as in figure 2.10.
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Figure 2.13: The plots show the allowed range of dark energy density by SNIa, BAO,
H(z) and a combined datasets for the Chevallier-Polarski-Linder (CPL) parameterization
with marginalization over Ωm.
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Figure 2.14: The plots show the allowed range of dark energy density by SNIa, BAO,
H(z) and a combined datasets for the Chevallier-Polarski-Linder (CPL) parameterization.
All the parameters are free parameters. No marginalisation has been done.
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Linder (CPL) model [15, 16] with the form of equation of state as

w(z) = w0 + w′(z = 0)
z

(1 + z)
(2.12)

where w0 is the value of equation of state parameter at present and w′(z = 0) is the first

order derivative of w(z) at z = 0 . The evolution of equation of state parameter as a

function of redshift is shown in figure 2.9. The CPL parameterization is well behaved

and bounded at high redshifts. The asymptotic value of w(z) at high redshifts is w(z =

∞) = w0+w
′. The present value of the equation of state parameter is w(0) = w0 for this

parameterization. This is the direct motivation of proposing such a form. The evolution

of dark energy density (ρ
DE

) with the expansion of the universe for this equation of state

parameter is then given by

ρ
DE

ρ
DE0

= (1 + z)3(1+w0+w′) exp
[

− 3w′z

1 + z

]

. (2.13)

Here, ρ
DE0

≡ ρ
DE

(z = 0), which is the present value of dark energy density, and w′ ≡
dw/dz at the present time. For the analysis, the priors used in this case is listed in

table 2.2. For the rest of the chapter, the same priors will be used. In this case, the free

parameters are Ωm, w0 and w
′(z = 0) or just w′. To get contours between two parameters,

we will make use of the marginalization technique (discussed in previous chapter). By

using this technique, we can get a plot between two parameters by performing summation

over the third parameter. The figure 2.10 shows the contours in w0 − Ωm planes, which

are obtained by marginalization over parameter w(z = 0). The plots represent the

confidence contours for SNIa, BAO, H(z) and a combination of the datasets for the CPL

parameterization. The top left and top right contours are obtained for SNIa and BAO

data sets and the bottom left and bottom right contours are obtained for H(z) data and

a combination of data sets. SNIa data favours the phantom model and does not allow

ΛCDM model, also it allows higher values of Ωm than any other data sets. BAO and

H(z) data both agrees with cosmological constant model. The allowed range in case of

combined constraints are very narrow. The figure 2.11 represents the variation of dark

energy density as a function of redshift allowed at 1, 2 and 3 -σ confidence levels for

the CPL parameterization with marginalization over w′. The plot scheme is same as

in figure 2.10. The top left plot, obtained from analysis of SNIa data does not allow

the cosmological constant model. This follows from the contours for SNIa data given in

previous figure2.10. Because of this result of SNIa data, the allowed range obtained from

combined analysis of all the data sets does not allow cosmological constant within 1σ

region.
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Now, we marginalise over Ωm to obtain contours in w0 − w′(z = 0) plane. The plots

in figure 2.12 represent the confidence contours for SNIa, BAO, H(z) and a combination

of the datasets for the w(z) = w0+w
′(z = 0) z

(1+z)
parameterization with marginalization

over Ωm. The scheme of the plots is same as in figure 2.10. The tightest constraints are

obtained for SNIa data set. The figure 2.13 shows the allowed range of dark energy density

by individual data sets and a combined datasets for the Chevallier-Polarski-Linder (CPL)

parameterizations with marginalization over Ωm. Here, we see that SNIa data does not

allow cosmological constant model at lower redshifts while BAO data does not allow it

at higher redshifts within 1σ region. Only H(z) data is consistent with ΛCDM model at

all the redshift range that is shown in the plot.

In figure 2.14 the plots show the allowed range of dark energy density by the different

observations and a combination of observations for the w(z) = w0 + w′(z = 0) z
(1+z)

parameterization. All the parameters are free parameters. No marginalisation has been

done to obtain these results. The allowed range in unmarginalised case is larger than

in case of marginalised ones. BAO data is not consistent with ΛCDM model at higher

redshift within 1σ region, which effects the combined constraints also. Supernovae and

H(z) data is consistent with cosmological constant model for the entire range of redshift

considered.

2.3 Jassal-Bagla-Padmanabhan(JBP) parameteriza-

tion

The equation of state parameter w(z) is given by Jassal et al.[17] as

w(z) = w0 + w′(z = 0)
z

(1 + z)2
. (2.14)

The evolution of equation of state parameter as a function of redshift is shown in figure

2.9. The asymptotic value of w(z) at high redshifts is w(z = ∞) = w0 [17], while the

present value of the equation of state parameter is w(0) = w0. The evolution of dark

energy density (ρ
DE

) with the expansion of the universe for the above equation of state

parameter is then given by

ρ
DE

ρ
DE0

= (1 + z)3(1+w0) exp
[3w′

2

(

z

1 + z

)2
]

(2.15)
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Figure 2.15: The plots represent the confidence contours for SNIa, BAO, H(z) and
a combination of the datasets for w(z) = w0 + w′(z = 0) z

(1+z)2
parameterization with

marginalization over w′. The top left and top right contours are obtained for SNIa and
BAO data sets and the bottom left and bottom right contours are obtained for H(z) data
and a combination of data sets.
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Figure 2.16: The plots represent the variation of dark energy density as a function of
redshift allowed at 1, 2 and 3 -σ confidence levels for the w(z) = w0 + w′(z = 0) z

(1+z)2

parameterization with marginalization over w′. The plot scheme is same as in previous
figure (Fig. 2.15).

53



Figure 2.17: The plots represent the confidence contours for SNIa, BAO, H(z) and a
combination of the datasets for the JBP parameterization with marginalization over Ωm.
The scheme of the plots is same as in figure 2.15.
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Figure 2.18: The plots show the allowed range of dark energy density by SNIa, BAO,
H(z) and a combined datasets for the JBP parameterization with marginalization over
Ωm.
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Figure 2.19: The plots show the allowed range of dark energy density by SNIa, BAO,
H(z) and a combined datasets for the w(z) = w0+w

′(z = 0) z
(1+z)2

. parameterization. All
the parameters are free parameters. No marginalisation has been done.
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Here, ρ
DE0

≡ ρ
DE

(z = 0), which is the present value of dark energy density, and w′ ≡
dw/dz at the present time. The figure 2.15 shows the contours in w0 − Ωm planes,

which are obtained by marginalization over parameter w(z = 0). The plots represent the

confidence contours for SNIa, BAO, H(z) and a combination of the datasets for the JBP

parameterization. The top left and top right contours are obtained for SNIa and BAO

data sets and the bottom left and bottom right contours are obtained for H(z) data and

a combination of data sets. SNIa data favours the phantom model and does not allow

ΛCDM model, also it allows higher values of Ωm than any other data sets. BAO and

H(z) data both agrees with cosmological constant model. The allowed range in case of

combined constraints are very narrow. The figure 2.16 represents the variation of dark

energy density as a function of redshift allowed at 1, 2 and 3 -σ confidence levels for

the JBP parameterization with marginalization over w′. The plot scheme is same as in

figure 2.10. The top left plot, obtained from analysis of SNIa data does not allow the

cosmological constant model and prefers phantom model. This follows from the contours

for SNIa data shown in figure2.15. All other data sets are consistent with the ΛCDM

model. Because of this result of SNIa data, the allowed range obtained from combined

analysis of all the data sets doesnot allow cosmological constant within 3σ region.

So far we have shown the results obtained by performing marginalisation over w′,

now, we marginalise over Ωm to obtain contours in w0 − w′(z = 0) plane. The plots in

figure 2.17 represent the confidence contours for SNIa, BAO, H(z) and a combination of

the datasets for the w(z) = w0 + w′(z = 0) z
(1+z)2

parameterization with marginalization

over Ωm. The scheme of the plots is same as in figure 2.15. The tightest constraints are

obtained for SNIa data set.

The figure 2.18 shows the allowed range of dark energy density by SNIa, BAO, H(z)

and a combined datasets for the JBP parameterizations with marginalization over Ωm.

SNIa data does not allow cosmological constant model at higher redshifts within 1σ

region. This effect can also be seen in combined constraints where, within 1σ region,

ΛCDM model is not consistent with observations at higher redshifts.

