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Abstract of the thesis

Commutator subgroups of Artin’s braid groups Bn are well studied by Gorin
and Lin in their 1969 paper, where they obtained finite presentation for B′n for each
n. Later, in 1993, Savushkina gave a simpler presentation for B′n.

The goal of this thesis is to understand the structure of the commutator sub-
groups of some of the generalizations of Artin’s braid groups Bn, namely the welded
braid groups WBn, the generalized virtual braid groups GV Bn, the flat welded
braid groups FWBn, the flat virtual braid groups FV Bn, and the twin groups
TWn. As consequences of the above investigations we prove several algebraic and
geometric properties of the above groups.
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CHAPTER 1

Summary of the thesis

The commutator subgroup or derived subgroup of a group G is the subgroup

G′ generated by the elements of the form x−1y−1xy. The group G′ is the smallest

normal subgroup of G that abelianizes G, i.e. a quotient group G/N is abelian if

and only if G′ ≤ N . Thus the group G′ distinguishes the abelian factor groups of

G from the non-abelian ones. The group G′ is one measure to know how far is G

from being abelian. The quotient G/G′ is also isomorphic to H1(G,Z), the first

homology group of G with integral coefficients. The commutator subgroup G′ is

also the smallest normal subgroup of G that is invariant under every automorphism

of G. Given any group G, the structure of the commutator subgroup G′ is thus a

very crucial information about G. Applying this information, one may also try to

get various geometric information, e.g. commutator width, of the group G.

The braid group on n strands, classically known as Artin’s braid group, is a

central object of investigation due to its appearances in several branches of mathe-

matics; for details refer to the surveys [Par09, BB05]. The commutator subgroup

B′n of Artin’s braid group on n strands Bn is well-studied. Gorin and Lin, in their

1969 paper [GL69], obtained a finite presentation for B′n for each n. Simpler pre-

sentation for B′n was obtained by Savushkina in [Sav93]. Several authors have

investigated commutator subgroups of larger classes of spherical Artin groups, e.g.

[Zin75], [MR], [Ore12]. Also refer [GG11].

In this thesis, we ask for the commutator subgroups of some of the generalized

braid groups. There have been several generalizations of Artin’s braid groups in

the literature that appeared in different contexts. Many of these generalized braid

groups are of importance in their own rights, and are topics of active research.

For example, see [Bel04], [BG12], [Dam17], [Ver06], [Ver14] for some of the
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research directions on several avatars of the classical braid groups. In this context,

it is a natural question to investigate structures of the commutator subgroups of

these generalized braid groups.

In this thesis, we have investigated the commutator subgroups of four important

classes of generalized braid groups, viz. the welded braid groups, the generalized

virtual braid groups introduced by Fang, the flat quotients of the virtual (and

welded) braid groups, and the twin groups or Grothendieck’s cartographical groups.

We have also applied the description of the commutator subgroups to extract some

algebraic and geometric properties of the ambient groups.

In each of the above cases, we use the tool known as Reidemeister-Schreier

method to obtain a presentation for the commutator subgroup. Exploiting this

presentation in the respective cases we deduce several results about the commutator

subgroups.

In the following we briefly describe the main results which are obtained in this

thesis.

Welded Braid Groups. The welded braid groups WBn are certain general-

ization of the Artin’s braid groups. These groups have appeared in several contexts

in the literature, often with different names, e.g. loop braid groups, permutation

braid groups, symmetric automorphisms of free groups ; see [BWC07], [Col89],

[FRR97], [Kau99]. We refer to the recent survey article by Damiani [Dam17]

for further details on different definitions and applications of these groups.

We investigate the commutator subgroup of WBn in Chapter 3. We prove the

following theorem.

Theorem 3.1: ([DG18a]) Let WB′n denote the commutator subgroup of the

welded braid group WBn.

(i) WB′n is a finitely generated group for all n ≥ 3. For n ≥ 7, the rank of

WB′n is at most 1 + 2(n − 3), and for 3 ≤ n ≤ 6, the rank is at most

4 + 2(n− 3).

(ii) For n ≥ 5, WB′n is perfect.
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Using the above theorem, we prove the following corollary.

Corollary 3.2: ([DG18a]) For any n ≥ 3, WB′n is Hopfian.

Another consequence of the above theorem is the following.

Corollary 3.3: ([DG18a]) For a free group Fk, the image of any nontrivial

homomorphism φ : WBn → Fk is infinite cyclic.

Applying Roushon’s results in [Rou02, Rou04], with part (ii) of the above

theorem, we have the following.

Corollary 3.4: ([DG18a]) For n ≥ 5, WBn is adorable of degree 1, and for

n = 3, 4, WBn is not adorable.

Therefore, by Theorem 3.1 and Corollary 3.4 we immediately have the following.

Corollary 3.5: ([DG18a]) The group WB′n is perfect if and only if n ≥ 5.

This generalizes the fact that Bn is adorable of degree 1 for n ≥ 5. It is

easy to see that if f : G → H is a surjective homomorphism with G adorable,

then H is also adorable and doa(H) ≤ doa(G), where doa(G) denotes the degree

of adorability, see [Rou04, Lemma 1.1]. It follows from [BB09, Proposition 8]

that the commutator subgroup V B′n of the virtual braid group V Bn is perfect for

n ≥ 5. Thus, for n ≥ 5, V Bn is adorable of degree 1. The welded braid groups

being quotients of these groups, are also adorable with degree ≤ 1. This gives a

proof of the fact that WB′n is perfect for n ≥ 5. We have given a direct proof of

this fact using the presentation for WB′n. Further we have shown that WB′n is not

perfect for n ≤ 4 to establish Corollary 3.5.

In a recent work of Zaremsky [Zar18], using techniques from Morse theory of

complex symmetric graphs, the finite presentability of WB′n for n ≥ 4 is proved,
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see [Zar18, Theorem B]. The finite generation of WB′n for n ≥ 3 is also implicit in

this work. However it would be an interesting problem to obtain an explicit finite

presentation for WB′n, for n ≥ 4, which remains open.

Fang’s Generalized Virtual Braid Groups. The virtual braid groups V Bn

are a generalization of the Artin’s braid groups Bn, and an extension of the welded

braid groups WBn. It was introduced by L. H. Kauffman in [Kau99]. In [Fan15],

Fang introduced generalized virtual braid groups GV Bn, which simultaneously gen-

eralize the notion of Artin’s braid groups, as well as the virtual braid groups. Fang

constructed this generalization as a group of symmetries behind quantum quasi-

shuffle structures.

We have investigated commutator subgroup of GV Bn in Chapter 4. We prove

the following.

Theorem 4.1: ([DG18c]) Let GV B′n denote the commutator subgroup of

GV Bn.

(i) GV B′n is finitely generated for all n ≥ 4. Further, for n ≥ 5, rank of

GV B′n is at most 3n− 7.

(ii) GV B′3 is not finitely generated.

(iii) GV B′n is perfect if and only if n ≥ 5.

Flat Welded (and Virtual) Braid Groups. We investigate the commutator

subgroups of the flat welded braid group on n strands FWBn and the flat virtual

braid groups on n strands FV Bn in Chapter 5.

We deduce explicit finite presentations for FV B′n and FWB′n in Theorem 5.3.

([DG18a])

We also have the following observation.
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Proposition 5.1: ([DG18a]) The flat virtual braid group FV Bn and the flat

welded braid group FWBn are adorable groups of degree 1 for n ≥ 5; i.e. commu-

tator subgroups of these groups are perfect for n ≥ 5.

Twin Groups or Grothendieck’s Cartographical Groups. In [Kho97],

Khovanov investigated the doodle groups, and introduced the twin group on n

arcs, denoted by TWn. The role of this group in the theory of ‘doodles’ on a

closed oriented surface is similar to the role of Artin’s braid groups in the theory

of knots and links. Khovanov proved that the closure of a twin is a doodle on the

(2 dimensional) sphere; see [Kho97] for details.

For m ≥ 1, the group TWm+2 is isomorphic to Grothendieck’s m-dimensional

cartographical group Cm; hence this group is of importance in Grothendieck’s the-

ory of ‘dessins d’enfant’. Voevodsky used this group in [Voe90] as a generalization

of the 2-dimensional cartographical group. It is a standard fact in this theory that

the conjugacy classes of the 2-dimensional cartographical group C2 can be identi-

fied with combinatorial maps on connected surfaces, not necessarily orientable or

without boundary, see [JS94] for more details. In [Vin83a, Vin83b], Vince looked

at the group Cm as ‘combinatorial maps’ and investigated certain topological and

combinatorial structures associated to this group.

We investigate the commutator subgroup of the group TWn in Chapter 6. It’s

easy to see that TW ′
n is finitely presented. But, in general, it is a difficult problem

to obtain a finite presentation for a finitely presented group, and sometimes it is

algorithmically impossible as well, see [BW11]. So, knowing that TW ′
n is finitely

presented is not enough to have a clear understanding about the structure of the

group. We obtain an explicit finite presentation for TW ′
n. We prove the following

theorem.

Theorem 6.1: ([DG18b]) For m ≥ 1, TW ′
m+2 has the following presentation:

Generators: βp(j), 0 ≤ p < j ≤ m.
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Defining relations: For all l ≥ 3, 1 ≤ k ≤ j, j + 2 ≤ t ≤ m,

βj−k(j) βt−(j+l)(t) = βt−(j+l)(t) βj−k(j),

βt−k(t) = βj−k(j)
−1 βt−(j+1)(t) βj−k(j).

Even if a group is finitely generated, it is a nontrivial problem to compute its

rank. As an application of Theorem 6.1, we obtain the rank of TW ′
n as follows.

Theorem 6.2: ([DG18b]) For m ≥ 1, the group TW ′
m+2 has rank 2m− 1.

In [PV16], Panov and Verëvkin constructed classifying spaces for the commu-

tator subgroups of right-angled Coxeter groups and have given a general formula

for the rank of such groups, see [PV16, Theorem 4.5]. However, the number of

minimal generators given in [PV16] is in general form and involves the rank of

the zeroth homology groups of certain subcomplexes of the underlying classifying

space. In our case, the rank obtained is in terms of the number of ‘arcs’ of the twin

group, or the ‘dimension’ of the cartographical group; and thus it is more explicit.

The following is a consequence of Theorem 6.1 and Theorem 6.2.

Corollary 6.3: ([DG18b]) For m ≥ 1, the quotient group TW ′
m+2/TW

′′
m+2,

is isomorphic to the free abelian group of rank 2m− 1, i.e. the group
⊕2m−1

i=1 Z.
In particular, TW ′

m+2 is not perfect for any m ≥ 1.

We characterize freeness of TW ′
n in the following corollary.

Corollary 6.4: ([DG18b]) TW ′
m+2 is a free group if and only if m ≤ 3. The

group TW ′
3 is infinite cyclic. The groups TW ′

4 and TW ′
5 are free groups of rank 3

and 5 respectively.

As applications of the above results, we also derive few geometric properties of

the ambient group TWn.

We prove the following characterization for word-hyperbolicity of TWn.

Corollary 6.5: ([DG18b]) The group TWm+2 is word-hyperbolic if and only

if m ≤ 3.

6



We prove the following corollary.

Corollary 6.6: ([DG18b]) The group TWm+2 does not contain a surface

group if and only if m ≤ 3.

We also prove the following.

Corollary 6.7: ([DG18b]) The automorphism group of TWm+2 is finitely

presented for m ≤ 3.
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CHAPTER 2

Preliminaries

1. Presentation for a group

In this section we will recall the definition of a presentation for a group and

discuss some examples.

Let G be a group. A subset S of G is said to be a set of generators for G if for

any element g ∈ G, g is equal to a product of some of the elements of S ∪ S−1.
Here S−1 = {s−1 | s ∈ S } ⊂ G and an element may occur multiple times in

the product. A product of the form sε11 s
ε2
2 . . . s

εk
k , where s1, s2, . . . , sk ∈ S and

ε1, ε2, . . . , εk ∈ {1,−1}, is called a word in S. Note that, two distinct words in S

may represent the same element in G.

Note that a group can have many different sets of generators. For example,

consider the symmetric group on 3 letters S3. Clearly S3 itself is a set of generators

for S3. The reader may check that each of the following 4 different subsets of S3 is

a set of generators for S3:

{ (1 2), (1 2 3) }, { (1 2), (2 3) }, { (1 2), (1 3) }, { (1 2), (1 3), (2 3) }.
A group G is called finitely generated if there exists a finite subset S of G such

that S is a set of generators for G. If none of the sets of generators for G is finite

then G is called infinitely generated.

The rank of a finitely generated group G is the smallest non-negative integer n

such that G has a set of generators S with cardinality of S being n.

Suppose that, a group G and a set of generators for G, say S, are given. We

may consider the free group on the set S, denoted as F (S). Clearly, the inclusion

map φ : S → G i.e. φ(s) = s, ∀s ∈ S, extends to an epimorphism Φ : F (S)→ G.

Hence, if we denote the kernel of Φ by N , we have: G ∼= F (S)/N . Suppose that,

for a set R ⊂ F (S), N is the normal closure of R in F (S). Then the expression

〈 S | R 〉 is called a presentation for G. Also in this case, the set R is called a set of
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defining relators for G with respect to the set of generators S. For defining relators

rµ ∈ R we have corresponding defining relations rµ = 1.

