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Abstract
Understanding the response of nuclear spins subjected to an oscillating field has
remained an active pursuit in methodology development in NMR spectroscopy.
In particular, the response of a quadrupolar nuclear spin (spins with I > 1/2)
is delicately dependent on the ratio of the quadrupolar coupling constant to the
amplitude of the oscillating pulse. In addition to its duration and oscillating fre-
quency. In contrast spin to I = 1/2 systems, the time-evolution of the quadrupolar
spins during an RF pulse is less understood owing to the dominant presence of
the quadrupolar interactions. Consequently, analytic description of the excita-
tion process has remained less transparent within existing theoretical frameworks.
As an alternative, the concept of "Effective Floquet Hamiltonians" is explored in
the present thesis to explain the nuances of the excitation process in multi-level
systems. Employing spin I = 1 and 3/2 as model systems, a unified theoretical
framework for describing the excitation of multiple-quantum transitions in static
isotropic and anisotropic solids is proposed within the framework of perturbation
theory. The challenges resulting from the anisotropic nature of the quadrupolar
interactions are addressed within the effective Hamiltonian framework. The pos-
sible role of the various interaction frames on the convergence of the perturbation
corrections is discussed along with a proposal for a "hybrid method" for describing
the excitation process in anisotropic solids. Employing suitable model systems, the
validity of the proposed hybrid method is substantiated through a rigorous com-
parison between simulations emerging from exact numerical and analytic methods.
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Chapter 1

Introduction

1.1 Basics of NMR

The phenomenon of Nuclear Magnetic Resonance (NMR)1–3 exhibited by a nu-
cleus arises from a quantum mechanical property called ‘spin’. Being quantum
mechanical in nature, the spin of a nucleus is described in-terms of a label com-
monly referred to as the spin quantum number ‘I’. Unlike the spin of an electron
(always restricted to spin S = 1/2), a nucleus possess both integral (referred to as
bosons) and half-integral (fermions) values of spin. Along with spin, a nucleus is
associated with a magnetic moment (due to spin) and an angular momentum ‘ℏI’,
related by,

µ = γℏI (1.1)

where ‘γ’ is the nuclear gyromagnetic ratio and is an intrinsic property of a nu-
cleus. When a nucleus (with spin I) is placed in a strong static magnetic field, the
degeneracy associated with the (2I + 1) nuclear spin states, ‘m’ (m = −I → I) is
lifted. This interaction between the nuclear spin magnetic moment (µ) and the ex-
ternal magnetic field (B0) is referred to as the Zeeman interaction and is quantum
mechanically represented through the Zeeman Hamiltonian4–10,

Hz = −µ.B0 = −ℏω0Iz (1.2)

1
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where, ‘ω0 = γB0’ is the Larmor frequency and the external magnetic field direc-
tion is chosen along the z-direction. Here in this thesis, we confine our discussion
to isolated single spin systems involving quadrupolar nucleus (say I = 1 and 3/2).
In addition to the interaction with the applied magnetic field, nuclei with asymmet-
ric charge distribution (usually exhibited by nucleus with I > 1/2) are associated
with a non-zero nuclear quadrupole moment. The resulting interaction of the nu-
clear quadrupole moment with the electric field gradient surrounding the nuclei is
commonly referred to as the nuclear quadrupole interaction10–13. A brief descrip-
tion of the quadrupolar interaction is presented in Appendix-A. To first order, the
quadrupolar interactions are approximated by the quadrupolar Hamiltonian given
below.

HQ =
e2qQ

4I(2I − 1)
(3I2z − I2) =

ℏωQ

6

(
3I2z − I2

)
(1.3)

where ‘ωQ’ represents the quadrupolar frequency and ‘CQ’ the quadrupolar cou-
pling constant. In the absence of the quadrupolar interaction, the energy eigen val-
ues associated with the nuclear spin states in a multi-level system are degenerate4.
A detailed description of the energy level splitting in the presence of quadrupolar
interaction for spin I = 1 (chapter-2) and spin I = 3/2 (chapter-3) is presented in
the forthcoming chapters. Subsequently, to induce transitions between the nuclear
spin states, an oscillating field with appropriate frequency perpendicular to the
static field is employed in NMR spectroscopy14. Quantum mechanically, the in-
teraction of the nuclear magnetic moment with the oscillating field is represented
by,

HRF (t) =
∑
i=1

−2ℏωi,1 cos(ωit− ϕi) Ii,α (1.4)

where, ‘ωi,1’ is the amplitude, ‘ωi’ is the frequency, ‘ϕi’ is the phase of the ‘ith’
pulse. ‘Ii,α’ is the spin angular momentum operator defined along ‘α’(α = x or y)
axis.
From the theoretical prespective, the time-domain signal observed in typical NMR
experiments is obtained through the solution obtained from the quantum-Liouville
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equation15,

iℏ
dρ(t)

dt = [H(t), ρ(t)] (1.5)

When the Hamiltonian is time-independent, the formal solution to the above equa-
tion reduces to a much simpler form.

ρ(t) = exp

(
−iHt
ℏ

)
ρ(0) exp

(
iHt

ℏ

)
(1.6)

In the above equation, ‘ρ(0)’ represents to the state of the system at time ‘t = 0’,
ρ(t) the state at any later instant of time, ‘t’. The quantity ρ(t) is often termed the
density operator and is the quantum equivalent of the ‘density of states’ employed
in the classical statistical mechanics15,16. Interestingly, in most NMR experiments,
the spin Hamiltonians are explicitly time-dependent. In such cases, the formal
solution to the above equation has a complicated form.

ρ(t) = U(t, 0) ρ(0) U †(t, 0) = e−(
i/ℏ)

∫ t
0 H(t′)dt′ ρ(0) e(

i/ℏ)
∫ t
0 H(t′)dt′ (1.7)

From an experimental perspective, analytic expressions are desirable both for de-
ducing optimal conditions and quantifying the resulting NMR experimental data.
Below, a schematic of the single pulse experiment routinely employed in the NMR
spectroscopy is depicted.
From a theoretical perspective, analytic description of the evolution operator is es-
sential for optimizing NMR experiments, ‘U(t, 0)’. From an operational view point,
analytic description of the evolution operator in NMR experiments is confronted
with

• Time-dependent nature of spin Hamiltonians

• Non-commuting nature of the Hamiltonians.

In the present study, the Hamiltonian for the isolated single spin comprises of the
Zeeman, quadrupolar and the RF interactions.

H = Hz +HQ +HRF (1.8)
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Figure 1.1: A single-pulse NMR experiment portraying the RF pulse employed, the Free Induc-
tion Decay (FID) and its Fourier transformed (FT) signal. The density operators used to track
the time evolution of the system is also shown.

As indicated above, the complication arises from both the presence of non-commuting
terms and interactions of differing magnitudes. For example, the Zeeman inter-
action/Hamiltonian in the above case is of no relevance in the actual design/op-
timization of experiments. Since, the desired information on the molecular con-
straints is contained in the internal Hamiltonians (say Quadrupolar Hamiltonian
in the present case), the description in the laboratory frame is transformed into
the rotating frame through a unitary transformation described below,

ρ̃(t) = e−iω0tIzρ(t) eiω0tIz (1.9)

iℏ
dρ̃(t)

dt =
[
H̃(t), ρ̃(t)

]
(1.10)

where, H̃ = H̃z + H̃Q+ H̃RF , employing secular approximation and dropping non-
commuting terms (w.r.t to the Iz operator) the Hamiltonian in the rotating frame
reduces to a much simpler form.

H̃Q =
ℏωQ

6

(
3I2z − I2

)
(1.11)

H̃z = −ℏ∆ωIz (1.12)
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H̃RF = −ℏω1Ix (1.13)

when the frequency of the oscillating field is matched to the Larmor frequency
(ω0), ‘∆ω’ tends to zero. Under the above resonance condition, the Hamiltonian
in the rotating frame has only two terms, namely,

H̃ = H̃Q + H̃RF (1.14)

In the case of spin I = 1/2 systems, the magnitude of the RF amplitude of the
pulse often exceeds the other internal spin interactions present in the system.
Consequently, the evolution of the system during the RF pulse is approximated
through the ‘RF Hamiltonians’ only, i.e. for the time period from t = 0 to t = tp,
the system is governed only by the RF Hamiltonian.

ρ̃(t) = e−
i/ℏH̃RF tp ρ̃(0) e

i/ℏH̃RF tp (1.15)

However, in the case of quadrupolar spins, the magnitude of the quadrupolar
interaction largely exceeds the amplitude of the RF pulse employed in NMR ex-
periments. In such cases, the spin Hamiltonian during the pulse comprises of two
non-commuting terms (HRF +HQ). To circumvent this problem, the spin Hamil-
tonian is further transferred into the quadrupolar interaction frame, such that the
quadrupolar interaction is eliminated in the evolution.

˜̃ρ(t) = e−
i/ℏHQt ρ̃(t)e

i/ℏHQt (1.16)

iℏ
d ˜̃ρ(t)

dt =
[
˜̃H(t), ˜̃ρ(t)

]
(1.17)

where, ˜̃H = ˜̃HRF and ˜̃HRF = e−
i/ℏHQt H̃RF e

i/ℏHQt

In the quadrupolar interaction frame, the evolution during the pulse is governed
by a time-dependent form of the RF Hamiltonian (see Eq. 1.7)

˜̃ρ(t)e−(
i/ℏ)

∫ t
0

˜̃HRF (t′)dt′ ρ(0) e(
i/ℏ)

∫ t
0

˜̃HRF (t′)dt′ (1.18)
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Although, the spin system during the pulse (in the quadrupolar interaction frame)
is modulated only by the RF Hamiltonian, the RF Hamiltonian in Eq. 1.18 is time-
dependent (modulated by the quadrupolar interaction). This defines the problem
addressed in this thesis.
To facilitate analytic description, the concept of effective Hamiltonians17–22/ time-
averaged Hamiltonians23–25 have been employed in the past. In the approach
introduced by Waugh and co-workers23–25, a time-averaged Hamiltonian (defined
for certain duration) is proposed to describe the evolution operator. A brief de-
scription of the Average Hamiltonian theory (AHT) formalism is presented in
Appendix-C. Accordingly, the evolution operator during the pulse is approximated
by a time-averaged Hamiltonian facilitating in the analytic evaluation of the den-
sity operator during a pulse.

U(tp, 0) = e−
i/ℏHeff tp (1.19)

˜̃ρ(tp) = U(tp, 0) ˜̃ρ(0) U †(tp, 0) (1.20)

In an alternate approach, the time-dependent RF Hamiltonian in the quadrupolar
interaction frame is transformed into a time-independent Hamiltonian using Flo-
quet formalism. In the Floquet formalism22,26–29, a time-dependent Hamiltonian
(described in finite dimension vector space) is transformed into a time-independent
Hamiltonian defined in an infinite dimensional vector space (Floquet Hamiltonian
HF ) via Fourier series expansion.
To overcome the complexity introduced by the infinite dimensionality in the Flo-
quet framework, we proposed the derivation of effective Floquet Hamiltonians
based on the method of contact transformation30–33. The contact transformation
method is an operator equivalent of the standard Rayleigh perturbation theory,
wherein the perturbation corrections are obtained in terms of operators resulting in
an effective Hamiltonian as opposed to the evaluation of the matrix elements com-
monly encountered in perturbative treatments. Although, the method has found
utility in the description of spin I = 1/2

34,35, the method has not been extended
to quadrupolar spins. In this thesis an analytic framework based on the concept
of effective Floquet Hamiltonians is proposed to describe finite-pulse effects36–38

involving quadrupolar spins. The simulations emerging from the proposed ana-
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lytic theory are well corroborated using exact numerical methods (obtained using
SIMPSON39–41 software). In Chapter-2, effective Floquet Hamiltonians are de-
rived for describing DQ excitation in spin I = 1 system, while TQ excitation in
spin I = 3/2 systems is presented in Chapter-3. A brief summary of the results
obtained in this thesis, are summarized in Chapter-4.
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Appendix

A Quadrupolar Interactions/Hamiltonian

A nucleus with charge ‘Ze’ is distributed over the nuclear volume ‘d3x’ with charge
density ‘ρ(x)’ and ‘V (x)’ is the potential arising due to the surrounding electrons
onto the nucleus under consideration, then the Hamiltonian of the system is given
by10,11,

H =

∫
ρ(x)V (x)d3x (A.1)

Expanding ‘V (x)’ under power series about the nuclear centre of mass, where
cartesian components of ‘x’ are denoted by x1 = x, x2 = y, and x3 = z.

H =

∫
d3x ρ(x)

{
V0 +

∑
j

(
∂V

∂xj

)
0

xj +
1

2

∑
j,k

(
∂2V

∂xj∂xk

)
0

xjxk + . . .

}
(A.2)

H = ZeV0 +
∑
j

Pj

(
∂V

∂xj

)
0

+
1

2

∑
j,k

Q′
jk

(
∂2V

∂xj∂xk

)
0

(A.3)

where, ∫
d3x ρ(x) = Ze (A.4)∫

d3x ρ(x) xj = Pj = electric dipole moment (A.5)∫
d3x ρ(x) xjxk = Q′

jk = electric quadrupole moment tensor (A.6)

As we are interested in understanding the quadrupolar Hamiltonian, we look more
closely into the third term of Eq.A.3. Also,

Vjk =
∂2V

∂xj∂xk
= −∂Ej

∂xk
(A.7)
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where, ‘Ej’ is the electric field at the nuclear position. Hence, quadrupolar Hamil-
tonian is defined as the interaction between the quadrupole moment with the
gradient of the electric field at the nucleus42.
For the sake of mathematical convenience and to make the quadrupolar Hamilto-
nian traceless, ‘Qjk’ is defined as

Qjk = 3Q′
jk − δjk

∑
e

Q′
ee (A.8)

Substituting the above equation in the third term of the Eq.A.3, we get

H =
1

6

∑
j,k

QjkVjk +
1

2

(∑
e

Qee

)(∑
j

Vjj

)
(A.9)

The second term in the above equation can be neglected for all the practical
purposes giving rise to the quadrupolar Hamiltonian ‘HQ’.

HQ =
1

6

∑
j,k

QjkVjk (A.10)

According to the quantum-mechanical treatment of the quadrupolar Hamiltonian
given by Casimir43,44, the matrix elements of ‘Qjk’ may be written as,

⟨Im′|Qjk |Im⟩ = eQ

I(2I − 1)
⟨Im′| 3/2 (IjIk + IkIj)− δjkI

2 |Im⟩ (A.11)

where ‘Q’ is electric quadrupole moment. Substituting Eq. A.11 in Eq. A.10, we
get

⟨Im′|HQ |Im⟩ = eQ

6I(2I − 1)

∑
j,k

⟨Im′| 3/2 (IjIk + IkIj)− δjkI
2 |Im⟩Vjk (A.12)

Let us define,

V0 =

√
3

2
Vzz ; V±1 = ∓Vxz − iVyz ; V±2 =

1

2
(Vxx − Vyy)± iVxy

eq = Vzz ; η =
Vxx − Vyy

Vzz
; I± = Ix ± iIy
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Substituting the above relations in Eq. A.12, we get

⟨Im′|HQ |Im⟩ = eQ

4I(2I − 1)
⟨Im′|

√
2/3(3I

2
z − I2)V0 + (IzI+ + I+Iz)V−1

−(IzI− + I−Iz)V1 + I2+V−2 + I2−V2 |Im⟩

HQ =
√

2/3(3I
2
z − I2)V0 + (IzI+ + I+Iz)V−1 − (IzI− + I−Iz)V1 + I2+V−2 + I2−V2

(A.13)

Eq. A.13 represents the quadrupolar Hamiltonian for any arbitrary set of axes.
In the Zeeman interaction frame, the quadrupolar Hamiltonian reduces to the
following form

H̃Q = exp

(
−iHzt

ℏ

)
HQ exp

(
iHzt

ℏ

)
(A.14)

H̃Q(t) =
eQ

4I(2I − 1)

(√
2/3(3I

2
z − I2)V0 + (IzI+ + I+Iz)V−1 e

−iω0t

−(IzI− + I−Iz)V1 e
iω0t + I2+V−2 e

−2iω0t + I2−V2 e
2iω0t

)
(A.15)

Employing the time averaging over the larmor period ‘2π/ω0 ’. the quadrupolar
Hamiltonian is redefined based on Magnus formula45–48,

H
(1)
Q =

ω0

2π

∫ 2π/ω0

0

H̃Q(t)dt =
eQ

4I(2I − 1)

(√
2/3(3I

2
z − I2)V0

)
(A.16)

H
(2)
Q =

−iω0

4π

∫ 2π/ω0

0

dt2

∫ t2

0

dt1

[
H̃Q(t2), H̃Q(t1)

]
= − 1

ℏω0

(
eQ

4I(2I − 1)

)2 {√
6V0V−1I+(2Iz + I)2 −

√
6V0V1I−(2Iz − I)2

+
√
6V0V−2I

2
+(Iz + I) +

√
6V0V2I

2
−(Iz − I)

+2V−1V1Iz
(
4I2 − 8I2z − I

)
+ 2V−2V2Iz

(
2I2 − 2I2z − I

)}
(A.17)

where ‘I’ is the identity operator.
In Principal Axis System (PAS), all the off-diagonal terms of the spatial tensor
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are zero without any change in the diagonal terms (i.e. ∀ i, j ∈ x, y, z Vii ̸= 0 and
Vij = 0)

VPAS =

Vxx 0 0

0 Vyy 0

0 0 Vzz


with the conventions |Vzz| ≥ |Vyy| ≥ |Vxx|. Also, VPAS is traceless. Therefore,

V PAS
xx + V PAS

yy + V PAS
zz = 0

Also, V PAS
0 =

√
3

2
eq ; V PAS

±1 = 0 ; V PAS
±2 =

1

2
eqη (A.18)

In PAS, the quadrupolar interaction is rewritten as12,13,

HPAS
Q =

e2qQ

4I(2I − 1)

{
(3Î2z − I2) +

η

2
(Î2+ − Î2−)

}
To first order, the quadrupolar interaction is represented by,

H
(1)
Q =

e2qQ

4I(2I − 1)
(3I2z − I2) =

ℏωQ

6

(
3I2z − I2

)
(A.19)

where,

ωQ =
3CQ

2I(2I − 1)
; CQ =

e2Qq

ℏ

B Concept of Effective Hamiltonians

B.1 Floquet Theory

Let us consider the time dependent Schrödinger equation is given by,

iℏ
d |ψ(t)⟩

dt = H(t) |ψ(t)⟩ (B.1.1)
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where ‘ψ(t)’ is the state of the system defined by N × 1 matrix and ‘H(t)’ is a
time-dependent periodic Hamiltonian (with time period ‘T ’ and frequency ‘ω’)
denoted by N ×N matrix .
Since the above equation is a first order differential equation with ‘N ’ linearly
independent solutions, the ‘N ’ eigenvectors thus obtained can be used to form
columns for a square (N×N) matrix ‘F (t)’ that satisfies the Schrödinger equation.

iℏ
dF (t)

dt = H(t)F (t) (B.1.2)

Since, the Hamiltonian ‘H(t)’ is time-dependent the evolution of ‘F (t)’ is given
by,

F (t) =
(
e−(

i/ℏ)
∫ t
0 H(t′)dt′

)
F (0) (B.1.3)

The above equation is very complicated and has to be solved numerically. To solve
Eq. B.1.2 analytically, we use Floquet theory22,26–29, where ‘F (t)’ is defined as,

F (t) = X(t)e−iQt (B.1.4)

In the above equation, ‘X(t)’ is a periodic time-dependent N×N matrix with time
period ‘T ’ and ‘Q’ is a N ×N diagonal matrix with eigenvalues ‘λi’ corresponding
to ‘|i⟩’
Since, ‘X(t)’ is a periodic function, we can expand this function in Fourier series
with coefficients ‘F n’

X(t) =
∑
n

F neinωt (B.1.5)

Writing Eq. B.1.4 in the Dirac notation and substituting Eq. B.1.5, we get

⟨α|F (t) |β⟩ = Fαβ(t) = ⟨α|
∑
n

F neinωte−iQt |β⟩ (B.1.6)
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Since, ‘Q |β⟩ = λβ |β⟩’, we have

e−iQt |β⟩ = e−iλβt |β⟩ (B.1.7)

Eq. B.1.6 can be compactly written as,

Fαβ(t) =
∑
n

F n
αβe

inωte−iλβt (B.1.8)

Since, ‘H(t)’ is also periodic function it can also be written in Fourier series as,

Hαβ(t) =
∑
n

Hn
αβe

inωt (B.1.9)

Writing Eq. B.1.2 in Dirac notation,

iℏ ⟨α| dF (t)
dt |β⟩ = ⟨α|H(t)F (t) |β⟩ (B.1.10)

and substituting Eqs. B.1.8 and B.1.9, we get (put ‘ℏ = 1’)

i
dFαβ(t)

dt =
∑
γ

⟨α|H(t) |γ⟩ ⟨γ|F (t) |β⟩

=
∑
γ

∑
n

Hn
αγe

inωt
∑
m

Fm
γβe

imωte−iλβt (B.1.11)

differentiating Eq. B.1.8 w.r.t ‘t’

i
dFαβ(t)

dt =
∑
n

F n
αβe

inωte−iλβt (λβ − nω) (B.1.12)

Equating Eqs: B.1.11 and B.1.12, and solving∑
n

F n
αβe

inωte−iλβt (λβ − nω) =
∑
γ

∑
l

H l
αγe

ilωt
∑
m

Fm
γβe

imωte−iλβt (B.1.13)

λβ
∑
n

F n
αβ =

∑
γ

∑
m

Hn−m
αγ Fm

γβ + nω
∑
n

F n
αβ (B.1.14)
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we get,

λβ F
n
αβ =

∑
γ

(∑
m

Hn−m
αγ + nωδαγδnm

)
Fm
γβ (B.1.15)

In the above equation, ‘λβ’ is the eigen value corresponding to eigen vector ‘F n
αβ’

denoted by the pair of indices ‘α, n’. The above equation resembles to the well
known equation,

Hψ = Eψ (B.1.16)

where the Hamiltonian is time-independent infinite dimensional matrix commonly
referred to as the ‘Floquet Hamiltonian’ denoted by ‘HF ’.
The Floquet Hamiltonian in Dirac notation is written as27,

⟨α, n|HF |β,m⟩ = Hn−m
αβ + nωδαβδnm (B.1.17)

Now, the problem is redefined as,

iℏ
dψF (t)

dt = HF ψF (t) (B.1.18)

where ‘ψF (t)’ is the Floquet wavefunction defined as the linear combination of
Floquet basis ‘ϕi,n’,

|ψF (t)⟩ =
+∞∑

n=−∞

∑
i=1

Cn,i(t) |ϕn,i⟩ (B.1.19)

|ϕn,i⟩ = |n⟩ ⊗ |ϕi⟩ (B.1.20)

Hence, the solution of the Eq. B.1.18 is given by,

ψF (t) = e−iHF tψF (0) (B.1.21)
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B.2 Contact Transformations

Contact transformation30–33 is an operator equivalent of perturbation theory, where
in the perturbation corrections are obtained in the form of operators leading to Ef-
fective Hamiltonians. In the method of contact transformation, a series of unitary
transformations are employed to fold the off-diagonality in the original Hamilto-
nian. The transformation functions/operators employed in the unitary transfor-
mations are carefully chosen to compensate the off-diagonality to the desired order.
The accuracy of the solutions depend on the order of the corrections included in the
Effective Hamiltonians, thus providing a deeper insight into the different processes
arising due to the interaction of Effective Hamiltonians with the spin system.

Let us suppose, the Hamiltonian of the system ‘H’ us expressed as

H = H0 + λH1 (B.2.1)

where ‘H0’ is the diagonal term and ‘H1’ is the off-diagonal correction that needs
to be folded.
The above Hamiltonian is transformed by a Unitary transformation (X1 = eiλS1),

H ′ = eiλS1 H e−iλS1 (B.2.2)

Expanding the above equation using Baker-Campbell-Hausdorff (BCH) expansion
and equating the like powers of ‘λ’ on both sides, we get

Table B.2.1: Different orders of corrections obtained by Contact Transformation
nth order Expression for the nth order Hamiltonian

Hamiltonian

Zero order (λ0) H
(1)
0 = H0

I order (λ1) H
(1)
1 = i[S1, H0] +H1

II order (λ2) H
(1)
2 = − 1

2!
[S1, [S1, H0]] + i[S1, H1]

III order (λ3) H
(1)
3 = − i

3!
[S1, [S1, [S1, H0]]]−

1

2!
[S1, [S1, H1]]

... ...
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The Effective Hamiltonians (to the third order) comprises of diagonal contri-
butions from different orders, while the off-diagonal contributions are treated as
perturbations.

Heff = H
(1)
0 (d) +H

(1)
1 (d) +H

(1)
2 (d) +H

(1)
3 (d) + . . . (B.2.3)

H1 = H
(1)
2 (od) +H

(1)
3 (od) + . . . (B.2.4)

The important aspect of the method lies in the selection of ‘S1’. ‘S1’ is selected
such that the first order correction is free from off-diagonal contributions. Once
‘S1’ is selected, higher order corrections are computed using simple commutator
relations. The diagonal and off-diagonal contributions from different orders are
grouped together and the off-diagonal contributions arising from X1 are again
folded using a second contact transformation (X2 = eiλ

2S2). Thus the off-diagonal
contributions arising from different transformations are folded iteratively till their
contributions become insignificant. This is explained in detail in the following
chapters.

C Effective Hamiltonians based on AHT

In the Average Hamiltonian (AHT) framework23–25, a time averaged Hamiltonian
is proposed over a cycle time ‘τc’ based on the formula provided by Magnus45–48.
In a typical Multi-pulse NMR experiment, the evolution operator during different
stages is represented by,

U(t) = exp (−iHntn) . . . exp (−iH2t2) exp (−iH1t1) (C.1)

where ‘t = t1 + t2 + · · ·+ tn’ and ‘H1’ is the Hamiltonian acting on the system for
the time interval ‘t1’ and so-on.
To simplify the description, the series of exponential operators are replaced by a
single time propagator governed by an Average Hamiltonian ‘H̄’ valid over the
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cycle time ‘τc’.

U(τc) = exp (−iHntn) . . . exp (−iH2t2) exp (−iH1t1) = exp
(
−iH̄τc

)
(C.2)

Employing the Magnus formula, the Average Hamiltonian over a cycle time τc is
derived as given below.

H̄(τc) = H(1) +H(2) +H(3) + . . . (C.3)

where, ‘H(n)’ represents the ‘nth’ order correction given by,

H(1) =
1

τc

∫ τc

0

˜̃H(t)dt (C.4)

H(2) =
(−i)
2τc

∫ τc

0

dt2

∫ t2

0

dt1

[
˜̃H(t2),

˜̃H(t1)
]

(C.5)

H(3) =
1

6τc

∫ τc

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1

{[
˜̃H(t3),

[
˜̃H(t2),

˜̃H(t1)
]]

+
[
˜̃H(t1),

[
˜̃H(t2),

˜̃H(t3)
]]}

(C.6)
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Chapter 2

Effective Hamiltonians for Double
Quantum excitation in spin I = 1

2.1 Introduction

As discussed in Chapter-1, nuclei with spin ‘I > 1/2’ have an additional interaction
between the non-zero electric quadrupole moment and the inhomogeneous electric
fields around the nucleus (generated by surroundings). The resulting quadrupo-
lar interactions often dominate other internal spin interactions (such as chemical
shift, dipolar interactions etc.) present in the system. While the inherent rapid
molecular tumbling motion in liquids diminishes the effects of quadrupolar inter-
action, the spectra of quadrupolar nuclei in solids are broadened over Mega Hertz
(MHz). Since 70 % of the elements in the periodic table are quadrupolar in nature,
NMR of quadrupolar nuclei is essential for expanding the repositoire of NMR spec-
troscopy in structural characterization of inorganic materials and clusters. Here
in this chapter, we confine our discussion to spin ‘I = 1’ system. Although, ‘2H’
and ‘14N ’ are the most commonly studied nuclei with spin I = 1, the disparate
order of magnitudes in their quadrupolar coupling constants necessitates different
experimental strategies for detecting them. For example, the quadrupolar cou-
pling constant in solids for 14N nucleus ranges from 1 to 5 MHz, while, for 2H it
ranges from 100 to 300 kHz1. Since, the amplitude of the RF pulse employed in
experiments varies from 10− 200 kHz, the optimum conditions for the excitation

21
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may vary and deserves a formal theoretical discussion. Here in this chapter, we
confine our discussion to the excitation of DQ transitions in spin I = 1 systems
both in isotropic and anisotropic solids.
To begin with, in the presence of the static magnetic field (of strength ‘B0’), the
degeneracy associated with the (2I+1) spin states is lifted. In the absence of other
internal interactions, the two single-quantum (SQ) transition frequencies (corre-
sponding to |1⟩ → |0⟩ , |0⟩ → |−1⟩) are degenerate and result in a single peak as
depicted in Fig. 2.1. In the presence of quadrupolar interactions (to first-order)
the degeneracy associated with the two SQ transitions is lifted resulting in two
peaks (see Fig. 2.1).

   

Htot = −ω0Iz

HZ

!−
ωQ

6
I I +1( )− 3Iz

2( )
HQ

(1)
" #$$$ %$$$

 1

1−

0

ω
 ω0

ω
 ω0  

ω0 −ωQ 2
  
ω0 +ωQ 2

 HZ
  HZ +HQ

(1)

 ω0

 ω0
  
ω0 +ωQ 2

 2ω0

  2I +1
  
ω0 −ωQ 2

Figure 2.1: Energy level diagram of Spin I=1 depicting the energy shifts due to Zeeman Hamilto-
nian and the first order quadrupolar Hamiltonian is presented. In the equation of the Hamiltonain
(ℏ = 1). It is to be noted that the degeneracy of Zeeman NMR signal is lifted due to the pres-
ence of electric field gradient due to the quadrupolar Hamiltonian. The Double Quantum (DQ)
transition independent of first order quadrupolar coupling constant is also shown.