In figure 2.19 the plots show the allowed range of dark energy density by the different

observations and a combination of observations for the w(z) = w0 + w′(z = 0) z
(1+z)2

parameterization. All the parameters are kept free parameters. The allowed range in

unmarginalised case is larger than in case of marginalised ones. All three data is are

consistent with ΛCDM model at all redshifts within 1σ region. However, the combined

constraints are not consistent with the cosmological constant model at higher redshifts.
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Data set 3σ confidence χ2
m Best Fit Model

w(z) = w0 + w′(z = 0) z
(1+z)

Parameterization

SNIa -1.64 ≤ w0 ≤ -0.72 w0=-1.0
-2.0 ≤ w′(z = 0) ≤ 1.26 562.25 w′(z = 0)=0.2
0.2 ≤ Ωm ≤ 0.45 Ωm=0.25

BAO -1.3 ≤ w0 ≤ 0.33 w0=-0.67
-4.97 ≤ w′(z = 0) ≤ 0.77 2.13 w′(z = 0)=-1.26
0.3 ≤ Ωm ≤ 0.31 Ωm=0.3

H(z) -2.14 ≤ w0 ≤ 0.28 w0=-1.16
-5.0 ≤ w′(z = 0) ≤ 1.8 20.77 w′(z = 0)=0.8
0.1 ≤ Ωm ≤ 0.37 Ωm=0.2

SNIa+BAO+H(z) -1.2 ≤ w0 ≤ -0.74 w0=-1.0
-1.32 ≤ w′(z = 0) ≤ 0.56 585.67 w′(z = 0)=-0.26
0.25 ≤ Ωm ≤ 0.3 Ωm=0.3

w(z) = w0 + w′(z = 0) z
(1+z)2

Parameterization

SNIa -1.62 ≤ w0 ≤ -0.62 w0=-1.06
-3.0 ≤ w′(z = 0) ≤ 2.56 562.28 w′(z = 0)=-0.06
0.2 ≤ Ωm ≤ 0.45 Ωm=0.3

BAO -1.68 ≤ w0 ≤ 0.99 w0=-0.44
-10.0 ≤ w′(z = 0) ≤ 2.99 2.79 w′(z = 0)=-3.06
0.25 ≤ Ωm ≤ 0.3 Ωm=0.3

H(z) -2.36 ≤ w0 ≤ 0.24 w0=-1.16
-5.8 ≤ w′(z = 0) ≤ 3.4 21.11 w′(z = 0)=0.3
0.18 ≤ Ωm ≤ 0.37 Ωm=0.28

SNIa+BAO+H(z) -1.36 ≤ w0 ≤ -0.64 w0=-1.0
-2.52 ≤ w′(z = 0) ≤ 1.62 586.46 w′(z = 0)=-0.38
0.25 ≤ Ωm ≤ 0.3 Ωm=0.3

Table 2.3: This table shows the 3σ confidence limit for various data sets for the two
parameterization models for H0 = 70 km/s/Mpc for BAO and SNIa and for H(z) data,
marginalized over H0. For these results, we have kept Ωm a free parameter.
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Figure 2.20: The plots represent the confidence contours for SNIa, BAO, H(z) and a
combination of the datasets for w(z) = w0 + w′(z = 0)log(1 + z) parameterization with
marginalization over w′. The top left and top right contours are obtained for SNIa and
BAO data sets and the bottom left and bottom right contours are obtained for H(z) data
and a combination of data sets.

59



Figure 2.21: The plots represent the variation of dark energy density as a function of
redshift allowed at 1, 2 and 3 -σ confidence levels for the Logarithmic parameterization
with marginalization over w′. The scheme for the plots is same as in figure 2.20
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Figure 2.22: The plots represent the confidence contours for SNIa, BAO, H(z) and a
combination of the datasets for the Logarithmic parameterization with marginalization
over Ωm. The scheme of the plots is same as in figure 2.20.
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Figure 2.23: The plots show the allowed range of dark energy density by SNIa, BAO,
H(z) and a combined datasets for the logarithmic parameterization with marginalization
over Ωm.
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Figure 2.24: The plots show the allowed range of dark energy density by SNIa, BAO, H(z)
and a combined datasets for the w(z) = w0 + w′(z = 0)log(1 + z) parameterization. All
the parameters are free parameters. Here, we have not marginalised over any parameter.
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Data set 3σ confidence χ2
m Best Fit Model

Logarithmic parameterization
SNIa -1.44 ≤ w0 ≤ -0.58 w0=-0.94

-2.0 ≤ w′(z = 0) ≤ 0.68 563.02 w′(z = 0)=-1.04
0.1 ≤ Ωm ≤ 0.49 Ωm=0.37

BAO -1.26 ≤ w0 ≤ 0.2 w0=-0.84
-3.8 ≤ w′(z = 0) ≤ 0.5 1.29 w′(z = 0)=-0.5
0.26 ≤ Ωm ≤ 0.32 Ωm=0.29

H(z) -2.0 ≤ w0 ≤ 0.2 w0=-1.1
-5.0 ≤ w′(z = 0) ≤ 0.9 20.91 w′(z = 0)=0.3
0.1 ≤ Ωm ≤ 0.37 Ωm=0.24

SNIa+BAO+H(z) -1.09 ≤ w0 ≤ -0.66 w0=-0.91
-1.21 ≤ w′(z = 0) ≤ 0.25 587.18 w′(z = 0)=-0.29
0.26 ≤ Ωm ≤ 0.32 Ωm=0.29

Table 2.4: This table shows the 3σ confidence limit for various data sets for the Loga-
rithmic parameterization model. We consider the present value of Hubble constant to be
H0 = 70 km/s/Mpc for BAO and SNIa and for H(z) data, marginalized over H0. For
these results, Ωm a free parameter.

2.4 Logarithmic parameterization

The equation of state parameter in this case is given by

w(z) = w0 + w′(z = 0)log(1 + z) (2.16)

The equation of state parameter increases monotonically for the logarithmic parameter-

ization [18]. The present value of the equation of state parameter is w(z = 0) = w0.

The evolution of equation of state parameter versus redshift is shown in figure 2.9. The

evolution of dark energy density (ρ
DE

) with redshift for the logarithmic equation of state

parameters is given by

ρ
DE

ρ
DE0

= (1 + z)3(1+w0) exp
[3w′(z = 0)

2
log2(1 + z)

]

. (2.17)

The figure 2.15 shows the contours in w0 − Ωm planes, which are obtained by marginal-

ization over parameter w(z = 0). The plots represent the confidence contours for SNIa,

BAO, H(z) and a combination of the datasets for the logarithmic parameterization. The

top left and top right contours are obtained for SNIa and BAO data sets and the bottom
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left and bottom right contours are obtained for H(z) data and a combination of data sets.

All the data sets (SNIa, BAO and H(z) data sets) agrees with cosmological constant

model. The allowed range in case of combined constraints are very narrower than any of

the individual data sets. The figure 2.21 represents the variation of dark energy density

as a function of redshift allowed at 1, 2 and 3 -σ confidence levels for the logarithmic

parameterization with marginalization over w′. The plot scheme is same as in figure 2.20.

Unlike previous cases in 2.11 and 2.16 SNIa data does allow the cosmological constant

model, also, it provides the tightest constraints out of all the other individual data sets.

This follows from the contours for SNIa data shown in figure2.15. All other data sets

are consistent with the ΛCDM model. Hence, it is SNIa data that tightens the range in

combined constraints.

We now present results obtained by marginalising over Ωm to obtain contours in

w0−w′(z = 0) plane. The plots in figure 2.22 represent the confidence contours for SNIa,

BAO, H(z) and a combination of the datasets for the Logarithmic parameterization with

marginalization over Ωm. The scheme of the plots is same as in figure 2.15. The tightest

constraints are obtained for SNIa data set. The figure 2.23 shows the allowed range of

dark energy density by SNIa, BAO, H(z) and a combined datasets for the Logarithmic

parameterizations with marginalization over Ωm. In this case all the observations allow

cosmological constant model at all redshifts within 1σ region. And hence in the combined

analysis cosmological constant model is completely consistent with the observations.

In figures 2.24 the plots show the allowed range of dark energy density by the different

observations and a combination of observations for the logarithmic parameterization. All

the parameters are kept free parameters. The allowed range in this case is larger than

in case of marginalised ones. All three data is are consistent with ΛCDM model at

all redshifts within 1σ region. The combined constraints are also consistent with the

cosmological constant model at higher redshifts.
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Chapter 3

Scalar field models of dark energy

To study dynamics due to a varying equation of state parameters, various scalar field

models have been proposed. These were originally postulated to circumvent the fine

tuning problem of the cosmological constant model. These include scalar field models

such as quintessence [22, 23, 27, 59, 60, 61, 62], k-essence [63, 64] and others include fluid

models, barotropic [58, 65] as well as the Chaplygin gas [66]. Any scalar field model can

be rewritten as fluid dark energy model or vice-verse [67]. In this chapter, we consider

models described by a slowly varying canonical scalar field, i.e., quintessence model. For

a slowly varying field, where the field potential dominates, the universe experiences a

positive acceleration to the expansion.

In this chapter, we discuss the quintessence dynamics in the light of recent cosmo-

logical observations. We consider different quintessence scenarios and we determine con-

straints on the cosmological parameters such as the equation of state parameter, non-

relativistic matter density parameter etc., employing different cosmological observational

datasets mentioned in chapter 1.6.3. This chapter is based on ”Observational con-

straints on quintessence models of dark energy [arXiv:1804.09350]” [68].
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Parameter Lower Limit Upper Limit
Ωm 0.01 0.6
w0 -1.0 1.0
α 0.01 1.0
φ 0.1 10.0

Table 3.1: This table lists the priors used for parameter fitting in case of V (ψ) =

M4e−α
1/2ψ/Mp and V (ψ) = M4−nψn potential. Here, the parameters Ωm, w0 and φ

represent the present value of non-relativistic energy density parameter, equation of state
parameter of dark energy and present value of field ψ.

3.1 Quintessence Dynamics

We consider a scalar field ψ minimally coupled, i.e. experiencing only gravity, passively

through the space-time curvature and a self-interaction described by the scalar field poten-

tial V(ψ) and with a canonical kinetic energy contribution. The action for a quintessence

field is therefore given by

S =

∫

d4x
√
−g
(

−1
2
gνµ∂νψ∂µψ − V (ψ)

)

(3.1)

In a flat Friedmann background, the pressure and energy density of a homogeneous

scalar field are given by

P =
ψ̇2

2
− V (ψ) (3.2)

ρ =
ψ̇2

2
+ V (ψ).