Note that, a group can have many different presentations. Further, for a given

set of generators for a group, there can be many different sets of defining relators,

giving distinct presentations for the group. For example, 〈 a, b | a3, b2, abab−1 〉
is a presentation for S3, where a = ( 1 2 3 ), b = ( 1 2 ). Also, for the same

set of generators { a, b } we can construct 〈 a, b | ab2a2, a2(b2a3)4a, b3a4ba 〉
which is another presentation for S3. For c = ( 1 3 ), d = ( 2 3 ), we have

〈 c, d | c2, d2, (cd)3 〉 as yet another presentation for S3.

For a group G, if there exists a presentation 〈 S | R 〉 for G with both S and R

being finite sets, then we say that G is finitely presented.

2. Reidemeister-Schreier method

We shall discuss about the technical tool called the Reidemeister-Schreier method

developed by Kurt Reidemeister and Otto Schreier, which has been extensively used

in the later chapters. For details on the history of this method, refer [CM82]. If a

presentation for a group G is given, this efficient algorithm provides a way to find

a presentation for a subgroup of G. It is well known, as Schreier’s lemma, that a

finite index subgroup of a finitely generated group is finitely generated. The fact

that a finite index subgroup of a finitely presented group is finitely presented, can

be proved using the Reidemeister-Schreier method. But, in general, the property of

being finitely generated (and also being finitely presented) is not a subgroup-closed

property.

Definition 2.1. Let G be a group and H be a subgroup of G. Suppose that,

〈 S | R 〉 be a presentation for G. A set Λ consisting of some words in the generators

from S is called a Schreier set of coset representatives for H in G if

(i) every right coset of H in G contains exactly one word from Λ, and

(ii) for each word in Λ any initial segment of that word is also in Λ.
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Theorem 2.2 (Schreier, 1927). For every H ≤ G, a Schreier set of coset

representatives for H in G exists.

We describe the Reidemeister-Schreier method as an algorithm. Let H ≤ G,

and 〈 S | R 〉 be a presentation for G. In order to deduce a presentation for H we

proceed as follows.

Step 1: Find Λ, a Schreier set of coset representatives for H in G. Although

the existence is guaranteed by the above theorem of Schreier, in general, it is not

easy to actually find such a Schreier set.

Step 2: Deduce a set of generators { Sλ,a | λ ∈ Λ, a ∈ S } for H defined by:

Sλ,a = (λa)(λa)−1,

where for any x ∈ G, x ∈ Λ denotes the unique element in Λ ∩Hx.

Step 3: Compute the defining relators τ(λ rµ λ
−1) for H, for all λ ∈ Λ, and

all the defining relators rµ ∈ R, where τ , called the rewriting process, is defined

as follows. For a word aε1i1 . . . a
εp
ip

in the generators from S, with εj = 1 or −1 for

1 ≤ j ≤ p,

τ( aε1i1 . . . a
εp
ip

) := Sε1Ki1 ,ai1
. . . S

εp
Kip ,aip

,

where Kij =


aε1i1 . . . a

εj−1

ij−1
if εj = 1,

aε1i1 . . . a
εj
ij

if εj = −1.

The above algorithm will produce a presentation 〈 S | R 〉 for H where we have

S = { Sλ,a | λ ∈ Λ, a ∈ S } and R = { τ(λ rµ λ
−1) | λ ∈ Λ, rµ ∈ R }.

Let us take a simple example to understand the above algorithm. Consider the

symmetric group S3 along with the presentation 〈 a, b | a3, b2, abab−1 〉. We will

apply Reidemeister-Schreier algorithm on this presentation in order to deduce a

presentation for the alternating group A3 ≤ S3, which is the commutator subgroup
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of S3. So we have G = S3, H = S ′3. It’s easy to see that G/H, i.e. the abelianiza-

tion of G has 2 elements.

Step 1: Consider the set Λ = { 1, b }. We can easily check that Λ is a Schreier

set of coset representatives for H in G.

Step 2: We calculate the generators Sλ,t for all λ ∈ Λ, t ∈ S = { a, b }.
Note that we have, a = 1, b = b, b a = b in Λ. So we get the following.

S1,a = 1 . a . ( 1 . a )−1 = a . (a)−1 = a, S1,b = 1 . b . ( 1 . b )−1 = b . (b)−1 = 1,

Sb,a = b . a . ( b . a )−1 = bab−1, Sb,b = b . b . ( b . b )−1 = 1 . ( 1 )−1 = 1.

Step 3: We now calculate the defining relations for S ′3 as follows.

For λ = 1, we get:

τ(a3) = τ(a.a.a) = S1,a Sa,a Sa2,a = S3
1,a

τ(b2) = τ(b.b) = S1,b Sb,b = 1

τ(abab−1) = S1,a Sa,b Sab,a S
−1
abab−1, b

= S1,a S1,b Sb,a S
−1
1,b = S1,a Sb,a

For λ = b, we get:

τ(ba3b−1) = τ(b.a.a.a.b−1) = S1,b Sb,a Sba,a Sba2,a S
−1
ba3b−1, b

= S3
b,a

τ(bb2b−1) = τ(b.b.b.b−1) = S1,b Sb,b Sb2,b S
−1
b.b.b.b−1, b

= 1

τ(babab−1b−1) = S1,b Sb,a Sba,b Sbab,a S
−1
babab−1, b

S−1
babab−1b−1, b

= Sb,a S1,a

Thus, we have deduced a presentation for A3, i.e. S ′3, as follows:

(2.1) 〈 S1,a, Sb,a | S3
1,a, S

3
b,a, S1,a Sb,a, Sb,a S1,a 〉

Here is an important observation to make. Suppose we start with a finite

presentation 〈 S | R 〉 for a group G. It may well so happen that there is a finitely

generated subgroup H of G which is of infinite index in G; and hence the Schreier

set of coset representatives Λ for H in G is infinite. As a result the Reidemeister-

Schreier method might produce a presentation 〈 S | R 〉 for H with S being an

infinite set. So, the Reidemeister-Schreier method, in general, does not conclude

anything about the finite generation of the subgroup.
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To further investigate about finite generation and finite presentability of the

subgroup H, the Tietze transformations are quite helpful techniques, which are

discussed in the following section.

3. The Tietze transformations

Introduced by Heinrich Franz Friedrich Tietze in a paper in 1908, Tietze trans-

formations are efficient techniques to transform a given presentation for a group to

another, often simpler, presentation for the same group.

Let 〈 S | R 〉 be a presentation for G. So, by definition, we have G ∼= F (S)/N

where N is the normal closure of R in F (S). We define the 4 types of Tietze

transformations T1, T2, T3, T4 as follows.

(T1): Adding defining relator: If a word u ∈ F (S) is not in R, but it can

be derived from the defining relators in R, i.e. u ∈ N , then inserting u into the

set of defining relators will produce an equivalent presentation 〈 S | R∪{u} 〉 for G.

(T2): Removing defining relator: If a defining relator r ∈ R can be derived from

other defining relators in R, i.e. r belongs to the normal closure of R−{r} in F (S),

then r can be removed from R to form an equivalent presentation 〈 S | R − {r} 〉
for G.

(T3): Adding generator: If a ∈ G, i.e. a = sε1i1 . . . s
εp
ip

for some elements

si1 , . . . , sip ∈ S with εj = 1 or −1 for 1 ≤ j ≤ p, but a /∈ S, then inserting

a in the set of generators and inserting a−1 sε1i1 . . . s
εp
ip

in the set of defining rela-

tors will produce an equivalent presentation 〈 S∪{a} | R∪{a−1sε1i1 . . . s
εp
ip
} 〉 for G.

(T4): Removing generator: If a generator s ∈ S can be expressed in terms

of some other generators using a defining relation, i.e. there is a defining relation

which gives s = sε1i1 . . . s
εp
ip
, where s, si1 , . . . , sip ∈ S with εj = 1 or −1 for

1 ≤ j ≤ p, and s /∈ { si1 , . . . , sip }, then removing the corresponding defining

relator from the set of defining relators after replacing s by sε1i1 . . . s
εp
ip

wherever
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s occurs in other relators and removing s from the set of generators will produce

an equivalent presentation 〈 S − {s} | R′ 〉 for G.

For example, consider the presentation (2.1) for A3 that we deduced in the

last section. Clearly the defining relator Sb,a S1,a gives the defining relation

Sb,a = S−11,a . Using this we can apply Tietze transformation T4 on the presentation

(2.1) through removing Sb,a from the set of generators by replacing it with S−11,a

in other relations. The obtained simpler presentation for A3 is as follows.

(3.1) 〈 S1,a | S3
1,a, S

−3
1,a 〉

Finally we apply Tietze transformation T2 on the presentation (3.1) through

removing S−31,a from the set of defining relators, as it can be derived from the

defining relator S3
1,a by taking inverse. Hence we get a simpler presentation for

An as follows.

(3.2) 〈 S1,a | S3
1,a 〉

4. Adorability of groups

Motivated by the covering theory of aspherical 3-manifolds, Roushon defined

the notion of an adorable group as follows.

Definition 2.3. A group G is called adorable if Gi/Gi+1 = 1 for some i,

where Gi = [ Gi−1, Gi−1 ] and G0 = G are the terms in the derived series of G.

The smallest i for which the above property holds, is called the degree of adorability

of G, denoted by doa(G).

Clearly, we have G1 = [G,G] = G′, the commutator subgroup of G.

Recall that, a group G is called perfect if G′ = G.

Note that, a group G is adorable of degree 1 if and only if the commutator

subgroup G′ is perfect.

Examples of adorable groups include finite groups, simple groups and solvable

groups. Examples of non-adorable groups include nonabelian free groups and fun-

damental groups of surfaces of genus greater than 1.
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Let G, H be any two groups and f : G → H be a surjective homomorphism

with G adorable. Then H is also adorable and doa(H) ≤ doa(G).

For more details on adorability of groups, see [Rou02, Rou04].

15





CHAPTER 3

Welded Braid Groups

In this chapter, we investigate about the commutator subgroups of the welded

braid groups.

1. Presentation for WBn

The welded braid group on n strands WBn is generated by a set of 2(n − 1)

generators: {σi, ρi, i = 1, 2, . . . , n − 1} satisfying the following set of defining

relations:

(1) The braid relations:

σiσj = σjσi if |i− j| > 1;

σiσi+1σi = σi+1σiσi+1;

(2) The symmetric relations:

ρ2i = 1;

ρiρj = ρjρi, if |i− j| > 1;

ρiρi+1ρi = ρi+1ρiρi+1;

(3) The mixed relations:

σiρj = ρjσi, if |i− j| > 1;

ρiρi+1σi = σi+1ρiρi+1;

(4) The forbidden relations:

ρiσi+1σi = σi+1σiρi+1.
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2. Goal of the chapter

We prove the following:

Theorem 3.1. Let WB′n denote the commutator subgroup of the welded braid

group WBn.

(i) WB′n is a finitely generated group for all n ≥ 3. For n ≥ 7, the rank of

WB′n is at most 1 + 2(n − 3), and for 3 ≤ n ≤ 6, the rank is at most

4 + 2(n− 3).

(ii) For n ≥ 5, WB′n is perfect.

We note here that, WB2
∼= F2 o S2. So, it’s commutator subgroup WB′2 is

infinitely generated.

Recall that a group G is called Hopfian if every epimorphism G → G is an

isomorphism. In general, being Hopfian is not a subgroup-closed group property.

Using Theorem 3.1, we prove the following.

Corollary 3.2. For any n ≥ 3, WB′n is Hopfian.

Another consequence of Theorem 3.1 is the following.

Corollary 3.3. For a free group Fk, the image of any nontrivial homomor-

phism φ : WBn → Fk is infinite cyclic.

We also prove the following.

Corollary 3.4. For n ≥ 5, WBn is adorable of degree 1, and for n = 3, 4,

WBn is not adorable.

Therefore, by Theorem 3.1 and Corollary 3.4 we immediately have the following.

Corollary 3.5. The group WB′n is perfect if and only if n ≥ 5.

We prove Theorem 3.1 by using the Reidemeister-Schreier method and Tietze

transformations. In Section 3 we compute a set of generators for WB′n. In Section 4

we deduce a set of defining relations for WB′n. In Section 5 we simplify the obtained

presentation. Proofs of Theorem 3.1 and corollaries are covered in Section 6 and

Section 7.
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3. A set of generators for WB′n

In this section, we use Reidemeister-Schreier method to deduce a set of gener-

ators for WB′n.

For n ≥ 3, define the map φ:

1 −→ WB′n −→ WBn
φ−→ Z× Z2 −→ 1

where, for i = 1, . . . , n−1, φ(σi) = σ1 , φ(ρi) = ρ1; here σ1 and ρ1 are the generators

of Z and Z2 respectively when viewing it in the abelianization of WBn.

Here, Image(φ) is isomorphic to the abelianization of WBn, denoted as WBab
n .

To prove this, we abelianize the above presentation of WBn by inserting the rela-

tions xy = yx in the presentation for all x, y ∈ { σi, ρi | 1 ≤ i ≤ n − 1 }. The

resulting presentation is the following:

WBab
n = < σ1, ρ1 | σ1ρ1 = ρ1σ1, ρ

2
1 = 1 >

Clearly, WBab
n is isomorphic to Z × Z2. But as φ is onto, Image(φ) = Z × Z2.