In a powder sample, the spatial anisotropy due to restricted mobility results in
a distribution of quadrupolar coupling constants. Consequently, the NMR peaks
corresponding to the two SQ transitions are broadened compromising the spec-
tral resolution. Hence, direct detection of 14N transitions in powder samples is
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abandoned and indirect detection is favoured.2–6 As an alternative, detection of
Double Quantum (DQ) transitions is preferred in the study of systems with larger
quadrupolar coupling constants. In contrast to the SQ transitions, the DQ tran-
sitions in spin I=1 (|−1⟩ → |1⟩) are independent of first-order quadrupolar inter-
actions and seem to be an attractive option7. Since DQ transitions are forbidden,
a formal understanding of the excitation process is essential for developing new
experimental strategies and quantifying experimental data involving spin I = 1

nuclei.
To this end, Vega and Pines8,9 developed a theoretical framework for describing
DQ transitions in spin I=1 system. Employing the fictitious spin operator alge-
bra10,11, an analytic expression describing the excitation of double-quantum (DQ)
transitions in single crystal was proposed in 1976. A brief illustration of the de-
pendence of the excitation profile on the quadrupolar coupling constants (CQ) is
presented in Figure. 2.2 along with a comparison of their analytic results with
exact numerical simulations emerging from SIMPSON12. As depicted, the simula-
tions emerging from their analytic results agree only in the strong coupling regime
(CQ > (ω1/2π)) and deviate significantly when the magnitude of the quadrupolar
constant approaches to that of the amplitude of the RF pulse.
Since the magnitude of the quadrupolar frequency (ωQ) is always greater than
both the RF amplitude and the internal spin interactions, the deviations reported
above have often been ignored and remain unexplained. Interestingly, in the case
of studies involving 2H, the quadrupolar coupling constant ranges from 100− 300

kHz. Hence, a more general framework suitable for describing the excitation pro-
cess in systems with wide range of quadrupolar coupling constants (0.1 → 4 MHz)
is essential. Additionally, the extension of their approach for describing the exci-
tation of MQ transitions in a powder (anisotropic) sample is less straightforward
and has remained elusive13.
In an alternate formulation, Nielsen and coworkers14 proposed an approach based
on numerical methods for understanding the excitation process in isotropic and
anisotropic solids. In their approach, the evolution of the spin system during the
pulse was evaluated numerically using time-ordered integration of the evolution op-
erator comprising of the quadrupolar and the RF Hamiltonians. Although, their
approach yields results in agreement with exact numerical methods, the method-
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ology employed involves numerical diagonalization of matrices and is computa-
tionally less efficient when integrated with iterative fitting routines for extracting
molecular constraints from experimental data. Additionally, lack of physical in-
sights into the excitation process limits the utility of such methods.
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Figure 2.2: Simulations depicting the efficiency of double quantum (DQ) excitation in static I=1
system (single crystal) derived from analytic8,9,15 (green dotted lines) and numerical (black thick
lines) methods. In the simulations depicted, the quadrupole coupling constant (CQ = ωQ/3π) is
varied A1) CQ = 2 MHz, A2) CQ = 1 MHz, A3) CQ = 500 kHz, A4) CQ = 200 kHz, employing
an excitation pulse of constant RF amplitude, (ω1/2π) = 100 kHz.

As an alternative to these existing frameworks, an analytic method based on the
concept of effective Floquet Hamiltonians15–18 is proposed to explain the nuances
of the excitation of DQ transitions in both isotropic and anisotropic solids. The
proposed effective Floquet Hamiltonians are derived systematically from the con-
tact transformation procedure19–22. Although, effective Floquet Hamiltonians have
found their importance in the description of solid-state NMR experiments involv-
ing spin I=1/2 nuclei,23–26 their utility in the description of the excitation profile in
quadrupolar systems is less realized15,17,18. To this end, a unified approach suitable
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for describing both isotropic and anisotropic systems is presented in this chapter.
The importance of the interaction frames and their role in the convergence of the
perturbation corrections employed in the derivation of effective Floquet Hamilto-
nians is discussed extensively through comparisons with analytic and numerical
simulations. Additionally, a new hybrid method based on the concept of effec-
tive Floquet Hamiltonians derived from different interaction frames is proposed to
quantify the excitation profiles observed in anisotropic solids.

2.2 Theory and Simulations

To understand the response of the I = 1 spin system under RF pulses, the Hamil-
tonians defined in the laboratory frame (see Eq. 2.1) are transformed into the
Zeeman-interaction frame using the transformation operator, U1 = e−(iω0t)Iz .

Hlab(t) = Hz +HRF (t) +HQ

= −ℏω0Iz︸ ︷︷ ︸
Hz

−2ℏω1 cos(ωt− ϕ1) Ix︸ ︷︷ ︸
HRF (t)

+
∑

R(2)qT (2)q︸ ︷︷ ︸
HQ

(2.1)

Here, ‘Hlab(t)’ denotes the Hamiltonian in the laboratory frame. The RF pulse is
characterized in-terms of the amplitude (ω1), frequency (ω) and phase (ϕ1). The
quadrupolar interaction is expressed as a product in-terms of the spatial and spin
tensor operators27–36. A detailed description of these operators is discussed was
chapter-1.

H̃(t) = U1 Hlab(t) U
−1
1 = e−(iω0t)Iz Hlab(t) e

(iω0t)Iz

H̃(t) = −ℏω1

{(
ei(ω−ω0)t + e−i(ω+ω0)t

)
Φ1

(
iT (1)1

)
−
(
ei(ω+ω0)t + e−i(ω−ω0)t

)
Φ−1

1

(
iT (1)−1

)}
+

+2∑
q=−2

R(2)q T (2)q e−iqω0t (2.2)
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In the above eq, Φn
1 = e−inϕ1 denotes the phase factor of the pulse. When the

frequency of the RF pulse is adjusted to the Larmor frequency, ‘ω0’ (i.e., ω = ω0),
the RF Hamiltonian reduces to a much simpler form under secular approximation.

H̃RF = −ℏω1

{
Φ1iT

(1)1 − Φ−1
1 iT (1)−1

}
(2.3)

In a similar vein, under secular approximation, the time-dependent terms in the
quadrupolar Hamiltonian are ignored, resulting in a much simpler form (commonly
referred to as first-order quadrupolar interaction)

H̃Q = −ℏΩQ√
6
T (2)0 (2.4)

Subsequently, the Hamiltonian in the Zeeman interaction frame reduces to a simple
form given below.

H̃ = −ℏω1

{
Φ1iT

(1)1 − Φ−1
1 iT (1)−1

}
− ℏΩQ√

6
T (2)0 (2.5)

Depending on the nature of the sample, the form of ‘ΩQ’ varies. For example,
in the case of a single crystal, ΩQ = ωQ, (‘ωQ’(rad/s) represents the quadrupo-
lar frequency and is related to the quadrupolar coupling constant ‘CQ’(Hz), (i.e.,
ωQ = 3(2π)CQ/2I(2I−1) ; CQ = e2Qq/h); while, in a powder sample, the quadrupo-
lar interaction is anisotropic and is represented by, ΩQ = ω

(αβγ)
Q . The orientation

dependence of the quadrupolar interaction is evaluated using the following expres-
sion.

ω
(αβγ)
Q = ωQ

{
D0,0(ΩPL) +

η√
6
(D−2,0(ΩPL) +D2,0(ΩPL))

}
(2.6)

The term, ‘D(ΩPL)’ represents the Wigner rotation matrix37,38 and essentially
describes the transformation from the principal axis (PAS) to the laboratory
axis (LAS). In the case of a static powder sample, the transformation from the
PAS to laboratory frame is derived through two sets of Euler angles ΩPM =
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(αPM , βPM , γPM) and ΩML = (αML, βML, γML).

Dq,0(ΩPL) =
2∑

q1=−2

Dq,q1(ΩPM) Dq1,0(ΩML) (2.7)

The Euler angles (ΩPM) relating the PAS to the molecular axis (MolAS) are unique
and identical for all the crystallites present in a powder sample. The transforma-
tion from the molecular axis to the laboratory axis is orientation dependent (varies
for each crystallite and is represented by ΩML). In the case of a spinning sample,
an additional transformation defining the orientation of the rotor axis (RAS) with
respect to lab axis (LAS) is defined and the Hamiltonian becomes periodically
time-dependent.

Dq,0(ΩPL) =
2∑

q1,q2=−2

Dq,q1(ΩPM) Dq1,q2(ΩMR) Dq2,0(ΩRL) (2.8)

The term, ‘D(ΩRL) = (ωrt, βm, 0)’ represents the time-dependent transformation
from the rotor axis to the lab-frame (where ωr denotes the sample spinning fre-
quency and βm the magic angle).
A special set (in-situ and operando) of experiments are performed under Magic
angle, without spinning. For such systems ‘D(ΩRL) = (0, βm, 0)’ and this condi-
tions is called as ‘Static MAS’ condition throughout this thesis.
As described in Eq. 2.5, the Hamiltonian comprises of non-commuting operators
and in its present form is less suitable for analytic description of the time-evolution.
Depending on the magnitude of the quadrupolar interaction (ωQ) relative to the
amplitude of the RF pulse (ω1), the Hamiltonian in the Zeeman interaction frame
is further transformed. Based on the above criterion, the following regimes are
identified and discussed for both single crystal and powder samples under static
conditions.
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2.2.1 DQ excitation in Single Crystal (ΩQ = ωQ)

Regime-I: Strong coupling (ωQ >> ω1)

When the magnitude of the quadrupolar frequency exceeds the amplitude of the
pulse, ‘ω1’, the Hamiltonian in the Zeeman interaction frame18 (Eq. 2.2) is further
transformed into the quadrupolar interaction frame, defined by the transformation
operator, U2 = e−(

iωQt
/√6)T (2)0

˜̃H(t) = U2 H̃ U−1
2 = ˜̃HQ + ˜̃HRF (t) (2.9)

In the combined Zeeman-Quadrupolar interaction frame, the quadrupolar inter-
action is time-independent and is described by an offset term ‘∆’, (i.e., ∆ =
1√
6
(ωQ − ΩQ))

˜̃HQ = ℏ∆T (2)0 (2.10)

 −1

ARF −

BRF +
BRF −

ARF +

 Single Quantum (SQ) 

  
ω0 −

ωQ

2

  
ω0 +

ωQ

2

 0

 1

 −1

  T (2)−2

 Double Quantum (DQ) 

 2ω0

 0

 1

  T (2)2

Figure 2.3: Schematic depiction of transitions along with operators for a spin I=1 system

Accordingly, the offset is zero for a single crystal (∆ =
1√
6
(ωQ − ωQ) = 0) and

orientation dependent for a powder sample (∆ =
1√
6

(
ωQ − ω

(αβγ)
Q

)
).
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The RF Hamiltonian in the Zeeman-Quadrupolar interaction is time-dependent.

˜̃HRF (t) =− ℏω1

2

{(
Φ1

(
i T (1)1 + T (2)1

)
e
iωQt

/2

+Φ−1
1

(
−i T (1)−1 + T (2)−1

)
e
iωQt

/2
)

+
(
Φ−1

1

(
−i T (1)−1 − T (2)−1

)
e
−iωQt

/2

+Φ1

(
i T (1)1 − T (2)1

)
e
−iωQt

/2
)}

(2.11)

To understand the effects of the RF pulse, the RF Hamiltonian ( ˜̃HRF ) in the
Zeeman-Quadrupolar interaction frame is grouped in terms of operators depicting
the possible transitions specific to a given spin system39. A schematic depiction of
the possible transitions along with their frequencies and operators is illustrated in
Figure. 2.3. A detailed description of the operators along with their relationship
to the spherical tensor operators39 is tabulated in Table. 2.1.

Table 2.1: Definition of the spin operators corresponding to the possible transitions in a spin
I = 1 system

Operator Tensoral Operators Frequency
+1 Coherence Operators

RF+
A i T (1)1 + T (2)1 ω = ω0 − ωQ/2

RF+
B i T (1)1 − T (2)1 ω = ω0 +

ωQ/2

-1 Coherence Operators

RF−
A −i T (1)−1 − T (2)−1 ω = ω0 − ωQ/2

RF−
B −i T (1)−1 + T (2)−1 ω = ω0 +

ωQ/2

+2 Coherence Operators

D+ T (2)2 ω = 2ω0

-2 Coherence Operators

D− T (2)−2 ω = 2ω0
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Employing the operators described in Table. 2.1, the RF Hamiltonian (Eq. 2.11)
is represented as follows,

˜̃HRF (t) = −ℏω1

2

{(
Φ1RF

+
A + Φ−1

1 RF−
B

)
e(

iωQt
/2) +

(
Φ−1

1 RF−
A + Φ1RF

+
B

)
e−(

iωQt
/2)
}

(2.12)

Table 2.2: Symmetric and Anti-symmetric combination of spin operators employed in spin
I = 1 system

Operator Combination Operator Combination

ŜQ
(r)

S

(
Φ−1

1 RF−
A + Φ1RF

+
B

)
ŜQ

(r)

AS

(
Φ−1

1 RF−
A − Φ1RF

+
B

)
ŜQ

(cr)

S

(
Φ1RF

+
A + Φ−1

1 RF−
B

)
ŜQ

(cr)

AS

(
Φ1RF

+
A − Φ−1

1 RF−
B

)
D̂S

(
Φ2

1D
+ + Φ−2

1 D−) D̂AS

(
Φ2

1D
+ − Φ−2

1 D−)

To further simplify the description, the time-dependent phase factor due to
‘e±

iωQt
/2 ’ is further classified into rotating (e−

iωQt
/2) and counter rotating terms

(e+
iωQt

/2) and the Hamiltonian (Eq. 2.12) is re-expressed in terms of the symmetric
and anti-symmetric combination of spin operators (see Table. 2.2). The final form
of the Hamiltonian in the Zeeman-Quadrupolar interaction frame is represented
by,

˜̃H(t) = ℏ∆T (2)0 − ℏω1

2

{(
ŜQ

(cr)

S

)
e(

iωQt
/2) +

(
ŜQ

(r)

S

)
e−(

iωQt
/2)
}

(2.13)

Since, understanding of spectroscopic phenomena under time-dependent Hamilto-
nians is important and less straightfarward, analytic methods based on Average
Hamiltonian Theory (AHT)40–42 and Floquet theory23,43–46 have become impor-
tant. A brief description of the spin dynamics based on AHT along with its limi-
tations is discussed in Appendix.B. Here in this thesis, we employ Floquet theory
to explicate the nuances of the excitation of MQ transitions. In contrast to AHT,
Floquet theory presents a more general framework for describing the time evolu-
tion (non-stroboscopic detection) of the system in solid-state NMR experiments.
Employing Floquet theorem, the time-dependent Hamiltonian (Eq. 2.13) is trans-
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formed into a time-independent Floquet Hamiltonian and is represented through
a set of operators (Floquet operators) defined in an infinite-dimensional vector
space. Accordingly, in the Floquet framework, the Hamiltonian depicting an RF
pulse is represented by,

HF =
ωQ

2
IF + ℏ∆

(
T (2)0

)
0
− ℏω1

2

{(
ŜQ

(cr)

S

)
−1

+
(
ŜQ

(r)

S

)
+1

}
(2.14)

In the above equation ‘IF ’ represents the identity operator defined in the Floquet
space,

IF = N ⊗ I ; N =
∞∑

n=−∞

n |n⟩ ⟨n| (2.15)

where, ‘I’ is the identity operator. The Floquet spin operators ‘(Iα)m’ are con-
structed from a direct product between the Fourier ‘Fm’ and spin ‘Iα’ operators

(Iα)m = Fm ⊗ Iα ; Fm =
∞∑

n=−∞

|n⟩ ⟨n+m| (2.16)

The subscript ‘m’ denotes the off-diagonality in the Fourier dimension and con-
nects states that differ by ‘m’. A detailed description of the Floquet operators is
described in Appendix.C. It is important to realize here that the Floquet Hamil-
tonian derived above (Eq. 2.14) is defined in an infinite-dimensional vector space
and only the non-zero terms associated with the Floquet operators are illustrated
in Eq. 2.14 . Consequently, analytic descriptions have always remained difficult.
To alleviate this problem, the concept of ‘Effective Floquet Hamiltonians’ based
on the Contact tranformation method19–22 is employed in the present study. Al-
though,the utility of the effective Floquet Hamiltonians in the description of spin
I = 1/2 systems is known, the application of this approach has not been extended
to the description of quadrupolar nuclei. This could largely be attributed to the
presence of the dominant quadrupolar interaction and ambiguities in the definition
of the zero-oreder and perturbing Hamiltonians. Since the contact transformation
procedure is an operator equivalent of the standard Rayleigh-Schrodinger pertur-
bation theory, the definition of the zero-order and perturbing Hamiltonians play an
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important role in the overall convergence of the proposed effective Floquet Hamil-
tonian.
To begin with, Floquet operators that are diagonal ‘(Iα)0’ are retained along the
zero order Hamiltonian, while, the off-diagonal operators are included along ‘H1’.

HF = H0 +H1 (2.17)

H0 =
ωQ

2
IF + ℏ∆

(
T (2)0

)
0

(2.18)

The perturbing Hamiltonian in the present study is chosen to contain only off-
diagonal terms.

H1 = −ω1

2

{(
ŜQ

(r)

S

)
+1

+
(
ŜQ

(cr)

S

)
−1

}
(2.19)

Employing the transformation function ‘S1’, the original untransformed Floquet
Hamiltonian (Eq. 2.14) is transformed through a unitary transformation as illus-
trated below.

Heff = eiλS1 HF e−iλS1 (2.20)

S1 = C
(1)
SQ

{(
ŜQ

(r)

S

)
+1

−
(
ŜQ

(cr)

S

)
−1

}
(2.21)

where,

C
(1)
SQ = −i

(
ω1

ΩQ

)
(2.22)

The transformation function ‘S1’ defined in Eq. 2.21 is carefully chosen to compen-
sate the off-diagonal terms in ‘H1’ and is derived through the procedure16 given
below,

H
(1)
1 = H1 + i[S1, H0] = 0

i[S1, H0] = −H1

Subsequently, employing Baker-Campbell-Hausdorff (BCH) expansion47, the higher-
order corrections to the effective Hamiltonian are derived and described in detail
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in Table. 2.3. In the description that follows, ‘H(1)
n ’ represents the nth order cor-

rections obtained from the first transformation, ‘S1’.
In general, the higher order corrections to the effective Hamiltonian comprises of
both diagonal and off-diagonal contributions. In the present problem, the higher
order corrections mainly arise from commutator expressions involving the trans-
formation function ‘S1’ and the perturbing Hamiltonian ‘H1’. The commutator
of the transformation function ‘S1’ with ‘H1’ to various orders could be derived
through the expression.

H(1)
n =

∞∑
n=2

(i)n−1

n× (n− 2)!

[S1, ............... [S1︸ ︷︷ ︸
n−1

, H1 ] ...............]

 (2.23)

A detailed description of the commutator relations involving the transformation
function ‘S1’ and ‘H1’ to various orders of ‘λ’ are tabulated in Table 2.4.
As a standard procedure, the diagonal corrections are often retained, while ne-
glecting the off-diagonal terms. Nevertheless, the validity of such approximations
could only be verified through a rigorous comparison of simulations emerging from
analytic (based on effective Hamiltonians) and numerical based exact methods.
To illustrate the importance of the various perturbation corrections (both diago-
nal and off-diagonal), a systematic study through comparison between simulations
emerging from the effective Hamiltonians and exact numerical simulations based
on SIMPSON (a numerical based software for simulating NMR experiments in
solid state) is presented in the following sections.
As illustrated in Table. 2.4, the higher order contributions comprise of the diagonal
(arising from ZQ (T (2)0), and DQ

(
D̂S

)
) and off-diagonal (from SQ

(
ŜQ

(r,cr)

S

)
±1

)
operators. Depending on the magnitude of the off-diagonal contributions, the
convergence of the perturbation corrections could in principle, be accomplished
through a single or a series of transformations (often termed as contact transfor-
mations) as discussed below.

Heff = eiλ
nSn ........ eiλ

2S2 eiλS1 HF e−iλS1 e−iλ2S2 ........ e−iλnSn (2.24)
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Table 2.3: Description of higher-order corrections to the effective Hamiltonian derived from
BCH expansion

nth order
Correction Expression for the nth order Correction

Zero order (λ0) H
(1)
0 = H0

I order (λ1) H
(1)
1 = i[S1, H0] +H1

II order (λ2) H
(1)
2 = − 1

2!
[S1, [S1, H0]] + i[S1, H1]

III order (λ3) H
(1)
3 = − i

3!
[S1, [S1, [S1, H0]]]−

1

2!
[S1, [S1, H1]]

IV order (λ4) H
(1)
4 =

1

4!
[S1, [S1, [S1, [S1, H0]]]]−

i

3!
[S1, [S1, [S1, H1]]]

V order (λ5) H
(1)
5 =

i

5!
[S1, [S1, [S1, [S1, [S1, H0]]]]] +

1

4!
[S1, [S1, [S1, [S1, H1]]]]

VI order (λ6) H
(1)
6 = − 1

6!
[S1, [S1, [S1, [S1, [S1, [S1, H0]]]]]]

+
i

5!
[S1, [S1, [S1, [S1, [S1, H1]]]]]

VII order (λ7) H
(1)
7 = − i

7!
[S1, [S1, [S1, [S1, [S1, [S1, [S1, H0]]]]]]]

− 1

6!
[S1, [S1, [S1, [S1, [S1, [S1, H1]]]]]]

VIII order (λ8) H
(1)
8 =

1

8!
[S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, H0]]]]]]]]

− i

7!
[S1, [S1, [S1, [S1, [S1, [S1, [S1, H1]]]]]]]

IX order (λ9) H
(1)
9 =

i

9!
[S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, H0]]]]]]]]]

+
1

8!
[S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, H1]]]]]]]]

X order (λ10) H
(1)
10 = − 1

10!
[S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, H0]]]]]]]]]]

+
i

9!
[S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, [S1, H1]]]]]]]]]
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For e.g., the first transformation function ‘S1’ folds off-diagonal contributions to
order ‘λ’ while, the off-diagonal contributions to order‘λ2’ (arising from the residual
terms from the first transformation) are folded by a second transformation function
‘S2’. In a similar vein, the third transformation folds off-diagonal corrections to
order ‘λ3’ present in the perturbing Hamiltonian, besides the residual off-diagonal
contributions (to order λ3) resulting from the first and second transformations.
Nevertheless, it is important to realize here that the corrections obtained from
successive transformations do not alter the results (coefficients) obtained from the
previous transformations. A pedagogical description illustrating the role of higher
order corrections in the excitation of DQ transitions in spin I = 1 is discussed
below along with simulations.

I. Effective Hamiltonians from first transformation, ‘S1’

Based on Table. 2.4, let the general form of the effective Hamiltonian (comprising
of diagonal corrections only) describing the excitation process (from a single pulse)
be represented by,

Heff = eiλS1 HF e−iλS1

Heff =
ωQ

2
IF + G

(1)
DQ

(
D̂S

)
0
+G

(1)
ZQ

(
T (2)0

)
0

(2.25)

where,

G
(1)
DQ =

N1∑
i=0

G
(1)
DQ,i ; G

(1)
ZQ =

N1∑
i=0

G
(1)
ZQ,i ; θ =

(
4ω1

ΩQ

)
(2.26)

G
(1)
DQ =

(ω1

2

){
− 1

2× 0!
(θ) +

1

4× 2!
(θ)3 − 1

6× 4!
(θ)5 + . . .

}
(2.27)

G
(1)
ZQ = ∆+

(ω1

2

)√
6

{
− 1

2× 0!
(θ) +

1

4× 2!
(θ)3 − 1

6× 4!
(θ)5 + . . .

}
(2.28)

In Eq. 2.25, ‘G(1)
DQ’ denotes the coefficients obtained from the first transformation

(denoted by the superscript) corresponding to the double quantum operator and
is expressed in-terms of contributions from the various orders (N1 denotes the de-
sired order, power of λ). In a similar vein, the coefficients corresponding to the ZQ
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operator are denoted by G(1)
DQ. A detailed description of the coefficients illustrating

the contributions from various orders is listed in Appendix.E.1 (Table.E.1.1).
To have a consistent description, the initial density operator (ρF (0) = (Iz)0) along
with the detection operator ‘T (2)−2,’ (corresponding to DQ transition) is trans-
formed by the transformation function ‘S1.’

ρ̃F (0) = eiλS1 ρF (0) e
−iλS1

= R
(1)
Iz C(α) (Iz)0 +R

(1)
SQ S(α)

{(
ŜQ

(r)

AS

)
+1

+
(
ŜQ

(cr)

AS

)
−1

}
(2.29)

T̃
(2)−2
F = eiλS1 T

(2)−2
F e−iλS1

= e2iω0t2 ΦR

{
P

(1)
DQ C(α)

(
T (2)−2

)
0
− P

(1)
SQ S(α)

{(
Φ1RF

−
A

)
+1

+
(
Φ1RF

−
B

)
−1

}}
(2.30)

α =2i C
(1)
SQ =

2ω1

ΩQ

; C(α) = cos (α) ; S(α) = sin (α) ; ΦR = eiϕr

where, ‘ϕr’ is the phase of the receiver. A detailed description of the ‘R’ and ‘P’
coefficients is illustrated in Table. 2.5.
Table 2.5: Coefficients employed in the description of the density operator (Eqs. 2.29 and 2.32)

and the detection operator Eq. 2.30
Operator 0 coherence ±1 coherence ±2 coherence

density matrix R
(1)
Iz = 1 R

(1)
SQ =

1

2
R

(1)
DQ = 0

Operator 0 coherence ±1 coherence ±2 coherence

detection operator 0 P
(1)
SQ =

1

2
P

(1)
DQ = 1

α = 2i C
(1)
SQ ; β =

(√
3

2
G

(1)
ZQ − G

(1)
DQ − ωQ

2

)
tp1

θDQ = 2 G
(1)
DQtp1 ; C(α) = cos (α) ; S(α) = sin (α)

Based on Eqs. 2.29 and 2.30, it may be verified that at time, t = 0, the
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DQ signal is zero. (i.e.,
⟨
T (2)−2(0)

⟩
= Tr

[
ρ̃F (0).T̃

(2)−2
F

]
= 0). Subsequently, to

induce DQ transitions, the initial density operator (Eq. 2.29) is transformed by the
effective pulse Hamiltonian (Eq. 2.25). Employing Eq. 2.31, the density operator
during the pulse is evaluated,

ρ̃F (tp1) = exp

(
−iHeff tp1

ℏ

)
ρ̃F (0) exp

(
iHeff tp1

ℏ

)
(2.31)

(where, ‘tp1’ denotes the duration of the pulse). To simplify the description and
illustrate the development of coherences, the density operator is expressed in terms
of the different coherences present in the system.

ρ̃F (tp1) = ρ̃F (tp1)ZQ + ρ̃F (tp1)SQ + ρ̃F (tp1)DQ (2.32)

The Zero-Quantum (ZQ) coherence or the populations is represented by,

ρ̃F (tp1)ZQ = RIz C(α) C(θDQ) (Iz)0 (2.33)

The Single-Quantum (SQ) coherence comprises of

ρ̃F (tp1)SQ = RSQ S(α)

{(
ŜQ

(cr)

AS

)
−1
eiβ +

(
ŜQ

(r)

AS

)
+1
e−iβ

}
(2.34)

where,

θDQ = 2 G
(1)
DQtp1 ; α = 2i C

(1)
SQ ; β =

(√
3

2
G

(1)
ZQ − G

(1)
DQ − ωQ

2

)
tp1

The coherences corresponding to the Double-Quantum (DQ) transitions is repre-
sented through ,

ρ̃F (tp1)DQ = iRIz C(α) S(θDQ)

(
D̂AS

)
0

(2.35)

As represented above, the coherences corresponding to the ZQ and DQ transitions
are expressed in terms of diagonal operators, while, the coherences correspond-
ing to the SQ transitions are represented in terms of off-diagonal operators in the



2.2. THEORY AND SIMULATIONS 39

Floquet framework. Although, from an experimental perspective, DQ transitions
cannot be detected through direct means (they need to be reconverted back to de-
tectable SQ(-1) transitions), the DQ excitation is evaluated through the standard
procedure illustrated below.

⟨
T (2)−2(tp1)

⟩
= Tr

[
ρ̃F (tp1).T̃

(2)−2
F

]
= e2iω0t2 Φ2

1 ΦR

{
−2 R

(1)
SQ.P

(1)
SQ

(
S(α)

)2 (
eiβ − e−iβ

)
+ iR

(1)
Iz .P

(1)
DQ

(
C(α)

)2
S(θDQ)

}
(2.36)

Substituting the coefficients in the above equation, the expression for calculating
DQ signal reduces to the form

⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR

{
(cos (α))2 sin (θDQ)− (sin (α))2 sin (β)

}
(2.37)

To illustrate the importance of the higher-order corrections in the exactness of
the effective Hamiltonians, a systematic study incorporating diagonal corrections

to second order (i.e. G
(1)
DQ =

2∑
i=0

G
(1)
DQ,i ; G

(1)
ZQ =

2∑
i=0

G
(1)
ZQ,i), and nth order (i.e.

G
(1)
DQ =

N1∑
i=0

G
(1)
DQ,i ; G

(1)
ZQ =

N1∑
i=0

G
(1)
ZQ,i) were performed. A detailed description

of coefficients employed in the effective Hamiltonians for the above two cases are
given in Appendix.E.1 (Table. E.1.2).
In Figure. 2.4, simulations depicting the efficiency of DQ excitation are plotted as a
function of the pulse duration (tp1). In these simulations, the diagonal corrections
to second order ‘λ2’ are only incorporated (representing Case:I). As depicted, when
the magnitude of the quadrupolar frequency (ωQ) largely exceeds the amplitude
of the RF pulse, the analytic simulations are in excellent agreement with those
obtained from SIMPSON. In the strong coupling limit, the DQ signal in Eq. 2.37
reduces to the familiar form proposed by Vega and Pines8,9.

⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR

{
sin 2ω2

1tp
ωQ

}
(2.38)
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Figure 2.4: Comparison of numerical (black thick line) and analytic simulations (red dots) based
on effective Hamiltonians derived from a single transformation comprising of diagonal corrections
to order λ2(N1 = 2). In the simulations depicted, the quadrupole coupling constant (CQ = ωQ/3π)
is varied A1) CQ = 1 MHz, A2) CQ = 500 kHz, A3) CQ = 200 kHz, A4) CQ = 100 kHz, employing
an excitation pulse of constant RF amplitude, (ω1/2π) = 100 kHz. The simulations correspond
to a single crystal.

However, with decreasing magnitudes of the quadrupolar coupling constant, the
discrepancy between the analytic and numerical simulations increases. To address
this aspect, effective Hamiltonians comprising of diagonal contributions to (nth

order, N1 > 2) were employed in the simulations depicted in Figure. 2.5. As de-
picted, the discrepancy still prevails in panels A3 and A4, despite the inclusion of
diagonal corrections to nth order. Hence, the residual off-diagonal terms ignored
from the first transformation could play an important role in the excitation pro-
cess. Interestingly, the AHT formalism (see Appendix.B) does not provide such a
framework in the derivation of effective Hamiltonians.
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Figure 2.5: Comparison of numerical (black thick line) and analytic simulations (red dots) based
on effective Hamiltonians derived from a single transformation comprising of diagonal corrections
to nth - order λ2(N1 > 2). In the simulations depicted, the quadrupole coupling constant
(CQ = ωQ/3π) is varied A1) CQ = 1 MHz, A2) CQ = 500 kHz, A3) CQ = 200 kHz, A4) CQ =
100 kHz, employing an excitation pulse of constant RF amplitude, (ω1/2π) = 100 kHz. The
simulations correspond to a single crystal.