The equation of state, which is in general is time varying, is defined as

w =
P

ρ
. (3.3)

The equation of motion for the scalar field, the Klein-Gordon equation

ψ̈ + 3Hψ̇ = −dV
dψ

, (3.4)

follows from functional variation of the lagrangian and is interchangeable with the conti-

nuity equation.

For a universe which is spatially flat the friedmann equations for a canonical scalar
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Figure 3.1: The plots in the figure represent evolution of different quantities for the
potential V (ψ) =M4e−α

1/2ψ/Mp . Three different values of α considered are 0.01, 0.1 and
1. Here we have plotted Ψ = ψ/Mp. The left plot in the first row shows the variation of ψ
as a function of scale factor for different values of α. The plot on the shows the behavior
of equation of state parameter w for the field potential as the scale factor varies. In the
second row, the plot on the left is for energy density of the field as a function of scale
factor and the figure on the right is the phase plot for the exponential potential.

field can be written as

H2 =
8πG

3

[

1

2
ψ̇2 + V (ψ)

]

, (3.5)

ä

a
= −8πG

3

[

ψ̇2 − V (ψ)
]

. (3.6)

For an accelerating universe ψ̇2 < V (ψ). This means that one requires an almost flat

potential to give rise to an accelerated expansion. The equation of state for the field ψ

is given by

w =
ψ̇2 − 2V (ψ)

ψ̇2 + 2V (ψ)
. (3.7)
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Data set 3σ confidence χ2
m Best Fit Model

V =M4e−
√
αΨ

SNIa -1.0 ≤ w0 ≤ -0.63 w0=-0.97
0.01 ≤ Ωm ≤ 0.31 563.42 Ωm=0.24
0.01 ≤ α ≤ 1.0 α=0.03

BAO -1.0 ≤ w0 ≤ -0.85 w0=-0.99
0.26 ≤ Ωm ≤ 0.31 2.35 Ωm=0.28
0.01 ≤ Ωm ≤ 1.0 α=0.07

H(z) -1.0 ≤ w0 ≤ 0.14 w0=-1.0
0.19 ≤ Ωm ≤ 0.32 17.04 Ωm=0.26
0.01 ≤ α ≤ 1.0 α=1.0

Table 3.2: The above table shows the 3σ confidence limit for all the three data sets
and the value of parameters corresponding to the minimum value of χ2 for the potential
V (Ψ) =M4e−

√
αΨ, where Ψ = ψ/Mp. For H(z) data, marginalized over H0.

Using Eq. 3.7, we can calculate the equation of state for a given potential and then we

study the effects on cosmological expansion.

Depending on the evolution of w, quintessence models are classified into two broad

categories [69, 70, 71, 72, 73, 74, 75, 76, 77]. The first corresponds to thawing models,

in which the field is nearly frozen by a Hubble damping during the early cosmological

epoch and it starts to evolve once the field mass mψ drops below the Hubble rate H(a).

Here the field is displaced from its frozen value recently, when it starts to roll down to

the minimum. In this case, the evolution of w is characterized by the growth from −1,

at early times the equation of state is w ≈ -1, but grows less negative with time. We

analyze the following concave potentials for thawing behavior [59, 78, 79, 80, 81].

• Exponential potential :

V =M4e−
√
αψ/Mp (3.8)

• Polynomial (concave) potential :

V =M4−nψn (3.9)

for 0 < n < 3. The different values of n correspond to potentials with different shapes.

The second class of potentials consists of a field which was already rolling towards

minimum of its potential, prior to the onset of acceleration, but slows down because of the
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Figure 3.2: The figure represent 1σ, 2σ and 3σ confidence contours in w0 −Ωm plane for
thawing potential V = M4e−

√
αΨ. Going from left to right, the first, second and third

plot is obtained for SNIa , BAO and H(z) data respectively. To obtain the contours we
have marginalized over α.

Figure 3.3: The figure represents allowed region for V0 = M4/M2
p corresponding to 1σ,

2σ and 3σ confidence region as a function of α for thawing potential V = V0e
−
√
αΨ. The

left plot is obtained for SNIa , middle plot is obtained for BAO and right plot is the result
from H(z) data respectively.

shallowness of the potential at late times and comes to a halt as it begins to dominate the

universe. For freezing models, at late times, the equation of state parameter w approaches

−1. For this work we focus on homogeneous scalar field scenarios belonging to thawing

class.

3.2 Solutions to cosmological equation of motion

In this section, we discuss the background cosmology and numerical solutions for the

different types of potentials that we have discussed in the previous section.
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value of n SNIa data BAO data H(z) data
V (φ) =M4−nψn

n=1 χ2
min = 608.61 χ2

min = 2.29 χ2
min = 17.06

w0 = −0.98 w0 = −1.0 w0 = −1.0
Ωm = 0.21 Ωm = 0.28 Ωm = 0.27
φ = 1.7 φ = 10.0 φ = 3.1

n=2 χ2
min = 608.59 χ2

min = 2.41 χ2
min = 17.06

w0 = −0.98 w0 = −1.0 w0 = −1.0
Ωm = 0.22 Ωm = 0.28 Ωm = 0.27
φ = 6.2 φ = 10.0 φ = 5.8

n=3 χ2
min = 608.54 χ2

min = 2.65 χ2
min = 140.85

w0 = −0.98 w0 = −1.0 w0 = −1.0
Ωm = 0.21 Ωm = 0.28 Ωm = 0.27
φ = 5.5 φ = 10.0 φ = 8.4

Table 3.3: The above table shows the value of the parameters corresponding to mini-
mum value of χ2 for the potential V = M4−nψn. Here, w0, Ωm and φ represent the
presenet value of dark energy equation of state parameter, non-relativistic energy density
parameter and the field ψ respectively.

Value of n SNIa data BAO data H(z) data

1 -1.0≤ w0 ≤-0.92 -1.0≤ w0 ≤-0.995 -1.0≤ w0 ≤0.1
0.1≤ Ωm ≤0.29 0.26≤ Ωm ≤0.31 0.19≤ Ωm ≤0.32
1.0≤ φ ≤10.0 1.0≤ φ ≤ 10.0 1.0≤ φ ≤ 10.0

2 -1.0≤ w0 ≤-0.91 -1.0≤ w0 ≤-0.996 -1.0≤ w0 ≤0.1
0.1≤ Ωm ≤0.29 0.26≤ Ωm ≤0.31 0.18≤ Ωm ≤0.32
1.0≤ φ ≤10.0 1.9≤ φ ≤ 10.0 1.0≤ φ ≤ 10.0

3 -1.0≤ w0 ≤-0.91 -1.0≤ w0 ≤-0.997 -1.0≤ w0 ≤0.08
0.1≤ Ωm ≤0.29 0.26≤ Ωm ≤0.31 0.18≤ Ωm ≤0.32
1.0≤ φ ≤10.0 2.8≤ φ ≤ 10.0 1.0≤ φ ≤ 10.0

Table 3.4: The above table shows the 3σ confidence limit for all the three data for the
potential V = V0ψ

n for n=1,2,3.
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Figure 3.4: The figure represents allowed region for V0 = M4/M2
p corresponding to 1σ,

2σ and 3σ confidence region as a function of EoS w and Ωm for potential V = V0e
−
√
αΨ

in first and second rows respectively. Going from left to right, the first, second and third
plots are obtained for SNIa , BAO and H(z) datasets respectively. Numerically, V0 is
given by the formula in Eq.(3.13).

3.2.1 The exponential potential

To study how the universe evolves in the presence of this potential, we solve the Klein-

Gordon equation, Eq. 3.4, and Friedmann equations for the scalar field, Eq. 3.5. In order

to solve the equations, we define the following dimensionless parameter:

Ψ =
ψ

Mp

. (3.10)

The potential, then, takes the form

V (Ψ) =M4e−
√
αΨ. (3.11)
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Figure 3.5: The figure represents allowed region for φ̇ corresponding to 1σ, 2σ and 3σ
confidence region as a function of EoS w for potential V = V0e

−
√
αΨ in first row and φ̇ as

a function of Ωm in second row. Here, φ̇ is the present value of ψ̇. The scheme if plots is
same as in Fig.(3.3). The field velocity, φ̇ is calculated using formula given in Eq.(3.14).
The plots are for positive branch of field velocity.

In terms of the new variables, the cosmological equations can be written as

Ψ̈ + 3
ȧ

a
Ψ̇−

√
αV0e

−
√
αΨ = 0, (3.12)

(

ȧ

a

)2

= H2
0

Ωm

a3
+

Ψ̇2

6
+
V0
3
e−

√
αΨ

where V0 =
M4

M2
p
and H0 is the present value of Hubble parameter. For Ωtotal = Ωm+Ωφ =

1, the initial conditions are given by

V0 =
3H2

0

2
(1− Ωmi

)(1− win)e
√
αΨi (3.13)

Ψ̇i
2
= 3H2

0 (1− Ωmi
)(1 + win); Ψi = 1. (3.14)

The variables Ωmi
, Ψi and win are values of non-relativistic matter density parameter,
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Figure 3.6: The figure represent 1σ, 2σ and 3σ confidence contours in
√
αΦ − V0 plane

for thawing potential V =M4e−
√
αΨ. Going from left to right, the first, second and third

plot is obtained for SNIa , BAO and H(z) data respectively. Here, V0 is scaled by the
square of the present value of Hubble parameter (H2

0 ).

field and equation of state parameter at some initial time t = ti. From here onwards, φ

and Φ represents the present value of ψ and Ψ respectively.