Hence, Image(φ) is isomorphic to WBab
n . Hence, φ defines the above short exact

sequence and φ does have a section.

Lemma 3.6. WB′n is generated by αm,ε,i = σm1 ρ
ε
1σiρ

ε
1σ
−1
1 σ−m1 and βm,ε,i =

σm1 ρ
ε
1ρiρ1ρ

ε
1σ
−m
1 , where m ∈ Z, ε ∈ {0, 1}, 1 ≤ i ≤ n− 1.

Proof. Consider a Schreier set of coset representatives:

Λ = {σm1 ρε1 | m ∈ Z, ε ∈ {0, 1}}.

The Reidemeister-Schreier method tells us that WB′n is generated by the set

{Sλ,a = (λa)(λa)−1 | λ ∈ Λ, a ∈ {σi, ρi| i = 1, 2, . . . , n− 1}}.

Choose λ = σm1 ρ
ε
1 from Λ.

For a = σi, Sλ,a = σm1 ρ
ε
1σiρ

ε
1σ
−1
1 σ−m1 . For a = ρi, Sλ,a = σm1 ρ

ε
1ρiρ1ρ

ε
1σ
−m
1 .

Hence, WB′n is generated by the following elements:

αm,ε,i = Sσm1 ρε1,σi = σm1 ρ
ε
1σiρ

ε
1σ
−1
1 σ−m1 ,

βm,ε,i = Sσm1 ρε1,ρi = σm1 ρ
ε
1ρiρ1ρ

ε
1σ
−m
1 ,

where m ∈ Z, ε ∈ {0, 1}, 1 ≤ i ≤ n− 1. �
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4. A set of defining relations for WB′n

To obtain defining relations forWB′n, following the Reidemeister-Schreier method,

we apply re-writing process τ on λrµλ
−1, for all λ ∈ Λ, and rµ the defining relators

for WBn:

r1 = σiσjσ
−1
i σ−1j , |i− j| > 1;

r2 = σiσi+1σiσ
−1
i+1σ

−1
i σ−1i+1;

r3 = ρ2i ;

r4 = ρiρjρiρj, |i− j| > 1;

r5 = ρiρi+1ρiρi+1ρiρi+1;

r6 = σiρjσ
−1
i ρj, |i− j| > 1;

r7 = ρiρi+1σiρi+1ρiσ
−1
i+1;

r8 = ρiσi+1σiρi+1σ
−1
i σ−1i+1.

We have the following lemma.

Lemma 3.7. The generators αk,µ,r, βk,µ,r, k ∈ Z, µ ∈ {0, 1}, 1 ≤ r ≤ n− 1, of

WB′n satisfy the following set of defining relations:

(4.1) αk,µ,r αk+1,µ,s α
−1
k+1,µ,r α

−1
k,µ,s = 1, |r − s| > 1;

(4.2) αk,µ,r αk+1,µ,r+1 αk+2,µ,r = αk,µ,r+1 αk+1,µ,r αk+2,µ,r+1;

(4.3) βk,µ,r βk,1−µ,r = 1;

(4.4) (βk,µ,r βk,µ,s)
2 = 1, |r − s| > 1, r, s ≥ 2;

(4.5) (βk,µ,r βk,µ,r+1)
3 = 1;

(4.6) αk,µ,r βk+1,1−µ,s α
−1
k,1−µ,r βk,µ,s = 1, |r − s| > 1;

(4.7) αk,µ,r βk+1,µ,r+1 βk+1,1−µ,r α
−1
k,µ,r+1 βk,µ,r βk,1−µ,r+1 = 1;

(4.8) αk,µ,r+1 αk+1,µ,r βk+2,µ,r+1 α
−1
k+1,1−µ,r α

−1
k,1−µ,r+1 βk,µ,r = 1;

(4.9) αk,0,1 = 1, k ∈ Z;
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(4.10) αk,µ,r = α0,0,r , k ∈ Z, µ ∈ {0, 1}, r ≥ 3;

(4.11) βk,µ,1 = 1, k ∈ Z, µ ∈ {0, 1};

(4.12) βk,0,r = βk,1,r , k ∈ Z, r ≥ 3.

Proof. Note that, (4.9), (4.10), (4.11), (4.12) follow from the definitions of

αk,µ,r and βk,µ,r.

By re-writing the conjugates of ri (by elements of Λ) we get the relations:

(4.1)− (4.8).

Note that, τ(r1) = τ(σiσjσ
−1
i σ−1j ) = S1,σiSσ1,σjS

−1
σ1,σi

S−11,σj
= α0,0,i α1,0,j α

−1
1,0,i α

−1
0,0,j.

So, this gives the relation: α0,0,i α1,0,j α
−1
1,0,i α

−1
0,0,j = 1, |i− j| > 1.

Then we have, τ(ρ1r1ρ1) = τ(ρ1σiσjσ
−1
i σ−1j ρ1) = S1,ρ1Sρ1,σiSσ1ρ1,σjS

−1
σ1ρ1,σi

S−1ρ1,σjSρ1,ρ1

= β0,0,1 α0,1,i α1,1,j α
−1
1,1,i α

−1
0,1,j β0,1,1.

This gives the relation: α0,1,i α1,1,j α
−1
1,1,i α

−1
0,1,j, |i− j| > 1 (using (4.11)).

Similarly, τ(σk1r1σ
−k
1 ) = τ(σk1σiσjσ

−1
i σ−1j σ−k1 ) = Sσk1 ,σiSσk+1

1 ,σj
S−1
σk+1
1 ,σi

S−1
σk1 ,σj

= αk,0,i αk+1,0,j α
−1
k+1,0,i α

−1
k,0,j.

So, we have the relation: αk,0,i αk+1,0,j α
−1
k+1,0,i α

−1
k,0,j = 1, |i− j| > 1.

In a similar way, τ(σk1ρ1r1ρ1σ
−k
1 ) = τ(σk1ρ1σiσjσ

−1
i σ−1j ρ1σ

−k
1 )

= Sσk1 ,ρ1Sσk1ρ1,σiSσk+1
1 ρ1,σj

S−1
σk+1
1 ρ1,σi

S−1
σk1ρ1,σj

Sσk1 ,ρ1 = αk,1,i αk+1,1,j α
−1
k+1,1,i α

−1
k,1,j.

This gives the relation: αk,1,i αk+1,1,j α
−1
k+1,1,i α

−1
k,1,j = 1, |i− j| > 1.

Merging these 4 relations into one we get (4.1).

In a similar manner we re-write the conjugates of r2, r3, . . . r8 by elements of Λ

and club them suitably to get the relations (4.2)− (4.8).

So, we have a set of defining relations for WB′n, namely relations (4.1)− (4.12)

in the generators αk,µ,r , βk,µ,r for k ∈ Z, µ ∈ {0, 1}, 1 ≤ r ≤ n − 1. Hence,

Lemma 3.7 is proved. �

5. Simplifying the presentation for WB′n

Now, we will eliminate some of the generators and relations through Tietze

transformations in order to get a finite set of generators for WB′n.
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Lemma 3.8. For n ≥ 3, the group WB′n is generated by finitely many elements,

namely α0,1,1, α0,0,2, α1,0,2, β0,0,2, α0,0,r, β0,0,r, 3 ≤ r ≤ n− 1.

Proof. From the relations (4.9), (4.11) it is evident that the generators αk,0,1

and βk,µ,1 are redundant and we can remove them from the set of generators.

Using (4.10) we can replace αk,µ,r by α0,0,r for r ≥ 3 and remove all αk,µ,r with

either k 6= 0 or µ 6= 0.

Using (4.12) we can remove βk,1,r by replacing the same with βk,0,r in all other

relations.

From (4.7) we have αk,1,2 = βk,0,2αk,1,1βk+1,1,2. We remove αk,1,2 by replacing

this value in all other relations. After this replacement, from (4.8) we deduce:

β−1k+1,1,2 α
−1
k,1,1 β

−1
k,0,2 αk,0,2 βk+2,0,2 = αk+1,1,1

From this relation, we can express αk,1,1 in terms of α0,1,1, αk,0,2, βk,0,2, βk,1,2. We

replace this value of αk,1,1 in all other relations and remove αk,1,1 for all k 6= 0.

For µ = 0, r = 1, (4.7) becomes:

βk+1,0,2 α
−1
k,0,2 βk,1,2 = 1 ⇐⇒ βk+1,0,2 α

−1
k,0,2 β

−1
k,0,2 = 1 (using (4.3))

Using this we have βk,0,2 = β0,0,2 α0,0,2 α1,0,2 . . . αk−1,0,2 for k ≥ 1 and we have

βk,0,2 = β0,0,2 α
−1
−1,0,2 α

−1
−2,0,2 . . . α

−1
k,0,2 for k ≤ −1.

As we have βk,1,2 = β−1k,0,2 , we can express βk,0,2 and βk,1,2 in terms of αk,0,2, β0,0,2

in all the other relations and remove all βk,1,2 and all βk,0,2 except β0,0,2.

For µ = 0, r = 1, (4.2) becomes:

αk+1,0,2 = αk,0,2 αk+2,0,2

Using this we replace all αk,0,2 in terms of α0,0,2, α1,0,2.

Lastly, if n ≥ 4, using (4.6) we can remove βk,0,r for k 6= 0, r ≥ 3.

Hence, we get a presentation ofWB′n with 4+2(n−3) generators α0,1,1, α0,0,2, α1,0,2,

β0,0,2, α0,0,r, β0,0,r, 3 ≤ r ≤ n − 1, and infinitely many defining relations. This

proves finite generation of WB′n for all n ≥ 3. �
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Now, we treat the case n ≥ 7. Notice that if n ≥ 7, for every generator βk,0,r

with r ≥ 3, there is at least one βk,0,s with s ≥ 3 and |r − s| > 1. This helps us to

improve the number of generators of WB′n for n ≥ 7.

Lemma 3.9. For n ≥ 7, WB′n can be generated by 2(n−3)+1 elements, namely

β0,0,2, β0,0,r, α0,0,r for 3 ≤ r ≤ n− 1.

Proof. We proceed with an alternative elimination process here.

As before, we eliminate αk,0,1, βk,µ,1, βk,1,r for all k, µ, 3 ≤ r ≤ n− 1 and αk,µ,r

with either k 6= 0 or µ 6= 0, using the relations (4.9), (4.10), (4.11), (4.12).

Note that, αk,0,2 = βk,1,2 βk+1,0,2 and αk,1,2 = βk,0,2 αk,1,1 βk+1,1,2. Also note

that, αk,1,1 = βk,0,r βk+1,0,r.

At first, we replace αk,0,2 and αk,1,2 by βk,1,2 βk+1,0,2 and βk,0,2 αk,1,1 βk+1,1,2 in

all the above relations and remove these generators from the set of generators.

Next, we replace αk,1,1 by βk,0,r βk+1,0,r (for every 3 ≤ r ≤ n−1 ) in the current

set of relations and remove these generators from the set of generators, and we

have a new set of defining relations in the generators βk,0,2, βk,1,2, βk,0,r, α0,0,r, for

all k ∈ Z and 3 ≤ r ≤ n− 1.

Let us assume k ≥ 0. The case of k < 0 is similar. In the new set of relations,

note that for n ≥ 7, we have βk+1,0,r = α−10,0,s βk,0,r α0,0,s, |r − s| > 1, r, s ≥ 3.

Hence, we have βk,0,r = α−k0,0,s β0,0,r α
k
0,0,s. Also, note that, β0,1,2 = β−10,0,2.

We replace βk,0,2, βk,1,2, βk,0,r by α−k0,0,l β0,0,2 α
k
0,0,l, α

−k
0,0,l β

−1
0,0,2 α

k
0,0,l, α

−k
0,0,s β0,0,r α

k
0,0,s

in the current set of relations and remove β0,1,2, βk,0,2, βk,1,2, βk,0,r, for all k 6= 0,

from the set of generators.

This gives us a new set of defining relations in the 2(n − 3) + 1 generators

β0,0,2, β0,0,r, α0,0,r for 3 ≤ r ≤ n− 1. This proves the lemma. �

6. Perfectness of WB′n

We have the following lemma.

Lemma 3.10. The group WB′n is perfect for n ≥ 5.
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Proof. For n ≥ 5, we abelianize the above presentation of WB′n by adding

the extra relations xy = yx for all x, y in the generating set.

After abelianizing, putting r = 1, s = 3 in (4.1) we get:

αk,µ,1 α
−1
k+1,µ,1 αk+1,µ,3 α

−1
k,µ,3 = 1

⇐⇒ αk,µ,1 = αk+1,µ,1 (using (4.10)).

Hence, we have αk,1,1 = α0,1,1, k ∈ Z. Note that we already have αk,0,1 = 1, k ∈ Z.
If we put r = 2, s = 4 (here we use n ≥ 5) in (4.1) we get:

αk,µ,2 α
−1
k+1,µ,2 αk+1,µ,4 α

−1
k,µ,4 = 1

⇐⇒ αk,µ,2 = αk+1,µ,2 (using (4.10)).

This gives us: αk,0,2 = α0,0,2, αk,1,2 = α0,1,2, k ∈ Z.