II. Effective Hamiltonians from second transformation, ‘S2’

To resolve the discrepancy observed in the analytic simulations, the residual off-
diagonal terms neglected in the first transformation were considered in the calcu-
lations. As depicted in Table. 2.4, the off-diagonal contributions comprises of the
single-quantum (SQ) operators. To fold the above off-diagonal contributions, a
second transformation function ‘S2’ was employed. A brief description of the pro-
cedure employed in the derivation of effective Floquet Hamiltonians from the sec-
ond transformation ‘S2’ is outlined below. The diagonal corrections from the first

transformation are included along ‘H0’ and the off-diagonal operators
((

ŜQ
)
±1

)
resulting from the first transformation forms the perturbing Hamiltonian.

H0 =
ωQ

2
IF + G

(1)
DQ

(
D̂S

)
0
+G

(1)
ZQ

(
T (2)0

)
0

(2.39)
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H1 = G
(1)
SQ

{(
ŜQ

(r)

S

)
+1

+
(
ŜQ

(cr)

S

)
−1

}
(2.40)

G
(1)
SQ =

N1∑
i=0

G
(1)
SQ,i =

(ω1

2

){ 1

3× 1!
(θ)2 − 1

5× 3!
(θ)4 +

1

7× 5!
(θ)6 − . . .

}
(2.41)

In the above equation, the coefficients ‘G(1)
SQ =

∑N1

i=0G
(1)
SQ,i’ denotes the off-diagonal

coefficients resulting from the first-transformation and are described in Appendix.E.2
(Table.E.2.1). Depending on the desired level of accuracy, the off-diagonal contri-
butions (denoted by value of N1) from the first-transformation are incorporated
accordingly. Employing the transformation function ‘S2’, the off-diagonal contri-
butions from H1 are folded.

S2 = C
(2)
SQ′

{(
ŜQ

(r)

S

)
+1

−
(
ŜQ

(cr)

S

)
−1

}
(2.42)

where,

C
(2)
SQ′ = −i

 G
(1)
SQ

G
(1)
DQ +

√
3

2
G

(1)
ZQ − ΩQ

2

 (2.43)

C
(i+1)
SQ =

n−1∑
j=1

C
(j+1)
SQ′ (2.44)

where ‘j’ takes values from 1 to ‘n − 1’, where ‘n’ is the number of ‘S’ transfor-
mations applied (Here n = 2).
A detailed description of the corrections (both diagonal and off-diagonal) emerging
from the second transformation are tabulated in Table. 2.6.
Accordingly, following the procedure described in the previous section, the effective
Hamiltonians after the second transformation is evaluated and represented by,

H0 =
ωQ

2
IF + G

(2)
DQ

(
D̂S

)
0
+G

(2)
ZQ

(
T (2)0

)
0

(2.45)
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Q

(r
)

S

) +
1
+
( Ŝ
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G
(2)
DQ = G

(1)
DQ +

{
1

2× 0!
G

(2)
DQ,A − 1

4× 2!
G

(2)
DQ,B +

1

6× 4!
G

(2)
DQ,C + . . .

}
G

(2)
ZQ = G

(1)
ZQ +

√
6

{
1

2× 0!
G

(2)
DQ,A − 1

4× 2!
G

(2)
DQ,B +

1

6× 4!
G

(2)
DQ,C + . . .

}

The coefficients ‘G(2)
DQ,A’, ‘G(2)

DQ,B’ are described in detail in Table. 2.6. The off-
diagonal contributions emerging from the second transformation forms the pertur-
bation for the third transformation.

H1 = G
(2)
SQ

{(
ŜQ

(r)

S

)
+1

+
(
ŜQ

(cr)

S

)
−1

}
(2.46)

where,

G
(2)
SQ =

{
1

3× 1!
G

(2)
SQ,A − 1

5× 3!
G

(2)
SQ,B +

1

7× 5!
G

(2)
SQ,C + . . .

}

In general, the magnitude of ‘G(n)
SQ’ coefficients decreases with increasing‘n’ and its

utility is decided by comparisons with the exact numerical simulations. After ‘n’
transformations the magnitude of ‘G(n)

SQ’ decreases significantly and the effective
Hamiltonian reduces to the form given below,

Heff =
ωQ

2
IF + G

(n)
DQ

(
D̂S

)
0
+G

(n)
ZQ

(
T (2)0

)
0

(2.47)

The final equation depicting the DQ excitation after ‘n’ transformations is repre-
sented by,

⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR

{
(cos (α))2 sin (θDQ)− (sin (α))2 sin (β)

}
(2.48)
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where,

α = 2i C
(n)
SQ ; β =

(√
3

2
G

(n)
ZQ − G

(n)
DQ − ωQ

2

)
tp1 ; θDQ = 2 G

(n)
DQtp1

Table 2.7: Definition of coefficients employed in the perturbing Hamiltonians for Case-III and
Case-IV

G
(1)
SQ

Case-III
(N1 = 2) − 1

3× 1!

(ω1

2

)
(θ)2

Case-IV
(N1 > 2) G

(1)
SQ = −

(ω1

2

){ 1

3× 1!
(θ)2

− 1

5× 3!
(θ)4 +

1

7× 5!
(θ)6 − ....

}

G
(2)
DQ G

(2)
ZQ

Case-III
N1∑
i=0

G
(1)
DQ,i +

2∑
j=1

G
(2)
DQ,j

N1∑
i=0

G
(1)
ZQ,i +

2∑
j=1

G
(2)
ZQ,j

Case-IV
N1∑
i=0

G
(1)
DQ,i +

N2∑
j=1

G
(2)
DQ,j

N1∑
i=0

G
(1)
ZQ,i +

N2∑
j=1

G
(2)
ZQ,j

θ =

(
4ω1

ΩQ

)
; C(θ) = cos (θ) ; S(θ) = sin (θ)

To illustrate the importance of the second transformation, diagonal corrections
to second order (Figure. 2.6) and ‘nth’ order (Figure. 2.7) were included in the
analytic simulations. As depicted, in contrast to the simulations in panel A3
(Figure. 2.4 and 2.5) resulting from the first transformation, the agreement is
much better in the analytic simulations resulting from the second transformation.
Nevertheless, the simulations presented in panel A4 highlights the inadequacy of
the corrections deduced from the present approach.
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Figure 2.6: Comparison of numerical (black thick line) and analytic simulations (red dots) based
on effective Hamiltonians derived from the second transformation. The off-diagonal contributions
to order λn from the first transformation (N1 > 2) and diagonal corrections to order λ2 from the
second transformation (N2 = 2) were included in the derivation of the effective Hamiltonians. In
the simulations depicted, the quadrupole coupling constant (CQ = ωQ/3π) is varied A1) CQ = 1
MHz, A2) CQ = 500 kHz, A3) CQ = 200 kHz, A4) CQ = 100 kHz, employing an excitation pulse
of constant RF amplitude, (ω1/2π) = 100 kHz. The simulations correspond to a single crystal.
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Figure 2.7: Comparison of numerical (black thick line) and analytic simulations (red dots) based
on effective Hamiltonians derived from the second transformation. The off-diagonal contributions
to order λn from the first transformation (N1 > 2) and diagonal corrections to order λn from the
second transformation (N2 > 2) were included in the derivation of the effective Hamiltonians. In
the simulations depicted, the quadrupole coupling constant (CQ = ωQ/3π) is varied A1) CQ = 1
MHz, A2) CQ = 500 kHz, A3) CQ = 200 kHz, A4) CQ = 100 kHz, employing an excitation pulse
of constant RF amplitude, (ω1/2π) = 100 kHz. The simulations correspond to a single crystal.
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To explain the observed discrepancy (in Panel A4) in the analytic simulations, an
alternate method is proposed in the following section.

Regime-II: Weak coupling (ωQ ≈ ω1)

In cases where the amplitude of the RF pulse exceeds the magnitude of the
quadrupolar frequency (ωQ = 3/2CQ), the Hamiltonian in the zeeman interaction
frame (Eq. 2.49) is tilted such that the RF part of the Hamiltonian is quantized
along the z-axis (employing the transformation function ‘U2’ (U2 = ei

π/2Iy)).

H̃ = −iℏω1

{
Φ1T

(1)1 − Φ−1
1 T (1)−1

}
− ℏΩQ√

6
T (2)0 (2.49)

˜̃H =U2 H̃ U−1
2

= −ℏω1Iz +

(
ℏΩQ

2
√
6

)
T (2)0 −

(
ℏΩQ

4

)(
Φ2

1T
(2)2 + Φ−2

1 T (2)−2
)

(2.50)

To further simplify the description, the above Hamiltonian is transformed into
the RF interaction frame defined by the transformation function, ‘U3’ (U3 =

exp (−iω1tIz))

˜̃̃
H(t) =U3

˜̃H U−1
3

=

(
ℏΩQ

2
√
6

)
T (2)0 −

(
ℏΩQ

4

)(
Φ2

1T
(2)2e−2iω1t + Φ−2

1 T (2)−2e2iω1t
)

(2.51)

As illustrated above, the Hamiltonian in the tilted RF interaction frame is peri-
odically time-dependent. In accord with the description presented in the previ-
ous section, the above time-dependent Hamiltonian is transformed into a time-
independent Floquet Hamiltonian.

HF = ω1IF +

(
ℏΩQ

2
√
6

)(
T (2)0

)
0
−
(
ℏΩQ

4

){(
Φ2

1T
(2)2
)
2
+
(
Φ−2

1 T (2)−2
)
−2

}
(2.52)
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To facilitate analytic description, the above untransformed Floquet Hamiltonian
is re-expressed as a sum of zero-order (H0) and perturbing Hamiltonian (H1).

H0 = ω1IF +

(
ℏΩQ

2
√
6

)(
T (2)0

)
0

H1 = −
(
ℏΩQ

4

){(
Φ2

1T
(2)2
)
2
+
(
Φ−2

1 T (2)−2
)
−2

}
(2.53)

Employing the transformation function, ‘S1’.

S1 = C
(1)
DR

{(
Φ2

1T
(2)2
)
2
−
(
Φ−2

1 T (2)−2
)
−2

}
(2.54)

where,

C
(1)
DR = −i

(
ΩQ

8ω1

)
(2.55)

the off-diagonal contributions due to H1 are folded resulting in an effective Hamil-
tonian. The higher order corrections to the effective Floquet Hamiltonian are
derived using the relations described in Table. 2.9.

Heff = H
(1)
0 = ω1IF +

ΩQ

2
√
6

(
T (2)0

)
0

(2.56)

A detailed derivation of the commutator relations involving the transformation ‘S1’
and ‘H1’ to various orders of ‘λ’ is tabulated in Table 2.9. As illustrated (in Ta-
ble. 2.9), the diagonal corrections mainly comprise of ZQ operators

((
T (k)0

)
0
; k = 1

)
,

while, the off-diagonal contributions are represented through the DQ operators((
T (2)±2

)
±2

)
. A pedagogical description analogous to Regime-I is presented be-

low to explicate the role of the higher-order contributions in the excitation process.

I. Effective Hamiltonians from first transformation, ‘S1’

Based on Table. 2.9, let the effective Hamiltonian (comprising of diagonal correc-
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tions only) describing the excitation process in Regime-II be represented by,

Heff = eiλS1 HF e−iλS1

= ω1IF +G
(1)
1R (Iz)0 + G

(1)
2R

(
T (2)0

)
0

(2.57)

G
(1)
1R =

N1∑
i=1

G
(1)
1R,i ; G

(1)
2R = G

(1)
2R,0 =

ΩQ

2
√
6

; (2.58)

G
(1)
1R =

(
−ΩQ

4

){
+

1

2× 0!
(ξ)− 1

4× 2!
(ξ)3 +

1

6× 4!
(ξ)5 + . . .

}
(2.59)

and N1 represents the order of the corrections from the first transformation.
To have a consistent description, the initial density operator (ρF (0) = (Iz)0) along
with the detection operator ‘T (2)−2’, is transformed by the transformation function
‘S1.’ The transformed initial density operator and the detection operators are
illustrated below.

ρ̃F (0) = eiλS1 ρF (0) e
−iλS1

= R
(1)
SQA C(ξDR)

{(
Φ1T

(1)1
)
+1

−
(
Φ−1

1 T (1)−1
)
−1

}
+R

(1)
SQB S(ξDR)

{(
Φ1T

(2)1
)
+1

−
(
Φ−1

1 T (2)−1
)
−1

}
(2.60)

T̃
(2)−2
F = eiλS1 T

(2)−2
F e−iλS1

= e2iω0t2 ΦR

{
P

(1)
ZQ

(
T (2)0

)
0
− P

(1)
SQA S(ξDR)

(
Φ3

1T
(1)1
)
+1

+P
(1)
SQB C(ξDR)

(
Φ1T

(2)−1
)
−1

}
(2.61)

where,

ξDR =i C
(1)
DR = ; C(ξ) = cos (ξ) ; S(ξ) = sin (ξ)

A detailed description of the ‘R’ and ‘P’ coefficients employed in the initial density
operator and detection operator is illustrated in Table. 2.8.
Employing the effective pulse Hamiltonian (Eq. 2.57), the density operator during
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the pulse is evaluated,

ρ̃F (tp1) = exp

(
−iHeff tp1

ℏ

)
ρ̃F (0) exp

(
iHeff tp1

ℏ

)
(2.62)

Table 2.8: Coefficients employed in the description of the density operator (Eqs. 2.60 and 2.64)
and the detection operator Eq. 2.61

Operator 0 coherence ±1 coherence

density matrix 0 R
(1)
SQA = −i

R
(1)
SQB = 1

Operator 0 coherence ±1 coherence

detection operator P
(1)
ZQ =

√
3

2
√
2

P
(1)
SQA = i

P
(1)
SQB = 1

ξDR = i C
(1)
DR ; ξ1R =

(
G

(1)
1R − ω1

)
tp1 ; ξ2R =

√
3

2
G

(1)
2R tp1

; C(ξ) = cos (ξ) ; S(ξ) = sin (ξ)

To simplify the description and illustrate the development of coherences, the
density operator is re-expressed in terms of the different coherences present in the
system. The Single-Quantum (SQ) coherence comprises of

ρ̃F (tp1) =
{
R

(1)
SQA C(ξDR) C(ξ2R) −R

(1)
SQB S(ξDR) S(ξ2R)

}
e−iξ1R

(
Φ1T

(1)1
)
+1

−
{
R

(1)
SQA C(ξDR) C(ξ2R) +R

(1)
SQB S(ξDR) S(ξ2R)

}
eiξ1R

(
Φ−1

1 T (1)−1
)
−1

+
{
R

(1)
SQA C(ξDR) C(ξ2R) +R

(1)
SQB S(ξDR) S(ξ2R)

}
e−iξ1R

(
Φ1T

(2)1
)
+1

+
{
R

(1)
SQA C(ξDR) C(ξ2R) −R

(1)
SQB S(ξDR) S(ξ2R)

}
eiξ1R

(
Φ−1

1 T (2)−1
)
−1

(2.63)

Here, ξDR = i C
(1)
DR ; ξ1R =

(
G

(1)
1R − ω1

)
tp1 ; ξ2R =

√
3

2
G

(1)
2R tp1
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ρ̃F (tp1) =
{
R

(1)
SQA C(ξDR) C(ξ2R) −R

(1)
SQB S(ξDR) S(ξ2R)

}
(
e−iξ1R

(
Φ1T

(1)1
)
+1

+ eiξ1R
(
Φ−1

1 T (2)−1
)
−1

)
+
{
R

(1)
SQA C(ξDR) C(ξ2R) +R

(1)
SQB S(ξDR) S(ξ2R)

}
(
e−iξ1R

(
Φ1T

(2)1
)
+1

− eiξ1R
(
Φ−1

1 T (1)−1
)
−1

)
(2.64)

The coherences corresponding to the SQ transition are represented in terms of
off-diagonal operators in the Floquet framework. Subsequently, the DQ excitation
is evaluated through the standard procedure illustrated below.

⟨
T (2)−2(tp1)

⟩
= Tr

[
ρ̃F (tp1).T̃

(2)−2
F

]
= −e2iω0t2

(
ΦRΦ

2
1

){
P

(1)
SQB C(ξDR)

{
R

(1)
SQA C(ξDR) C(ξ2R) +R

(1)
SQB S(ξDR) S(ξ2R)

}
e−iξ1R + P

(1)
SQA S(ξDR)

{
R

(1)
SQA C(ξDR) C(ξ2R) +R

(1)
SQB S(ξDR) S(ξ2R)

}
eiξ1R

}
(2.65)

Substituting the coefficients in the above equation, the DQ excitation (expectation
value) reduces to

⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR {sin (ξ2R) cos (ξ1R) + cos (ξ2R) sin (ξ1R) sin (2ξDR)}
(2.66)

To substantiate the validity of the effective Hamiltonian derived in regime-II, an-
alytic simulations incorporating diagonal corrections to second order (i.e. G(1)

1R =
2∑

i=0

G
(1)
1R,i ; G

(1)
2R =

2∑
i=0

G
(1)
2R,i, Figure. 2.8) and nth order (i.e. G(1)

1R =
N1∑
i=0

G
(1)
1R,i ; G

(1)
2R =

N1∑
i=0

G
(1)
2R,i, Figure. 2.9) resulting from the first transformation were compared with

the exact numerical simulations. As depicted (see panel A3) the analytic simu-
lations in Regime-II are in good agreement when compared to those depicted in
Regime-I. The minor deviations that are observed in panel A4 are improved further
with a second transformation (see Appendix.D).
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Figure 2.8: Comparison of numerical (black thick line) and analytic simulations (blue dots)
based on effective Hamiltonians derived from a single transformation (in Regime-II) comprising
of diagonal corrections to order λ2 (N1 = 2). In the simulations depicted, the quadrupole
coupling constant (CQ = ωQ/3π) is varied A1) CQ = 25 kHz, A2) CQ = 50 kHz, A3) CQ = 100
kHz, A4) CQ = 200 kHz, employing an excitation pulse of constant RF amplitude, (ω1/2π) = 100
kHz. The simulations correspond to a single crystal.
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Figure 2.9: Comparison of numerical (black thick line) and analytic simulations (blue dots)
based on effective Hamiltonians derived from a single transformation (in Regime-II) comprising
of diagonal corrections to order λn (N1 > 2). In the simulations depicted, the quadrupole
coupling constant (CQ = ωQ/3π) is varied A1) CQ = 25 kHz, A2) CQ = 50 kHz, A3) CQ = 100
kHz, A4) CQ = 200 kHz, employing an excitation pulse of constant RF amplitude, (ω1/2π) = 100
kHz. The simulations correspond to a single crystal.
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Hence, depending on the relative magnitudes of the quadrupolar frequency w.r.t.
the amplitude of the pulse, the classification of regimes plays an important role in
the accuracy of the derived effective Hamiltonians.

2.2.2 DQ excitation in Powder Sample

To further validate the effective Hamiltonian approach, the calculations described
in the previous sections is extended to describe the excitation in a powder sample.
In the past, analytic description of the excitation process have remained hindered
due to the distribution of the quadrupolar coupling constant (spatial anisotropy)
present in a powder sample. As described in the Appendix.B, the higher order
corrections derived from the Magnus formula result in erroneous results and are
ill-suited to describe the excitation in a powder sample. As an alternative, each
crystallite could in principle be associated with a specific interaction frame cor-
responding to a particular quadrupolar frequency, ω(αβγ)

Q . However, simultaneous
obeservation of all the crystallites at a given single instant of time is untenable
within the AHT framework.
To this end, the Floquet formalism presented in this thesis is tailor made to de-
scribe the excitation process both in isotropic and anisotropic solid samples. As
described in the previous sections, the quadrupolar interaction represented through
‘ΩQ’ becomes equal to ‘ω(αβγ)

Q ’ for a powder sample
(
ΩQ = ω

(αβγ)
Q

)
. Consequently,

an anisotropic offset term ‘∆’,(∆ = ΩQ − ω
(αβγ)
Q ) (corresponding to the T (2)0 op-

erator) is present along the zero-order Hamiltonian.
To investigate the exactness of the proposed effective Floquet Hamiltonians, DQ
excitation in a powder sample is investigated in the following section. For compara-
tive purposes, the quadrupolar parameters (say CQ = 1MHz, 500kHz, 200kHz and
100kHz) employed in the single crystal calculations were retained in the powder
simulations (Figure. 2.10-2.13). In the simulations presented below (Figure. 2.10-
2.13), the effective Hamiltonians based on Regime-I were employed to simulate the
DQ excitation in powder samples.
The analytic simulations depicted in panels A1 and A2 are based on effective
Hamiltonians derived from the first transformation (A1, diagonal corrections to
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II order, A2 diagonal corrections to nth order), while, effective Hamiltonians from
the second transformation were employed In panels A3 (diagonal corrections to II
order) and A4 (diagonal corrections to nth order).
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Figure 2.10: Comparison of numerical (black thick line) and analytic simulations (red dots)
based on effective Hamiltonians derived from Regime-I corresponding to the quadrupole coupling
constant (CQ = ωQ/3π), CQ = 1 MHz and RF amplitude, (ω1/2π) = 100 kHz. In panel A1 (II
order diagonal contributions from S1), A2 (nth order from S1), A3 (II order from S2 and nth

order diagonal contributions from S1), A4 (nth order from S1 and S2). The powder simulations
were performed using a crystal file having 28656 orientations (α, β).

As depicted in Figures. 2.10 (CQ = 1 MHz) and 2.11 (CQ = 500 kHz) , a minimum
of two transformations (S1 and S2) seem mandatory to improve the exactness
of the proposed effective Hamiltonians. This is in stark contrast to the single
crystal simulations based on similar parameters. In a typical powder sample,
the effective quadrupolar frequency (ω(αβγ)

Q ) is always lower than or equal to the
isotropic quadrupolar frequency (ωQ). Hence, there could be crystallites with
quadrupolar frequencies lower than the RF amplitude.
Consequently, the effective Hamiltonians based on Regime-I might not be strictly
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valid for similar calculations (parameter) in powder samples. This could also be
inferred from the simulations presented in Figures. 2.12 and 2.13.
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Figure 2.11: Comparison of numerical (black thick line) and analytic simulations (red dots)
based on effective Hamiltonians derived from Regime-I corresponding to the quadrupole coupling
constant (CQ = ωQ/3π), CQ = 500 kHz and RF amplitude, (ω1/2π) = 100 kHz. In panel A1 (II
order diagonal contributions from S1), A2 (nth order from S1), A3 (II order from S2 and nth

order diagonal contributions from S1), A4 (nth order from S1 and S2). The powder simulations
were performed using a crystal file having 28656 orientations (α, β).

As depicted in Figures. 2.12 and 2.13, the effective Hamiltonians (Eq. D.13) in
Regime-I do not accurately describe the excitation in powder sample.
To address this discrepancy, effective Hamiltonians based on Regime-II were em-
ployed to simulate the DQ excitation for quadrupolar parameters corresponding
to CQ = 200 kHz and 100 kHz. As depicted in Figures. 2.14 and 2.15, the analytic
simulations based on effective Hamiltonians in Regime-II yield results in better
agreement with exact numerical methods. Hence in a powder sample there exists
no clear demarcation between two regimes.
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Figure 2.12: Comparison of numerical (black thick line) and analytic simulations (red dots)
based on effective Hamiltonians derived from Regime-I corresponding to the quadrupole coupling
constant (CQ = ωQ/3π), CQ = 200 kHz and RF amplitude, (ω1/2π) = 100 kHz. In panel A1 (II
order diagonal contributions from S1), A2 (nth order from S1), A3 (II order from S2 and nth

order diagonal contributions from S1), A4 (nth order from S1 and S2). The powder simulations
were performed using a crystal file having 28656 orientations (α, β).
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Figure 2.13: Comparison of numerical (black thick line) and analytic simulations (red dots)
based on effective Hamiltonians derived from Regime-I corresponding to the quadrupole coupling
constant (CQ = ωQ/3π), CQ = 100 kHz and RF amplitude, (ω1/2π) = 100 kHz. In panel A1 (II
order diagonal contributions from S1), A2 (nth order from S1), A3 (II order from S2 and nth

order diagonal contributions from S1), A4 (nth order from S1 and S2). The powder simulations
were performed using a crystal file having 28656 orientations (α, β).
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Figure 2.14: Comparison of numerical (black thick line) and analytic simulations (blue dots)
based on effective Hamiltonians derived from Regime-II corresponding to the quadrupole coupling
constant (CQ = ωQ/3π), CQ = 200 kHz and RF amplitude, (ω1/2π) = 100 kHz. In panel A1 (II
order diagonal contributions from S1), A2 (nth order from S1), A3 (II order from S2 and nth

order diagonal contributions from S1), A4 (nth order from S1 and S2). The powder simulations
were performed using a crystal file having 28656 orientations (α, β).
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Figure 2.15: Comparison of numerical (black thick line) and analytic simulations (blue dots)
based on effective Hamiltonians derived from Regime-II corresponding to the quadrupole coupling
constant (CQ = ωQ/3π), CQ = 100 kHz and RF amplitude, (ω1/2π) = 100 kHz. In panel A1 (II
order diagonal contributions from S1), A2 (nth order from S1), A3 (II order from S2 and nth

order diagonal contributions from S1), A4 (nth order from S1 and S2). The powder simulations
were performed using a crystal file having 28656 orientations (α, β).
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To have a consistent description with exact numerical methods, we propose the
‘Hybrid method’48 wherein the effective Hamiltonian derived from the two regimes
are employed to describe the excitation profile. For crystallite orientations with
‘
∣∣∣ω(αβγ)

Q

∣∣∣ < |ω1|’, the effective Hamiltonians based on Regime-II are suited (Eq. D.15, D.16),

while for ‘
∣∣∣ω(αβγ)

Q

∣∣∣ ≥ |ω1|’, effective Hamiltonians based in Regime-I are suitable
(Eq. D.13, D.14) in simulating the DQ excitation profile in the powder sample. A
schematic depiction of the excitation profiles in the powder sample are illustrated
in Figures. 2.16 - 2.18.
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Figure 2.16: Comparison of numerical (black thick line) and analytic simulations (blue dots)
based on effective Hamiltonians derived from both regimes corresponding to the quadrupole cou-
pling constant (CQ = ωQ/3π), CQ = 1 MHz and RF amplitude, (ω1/2π) = 100 kHz. The analytic
simulations emerging from the effective Hamiltonians derived from Regime-I only (see panel A1),
Regime-II only (see panel A2), hybrid method (combination of Regime-I and Regime-II) ( in panel
A3) are depicted. In panel A4, the analytic simulations from the hybrid method (combination
of Regime-I (red) and Regime-II (blue)) are compared with exact numerical simulations (black
line). The choice of Regime-I and Regime-II is purely dependent on the magnitude of ω

(αβγ)
Q

relative to the RF amplitude. When
∣∣∣ω(αβγ)

Q

∣∣∣ < |ω1|, Regime-II is employed,
∣∣∣ω(αβγ)

Q

∣∣∣ ≥ |ω1|,
Regime-I is employed. The powder simulations were performed using a crystal file having 28656
orientations (α, β).
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Figure 2.17: Comparison of numerical (black thick line) and analytic simulations (blue dots)
based on effective Hamiltonians derived from both regimes corresponding to the quadrupole cou-
pling constant (CQ = ωQ/3π), CQ = 500 kHz and RF amplitude, (ω1/2π) = 100 kHz. The analytic
simulations emerging from the effective Hamiltonians derived from Regime-I only (see panel A1),
Regime-II only (see panel A2), hybrid method (combination of Regime-I and Regime-II) ( in panel
A3) are depicted. In panel A4, the analytic simulations from the hybrid method (combination
of Regime-I (red) and Regime-II (blue)) are compared with exact numerical simulations (black
line). The choice of Regime-I and Regime-II is purely dependent on the magnitude of ω

(αβγ)
Q

relative to the RF amplitude. When
∣∣∣ω(αβγ)

Q

∣∣∣ < |ω1|, Regime-II is employed,
∣∣∣ω(αβγ)

Q

∣∣∣ ≥ |ω1|,
Regime-I is employed. The powder simulations were performed using a crystal file having 28656
orientations (α, β).