By solving these coupled equations analytically, we get a solution for Ψ and Ψ̇. These

values are, then, used to determine the value of equation of state parameter w, which in

terms of the dimensionless parameters is given by

w =
Ψ̇2 − 2V0e

−
√
αΨ

Ψ̇2 + 2V0e−
√
αΨ
. (3.15)

The above equation infers that, depending upon the form of potential V (Ψ), w lies

between −1 and +1.

To study the evolution of the model, we evolve the system from early time to late

time. We plot the results obtained for this potential in Fig. 3.1. The plot on the left in

the first row shows the variation of Ψ as a function of scale factor. The plot on the right

shows the behavior of equation of state parameter w as scale factor changes. The larger

value of parameter α corresponds to a steeper potential and the scalar field evolves faster.

In the second row, the plot on the left is for energy density of the field as a function of

scale factor and the figure at right is the phase plot obtained for the potential. Using

different observations in the analysis, we constrain the cosmological parameters.

The priors used for the analysis are listed in Table 3.1. The results obtained are shown

in figure Fig. 3.2. The plots in the figure represent 1σ, 2σ and 3σ confidence contours

in Ωm − w plane. The first, second and third plot is obtained for SNIa , BAO and H(z)

data respectively. To obtain the contours we have marginalized over the entire range of
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Figure 3.7: The figure represent 1σ, 2σ and 3σ confidence contours in w−
√
αΦ plane for

thawing potential V =M4e−
√
αΨ in first row and contours in plane Ωm −

√
αΦ are given

in second row.The scheme of the plots is same as in Fig. 3.2.

α. The minimum value of χ2 (χ2
min) is listed in Table 3.2 and the constraints obtained

for the parameters are listed in Table 3.2.

3.2.2 The Polynomial (concave) potential

The second potential of thawing class that we analyzed is a power potential given by

V (ψ) =M4−nψn. (3.16)

The background equations then take the following form:

ψ̈ + 3
ȧ

a
ψ̇ + nV0ψ

n−1 = 0, (3.17)
(

ȧ

a

)2

=
Ωm

a3
+
ψ̇2

6
+
V0ψ

n

3
.
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Figure 3.8: The plots in this figure represent the theoretical results obtained for potential
V (ψ) = M4−nψn, for n =1, 2 and 3. In the first row of the left plot shows the variation
of ψ as a function of scale factor. The right plot shows the evolution of equation of state
parameter w for the potential as scale factor changes. In the second row, the plot on the
left is for energy density of the field as a function of scale factor and the figure on the
right is the phase plot for the power potential.

And equation of state becomes

w =
ψ̇2 − 2V0ψ

n

ψ̇2 + 2V0ψn
. (3.18)

The value of V0 for this potential is found to be

V0 =
3H2

0

16πG
(1− Ωmi

)(1− win)ψ
−n
i (3.19)
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and the initial value of field velocity, ψ̇i=φ̇ is given by

φ̇ = ψ̇i = ±
√

3H2
0

8πG
(1− Ωmi

)(1 + win) (3.20)

and the initial value of the field ψi is denoted by φ.

We plot the results obtained by evolving the system from past to present for this

potential in Fig. 3.8. In the first row, the plot on the left shows the variation of ψ as a

function of scale factor. The plot on the right shows the behavior of equation of state

parameter w for the potential w.r.t. scale factor. At earlier times, w is almost −1 and

behaves like a cosmological constant but at later times, w evolves away from −1. For a

larger value of n, the field evolves faster. In the second row, the plot on the left is for

energy density of the scalar field as a function of a and the figure on the right is the phase

plot obtained for the polynomial potential.

3.3 Results

In this section, we discuss the results obtained by using the three different cosmological

observations in the analysis.

First we will discuss the results obtained for the exponential potential, V (Ψ) =

M4e−
√
αψ/Mp . The priors used for the analysis are listed in Table 3.1. The free parameters

used in the analysis are dark energy EoS parameter w, matter density parameter Ωm and

α. We have fixed the value of field φ = 1.In Figure 3.2, we show the 1σ, 2σ and 3σ

confidence contours in Ωm − w0 plane. Here, Ωm and w0 denotes the present values of

matter density parameter and equation of state parameter. The plot on the left is from

the SNIa data, the plot in middle is for BAO data and the plot on right shows the results

from H(z) data. To obtain the contours we have marginalized over the entire range of

parameter α. The minimum value of χ2 (χ2
min) is listed in Table 3.2 and the constraints

obtained for the parameters are listed in Table 3.2. BAO data provides the narrowest

constraints on Ωm and provides an upper limit on w0; none of the data sets provide a

lower limit on w0. The Hubble data constrains Ωm nicely, but it allows the regions of

w0 within 3σ limits, which gives decelerated expansion. Supernova data, too, does not

provide a lower limit on parameter w0; it allows entire range of w0 below w0 ≤ −0.88.

We show the allowed range of V0 =M4/M2
p corresponding to 1σ, 2σ and 3σ confidence

regions as a function of α in figure 3.3. The left plot is obtained for SNIa , middle plot is
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obtained for BAO and right plot is the result from H(z) data respectively. The maximum

range is allowed by H(z) data and the narrowest range is provided by BAO data. The

results are consistent with the confidence contours of figure 3.2, this is because the value

of V0 depends upon both Ωm and w. The parameter α alone is not constrained. In

figure 3.4, we shows allowed range of V0 as a function of dark energy equation of state

parameter w (in first row) and V0 as a function of Ωm in second row. The allowed range

in both the cases are large and comparable, but BAO allows smallest range as compared

to others.

The allowed range of field velocity φ̇ as a function of w and Ωm is shown in figure 3.5.

The scheme of the plots is same as before. The variation of field velocity is calculated

using the form of equation (3.14). From this equation, we get two branches for φ̇; first

is φ̇ =
√

3H2
0 (1 + win), which we will refer to as the positive branch and another one

is the negative branch which is given by φ̇ = −
√

3H2
0 (1 + win)(1− Ωmi

). Here we have

plotted for the positive branch, the results of negative branch are just opposite to the

positive one. The allowed range for the positive branch lies above zero, in case of the

negative it lies below zero. In this case too, the BAO provides the tightest allowed range

as compared to the other two datasets.

Fig. 3.6 shows the confidence contours corresponding to 1σ, 2σ and 3σ levels in V0

and
√
αΦ plane. Here, we show the results for the range 0− 1 of

√
αΦ. We find that the

most stringent constraints are provided for BAO data set, and the widest range is allowed

for H(z) data and for SNIa data set the range lies between the range provided by other

two datasets. In Fig. 3.7, we show the allowed range of
√
αΦ and w for different datasets

in first row and in second row we show the constraints on
√
αΦ versus Ωm. The first plot

is obtained for SNIa, second plot is obtained for BAO and third plot is the result from

H(z) data respectively. The results are consistent with the confidence contours of Fig.

3.2. This is because the value of V0 depends upon both Ωm and w.

We will now discuss the results obtained for the concave potential, V = M4−nψn.

This potential gives us three potentials, as n takes three values; n=1,2 and 3. The free

parameters in the analysis are w, non-relativistic matter density parameter Ωm and field

φ. The priors used for this analysis are listed in Table 3.1. The figure 3.9 shows the

1σ, 2σ and 3σ confidence contours in Ωm − w plane. The contours in the first rows are

obtained from analysis of SNIa data, second row represents plots from BAO data and

the third row shows results for H(z) dataset. The contours in first, second and third

columns are for n = 1, 2 and 3 respectively. The two dimensional contours in w − Ωm

plane are shown by marginalizing over the third parameter φ. The value of minimum χ2
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is listed in Table 3.3 and the constraints on the parameters are listed in Table 3.4. The

tightest constraints are from the BAO data, followed by SNIa and H(z) data respectively.

The H(z) data also allows models with a decelerated expansion for all three values of n,

within the 3σ confidence limit. We find that for a dataset, the tightest range is given

by the potential corresponding to n = 3; as the value of n decreases, the allowed range

for w increases for all three datasets. As the value of n increases, the contours move

towards w = −1, the cosmological constant model. All the three datasets provide strong

constraints on Ωm, with SNIa giving maximum allowed range for this parameter.

In figure 3.10, we show the allowed range of V0 =M4−n corresponding to 1σ, 2σ and

3σ confidence regions as a function of field φ. The scheme of plots is same as in figure 3.9.

As the value of φ increases, the allowed range of values of V0 decreases. This trend is

same for the three datasets for all values of n. The maximum value V0 is required for

a smaller value of φ. The maximum range is allowed by H(z) data and the narrowest

range is provided by BAO data for all values of n. The results are consistent with the

confidence contours in plane w − Ωm of figure 3.9 as the value of V0 depends upon those

parameters (see Eq. (3.19)). Here, the entire range of φ considered in the analysis is

allowed by the observations; there are no constraints on φ.

In figure 3.11, we show allowed range of V0 as a function of dark energy equation

of state parameter w corresponding to 1σ, 2σ and 3σ confidence contours. The allowed

range for the three datasets are large, but BAO allows smallest range as compared to

others, for all three values of n. In case of BAO data, as the value of n increases from 1

to 3, the maximum allowed range goes down from 500 to 110 to 11; this is not the case in

other two datasets. In case of SNIa and H(z) datasets, the allowed ranges just increases,

but the maximum value remains more or less the same, as we n increases. In figure 3.12,

we shows allowed range of V0 as a function of non-relativistic matter density parameter

Ωm corresponding to confidence contours in figure 3.9. Here, we see the similar pattern

as in figure 3.11, as the value of Ωm decreases the allowed range of V0 increases. The

minimum range is provided by BAO data set; as the value of n increases, the maximum

of the allowed range decreases. For SNIa and H(z) data, as n increases, the maximum of

the allowed range remains the same but the allowed ranges increases.