Putting r = 1, µ = 0 in (4.2) we get:

αk,0,1 αk+1,0,2 αk+2,0,1 = αk,0,2 αk+1,0,1 αk+2,0,2

⇐⇒ α0,0,2 = α2
0,0,2 (using (4.9) and αk,0,2 = α0,0,2 , k ∈ Z).

So, we have α0,0,2 = 1 =⇒ αk,0,2 = 1, k ∈ Z.

For the case r = 1, µ = 1 in (4.2) we have:

αk,1,1 αk+1,1,2 αk+2,1,1 = αk,1,2 αk+1,1,1 αk+2,1,2

⇐⇒ α2
0,1,1 α0,1,2 = α0,1,1 α

2
0,1,2 (using αk,1,1 = α0,1,1 , αk,1,2 = α0,1,2 , k ∈ Z).

Hence, we have α0,1,1 = α0,1,2.

If we put r = 2, µ = 1 in (4.2) we get:

αk,1,2 αk+1,1,3 αk+2,1,2 = αk,1,3 αk+1,1,2 αk+2,1,3

⇐⇒ α2
0,1,2 α0,0,3 = α0,1,2 α

2
0,0,3 (using (4.10) and αk,1,2 = α0,1,2 , k ∈ Z).

This implies: α0,1,2 = α0,0,3.

For the case r = 2, µ = 0 in (4.2) we have:

αk,0,2 αk+1,0,3 αk+2,0,2 = αk,0,3 αk+1,0,2 αk+2,0,3

⇐⇒ α0,0,3 = α2
0,0,3 (using (4.10) and αk,0,2 = 1, ∀k ∈ Z).
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So, we have α0,1,1 = α0,1,2 = α0,0,3 = 1.

Putting r ≥ 3 in (4.2) we get:

α2
0,0,r α0,0,r+1 = α0,0,r α

2
0,0,r+1 (using (4.10)).

This implies α0,0,r = α0,0,r+1, r ≥ 3 and hence we have αk,µ,r = 1 for all k, µ, r.

Considering the case r = 2, s ≥ 4 in (4.4) we get: β2
k,µ,2 = 1, as β2

k,µ,s = 1, s ≥
3 (follows from (4.3) and (4.12)).

Also note that, putting r = 1 in (4.5) we have: β3
k,µ,2 = 1.

Above two relations imply: βk,µ,2 = 1.

Now if we put r = 2 in (4.5), we get: β3
k,µ,3 = 1. But then we have β2

k,µ,3 = 1,

which imply βk,µ,3 = 1.

Similarly, using (4.5) iteratively we deduce: βk,µ,r = 1 for all k, µ, r.

Hence, for n ≥ 5, in the abelianization of WB′n the generators αk,µ,r and βk,µ,r

become identity and hence the abelianization of WB′n is trivial group.

This shows that for n ≥ 5, WB′n is perfect. �

Later, in Lemma 4.7, we prove that GV B′n is perfect, for n ≥ 5. So we have:

doa(GV Bn) ≤ 1, for n ≥ 5. As WBn is a homomorphic image of GV Bn, we have:

doa(WBn) ≤ doa(GV Bn) ≤ 1, for n ≥ 5. Hence, WB′n is perfect for n ≥ 5. This

is an alternative proof of Lemma 3.10 using Lemma 4.7.

7. Proof of Theorem 3.1 and corollaries

Theorem 3.1 follows from Lemma 3.8, Lemma 3.9 and Lemma 3.10.

We note here that, in the recent preprint [BGN18] it is proved that for n ≥ 4,

the rank of WB′n is at most n.

7.0.1. Proof of Corollary 3.2. Recall (see for instance [Dam17, Corollary 4.3])

that WBn is isomorphic to a subgroup of Aut(Fn), and hence so also WB′n. Since

Fn is residually finite, using a result of Magnus [Mag69] it follows that Aut(Fn)

is also residually finite. Hence WB′n as a subgroup of Aut(Fn) is also residually

finite. It is well-known that a finitely generated residually finite group is Hopfian.
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Thus, using Theorem 3.1, WB′n is Hopfian for all n ≥ 3.

7.0.2. Proof of Corollary 3.3. Suppose φ : WBn → Fk be a nontrivial homomor-

phism. By Theorem 3.1, WB′n is finitely generated. Hence, φ(WB′n) = φ(WBn)′

is finitely generated. But, φ(WBn) is free group of finite rank. Hence, φ(WBn)′

is finitely generated only if rank of φ(WBn) is at most 1. This proves Corollary 3.3.

7.0.3. Proof of Corollary 3.4. It follows from [Bar03] that there is a non-trivial

homomorphism from the pure welded braid group, PWBn, onto a free group.

Hence PWBn is not adorable. For n = 3, 4, WBn/PWBn is a finite solvable

group. Hence, by [Rou04, Proposition 1.7], for n = 3, 4, WBn is not adorable (in

particular, WB′n is not perfect for n = 3, 4). By part (ii) of Theorem 3.1 for n ≥ 5,

WBn is adorable of degree 1. This proves Corollary 3.4.
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CHAPTER 4

Generalized Virtual Braid Groups

In this chapter, we investigate the commutator subgroups of generalized virtual

braid groups GV Bn, which are introduced by Fang in [Fan15].

1. Presentation for GV Bn

The group GV Bn is generated by a set of 2(n − 1) generators: { σi, ρi | i =

1, 2, . . . , n− 1 } satisfying the following set of defining relations:

(1) The braid relations among σi:

σiσj = σjσi if |i− j| > 1;

σiσi+1σi = σi+1σiσi+1;

(2) The braid relations among ρi:

ρiρj = ρjρi, if |i− j| > 1;

ρiρi+1ρi = ρi+1ρiρi+1;

(3) The mixed relations:

σiρj = ρjσi, if |i− j| > 1;

ρiσi+1σi = σi+1σiρi+1;

ρi+1σiσi+1 = σiσi+1ρi.

1.1. WBn as a homomorphic image of GV Bn. We have a natural homo-

morphism from GV Bn (given by the above presentation) to WBn (given by the

presentation in the previous chapter). It’s easy to check that the map sending

σi, ρi ∈ GV Bn to ρi, σi ∈ WBn respectively, extends to a surjective homomor-

phism. Hence WBn is a quotient group of GV Bn.
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1.2. Relationship of GV Bn with V Bn and Bn. Let Sn, Bn and V Bn denote

the symmetric group on n letters, Artin’s braid group on n strands, and virtual

braid group on n strands, respectively. Recall the following.

1.2.1. Presentation for Sn. The symmetric group Sn is generated by a set of

(n−1) generators: { σi | i = 1, 2, . . . , n−1 }, satisfying the following set of defining

relations:

σ2
i = 1;

σiσj = σjσi if |i− j| > 1;

σiσi+1σi = σi+1σiσi+1.

1.2.2. Presentation for Bn. The Artin’s braid group Bn is generated by a set

of (n − 1) generators: { σi | i = 1, 2, . . . , n − 1 }, satisfying the following set of

defining relations:

σiσj = σjσi if |i− j| > 1;

σiσi+1σi = σi+1σiσi+1.

1.2.3. Presentation for V Bn. The virtual braid group V Bn is generated by a

set of 2(n − 1) generators: { σi, ρi | i = 1, 2, . . . , n − 1 }, satisfying the following

set of defining relations:

(1) The symmetric relations among σi:

σ2
i = 1;

σiσj = σjσi if |i− j| > 1;

σiσi+1σi = σi+1σiσi+1;

(2) The braid relations among ρi:

ρiρj = ρjρi, if |i− j| > 1;

ρiρi+1ρi = ρi+1ρiρi+1;

(3) The mixed relations:

σiρj = ρjσi, if |i− j| > 1;

ρi+1σiσi+1 = σiσi+1ρi.
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The relationship among the groups Sn, Bn, V Bn and GV Bn is given by the

following commutative diagram:

GV Bn
α−−−→ Bnyγ yβ

V Bn
δ−−−→ Sn.

where α, β, γ, δ are quotient maps defined by normal subgroups generated by ρi,

σ2
i , σ

2
i , and ρi respectively.

2. Goal of the chapter

We prove the following:

Theorem 4.1. Let GV B′n denote the commutator subgroup of the generalized

virtual braid group GV Bn.

(i) GV B′n is finitely generated for all n ≥ 4. Further, for n ≥ 5, the rank of

GV B′n is at most 3n− 7.

(ii) GV B′3 is not finitely generated.

(iii) GV B′n is perfect if and only if n ≥ 5.

We prove Theorem 4.1 using the Reidemeister-Schreier method and the Tietze

transformations. In Section 3 we compute a set of generators for GV B′n. In Sec-

tion 4 we deduce a set of defining relations for GV B′n. In Section 5 we prove part

(ii) of Theorem 4.1. Proof of part (i) of Theorem 4.1 is covered in Section 6 and

Section 7. In Section 8 we prove part (iii) of Theorem 4.1.

3. A set of generators for GV B′n

In this section, we use Reidemeister-Schreier method to deduce a set of gener-

ators for GV B′n.

For n ≥ 3, define the map φ:

1 −→ GV B′n −→ GV Bn
φ−→ Z× Z −→ 1

where, for i = 1, . . . , n−1, φ(σi) = σ1 , φ(ρi) = ρ1; here σ1 and ρ1 are the generators

of the 2 copies of Z. Here, Image(φ) is isomorphic to the abelianization of GV Bn,
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denoted as GV Bab
n . To verify this, we abelianize the above presentation of GV Bn

by inserting the relations xy = yx in the presentation for all x, y ∈ { σi, ρi | 1 ≤
i ≤ n− 1 }. The resulting presentation is the following:

GV Bab
n = < σ1, ρ1 | σ1ρ1 = ρ1σ1 >

Clearly, GV Bab
n is isomorphic to Z × Z. But as φ is onto, Image(φ) = Z × Z.

Hence, Image(φ) is isomorphic to GV Bab
n . Hence, φ defines the above short exact

sequence.

Lemma 4.2. GV B′n is generated by the words αm,k,i = σm1 ρ
k
1σiρ

−k
1 σ−11 σ−m1 and

βm,k,i = σm1 ρ
k
1ρiρ

−k
1 ρ−11 σ−m1 , where m, k ∈ Z, 1 ≤ i ≤ n− 1.

Proof. Consider a Schreier set of coset representatives:

Λ = {σm1 ρk1 | m, k ∈ Z}.

For a ∈ GV Bn, we denote by a the unique element in Λ which belongs to the

coset corresponding to φ(a) in the quotient GV Bn/GV B
′
n.

Reidemeister-Schreier method tells us that GV B′n is generated by the set

{Sλ,a = (λa)(λa)−1 | λ ∈ Λ, a ∈ {σi, ρi| i = 1, 2, . . . , n− 1}}.

Choose λ = σm1 ρ
k
1 from Λ. For a = σi, Sλ,a = σm1 ρ

k
1σiρ

−k
1 σ−11 σ−m1 . For a = ρi,

Sλ,a = σm1 ρ
k
1ρiρ

−k
1 ρ−11 σ−m1 .

Hence, GV B′n is generated by the following elements:

αm,k,i = Sσm1 ρk1 ,σi = σm1 ρ
k
1σiρ

−k
1 σ−11 σ−m1 ,

βm,k,i = Sσm1 ρk1 ,ρi = σm1 ρ
k
1ρiρ

−k
1 ρ−11 σ−m1 ,

where m, k ∈ Z, 1 ≤ i ≤ n− 1. �

3.1. Observation: We note here that, αm,0,1 = 1 for all m ∈ Z. Also observe

that for i ≥ 3, αm,k,i = α0,0,i and βm,k,i = βm,0,i, for any m, k ∈ Z. Hence we can

replace all those αm,k,i and βm,k,i simply by αi and βm,i respectively for i ≥ 3. In

this way we will get a set of generators for GV B′n with no generator occurring more

than once.
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4. A set of defining relations for GV B′n

To obtain defining relations for GV B′n, following the Reidemeister-Schreier

method, we apply re-writing process τ on λrµλ
−1, for all λ ∈ Λ, and rµ the

defining relators for GV Bn:

r1 = σiσjσ
−1
i σ−1j , |i− j| > 1;

r2 = ρiρjρ
−1
i ρ−1j , |i− j| > 1;

r3 = σiρjσ
−1
i ρ−1j , |i− j| > 1;

r4 = σiσi+1σiσ
−1
i+1σ

−1
i σ−1i+1;

r5 = ρiρi+1ρiρ
−1
i+1ρ

−1
i ρ−1i+1;

r6 = ρiσi+1σiρ
−1
i+1σ

−1
i σ−1i+1;

r7 = ρi+1σiσi+1ρ
−1
i σ−1i+1σ

−1
i .

We have the following lemma.