In Figure. 2.16, the excitation profile for powder sample corresponding to the an-
alytic simulations emerging from the effective Hamiltonians derived from the pro-
cedure described in Regime-I (panel A1) and Regime-II (panel A2) are depicted,
respectively. In panel A3, analytic simulations emerging from the proposed hy-
brid method is depicted. In panel A4, the analytic simulations from the proposed
hybrid method are compared with SIMPSON simulations. The powder simula-
tions were performed using a crystal file comprising of 28656 orientations (α, β).
Of the 28656 orientations that were employed, 89% of the crystallites had their
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‘
∣∣∣ω(αβγ)

Q

∣∣∣ ≥ |ω1|’ and 11% had ‘
∣∣∣ω(αβγ)

Q

∣∣∣ < |ω1|’. As depicted, the analytic simula-
tions emerging from the proposed ‘hybrid method’ are in excellent agreement with
the numerical simulations. To further substantiate this approach, additional set
of simulations corresponding to (CQ = 500 kHz; CQ = 200 kHz) are depicted in
Figures. 2.17, 2.18, respectively. As the magnitude of the quadrupolar coupling
constant decreases, the percentage of crystallites that adhere to the dynamics gov-
erned by Regime-II should in-principle increase owing to the scaling introduced
by the powder averaging. This reasoning is justified in the analytic simulations
depicted in panel-A2 of Figures. 2.17 and 2.18.
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Figure 2.18: Comparison of numerical (black thick line) and analytic simulations (blue dots)
based on effective Hamiltonians derived from both regimes corresponding to the quadrupole cou-
pling constant (CQ = ωQ/3π), CQ = 200 kHz and RF amplitude, (ω1/2π) = 100 kHz. The analytic
simulations emerging from the effective Hamiltonians derived from Regime-I only (see panel A1),
Regime-II only (see panel A2), hybrid method (combination of Regime-I and Regime-II) ( in panel
A3) are depicted. In panel A4, the analytic simulations from the hybrid method (combination
of Regime-I (red) and Regime-II (blue)) are compared with exact numerical simulations (black
line). The choice of Regime-I and Regime-II is purely dependent on the magnitude of ω

(αβγ)
Q

relative to the RF amplitude. When
∣∣∣ω(αβγ)

Q

∣∣∣ < |ω1|, Regime-II is employed,
∣∣∣ω(αβγ)

Q

∣∣∣ ≥ |ω1|,
Regime-I is employed. The powder simulations were performed using a crystal file having 28656
orientations (α, β).
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Hence, the choice of the interaction frames (whether it is quadrupolar interaction
frame or tilted RF interaction frame) play an important role in the exactness of the
derived effective Hamiltonians. In contrast to the AHT framework, the effective
Floquet Hamiltonian approach presents a unified description of the time-evolution
for all the crystallites present in a powder sample. The proposed hybrid method
is extremely beneficial in the analytic description of powder samples and could be
employed to build theoretical models for quantifying experimental data involving
powder samples.
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Appendix

A Matrix Representation of Operators and Com-
mutator Relations

A.1 Definition of Tensor Operators for Spin I = 1

Table A.1.1: The Basis Tensor Operators for spin I=1
Zero Coherence Operators

T (0)0 =
1√
3

1 0 0
0 1 0
0 0 1

 T (1)0 =
i√
2

1 0 0
0 0 0
0 0 −1


T (2)0 =

−1√
6

1 0 0
0 −2 0
0 0 1


+1 Coherence Operators

T (1)1 =
−i√
2

0 1 0
0 0 1
0 0 0

 T (2)1 =
1√
2

0 1 0
0 0 −1
0 0 0


RF+

A =
√
2

0 1 0
0 0 0
0 0 0

 RF+
B =

√
2

0 0 0
0 0 1
0 0 0


−1 Coherence Operators

T (1)−1 =
i√
2

0 0 0
1 0 0
0 1 0

 T (2)−1 =
−1√
2

0 0 0
1 0 0
0 −1 0


RF−

A =
√
2

0 0 0
1 0 0
0 0 0

 RF−
B =

√
2

0 0 0
0 0 0
0 1 0


±2 Coherence Operators

T (2)2 = D+ =

0 0 −1
0 0 0
0 0 0

 T (2)−2 = D− =

 0 0 0
0 0 0
−1 0 0



A.2 Commutation Relations for Spin I = 1

1. [
(
Φ−1RF−

A + ΦRF+
B

)
, Iz] =

(
Φ−1RF−

A − ΦRF+
B

)
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2. [
(
Φ−1RF−

A − ΦRF+
B

)
, Iz] =

(
Φ−1RF−

A + ΦRF+
B

)
3. [
(
ΦRF+

A + Φ−1RF−
B

)
, Iz] = −

(
ΦRF+

A − Φ−1RF−
B

)
4. [
(
ΦRF+

A − Φ−1RF−
B

)
, Iz] = −

(
ΦRF+

A + Φ−1RF−
B

)

5. [
(
Φ−1RF−

A + ΦRF+
B

)
, T (2)0] = −

√
3

2

(
Φ−1RF−

A + ΦRF+
B

)
6. [
(
Φ−1RF−

A − ΦRF+
B

)
, T (2)0] = −

√
3

2

(
Φ−1RF−

A − ΦRF+
B

)
7. [
(
ΦRF+

A + Φ−1RF−
B

)
, T (2)0] =

√
3

2

(
ΦRF+

A + Φ−1RF−
B

)
8. [
(
ΦRF+

A − Φ−1RF−
B

)
, T (2)0] =

√
3

2

(
ΦRF+

A − Φ−1RF−
B

)
9. [
(
Φ−1RF−

A + ΦRF+
B

)
,
(
Φ2 T (2)2 + Φ−2 T (2)−2

)
] = −

(
Φ−1RF−

A + ΦRF+
B

)
10. [

(
Φ−1RF−

A − ΦRF+
B

)
,
(
Φ2 T (2)2 + Φ−2 T (2)−2

)
] =

(
Φ−1RF−

A − ΦRF+
B

)
11. [

(
ΦRF+

A + Φ−1RF−
B

)
,
(
Φ2 T (2)2 + Φ−2 T (2)−2

)
] =

(
ΦRF+

A + Φ−1RF−
B

)
12. [

(
ΦRF+

A − Φ−1RF−
B

)
,
(
Φ2 T (2)2 + Φ−2 T (2)−2

)
] = −

(
ΦRF+

A − Φ−1RF−
B

)
13. [

(
Φ−1RF−

A + ΦRF+
B

)
,
(
Φ2 T (2)2 − Φ−2 T (2)−2

)
] =

(
Φ−1RF−

A + ΦRF+
B

)
14. [

(
Φ−1RF−

A − ΦRF+
B

)
,
(
Φ2 T (2)2 − Φ−2 T (2)−2

)
] = −

(
Φ−1RF−

A − ΦRF+
B

)
15. [

(
ΦRF+

A + Φ−1RF−
B

)
,
(
Φ2 T (2)2 − Φ−2 T (2)−2

)
] = −

(
ΦRF+

A + Φ−1RF−
B

)
16. [

(
ΦRF+

A − Φ−1RF−
B

)
,
(
Φ2 T (2)2 − Φ−2 T (2)−2

)
] =

(
ΦRF+

A − Φ−1RF−
B

)
17. [

(
Φ−1RF−

A + ΦRF+
B

)
,
(
T (2)2

)
] = −Φ−1RF+

B

18. [
(
Φ−1RF−

A − ΦRF+
B

)
,
(
T (2)2

)
] = −Φ−1RF+

B

19. [
(
ΦRF+

A + Φ−1RF−
B

)
,
(
T (2)2

)
] = Φ−1RF+

A
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20. [
(
ΦRF+

A − Φ−1RF−
B

)
,
(
T (2)2

)
] = −Φ−1RF+

A

21. [
(
Φ−1RF−

A + ΦRF+
B

)
,
(
T (2)−2

)
] = −ΦRF−

A

22. [
(
Φ−1RF−

A − ΦRF+
B

)
,
(
T (2)−2

)
] = ΦRF−

A

23. [
(
ΦRF+

A + Φ−1RF−
B

)
,
(
T (2)−2

)
] = ΦRF−

B

24. [
(
ΦRF+

A − Φ−1RF−
B

)
,
(
T (2)−2

)
] = ΦRF−

B

25. [
(
Φ−1RF−

A + ΦRF+
B

)
,
(
Φ−1RF+

B

)
] = 0

26. [
(
Φ−1RF−

A − ΦRF+
B

)
,
(
Φ−1RF+

B

)
] = 0

27. [
(
ΦRF+

A + Φ−1RF−
B

)
,
(
Φ−1RF+

B

)
] = −2T (2)2 +

√
2Φ−2

(
iT (1)0 −

√
3T (2)0

)
28. [

(
ΦRF+

A − Φ−1RF−
B

)
,
(
Φ−1RF+

B

)
] = −2T (2)2 −

√
2Φ−2

(
iT (1)0 −

√
3T (2)0

)
29. [

(
Φ−1RF−

A + ΦRF+
B

)
,
(
Φ−1RF+

A

)
] = 2T (2)2 +

√
2Φ−2

(
iT (1)0 +

√
3T (2)0

)
30. [

(
Φ−1RF−

A − ΦRF+
B

)
,
(
Φ−1RF+

A

)
] = −2T (2)2 +

√
2Φ−2

(
iT (1)0 +

√
3T (2)0

)
31. [

(
ΦRF+

A + Φ−1RF−
B

)
,
(
Φ−1RF+

A

)
] = 0

32. [
(
ΦRF+

A − Φ−1RF−
B

)
,
(
Φ−1RF+

A

)
] = 0

33. [
(
Φ−1RF−

A + ΦRF+
B

)
,
(
ΦRF−

A

)
] = 0

34. [
(
Φ−1RF−

A − ΦRF+
B

)
,
(
ΦRF−

A

)
] = 0

35. [
(
ΦRF+

A + Φ−1RF−
B

)
,
(
ΦRF−

A

)
] = −2T (2)−2 −

√
2Φ2

(
iT (1)0 +

√
3T (2)0

)
36. [

(
ΦRF+

A − Φ−1RF−
B

)
,
(
ΦRF−

A

)
] = −2T (2)−2 −

√
2Φ2

(
iT (1)0 +

√
3T (2)0

)
37. [

(
Φ−1RF−

A + ΦRF+
B

)
,
(
ΦRF−

B

)
] = 2T (2)−2 −

√
2Φ2

(
iT (1)0 −

√
3T (2)0

)
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38. [
(
Φ−1RF−

A − ΦRF+
B

)
,
(
ΦRF−

B

)
] = 2T (2)−2 +

√
2Φ2

(
iT (1)0 −

√
3T (2)0

)
39. [

(
ΦRF+

A + Φ−1RF−
B

)
,
(
ΦRF−

B

)
] = 0

40. [
(
ΦRF+

A − Φ−1RF−
B

)
,
(
ΦRF−

B

)
] = 0

41. [
(
Φ−1RF−

A + ΦRF+
B

)
,
(
Φ−1RF−

A + ΦRF+
B

)
] = 0

42. [
(
Φ−1RF−

A − ΦRF+
B

)
,
(
Φ−1RF−

A + ΦRF+
B

)
] = 0

43. [
(
ΦRF+

A + Φ−1RF−
B

)
,
(
Φ−1RF−

A + ΦRF+
B

)
] = −2

(√
6 T (2)0 +

(
D̂S

))
44. [

(
ΦRF+

A − Φ−1RF−
B

)
,
(
Φ−1RF−

A + ΦRF+
B

)
] = 2

(
Iz −

(
D̂AS

))

45. [
(
Φ−1RF−

A + ΦRF+
B

)
,
(
Φ−1RF−

A − ΦRF+
B

)
] = 0

46. [
(
Φ−1RF−

A − ΦRF+
B

)
,
(
Φ−1RF−

A − ΦRF+
B

)
] = 0

47. [
(
ΦRF+

A + Φ−1RF−
B

)
,
(
Φ−1RF−

A − ΦRF+
B

)
] = 2

(
Iz +

(
D̂AS

))
48. [

(
ΦRF+

A − Φ−1RF−
B

)
,
(
Φ−1RF−

A − ΦRF+
B

)
] = −2

(√
6 T (2)0 −

(
D̂S

))

49. [
(
Φ−1RF−

A + ΦRF+
B

)
,
(
ΦRF+

A + Φ−1RF−
B

)
] = 2

(√
6 T (2)0 +

(
D̂S

))
50. [

(
Φ−1RF−

A − ΦRF+
B

)
,
(
ΦRF+

A + Φ−1RF−
B

)
] = −2

(
Iz +

(
D̂AS

))
51. [

(
ΦRF+

A + Φ−1RF−
B

)
,
(
ΦRF+

A + Φ−1RF−
B

)
] = 0

52. [
(
ΦRF+

A − Φ−1RF−
B

)
,
(
ΦRF+

A + Φ−1RF−
B

)
] = 0

53. [
(
Φ−1RF−

A + ΦRF+
B

)
,
(
ΦRF+

A − Φ−1RF−
B

)
] = −2

(
Iz −

(
D̂AS

))
54. [

(
Φ−1RF−

A − ΦRF+
B

)
,
(
ΦRF+

A − Φ−1RF−
B

)
] = 2

(√
6 T (2)0 −

(
D̂S

))
55. [

(
ΦRF+

A + Φ−1RF−
B

)
,
(
ΦRF+

A − Φ−1RF−
B

)
] = 0

56. [
(
ΦRF+

A − Φ−1RF−
B

)
,
(
ΦRF+

A − Φ−1RF−
B

)
] = 0
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B Derivation of Effective Hamiltonians based on
Average Hamiltonian Theory

To describe the effects of the pulse, the Hamiltonian employed in the Zeeman-
quadrupolar interaction frame is employed.

˜̃H(t) = ∆T (2)0

− ω1

2

{(
Φ1RF

+
A + Φ−1

1 RF−
B

)
e(

iωQt
/2) +

(
Φ−1

1 RF−
A + Φ1RF

+
B

)
e−(

iωQt
/2)
}
(B.1)

As described, the Hamiltonian in the Zeeman-quadrupolar frame is periodic with
time period ‘τc =

2π

(ωQ/2)
’. Employing the Magnus formula, a time-averaged effec-

tive Hamiltonian is derived to describe the excitation process.
To first order, the correction is evaluated using

H(1) =
1

tc

∫ tc

0

˜̃H(t)dt (B.2)

In the case of single crystal

H(1) = 0

while, for a powder sample

H(1) = ∆T (2)0

The second order correction to the effective Hamiltonian is derived using Eq. B.3

H(2) =
(−i)
2tc

∫ tc

0

dt2

∫ t2

0

dt1

[
˜̃H(t2),

˜̃H(t1)
]

(B.3)
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In the case of single crystal the II order correction reduces to,

H(2) = − ω2
1

ωQ

(√
6 T (2)0 + D̂S

)
0

while, in the powder sample, we have

H(2) = −
√

3

2
∆ω1

(
Φ1RF

+
A + Φ−1

1 RF−
B

)
− ω2

1

ωQ

(√
6 T (2)0 + D̂S

)
0

Based on the above calculations, it is clear that the AHT calculations are valid in
the case of single crystal (only strong coupling regime) and deviate significantly in
powder calculations.

C Matrix Representation of Floquet states and
Operators

The spin states are defined as |m⟩

|1⟩ =

1

0

0

 ; |0⟩ =

0

1

0

 ; |−1⟩ =

0

0

1


The Fourier states are defined as,

|−1⟩ =


1

0

0
...

 ; |0⟩ =


0

1

0
...

 ; |1⟩ =


0

0

1
...



Fm =
+∞∑

n=−∞

|n⟩ ⟨n+m| (C.1)
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IF =
+∞∑

n=−∞

n |n⟩ ⟨n| (C.2)

F1 = · · ·+ |−1⟩ ⟨0|+ |0⟩ ⟨1|+ . . .

= · · ·+



...
1

0

0

...


(
. . . 0 1 0 . . .

)
+



...
0

1

0

...


(
. . . 0 0 1 . . .

)
+ . . .

= · · ·+



. . . . . . . . . . . . . . .

. . . 0 1 0 . . .

. . . 0 0 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


+



. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 0 1 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


+ . . .

F1 =



. . . . . . . . . . . . . . .

. . . 0 1 0 . . .

. . . 0 0 1 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .



F−1 = · · ·+ |0⟩ ⟨−1|+ |1⟩ ⟨0|+ . . .

= · · ·+



...
0

1

0

...


(
. . . 1 0 0 . . .

)
+



...
0

0

1

...


(
. . . 0 1 0 . . .

)
+ . . .

= · · ·+



. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 1 0 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


+



. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 0 0 . . .

. . . 0 1 0 . . .

. . . . . . . . . . . .
. . .


+ . . .

F−1 =



. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 1 0 0 . . .

. . . 0 1 0 . . .

. . . . . . . . . . . .
. . .


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F0 = · · ·+ |−1⟩ ⟨−1|+ |0⟩ ⟨0|+ |1⟩ ⟨1|+ . . .

= · · ·+



...
1

0

0

...


(
. . . 1 0 0 . . .

)
+



...
0

1

0

...


(
. . . 0 1 0 . . .

)
+



...
0

0

1

...


(
. . . 0 0 1 . . .

)
+ . . .

= · · ·+



. . . . . . . . . . . . . . .

. . . 1 0 0 . . .

. . . 0 0 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


+



. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 1 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


+



. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 0 0 . . .

. . . 0 0 1 . . .

. . . . . . . . . . . .
. . .


+ . . .

F0 =



. . . . . . . . . . . . . . .

. . . 1 0 0 . . .

. . . 0 1 0 . . .

. . . 0 0 1 . . .

. . . . . . . . . . . .
. . .



IF = · · ·+ (−1) |−1⟩ ⟨−1|+ (0) |0⟩ ⟨0|+ (1) |1⟩ ⟨1|+ . . .

= · · ·+ (−1)



...
1

0

0

...


(
. . . 1 0 0 . . .

)
+ (0)



...
0

1

0

...


(
. . . 0 1 0 . . .

)
+ (1)



...
0

0

1

...


(
. . . 0 0 1 . . .

)
+ . . .

= · · ·+ (−1)



. . . . . . . . . . . . . . .

. . . 1 0 0 . . .

. . . 0 0 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


+ (0)



. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 1 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


+ (1)



. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 0 0 . . .

. . . 0 0 1 . . .

. . . . . . . . . . . .
. . .


+ . . .

IF =



. . . . . . . . . . . . . . .

. . . −1 0 0 . . .

. . . 0 0 0 . . .

. . . 0 0 1 . . .

. . . . . . . . . . . .
. . .



The Floquet states are defined as,
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Floquet state = Fourier state ⊗ Spin state

(Iz)n = Fn ⊗ Iz

For e.g.,

(Iz)1 = F1 ⊗ Iz =



. . . . . . . . . . . . . . .

. . . 0 1 0 . . .

. . . 0 0 1 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


⊗ Iz =



. . . . . . . . . . . . . . .

. . . 0 (Iz) 0 . . .

. . . 0 0 (Iz) . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .



=



. . . . . . . . . . . . . . .

. . . 0 1 0 . . .

. . . 0 0 1 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . .
. . .


⊗

1 0 0

0 0 0

0 0 −1



The above matrix equals to
PPPPPPPPP⟨α, n|

|β,m⟩
. . . . . . |1,−1⟩ |0,−1⟩ |−1,−1⟩ |1, 0⟩ |0, 0⟩ |−1, 0⟩ |1, 1⟩ |0, 1⟩ |−1, 1⟩ . . . . . .

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

... . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⟨1,−1| . . . . . . 0 0 0 1 0 0 0 0 0 . . . . . .

⟨0,−1| . . . . . . 0 0 0 0 0 0 0 0 0 . . . . . .

⟨−1,−1| . . . . . . 0 0 0 0 0 −1 0 0 0 . . . . . .

⟨1, 0| . . . . . . 0 0 0 0 0 0 1 0 0 . . . . . .

⟨0, 0| . . . . . . 0 0 0 0 0 0 0 0 0 . . . . . .

⟨−1, 0| . . . . . . 0 0 0 0 0 0 0 0 −1 . . . . . .

⟨1, 1| . . . . . . 0 0 0 0 0 0 0 0 0 . . . . . .

⟨0, 1| . . . . . . 0 0 0 0 0 0 0 0 0 . . . . . .

⟨−1, 1| . . . . . . 0 0 0 0 0 0 0 0 0 . . . . . .

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .
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The general form of the Hamiltonian is

H(t) =
∑
n

Hn
ij e

(inωt) (C.3)

where, ‘n’ is an integer, ‘ω’ is the base frequency and ‘Hn
ij’ is the Hamiltonian ma-

trix element with ‘ith’ row and ‘jth’ column (in Hilbert space) of the corresponding
integer ‘n’.
The Floquet Hamiltonian is written as

⟨α, n|HF |β,m⟩ = Hn−m
αβ + nωδαβδnm (C.4)

The above equation represents a ‘Floquet Hamiltonian’ (HF ) with ‘finite basis’
(α, β) in Hilbert space and ‘infinite coefficients’ (n,m) in Fourier dimension. Also,
‘α, β ∈ {−1, 0, 1}’ and ‘n,m ∈ {−∞,∞}’.
The commutation relations used are

[(Iα)m , IF ] = m (Iα)m ;
[
(Iα)m , (Iβ)n

]
= i (Iγ)m+n (C.5)

where, ‘α, β, γ ∈ {x, y, z}’ defined by [Ix, Iy] = iIz; [Iy, Iz] = iIx; [Iz, Ix] = iIy.
The Floquet Hamiltonian (HF ) of infinite dimension is elaborately written as
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D Derivation of Effective Floquet Hamiltonians
from ‘S2’ transformation

To improve the accuracy of the effective Hamiltonians, the role of residual off-
diagonal terms neglected in the first transformation is considered in the discussion
presented below. As depicted in Table. 2.9, the off-diagonal contributions com-
prises of the double-quantum (DQ) operators. To fold the above off-diagonal con-
tributions, a second transformation function ‘S2’ was employed. A brief description
of the procedure employed in the derivation of effective Floquet Hamiltonians from
the second transformation ‘S2’ is outlined below. The diagonal corrections from
the first transformation are included along ‘H0’ and the off-diagonal operators(
Φ±2

1 T (2)±2
)
±2

form the perturbation.

H0 = ω1IF + G
(1)
1R

(
D̂S

)
0
+G

(1)
2R

(
T (2)0

)
0

(D.1)

H1 = G
(1)
DR

{(
Φ2

1T
(2)2
)
+2

+
(
Φ−2

1 T (2)−2
)
−2

}
(D.2)

G
(1)
DR = +

(
ΩQ

4

){
1

3× 1!
(ξ)2 − 1

5× 3!
(ξ)4 +

1

7× 5!
(ξ)6 − . . .

}
(D.3)

Employing the transformation function ‘S2’,

S2 = C
(2)
DR′

{(
Φ2

1T
(2)2
)
+2

−
(
Φ−2

1 T (2)−2
)
−2

}
(D.4)

where,

C
(2)
DR′ = −i

 G
(1)
DR

2
(
G

(1)
1R − ω1

)
 (D.5)

C
(i+1)
DR =

n−1∑
i=1

C
(i+1)
DR′ (D.6)
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where ‘i’ takes values from 1 to ‘n− 1’, where ‘n’ is the number of ‘S’ transforma-
tions applied (Here n = 2).
In the above equation, the coefficients ‘G(1)

DR =
∑N1

i=0G
(1)
DR,i’ denote the off-diagonal

coefficients resulting from the first-transformation. Depending on the desired level
of accuracy, the off-diagonal contributions (denoted by value of N1) from the first-
transformation are incorporated accordingly.
The transformed Hamiltonian after second transformation is represented by,

H0 = ω1IF + G
(2)
1R (Iz)0 +G

(1)
2R

(
T (2)0

)
0

(D.7)

where,

G
(2)
1R = G

(1)
1R +

{
1

2× 0!
G

(2)
1R,A − 1

4× 2!
G

(2)
1R,B +

1

6× 4!
G

(2)
1R,C + . . .

}
(D.8)

The perturbed Hamiltonian after second transformation is represented by,

H1 = G
(2)
DR

{(
Φ2

1T
(2)2
)
+2

+
(
Φ−2

1 T (2)−2
)
−2

}
(D.9)

G
(2)
DR =

{
− 1

3× 1!
G

(2)
DR,A +

1

5× 3!
G

(2)
DR,B − 1

7× 5!
G

(2)
DR,C + . . .

}
(D.10)

In the above equation, the magnitude of ‘G(n)
DR’ keeps on decreasing as ‘n’ increases.

The choice of ‘n’ is problem specific and is decided by comparing with the exact
numerical simulations. After ‘n’ transformations the magnitude of ‘G(n)

DR’ becomes
small enough such that ‘H1’ can be neglected and the effective Hamiltonian reduces
to the form given below,

H0 = ω1IF + G
(n)
1R (Iz)0 +G

(1)
2R

(
T (2)0

)
0

(D.11)

The final equation depicting the DQ excitation efficiency is

⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR {sin (ξ2R) cos (ξ1R) + cos (ξ2R) sin (ξ1R) sin (2ξDR)}
(D.12)
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where,

ξDR = i C
(n)
DR ; ξ1R =

(
G

(n)
1R − ω1

)
tp1 ; ξ2R =

√
3

2
G

(1)
2R tp1

Table D.1: Definition of coefficients employed in the perturbing Hamiltonians for Case-III and
Case-IV

G
(1)
DR

Case-III
(N1 = 3) +

1

3× 1!

(
ΩQ

4

)
(ξ)2

Case-IV
(N1 > 3) +

(
ΩQ

4

){
1

3× 1!
(ξ)2

− 1

5× 3!
(ξ)4 +

1

7× 5!
(ξ)6 − ....

}

G
(2)
1R G

(2)
2R

Case-III
N1∑
i=0

G
(1)
1R,i +

2∑
j=1

G
(2)
1R,j G

(1)
2R =

ΩQ

2
√
6

Case-IV
N1∑
i=0

G
(1)
1R,i +

N2∑
j=1

G
(2)
1R,j G

(1)
2R

ξ =

(
ΩQ

4ω1

)
; C(θ) = cos (θ) ; S(θ) = sin (θ)

In the simulations, presented in Figure. 2.19, diagonal corrections to

• second order (Panels A1 → A4) resulting from the second transformation
‘S2’

• nth order (Panels B1 → B4) resulting from the second transformation ‘S2’

are compared with the exact numerical simulations. In all the simulations, off-
diagonal contributions (to nth order) resulting from the first transformation ‘S1’ is
incorporated.
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Hence, depending on the relative magnitudes of the quadrupolar frequency
(ωQ) and the amplitude of the pulse (ω1), the choice of appropriate interaction
frame plays an important role in the convergence of the perturbation corrections
in the proposed effective Hamiltonians. Below, we present a summary of the results
obtained.

Regime-I

H0 =
ωQ

2
IF + ℏ∆

(
T (2)0

)
0

Heff =
ωQ

2
IF +G

(n)
ZQ

(
T (2)0

)
0
+ G

(n)
DQ

(
D̂S

)
0

(D.13)⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR

{
cos2 (α) sin (θDQ)− sin2 (α) sin (β)

}
(D.14)

Regime-II

H0 = ω1IF +

(
ℏΩQ

2
√
6

)(
T (2)0

)
0

Heff = ω1IF + G
(n)
1R (Iz)0 +G

(1)
2R

(
T (2)0

)
0

(D.15)⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR {sin (ξ2R) cos (ξ1R) + cos (ξ2R) sin (ξ1R) sin (2ξDR)}
(D.16)
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E Derivation of higher order corrections (Regime-
I)

E.1 For first transformation S1

Table E.1.1: Description of the coefficients employed in the derivation of effective Hamiltonian
(Eq. 2.25) based on the first transformation

G
(1)
DQ G

(1)
ZQ

G
(1)
DQ,0 = 0 G

(1)
ZQ,0 = ∆

G
(1)
DQ,1 = 0 G

(1)
ZQ,1 = 0

G
(1)
DQ,2 = − 1

2× 0!

(ω1

2

)
(θ) G

(1)
ZQ,2 = −

√
6

2× 0!

(ω1

2

)
(θ)

G
(1)
DQ,3 = 0 G

(1)
ZQ,3 = 0

G
(1)
DQ,4 = +

1

4× 2!

(ω1

2

)
(θ)3 G

(1)
ZQ,4 = +

√
6

4× 2!

(ω1

2

)
(θ)3

G
(1)
DQ,5 = 0 G

(1)
ZQ,5 = 0

G
(1)
DQ,6 = − 1

6× 4!

(ω1

2

)
(θ)5 G

(1)
ZQ,6 = −

√
6

6× 4!

(ω1

2

)
(θ)5

G
(1)
DQ,7 = 0 G

(1)
ZQ,7 = 0

. .

. .

G
(1)
DQ =

(ω1

2

){
− 1

2× 0!
(θ) G

(1)
ZQ = ∆+

(ω1

2

)√
6

{
− 1

2× 0!
(θ)

+
1

4× 2!
(θ)3 − 1

6× 4!
(θ)5 + ....

}
+

1

4× 2!
(θ)3 − 1

6× 4!
(θ)5 + ....

}

θ =

(
4ω1

ΩQ

)
; C(θ) = cos (θ)
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Table E.1.2: Coefficients employed in the derivation of Effective Hamiltonians for Case-I and
Case-II

G
(1)
DQ G

(1)
ZQ

Case-I
(N1 = 2) − 1

2× 0!

(ω1

2

)
(θ) ∆−

√
6

2× 0!

(ω1

2

)
(θ)

Case-II
(N1 > 2)

(ω1

2

){
− 1

2× 0!
(θ) ∆ +

(ω1

2

)√
6

{
− 1

2× 0!
(θ)

+
1

4× 2!
(θ)3 − 1

6× 4!
(θ)5 + ....

}
+

1

4× 2!
(θ)3 − 1

6× 4!
(θ)5 + ....

}

θ =

(
4ω1

ΩQ

)
; C(θ) = cos (θ)
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E.2 For second transformation S2

Table E.2.1: Description of the coefficients employed in the perturbing Hamiltonian (Eq. 2.40)

G
(1)
SQ

G
(1)
SQ,0 = 0

G
(1)
SQ,1 = 0

G
(1)
SQ,2 = 0

G
(1)
SQ,3 =

1

3× 1!

(ω1

2

)
(θ)2

G
(1)
SQ,4 = 0

G
(1)
SQ,5 = − 1

5× 3!

(ω1

2

)
(θ)4

G
(1)
SQ,6 = 0

G
(1)
SQ,7 =

1

7× 5!

(ω1

2

)
(θ)6

.

.

G
(1)
SQ =

(ω1

2

){ 1

3× 1!
(θ)2

− 1

5× 3!
(θ)4 +

1

7× 5!
(θ)6 − ....

}

θ =

(
4ω1

ΩQ

)
; C(θ) = cos (θ) ; S(θ) = sin (θ)
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Table E.2.2: Description of the coefficients employed in the derivation of effective Hamiltonian
(Eq. 2.39) based on the second transformation

G
(2)
DQ G

(2)
ZQ G

(2)
SQ

G
(2)
DQ,0 = G

(1)
DQ G

(2)
ZQ,0 = G

(1)
ZQ G

(2)
SQ,0 = 0

G
(2)
DQ,1 = 0 G

(2)
ZQ,1 = 0 G

(2)
SQ,1 = 0

G
(2)
DQ,2 = +

1

2× 0!
G

(2)
DQ,A G

(2)
ZQ,2 = +

√
6

2× 0!
G

(2)
DQ,A G

(2)
SQ,2 = 0

G
(2)
DQ,3 = 0 G

(2)
ZQ,3 = 0 G

(2)
SQ,3 = +

1

3× 1!
G

(2)
SQ,A

G
(2)
DQ,4 = − 1

4× 2!
G

(2)
DQ,B G

(2)
ZQ,4 = −

√
6

4× 2!
G

(2)
DQ,B G

(2)
SQ,4 = 0

G
(2)
DQ,5 = 0 G

(2)
ZQ,5 = 0 G

(2)
SQ,5 = − 1

5× 3!
G

(2)
SQ,B

G
(2)
DQ,6 = +

1

6× 4!
G

(2)
DQ,C G

(2)
ZQ,6 = +

√
6

6× 4!
G

(2)
DQ,C G

(2)
SQ,6 = 0

G
(2)
DQ,7 = 0 G

(2)
ZQ,7 = 0 G

(2)
SQ,7 = +

1

7× 5!
G

(2)
SQ,C

. . .

. . .

G
(2)
DQ = G

(1)
DQ +

{
1

2× 0!
G

(2)
DQ,A G

(2)
ZQ = G

(1)
ZQ +

√
6

{
1

2× 0!
G

(2)
DQ,A G

(2)
SQ =

{
1

3× 1!
G

(2)
SQ,A

− 1

4× 2!
G

(2)
DQ,B +

1

6× 4!
G

(2)
DQ,C + ....

}
− 1

4× 2!
G

(2)
DQ,B +

1

6× 4!
G

(2)
DQ,C + ....

}
− 1

5× 3!
G

(2)
SQ,B +

1

7× 5!
G

(2)
SQ,C + ....

}

θ =

(
4ω1

ΩQ

)
; C(θ) = cos (θ)
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F Derivation of higher order corrections (Regime-
II)

F.1 For first transformation S1

Table F.1.1: Definition of the coefficients employed in the derivation of effective Hamiltonian
(Eq. 2.57) based on first transformation

G
(1)
1R G

(1)
2R

G
(1)
1R,0 = 0 G

(1)
2R,0 =

ΩQ

2
√
6

G
(1)
1R,1 = 0 G

(1)
2R,1 = 0

G
(1)
1R,2 =

1

2× 0!