The allowed range of positive branch of φ̇ as a function of w corresponding to 1σ, 2σ

and 3σ confidence level are presented in figure 3.13. The scheme of the plots is same as

before. As the value of w increases, there is a monotonic increases in the allowed range of

φ̇. For a particular data set, the variation in φ̇ is same for all values of n as the value of

φ̇ is independent of n or the form of potential, see equation (3.20). The narrowest range
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for φ̇ is given by BAO data followed by SNIa data and then H(z) data. The results of the

negative branch is just the mirror image of those of positive branch along the w = −1

line.

In figure 3.14, we show the allowed range of positive branch of φ̇ as a function of

Ωm corresponding to 1σ, 2σ and 3σ confidence level. We see that as the value of Ωm

increases, the allowed range of φ̇ decreases. The tightest range is provided by BAO, then

SNIa followed by H(z) data set. Also, for a dataset, if n increases, the allowed range of φ̇

increases. The results are similar for negative branch, the only difference being that the

range lies below zero line and is a mirror image of the range for the positive branch.

In this chapter, constraints on thawing models of scalar field models of dark energy are

presented for exponential potential ans the polynomial potentials. The datasets allow for

a small range in variation of scalar field parameters. The models which closely emulate

the background evolution of a cosmological constant are preferred by the observations.

The constraints on different parameters are stringent since the different observations

considered are sensitive to different physical quantities. The stringent constraints are

provided by BAO data, which are consistent with fluid models of dark energy.
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Figure 3.9: The plots in the rows of the figure represent 1σ, 2σ and 3σ confidence contours
in Ωm − w plane for V = V0ψ

n. In first row, the first, second and third plot is obtained
for SNIa for n equal to 1, 2 and 3 respectively. In the second row, the plots are obtained
for BAO data for n equal to 1, 2 and 3 in the same order. The second row shows the
plots for H(z) data for n equal to 1, 2 and 3 respectively.
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Figure 3.10: The plots in the rows of the figure represent allowed region for V0 = M4−n

corresponding to 1σ, 2σ and 3σ confidence region as a function of field φ, for V = V0ψ
n.

Going from left to right, the first, second and third plots are obtained for potentials
corresponding to n equal to 1, 2 and 3 respectively. In first row, the plots shows results
for SNIa, the plots in second row are obtained for BAO data and the third row shows the
plots for H(z) dataset.
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Figure 3.11: The plots in the rows of the figure represent allowed region for V0 = M4−n

corresponding to 1σ, 2σ and 3σ confidence region as a function of w, equation of state
for the quintessence field, for V = V0ψ

n. The scheme of the plots is same as before. The
value of V0 is calculated by using the formula given in Eq.(3.19).
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Figure 3.12: The plots in the rows of the figure represent allowed region for V0 as a
function of non-relativistic matter density parameter Ωm, for thawing power potential
V = V0ψ

n. The order in which the plots are presented is same as in Fig.(3.10).

85



Figure 3.13: The plots in the rows of the figure represent allowed region for φ̇ corre-
sponding to 1σ, 2σ and 3σ confidence region as a function of w, equation of state for the
quintessence field, for V = V0ψ

n. The scheme of the plots is same as before. The value
of V0 is calculated by using the formula given in Eq.(3.20).
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Figure 3.14: The plots in the rows of the figure represent allowed region for φ̇ correspond-
ing to 1σ, 2σ and 3σ confidence region as a function of Ωm, for the quintessence potential,
V = V0ψ

n. The scheme of the plots is same as before.
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Chapter 4

Reconstruction of Dark Energy

Potential

In this chapter, we reconstruct the quintessence and phantom scalar field potentials and

study the evolution of the scalar field as a function of scale factor. We reconstruct the

form of potentials that are consistent with the different parameterizations of dark energy

equation of state mentioned in chapter 2 and by using cosmological observations, we

constrain the reconstructed potential and the field parameters. This chapter is based on

A. Sangwan, A. Mukherjee, and H. K. Jassal JCAP, 1801(01):018, 2018[65].

There are two methods of reconstruction. First is the parametric reconstruction

method which we adopted. In this method a form of dark energy equation of state

parameter is considered and using the cosmological equations we reconstruct the quanti-

ties. In the second method, instead of assuming a function form of dark energy equation

of state, we reconstruct it from cosmological observations. For more details see [82]. Now

we will discuss how the reconstruction of canonical and non-canonical potential is done.
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4.1 Dark energy cosmology

For a spatially flat, homogeneous and isotropic universe, the cosmological evolution is

described by the Friedmann equations 2.3. The Friedmann equation in terms of scale

factor is given by
ȧ2

a2
=

8πG

3
ρ, (4.1)

2
ä

a
+
ȧ2

a2
= −8πGp, (4.2)

where a is the scale factor, ρ is the total energy density and p is the pressure. The total

energy density ρ at a given time is the sum of the energy densities of single components.

We neglected the contribution of the relativistic particles at late times because observa-

tions suggest that the energy of the present universe is dominated by dark energy with

more than two-third, where less than one-third contribution is due to the energy density

from non-relativistic matter.

The equation of state for a barotropic fluid is given by p = wρ, where w is the equation

of state parameter. The energy density is, in general, a function of the scale factor and is

given by equation 2.7. For non-relativistic matter with w = 0, energy density is ρm ∝ a−3

and for relativistic particles with w = 1/3, energy density scales as ρ ∝ a−4. For dark

energy, with a constant w, the dark energy density evolves as a function of scale factor

as a−3(1+w). This is referred to as wCDM model.

In general, w can be a function of time and its behaviour can be approximated by

way of assuming a functional form for its evolution. A simple parameterization is an

expansion of the energy equation state in a Taylor series suggested by [15, 16]

w(a) = w0 + w′(1− a). (4.3)

In this parameterization, namely the CPL parameterization, w0 is the present value

of equation of state parameter and w′ is its first derivative. This is called the CPL

parameterization. This functional form is used in most studies of varying dark energy

models. This parameterization allows a slow variation of the dark energy density at late

times. The asymptotic or early time value of the dark energy equation of state is w0+w
′

and the present day value (i.e. at a = 1) is w0. In this case, the variation of the dark

energy density as a function of scale factor is given by

ρDE
ρDE0

= a−3(1+w0+w′) exp [−3w′(1− a)]. (4.4)
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Figure 4.1: The figure represents 3σ allowed regions for the reconstructed potential, scaled
by the present day dark energy density [ρDE(a = 1)] as a function of scale factor for the
wCDM model. The first and second plots in the first row are the results obtained from
the analysis of SNIa, BAO and the plots in second row are results obtained from H(z)
and combined datasets respectively. The plots in first row are for a quintessence scalar
field potential.
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Figure 4.2: The figure represents 3σ allowed regions for the reconstructed phantom po-
tential as a function of scale factor for the wCDM model. The potential is scaled by the
present day dark energy density [ρDE(a = 1)]. The order in which the plots are presented
is the same as in 4.1. The plots are for a phantom potential.
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Another description of a varying equation of state parameter that is used in this work,

is the logarithmic parameterization given as,

w(a) = w0 − w′log(a). (4.5)

In this case, the equation of state increases monotonically [18] and the variation of energy

density with scale factor is given by

ρDE
ρDE0

= a−3(1+w0−w′

2
log(a)). (4.6)

We attempt for find explicit form of the scalar field potential which has the same back-

ground evolution as described by these parameterizations. Since all scalar field models

of dark energy are largely phenomenological, it is reasonable to fit functional forms of

scalar fields with the fluid parameterizations.

In the present work, the nature and evolution of the scalar field dark energy potentials

are reconstructed for the evolution history allowed by these three parameterizations.

4.2 Reconstruction of scalar field potential

Dark energy is equivalently described by scalar fields, both canonical and non canonical.

In this paper, we consider the canonical, quintessence field and the phantom field. For

models which are of ‘quintessence’ type scalar fields [23, 60, 61, 62, 71, 83, 84, 85, 86, 87,

88, 89], w > −1 and on the other hand, w < −1 for ‘phantom’ like models. [83, 29, 90,

91, 92, 93, 94, 95]. The phantom scalar fields have a negative kinetic energy and are the

same as the c-fields proposed by Hoyle and Narlikar [96, 97]. These c-fields are massless

scalar fields and generate negative gravitational field because of negative energy density.

The pressure and energy density for quintessence and phantom scalar field are given

by

p =
±φ̇2

2
− V (φ) ρDE =

±φ̇2

2
+ V (φ), (4.7)

where φ denotes the scalar field and V (φ) is the scalar field potential. In the above

expressions, the plus sign corresponds to a quintessence field and the negative sign corre-

sponds to a phantom field dark energy i.e., for a negative kinetic energy term. Therefore,

the scalar field potential which is emulated by the parameterization given in equation 4.3
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Figure 4.3: The plots show 3σ allowed regions for field φ as a function of scale factor
reconstructed from the wCDM model. The plots in first row are plotted from the analysis
of SNIa and BAO data. And the plots in second row shows the results obtained from
H(z) data and combined datasets respectively. The plots are obtained for quintessence
potential.
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Figure 4.4: The plots show 3σ allowed regions for field φ as a function of scale factor
reconstructed from the wCDM model for phantom scaler field. The order in which the
plots are presented is the same as in 4.3.
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can be reconstructed as

V (a) =
1

2
(1− w)ρDE(a).

for the scalar field. Here, w can be a constant or a function of the scale factor. The

variation of the scalar field with time for a quintessence field is given as

[

dφ

dt

]2

= (1 + w) ρDE

which, in turn, can be written as

[

dφ

da

]

=

√

(1 + w)ρDE
a H(a)

. (4.8)

We mainly consider the positive sign in the above expression for our discussion. For

completeness, we discuss the results for the negative sign branch within the quintessence

scenario for the case of a constant equation of state parameter. The effective dynamics

are the same for both the negative and positive branch as the energy density depends on

φ̇2.