Lemma 4.3. The generators of GV B′n satisfy the following defining relations:

(4.1) αm,k,1 αj α
−1
m+1,k,1 α

−1
j = 1, j ≥ 3;

(4.2) αm,k,2 αj α
−1
m+1,k,2 α

−1
j = 1, j ≥ 4;

(4.3) αi αj α
−1
i α−1j = 1, i, j ≥ 3, |i− j| > 1;

(4.4) βm,k,2 βm,j β
−1
m,k+1,2 β

−1
m,j = 1, j ≥ 4;

(4.5) βm,i βm,j β
−1
m,i β

−1
m,j = 1, i, j ≥ 3, |i− j| > 1;

(4.6) αm,k,1 βm+1,j α
−1
m,k+1,1 β

−1
m,j = 1, j ≥ 3;

(4.7) αm,k,2 βm+1,j α
−1
m,k+1,2 β

−1
m,j = 1, j ≥ 4;

(4.8) αi βm+1,k,2 α
−1
i β−1m,k,2 = 1, i ≥ 4;

(4.9) αi βm+1,j α
−1
i β−1m,j = 1, i, j ≥ 3, |i− j| > 1;

(4.10) αm,k,1 αm+1,k,2 αm+2,k,1 α
−1
m+2,k,2 α

−1
m+1,k,1 α

−1
m,k,2 = 1;

(4.11) αm,k,2 α3 αm+2,k,2 α
−1
3 α−1m+1,k,2 α

−1
3 = 1;
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(4.12) αi αi+1 αi α
−1
i+1 α

−1
i α−1i+1 = 1, i ≥ 3;

(4.13) βm,k+1,2 β
−1
m,k+2,2 β

−1
m,k,2 = 1;

(4.14) βm,k,2 βm,3 βm,k+2,2 β
−1
m,3 β

−1
m,k+1,2 β

−1
m,3 = 1;

(4.15) βm,i βm,i+1 βm,i β
−1
m,i+1 β

−1
m,i β

−1
m,i+1 = 1, i ≥ 3;

(4.16) αm,k+1,2 αm+1,k+1,1 β
−1
m+2,k,2 α

−1
m+1,k,1 α

−1
m,k,2 = 1;

(4.17) βm,k,2 α3 αm+1,k+1,2 β
−1
m+2,3 α

−1
m+1,k,2 α

−1
3 = 1;

(4.18) βm,i αi+1 αi β
−1
m+2,i+1 α

−1
i α−1i+1 = 1, i ≥ 3;

(4.19) βm,k,2 αm,k+1,1 αm+1,k+1,2 α
−1
m+1,k,2 α

−1
m,k,1 = 1;

(4.20) βm,3 αm,k+1,2 α3 β
−1
m+2,k,2 α

−1
3 α−1m,k,2 = 1;

(4.21) βm,i+1 αi αi+1 β
−1
m+2,i α

−1
i+1 α

−1
i = 1, i ≥ 3.

Proof. Choose any element λ = σm1 ρ
k
1 ∈ Λ.

Rewriting λr1λ
−1 we get:

τ(λr1λ
−1) = Sσm1 ρk1 ,σi Sσm+1

1 ρk1 ,σj
S−1
σm+1
1 ρk1 ,σi

S−1
σm1 ρ

k
1 ,σj

.

We have the following 3 possible cases:

Case 1: i = 1, j ≥ 3; gives the relations: (4.1).

Case 2: i = 2, j ≥ 4; gives the relations: (4.2).

Case 3: i, j ≥ 3, |i− j| > 1; gives the relations: (4.3).

Rewriting λr2λ
−1 we get:

τ(λr2λ
−1) = Sσm1 ρk1 ,ρi Sσm1 ρ

k+1
1 ,ρj

S−1
σm1 ρ

k+1
1 ,ρi

S−1
σm1 ρ

k
1 ,ρj

.

We have the following 3 possible cases:

Case 1: i = 1, j ≥ 3; gives no nontrivial relation.

Case 2: i = 2, j ≥ 4; gives the relations: (4.4).
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Case 3: i, j ≥ 3, |i− j| > 1; gives the relations: (4.5).

Rewriting λr3λ
−1 we get:

τ(λr3λ
−1) = Sσm1 ρk1 ,σi Sσm+1

1 ρk1 ,ρj
S−1
σm1 ρ

k+1
1 ,σi

S−1
σm1 ρ

k
1 ,ρj

.

We have the following 5 possible cases:

Case 1: i = 1, j ≥ 3; gives the relations: (4.6).

Case 2: j = 1, i ≥ 3; gives no nontrivial relation.

Case 3: i = 2, j ≥ 4; gives the relations: (4.7).

Case 4: j = 2, i ≥ 4; gives the relations: (4.8).

Case 5: i, j ≥ 3, |i− j| > 1; gives the relations: (4.9).

Rewriting λr4λ
−1 we get:

τ(λr4λ
−1) = Sσm1 ρk1 ,σi Sσm+1

1 ρk1 ,σi+1
Sσm+2

1 ρk1 ,σi
S−1
σm+2
1 ρk1 ,σi+1

S−1
σm+1
1 ρk1 ,σi

S−1
σm1 ρ

k
1 ,σi+1

.

We have the following 3 possible cases:

Case 1: i = 1; gives the relation: (4.10).

Case 2: i = 2; gives the relation: (4.11).

Case 3: i ≥ 3; gives the relation: (4.12).

Rewriting λr5λ
−1 we get:

τ(λr5λ
−1) = Sσm1 ρk1 ,ρi Sσm1 ρ

k+1
1 ,ρi+1

Sσm1 ρ
k+2
1 ,ρi

S−1
σm1 ρ

k+2
1 ,ρi+1

S−1
σm1 ρ

k+1
1 ,ρi

S−1
σm1 ρ

k
1 ,ρi+1

.

We have the following 3 possible cases:

Case 1: i = 1; gives the relation: (4.13).

Case 2: i = 2; gives the relation: (4.14).

Case 3: i ≥ 3; gives the relation: (4.15).

Rewriting λr6λ
−1 we get:

τ(λr6λ
−1) = Sσm1 ρk1 ,ρi Sσm1 ρ

k+1
1 ,σi+1

Sσm+1
1 ρk+1

1 ,σi
S−1
σm+2
1 ρk1 ,ρi+1

S−1
σm+1
1 ρk1 ,σi

S−1
σm1 ρ

k
1 ,σi+1

.

We have the following 3 possible cases:

Case 1: i = 1; gives the relation: (4.16).
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Case 2: i = 2; gives the relation: (4.17).

Case 3: i ≥ 3; gives the relation: (4.18).

Rewriting λr7λ
−1 we get:

τ(λr7λ
−1) = Sσm1 ρk1 ,ρi+1

Sσm1 ρ
k+1
1 ,σi

Sσm+1
1 ρk+1

1 ,σi+1
S−1
σm+2
1 ρk1 ,ρi

S−1
σm+1
1 ρk1 ,σi+1

S−1
σm1 ρ

k
1 ,σi

.

We have the following 3 possible cases:

Case 1: i = 1; gives the relation: (4.19).

Case 2: i = 2; gives the relation: (4.20).

Case 3: i ≥ 3; gives the relation: (4.21).

This completes the proof of the lemma. �

Now, we will apply Tietze transformations on the above presentation for GV B′n

in order to obtain simpler presentations for GV B′n, for different n’s, with the aim

to prove Theorem 4.1 .

5. Infinite generation of GV B′3

From Lemma 4.2 and Lemma 4.3 we have the following presentation for GV B′3:

Generators: { αm,k,1, αm,k,2, βm,k,2 | m, k ∈ Z }.

Defining Relations: For all m, k ∈ Z,

(5.1) αm,k,1 αm+1,k,2 αm+2,k,1 α
−1
m+2,k,2 α

−1
m+1,k,1 α

−1
m,k,2 = 1;

(5.2) βm,k+1,2 β
−1
m,k+2,2 β

−1
m,k,2 = 1;

(5.3) αm,k+1,2 αm+1,k+1,1 β
−1
m+2,k,2 α

−1
m+1,k,1 α

−1
m,k,2 = 1;

(5.4) βm,k,2 αm,k+1,1 αm+1,k+1,2 α
−1
m+1,k,2 α

−1
m,k,1 = 1;

(5.5) αm,0,1 = 1.

We prove the following lemma:
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Lemma 4.4. GV B′3 is not finitely generated.

Proof. From (5.4) we have:

βm,k,2 = αm,k,1 αm+1,k,2 α
−1
m+1,k+1,2 α

−1
m,k+1,1.

Replacing these values of βm,k,2 in the other relations and removing the gen-

erators βm,k,2 from the set of generators we obtain an equivalent presentation for

GV B′3 as follows:

Generators: { αm,k,1, αm,k,2 | m, k ∈ Z };

Defining relations: For all m, k ∈ Z,

(5.6) αm,k,1 αm+1,k,2 αm+2,k,1 α
−1
m+2,k,2 α

−1
m+1,k,1 α

−1
m,k,2 = 1;

(5.7) αm,k+1,1 αm+1,k+1,2 α
−1
m+1,k+2,2 α

−1
m,k+2,1 =

αm,k,1 αm+1,k,2 α
−1
m+1,k+1,2 α

−1
m,k+1,1 αm,k+2,1 αm+1,k+2,2 α

−1
m+1,k+3,2 α

−1
m,k+3,1;

(5.8) αm,k+1,2 αm+1,k+1,1 αm+2,k+1,1 αm+3,k+1,2 α
−1
m+3,k,2 α

−1
m+2,k,1 α

−1
m+1,k,1 α

−1
m,k,2 = 1;

(5.9) αm,0,1 = 1.

Now, consider the words wm,k = αm,k,1 αm+1,k,2 in GV B′3 for all m, k ∈ Z.

Now let’s construct the quotient group GV B′3/W, where W = 〈wm,k | m, k ∈ Z〉,
the normal subgroup generated by the words wm,k. We obtain a presentation for

GV B′3/W by inserting the relations αm,k,1 αm+1,k,2 = 1, m, k ∈ Z in the last

presentation for GV B′3; and the obtained presentation for GV B′3/W is as follows:

Generators: { αm,k,1 | m, k ∈ Z };

Defining relations:

(5.10) αm+2,k,1 = α−1m−1,k,1;

(5.11) α−1m−1,k+1,1 αm+1,k+1,1 α
−1
m+1,k,1 αm−1,k,1 = 1;

(5.12) αm,0,1 = 1.
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Now, we consider the words vm,k = α−1m+1,k,1 αm−1,k,1 in GV B′3/W for all m, k ∈
Z.And we consider the quotient group (GV B′3/W )/V, where V = 〈vm,k | m, k ∈ Z〉,
the normal subgroup generated by the words vm,k. Similar to what we did earlier, we

obtain a presentation for (GV B′3/W )/V by inserting the relations αm+1,k,1 = αm−1,k,1, m, k ∈
Z in the above presentation for GV B′3/W ; and the obtained presentation for

(GV B′3/W )/V is as follows:

Generators: { α0,k,1, α1,k,1 | k ∈ Z };

Defining relations:

(5.13) α0,0,1 = α1,0,1 = 1;

(5.14) α1,k,1 = α−10,k,1

Clearly, from (5.14) we can remove the generators α1,k,1 and a free presentation

for the group (GV B′3/W )/V as follows:

(GV B′3/W )/V = 〈 α0,k,1, k ∈ Z− {0} 〉

Hence, we have obtained the following quotient maps:

GV B′3
φ−→ GV B′3/W

ψ−→ (GV B′3/W )/V ∼= 〈 α0,k,1, k ∈ Z− {0} 〉 ∼= F∞,

which gives us an onto homomorphism ψ ◦ φ from the group GV B′3 to the free

group of infinite rank, F∞. This proves that GV B′3 is not finitely generated. �

6. Finite Generation of GV B′4

From Lemma 4.2 and Lemma 4.3 we have the following presentation for GV B′4:

Generators: { αm,k,1, αm,k,2, α3, βm,k,2, βm,3 | m, k ∈ Z }.

Defining relations:

(6.1) αm,k,1 α3 α
−1
m+1,k,1 α

−1
3 = 1;

(6.2) αm,k,1 βm+1,3 α
−1
m,k+1,1 β

−1
m,3 = 1;

36



(6.3) αm,k,1 αm+1,k,2 αm+2,k,1 α
−1
m+2,k,2 α

−1
m+1,k,1 α

−1
m,k,2 = 1;

(6.4) αm,k,2 α3 αm+2,k,2 α
−1
3 α−1m+1,k,2 α

−1
3 = 1;

(6.5) βm,k+1,2 β
−1
m,k+2,2 β

−1
m,k,2 = 1;

(6.6) βm,k,2 βm,3 βm,k+2,2 β
−1
m,3 β

−1
m,k+1,2 β

−1
m,3 = 1;

(6.7) αm,k+1,2 αm+1,k+1,1 β
−1
m+2,k,2 α

−1
m+1,k,1 α

−1
m,k,2 = 1;

(6.8) βm,k,2 α3 αm+1,k+1,2 β
−1
m+2,3 α

−1
m+1,k,2 α

−1
3 = 1;

(6.9) βm,k,2 αm,k+1,1 αm+1,k+1,2 α
−1
m+1,k,2 α

−1
m,k,1 = 1;

(6.10) βm,3 αm,k+1,2 α3 β
−1
m+2,k,2 α

−1
3 α−1m,k,2 = 1.

We prove the following lemma:

Lemma 4.5. GV B′4 is finitely generated.

Proof. From (6.2), putting k = 1, we get:

(6.11) βm+1,3 = βm,3 αm,1,1.

Using the above relations finitely many times we get:

(6.12) βm,3 = β0,3 α0,1,1 . . . αm−1,1,1, if m ≥ 1;

(6.13) βm,3 = β0,3 α
−1
−1,1,1 . . . α−1m,1,1, if m ≤ −1.