(
−ΩQ

4

)
(ξ) G

(1)
2R,2 = 0

G
(1)
1R,3 = 0 G

(1)
2R,3 = 0

G
(1)
1R,4 =

1

4× 2!

(
ΩQ

4

)
(ξ)3 G

(1)
2R,4 = 0

G
(1)
1R,5 = 0 G

(1)
2R,5 = 0

G
(1)
1R,6 =

1

6× 4!

(
−ΩQ

4

)
(ξ)5 G

(1)
2R,6 = 0

G
(1)
1R,7 = 0 G

(1)
2R,7 = 0

. .

. .

G
(1)
1R =

(
−ΩQ

4

){
+

1

2× 0!
(ξ)− 1

4× 2!
(ξ)3 +

1

6× 4!
(ξ)5 + ....

}
G

(1)
2R =

ΩQ

2
√
6

ξ =

(
ΩQ

4ω1

)
; C(ξ) = cos (ξ)

Table F.1.2: Coefficients employed in the derivation of Effective Hamiltonians for Case-I and
Case-II

G
(1)
1R G

(1)
2R

Case-I
(N1 = 2) − 1

2× 0!

(
ΩQ

4

)
(ξ)

ΩQ

2
√
6

Case-II
(N1 > 2)

(
−ΩQ

4

){
+

1

2× 0!
(ξ)− 1

4× 2!
(ξ)3 +

1

6× 4!
(ξ)5 + ....

}
ΩQ

2
√
6

ξ =

(
ΩQ

4ω1

)
; C(θ) = cos (θ)
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F.2 For second transformation S2

Table F.2.1: Description of the coefficients employed in the perturbing Hamiltonian (Eq. D.2)
G

(1)
DR

G
(1)
DR,0 = 0

G
(1)
DR,1 = 0

G
(1)
DR,2 = 0

G
(1)
DR,3 =

1

3× 1!

(
ΩQ

4

)
(ξ)2

G
(1)
DR,4 = 0

G
(1)
DR,5 = − 1

5× 3!

(
ΩQ

4

)
(ξ)4

G
(1)
DR,6 = 0

G
(1)
DR,7 =

1

7× 5!

(
ΩQ

4

)
(ξ)6

.

.

G
(1)
DR = +

(
ΩQ

4

){
1

3× 1!
(ξ)2 − 1

5× 3!
(ξ)4 +

1

7× 5!
(ξ)6 − ....

}

ξ =

(
ΩQ

4ω1

)
; C(ξ) = cos (ξ)
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Table F.2.2: Description of the coefficients employed in the derivation of effective Hamiltonian
(Eq. D.1) based on the first transformation
G

(2)
1R G

(2)
DR

G
(2)
1R,0 = G

(1)
1R G

(2)
DR,0 = 0

G
(2)
1R,1 = 0 G

(2)
DR,1 = 0

G
(2)
1R,2 = +

1

2× 0!
G

(2)
1R,A G

(2)
DR,2 = 0

G
(2)
1R,3 = 0 G

(2)
SQ,3 = − 1

3× 1!
G

(2)
DR,A

G
(2)
1R,4 = − 1

4× 2!
G

(2)
1R,B G

(2)
DR,4 = 0

G
(2)
1R,5 = 0 G

(2)
SQ,5 = +

1

5× 3!
G

(2)
DR,B

G
(2)
1R,6 = +

1

6× 4!
G

(2)
1R,C G

(2)
DR,6 = 0

G
(2)
1R,7 = 0 G

(2)
SQ,7 = − 1

7× 5!
G

(2)
DR,C

. .

. .

G
(2)
DQ = G

(1)
DQ +

{
1

2× 0!
G

(2)
1R,A G

(2)
DR =

{
− 1

3× 1!
G

(2)
DR,A

− 1

4× 2!
G

(2)
1R,B +

1

6× 4!
G

(2)
1R,C + ....

}
+

1

5× 3!
G

(2)
DR,B − 1

7× 5!
G

(2)
DR,C + ....

}

ξ =

(
ΩQ

4ω1

)
; C(θ) = cos (θ)
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Chapter 3

Effective Hamiltonians forTriple
Quantum excitation in spin I = 3/2

3.1 Introduction

To further validate the effective Floquet Hamiltonian approach proposed in Chapter-
2, we extend the present study for describing NMR experiments involving half-
integral quadrupolar nuclear spins. Specifically, we confine our discussion to spin
I = 3/2 systems. Although, ‘7Li’ and ‘23Na’ are the most commonly studied spin
‘I = 3/2’ systems, the disparate order of magnitudes in their quadrupolar coupling
constants necessitates different experimental strategies for detecting them. For
example, the quadrupolar coupling constant in solids for 7Li nucleus ranges from
1 to 50 kHz, while, for 23Na it ranges from 0.5 to 5 MHz1. Since, the amplitude of
the RF pulse ranges from 10− 200 kHz, the optimum conditions of the excitation
may vary and deserves a formal theoretical discussion. Here in this chapter we
confine our discussion to the excitation of TQ transitions in spin I = 3/2 systems
both in isotropic and anisotropic solids. Specifically, we focus our attention to
the single-pulse based excitation of Triple-quantum (TQ) transitions in spin I=3/2

nucleus.
As described in Figure. 3.1, in the presence of a static external magnetic field
(of strength B0) the frequencies corresponding to the three Single-Quantum (SQ)
transitions (corresponding to |3/2⟩ → |1/2⟩ , |1/2⟩ → |−1/2⟩ , |−1/2⟩ → |−3/2⟩) are de-
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generate, resulting in a single peak. In the presence of quadrupolar interactions
(to first order only) the degeneracy associated with the three SQ transitions is
lifted resulting in three peaks (see Fig. 3.1).

   

Htot = −ω0Iz
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!−
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6
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Figure 3.1: Energy level diagram of Spin I=3/2 depicting the energy shifts due to Zeeman Hamil-
tonian and the first order quadrupolar Hamiltonian is presented. In the equation of the Hamil-
tonain (ℏ = 1). It is to be noted that the degeneracy of Zeeman NMR signal is lifted due to
the presence of electric field gradient due to the quadrupolar Hamiltonian. The Triple Quantum
(TQ) transition independent of first order quadrupolar coupling constant is also shown.

As depicted in Figure. 3.1, the SQ transitions corresponding to the states |1/2⟩ →
|−1/2⟩ is independent of the quadrupolar interaction (first order) and is commonly
referred to as the ‘Central Transition’ (CT) in half-integral quadrupolar spins. The
remaining two SQ transitions corresponding to the two pairs of states (|3/2⟩ → |1/2⟩
and |−1/2⟩ → |−3/2⟩) are referred to as satellite transitions and are dependent on
the first-order quadrupolar interactions.
In a powder sample, the quadrupolar interaction is anisotropic resulting in a dis-
tribution of quadrupolar coupling constants. Consequently, the NMR peaks cor-
responding to the two SQ transitions are broadened compromising the spectral
resolution. Hence, detection of the central transitions is preferred in NMR studies
involving half integral quadrupolar spins. As an alternative, detection of Triple-
Quantum (TQ) transitions (|3/2⟩ → |−3/2⟩) is also explored in studies involving
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spin 3/2 nuclei. Although, both the central and the TQ transitions are indepen-
dent of the first-order quadrupolar interactions, the higher resolution offered in
the MQ domain makes TQ excitation an attractive option for studying systems
involving multiple sites. Since TQ transitions are forbidden, a formal understand-
ing of the excitation process is essential for developing new experimental strategies
and quantifying experimental data involving spin I = 3/2 nuclei.
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Figure 3.2: Simulations depicting the efficiency of triple quantum (TQ) excitation in spin I=3/2
(single crystal) derived from analytic2 (green dotted lines) and numerical (black thick lines)
methods.In the simulations depicted, the quadrupole coupling constant (CQ = ωQ/π) is varied
A1) CQ = 2 MHz, A2) CQ = 1 MHz, A3) CQ = 500 kHz, A4) CQ = 200 kHz, employing an
excitation pulse of constant RF amplitude, (ω1/2π) = 100 kHz.

To this end, Vega and Naor2 proposed a theoretical framework for describing MQ
transitions in spin I=3/2 system. Employing the fictitious spin operator algebra3,4,
analytic expression describing the excitation of triple-quantum (TQ) transitions
in single crystal was proposed in 1980. A brief illustration of the dependence of
the excitation profile on the quadrupolar coupling constants (CQ) is presented in
Figure. 3.2 along with a comparison of their analytic results with exact numerical
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simulations emerging from SIMPSON5–7. As depicted, the simulations emerging
from their analytic results agree only in the strong coupling regime (CQ > (ω1/2π))
and deviate when the magnitude of the quadrupolar constant approaches to that
of the amplitude of the RF pulse. In contrast to the simulations presented in
the spin I = 1 studies (Chapter 2), significant derivations are observed even for
quadrupolar coupling constants, CQ = 500 kHz (see Panel A3).
To address this discrepancy, the effective Floquet Hamiltonians framework pre-
sented in Chapter-2 is employed to explain the TQ excitation in isotropic and
anisotropic solids.

3.2 Theory and Simulations

The Hamiltonian in the laboratory frame is transformed into the Zeeman interac-
tion frame (U1 = e−(iω0t)Iz) ,

Hlab(t) = −ℏω0Iz︸ ︷︷ ︸
Hz

−2ℏω1 cos(ωt− ϕ1) Ix︸ ︷︷ ︸
HRF

−ℏΩQT
(2)0︸ ︷︷ ︸

HQ

(3.1)

H̃(t) = U1 Hlab(t) U
−1
1 = e−(iω0t)Iz Hlab(t) e

(iω0t)Iz

= −ℏω1

(
i

√
5

2

){(
ei(ω−ω0)t + e−i(ω+ω0)t

)
Φ1T

(1)1

−
(
ei(ω+ω0)t + e−i(ω−ω0)t

)
Φ−1

1 T (1)−1
}
− ℏΩQT

(2)0 (3.2)

Following description in Chapter-2, under secular approximation and the resonance
condition ω = ω0, the Hamiltonian in the zeeman interaction frame reduces to a
much simpler form.

H̃ = −ℏω1

(√
5

2

){
Φ1iT

(1)1 − Φ−1
1 iT (1)−1

}
− ℏΩQT

(2)0 (3.3)

The definition of the coefficients in the above Hamiltonian is identical to those
employed in Chapter-2 (ΩQ = ωQ for single crystal, and ΩQ = ω

(αβγ)
Q for powder
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sample).

3.2.1 TQ excitation in Single Crystal (ΩQ = ωQ)

Regime-I: Strong coupling (ωQ >> ω1)

When the magnitude of the quadrupolar coupling constant exceeds the amplitude
of the pulse, ‘ω1’, the Hamiltonian in the Zeeman interaction frame8 (Eq. 3.2) is
further transformed into the quadrupolar interaction frame, defined by the trans-
formation operator U2 = e−(iωQt)T (2)0 .

˜̃H(t) = U2 H̃(t) U−1
2 = e−(iωQt)T (2)0

H̃(t) e(iωQt)T (2)0 (3.4)

= ˜̃HQ + ˜̃HRF (t) (3.5)

Accordingly, the quadrupolar and the RF Hamiltonian get transformed in the
Zeeman-Quadrupolar interaction frame.

˜̃HQ = ℏ∆T (2)0 (3.6)

˜̃HRF (t) =− ℏω1

(
Φ1

(
i

√
2

5
T (1)1 + i

√
3

5
T (3)1

)

+Φ−1
1

(
−i
√

2

5
T (1)−1 − i

√
3

5
T (3)−1

) )

− ℏω1

2

{(
Φ1

(
i

3√
10

T (1)1 +

√
3

2
T (2)1 − i

√
3

5
T (3)1

)
eiωQt

+Φ−1
1

(
−i 3√

10
T (1)−1 +

√
3

2
T (2)−1 + i

√
3

5
T (3)−1

)
eiωQt

)

+

(
Φ−1

1

(
−i 3√

10
T (1)−1 −

√
3

2
T (2)−1 + i

√
3

5
T (3)−1

)
e−iωQt

+Φ1

(
i

3√
10

T (1)1 −
√

3

2
T (2)1 − i

√
3

5
T (3)1

)
e−iωQt

)}
(3.7)
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Figure 3.3: Schematic depiction of transitions along with operators for a spin I=3/2 system

In contrast to the I = 1 system, the Hamiltonian depicting the RF pulse in half
integral quadrupolar spins comprises of a static term (associated with the central
transition) besides the two time-dependent terms (associated with the satellite
transitions).
Analogous, to the description in spin I = 1 system, the RF Hamiltonian in the
Zeeman-Quadrupolar interaction frame is expressed in-terms of operators depicting
the possible transitions in the spin I = 3/2 systems. A detailed description, of the
operators and their relationship with the spherical tensor operators is illustrated
in Tables.3.1 and 3.2. Along with the quadrupolar offset term (∆ = ωQ − ω

(αβγ)
Q ),

the Hamiltonians describing the RF pulse is represented by,

Hpulse(t) =
˜̃HQ,off +

˜̃HCT + ˜̃HST (t) (3.8)

where,

˜̃HQ,off = ℏ∆T (2)0 (3.9)
˜̃HCT = −ℏω1

(
ĈT S

)
(3.10)

˜̃HST (t) = −ℏω1

2

{(
ŜQ

(cr)

S

)
eiωQt +

(
ŜQ

(r)

S

)
e−iωQt

}
(3.11)

In the above equation, ‘ ˜̃HCT ’ represents the Hamiltonian depicting the central
transition, while the satellite transitions are represented by ‘ ˜̃HST (t)’
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Table 3.1: Definition of the spin operators corresponding to the possible transitions in a spin
I = 3/2 system

Operator Tensoral Operators Frequency
Zero Coherence Operators

ZQA
i√
5

(
T (1)0 − 2T (3)0

)
ZQB

i√
5

(
2T (1)0 + T (3)0

)
ZQC

i√
5

(
T (1)0 + 3T (3)0

)
ZQD

i√
5

(
3T (1)0 − T (3)0

)
+1 Coherence Operators

RF+
A i

3√
10

T (1)1 +

√
3

2
T (2)1 − i

√
3

5
T (3)1 ω = ω0 − ωQ

RF+
B i

3√
10

T (1)1 −
√

3

2
T (2)1 − i

√
3

5
T (3)1 ω = ω0 + ωQ

RF+
C i

√
2

5
T (1)1 + i

√
3

5
T (3)1 ω = ω0

-1 Coherence Operators

RF−
A −i 3√

10
T (1)−1 −

√
3

2
T (2)−1 + i

√
3

5
T (3)−1 ω = ω0 − ωQ

RF−
B −i 3√

10
T (1)−1 +

√
3

2
T (2)−1 + i

√
3

5
T (3)−1 ω = ω0 + ωQ

RF−
C −i

√
2

5
T (1)−1 − i

√
3

5
T (3)−1 ω = ω0

+2 Coherence Operators

D+
1 T (2)2 + i T (3)2 ω = 2ω0 + ωQ

D+
2 T (2)2 − i T (3)2 ω = 2ω0 − ωQ

-2 Coherence Operators

D−
1 T (2)−2 − i T (3)−2 ω = 2ω0 − ωQ

D−
2 T (2)−2 + i T (3)−2 ω = 2ω0 + ωQ

+3 Coherence Operators

T+ T (3)3 ω = 3ω0

-3 Coherence Operators

T− T (3)−3 ω = 3ω0
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Table 3.2: Symmetric and Anti-symmetric combination of spin operators employed in spin
I = 3/2 system

Operator Combination Operator Combination

ĈT S

(
Φ1RF

+
C + Φ−1

1 RF−
C

)
ĈTAS

(
Φ1RF

+
C − Φ−1

1 RF−
C

)
ŜQ

(r)

S

(
Φ−1

1 RF−
A + Φ1RF

+
B

)
ŜQ

(r)

AS

(
Φ−1

1 RF−
A − Φ1RF

+
B

)
ŜQ

(cr)

S

(
Φ1RF

+
A + Φ−1

1 RF−
B

)
ŜQ

(cr)

AS

(
Φ1RF

+
A − Φ−1

1 RF−
B

)
D̂

(r)
S

(
Φ2

1D
+
1 + Φ−2

1 D−
1

)
D̂

(r)
AS

(
Φ2

1D
+
1 − Φ−2

1 D−
1

)
D̂

(cr)
S

(
Φ2

1D
+
2 + Φ−2

1 D−
2

)
D̂

(cr)
AS

(
Φ2

1D
+
2 − Φ−2

1 D−
2

)
T̂S

(
Φ3

1T
+ + Φ−3

1 T−) T̂AS

(
Φ3

1T
+ − Φ−3

1 T−)

Following the procedure described in Chapter-2, the above time-dependent
Hamiltonian is transformed into a time-independent Floquet Hamiltonian8–16.

HF = ωQIF + ℏ∆
(
T (2)0

)
0
− ℏω1

(
ĈT S

)
0
− ℏω1

2

{(
ŜQ

(cr)

S

)
−1

+
(
ŜQ

(r)

S

)
+1

}
(3.12)

In contrast to the spin I = 1 description, the modulation frequency in the spin
I = 3/2 differs (equals to ωQ) and could be deduced from the energy level diagram
depicted in Figure.3.1.
To facilitate the derivation of effective Hamiltonians, the Floquet Hamiltonian
(Eq.3.12) is re-expressed interms of zero-order (H0) and perturbing Hamiltonian
(H1).

HF = H0 +H1 (3.13)

H0 = ωQIF + ℏ∆
(
T (2)0

)
0

(3.14)

The perturbing Hamiltonian in the present study comprises of both diagonal and
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off-diagonal terms.

H1 = H1,d +H1,od

H1,d = −ω1

(
ĈT S

)
0
; H1,od = −ω1

2

{(
ŜQ

(r)

S

)
+1

+
(
ŜQ

(cr)

S

)
−1

}
(3.15)

Such a choice of grouping of the spin Hamiltonians is problem specific and its
validity could only be verified through a comparison with exact numerical simula-
tions. The above classification is equally valid for all half-integral quadrupolar sys-
tems. Employing the transformation function ‘S1’17–20, the original untransformed
Floquet Hamiltonian (Eq. 3.12) is transformed through a unitary transformation
illustrated below.

Heff = eiλS1 HF e−iλS1 (3.16)

S1 = C
(1)
SQ

{(
ŜQ

(r)

S

)
+1

−
(
ŜQ

(cr)

S

)
−1

}
(3.17)

where,

C
(1)
SQ = −i

(
ω1

2ΩQ

)
(3.18)

To first-order, the effective Hamiltonian comprises of only ‘H1,d’

H
(1)
1 = −ω1

(
ĈT S

)
0

(3.19)

Subsequently, through Baker-Campbell-Hausdorff (BCH) expansion21, the higher-
order corrections to the effective Hamiltonian are derived. In the notation, ‘H(1)

n ’
represents the nth order corrections obtained from the first transformation, ‘S1’.
In the present problem, the higher order corrections mainly arise from commutator
expressions involving the transformation function ‘S1’ and the perturbing Hamil-
tonian (‘H1,d’ and ‘H1,od’). The commutator of the transformation function ‘S1’
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with ‘H1,d’ to various orders could be derived through the expression.

H
(1)
n,d =

∞∑
n=1

(i)n−1

(n− 1)!

[S1, ............... [S1︸ ︷︷ ︸
n−1

, H1,d ] ...............]

 (3.20)

In a similar vein, the commutator of ‘S1’ with ‘H1,od’ is derived through the general
expression given below

H
(1)
n,od =

∞∑
n=2

(i)n−1

n× (n− 2)!

[S1, ............... [S1︸ ︷︷ ︸
n−1

, H1,od ] ...............]

 (3.21)

A detailed description of the commutator relations involving the transformation
function ‘S1’ and ‘H1’ to various orders of ‘λ’ are tabulated in Table 3.3 and 3.4.
To illustrate the importance of the perturbation corrections, a systematic study
similar to the one described in Chapter-2 was carried out to understand the role
of these terms in the TQ excitation process. As illustrated in Tables. 3.3, 3.4,
the higher order contributions mainly arise from the (diagonal arising from ZQ
(T (2)0), CT

(
ĈT S

)
and TQ

(
T̂AS

)
) and off-diagonal (from SQ

(
ŜQ

(r,cr)

S

)
±1

and

DQ
(
D̂

(r,cr)
S

)
±1

) operators. A pedagogical description illustrating the role of the
higher order corrections is discussed in the following sections.
I. Effective Hamiltonians from first transformation, ‘S1’

To begin with, let the general form of the effective Hamiltonian (comprising of
diagonal corrections only) resulting from a single transformation be represented
by,

Heff = eiλS1 HF e−iλS1

= ωQIF +G
(1)
CT

(
ĈT S

)
0
+ i G

(1)
TQ

(
T̂AS

)
0
+G

(1)
ZQ

(
T (2)0

)
0

(3.22)

In the above equation, ‘G(1)
CT ’ denotes the coefficients (obtained from the first trans-

formation, denoted by the superscript) corresponding to the central transition op-
erator. The contributions from the various higher orders (N1 denotes the desired
order, power of λ) are included in G

(1)
CT .
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In a similar vein, ‘G(1)
TQ’ represents the corrections corresponding to the TQ

operator, while ‘G(1)
ZQ’ denotes the corrections to the second rank ZQ operator. A

detailed description of the coefficients illustrating the contributions from various
orders is listed in Appendix.B.1 (Table.B.1.2)

G
(1)
CT =

N1∑
i=0

G
(1)
CT,i ; G

(1)
TQ =

N1∑
i=0

G
(1)
TQ,i ; G

(1)
ZQ =

N1∑
i=0

G
(1)
ZQ,i

G
(1)
CT = −

(ω1

2

){
C(θ) + 1

}
; (3.23)

G
(1)
TQ = −

(ω1

2

){
C(θ) − 1

}
; (3.24)

G
(1)
ZQ = ∆+ (ΩQ)

{
− 1

2× 0!
(θ)2 +

1

4× 2!
(θ)4 − 1

6× 4!
(θ)6 + ....

}
(3.25)

To have a consistent description, the initial density operator (ρF (0) = (Iz)0) along
with the detection operator ‘T (3)−3,’ (corresponding to TQ transition) is trans-
formed by the transformation function ‘S1.’ The transformed initial density oper-
ator and the detection operators are illustrated below.

ρ̃F (0) = eiλS1 ρF (0) e
−iλS1

= R
(1)
Iz (Iz)0 +R

(1)
ZQA (ZQA)0 +R

(1)
SQ S(θ)

{(
ŜQ

(r)

AS

)
+1

+
(
ŜQ

(cr)

AS

)
−1

}
(3.26)

T̃
(3)−3
F = eiλS1 T

(3)−3
F e−iλS1

= e3iω0t2 ΦR

{
P

(1)
TQ

(
T (3)−3

)
0
+ P

(1)
CT

(
Φ2

1RF
−
C

)
0

+P
(1)
DQ

{(
Φ1D

−
1

)
+1

+
(
Φ1D

−
2

)
−1

}}
(3.27)

A detailed description of the ‘R’ and ‘P’ coefficients are illustrated in Table. B.1.1.
Subsequently, employing the proposed effective Floquet Hamiltonian (Eq. 3.22),
the evolution of the density operator during pulse is evaluated.

ρ̃F (tp1) = exp

(
−iHeff tp1

ℏ

)
ρ̃F (0) exp

(
iHeff tp1

ℏ

)
(3.28)
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A detailed description of this calculation along with coefficients is illustrated in
Appendix.B.1. Based on the above calculations, the TQ signal observed is calcu-
lated using the expression given below.

⟨
T (3)−3(tp1)

⟩
= Tr

[
ρF (tp1).T

(3)−3
F

]
= −3

2

(
Φ3

1ΦR

)
sin
(
3ω3

1tp1
2Ω2

Q

)
(3.29)

As represented in Tables. 3.3, and 3.4, the diagonal corrections to odd-orders re-
sult from cross-terms between the SQ (satellite) and DQ transitions operators and
are expressed in terms of the central (CT) and triple quantum (TQ) operators. In
a similar vein, the diagonal corrections to even order results from cross terms be-
tween the SQ satellite transition operators and are represented through the ‘T (2)0’
operator.To illustrate the role of the higher order corrections in the exactness of
the proposed approach, a systematic study incorporating their contributions is
discussed below.
In Figure.3.4, the TQ excitation in spin I = 3/2 is depicted for quadrupolar cou-
pling constants ranging from 2 MHz - 200 kHz. Along the first row (panels A1 →
A4) diagonal corrections to order λ2 have been incorporated, while, diagonal cor-
rections to nth order have been included in the simulations depicted in the second
row (Panels B1 → B4).
As depicted, when the magnitude of the quadrupolar frequecy (ωQ) largely exceeds
the amplitude of the RF pulse, the analytic simulations are in excellent agreement
with those obtained from SIMPSON. In the extreme strong coupling limit, the TQ
signal in Eq. B.1.9 reduces to the familiar form proposed by Vega and Naor2.

⟨
T (3)−3(tp1)

⟩
= −3

2
sin
(
3ω3

1tp1
2Ω2

Q

)
(3.30)

However, with decreasing magnitudes of the quadrupolar frequency, the discrep-
ancy between the analytic and numerical simulations increases and is maximum
when the magnitude of the quadrupolar frequency is equal to the RF amplitude.



3.2. THEORY AND SIMULATIONS 105

0
50

10
0

15
0

20
0

25
0

-1
.5-1

-0
.50

0
50

10
0

15
0

20
0

25
0

-1
.5-1

-0
.50   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 (
A

1)

0
50

10
0

15
0

20
0

25
0

-101 0
50

10
0

15
0

20
0

25
0

-101   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 (

A
2)

0
50

10
0

-101 0
50

10
0

-101   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  (

A
3)

0
25

50

-101 0
50

-101   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 (

A
4)

0
50

10
0

15
0

20
0

25
0

-1
.5-1

-0
.50

0
50

10
0

15
0

20
0

25
0

-1
.5-1

-0
.50   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  (
B

1)

0
50

10
0

15
0

20
0

25
0

-101 0
50

10
0

15
0

20
0

25
0

-101   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 (

B
2)

0
50

10
0

-101 0
50

10
0

-101   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  (

B
3)

0
25

50

-101 0
50

-101   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 (

B
4)

T
im

e 
(µ

se
c)

TQ expectation value

Fi
gu

re
3.

4:
C

om
pa

ris
on

of
nu

m
er

ic
al

(b
la

ck
th

ic
k

lin
e)

an
d

an
al

yt
ic

sim
ul

at
io

ns
(r

ed
do

ts
)

ba
se

d
on

eff
ec

tiv
e

H
am

ilt
on

ia
ns

de
riv

ed
fr

om
a

sin
gl

e
tr

an
sf

or
m

at
io

n
co

m
pr

isi
ng

of
di

ag
on

al
co

rr
ec

tio
ns

to
or

de
r
λ
3
(N

1
=

3
)

(f
ro

m
Pa

ne
ls

A
1
→

A
4)

an
d

to
th

e
or

de
r
λ
n
(N

1
>

3
)

(f
ro

m
Pa

ne
ls

B
1
→

B
4)

.
In

th
e

sim
ul

at
io

ns
de

pi
ct

ed
,t

he
qu

ad
ru

po
le

co
up

lin
g

co
ns

ta
nt

(C
Q
=

ω
Q
/ π

)
is

va
rie

d
A

1,
B

1)
C

Q
=

2
M

H
z,

A
2,

B
2)

C
Q

=
1

M
H

z,
A

3,
B

3)
C

Q
=

5
0
0

kH
z,

A
4,

B
4)

C
Q

=
2
0
0

kH
z,

em
pl

oy
in

g
an

ex
ci

ta
tio

n
pu

lse
of

co
ns

ta
nt

R
F

am
pl

itu
de

,
(ω

1
/ 2

π
)
=

10
0

kH
z.

T
he

sim
ul

at
io

ns
co

rr
es

po
nd

to
a

sin
gl

e
cr

ys
ta

l.



3.2. THEORY AND SIMULATIONS 106

To address this aspect, effective Hamiltonians comprising of diagonal contribu-
tions to (nth order) were employed in the simulations depicted in the second row
(Panels B1 → B4) Figure. 3.4. As depicted, the discrepancy still prevails in pan-
els A3 and A4, despite the inclusion of higher order diagonal corrections. Hence,
the residual off-diagonal terms ignored from the first transformation could play an
important role in the excitation process.
II. Effective Hamiltonians from second transformation, ‘S2’

To resolve the discrepancy observed in the analytic simulations, the role of resid-
ual off-diagonal terms neglected in the first transformation were considered in the
calculations. As depicted in Tables. 3.3 and 3.4, the off-diagonal contributions
comprise of the double-quantum (DQ) and single-quantum (SQ) satellite transi-
tions operators. To fold the off-diagonal contributions, a second transformation
function ‘S2’ is employed. The diagonal corrections from the first transformation

are included along ‘H0’, while, the off-diagonal operators
((

ŜQ
)
±1
and

(
D̂
)
±1

)
forms the perturbation H1.

H0 = ωQIF +G
(1)
CT

(
ĈT S

)
0
+ i G

(1)
TQ

(
T̂AS

)
0
+G

(1)
ZQ

(
T (2)0

)
0

(3.31)

H1 = G
(1)
SQ

{(
ŜQ

(r)

S

)
+1

+
(
ŜQ

(cr)

S

)
−1

}
+G

(1)
DQ

{(
D̂

(r)
S

)
+1

+
(
D̂

(cr)
S

)
−1

}
(3.32)

As depicted in Tables. 3.3 and 3.4, the coefficient of ‘G(1)
SQ’ corresponding to the

operators
{(

ŜQ
(r,cr)

S

)
±1

}
results from ‘odd-order’ terms depicted in Table. 3.4

(commutator between S1 and H1,od; [S1, H1,od] ). In a similar vein, the coefficient of

‘G(1)
DQ’ corresponding to the

{(
D̂

(r,cr)
S

)
±1

}
operator results from the ‘even-order’

terms depicted in Table. 3.3 (commutator between S1 and H1,d; [S1, H1,d] ).
Depending on the desired level of accuracy, the off-diagonal contributions (denoted
by the value of ‘N1’) to the above operators cound be incorporated based on
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Tables.3.3 and 3.4.

G
(1)
SQ =

N1∑
i=0

G
(1)
SQ,i = +

(ω1

2

){ 1

3× 1!
(θ)2 − 1

5× 3!
(θ)4 +

1

7× 5!
(θ)6 − ....