For a phantom like scalar field, since the kinetic energy is negative, the variation in

the field φ as a function of time is given as

[

dφ

dt

]2

= − (1 + w) ρDE,

which, in terms of the scale factor, is given by,

[

dφ

da

]

=

√

−(1 + w)ρDE
a H(a)

. (4.9)

For a universe with dark energy as its sole constituent, the scalar field potential for a

constant dark energy equation of state is given by (see also [98])

V (φ) =
1

2
(1− w)ρDE0exp

[

−
√

24πG(1 + w)(φ− φ0)
]

,

which can be rewritten as

Ṽ (φ̃) =
1

2
(1− w)exp

[

−
√

3(1 + w)(φ̃− φ̃0)
]

(4.10)

where Ṽ = V/ρDE0 , φ̃ =
√
8πGφ and φ0 is the value of field at a = 1. And for a phantom
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dark energy, the potential is of the form

V (φ) =
1

2
(1− w)ρDE0exp

[

√

−24πG(1 + w)(φ− φ0)
]

.

We scale the potential with the present day value of dark energy density and φ by√
8πG and then the above equation takes the form

Ṽ (φ̃) =
1

2
(1− w)exp

[

√

−3(1 + w)(φ̃− φ̃0)
]

. (4.11)

The slope of the potential and its amplitude are determined by the equation of state pa-

rameter of dark energy. The exponential potential belongs to the ‘thawing’ class of scalar

fields, where the early times scalar field equation of state is like that of a cosmological

constant with w = −1 and at late times begins to deviate from this value. This potential

has been employed extensively for dark energy studies and as an inflation potential [99].

If the contribution of matter density is significant, the solutions for the quintessence

scalar field for w = constant are given by

(φ̃− φ̃0) =

√

3(1 + w)

3w

[

ln

(
√
1 + r0a3w − 1√
1 + r0a3w + 1

)

− ln

(√
1 + r0 − 1√
1 + r0 + 1

)]

, (4.12)

where r0 = ρm0/ρDE0 . If dφ/da is negative, the expression for field is same as this with

an overall negative sign and the expression of the quintessence scalar field potential can

be written as,

Ṽ (φ̃) =
(1− w)

2

[

r0 sinh
2

( √
3wφ̃

2
√
1 + w

)]
1+w
w

. (4.13)

Similarly, we obtain an expression for phantom scalar field, which is given by

(φ̃− φ̃0) =

√

−3(1 + w)

3w

[

ln

(
√
1 + r0a3w − 1√
1 + r0a3w + 1

)

− ln

(√
1 + r0 − 1√
1 + r0 + 1

)]

. (4.14)

The functional form of the potential for the phantom field is same as that for a quintessence

potential except for a negative sign in the argument
√

−(1 + w), and is given as

Ṽ (φ̃) =
(1− w)

2

[

r0 sinh
2

( √
3wφ̃

2
√

−(1 + w)

)]
1+w
w

. (4.15)

Here, the scalar field φ is scaled by
√
8πG = M−1

pl . For a large value of the scalar
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Figure 4.5: The plots show allowed regions at the 3σ level for the quintessence scalar
field potential V (φ) as a function of the field φ reconstructed from the wCDM model.
The first and second plots in the first row are the results obtained from the analysis of
SNIa, BAO and the plots in second row are results obtained from H(z) and combined
datasets respectively. We have taken the envelope of the family of curves corresponding
to different values of the equation of state parameter.

98



Figure 4.6: The plots show allowed regions at the 3σ level for the phantom scalar field
potential V (φ) as a function of the field φ reconstructed from the wCDM model. The
order in which the plots are presented is the same as in 4.5.
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Figure 4.7: The plots show 3σ allowed regions for field potential V (φ) versus field φ
reconstructed from wCDM model for the branch where dφ/da is negative. The plots are
obtained for quintessence scalar field potential. The sequence is same as in figure 4.5.
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Figure 4.8: The plots show 3σ allowed regions for phantom scalar field potential V (φ)
versus field φ reconstructed from wCDM model for the branch where dφ/da is negative.
The sequence is same as in figure 4.5.

101



field φ, this potential takes the exponential form. The functional form of this potential

(equation 4.15), take the the same form as in a purely dark energy universe. Therefore,

safe to assume that the potential can be reconstructed in a dark energy only universe.

We now consider the models where the equation of state parameter is a function of

time. We first consider the CPL parameterization (4.3) which is the parameterization

employed in most dark energy studies. It has been pointed out that barotropic fluids are

not consistent with a freezing type behaviour [100, 101] in general and in particular for

the CPL parameterization which is the scenario we will discuss next.

The variation of the scalar field (φ) as a function of the scale factor a for the CPL

parameterization can be expressed as,

[

dφ

da

]2

= ± [1 + w0 + w′(1− a)]ρDE
a2H2

. (4.16)

Here again, the plus sign is for a quintessence field and the negative sign is for a phantom

field. For further discussion we have considered dφ
da

to be positive. The conditions for

the CPL parameterization to emulate quintessence like behaviour are w0 + w′ ≥ −1 and

w0 > −1. These conditions ensure that the equation of state parameter, w(a) is always

greater than −1 at all times. On the other hand, the condition w0 + w′ < −1, along

with w0 < −1, ensures that the equation of state parameter, w(a), is less than −1, for

all values of a and hence the equation of state parameter is phantom like at all times.

In the low redshift regime, when the dark energy density is the dominant factor in

the total energy of the universe, the scalar field potential can be expressed as,

Ṽ (a) =
1

2
[1− w0 − w′(1− a)]a−3(1+w0+w′)e−3w′(1−a) (4.17)

and scalar field is given as

φ̃− φ̃0 = 2
√
3

[

√

±(1 + w0 + w′(1− a))−
√

±(1 + w0) (4.18)

+

√
±(1+w0+w′)

2
ln

{√
±(1+w0+w′(1−a))−

√
±(1+w0+w′)√

±(1+w0+w′(1−a))+
√

±(1+w0+w′)

}

−
√

±(1+w0+w′)

2
ln

{√
±(1+w0)−

√
±(1+w0+w′)√

±(1+w0)+
√

±(1+w0+w′)

}

]

.

Since the equation of state parameter is an expansion about its present day value, it is

expected that the reconstructed potential is close to that of the case with a constant w
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Figure 4.9: The plots in the rows represent 3σ allowed regions for quintessence scalar
field potential reconstructed from w(a) = w0 + w′(1− a) parameterization as a function
of scale factor. As before, the potential is scaled by present value of the dark energy
density [ρDE(a = 1)]. The plots in first rows are obtained for SNIa and BAO data and
the plots in second row resulted from the analysis of H(z) data and combined analysis of
the three data sets.
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Figure 4.10: The plots in the rows represent 3σ allowed regions for potential reconstructed
from w(a) = w0 +w′(1− a) parameterization as a function of scale factor. The potential
is scaled by present value of the dark energy density [ρDE(a = 1)]. The order of plots is
same as in fig. 4.9. The plots are obtained for phantom field.
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Figure 4.11: The figure represents 3σ allowed regions for quintessence field φ versus scale
factor reconstructed from w(a) = w0 + w′(1− a) parameterization. The plots are shown
in the same order as in fig. 4.9.
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Figure 4.12: The figure represents 3σ allowed regions for phantom scalar field φ versus
scale factor reconstructed from w(a) = w0 + w′(1− a) parameterization.
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with a slight increase in the allowed range of parameters. We explore this aspect in the

next section.

We now consider the scenario where the equation of state parameter is a function of

the logarithm of redshift or the scale factor. The variation of the scalar field φ with the

scale factor in this case is expressed as,

[

dφ

da

]2

= ± [1 + w0 − w′log(a)]ρDE
a2H2

(4.19)

Since dark is dominant in the low redshift regime, we have neglected the contribution of

matter, and for the scalar field potential can then be expressed as

Ṽ (a) =
1

2
[1− w0 + w′log(a)]a−3(1+w0−w′log(a)/2) (4.20)

and quintessence scalar field is given as

φ̃− φ̃0 = − 2√
3

[

(1 + w0 − w′log(a))3/2

w′ − (1 + w0)
3/2

w′

]

, (4.21)

with the corresponding expression for a phantom scalar field given by

φ̃− φ̃0 =
2√
3

[

(w′log(a)− w0 − 1)3/2

w′ − (−w0 − 1)3/2

w′

]

. (4.22)

In this case, we can obtain a closed form for the scalar field potential, and the expres-

sion for quintessence scalar field potential is given by

Ṽ (φ̃) = 1
2

[

2−
{

(1 + w0)
3/2 − 3w′

2
√
3
(φ̃− φ̃0)

}2/3
]

(4.23)

exp

[

− 3
2w′

{

(1 + w0)
2 −

[

(1 + w0)
3/2 − 3w′

2
√
3
(φ̃− φ̃0)

]4/3
}

]

and phantom scalar field potential in terms of φ̃ is given by

Ṽ (φ̃) = 1
2

[

2 +
{

3w′

2
√
3
(φ̃− φ̃0) + (−w0 − 1)3/2

}2/3
]

(4.24)

exp

[

− 3
2w′

{

(1 + w0)
2 −

[

3w′

2
√
3
(φ̃− φ̃0) + (−w0 − 1)3/2

]4/3
}

]

.
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Figure 4.13: The plots in the rows show 3σ allowed regions for quintessence field potential
V (φ), scaled by the present dark energy density [ρDE(a = 1)] versus field φ reconstructed
from w(a) = w0 + w′(1− a) parameterization. The plots in both first row represent the
results obtained from SNIa and BAO. The result from the analysis of H(z) and combined
data sets is shown in plots in second row.
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Figure 4.14: The plots in the rows show 3σ allowed regions for phantom scalar field
potential V (φ) versus field φ reconstructed from w(a) = w0+w

′(1−a) parameterization.
The phantom potential is scaled by the present dark energy density [ρDE(a = 1)]. The
plots in both the rows are in same order as in Fig. 4.13.
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Figure 4.15: The plots in the rows represent 3σ allowed regions for quintessence scalar
field potential, scaled by the present dark energy density [ρDE(a = 1)], reconstructed
from w(a) = w0 − w′ log (a) parameterization versus scale factor. The sequence of plots
is the same as before.