So, we can remove βm,3, for all m 6= 0, from the set of generators by replacing these

values in all the other relations.

After the above replacement (6.10) becomes:

(6.14) β0,3 α0,1,1 . . . αm−1,1,1 αm,k+1,2 α3 β
−1
m+2,k,2 α

−1
3 α−1m,k,2 = 1, for m ≥ 1;

(6.15) β0,3 α
−1
−1,1,1 . . . α−1m,1,1 αm,k+1,2 α3 β

−1
m+2,k,2 α

−1
3 α−1m,k,2 = 1, for m ≤ −1.

(6.16) β0,3 α0,k+1,2 α3 β
−1
2,k,2 α

−1
3 α−10,k,2 = 1, for m = 0.
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From the above relations it is clear that we can express βm,k,2 in terms of

elements from { αm,1,1, αm,k,2, α3, β0,3 | m, k ∈ Z }. We remove all βm,k,2 from

the generating set after replacing these values in all other relations.

Next we note that, after the above replacement in (6.5), iterating the trans-

formed relation finitely many times we can express each αm,k,2 in terms of elements

from the set

{ αm,0,2, αm,1,2, αm,2,2, αm,1,1, α3, β0,3 | m ∈ Z }.

But using (6.4) we can further simplify the expression for αm,k,2, and we write

αm,k,2 in terms of elements from the set

{ α0,0,2, α1,0,2, α0,1,2, α1,1,2, α0,2,2, α1,2,2, α3, β0,3, αm,1,1 | m ∈ Z }.

Then we replace these values of αm,k,2 in other relations and remove αm,k,2 from

the generating set.

Finally we note that (6.1) is still unchanged after all the above replacements.

Using this relation we have:

αm,k,1 = α−m3 α0,k,1 α
m
3 .

We replace these values in all the relations and remove all αm,k,1 with m 6= 0 from

the generating set. Then using the relation (6.7) we express all α0,k,1 in terms of

the elements α0,0,2, α1,0,2, α0,1,2, α1,1,2, α0,2,2, α1,2,2, α3, β0,3, α0,1,1 and remove

all α0,k,1 except α0,0,1.

Hence we have shown that GV B′4 can be generated by the finite set of genera-

tors:

{α0,0,2, α1,0,2, α0,1,2, α1,1,2, α0,2,2, α1,2,2, α3, β0,3, α0,1,1}.

This completes the proof of the lemma. �

7. Finite Generation of GV B′n, n ≥ 5

We prove the following lemma:

Lemma 4.6. GV B′n has a generating set with 3n− 7 generators, for all n ≥ 5.
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Proof. From (4.16) we get:

βm,k,2 = α−1m−1,k,1 α
−1
m−2,k,2 αm−2,k+1,2 αm−1,k+1,1.

We replace these values of βm,k,2 in all other defining relations and remove βm,k,2

from the set of generators.

Note that the above substitution does not change the relation (4.7), which gives:

αm,k+1,2 = β−1m,j αm,k,2 βm+1,j, j ≥ 4.

Here we need n ≥ 5. Choosing j = 4, we replace αm,k,2 by β−km,4 αm,0,2 β
k
m+1,4 in all

other relations, and remove all αm,k,2 with k 6= 0 from the generating set.

After this replacement (4.11) becomes:

β−km,4 αm,0,2 β
k
m+1,4 α3 β

−k
m+2,4 αm+2,0,2 β

k
m+3,4 α

−1
3 β−km+2,4 α

−1
m+1,0,2 β

k
m+1,4 α

−1
3 = 1.

Note that, using the above relations, we can express αm,0,2 in terms of α0,0,2, α1,0,2, α3, βm,4.

And, we remove all αm,0,2 except α0,0,2 and α1,0,2 from the generating set.

Now look at the relations (4.1) and (4.6). Note that, both the relations are

untouched after all the above substitutions. The relation (4.6) gives us:

αm,k+1,1 = β−1m,j αm,k,1 βm+1,j

Note here that, αm,0,1 = 1. So for all j ≥ 3, using the above relation finitely many

times we deduce that,

(7.1) αm,k,1 = β−km,j αm,0,1 β
k
m+1,j = β−km,j β

k
m+1,j

Now, if we put the values of αm,1,1 obtained from above relation in (4.1) we

have:

(7.2) β−1m,j βm+1,j αl β
−1
m+2,j βm+1,j α

−1
l = 1, for any j, l ≥ 3.

We remove all αm,k,1 from the set of generators by replacing the values of αm,k,1

as in (7.1) in all the relations.

And finally, for every j ≥ 3, using (7.2) we can express βm,j in terms of

β0,j, β1,j, αj. So for each j ≥ 3, we can remove all βm,j with m 6= 0, 1 from

the set of generators.

Hence, we can generate GV B′n, for all n ≥ 5, with the finite generating set:

{ α0,0,2, α1,0,2, αj, β0,j, β1,j | 3 ≤ j ≤ n− 1 }
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which has 3n− 7 elements.

Hence, the proof of the lemma is complete. �

8. Perfectness of GV B′n

We prove the following lemma:

Lemma 4.7. GV B′n is perfect for n ≥ 5.

Proof. We abelianize the presentation for GV B′n as in Lemma 4.3 by inserting

the relations of the type x−1y−1xy = 1 for all x, y in the generating set, and obtain

a presentation for (GV B′n)ab. We will now show that (GV B′n)ab ∼= 〈1〉.
In the abelianized presentation we observe the following:

(1) From (4.1) we get αm+1,k,1 = αm,k,1 for all m, k ∈ Z. This implies that

αm,k,1 = α0,k,1 for all m, k ∈ Z.
(2) From (4.2) we get αm+1,k,2 = αm,k,2 for all m, k ∈ Z. This implies that

αm,k,2 = α0,k,2 for all m, k ∈ Z. (Note that here we need n ≥ 5.)

(3) From (4.10) using the above 2 observations we get: α0,k,1 = α0,k,2 for all

k ∈ Z.
(4) From (4.11) we get: α3 = α0,k,2 for all k ∈ Z.

(5) From (4.12) we get αi = αi+1 for all 3 ≤ i ≤ n− 2.

(6) From all the above observations we have:

α3 = α0,0,2 = α0,0,1 = 1

=⇒ αm,k,1 = αm,k,2 = αi = 1, for all m, k ∈ Z, 3 ≤ i ≤ n− 1.

(7) From (4.19) and observation (6) we get: βm,k,2 = 1 for all m, k ∈ Z.
(8) From (4.20) and observations (6) and (7) we get: βm,3 = 1 for all m ∈ Z.
(9) From (4.21) we get: βm,i+1 = βm+2,i for all m ∈ Z. Putting i = 3 we get

βm,4 = βm+2,3 = 1 for all m ∈ Z. Repeated use of this relation for increasing i’s

gives us: βm,i = 1 for all m ∈ Z, 3 ≤ i ≤ n− 1.

From the above observations we conclude that, in the presentation for (GV B′n)ab

all the generators are equal to 1. So, (GV B′n)ab ∼= 〈1〉. Hence, GV B′n is perfect for

n ≥ 5. �
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We prove the following lemma.

Lemma 4.8. GV B′3 and GV B′4 are not perfect.

Proof. The welded braid group WBn is a homomorphic image of GV Bn. It

is proved in Corollary 3.4 that WBk is not adorable, for k = 3, 4. Hence, GV Bk is

not adorable, for k = 3, 4. In particular, GV B′3 and GV B′4 are not perfect. �

Proof of Theorem 4.1

Combining Lemma 4.4, Lemma 4.5, Lemma 4.6, Lemma 4.7, and Lemma 4.8, we

have the proof of Theorem 4.1.
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CHAPTER 5

Flat Welded (and Virtual) Braid Groups

In this chapter, we investigate the commutator subgroups of the flat welded

braid groups FWBn and the flat virtual braid groups FV Bn.

1. Presentation for FWBn and FV Bn

The group FV Bn is generated by a set of 2(n− 1) generators:

{σi, ρi, i = 1, 2, . . . , n− 1}, satisfying the following set of defining relations:

σ2
i = 1;

σiσj = σjσi, |i− j| > 1;

σiσi+1σi = σi+1σiσi+1;

ρ2i = 1;

ρiρj = ρjρi, |i− j| > 1;

ρiρi+1ρi = ρi+1ρiρi+1;

σiρj = ρjσi, |i− j| > 1;

ρiρi+1σi = σi+1ρiρi+1.

The group FWBn is generated by the same set of generators as FV Bn, and

has a set of defining relations as the set of relations above along with the following

extra relations:

ρiσi+1σi = σi+1σiρi+1.

43



2. Goal of the chapter

It is easy to see that the abelianizations of FWBn and FV Bn are finite groups.

So, the commutator subgroups FWB′n and FV B′n are finite index subgroups of the

finitely presented groups FWBn and FV Bn respectively; and hence FWB′n and

FV B′n are also finitely presented.

We compute explicit finite presentations for FV B′n and FWB′n in Theorem 5.3.

We note the following proposition.

Proposition 5.1. The flat virtual braid group FV Bn and the flat welded braid

group FWBn are adorable groups of degree 1 for n ≥ 5; i.e. commutator subgroups

of these groups are perfect for n ≥ 5.

The above proposition can be proved by showing that the abelianizations of

the presentations for FV B′n and FWB′n which we get in Theorem 5.3 are identity.

But we will give an alternative proof of Proposition 5.1.

We shall prove Theorem 5.3 in the rest of this section by deducing explicit

finite presentations for FV B′n and FWB′n using Reidemeister-Schreier method and

Tietze transformations. In Section 3, we compute sets of generators for FWB′n and

FV B′n. In Section 4, we deduce sets of defining relations for FWB′n and FV B′n

and prove Theorem 5.3. Proposition 5.1 is proved in Section 5.

3. Sets of generators for FWB′n and FV B′n

To simplify the writing, let G = FWBn or FV Bn.

Define the map φ:

1 −→ G′ −→ G
φ−→ Z2 × Z2 −→ 1

where, for i = 1, . . . , n−1, φ(σi) = σ1, φ(ρi) = ρ1; here σ1 and ρ1 are the generators

of the two copies of Z2. Note that, φ does have a section in the above short exact

sequence and kerφ = G′.

Here, Image(φ) is isomorphic to the abelianization of G, denoted as Gab. To

prove this, we abelianize the presentations of FWBn and FV Bn by inserting the
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relations xy = yx in the presentations for all x, y ∈ { σi, ρi | 1 ≤ i ≤ n − 1 }.
We find that in both the cases the resulting presentation is the following:

Gab = < σ1, ρ1 | σ1ρ1 = ρ1σ1, σ
2
1 = 1, ρ21 = 1 > .

Clearly, Gab is isomorphic to Z2 × Z2 . But as φ is onto, Image(φ) = Z2 × Z2.

Hence, Image(φ) is isomorphic to Gab.

We have the following lemma.

Lemma 5.2. G′ is generated by σiσ1 = ai, ρiρ1 = bi, ρ1σiρ1σ1 = ci, ρ1ρi = di,

σ1σi = ei, σ1ρiρ1σ1 = fi, σ1ρ1σiρ1 = gi, σ1ρ1ρiσ1 = hi for i = 1, 2, . . . , n− 1.

Proof. Consider a Schreier set of coset representatives:

Λ = {1, σ1, ρ1, σ1ρ1}.

By the Reidemeister-Schreier method, the group G′ is generated by the set:

{Sλ,a = (λa)(λa)−1 | λ ∈ Λ, a ∈ {σi, ρi | i = 1, 2, . . . , n− 1}}.

We compute the generators as follows:

(1) For λ = 1:

S1,σi = σiσ1 = ai ,

S1,ρi = ρiρ1 = bi ;

(2) For λ = ρ1:

Sρ1,σi = ρ1σiρ1σ1 = ci ,

Sρ1,ρi = ρ1ρi = di ;

(3) For λ = σ1:

Sσ1,σi = σ1σi = ei ,

Sσ1,ρi = σ1ρiρ1σ1 = fi ;

(4) For λ = σ1ρ1:

Sσ1ρ1,σi = σ1ρ1σiρ1 = gi ,

Sσ1ρ1,ρi = σ1ρ1ρiσ1 = hi .

This proves the lemma. �
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4. Sets of defining relations for FWB′n and FV B′n

To obtain defining relations for G′, following the Reidemeister-Schreier method,

we apply re-writing process τ on λrµλ
−1, for all λ ∈ Λ, and rµ the defining relators

for G as follows.

The defining relators for FV Bn are:

r1 = σiσjσiσj, |i− j| > 1;

r2 = σiσi+1σiσi+1σiσi+1;

r3 = σ2
i ;

r4 = ρ2i ;

r5 = ρiρjρiρj, |i− j| > 1;

r6 = ρiρi+1ρiρi+1ρiρi+1;

r7 = σiρjσiρj, |i− j| > 1;

r8 = ρiρi+1σiρi+1ρiσi+1.

The extra defining relators for FWBn are as follows:

r9 = ρiσi+1σiρi+1σiσi+1.

We prove the following theorem.