}
(3.33)

G
(1)
DQ =

N1∑
i=0

G
(1)
DQ,i = −

(
ω1

2
√
2

)
S(θ) (3.34)

Employing the transformation function ‘S2’, the off-diagonal term in H1 (Eq. 3.32)
are folded

S2 = C
(2)
SQ′

{(
ŜQ

(r)

S

)
+1

−
(
ŜQ

(cr)

S

)
−1

}
+ C

(2)
DQ′

{(
D̂

(r)
S

)
+1

−
(
D̂

(cr)
S

)
−1

}
(3.35)

C
(2)
SQ′ =

i√
3


√
2 G

(1)
DQ

(
G

(1)
CT +G

(1)
TQ

)
+
√
3 G

(1)
SQ

(
G

(1)
ZQ − ωQ

)
(
G

(1)
CT +G

(1)
TQ

)2
−
(
G

(1)
ZQ − ωQ

)2


C
(2)
DQ′ =

i√
2


√
3 G

(1)
SQ

(
G

(1)
CT +G

(1)
TQ

)
+
√
2 G

(1)
DQ

(
G

(1)
ZQ − ωQ

)
(
G

(1)
CT +G

(1)
TQ

)2
−
(
G

(1)
ZQ − ωQ

)2
 (3.36)

C
(i+1)
SQ =

n−1∑
i=1

C
(i+1)
SQ′ ; C

(i+1)
DQ =

n−1∑
i=1

C
(i+1)
DQ′ (3.37)

In Eq. 3.37, ‘i’ takes values from 1 to ‘n − 1’, where ‘n’ is the number of ‘S’
transformations applied (Here n = 2).
A general expression illustrating the various contributions could be derived using
the general expression presented below.

H(2)
n =

∞∑
n=2

(i)n−1

n× (n− 2)!

[S2, ............... [S2︸ ︷︷ ︸
n−1

, H1 ] ...............]

 (3.38)
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T

S

) 0
+
i
G

(1
)

T
Q

( T̂
A
S

) 0
+
G

(1
)

Z
Q

( T(2)
0
) 0

Io
rd

er
(λ

1
)

H
(2
)

1
=

0

II
or

de
r
(λ

2
)

H
(2
)

2
=

i

2
×

0!
[S

2
,H

1
]
=

+

(
i

2
×
0!

)        ( 12
C

(2
)

S
Q
G

(1
)

S
Q
+
8
C

(2
)

D
Q
G

(1
)

D
Q

)
︸

︷︷
︸

G
(2

)
Z
Q
,A

( T(2)
0
) 0

−
2√

6
( C

(2
)

S
Q
G

(1
)

D
Q
+
C

(2
)

D
Q
G

(1
)

S
Q

)
︸

︷︷
︸

G
(2

)
C
T
Q
,A

{( Ĉ
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T

S

) 0
+
i
G

(2
)

T
Q
,6

( T̂
A
S

) 0

V
II

or
de

r
(λ

7
)

H
(2
)

7
=

−
1

7
×
5!
[S

2
,[
S
2
,[
S
2
,[
S
2
,[
S
2
,[
S
2
,H

1
]]
]]
]]
=

+

( 1 7
×
5!

)
            −

( C
(2
)

S
Q
G

(2
)

Z
Q
,C

−
2√ 2 3

C
(2
)

D
Q
G

(2
)

C
T
Q
,C

)
︸

︷︷
︸

G
(2

)
S
Q
,C

{ ( Ŝ
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A detailed description of the diagonal and off-diagonal contributions resulting
from the second transformation are tabulated in Table. 3.5. As illustrated in Ta-
ble. 3.5, the even order terms comprise of diagonal contributions (arising from ZQ
(T (2)0), CT

(
ĈT S

)
and TQ

(
T̂AS

)
) , while the odd-order terms, represent the

off-diagonal contributions (from SQ
(
ŜQ

(r,cr)

S

)
±1

and DQ
(
D̂

(r,cr)
S

)
±1

).
Following the standard procedure, the effective Hamiltonian after second transfor-
mation is derived systematically to the desired level of accuracy.

Heff = eiλ
2S2 eiλS1 HF e−iλS1 e−iλ2S2

= ωQIF +G
(2)
CT

(
ĈT S

)
0
+ i G

(2)
TQ

(
T̂AS

)
0
+G

(2)
ZQ

(
T (2)0

)
0

(3.39)

In Eq. 3.39, the coefficients ‘G(2)
CT ’, ‘G(2)

TQ’, ‘G(2)
ZQ’ represent diagonal contributions

resulting from both the first and second transformation.

G
(2)
CT =

N1∑
i=0

G
(1)
CT,i +

N2∑
j=0

G
(2)
CT,j = G

(1)
CT +

{
G

(2)
CT,1 +G

(2)
CT,2 + G

(2)
CT,3 + ....

}
G

(2)
TQ =

N1∑
i=0

G
(1)
TQ,i +

N2∑
j=0

G
(2)
TQ,j = G

(1)
TQ +

{
G

(2)
TQ,1 + G

(2)
TQ,2 + G

(2)
TQ,3 + ....

}
G

(2)
ZQ =

N1∑
i=0

G
(1)
ZQ,i +

N2∑
j=0

G
(2)
ZQ,j = G

(1)
ZQ +

{
G

(2)
ZQ,1 + G

(2)
ZQ,2 + G

(2)
ZQ,3 + ....

}
(3.40)

Analogous to the description in the previous section, the initial density operator
and the detection operators are transformed by the second transformation function,
S2. A detailed description of the calculations along with the evolution of the
density operator employing the effective Hamiltonians derived from the second
transformation (Eq.3.39) is described in Appendix.B.2.
On further simplification, an approximate expression for calculating the TQ signal
is arrived at as given below.

⟨
T (3)−3(tp1)

⟩
∝
{
S(θTQ) + S(θCT ) + C(θRF ) S(θZQ) + S(θRF ) C(θZQ)

}
(3.41)
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(
where, θTQ =

3ω3
1tp1

2Ω2
Q

; θCT = −2ω1tp1 +
3ω3

1tp1
2Ω2

Q

; θRF = ω1tp1

θZQ = (∆− ωQ)tp1 −
3ω2

1tp1
2 ΩQ

)
To illustrate the role of the off-diagonal contributions from the first transformation,
two sets of simulations corresponding to

• Off-diagonal contributions to λ3 from first transformation i.e. N1 = 3 (see
Eq. 3.33, 3.34 and Figure. 3.5)

• Off-diagonal contributions to λn from first transformation i.e. N1 = n (see
Eq. 3.33, 3.34 and Figure. 3.6)

were performed.

Table 3.6: Definition of coefficients employed in the perturbing Hamiltonians for Case-III (a,b)
and Case-IV (a,b)

G
(1)
SQ G

(1)
DQ

Case-III (a) and Case-IV(a)

(N1 = 3) +
1

3

(ω1

2

)
(θ)2 − ω1

2
√
2
(θ)

Case-III (b) and Case-IV(b)

(N1 > 3) +
(ω1

2

){ 1

3× 1!
(θ)2 − ω1

2
√
2
S(θ)

− 1

5× 3!
(θ)4 +

1

7× 5!
(θ)6 − ....

}

G
(2)
CT G

(2)
TQ G

(2)
ZQ

Case-III (a)
3∑

i=0

G
(1)
CT,i +

2∑
j=1

G
(2)
CT,j

3∑
i=0

G
(1)
TQ,i +

2∑
j=1

G
(2)
TQ,j

3∑
i=0

G
(1)
ZQ,i +

2∑
j=1

G
(2)
ZQ,j

Case-III (b)
3∑

i=0

G
(1)
CT,i +

N2∑
j=1

G
(2)
CT,j

3∑
i=0

G
(1)
TQ,i +

N2∑
j=1

G
(2)
TQ,j

3∑
i=0

G
(1)
ZQ,i +

N2∑
j=1

G
(2)
ZQ,j

Case-IV (a)
N1∑
i=0

G
(1)
CT,i +

2∑
j=1

G
(2)
CT,j

N1∑
i=0

G
(1)
TQ,i +

2∑
j=1

G
(2)
TQ,j

N1∑
i=0

G
(1)
ZQ,i +

2∑
j=1

G
(2)
ZQ,j

Case-IV (b)
N1∑
i=0

G
(1)
CT,i +

N2∑
j=1

G
(2)
CT,j

N1∑
i=0

G
(1)
TQ,i +

N2∑
j=1

G
(2)
TQ,j

N1∑
i=0

G
(1)
ZQ,i +

N2∑
j=1

G
(2)
ZQ,j

θ =

(√
3ω1

ΩQ

)
; C(θ) = cos (θ) ; S(θ) = sin (θ)
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In both these sets of simulations, diagonal corrections to second order and nth

order resulting from the second transformation, S2, were incorporated. The panels
(A1 → A4) in Figures. 3.5 and 3.6 are based on diagonal corrections to second
order, while, panels (B1 → B4) depict the effect of diagonal corrections to the nth

order.
As depicted in Figures. 3.5 and 3.6, inclusion of the off-diagonal terms from the
first transformation and the subsequent folding through the second transformation,
S2, play an important role in improving the exactness of the derived effective Flo-
quet Hamiltonians. Nevertheless, when the magnitude of the quadrupolar coupling
constant is very similar to the amplitude of the pulse, significant deviations are
still present in accord with the calculations (spin I = 1) presented in Chapter-2.

Regime-II: Weak coupling (ωQ ≈ ω1)

To address the discrepancy observed in the analytic simulations (for systems
with smaller quadrupolar coupling constants), the Hamiltonian in the Zeeman-
interaction frame is transformed such that the RF field is quantized along z-
direction using the transformation function ‘U2’ (U2 = ei

π/2Iy).

H̃ = −ℏω1Ix − ℏΩQT
(2)0 (3.42)

˜̃H =U2 H̃ U−1
2

= −ℏω1Iz +

(
ℏΩQ

2

)
T (2)0 −

√
3

2

(
ℏΩQ

2

)(
Φ2

1T
(2)2 + Φ−2

1 T (2)−2
)

(3.43)

To further simplify the description, the above Hamiltonian is transformed into
the RF interaction frame defined by the transformation function, ‘U3’ (U3 =

exp (−iω1tIz))

˜̃̃
H(t) =U3

˜̃H U−1
3

=

(
ℏΩQ

2

)
T (2)0 −

√
3

2

(
ℏΩQ

2

)(
Φ2

1T
(2)2e−2iω1t + Φ−2

1 T (2)−2e2iω1t
)

(3.44)
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In accord with the description presented in the previous section, the above time-
dependent Hamiltonian is transformed into a time-independent Floquet Hamilto-
nian.

HF = ω1IF +

(
ℏΩQ

2

)(
T (2)0

)
0
−
√

3

2

(
ℏΩQ

2

){(
Φ2

1T
(2)2
)
2
+
(
Φ−2

1 T (2)−2
)
−2

}
(3.45)

To facilitate analytic description in terms of effective Hamiltonians, the above
Floquet Hamiltonian is re-expressed in-terms of zero-order and perturbing Hamil-
tonian. The perturbing Hamiltonian (H1) comprises of both diagonal (H1,d) and
off-diagonal terms (H1,od).

H0 = ω1IFH1 = H1,d +H1,od

H1,d = +

(
ΩQ

2

)(
T (2)0

)
0
; H1,od = −

√
3

2

(
ΩQ

2

){(
Φ2

1T
(2)2
)
2
+
(
Φ−2

1 T (2)−2
)
−2

}
(3.46)

In contrast to the analytic description present in Regime-I, the quadrupolar in-
teraction acts like a perturbation and plays an important role in the excitation of
TQ transitions in Regime-II. Employing the transformation function, ‘S1’.

Heff = eiλS1 HF e−iλS1

S1 = C
(1)
DR

{(
Φ2

1T
(2)2
)
2
−
(
Φ−2

1 T (2)−2
)
−2

}
(3.47)

C
(1)
DR = −i

√
3

2

(
ΩQ

4ω1

)
(3.48)

the off-diagonal contributions in H1 (i.e. H1,od) are folded and the higher order
corrections to the effective Floquet Hamiltonian are derived using the relations
described in previous chapter. To first-order, the effective Hamiltonian comprises
of ‘H1,d’.

H
(1)
1 =

(
ℏΩQ

2

)(
T (2)0

)
0

(3.49)
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A detailed derivation of the commutator relations involving the transforma-
tion ‘S1’ and ‘H1’ to various orders of ‘λ’ is tabulated in Table. 3.7, and 3.8. As
illustrated (in Table.3.7, 3.8), the diagonal corrections mainly comprise of ZQ op-
erators

((
T (k)0

)
0
; k = 1, 2, 3

)
, while the off-diagonal contributions are represented

through the DQ operators
((
T (2)±2

)
±2

)
. Below, a pedagogical description analo-

gous to Regime-I is presented to explicate the role of the higher-order contributions
in the excitation process.
I. Effective Hamiltonians from first transformation, ‘S1’

To begin with, let the effective Hamiltonian (comprising of diagonal corrections
only) describing the excitation process (in Regime-II) be represented by,

Heff = eiλS1 HF e−iλS1

= ω1IF +
i√
5
G

(1)
1R

(
T (1)0

)
0
+ G

(1)
2R

(
T (2)0

)
0
+

i√
5
G

(1)
3R

(
T (3)0

)
0

(3.50)

The ‘G’ coefficients deduced from Tables.3.7 and 3.8 are expanded below.

G
(1)
1R =

N1∑
i=1

G
(1)
1R,i ; G
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i=1
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(1)
3R,i
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(√
3ΩQ
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4× 2!
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1

6× 4!
(ξ)5 + ....

}
(3.51)

G
(1)
2R =

(
ΩQ

2

)
C(ξ) (3.52)

G
(1)
3R =

(√
3ΩQ

2

){
+

1

2× 0!
(ξ)− 1

4× 2!
(ξ)3 +

1

6× 4!
(ξ)5 + ....

}
(3.53)

and (N1 represents the order of the correction from the first transformation).
In accord with the descriptions presented in this thesis, the initial density operator
and detection operator are transformed using the transformation function, S1. A
detailed description of the density matrix calculations is presented in Appendix.
C.1. Based on the calculations, the TQ signal in Regime-II is evaluated.
Analogous to the description in Regime-I (refer Eq. 3.29), the TQ signal expression
comprises of four terms. To illustrate the exactness of the proposed effective
Floquet Hamiltonians in Regime-II, simulations incorporating diagonal corrections
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to second order (Panels A1 → A3) and nth (Panels B1 → B3)order resulting from
the first transformation are depicted in Figure. 3.7. In the simulations depicted
in Fig. 3.7, the quadrupolar coupling constant was varied from 50 kHz to 200

kHz.

⟨
T (3)−3(tp1)

⟩
=
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1 ΦR

){
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8
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8
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8
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3
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3
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(3.54)
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Figure 3.7: Comparison of numerical (black thick line) and analytic simulations (blue dots) based
on effective Hamiltonians derived from a single transformation comprising of diagonal corrections
to order λ3(N1 = 3) (from Panels A1 → A3) and to the order λn(N1 > 3) (from Panels B1 →
B3). In the simulations depicted, the quadrupole coupling constant (CQ = ωQ/π) is varied A1,
B1) CQ = 50 kHz, A2, B2) CQ = 100 kHz, A3, B3) CQ = 200 kHz, employing an excitation pulse
of constant RF amplitude, (ω1/2π) = 100 kHz. The simulations correspond to a single crystal.
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As depicted in Figure. 3.7, (see Panels A3 and B3), the deviations reported in
Regime-I calculations are resolved through the effective Hamiltonians derived from
Regime-II. The minimum variations observed in the simulations could further be
improved with a second transformation, S2. A detailed description of the same is
presented in Appendix. C.2.

3.2.2 TQ excitation in Powder Sample

To test the validity of the proposed effective Floquet Hamiltonians in the de-
scription of anisotropic solids, the above calculations were extended to study the
excitation in powder samples. In Figures. 3.8 - 3.10, TQ excitation in powder
samples is calculated based on the effective Hamiltonians derived from Regime-I.
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Figure 3.8: Comparison of numerical (black thick line) and analytic simulations (red dots) based
on effective Hamiltonians derived from a single transformation comprising of diagonal corrections
to order λ3(N1 = 3) (from Panels A1 → A3) and to the order λn(N1 > 3) (from Panels B1 →
B3). In the simulations depicted, the quadrupole coupling constant (CQ = ωQ/π) is varied A1,
B1) CQ = 1 MHz, A2, B2) CQ = 500 kHz, A3, B3) CQ = 200 kHz, employing an excitation
pulse of constant RF amplitude, (ω1/2π) = 100 kHz. The powder simulations were performed
using a crystal file having 28656 orientations (α, β).
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In the simulations presented, diagonal corrections to II-order (panels A1 → A3)
and nth order (panels B1 → B3) resulting from the first transformation were em-
ployed. As depicted, significant deviations are observed in the analytical simula-
tions even at CQ = 1 MHz. To address this, the off-diagonal corrections ignored
in the first transformations were incorporated systematically in the simulations.

• To order λ3 i.e. N1 = 3 in Figure. 3.9

• To orderλn i.e. N1 = n in Figure. 3.10
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Figure 3.9: Comparison of numerical (black thick line) and analytic simulations (red dots) based
on effective Hamiltonians derived from the second transformation. The off-diagonal contributions
to order λ3 from the first transformation (N1 = 3) and diagonal corrections to order λ2 from
the second transformation (N2 = 2) (from Panels A1 → A3) and to order λn from the second
transformation (N2 > 2) (from Panels B1 → B3) were included in the derivation of the effective
Hamiltonians. In the simulations depicted, the quadrupole coupling constant (CQ = ωQ/π) is
varied A1, B1) CQ = 1 MHz, A2, B2) CQ = 500 kHz, A3, B3) CQ = 200 kHz, employing an
excitation pulse of constant RF amplitude, (ω1/2π) = 100 kHz. The powder simulations were
performed using a crystal file having 28656 orientations (α, β).

Nevertheless, significant deviations are still observed in the analytic simulations
irrespective of the inclusion of the higher order corrections (both diagonal and
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off-diagonal contributions from Regime-I only).
To address this issue, the hybrid method22 proposed in chapter-2 was employed
to describe the TQ excitation in powder samples. For crystallite orientations
with ‘

∣∣∣ω(αβγ)
Q

∣∣∣ < |ω1|’, the effective Hamiltonians based on Regime-II were em-

ployed(Eq. C.2.9, C.2.12), while for ‘
∣∣∣ω(αβγ)

Q

∣∣∣ > |ω1|’, effective Hamiltonians based
in Regime-I were employed (Eq. 3.39, B.2.10) in simulating the excitation profile
in powder samples.

0 25 50 75
-0.8

-0.6

-0.4

-0.2

0

0.2

                                        (A1)

0 25 50
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

                                        (A2)

0 25 50

-0.5

0

0.5

                                        (A3)

0 25 50 75
-0.8

-0.6

-0.4

-0.2

0

0.2

                                        (B1)

0 25 50
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

                                        (B2)

0 25 50

-0.5

0

0.5

                                        (B3)

Time (µsec)

T
Q

 e
xp

ec
ta

tio
n 

va
lu

e

Time (µsec)

T
Q

 e
xp

ec
ta

tio
n 

va
lu

e

Figure 3.10: Comparison of numerical (black thick line) and analytic simulations (red dots) based
on effective Hamiltonians derived from the second transformation. The off-diagonal contributions
to order λn from the first transformation (N1 > 3) and diagonal corrections to order λ2 from
the second transformation (N2 = 2) (from Panels A1 → A3) and to order λn from the second
transformation (N2 > 2) (from Panels B1 → B3) were included in the derivation of the effective
Hamiltonians. In the simulations depicted, the quadrupole coupling constant (CQ = ωQ/π) is
varied A1, B1) CQ = 1 MHz, A2, B2) CQ = 500 kHz, A3, B3) CQ = 200 kHz, employing an
excitation pulse of constant RF amplitude, (ω1/2π) = 100 kHz. The powder simulations were
performed using a crystal file having 28656 orientations (α, β).

A schematic depiction of the simulations based on the hybrid method illustrating
the extent of the contributions of the two regimes is presented in Figure. 3.12
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Hybrid Method 

ωQ
αβγ( ) > ω1 ωQ

αβγ( ) ≤ ω1

Total Number of crystallite orientations 

For crystallite orientations 

Hamiltonian from Reg-I
Is used (TQ signal obtained) is 

For crystallite orientations 

T (3)−3 t p1( )
HR

T (3)−3 t p1( )
LR

Hamiltonian from Reg-II
Is used (TQ signal obtained) is 

Total (TQ) signal is 

T (3)−3 t p1( ) = T (3)−3 t p1( )
HR

+ T (3)−3 t p1( )
LR

Regime-I	 Regime-I	

(CQ) 

(-200 kHz) (+200 kHz) 

(0 kHz) 

Regime-II	

Figure 3.11: A schematic diagram depicting the hybrid method employed in obtaining TQ signal
in spin I = 3/2 powder samples.
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Reg-I = 23394 = 81.64 %

Reg-I = 17254 = 60.21 %
Reg-I = 0 = 0 %

Reg-II = 5262 = 18.36 %
Reg-II = 11402 = 39.79 %

Reg-II = 28656 = 100 %

Total orientations = 28656

Figure 3.12: The analytic simulations emerging from the effective Hamiltonians derived from
Regime-I (red thick line) and Regime-II (blue thick line), are depicted along the row-I (see
Panels A1 → A3). In row -II (Panels B1 → B3), comparison of numerical (black thick line)
and analytic simulations (red and blue dots) based on effective Hamiltonians derived from both
regimes (using Hybrid method) is presented. In the simulations depicted, the quadrupole coupling
constant (CQ = ωQ/π) is varied A1, B1) CQ = 1 MHz, A2, B2) CQ = 500 kHz, A3, B3) CQ = 200
kHz, employing an excitation pulse of constant RF amplitude, (ω1/2π) = 100 kHz. The choice
of Regime-I and Regime-II is purely dependent on the magnitude of ω(αβγ)

Q relative to the RF
amplitude. When

∣∣∣ω(αβγ)
Q

∣∣∣ < |ω1|, Regime-II is employed,
∣∣∣ω(αβγ)

Q

∣∣∣ > |ω1|, Regime-I is employed.
The powder simulations were performed using a crystal file having 28656 orientations (α, β).
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In the panels (A1 → A3), the fraction of crystallites in regime-I and regime-II
are identified for a crystal file comprising of 28656 orientations. As depicted, with
decreasing quadrupolar coupling constants, the fraction of crystallites governed by
effective Hamiltonian from Regime-II increases and is in accord with the results
presented in chapter-2. As indicated, the analytic simulations based on the hybrid
method are in excellent agreement (panels, B1 → B3) with SIMPSON simulations
justifying our strategy.
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Appendix

A Matrix Representation of Operators and Com-
mutator Relations

A.1 Definition of Tensor Operators for Spin I = 3/2

Table A.1.1: The Basis Tensors for spin I=3/2
Zero Coherence Tensors

T (0)0 = 1
2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 T (1)0 = i
2
√
5


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


T (2)0 = 1

2


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 T (3)0 = i
2
√
5


−1 0 0 0
0 3 0 0
0 0 −3 0
0 0 0 1


+1 Coherence Tensors

T (1)1 = −i
√

1
10


0

√
3 0 0

0 0 2 0

0 0 0
√
3

0 0 0 0

 T (2)1 =
√

1
2


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


T (3)1 = i

√
1
5


0 1 0 0

0 0 −
√
3 0

0 0 0 1
0 0 0 0

 RF+
A =


0

√
3 0 0

0 0 0 0
0 0 0 0
0 0 0 0


RF+

B =


0 0 0 0
0 0 0 0

0 0 0
√
3

0 0 0 0

 RF+
C =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


−1 Coherence Tensors

T (1)−1 = i
√

1
10


0 0 0 0√
3 0 0 0
0 2 0 0

0 0
√
3 0

 T (2)−1 =
√

1
2


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0


T (3)−1 = −i

√
1
5


0 0 0 0
1 0 0 0

0 −
√
3 0 0

0 0 1 0

 RF−
A =


0 0 0 0√
3 0 0 0
0 0 0 0
0 0 0 0


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The Basis Tensors for spin I=3/2 (contd.)

RF−
B =


0 0 0 0
0 0 0 0
0 0 0 0

0 0
√
3 0

 RF−
C =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


+2 Coherence Tensors

T (2)2 = −
√

1
2


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 T (3)2 = i
√

1
2


0 0 −1 0
0 0 0 1
0 0 0 0
0 0 0 0


D+

1 =


0 0 0 0

0 0 0 −
√
2

0 0 0 0
0 0 0 0

 D+
2 =


0 0 −

√
2 0

0 0 0 0
0 0 0 0
0 0 0 0


−2 Coherence Tensors

T (2)−2 = −
√

1
2


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 T (3)−2 = i
√

1
2


0 0 0 0
0 0 0 0
−1 0 0 0
0 1 0 0


D−

1 =


0 0 0 0
0 0 0 0

−
√
2 0 0 0

0 0 0 0

 D−
2 =


0 0 0 0
0 0 0 0
0 0 0 0

0 −
√
2 0 0


±3 Coherence Tensors

T (3)3 = T+ = i


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 T (3)−3 = T− = −i


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0



A.2 Commutation Relations for Spin I = 3/2

1.
[
(ΦRF+

A + Φ−1RF−
B ), Iz

]
= −

(
ΦRF+

A − Φ−1RF−
B

)
2.
[
(ΦRF+

A − Φ−1RF−
B ), Iz

]
= −

(
ΦRF+

A + Φ−1RF−
B

)
3.
[
(Φ−1RF−

A + ΦRF+
B ), Iz

]
= Φ−1RF−

A − ΦRF+
B

4.
[
(Φ−1RF−

A − ΦRF+
B ), Iz

]
= Φ−1RF−

A + ΦRF+
B

5.
[
(ΦRF+

C + Φ−1RF−
C ), Iz

]
= −

(
ΦRF+

C − Φ−1RF−
C

)
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6.
[
(ΦRF+

C − Φ−1RF−
C ), Iz

]
= −

(
ΦRF+

C + Φ−1RF−
C

)
7.
[
((ΦRF+

A + Φ−1RF−
B ), T (2)0

]
= (ΦRF+

A + Φ−1RF−
B )

8.
[
(ΦRF+

A − Φ−1RF−
B ), T (2)0

]
= (ΦRF+

A − Φ−1RF−
B )

9.
[
(Φ−1RF−

A + ΦRF+
B ), T (2)0

]
= −(Φ−1RF−

A + ΦRF+
B )

10.
[
(Φ−1RF−

A − ΦRF+
B ), T (2)0

]
= −(Φ−1RF−

A − ΦRF+
B )

11.
[
(ΦRF+

C + Φ−1RF−
C ), T (2)0

]
= 0

12.
[
(ΦRF+

C − Φ−1RF−
C ), T (2)0

]
= 0

13.
[(
Φ2D+

1 + Φ−2D−
1

)
, T (2)0

]
= −

(
Φ2D+

1 + Φ−2D−
1

)
14.

[(
Φ2D+

1 − Φ−2D−
1

)
, T (2)0

]
= −

(
Φ2D+

1 − Φ−2D−
1

)
15.

[(
Φ2D+

2 + Φ−2D−
2

)
, T (2)0

]
=
(
Φ2D+

2 + Φ−2D−
2

)
16.

[(
Φ2D+

2 − Φ−2D−
2

)
, T (2)0

]
=
(
Φ2D+

2 − Φ−2D−
2

)
17.

[
(ΦRF+

A + Φ−1RF−
B ), T (3)0

]
=

2i√
5

(
ΦRF+

A − Φ−1RF−
B

)
18.

[
(ΦRF+

A − Φ−1RF−
B ), T (3)0

]
=

2i√
5

(
ΦRF+

A + Φ−1RF−
B

)
19.

[
(Φ−1RF−

A + ΦRF+
B ), T (3)0

]
= − 2i√

5

(
Φ−1RF−

A − ΦRF+
B

)
20.

[
(Φ−1RF−

A − ΦRF+
B ), T (3)0

]
= − 2i√

5

(
Φ−1RF−

A + ΦRF+
B

)
21.

[
(ΦRF+

C + Φ−1RF−
C ), T (3)0

]
= − 3i√

5

(
ΦRF+

C − Φ−1RF−
C

)
22.

[
(ΦRF+

C − Φ−1RF−
C ), T (3)0

]
= − 3i√

5

(
ΦRF+

C + Φ−1RF−
C

)
23.

[
(ΦRF+

A + Φ−1RF−
B ), (ΦRF+

A + Φ−1RF−
B )
]
= 0
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24.
[
(ΦRF+

A + Φ−1RF−
B ), (ΦRF+

A − Φ−1RF−
B )
]
= 0

25.
[
(ΦRF+

A + Φ−1RF−
B ), (Φ−1RF−

A + ΦRF+
B )
]
= −6 T (2)0

26.
[
(ΦRF+

A + Φ−1RF−
B ), (Φ−1RF−

A − ΦRF+
B )
]
= − 6i√

5

(
T (1)0 − 2 T (3)0

)
27.

[
(ΦRF+

A + Φ−1RF−
B ), (ΦRF+

C + Φ−1RF−
C )
]
= −

√
3

2

(
Φ2D+

2 + Φ−2D−
2

)
28.

[
(ΦRF+

A + Φ−1RF−
B ), (ΦRF+

C − Φ−1RF−
C )
]
= −

√
3

2

(
Φ2D+

2 − Φ−2D−
2

)
29.

[
(ΦRF+

A + Φ−1RF−
B ), (Φ2D+

1 + Φ−2D−
1 )
]
=

√
6
(
(ĈT S) + i(T̂AS))

)
30.

[
(ΦRF+

A + Φ−1RF−
B ), (Φ2D+

1 − Φ−2D−
1 )
]
=

√
6
(
(ĈTAS) + i(T̂S))

)
31.

[
(ΦRF+

A + Φ−1RF−
B ), (Φ2D+

2 + Φ−2D−
2 )
]
= 0

32.
[
(ΦRF+

A + Φ−1RF−
B ), (Φ2D+

2 − Φ−2D−
2 )
]
= 0

33.
[
(ΦRF+

A + Φ−1RF−
B ),
(
(ĈT S) + i(T̂AS))

)]
= −

√
6 (Φ2D+

2 + Φ−2D−
2 )

34.
[
(ΦRF+

A − Φ−1RF−
B ), (ΦRF+

A − Φ−1RF−
B )
]
= 0

35.
[
(ΦRF+

A − Φ−1RF−
B ), (Φ−1RF−

A + ΦRF+
B )
]
= − 6i√

5

(
T (1)0 − 2 T (3)0

)
36.

[
(ΦRF+

A − Φ−1RF−
B ), (Φ−1RF−

A − ΦRF+
B )
]
= −6 T (2)0

37.
[
(ΦRF+

A − Φ−1RF−
B ), (ΦRF+

C + Φ−1RF−
C )
]
= −

√
3

2

(
Φ2D+

2 − Φ−2D−
2

)
38.