4.3 Constraints from different datasets

In this section, we discuss the observational constraints on the variation of the recon-

structed scalar field potential from different data sets and on the reconstructed scalar

field potentials as a function of the field corresponding to a fluid dark energy equation

of state. The individual data sets allow a higher range of variation and when combined,

the resulting allowed range is significantly narrower as a result of tighter constraints on

parameters.

In Fig. 4.1, we have plotted the 3σ allowed regions for the reconstructed potential as

a function of the scale factor a, for the constant equation of state parameter (wCDM)

model. We have plotted V (a)/ρDE0 vs a for quintessence (the first row) and phantom
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Figure 4.16: The plots in the rows represent 3σ allowed regions for phantom field potential
versus scale factor. The potential is reconstructed from w(a) = w0 − w′ log (a) parame-
terization and scaled by the present dark energy density [ρDE(a = 1)]. The sequence of
plots is the same as before.
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(the second row). For quintessence, the allowed range lies below unity when a > 0.8 and

for a < 0.8, this range lies above V (a)/ρDE0 =1 line.

As the value of a decreases from one, the allowed range begins to get narrower till

it reaches a ∼ 0.8, where it is narrowest. With further decrease in a, the allowed range

starts increasing again. The phantom potential shows a behaviour opposite to that of

quintessence field but with a similar switch in allowed range at a ∼ 0.8.

In Fig. 4.5, we show the 3σ allowed regions for reconstructed potentials as a function

of scalar field, φ, for the wCDM model. We have plotted V (φ)/ρDE0 vs φ, where φ is

in units of
√
8πG. In Fig. 4.3, we show the 3σ allowed regions for scalar field φ as a

function of scale factor, a, for wCDM model. The value of the scalar field is in units of

M−1
pl . The plots in the two rows of Fig. 4.3 shows the results obtained from the analysis

of SNIa, BAO and H(z) data sets respectively. As before, the plots in first row are for a

quintessence field and plots in the second row shows allowed range for a phantom field

and the results from the combined analysis. In the case of a varying equation of state

parameter, the allowed range of the dark energy density variation increases as compared

to the wCDM model. The family of curves representing the scalar field potential as a

function of the field have a fairly restricted range of variation for the quintessence models.

For phantom like models, the allowed range increases as compared to the wCDM case.

Here we have plotted the envelope of family of curves corresponding to the allowed range

in w, the curve is defined by the function V (φ) and the constants.

In Fig. 4.13 we show the variation of scalar field potential V (φ) as a function of the

field φ for the CPL scenario. These solution are valid only under the assumption that

the scale factor is very close to its present day value, i.e., valid at late times. In Fig. 4.9,

3σ allowed region is shown for potentials reconstructed from CPL model. The phantom

potential shows a similar behaviour as in the wCDM case. The Fig. 4.15 shows the

allowed range of potential for the logarithmic parameterization. In this case also, the

narrowest range is obtained from BAO data sets which when combined with other data

sets restricts the range further. The corresponding field versus scale factor plots for scalar

field, derived from CPL model, are shown in Fig. 4.11.

Fig. 4.13 represents the 3σ allowed regions for the reconstructed potential as a func-

tion of scalar field, φ, for the CPL model. Fig. 4.17 shows the results obtained for

logarithmic parameterization. The allowed ranges obtained for the logarithmic param-

eterization from the individual datasets and combined analysis are shown in Fig. 4.19.

The plots show that the profiles of uncertainty associated with the best fit curves of the
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Figure 4.17: The plots in the rows represent 3σ allowed regions for quintessence scalar
field φ versus scale factor reconstructed from the CPL parameterization. The order of
plots is same as before.

scalar field for these two models are different. The dark energy potential shows similar

behaviour for these models.

In all the models considered above, the results in general are similar to each other.

The most stringent constraints on the variation of the scalar field as a function of scale

factor are due to the BAO data and as a result the combination of different datasets

allows for a limited range too. More data at different redshifts will further limit this

range.

We attempted to connect two alternate explanations of dark energy, namely barotropic

fluid models and scalar field models by way of reconstructing scalar field potentials which

emulate the barotropic equation of state. We assume a constant dark energy equation

of state parameter, a slowly varying function of redshift and a logarithmic growth with
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Figure 4.18: The plots in the rows represent 3σ allowed regions for phantom scalar field φ
as a function of scale factor reconstructed from the CPL parameterization. The sequence
of plots is the same as before.
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respect to the the redshift for this reconstruction. The assumptions are reasonable as a

combination of low redshift observations, restrict the allowed range of the evolution of

dark energy density. Since it is straightforward to parametrize the dark energy equation

of state and constrain its parameters, therefore, we constrain the cosmological parameters

and using parameters allowed by individual and combined datasets, we obtain a range

in variation of the scalar field potential. We study quintessence and phantom nature of

dark energy and reconstruct the respective potentials for these models and obtain semi-

analytical forms for the scalar field potentials. In this context, it is worth mentioning that

for fluid models, a transition from quintessence to phantom like behaviour is straightfor-

ward as both the behaviours are described by the same equation of state. This is not the

case for scalar field models as the equations describing the dynamics are fundamentally

different from each other. Because the dynamics of the two scalar fields are different, we

use different priors for quintessence and phantom field, namely we assume the parameter

sets such that the evolution of the equation of state parameter does not cross over the

w = −1 (the phantom) divide. The energy density for quintessence scalar field decays

with the scale factor, and in the case of phantom field the behaviour is opposite to that

of a quintessence field.

The evolution of the scalar field has very similar behaviour for both, quintessence

and phantom. The uncertainty in the reconstructed potential is much higher when the

analysis is carried out with individual data sets and the evolution of the potential is well

constrained in the combined analysis with the data sets, namely SNIa, BAO and H(z)

data. The allowed range is obtained to be minimum at 0.8 < a < 0.9, and it slightly

increases at a ∼ 1. This profile of uncertainty of the reconstructed potential is very

similar for all the three models considered in this paper.

The potential for the wCDM model (scaled by its present day value) remains close to

the value of unity, which is the boundary between the quintessence and phantom class of

dark energy. The constant equation of state parameter model accommodates an expo-

nential potential, belonging to thawing class of models. The slope of the potential and its

amplitude depends on the equation of state of the dark energy fluid. If the matter contri-

bution is also taken into account, the potential also accommodates a slow-rolling nature.

For both the scenarios, namely the quintessence and phantom models of dark energy, the

evolution of the potential tends to converge to a narrow range. For scenarios with varying

dark energy parameterizations, the observations restrict the variation significantly. To

study dark energy perturbations, the sound speed is considered as a parameter in fluid

models of dark energy. Since the pressure gradients are more easily computed in scalar

field models, the reconstructed potentials are hence of help in studying perturbations in
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Figure 4.19: The plots show 3σ allowed regions for quintessence scalar field potential V (φ)
versus field φ. The potential is reconstructed from w(a) = w0−w′ log (a) parameterization
and scaled by the present dark energy density [ρDE(a = 1)].
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Figure 4.20: The plots show 3σ allowed regions for field potential V (φ), scaled by the
present dark energy density [ρDE(a = 1)], versus field φ reconstructed from w(a) =
w0 − w′ log (a) parameterization.
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these scenarios. The large scale structure data would further rule out models using data

in addition to distance measurements. Fluid models are effectively used as a representa-

tion for dark energy, and analytical connection between common parameterizations and

scalar field models is therefore of significance for further studies.
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Chapter 5

Summary and future directions

In this thesis we discuss various observational constraints on cosmological parameters.

We are especially interested in studing properties of fluid models and scalar field models

of dark energy.

We begin with a discussion of the basic concepts that we need to understand cosmol-

ogy. Observational evidence indicates that the expansion of the Universe at present is

an accelerating one. The known non-relativistic matter as well as the relativistic matter

provides only a decelerating expansion, which was the nature of expansion in the past.

Thus, to account for the observed accelerating expansion, one assumes the presence of

dark energy. The component has large negative pressure. The energy density of the uni-

verse and its expansion rate depends upon the contribution of each of these components.