Theorem 5.3. FV B′n has the following finite presentation:

Set of generators:

c1, c2, f2, ai, bi, i = 2, . . . , n− 1

Set of defining relations:

a32 = b32 = c32 = f 3
2 = 1;

a2i = b2i = (bic1)
2 = 1, i = 3, . . . , n− 1;

b−12 f2a
−1
2 = 1;

b2c1f
−1
2 c−12 = 1;

(a2ai)
2 = (b2bi)

2 = (c2ai)
2 = (f2bic1)

2 = 1, i ≥ 4;

(a2a3)
3 = (b2b3)

3 = (c2a3)
3 = (f2b3c1)

3 = 1;

a2bic1 = bic2, i ≥ 4;
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aif2 = b2ai, i ≥ 4;

b2b3a2b3c1f
−1
2 a3 = 1;

b−12 b3c2b3c1f2a3 = 1;

(aiaj)
2 = (bibj)

2 = 1, i, j ≥ 3, |i− j| > 1;

(aiai+1)
3 = (bibi+1)

3 = 1, i ≥ 3;

b−1j a−1i bjai = c1, i, j ≥ 3, |i− j| > 1;

bibi+1ai = ai+1bibi+1, i ≥ 3.

The group FWB′n is generated by the same set of generators as above and has a set

of defining relations as the set of relations above along with the following relations:

a−12 c2c
−1
1 b−12 = 1;

a2c
−1
2 c1f

−1
2 = 1;

a2a3b2a3c
−1
2 b3 = 1;

a−12 a3f2a3c2b3c1 = 1;

a2bic1 = bic2, i ≥ 4.

Proof. We apply re-writing process to the conjugates (by elements of Λ) of

each of the defining relators of the above presentations of FWBn and FV Bn in

order to get the defining relations for the commutator subgroups, i.e. FWB′n and

FV B′n.

Consider the first defining relator: r1 = σiσjσiσj, |i− j| > 1.

We conjugate this relator by each element λ ∈ Λ = {1, σ1, ρ1, σ1ρ1} and rewrite

them as follows:

(1) For λ = 1: τ(r1) = τ(σiσjσiσj)

= S1,σiSσ1,σjS1,σiSσ1,σj = (aiej)
2, |i− j| > 1;

(2) For λ = σ1: τ(σ1r1σ1) = τ(σ1σiσjσiσjσ1)

= S1,σ1Sσ1,σiS1,σjSσ1,σiS1,σjSσ1,σ1 = (eiaj)
2, |i− j| > 1;
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(3) For λ = ρ1: τ(ρ1r1ρ1) = τ(ρ1σiσjσiσjρ1)

= S1,ρ1Sρ1,σiSσ1ρ1,σjSρ1,σiSσ1ρ1,σjSρ1,ρ1 = (cigj)
2, |i− j| > 1;

(4) For λ = σ1ρ1: τ(σ1ρ1r1ρ1σ1) = τ(σ1ρ1σiσjσiσjρ1σ1)

= S1,σ1Sσ1,ρ1Sσ1ρ1,σiSρ1,σjSσ1ρ1,σiSρ1,σjSσ1ρ1,ρ1Sσ1,σ1 = (gicj)
2, |i− j| > 1.

In this way, we get some of the defining relations for FV B′n and FWB′n , namely

(aiej)
2 = 1, |i− j| > 1 and (cigj)

2 = 1, |i− j| > 1.

In a similar manner we re-write the conjugates of other defining relators i.e.

r2, r3, . . . r8, and deduce the remaining defining relations for FV B′n:

(aiei+1)
3 = 1, (eiai+1)

3 = 1, aiei = 1;

(bidi+1)
3 = 1, (dibi+1)

3 = 1, bidi = 1;

(fihi+1)
3 = 1, (hifi+1)

3 = 1, fihi = 1;

(cigi+1)
3 = 1, (gici+1)

3 = 1, cigi = 1;

(bidj)
2 = 1, (fihj)

2 = 1, |i− j| > 1;

aifjgidj = 1, eibjcihj = 1, |i− j| > 1;

bidi+1aifi+1hiei+1 = 1;

fihi+1eibi+1diai+1 = 1;

dibi+1cihi+1figi+1 = 1;

hifi+1gidi+1bici+1 = 1.

For FWB′n we have these extra relations (rewriting conjugates of r9):

bici+1gidi+1aiei+1 = 1;

figi+1cihi+1eiai+1 = 1;

diai+1eibi+1cigi+1 = 1;

hiei+1aifi+1gici+1 = 1.

Now we apply several Tietze transformations on the presentations obtained

above in order to complete the proof of Theorem 5.3.
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Replacing ei, di, gi, hi by a−1i , b−1i , c−1i , f−1i respectively, we get the defining re-

lations for FV B′n in terms of the generators ai, bi, ci, fi as follows:

(4.1) (aia
−1
j )2 = 1, |i− j| > 1;

(4.2) (bib
−1
j )2 = 1, |i− j| > 1;

(4.3) (cic
−1
j )2 = 1, |i− j| > 1;

(4.4) (fif
−1
j )2 = 1, |i− j| > 1;

(4.5) (aia
−1
i+1)

3 = 1;

(4.6) (bib
−1
i+1)

3 = 1;

(4.7) (cic
−1
i+1)

3 = 1;

(4.8) (fif
−1
i+1)

3 = 1;

(4.9) aifj = bjci, |i− j| > 1;

(4.10) a1 = b1 = f1 = 1;

(4.11) bib
−1
i+1aifi+1f

−1
i a−1i+1 = 1;

(4.12) b−1i bi+1cif
−1
i+1fic

−1
i+1 = 1.

For FWB′n we have the extra defining relations:

(4.13) aia
−1
i+1bici+1c

−1
i b−1i+1 = 1;

(4.14) a−1i ai+1fic
−1
i+1cif

−1
i+1 = 1.

Observe that, putting i = 1 in the relations (4.1) - (4.8), we get the following:

a2j = b2j = c2j = f 2
j = 1, j = 3, . . . , n− 1,

a32 = b32 = c32 = f 3
2 = 1.

From the relation (4.9), if |i−j| > 1, we have aifj = bjci. Putting j = 1, we get

ci = ai for i = 3, . . . , n−1. And putting i = 1, we get fj = bjc1 for j = 3, . . . , n−1.

We replace ci by ai and fi by bic1 for i = 3, . . . , n− 1.
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Putting i = 1 in the relations (4.11) and (4.12), we have:

b−12 f2a
−1
2 = 1;

b2c1f
−1
2 c−12 = 1.

Putting i = 1 in the relations (4.13) and (4.14), we have:

a−12 c2c
−1
1 b−12 = 1;

a2c
−1
2 c1f

−1
2 = 1.

Similarly, considering the cases i = 2, j ≥ 4, and, i ≥ 4, j = 2, in the above

relations we get the following set of relations for FV B′n:

(a2ai)
2 = (b2bi)

2 = (c2ai)
2 = (f2bic1)

2 = 1, i ≥ 4;

(a2a3)
3 = (b2b3)

3 = (c2a3)
3 = (f2b3c1)

3 = 1;

a2bic1 = bic2, i ≥ 4;

aif2 = b2ai, i ≥ 4;

b2b3a2b3c1f
−1
2 a3 = 1;

b−12 b3c2b3c1f2a3 = 1.

And, the extra relations for FWB′n:

a2a3b2a3c
−1
2 b3 = 1;

a−12 a3f2a3c2b3c1 = 1.

Lastly, we consider the case i, j ≥ 3. And we get the following defining relations

for FV B′n:

(aiaj)
2 = (bibj)

2 = 1, i, j ≥ 3, |i− j| > 1;

(aiai+1)
3 = (bibi+1)

3 = 1, i ≥ 3;

b−1j a−1i bjai = c1, i, j ≥ 3, |i− j| > 1;

bibi+1ai = ai+1bibi+1, i ≥ 3.

And, the extra relations for FWB′n:

aiai+1bi = bi+1aiai+1, i ≥ 3;

c1aiai+1bic1 = bi+1aiai+1, i ≥ 3.

This completes the proof of the theorem. �
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In particular, for n = 3, we have the following nice presentations:

FWB′3 = 〈a, b, c, x | a3 = b3 = c3 = 1, abc = 1, axc = bax = xcb〉;

FV B′3 = 〈a, b, x, y | a3 = b3 = (ab)3 = (xy)3 = 1, y−1 = axb〉.

5. Proof of Proposition 5.1

In Lemma 4.7, we have proved that GV B′n is perfect, for n ≥ 5. Hence,

doa(GV Bn) ≤ 1, for n ≥ 5. As FV Bn and FWBn both are homomorphic

images of GV Bn, for n ≥ 5 we have: doa(FV Bn) ≤ doa(GV Bn) ≤ 1 and

doa(FWBn) ≤ doa(GV Bn) ≤ 1. Clearly, FV Bn and FWBn are not perfect, i.e.

not adorable of degree 0 (as their abelianizations are non-trivial groups); hence they

are adorable of degree 1, for n ≥ 5. This completes the proof of Proposition 5.1.
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CHAPTER 6

Twin Groups

In this chapter, we investigate about the commutator subgroups of the twin

groups.

1. Presentation for TWn

Let n ≥ 2. The twin group on n arcs, denoted by TWn, is generated by a set of

(n− 1) generators: {τi | i = 1, 2, . . . , n− 1}, satisfying the following set of defining

relations:

(1.1) τ 2i = 1, for all i,

(1.2) τiτj = τjτi, if |i− j| > 1.

2. Goal of the chapter

Note that TW2 is the cyclic group of order two, and hence the commutator

subgroup TW ′
2 is trivial. It is easy to see that TW ′

n is a finite index subgroup of

the finitely presented group TWn, hence it is clear that TW ′
n is finitely presented.

We obtain an explicit finite presentation for TW ′
n, for n ≥ 3. Since for m ≥ 1,

TWm+2 is isomorphic to Grothendieck’s m-dimensional cartographical group Cm,

we obtain a finite presentation for the group C ′m. We prove the following theorem.

Theorem 6.1. For m ≥ 1, TW ′
m+2 has the following presentation:

Generators: βp(j), 0 ≤ p < j ≤ m.

Defining relations: For all l ≥ 3, 1 ≤ k ≤ j, j + 2 ≤ t ≤ m,

βj−k(j) βt−(j+l)(t) = βt−(j+l)(t) βj−k(j),

βt−k(t) = βj−k(j)
−1 βt−(j+1)(t) βj−k(j).
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We obtain the rank of TW ′
n in terms of n, the number of ‘arcs’ of the twin

group TWn. We prove the following.

Theorem 6.2. For m ≥ 1, the group TW ′
m+2 has rank 2m− 1.

The following is a consequence of the above two theorems.

Corollary 6.3. For m ≥ 1, the quotient group TW ′
m+2/TW

′′
m+2, is isomor-

phic to the free abelian group of rank 2m−1, i.e. the group
⊕2m−1

i=1 Z. In particular,

TW ′
m+2 is not perfect for any m ≥ 1.

We characterize freeness of TW ′
n in the following corollary.

Corollary 6.4. TW ′
m+2 is a free group if and only if m ≤ 3. The group

TW ′
3 is infinite cyclic. The groups TW ′

4 and TW ′
5 are free groups of rank 3 and 5

respectively.

As applications to the above results, we derive some geometric properties of the

ambient group TWn. We prove the following characterization for word-hyperbolicity

of TWn.

Corollary 6.5. The group TWm+2 is word-hyperbolic if and only if m ≤ 3.

We characterize the twin groups that does not contain any surface group, in

the following corollary.

Corollary 6.6. The group TWm+2 does not contain a surface group if and

only if m ≤ 3.

We also prove the following.

Corollary 6.7. The automorphism group of TWm+2 is finitely presented for

m ≤ 3.

We have proved Theorem 6.1 by using the Reidemeister-Schreier method and

the Tietze transformations. In Section 3, we compute a set of generators for TW ′
n,

n ≥ 3. In Section 4, a set of defining relations for TW ′
n involving these generators
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is obtained. We then apply Tietze transformations to the obtained presentation

to prove Theorem 6.1 in Section 5. In Section 6, we prove Theorem 6.2, and the

corollaries.

3. A set of generators for TW ′
n

For n ≥ 3, define the following map:

φ : TWn −→ Z2 ⊕ Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸
(n – 1) copies

=
n−1⊕
i=1

Z2

where, for i = 1, . . . , n − 1, φ maps τi to the generator of the i th copy of Z2 in

the product
⊕n−1

i=1 Z2 .

Here, Image(φ) is isomorphic to the abelianization of TWn, denoted as TW ab
n .

To prove this, we abelianize the above presentation for TWn by inserting the re-

lations τiτj = τjτi (for all i, j) in the presentation. The resulting presentation is

the following:

〈τ1, . . . , τn−1 | τiτj = τjτi, τ
2
i = 1, i, j ∈ {1, 2, . . . n− 1}〉.

Clearly, the above is a presentation for
⊕n−1

i=1 Z2. Thus, TW ab
n is isomorphic to⊕n−1

i=1 Z2. But as φ is onto, Image(φ) =
⊕n−1

i=1 Z2, i.e. Image(φ) is isomorphic to

TW ab
n . Hence, we get the following short exact sequence:

1 −→ TW ′
n ↪→ TWn

φ−→
n−1⊕
i=1

Z2 −→ 1.

We have the following lemma.