[
(ΦRF+

A − Φ−1RF−
B ), (ΦRF+

C − Φ−1RF−
C )
]
= −

√
3

2

(
Φ2D+

2 + Φ−2D−
2

)

39.
[
(Φ−1RF−

A + ΦRF+
B ), (ΦRF+

A + Φ−1RF−
B )
]
= 6 T (2)0
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40.
[
(Φ−1RF−

A + ΦRF+
B ), (ΦRF+

A − Φ−1RF−
B )
]
=

6i√
5

(
T (1)0 − 2 T (3)0

)
41.

[
(Φ−1RF−

A + ΦRF+
B ), (Φ−1RF−

A + ΦRF+
B )
]
= 0

42.
[
(Φ−1RF−

A + ΦRF+
B ), (Φ−1RF−

A − ΦRF+
B )
]
= 0

43.
[
(Φ−1RF−

A + ΦRF+
B ), (ΦRF+

C + Φ−1RF−
C )
]
=

√
3

2

(
Φ2D+

1 + Φ−2D−
1

)
44.

[
(Φ−1RF−

A + ΦRF+
B ), (ΦRF+

C − Φ−1RF−
C )
]
=

√
3

2

(
Φ2D+

1 − Φ−2D−
1

)
45.

[
(Φ−1RF−

A + ΦRF+
B ),
(
Φ2D+

1 + Φ−2D−
1

)]
= 0

46.
[
(Φ−1RF−

A + ΦRF+
B ),
(
Φ2D+

1 − Φ−2D−
1

)]
= 0

47.
[
(Φ−1RF−

A + ΦRF+
B ),
(
Φ2D+

2 + Φ−2D−
2

)]
= −

√
6
(
(ĈT S) + i(T̂AS))

)
48.

[
(Φ−1RF−

A + ΦRF+
B ),
(
(ĈT S) + i(T̂AS))

)]
=

√
6
(
Φ2D+

1 + Φ−2D−
1

)

49.
[
(Φ−1RF−

A − ΦRF+
B ), (ΦRF+

A + Φ−1RF−
B )
]
=

6i√
5

(
T (1)0 − 2 T (3)0

)
50.

[
(Φ−1RF−

A − ΦRF+
B ), (ΦRF+

A − Φ−1RF−
B )
]
= 6 T (2)0

51.
[
(Φ−1RF−

A − ΦRF+
B ), (Φ−1RF−

A + ΦRF+
B )
]
= 0

52.
[
(Φ−1RF−

A − ΦRF+
B ), (Φ−1RF−

A − ΦRF+
B )
]
= 0

53.
[
(Φ−1RF−

A − ΦRF+
B ), (ΦRF+

C + Φ−1RF−
C )
]
= −

√
3

2

(
Φ2D+

1 − Φ−2D−
1

)
54.

[
(Φ−1RF−

A − ΦRF+
B ), (ΦRF+

C − Φ−1RF−
C )
]
= −

√
3

2

(
Φ2D+

1 + Φ−2D−
1

)

55.
[
(ΦRF+

C + Φ−1RF−
C ), (ΦRF+

C − Φ−1RF−
C )
]
=

2i√
5

(
T (1)0 + 3 T (3)0

)
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56.
[(
Φ2D+

1 + Φ−2D−
1

)
, (ΦRF+

C + Φ−1RF−
C )
]
=

√
2

3
(Φ−1RF−

A + ΦRF+
B )

57.
[(
Φ2D+

2 + Φ−2D−
2

)
, (ΦRF+

C + Φ−1RF−
C )
]
= −

√
2

3
(ΦRF+

A + Φ−1RF−
B )

58.
[
(ΦRF+

A + Φ−1RF−
B ), T (3)−3

]
= −i

√
3

2
(Φ D−

2 )

59.
[
(ΦRF+

A − Φ−1RF−
B ), T (3)−3

]
= −i

√
3

2
(Φ D−

2 )

60.
[
(Φ−1RF−

A + ΦRF+
B ), T (3)−3

]
= i

√
3

2
(Φ D−

1 )

61.
[
(Φ−1RF−

A − ΦRF+
B ), T (3)−3

]
= −i

√
3

2
(Φ D−

1 )

62.
[(
Φ2D+

1 + Φ−2D−
1

)
, T (3)−3

]
= i

√
2

3
(Φ2 RF−

A )

63.
[(
Φ2D+

2 + Φ−2D−
2

)
, T (3)−3

]
= −i

√
2

3
(Φ2 RF−

B )

64.
[
(ΦRF+

A + Φ−1RF−
B ), (Φ D−

1 )
]
=

√
6 (Φ2RF−

c − i T (3)−3)

65.
[
(ΦRF+

A + Φ−1RF−
B ), (Φ D−

2 )
]
= 0

66.
[
(ΦRF+

A + Φ−1RF−
B ), (Φ2RF−

c − i T (3)−3)
]
= −

√
6 (Φ D−

2 )

67.
[
(Φ−1RF−

A + ΦRF+
B ), (Φ D−

1 )
]
= 0

68.
[
(Φ−1RF−

A + ΦRF+
B ), (Φ D−

2 )
]
= −

√
6 (Φ2RF−

c − i T (3)−3)

69.
[
(Φ−1RF−

A + ΦRF+
B ), (Φ2RF−

c − i T (3)−3)
]
=

√
6 (Φ D−

1 )

70.
[(
Φ2D+

1 + Φ−2D−
1

)
, (Φ2RF−

c − i T (3)−3)
]
=

√
2

3
(Φ2 RF−

A + Φ4 RF+
B )
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71.
[(
Φ2D+

2 + Φ−2D−
2

)
, (Φ2RF−

c − i T (3)−3)
]
= −

√
2

3
(Φ2 RF−

B + Φ4 RF+
A )

B Calculations involving effective Hamiltonians
from Regime-I

B.1 From first transformation S1

Subsequently, to induce TQ transitions, the initial density operator (Eq. 3.26)
is transformed by the effective pulse Hamiltonians (Eq. 3.22). Accordingly, the
density operator during the pulse is evaluated,

ρ̃F (tp1) = exp

(
−iHeff tp1

ℏ

)
ρ̃F (0) exp

(
iHeff tp1

ℏ

)
(B.1.1)

where, ‘tp1’ is the duration of the pulse. To simplify the description and illustrate
the development of coherences, the density operator is re-expressed in terms of the
different coherences present in the system.

ρ̃F (tp1) = ρ̃F (tp1)ZQ + ρ̃F (tp1)SQ + ρ̃F (tp1)DQ + ρ̃F (tp1)TQ (B.1.2)

The Zero-Quantum (ZQ) coherence or the populations is represented by,

ρ̃F (tp1)ZQ =R
(1)
Iz (Iz)0 +R

(1)
ZQA (ZQA)0 +R

(1)
ZQC

{
C(θCT ) − 1

}
(ZQC)0

+R
(1)
ZQD

{
C(θTQ) − 1

}
(ZQD)0 (B.1.3)

The Single-Quantum (SQ) coherence comprises of both the central (CT) and non-
central (NCT) transitions.

ρ̃F (tp1)SQ = ρ̃F (tp1)SQ,CT + ρ̃F (tp1)SQ,NCT

It is important to realize here that the ‘SQ’ coherence corresponding to the central
transitions is represented through diagonal operators

((
ĈT
)
0

)
, while the non-
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central transitions are represented by off-diagonal operators
((

ŜQ
)
±1

)
in the

Floquet space.

ρ̃F (tp1)SQ,CT = R
(1)
CT S(θCT )

(
ĈTAS

)
0

(B.1.4)

ρ̃F (tp1)SQ,NCT = R
(1)
SQ C(θRF )

{(
ŜQ

(cr)

AS

)
−1
ei(θZQ) +

(
ŜQ

(r)

AS

)
+1
e−i(θZQ)

}
(B.1.5)

where,

θRF = ω1tp1 ; θZQ =
(
G

(1)
ZQ − ωQ

)
tp1

The coherence corresponding to the two sets of Double-Quantum (DQ) transitions

(see Figure. 3.3) are represented through off-diagonal operators
((

D̂
)
±1

)

ρ̃F (tp1)DQ = R
(1)
DQ S(θRF )

{(
D̂

(cr)
AS

)
−1
ei(θZQ) +

(
D̂

(r)
AS

)
+1
e−i(θZQ)

}
(B.1.6)

In a similar vein, the Triple-Quantum (TQ) coherences are represented by,

ρ̃F (tp1)TQ = R
(1)
TQ S(θTQ)

(
T̂S

)
0

(B.1.7)

As represented above, the coherences corresponding to the ZQ,SQ(CT) and TQ
transitions are expressed in terms of diagonal operators, while the coherences cor-
responding to the SQ(NCT) and DQ transitions are represented in terms of off-
diagonal operators in the Floquet framework. Although, from an experimental
perspective, TQ transitions cannot be detected through direct means (they need
to be reconverted back to detectable SQ(-1) transitions), the TQ excitation effi-
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ciency is evaluated through the standard procedure illustrated below.

⟨
T (3)−3(tp1)

⟩
= Tr

[
ρ̃F (tp1).T̃

(3)−3
F

]
= R

(1)
CT .P

(1)
CT S(θCT ) + 2 R

(1)
DQ.P

(1)
DQ S(θRF )

(
ei(θZQ) + e−i(θZQ)

)
+R

(1)
TQ.P

(1)
TQ S(θTQ) (B.1.8)

On further simplification, the ‘TQ’ efficiency observed in experiments is calculated
using the expression given below

⟨
T (3)−3(tp1)

⟩
=
(
Φ3

1ΦR

){
−1

4
J
(θ)
1 J

(θ)
2 S(θTQ) +

1

4
J
(θ)
−1 J

(θ)
−2 S(θCT )

−1

2

(
S(θ)

)2
S(θRF ) C(θZQ)

}
(B.1.9)

In Eq. B.1.9, the notation J (θ)
±n = cos(θ)±n with θ =

(√
3ω1

ΩQ

)
(where (ΩQ = ωQ))

has been employed.
When the initial density matrix and the detection operator are untransformed
(i.e., ρF (0) = (Iz)0 ; T

(3)−3
F = e3iω0t2 ΦR

{(
T (3)−3

)
0

}
), the density operator

after the pulse is evaluated using the standard procedure.

ρF (tp1) = (Iz)0 −
1

2

{
C(θCT ) − 1

}
(ZQC)0 −

3

2

{
C(θTQ) − 1

}
(ZQD)0

+
i

2
S(θCT )

(
ĈTAS

)
0
− 3

2
S(θTQ)

(
T̂S

)
0

(B.1.10)

Subsequently, the expression for TQ signal reduces to a much simpler form.

⟨
T (3)−3(tp1)

⟩
= Tr

[
ρF (tp1).T

(3)−3
F

]
=
(
Φ3

1 ΦR

){
−3

2
S(θTQ)

}
(B.1.11)

The above equation partially resembles to those proposed by Vega and Naor2 (it
is opposite in sign and twice in magnitude to their TQ expression).
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Table B.1.1: Coefficients employed in the description of the density operator (Eqs. 3.26 and
B.1.2) and the detection operator Eq. 3.27

Operator 0 coherence ±1 coherence

density matrix R
(1)
Iz = 1 R

(1)
CT = − i

2
J
(θ)
−2

R
(1)
ZQA = −J (θ)

−1 R
(1)
SQ =

1

2
√
3
S(θ)

R
(1)
ZQC = +

1

2
J
(θ)
−2

R
(1)
ZQD = −1

2
J
(θ)
2

±2 coherence ±3 coherence

R
(1)
DQ = +

i

2
√
2
S(θ) R

(1)
TQ = −1

2
J
(θ)
2

Operator 0 coherence ±1 coherence

detection operator 0 P
(1)
CT =

i

2
J
(θ)
−1

±2 coherence ±3 coherence

P
(1)
DQ = +

i

2
√
2
S(θ) P

(1)
TQ =

1

2
J
(θ)
+1

θCT = 2G
(1)
CT tp1 ; θZQ =

(
G

(1)
ZQ − ωQ

)
tp1 ; θRF = ω1tp1

θTQ = 2G
(1)
TQtp1 ; C(θ) = cos (θ) ; S(θ) = sin (θ)

J
(θ)
±n = cos(θ)± n ; θ =

(√
3ω1

ΩQ

)
; Φn

1 = e−inϕ
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Table B.1.2: Description of the coefficients employed in the derivation of effective Hamiltonian
(Eq. 3.22) based on the first transformation

G
(1)
CT G

(1)
TQ G

(1)
ZQ

G
(1)
CT,0 = 0 G

(1)
TQ,0 = 0 G

(1)
ZQ,0 = ∆

G
(1)
CT,1 = −ω1 G

(1)
TQ,1 = 0 G

(1)
ZQ,1 = 0

G
(1)
CT,2 = 0 G

(1)
TQ,2 = 0 G

(1)
ZQ,2 = −

(
ΩQ

2

)
(θ)2

G
(1)
CT,3 =

1

2!

(ω1

2

)
(θ)2 G

(1)
TQ,3 =

1

2!

(ω1

2

)
(θ)2 G

(1)
ZQ,3 = 0

G
(1)
CT,4 = 0 G

(1)
TQ,4 = 0 G

(1)
ZQ,4 =

(
ΩQ

4× 2!

)
(θ)4

G
(1)
CT,5 = − 1

4!

(ω1

2

)
(θ)4 G

(1)
TQ,5 = − 1

4!

(ω1

2

)
(θ)4 G

(1)
ZQ,5 = 0

G
(1)
CT,6 = 0 G

(1)
TQ,6 = 0 G

(1)
ZQ,6 = −

(
ΩQ

6× 4!

)
(θ)6

G
(1)
CT,7 =

1

6!

(ω1

2

)
(θ)6 G

(1)
TQ,7 =

1

6!

(ω1

2

)
(θ)6 G

(1)
ZQ,7 = 0

. . .

. . .

G
(1)
CT = −

(ω1

2

){
C(θ) + 1

}
G

(1)
TQ = −

(ω1

2

){
C(θ) − 1

}
G

(1)
ZQ = ∆+ (ΩQ)

{
− 1

2× 0!
(θ)2

+
1

4× 2!
(θ)4 − 1

6× 4!
(θ)6 + ....

}

θ =

(√
3ω1

ΩQ

)
; C(θ) = cos (θ)

Table B.1.3: Coefficients employed in the derivation of Effective Hamiltonians for Case-I and
Case-II

G
(1)
CT G

(1)
TQ G

(1)
ZQ

Case-I
(N1 = 3) −ω1 +

1

2!

(ω1

2

)
(θ)2 +

1

2!

(ω1

2

)
(θ)2 ∆− ΩQ

2
(θ)2

Case-II
(N1 > 3) −ω1

2

{
C(θ) + 1

}
−ω1

2

{
C(θ) − 1

}
∆+ (ΩQ)

{
− 1

2× 0!
(θ)2

+
1

4× 2!
(θ)4 − 1

6× 4!
(θ)6 + ....

}

θ =

(√
3ω1

ΩQ

)
; C(θ) = cos (θ)



B. CALCULATIONS INVOLVING EFFECTIVE HAMILTONIANS FROM REGIME-I 137

B.2 From second transformation S2

The effective initial density matrix and the detector operators are given by,

˜̃ρF (0) = eiλ
2S2 eiλS1 ρF (0) e

−iλS1 e−iλ2S2

= R
(2)
Iz (Iz)0 +R

(2)
ZQA (ZQA)0 +R

(2)
ZQB (ZQB)0

+R
(2)
SQ1

{(
ŜQ

(r)

AS

)
+1

+
(
ŜQ

(cr)

AS

)
−1

}
−R

(2)
DQ2

{(
D̂

(r)
AS

)
+1

−
(
D̂

(cr)
AS

)
−1

}
(B.2.1)

˜̃T
(3)−3
F = eiλ

2S2 eiλS1 T
(3)−3
F e−iλS1 e−iλ2S2

˜̃T
(3)−3
F = e3iω0t2 ΦR

{
P

(2)
TQ−

(
T (3)−3

)
0
+ P

(2)
CT−

(
Φ2

1RF
−
C

)
0
+ P

(2)
CT+

(
Φ4

1RF
+
C

)
0

+P
(2)
TQ+

(
Φ6

1T
(3)3
)
0
+ P

(2)
SQ+

{(
Φ2

1RF
−
A

)
+1

+
(
Φ2

1RF
−
B

)
−1

}
+P

(2)
SQ−

{(
Φ4

1RF
+
B

)
+1

+
(
Φ4

1RF
+
A

)
−1

}
+P

(2)
DQ

{(
Φ1D

−
1

)
+1

+
(
Φ1D

−
2

)
−1

}}
(B.2.2)

A detailed description of the coefficients employed in Eqs. B.2.1 and B.2.2 are
tabulated in Table.B.2.1.
Employing the effective Hamiltonian (Eq. 3.39) obtained from the second trans-
formation ‘S2’, the density matrix during the pulse is evaluated and re-expressed
in terms of the coherences and populations.

˜̃ρF (tp1) = ˜̃ρF (tp1)ZQ + ˜̃ρF (tp1)SQ + ˜̃ρF (tp1)DQ + ˜̃ρF (tp1)TQ (B.2.3)

˜̃ρF (tp1)ZQ =R
(2)
Iz (Iz)0 +R

(ZQA)
Iz (ZQA)0 +R

(2)
ZQB (ZQB)0

+R
(2)
ZQC

{
C(θCT ) − 1

}
(ZQC)0 +R

(2)
ZQD

{
C(θTQ) − 1

}
(ZQD)0 (B.2.4)

˜̃ρF (tp1)SQ = ˜̃ρF (tp1)SQ,CT + ˜̃ρF (tp1)SQ,NCT

˜̃ρF (tp1)SQ,CT = R
(2)
CT S(θCT )

(
ĈTAS

)
0

(B.2.5)
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˜̃ρF (tp1)SQ,NCT =
(
R

(2)
SQ1 C(θRF ) −R

(2)
SQ2 S(θRF )

){(
ŜQ

(r)

AS

)
+1
e−i(θZQ)

}
+
(
R

(2)
SQ1 C(θRF ) +R

(2)
SQ2 S(θRF )

){(
ŜQ

(cr)

AS

)
−1
ei(θZQ)

}
(B.2.6)

˜̃ρF (tp1)DQ =
(
R

(2)
DQ1 S(θRF ) −R

(2)
DQ2 C(θRF )

){(
D̂

(r)
AS

)
+1
e−i(θZQ)

}
+
(
R

(2)
DQ1 S(θRF ) +R

(2)
DQ2 C(θRF )

){(
D̂

(cr)
AS

)
−1
ei(θZQ)

}
(B.2.7)

˜̃ρF (tp1)TQ = R
(2)
TQ S(θTQ)

(
T̂S

)
0

(B.2.8)

A detailed description of the coefficients is represented in Table. B.2.1. Subse-
quently, the TQ signal after two transformations is derived and represented by,

⟨
T (3)−3(tp1)

⟩
=
(
R

(2)
TQ.P

(2)
TQ+ +R

(2)
TQ.P

(2)
TQ−

)
S(θTQ)

+
(
R

(2)
CT .P

(2)
CT− −R

(2)
CT .P

(2)
CT+

)
S(θCT )

+
{
2
(
R

(2)
DQ1 S(θRF ) +R

(2)
DQ2 C(θRF )

)
.P

(2)
DQ

+3
(
R

(2)
SQ1 C(θRF ) +R

(2)
SQ2 S(θRF )

)
.P

(2)
SQ+

−3
(
R

(2)
SQ1 C(θRF ) +R

(2)
SQ2 S(θRF )

)
.P

(2)
SQ−

}
.ei(θZQ)

+
{
2
(
R

(2)
DQ1 S(θRF ) −R

(2)
DQ2 C(θRF )

)
.P

(2)
DQ

−3
(
R

(2)
SQ1 C(θRF ) −R

(2)
SQ2 S(θRF )

)
.P

(2)
SQ+

+3
(
R

(2)
SQ1 C(θRF ) −R

(2)
SQ2 S(θRF )

)
.P

(2)
SQ−

}
.e−i(θZQ) (B.2.9)

⟨
T (3)−3

⟩
=
(
Φ3

1 ΦR

){
−1

4
K

(θ1,θ2)
+1 K

(θ1,θ2)
+2 S(θTQ) +

1

4
K

(θ1,θ2)
−1 K

(θ1,θ2)
−2 S(θCT )

−3

2
S(θ1) S(θ2) C(θRF ) S(θZQ)

−
{
1

2

(
S(θ1)

)2
+
(
S(θ2)

)2}
S(θRF ) C(θZQ)

}
(B.2.10)
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Table B.2.1: Coefficients employed in the derivation of the density operator (Eqs. B.2.1 and
B.2.3) and the detection operator (Eq. B.2.2) after the second transformation

Operator 0 coherence ±1 coherence

density matrix R
(2)
Iz = 1 R

(2)
CT = − i

2
K

(θ1,θ2)
−2

R
(2)
ZQA = −J (θ1)

−1 R
(2)
SQ1 =

1

2
√
3
S(θ1)

R
(2)
ZQB = −2J

(θ2)
−1 R

(2)
SQ2 =

i√
3
S(θ2)

R
(2)
ZQC = +

1

2
K

(θ1,θ2)
−2

R
(2)
ZQD = −1

2
K

(θ1,θ2)
+2

±2 coherence ±3 coherence

R
(2)
DQ1 =

i

2
√
2
S(θ1) R

(2)
TQ = −1

2
K

(θ1,θ2)
+2

R
(2)
DQ2 =

1√
2
S(θ2)

Operator 0 coherence ±1 coherence

detection operator 0 P
(2)
CT− =

i

2
C(θ1) +

i

4
J
(θ)
−1 C(θ2) −

i

4
J
(θ)
+1

P
(2)
CT+ = +

i

4
J
(θ)
+1 J

(θ2)
−1

P
(2)
SQ+ = +

i

4
√
3
J
(θ)
+1 S(θ2)

P
(2)
SQ− = +

i

4
√
3
J
(θ)
−1 S(θ2)

±2 coherence ±3 coherence

P
(2)
DQ = +

i

2
√
2
S(θ1) P

(2)
TQ− =

1

2
C(θ1) +

1

4
J
(θ)
+1 C(θ2) −

1

4
J
(θ)
−1

P
(2)
TQ+ − 1

4
J
(θ)
−1 J

(θ2)
−1

θ1 = θ + 2
√
3
(
i C

(2)
SQ

)
; θ2 = 2

√
2
(
i C

(2)
DQ

)
; θZQ =

(
G

(2)
ZQ − ωQ

)
tp1

θRF = ω1tp1 ; θCT = 2G
(2)
CT tp1 ; θTQ = 2G

(2)
TQtp1 ;

θ =

(√
3ω1

ΩQ

)
; J

(θ)
±n = cos(θ)± n ; K

(θ1,θ2)
±n = cos(θ1)± n cos(θ2)

C(θ) = cos (θ) ; S(θ) = sin (θ)



B. CALCULATIONS INVOLVING EFFECTIVE HAMILTONIANS FROM REGIME-I 140

Table B.2.2: Description of the coefficients employed in the perturbing Hamiltonian (Eq. 3.32)

G
(1)
SQ G

(1)
DQ

G
(1)
SQ,0 = 0 G

(1)
DQ,0 = 0

G
(1)
SQ,1 = 0 G

(1)
DQ,1 = 0

G
(1)
SQ,2 = 0 G

(1)
DQ,2 = − ω1

2
√
2
(θ)

G
(1)
SQ,3 =

1

3× 1!

(ω1

2

)
(θ)2 G

(1)
DQ,3 = 0

G
(1)
SQ,4 = 0 G

(1)
DQ,4 =

1

3!

(
ω1

2
√
2

)
(θ)3

G
(1)
SQ,5 = − 1

5× 3!

(ω1

2

)
(θ)4 G

(1)
DQ,5 = 0

G
(1)
SQ,6 = 0 G

(1)
DQ,6 = − 1

5!

(
ω1

2
√
2

)
(θ)5

G
(1)
SQ,7 =

1

7× 5!

(ω1

2

)
(θ)6 G

(1)
DQ,7 = 0

. .

. .

G
(1)
SQ = +

(ω1

2

){ 1

3× 1!
(θ)2 G

(1)
DQ = −

(
ω1

2
√
2

)
S(θ)

− 1

5× 3!
(θ)4 +

1

7× 5!
(θ)6 − ....

}

θ =

(√
3ω1

ΩQ

)
; C(θ) = cos (θ) ; S(θ) = sin (θ)
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Table B.2.3: Coefficients employed in the description of the Effective Hamiltonian (Eq. 3.39)
derived from second transformation

G
(2)
CT G

(2)
TQ G

(2)
ZQ

G
(2)
CT,0 = G

(1)
CT G

(2)
TQ,0 = G

(1)
TQ G

(2)
ZQ,0 = G

(1)
ZQ

G
(2)
CT,1 = 0 G

(2)
TQ,1 = 0 G

(2)
ZQ,1 = 0

G
(2)
CT,2 =

i

2
G

(2)
CTQ,A G

(2)
TQ,2 =

i

2
G

(2)
CTQ,A G

(2)
ZQ,2 =

i

2
G

(2)
ZQ,A

G
(2)
CT,3 = 0 G

(2)
TQ,3 = 0 G

(1)
ZQ,3 = 0

G
(2)
CT,4 = − i

4× 2!
G

(2)
CTQ,B G

(2)
TQ,4 = − i

4× 2!
G

(2)
CTQ,B G

(2)
ZQ,4 = − i

4× 2!
G

(2)
ZQ,B

G
(2)
CT,5 = 0 G

(2)
TQ,5 = 0 G

(2)
ZQ,5 = 0

G
(2)
CT,6 =

i

6× 4!
G

(2)
CTQ,C G

(2)
TQ,6 =

i

6× 4!
G

(2)
CTQ,C G

(2)
ZQ,6 =

i

6× 4!
G

(2)
ZQ,C

G
(2)
CT,7 = 0 G

(2)
TQ,7 = 0 G

(2)
ZQ,7 = 0

. . .

. . .
G

(2)
CT = G

(1)
CT +

{
G

(2)
CT,1 G

(2)
TQ = G

(1)
TQ +

{
G

(2)
TQ,1 G

(2)
ZQ = G

(1)
ZQ +

{
G

(2)
ZQ,1

+G
(2)
CT,2 + G

(2)
CT,3 + ....

}
+ G

(2)
TQ,2 + G

(2)
TQ,3 + ....

}
+ G

(2)
ZQ,2 + G

(2)
ZQ,3 + ....

}

θ =

(√
3ω1

ΩQ

)
; C(θ) = cos (θ)

C Calculations involving effective Hamiltonians
from Regime-II

C.1 From first transformation S1

To have a consistent description, the initial density operator (ρF (0) = (Iz)0) along
with the detection operator ‘T (3)−3’, is transformed by the transformation function
‘S1.’ The transformed initial density operator and the detection operators are
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illustrated below.

ρ̃F (0) =e
iλS1 ρF (0) e

−iλS1

= R
(1)
STA

{(
Φ1RF

+
A

)
+1

+
(
Φ−1

1 RF−
A

)
−1

}
+R

(1)
STB

{(
Φ1RF

+
B

)
+1

+
(
Φ−1

1 RF−
B

)
−1

}
+R

(1)
CT

{(
Φ1RF

+
C

)
+1

+
(
Φ−1

1 RF−
C

)
−1

}
+R

(1)
TQ

{(
iΦ3

1T
(3)3
)
+3

−
(
iΦ−3

1 T (3)−3
)
−3

}
(C.1.1)

T̃
(3)−3
F = eiλS1 T

(3)−3
F e−iλS1

= e3iω0t2 ΦR

{
P

(1)
TQ−

(
T (3)−3

)
−3

+ P
(1)
TQ+

(
Φ6

1T
(3)3
)
+3

+P
(1)
CT−

(
Φ2

1RF
−
C

)
−1

+ P
(1)
CT+

(
Φ4

1RF
+
C

)
+1

+P
(1)
STA−

(
Φ2

1RF
−
A

)
−1

+ P
(1)
STA+

(
Φ4

1RF
+
A

)
+1

+P
(1)
STB−

(
Φ2

1RF
−
B

)
−1

+ P
(1)
STB+

(
Φ4

1RF
+
B

)
+1

}
(C.1.2)

Subsequently, employing the effective Hamiltonian (Eq. 3.50), the evolution of the
initial density operator in Regime-II is calculated. In contrast to the description
in Regime-I, only SQ and TQ coherences are created by the pulse in Regime-II.

ρ̃F (tp1) = ρ̃F (tp1)SQ + ρ̃F (tp1)TQ (C.1.3)

A detailed description of the coherences is illustrated below.

ρ̃F (tp1)SQ = ρ̃F (tp1)SQ,CT + ρ̃F (tp1)SQ,ST

The SQ central coherence corresponding to the central transition (SQ,CT) is rep-
resented by,

ρ̃F (tp1)SQ,CT =R
(1)
CT

{
ei(θCT )

(
Φ1RF

+
C

)
+1

+ e−i(θCT )
(
Φ−1

1 RF−
C

)
−1

}
(C.1.4)

while, the satellite transitions (SQ,ST) are represented by,

ρ̃F (tp1)SQ,ST = R
(1)
STA

{
ei(θSTA)

(
Φ1RF

+
A

)
+1

+ e−i(θSTA)
(
Φ−1

1 RF−
STA

)
−1

}
+R

(1)
STB

{
ei(θSTB)

(
Φ1RF

+
B

)
+1

+ e−i(θSTB)
(
Φ−1

1 RF−
STB

)
−1

}
(C.1.5)
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In a similar vein, the TQ coherences are represented by

ρ̃F (tp1)TQ = R
(1)
TQ

{
ei(θTQ) (iΦ3

1T
(3)3
)
+3

+ e−i(θTQ) (iΦ−3
1 T (3)−3

)
−3

}
(C.1.6)

It is important to realize here that in Regime-II, both the SQ and TQ coherences
are represented by off-diagonal operators. Subsequently, the TQ signal in Regime-
II is calculated by the expression given below.