Earlier the relativistic component was dominant, followed by non-relativistic component,

and recently the dark energy component became the dominant component, accelerating

the expansion of the universe. The different cosmological constraints (studied in this

thesis) are due to distance measurements. The distances measured are the luminosity

distance to a standard candles, or the angular diameter distance to an object with a

known angular size. The supernovae data is sensitive to the luminosity distance and the

BAO data is a function of the angular diameter distance. We review these observations

and also those of direct measurements of the Hubble parameter. These observations are

used to constrain the cosmological parameters of interest for models considered in this

work.

We next consider a fluid model of dark energy and tried to constrain the cosmological

parameters. Models base on isotropic fluids provide a description of dark energy which

can account for the late time acceleration of the universe as far as determination of dark
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energy parameters are concerned. For an isotropic fluid, the equation of state is same in

all directions. The equation of state is given by p = wρ, where p, ρ denotes the energy

density and pressure and w is the equation of state parameter. We ignore the contribution

of relativistic term as we are interested in late time evolution of the universe and we

consider a flat universe. We considered two types of model in this chapter: first model

has a constant equation of state and in the second type the equation of state parameter is

a function of time. The first model where w is considered to be a constant, is the simplest

model where dark energy is dynamical. This model is described by two parameters; Ωm

and w. We find that the ΛCDM model is consistent with all the observations. Constraints

from BAO are orthogonal to that of SNIa and H(z) data. As a result, constraints obtained

from the analysis of combination of datasets provides tighter constraints. For a varying

equation of state models, we consider two parameter descriptions of w(z). The three

different parametrizations are considered in this category; I) CPL parametrization, II)

JBP parametrization, and III) Logarithmic parametrization. The models in this case are

described by three parameters: Ωm, w0 and w′(z = 0). Here, Ωm is the energy density

parameter for non-relativistic matter at present, w0 is the equation of state at present,

and w′(z = 0) is the first derivative of equation of state parameter at present. Performing

χ2 analysis and using the three datasets we present constraints on these parameters. To

obtain the contours corresponding to 67%, 95% and 99% between any two parameters,

we marginalize over the third parameter. For CPL and JBP parametrizations, we find

that on marginalization over w′(z = 0), SNIa observations prefer higher values of Ωm as

compared the other two datasets. The SNIa data prefers dark energy of phantom origin.

Other data sets, BAO and H(z) data, however prefer quintessence like models and are

consistent with w = −1. BAO and H(z) data sets also allows the decelerating models for

these two parametrizations. In case of logarithmic parametrization, all the three models

are in good agreement with ΛCDM model. When all the observation are combined and

analysis is done, the resultant allowed range of parameters is lower as compared to that

of individual datasets. When no marginalization is performed on any parameters, all

the datasets for the three parametrizations are consistent with a cosmological constant

description.

Scalar fields provide another description of dark energy where the late time accelera-

tion can be a manifestation of the form of the potential considered. The equation of state

of the field is a function of time and space. The evolution of field is described by the

form of potential considered. If we consider a slow rolling potential, it would lead to late

time acceleration, where the onset of acceleration depends upon the initial conditions.

We consider a canonical scalar field called quintessence which is minimally coupled to
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gravity. We consider thawing scalar field models. In thawing scalar field, the field is

frozen because of the large Hubble damping term at earlier times. This causes the kinetic

term to be very small, which can be neglected as compared to potential term. The model

in this case behaves live cosmological constant model. Later, when the mass of the field

becomes comparable to the Hubble parameter, the field starts evolving, moving towards

the minimum of the potential. At this stage, the contribution of the kinetic term becomes

finite and the equation of state starts evolving away from −1 towards a larger value of w.

For this case we considered two types of potentials. We use χ2 technique for the analysis

and constrain the parameters of the models considered. The cosmological constant model

is consistent with the observations and BAO observations provide the most stringent con-

straints on parameters, followed by SNIa and H(z) data respectively. None of the datasets

provide lower limit on equation of state parameter in both the models considered. We

also study other parameters specific to a particular potential and constrain them. For the

model parameters at present, tight constraints are obtained, however, we don’t obtain

any evidence that these models are inconsistent, therefore, we cannot rule out any of the

models. We can constrain their parameters with better precision.

We then proceed to reconstruct the form of scalar field potentials which are consistent

with the different parametrizations considered in the fluid model of dark energy. For

this we consider quintessence scalar field model and the phantom scalar field models.

The equation of state parameter is greater than −1 in case of quintessence field and

less than −1 for phantom fields. The kinetic energy is negative for phantom scalar

fields while it is positive for quintessence. We study the evolution of the scalar field and

obtain the functional and semi-functional form of the potentials. We use χ2 minimization

analysis and the three observations mentioned earlier to constrain the potentials and

the scalar field parameters. The scenarios we have considered are w =constant, CPL

and logarithmic parametrizations. For w =constant parametrization, if we consider the

contribution of dark energy/scalar field only, we get an exponential potential which is

of the same form as studied in the quintessence case. It belongs to the thawing scalar

field potential, where w = −1 at earlier times but grows less negative as the field evolves.

We consider the case when the Universe consists of both dark energy as well as non-

relativistic matter. We find the function form of the reconstructed potential. If the value

of scalar field is large than this potential takes the form of the exponential potentials,

behaving as if only scalar field contributes to the total energy of the universe. In the

constraints on scalar field parameter, we find that the potential for quintessence decays

as the filed evolves from past to present and the value of scale factor approaches the a = 1.

Similar results, albeit with an opposite sign is obtained for phantom potential where the
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field grows as scale factor approaches unity and the field evolves to its present value.

The allowed range of quintessence scalar field is found to increase as we go into the past

and value of scale factor decreases. For the CPL parametrization and the logarithmic

parametrization, we consider a universe dominated by scalar field only and ignored the

contribution from other components. In these cases we obtained the functional form of

scalar field potential and studied the allowed range of scalar field parameters. The results

that we obtain are similar to that of w =constant parametrization. The thawing class of

scalar fields are preferred by the observations.

This thesis contains a detailed study of the constraints on various dark energy mod-

els. To constrain the parameter, we used recent observational data. We consider different

types of models which leads to late time acceleration of the universe. We studied the fluid

model and quintessence scalar field models in detail. The constraints are obtained on var-

ious parameters which describe the models. We reconcile the fluid model of dark energy

and scalar field models and constrain the resulting reconstructed potentials. In this work,

we have restricted ourselves to canonical description of scalar fields. A natural extension

of this work is a detailed studies of non-canonical scalar fields. Prominent among the

non-canonical models is the tachyon fields, where the dynamics are governed by runaway

potentials. More importantly, better precision observations will lead to stringent con-

straints and potentially rule out various models. The equivalence principle implies that

the dynamical dark energy needs to be clustered. A study of dark energy perturbations

and its implications will allow us to go beyond distance measurements. As more sur-

veys are employed, different data sensitive to different cosmological quantities will be an

interesting subject of future study.
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Appendix A

χ2 minimization technique

In data analysis, we consider an observable quantity Xi,ob at a known redshift zi. The

observed quantity in our analysis is the luminosity distance, the angular diameter distence

and the Hubble parameter. We consider a model and calculate the value of the same

observable theoretically Xi,th at reddhift zi. We compare the theoretically calculated and

the observed quantities and find the best fit model parameters. The χ2 analysis tell us

about the goodness of the fit, i.e., how much the observables vary from the theoretically

calculated one. We draw confidence contours that gives us a certain percentage of total

probability distribution for model parameters. The shape of the contours is given by

constant χ2 boundary [102, 103, 104]. We study and compare the confidence contours

corresponding to different models, to see if observations favour one model over others.

A.0.1 χ2 and Likelihood Function

A cosmological data set contains N independent measurements Xi,ob measure at redshifts

zi and standard deviations σi. For a theoretical model, χ2 is defined as:

χ2 =
N
∑

i=1

[

Xth(zi)−Xi,ob

]2

σ2
i

. (A.1)

For a model, χ2 measures the difference between theoretically predicted values and ob-

servations.

χ2 is zero if observed and expected values are the same, it event is extremely unlikely.

Small values of χ2 corresponds to a good fit between observed data and predicted value.
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A large value of χ2 indicates a poor fit between the model prediction and the observations.

The parameters corresponding to the minimum value of χ2 are called best-fit parameters,

and χ2.In cosmology, the observations Xi,ob are independent of each other, giving us a

simplified expression for χ2 A.1. In general, the observations can be dependent, and χ2

in this case is given by

χ2 =
[

Xth −Xi,ob

]T
V −1

[

Xth −Xi,ob

]

, (A.2)

where Xi,ob denotes the vector of observations, Xth is the vector of the predicted val-

ues for a model, and V is the covariance for the measurements. For real cases when

observations are independent of each other, V is a diagonal matrix only.

For a cosmological model, the likelihood function L is given by

L = exp

[

−1

2
χ2

]

= exp

[

−1

2

[

Xth −Xi,ob

]T
V −1

[

Xth −Xi,ob

]

]

. (A.3)

We maximize the likelihood function (in other words, minimize χ2) to find the most

probable values of model parameters. Values of the parameters that result in a higher

value of the likelihood function are more likely to be true parameters [105]. For this we

obtain confidence ranges for the best fit parameters.
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Delabrouille, K. Pan, I. Pâris, W. J. Percival, P. Petitjean, N. A. Roe, E. Rollinde,

N. P. Ross, G. Rossi, D. J. Schlegel, D. P. Schneider, A. Shelden, E. S. Sheldon,

A. Simmons, S. Snedden, J. L. Tinker, M. Viel, B. A. Weaver, D. H. Weinberg,

129
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