⟨
T (3)−3(tp1)

⟩
= Tr

[
ρ̃F (tp1).T̃

(3)−3
F

]
=
(
iR

(1)
TQ

)
.
{(
P

(1)
TQ−

)
e(iθTQ) −

(
P

(1)
TQ+

)
e(−iθTQ)

}
=
(
R

(1)
CT

)
.
{(
P

(1)
CT−

)
e(iθCT ) +

(
P

(1)
CT+

)
e(−iθCT )

}
=
(
R

(1)
STA

)
.
{(
P

(1)
STA−

)
e(iθSTA) +

(
P

(1)
STA+

)
e(−iθSTA)

}
=
(
R

(1)
STB

)
.
{(
P

(1)
STB−

)
e(iθSTB) +

(
P

(1)
STB+

)
e(−iθSTB)

}
(C.1.7)

On further simplification, Eq. C.1.7 reduces to a much simpler form

⟨
T (3)−3(tp1)

⟩
=
(
Φ3

1 ΦR

){
−1

8
S(θTQ)

{{
C(ξ) − 1

}{
2 C(ξ) − 1

}}
+
1

8
S(θCT )

{{
C(ξ) + 1

}{
2 C(ξ) + 1

}}
−3

8
S(θSTA)

{{
1√
3
S(ξ) − 1

}{
2√
3
S(ξ) − 1

}}
−3

8
S(θSTB)

{{
1√
3
S(ξ) + 1

}{
2√
3
S(ξ) + 1

}}}
(C.1.8)
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Table C.1.1: Coefficients employed in the description of density operator (Eqs. C.1.1 and
C.1.3) and detection operator Eq. C.1.2 in Regime-II based on first transformation

Operator ±1 coherence ±3 coherence

density matrix R
(1)
STA = +

1

2

{
1√
3
S(ξ) − 1

}
R

(1)
TQ = +

1

2

{
1√
3
C(ξ) − 1

}
R

(1)
STB = −1

2

{
1√
3
S(ξ) + 1

}
R

(1)=
CT − 1

2

{
1√
3
C(ξ) + 1

}

Detection operator P
(1)
STA− = +

{
i

8
√
3
S(ξ) −

i

4

}
P

(1)
TQ− =

1

8

{
C(ξ) + 1

}
P

(1)
STA+ = −

{
i
√
3

8
S(ξ)

}
P

(1)
TQ+ = +

3

8

{
C(ξ) − 1

}
P

(1)
STB− = +

{
− i

8
√
3
S(ξ) −

i

4

}

P
(1)
STB+ = +

{
i
√
3

8
S(ξ)

}
P

(1)
CT− = − i

8

{
C(ξ) + 1

}
P

(1)
CT+ =

3i

8

{
C(ξ) − 1

}
ξ =

(√
3ΩQ

4ω1

)
; C(ξ) = cos (ξ) ; S(ξ) = sin (ξ)

θTQ = 3ω1tp1 +

(
3 G

(1)
1R −G

(1)
3R

)
tp1

5
; θCT = ω1tp1 +

(
G

(1)
1R + 3 G

(1)
3R

)
tp1

5
;

θSTA = ω1tp1 +

(
G

(1)
1R + 5 G

(1)
2R − 2 G

(1)
3R

)
tp1

5
; θSTB = ω1tp1 +

(
G

(1)
1R − 5 G

(1)
2R − 2 G

(1)
3R

)
tp1

5
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Table C.1.2: Definition of the coefficients employed in the derivation of effective Hamiltonian
(Eq. 3.50) based on first transformation

G
(1)
1R G

(1)
2R G

(1)
3R

G
(1)
1R,1 = 0 G

(1)
2R,1 =

ΩQ

2
G

(1)
3R,1 = 0

G
(1)
1R,2 =

1

2× 0!

(√
3ΩQ

)
(ξ) G

(1)
2R,2 = 0 G

(1)
3R,2 =

1

2× 0!

(√
3ΩQ

2

)
(ξ)

G
(1)
1R,3 = 0 G

(1)
2R,3 = − 1

2!

ΩQ

2
(ξ)2 G

(1)
3R,3 = 0

G
(1)
1R,4 = − 1

4× 2!

(√
3ΩQ

)
(ξ)3 G

(1)
2R,4 = 0 G

(1)
3R,4 = − 1

4× 2!

(√
3ΩQ

2

)
(ξ)3

G
(1)
1R,5 = 0 G

(1)
2R,5 =

1

4!

ΩQ

2
(ξ)4 G

(1)
3R,5 = 0

G
(1)
1R,6 =

1

6× 4!

(√
3ΩQ

)
(ξ)5 G

(1)
2R,6 = 0 G

(1)
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1
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(√
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2
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(ξ)5

G
(1)
1R,7 = 0 G

(1)
2R,7 = − 1

6!
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2
(ξ)6 G

(1)
3R,7 = 0

. . .

. . .

G
(1)
1R =

(√
3ΩQ

){
+

1

2× 0!
(ξ) G

(1)
2R =

(
ΩQ

2

)
C(ξ) G

(1)
3R =

(√
3ΩQ

2

){
+

1

2× 0!
(ξ)

− 1

4× 2!
(ξ)3 +

1

6× 4!
(ξ)5 + ....

}
− 1

4× 2!
(ξ)3 +

1

6× 4!
(ξ)5 + ....

}

ξ =

(√
3ΩQ

4ω1

)
; C(ξ) = cos (ξ)

Table C.1.3: Coefficients employed in the derivation of Effective Hamiltonians for Case-I and
Case-II in Regime-II based on first transformation

G
(1)
1R G

(1)
2R G

(1)
3R

Case-I

{(√
3ΩQ

2

)
(ξ)

}
+

(
ΩQ

2

)
− 1

2!

(
ΩQ

2

)
(ξ)2

1

2

{(√
3ΩQ

2

)
(ξ)

}

Case-II
(√

3ΩQ

){
+

1

2× 0!
(ξ)

(
ΩQ

2

)
C(ξ)

(√
3ΩQ

2

){
+

1

2× 0!
(ξ)

− 1

4× 2!
(ξ)3 +

1

6× 4!
(ξ)5 + ....

}
− 1

4× 2!
(ξ)3 +

1

6× 4!
(ξ)5 + ....

}

ξ =

(√
3ΩQ

4ω1

)
; C(ξ) = cos (ξ)
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C.2 From second transformation S2

To further improve the accuracy of the analytic simulations, the residual off-
diagonal terms neglected in the first transformation were further considered in
the calculations. As illustrated in Table.3.7, 3.8the off-diagonal contributions in
Regime-II mainly comprise of the DQ transitions operators. To fold the above
off-diagonal contributions, a second transformation ‘S2’ was employed. The diag-
onal corrections from the first transformation were included along ‘H0’ and the

off-diagonal operators
((

D̂
)
±1

)
were included as perturbations. A brief descrip-

tion of the procedure employed in the derivation of effective Floquet Hamiltonian
from the second transformation ‘S2’ is outlined below.

H0 = ω1IF +
i√
5
G

(1)
1R

(
T (1)0

)
0
+ G

(1)
2R

(
T (2)0

)
0
+

i√
5
G

(1)
3R

(
T (3)0

)
0

(C.2.1)

H1 = G
(1)
DR

{(
Φ2

1T
(2)2
)
+2

+
(
Φ−2

1 T (2)−2
)
−2

}
+G

(1)
TR

{(
iΦ2

1T
(3)2
)
+2

+
(
iΦ−2

1 T (3)−2
)
−2

}
(C.2.2)

G
(1)
DR =

N1∑
i=1

G
(1)
DR,i = +

(√
3ΩQ

2
√
2

){
1

3× 1!
(ξ)2 − 1

5× 3!
(ξ)4 +

1

7× 5!
(ξ)6 − ....

}
(C.2.3)

G
(1)
TR =

N1∑
i=1

G
(1)
TR,i = −

(
ΩQ

2
√
2

)
S(ξ) (C.2.4)

where, ‘G(1)
DR =

∑N1

i=1G
(1)
DR,i’, ‘G(1)

TR =
∑N1

i=1G
(1)
TR,i’ and ‘N1’ represents the order

of the corrections from the first transformation. Employing the transformation
function ‘S2’,

S2 = C
(2)
DR′

{(
Φ2

1T
(2)2
)
+2

−
(
Φ−2

1 T (2)−2
)
−2

}
+ C

(2)
TR′

{(
iΦ2

1T
(3)2
)
+2

−
(
iΦ−2

1 T (3)−2
)
−2

}
(C.2.5)
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C
(2)
DR′ =

−5i
{
5 G

(1)
DR G

(1)
2R +G

(1)
TR

(
2 G

(1)
1R +G

(1)
3R + 10 ω1

)}
{(

5 G
(1)
2R

)2
−
(
2 G

(1)
1R +G

(1)
3R + 10 ω1

)2}

C
(2)
TR′ =

−5i
{
5 G

(1)
TR G

(1)
2R +G

(1)
DR

(
2 G

(1)
1R +G

(1)
3R + 10 ω1

)}
{(

5 G
(1)
2R

)2
−
(
2 G

(1)
1R +G

(1)
3R + 10 ω1

)2} (C.2.6)

C
(i+1)
DR =

n−1∑
i=1

C
(i+1)
DR′ ; C

(i+1)
TR =

n−1∑
i=1

C
(i+1)
TR′ (C.2.7)

where ‘i’ takes values from 1 to ‘n− 1’, where ‘n’ is the number of ‘S’ transforma-
tions applied (Here n = 2).
the off-diagonal contributions to ‘H1’ are completely folded. In contrast to the
previous description involving single transformation, the higher order contribu-
tions in the present case are evaluated using the commutator between S2 and H1.
Analogous to the description in Regime-I, the general expression illustrating the
various contributions are presented below.

H(2)
n =

∞∑
n=2

(i)n−1

n× (n− 2)!

[S2, ............... [S2︸ ︷︷ ︸
n−1

, H1 ] ...............]

 (C.2.8)

The diagonal and off-diagonal contributions resulting from the second transforma-
tion are tabulated in Table. C.2.1.
As illustrated in Table. C.2.1, the even order terms comprise of diagonal contribu-
tions ( from ZQ operators (T (1)0, T (2)0, T (3)0)), while the odd-order terms represent
off-diagonal contributions from (DQ)±1. Following the standard procedure, the ef-
fective Hamiltonian after second transformation is derived and represented below,

Heff = eiλ
2S2 eiλS1 HF e−iλS1 e−iλ2S2

= ω1IF +
i√
5
G

(2)
1R

(
T (1)0

)
0
+ G

(2)
2R

(
T (2)0

)
0
+

i√
5
G

(2)
3R

(
T (3)0

)
0

(C.2.9)
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In Eq. C.2.9, the coefficients ‘G(2)
1R’, ‘G(2)

2R’, ‘G(2)
3R’ comprises of diagonal contri-

butions from both the first and second transformation.

G
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1R =

N1∑
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}
(C.2.10)

The operator form of the transformed initial density operator and the detection
operator are identical to those derived in Eq. C.1.2. A detailed description of the
coefficients is illustrated in Table. C.2.2
Subsequently, the TQ signal after the second transformation is calculated.

⟨
T (3)−3(tp1)

⟩
= Tr

[
ρ̃F (tp1).T̃

(3)−3
F

]
=
(
iR

(2)
TQ

)
.
{(
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)
e(iθTQ) −
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)
e(−iθTQ)

}
=
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}
(C.2.11)
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Table C.2.2: Coefficients employed in the description of the density operator and the detection
operator after the second transformation in Regime-II

Operator ±1 coherence ±3 coherence

density matrix R
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{
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2
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C(ξ1) − C(ξ2)

}
+

√
3

2
S(ξ2)

}

R
(2)
STB =

{
− 1

2
√
3

{
S(ξ1) + S(ξ2)

}
− 1

2
C(ξ2)

}

R
(2)
CT =

{
−1

2

{
C(ξ1) + C(ξ2)

}
+

√
3

2
S(ξ2)

}

Detection operator P
(2)
STA− =

{
i

8
√
3

{
S(ξ1) + S(ξ2)

}
− i

4
C(ξ2)

}
P

(2)
TQ− =

{
1

8

{
C(ξ1) + C(ξ2)

}
+

√
3

4
S(ξ2)

}

P
(2)
STA+ =

{
−
√
3i

8

{
S(ξ1) − S(ξ2)

}}
P

(2)
TQ+ =

{
3

8

{
C(ξ1) − C(ξ2)

}}
P

(2)
STB− =

{
−i
8
√
3

{
S(ξ1) − S(ξ2)

}
− i

4
C(ξ2)

}

P
(2)
STB+ =

{√
3i

8

{
S(ξ1) + S(ξ2)

}}

P
(2)
CT− =

{
3i

8

{
C(ξ1) + C(ξ2)

}}

P
(2)
CT+ =

{
−i
8

{
C(ξ1) − C(ξ2)

}
+
i
√
3

4
S(ξ2)

}

ξ1 = ξ +
√
2
(
iC

(2)
DR

)
; ξ2 =

√
2
(
iC

(2)
TR

)
; C(ξ) = cos (ξ) ; S(ξ) = sin (ξ)

θTQ = 3ω1tp1 +

(
3 G

(2)
1R −G

(2)
3R

)
tp1

5
; θCT = ω1tp1 +

(
G

(2)
1R + 3 G

(2)
3R

)
tp1

5
;

θSTA = ω1tp1 +

(
G

(2)
1R + 5 G

(2)
2R − 2 G

(2)
3R

)
tp1

5
; θSTB = ω1tp1 +

(
G

(2)
1R − 5 G

(2)
2R − 2 G

(2)
3R

)
tp1

5

On further simplification, Eq. C.2.11 reduces to a much simpler form
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⟨
T (3)−3(tp1)

⟩
=
(
Φ3

1 ΦR

){
−1

8
S(θTQ)

{{{
C(ξ1) − C(ξ2)

}
+
√
3 S(ξ2)

}
.
{{

2 C(ξ1) − C(ξ2)

}
+
√
3 S(ξ2)

}}
+
1

8
S(θCT )

{{{
C(ξ1) + C(ξ2)

}
−

√
3 S(ξ2)

}
.
{{

2 C(ξ1) + C(ξ2)

}
−
√
3 S(ξ2)

}}
−3

8
S(θSTA)

{{
1√
3

{
S(ξ1) − S(ξ2)

}
− C(ξ2)

}
.

{
1√
3

{
2 S(ξ1) − S(ξ2)

}
− C(ξ2)

}}
−3

8
S(θSTB)

{{
1√
3

{
S(ξ1) + S(ξ2)

}
+ C(ξ2)

}
.

{
1√
3

{
2 S(ξ1) + S(ξ2)

}
+ C(ξ2)

}}}
(C.2.12)

Based on the coefficients described in Table. C.2.2 and considering the leading

terms, a simplified form of the above equation is derived.
(
θTQ = 3ω1tp1 +

3Ω2
Q tp1

16 ω1

θCT = ω1tp1 +
3Ω2

Q tp1

16 ω1

; θSTA = ω1tp1 +
ΩQ

2

(
1−

3Ω2
Q

32 ω2
1

)
tp1 ;

θSTB = ω1tp1 −
ΩQ

2

(
1−

3Ω2
Q

32 ω2
1

)
tp1

)
⟨
T (3)−3(tp1)

⟩
∝
{
S(θTQ) + S(θCT ) + S(θSTA) + S(θSTB)

}
(C.2.13)
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Table C.2.3: Description of the coefficients employed in the perturbing Hamiltonian (Eq. C.2.2)
G

(1)
DR G

(1)
TR

G
(1)
DR,1 = 0 G

(1)
TR,1 = 0

G
(1)
DR,2 = 0 G

(1)
TR,2 = − ΩQ

2
√
2
(ξ)

G
(1)
DR,3 =

1

3× 1!

(√
3ΩQ

2
√
2

)
(ξ)2 G

(1)
TR,3 = 0

G
(1)
DR,4 = 0 G

(1)
TR,4 =

1

3!

(
ΩQ

2
√
2

)
(ξ)3

G
(1)
DR,5 = − 1

5× 3!

(√
3ΩQ

2
√
2

)
(ξ)4 G

(1)
TR,5 = 0

G
(1)
DR,6 = 0 G

(1)
TR,6 = − 1

5!

(
ΩQ

2
√
2

)
(ξ)5

G
(1)
DR,7 =

1

7× 5!

(√
3ΩQ

2
√
2

)
(ξ)6 G

(1)
TR,7 = 0

. .

. .

G
(1)
DR = +

(√
3ΩQ

2
√
2

){
1

3× 1!
(ξ)2 G

(1)
TR = −

(
ΩQ

2
√
2

)
S(ξ)

− 1

5× 3!
(ξ)4 +

1

7× 5!
(ξ)6 − ....

}

ξ =

(√
3ΩQ

4ω1

)
; C(ξ) = cos (ξ) ; S(ξ) = sin (ξ)
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Table C.2.4: Coefficients employed in the description of the Effective Hamiltonian (Eq. C.2.9)
derived from second transformation in Regime-II

G
(2)
1R G

(2)
2R G

(2)
3R

G
(2)
1R,1 = 0 G

(2)
2R,1 = 0 G

(2)
3R,1 = 0

G
(2)
1R,2 =

i

2
G

(2)
13R,A G

(2)
2R,2 =

i

2
G

(2)
2R,A G

(2)
3R,2 =

i

2
G

(2)
13R,A

G
(2)
1R,3 = 0 G

(2)
2R,3 = 0 G

(1)
3R,3 = 0

G
(2)
1R,4 = − i

4× 2!
G

(2)
13R,B G

(2)
2R,4 = − i

4× 2!
G

(2)
2R,B G

(2)
3R,4 = − i

4× 2!
G

(2)
13R,B

G
(2)
1R,5 = 0 G

(2)
2R,5 = 0 G

(2)
3R,5 = 0

G
(2)
1R,6 =

i

6× 4!
G

(2)
13R,C G

(2)
2R,6 =

i

6× 4!
G

(2)
2R,C G

(2)
3R,6 =

i

6× 4!
G

(2)
13R,C

G
(2)
1R,7 = 0 G

(2)
2R,7 = 0 G

(2)
3R,7 = 0

. . .

G
(2)
1R = G

(1)
1R +

{
i

2× 0!
G

(2)
13R,A G

(2)
2R = G

(1)
2R +

{
i

2× 0!
G

(2)
2R,A G

(2)
3R = G

(1)
3R +

{
i

2× 0!
G

(2)
13R,A

− i

4× 2!
G

(2)
13R,B +

i

6× 4!
G

(2)
13R,C + . . .

}
− i

4× 2!
G

(2)
2R,B +

i

6× 4!
G

(2)
2R,C + . . .

}
− i

4× 2!
G

(2)
13R,B +

i

6× 4!
G

(2)
13R,C + ....

}

θ =

(√
3ω1

ΩQ

)
; C(θ) = cos (θ)
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Chapter 4

Conclusions and Perspectives

In summary, the effective Floquet Hamiltonian approach proposed in this the-
sis offers an attractive option for describing multiple-quantum excitation in both
isotropic and anisotropic solids. Depending on the relative magnitudes of the
quadrupolar coupling constant with respect to the amplitude of the RF pulse, the
choice of the interaction frame plays an important role in the convergence of the
perturbation corrections to the effective Floquet Hamiltonians. When the magni-
tude of the quadrupolar frequency (ΩQ) largely exceeds the RF amplitude (ω1), the
effective Hamiltonians derived from the quadrupolar interaction frame (Regime-I)
provide an accurate description of the excitation process. Alternatively, when the
quadrupolar frequency (ΩQ) is lower than the amplitude of the excitation pulse
(ω1), description in the RF interaction frame (Regime-II) is necessary. In both
these cases, the convergence of the perturbation corrections/series is faster and
the number of transformations required in the derivation of the effective Floquet
Hamiltonian is limited to a single unitary transformation. Below, we summarise
the results obtained for the DQ excitation in spin I = 1 and TQ excitation in
spin I = 3/2 system. In the strong coupling regime, the DQ excitation is described
by Eq. 4.1, while, in the weak-coupling regime (Eq. 4.2) describes the excitation.
In a similar vein, the TQ excitation (in I = 3/2) in the strong and weak-coupling
regimes are described by Eqs. 4.3 and 4.4, respectively.
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⟨
T (2)−2(tp1)

⟩
= −i

(
Φ2

1ΦR

){
sin
(
2 ω2

1 tp1
ΩQ

)}
(4.1)

⟨
T (2)−2(tp1)

⟩
= i
(
Φ2

1ΦR

){
sin
(
ΩQtp1
4

)
exp

(
i

(
ω1tp1 +

Ω2
Qtp1

32ω1

))}
(4.2)

⟨
T (3)−3(tp1)

⟩
= −

(
Φ3

1ΦR

){3

2
sin
(
3 ω3

1 tp1
2 Ω2

Q

)}
(4.3)

⟨
T (3)−3(tp1)

⟩
=
(
Φ3

1ΦR

){3

2
sin (ω1 tp1) sin2

(
ΩQ tp1

4

)}
(4.4)
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Figure 4.1: Comparison of DQ excitation in a single crystal (panel A) and powder sample (panel
B) corresponding to the strong and weak coupling regimes respectively. In contrast to the
single crystal, the DQ signal in powder sample (panel B) decays with time, clearly illustrating
the interference effects between the different crystallite orientations. The following parameters
were employed in the simulations: A1) CQ = 1 MHz, (ω1/2π) = 100 kHz, A2) CQ = 50 kHz,
(ω1/2π) = 100 kHz, A3) CQ = 25 kHz, (ω1/2π) = 100 kHz, B1) CQ = 1 MHz, (ω1/2π) = 100 kHz,
B2) CQ = 50 kHz, (ω1/2π) = 100 kHz and B3) CQ = 25 kHz, (ω1/2π) = 100 kHz.
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As discussed in this thesis, the above expressions are equally valid for describing
the excitation in both isotropic (single crystal, ΩQ = ωQ) and anisotropic (powder
samples, ΩQ = ω

(αβγ)
Q ) solids. In contrast to the AHT formalism, the effective

Floquet Hamiltonian framework proposed in this thesis presents an unified de-
scription for all the crystallites in a powder sample. For comparative purposes,
the multiple-quantum excitation (Figure. 4.1, DQ excitation in spin I = 1 and
Figure. 4.2, TQ excitation in spin I = 3/2) observed in single crystal is compared
below with those obtained from a powder sample.
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Figure 4.2: Comparison of TQ excitation in a single crystal (panel A) and powder sample (panel
B) corresponding to the strong and weak coupling regimes respectively. In contrast to the
single crystal, the TQ signal in powder sample (panel B) decays with time, clearly illustrating
the interference effects between the different crystallite orientations. The following parameters
were employed in the simulations: A1) CQ = 2 MHz, (ω1/2π) = 100 kHz, A2) CQ = 150 kHz,
(ω1/2π) = 100 kHz, A3) CQ = 30 kHz, (ω1/2π) = 100 kHz, B1) CQ = 2 MHz, (ω1/2π) = 100 kHz,
B2) CQ = 150 kHz, (ω1/2π) = 100 kHz and B3) CQ = 30 kHz, (ω1/2π) = 100 kHz.

As depicted, in the case of a single crystal (panels A1, A3 in Figures. 4.1 and 4.2),
the excitation profiles both in the strong and weak-coupling regimes are oscillatory
(periodic) and resemble to the Rabi oscillations1. Interestingly, in the case of a
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powder sample, (panels B1, B3 in Figures. 4.1 and 4.2) the oscillations decrease
in intensity with time and are no longer periodic. This dissipation of the signal
in the time-domain could be explained through the analytic expressions described
above. In the case of a single crystal (both in strong and weak-coupling regimes),
the excitation profile is described by a single trigonometric function. On the con-
trary, in a powder sample, the signal in the time domain (at each time point) is an
ensemble average over all possible orientations. Hence, the time-domain signal in
a powder sample has contributions from a distribution of quadrupolar frequencies
associated with individual crystallites leading to interference between the different
trigonometric terms. Consequently, the signal intensity decreases with time (or
gets damped) in a powder sample and was also reported recently in a theoretical
study involving spin I = 1/2 nuclei2.
Based on the above equations, in the strong coupling regime, the efficiency of DQ
and TQ transitions is (a) proportional to the amplitude of the pulse (b) inversely
proportional to the quadrupolar coupling constant.

0 50 100
-1

-0.5

0

0.5

1

                                      (A1)

0 50 100 150 200
-1

-0.5

0

0.5

1

                                      (A2)

0 25 50 75

-0.2
-0.1

0
0.1
0.2

                                      (B1)

0 50 100 150

-0.2
-0.1

0
0.1
0.2

                                      (B2)

Time (µsec)

D
Q

 e
xp

ec
ta

tio
n 

va
lu

e

Total orientations = 28656
ω1= 200 kHz
ω1= 100 kHz

Figure 4.3: Comparison of DQ excitation in a single crystal (panel A) and powder sample (panel
B) corresponding to the high coupling regime (Regime-I). In contrast to the single crystal, the
DQ signal in powder sample (panel B) decays with time, clearly illustrating the interference
effects between the different crystallite orientations. The following parameters were employed in
the simulations: A1) CQ = 1 MHz, (ω1/2π) = 100, 200 kHz, A2) CQ = 2 MHz, (ω1/2π) = 100, 200
kHz, B1) CQ = 1 MHz, (ω1/2π) = 100, 200 kHz, and B2) CQ = 2 MHz, (ω1/2π) = 100, 200 kHz.
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Figure 4.4: Comparison of TQ excitation in a single crystal (panel A) and powder sample (panel
B) corresponding to the high coupling regime (Regime-I). In contrast to the single crystal, the
TQ signal in powder sample (panel B) decays with time, clearly illustrating the interference
effects between the different crystallite orientations. The following parameters were employed in
the simulations: A1) CQ = 1 MHz, (ω1/2π) = 100, 200 kHz, A2) CQ = 2 MHz, (ω1/2π) = 100, 200
kHz, B1) CQ = 1 MHz, (ω1/2π) = 100, 200 kHz, and B2) CQ = 2 MHz, (ω1/2π) = 100, 200 kHz.
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Figure 4.5: Comparison of DQ excitation in a single crystal (panel A) and powder sample (panel
B) corresponding to the weak coupling regime (Regime-II). In contrast to the single crystal, the
DQ signal in powder sample (panel B) decays with time, clearly illustrating the interference
effects between the different crystallite orientations. The following parameters were employed in
the simulations: A1) CQ = 25, 50 kHz, (ω1/2π) = 100 kHz, A2) CQ = 25, 50 kHz, (ω1/2π) = 200
kHz, B1) CQ = 25, 50 kHz, (ω1/2π) = 100 kHz, and B2) CQ = 25, 50 kHz, (ω1/2π) = 200 kHz.
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Figure 4.6: Comparison of TQ excitation in a single crystal (panel A) and powder sample (panel
B) corresponding to the weak coupling regime (Regime-II). In contrast to the single crystal, the
TQ signal in powder sample (panel B) decays with time, clearly illustrating the interference
effects between the different crystallite orientations. The following parameters were employed in
the simulations: A1) CQ = 50, 100 kHz, (ω1/2π) = 100 kHz, A2) CQ = 50, 100 kHz, (ω1/2π) = 200
kHz, B1) CQ = 50, 100 kHz, (ω1/2π) = 100 kHz, and B2) CQ = 50, 100 kHz, (ω1/2π) = 200 kHz.

By contrast, in the weak-coupling limit, the efficiency of DQ and TQ transitions is
(a) proportional to the quadrupolar coupling constant (b) inversely proportional
to the amplitude of the pulse.
In the case of the intermediate (2 ≤ ωQ/ω1 ≤ 10) regime (panels A2, B2 in Fig-
ures. 4.1 and 4.2) the MQ oscillations are aperiodic both in the single crystal and
powder samples. The non-periodicity in the case of single crystal arises mainly
due to the interference effects between the trigonometric expressions present in the
signal expression (see Eqs. 4.5, 4.6 and 4.7, 4.8.

Spin I = 1 (Intermediate)

Regime-I
⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR

{
cos2 (α) sin (θDQ)− sin2 (α) sin (β)

}
(4.5)
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Regime-II
⟨
T (2)−2(tp1)

⟩
= ie2iω0t2 Φ2

1 ΦR {sin (ξ2R) cos (ξ1R) + cos (ξ2R) sin (ξ1R) sin (2ξDR)}
(4.6)

Spin I = 3/2 (Intermediate)

Regime-I
⟨
T (3)−3(tp1)

⟩
∝ {sin (θTQ) + sin (θCT ) + cos (θRF ) sin (θZQ)

+ sin (θRF ) cos (θZQ)} (4.7)

Regime-II
⟨
T (3)−3(tp1)

⟩
∝ {sin (θTQ) + sin (θCT ) + sin (θSTA) + sin (θSTB)} (4.8)

As discussed in chapters. 2 and 3, in the intermediate regime (whether Regime-I
or Regime-II), multiple transformations are required to improve the accuracy of
the derived effective Hamiltonians. Consequently, the MQ signal expression has a
complicated dependence on the RF amplitude and the quadrupolar frequency. In
analytic simulations involving powder samples, the calculations in the intermediate
regime could become influential in improving the accuracy of the derived effective
Floquet Hamiltonians. As described in this thesis, the hybrid method provides an
accurate description in powder samples. Depending on the relative magnitudes
of the quadrupolar frequency with respect to the RF amplitude, the percentage
of contributions from regime-I and II differ and is illustrated in Tables. 4.1 and
4.2 for spin I = 1 and I = 3/2, respectively. In the case of MAS experiments,
the dominant quadrupolar interaction is time-dependent. Consequently, analytic
descriptions based on perturbation theory are ill-suited for describing the spin
dynamics.
In cases where the properties of materials under investigation get altered due to
repeated bombardment of RF irradiation/pulses, real time analyses of the process
in the form of In- situ or operando experiments are preferred3,4. The in-situ
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experiments provide us the real time tracking of dynamic processes and short
lived states enabling to extract site- specific data.

Table 4.1: Classification of crystallite orientations of spin I = 1 into Regime-I and Regime-II
based on the relative magnitude of the anisotropic quadruple coupling constant ‘ωQ/2π’ to the

amplitude of the exciting pulse ‘ω1/2π’ when RF amplitude is always at ω1/2π = 100 kHz
ω1 : ωQ No. of crystallite No. of crystallite Total No. of crystallite

orientations in Regime-I orientations in Regime-II orientations

1 : 20 26324 (91.86%) 2322 (8.14%) 28656

1 : 10 23934 (83.52%) 4722 (16.48%) 28656

1 : 5 18528 (64.66%) 10128 (35.34%) 28656

1 : 3 9898 (34.54%) 18758 (65.46%) 28656

1 : 2 4708 (16.43%) 23948 (83.57%) 28656

1 : 1 0 28656 (100.00%) 28656

Table 4.2: Classification of crystallite orientations of spin I = 3/2 into Regime-I and Regime-II
based on the relative magnitude of the anisotropic quadruple coupling constant ‘ωQ/2π’ to the

amplitude of the exciting pulse ‘ω1/2π’ when RF amplitude is always at ω1/2π = 100 kHz
ω1 : ωQ No. of crystallite No. of crystallite Total No. of crystallite

orientations in Regime-I orientations in Regime-II orientations

1 : 20 27364 (95.50%) 1292 (4.50%) 28656

1 : 10 26064 (90.95%) 2592 (9.05%) 28656

1 : 5 23394 (81.64%) 5262 (18.36%) 28656

1 : 3 19512 (68.09%) 9144 (31.91%) 28656

1 : 2 11228 (39.18%) 17428 (60.82%) 28656

1 : 1 0 28656 (100.00%) 28656

Several ex-situ experiments are combined with in-situ experiments to cross-check
the validity of the results5. These in-situ experiments are mostly performed under



162

static conditions5. We believe that the present study offers an alternate framework
for describing the effects of RF pulses on quadrupolar spins and would be beneficial
in the design/quantifying more sophisticated experiments in anisotropic solids.
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