Lemma 6.8. For n ≥ 3, TW ′
n is generated by the conjugates of τjτj+1τjτj+1

and τj+1τjτj+1τj by the elements τi1τi2 . . . τis for all j ∈ {1, 2, . . . , n − 2} and

1 ≤ i1 < i2 < · · · < is < j.

Proof. Consider a Schreier set of coset representatives for TW ′
n in TWn:

Λ = {τ ε11 τ ε22 . . . τ
εn−1

n−1 | εi ∈ {0, 1}, i = 1, 2, . . . , n− 1}.

By the Reidemeister-Schreier method, TW ′
n is generated by the set

{Sλ,a = (λa)(λa)−1 | λ ∈ Λ, a ∈ { τi | i = 1, 2, . . . , n− 1} }.
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Hence, TW ′
n is generated by the elements:

{ Sτi1τi2 ...τik , τj | 1 ≤ i1 < i2 < · · · < ik ≤ n− 1 and 1 ≤ j ≤ n− 1 }.

We calculate these elements below.

Case 1: ik ≤ j : In this case, Sτi1τi2 ...τik ,τj = τi1τi2 . . . τikτj(τi1τi2 . . . τikτj)
−1

= τi1τi2 . . . τikτj (τi1τi2 . . . τikτj)
−1

= 1.

Hence we don’t get any nontrivial generator from this case.

Case 2: ik > j : We divide this case into following 3 subcases.

Subcase 2A: ik > j and (j + 1) ∈ {i1, i2, . . . , ik} but j /∈ {i1, i2, . . . , ik}:

Suppose j + 1 = is+1. Then we have:

Sτi1τi2 ...τik ,τj = τi1τi2 . . . τisτj+1τis+2 . . . τikτj (τi1τi2 . . . τisτj+1τis+2 . . . τikτj)
−1

= τi1τi2 . . . τisτj+1τis+2 . . . τikτj (τi1τi2 . . . τisτjτj+1τis+2 . . . τik)
−1

= τi1τi2 . . . τisτj+1τjτis+2 . . . τik (τi1τi2 . . . τisτjτj+1τis+2 . . . τik)
−1

= τi1τi2 . . . τisτj+1τjτis+2 . . . τikτik . . . τis+2τj+1τjτis . . . τi2τi1

= τi1τi2 . . . τisτj+1τjτj+1τjτis . . . τi2τi1 .

(Here we assume i1 < (j + 1) < ik. The cases (j + 1) = i1, ik are similar and

give same form of elements.)

So, we get some of the generators for TW ′
n as follows:

{τi1τi2 . . . τis(τj+1τjτj+1τj)τis . . . τi2τi1 | j ∈ {1, 2, . . . n−2} and i1 < i2 < · · · < is < j

where i1, i2, . . . , is, j are consecutive integers }.

Subcase 2B: ik > j and j, (j + 1) ∈ {i1, i2, . . . , ik}:

Suppose j = is, j + 1 = is+1. Then we have:

Sτi1τi2 ...τik ,τj = τi1τi2 . . . τis−1τjτj+1τis+2 . . . τikτj (τi1τi2 . . . τis−1τjτj+1τis+2 . . . τikτj)
−1

= τi1τi2 . . . τis−1τjτj+1τis+2 . . . τikτj (τi1τi2 . . . τis−1τj+1τis+2 . . . τik)
−1

= τi1τi2 . . . τis−1τjτj+1τjτis+2 . . . τik (τi1τi2 . . . τis−1τj+1τis+2 . . . τik)
−1
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= τi1τi2 . . . τis−1τjτj+1τjτis+2 . . . τikτik . . . τis+2τj+1τis−1 . . . τi2τi1

= τi1τi2 . . . τis−1τjτj+1τjτj+1τis−1 . . . τi2τi1 .

(Here we assume i1 < j < (j + 1) < ik. The cases j = i1 and (j + 1) = ik are

similar and give same form of elements.)

So, we get some of the generators for TW ′
n as follows:

{τi1τi2 . . . τis(τjτj+1τjτj+1)τis . . . τi2τi1 | j ∈ {1, 2, . . . n−2} and i1 < i2 < · · · < is < j

where i1, i2, . . . , is, j are consecutive integers }.

Subcase 2C: ik > j and (j + 1) /∈ {i1, i2, . . . , ik}:

There is is ∈ {i1, i2, . . . , ik} such that is ≤ j < is+1.

As (j + 1) /∈ {i1, i2, . . . , ik}, |is+1 − j| > 1. So we have:

Sτi1τi2 ...τik ,τj = τi1τi2 . . . τisτis+1 . . . τikτj (τi1τi2 . . . τisτis+1 . . . τikτj)
−1

= τi1τi2 . . . τisτjτis+1 . . . τik (τi1τi2 . . . τisτjτis+1 . . . τik)
−1

= 1.

So, this case does not give any nontrivial generator for TW ′
n. �

3.1. Notation: Let us introduce some notations as follows:

For 1 ≤ i1 < i2 < · · · < is < j ≤ n− 2 let us denote

α(i1, i2, . . . , is ; j) := τi1τi2 . . . τis(τjτj+1τjτj+1)τis . . . τi2τi1 ,

β(i1, i2, . . . , is ; j) := τi1τi2 . . . τis(τj+1τjτj+1τj)τis . . . τi2τi1 ,

α(j) := τjτj+1τjτj+1, β(j) := τj+1τjτj+1τj.
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4. A set of defining relations for TW ′
n

To obtain defining relations for TW ′
n, following the Reidemeister-Schreier algo-

rithm, we rewrite λrµλ
−1 for all λ ∈ Λ and rµ, the defining relators for TWn:

(4.1) r1 = τ 2j ;

(4.2) r2 = τtτjτtτj, |t− j| > 1.

We have the following lemma.

Lemma 6.9. The generators α(j), β(j), α(i1, i2, . . . , is ; j), β(i1, i2, . . . , is ; j)

satisfy the following defining relations in TW ′
n:

α(j) β(j) = 1, for all j ∈ {1, 2, . . . , n− 2},

α(i1, . . . , is ; j) β(i1, . . . , is ; j) = 1, when 1 ≤ i1 < i2 < · · · < is < j ≤ n− 2.

Proof. We apply the re-writing process η on all the conjugates (by the ele-

ments τi1τi2 . . . τik of Λ) of the defining relators for TWn.

Note: Here we will use the notation η to denote the re-writing process, as τ is

being used in the notation for elements τi ∈ TWn.

For all j ∈ {1, 2, . . . , n− 1}, we have the relation τ 2j = 1 in TWn. We apply the

re-writing process η on the conjugates of the relator as follows.

For any element τi1τi2 . . . τik ∈ Λ we have,

η (τi1τi2 . . . τik(τjτj) τik . . . τi2τi1)

= S1,τi1
Sτi1 ,τi2 . . . Sτi1τi2 ...τik ,τj Sτi1τi2 ...τikτj ,τj Sτi1τi2 ...τik ,τik . . . Sτi1τi2 ,τi2Sτi1 ,τi1

= Sτi1τi2 ...τik ,τj Sτi1τi2 ...τikτj ,τj .

For ik ≤ j the above expression vanishes.

If we have ik > j and (j + 1) /∈ {i1, i2, . . . , ik} the above expression vanishes.
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In case ik > j and j, (j + 1) ∈ {i1, i2, . . . , ik}, assuming j = is, the above

expression equals

α(i1, i2, . . . , is−1 ; j) β(i1, i2, . . . , is − 1 ; j).

And, if s = 1, then we have:

α(j) β(j).

For ik > j and (j + 1) ∈ {i1, i2, . . . , ik} but j /∈ {i1, i2, . . . , ik}, assuming

j + 1 = is+1, the above expression equals

β(i1, i2, . . . , is ; j) α(i1, i2, . . . , is ; j).

Hence, corresponding to the relation τ 2j = 1 in TWn we have the following

defining relations for TW ′
n:

(4.3) α(j) β(j) = 1, for all 1 ≤ j ≤ n− 2,

(4.4) α(i1, i2, . . . , is ; j) β(i1, i2, . . . , is ; j) = 1,

for all i1, i2, . . . , is, j such that 1 ≤ i1 < i2 < · · · < is < j ≤ n− 2. �

Now, we will find the defining relations in TW ′
n corresponding to the defining

relations τtτjτtτj = 1, |t− j| > 1, in TWn.

We have the following lemma.

Lemma 6.10. The generators α(j), β(j), α(i1, i2, . . . , is ; j), β(i1, i2, . . . , is ; j)

satisfy the following defining relations in TW ′
n:

For all i1, i2, . . . , ir, j, t where 1 ≤ i1 < i2 < · · · < ir < t ≤ n − 2, j ≤ t − 2,

we have

α(i1, . . . , j, ĵ + 1, . . . , ir; t) β(i1, . . . , ĵ, ĵ + 1, . . . , ir; t) = 1,

β(i1, . . . , j, ĵ + 1, . . . , ir; t) α(i1, . . . , ĵ, ĵ + 1, . . . , ir; t) = 1,

β(i1, . . . , is, ĵ, j + 1, . . . , ir; t) β(i1, . . . , is; j)

.α(i1, . . . , is, j, j + 1, . . . , ir; t) α(i1, . . . , is; j) = 1,

α(i1, . . . , is, ĵ, j + 1, . . . , ir; t) β(i1, . . . , is; j)

.β(i1, . . . , is, j, j + 1, . . . , ir; t) α(i1, . . . , is; j) = 1.
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Proof. For |t− j| > 1, in TWn we have the relation: τtτjτtτj = 1. We rewrite

this relation below.

η (τi1τi2 . . . τik(τtτjτtτj) τik . . . τi2τi1)

= S1,τi1
Sτi1 ,τi2 . . . Sτi1τi2 ...τik ,τtSτi1τi2 ...τikτt,τjSτi1τi2 ...τikτtτj ,τtSτi1τi2 ...τikτtτjτt,τj

Sτi1τi2 ...τikτtτjτtτj ,τik . . . Sτi1τi2 ...τikτtτjτtτjτik ...τi2 ,τi1

= Sτi1τi2 ...τik ,τtSτi1τi2 ...τikτt,τjSτi1τi2 ...τikτtτj ,τtSτi1τi2 ...τikτtτjτt,τj .

We need to calculate the above expression in all possible cases in order to get

all the remaining defining relations for TW ′
n.

Without loss of generality, we may assume that j < t.

We can only have the following 3 cases:

Case 1: ik ≤ j < t;

Case 2: j < ik ≤ t;

Case 3: j < t < ik.

Case 1: ik ≤ j < t. In this case we have:

Sτi1τi2 ...τik ,τt = 1,

Sτi1τi2 ...τikτt,τj = 1,

Sτi1τi2 ...τikτtτj ,τt = 1,

Sτi1τi2 ...τikτtτjτt,τj = 1.

Hence, this case gives no nontrivial defining relation for TW ′
n.

Case 2: j < ik ≤ t. We further divide this case into 3 subcases.

Subcase 2A. (j + 1) ∈ {i1, i2, . . . , ik} but j /∈ {i1, i2, . . . , ik}:

Assume, (j + 1) = is+1. Then we have:

Sτi1τi2 ...τik ,τt = 1,

Sτi1τi2 ...τikτt,τj = β(i1, . . . , is; j),
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Sτi1τi2 ...τikτtτj ,τt = 1,

Sτi1τi2 ...τikτtτjτt,τj = α(i1, . . . , is; j).

Hence, we get the relations:

β(i1, . . . , is; j) α(i1, . . . , is; j) = 1.

Subcase 2B. j, (j + 1) ∈ {i1, i2, . . . , ik}:

Assume, (j + 1) = is+1, j = is. Then we have:

Sτi1τi2 ...τik ,τt = 1,

Sτi1τi2 ...τikτt,τj = α(i1, . . . , is−1; j),

Sτi1τi2 ...τikτtτj ,τt = 1,

Sτi1τi2 ...τikτtτjτt,τj = β(i1, . . . , is−1; j).

So, we get the relations:

α(i1, . . . , is−1; j) β(i1, . . . , is−1; j) = 1.

Subcase 2C. (j + 1) /∈ {i1, i2, . . . , ik}: In this case we have:

Sτi1τi2 ...τik ,τt = 1,

Sτi1τi2 ...τikτt,τj = 1,

Sτi1τi2 ...τikτtτj ,τt = 1,

Sτi1τi2 ...τikτtτjτt,τj = 1.

So, we do not get any nontrivial relation from this subcase.

Case 3: j < t < ik. We need to divide this case into 9 subcases.
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Subcase 3A. (j+1) ∈ {i1, i2, . . . , ik}, j /∈ {i1, i2, . . . , ik}, (t+1) ∈ {i1, i2, . . . , ik},
t /∈ {i1, i2, . . . , ik}:

Assume, (j + 1) = is+1, (t+ 1) = ir+1. In this case we have:

Sτi1τi2 ...τik ,τt = β(i1, . . . , ĵ, . . . , ir; t),

Sτi1τi2 ...τikτt,τj = β(i1, . . . , is; j),

Sτi1τi2 ...τikτtτj ,τt = α(i1, . . . , j, . . . , ir; t),

Sτi1τi2 ...τikτtτjτt,τj = α(i1, . . . , is; j).

( ĵ denotes absence of j)

Hence, we get the relations:

β(i1, . . . , is, ĵ, j + 1, . . . , ir; t) β(i1, . . . , is; j)

.α(i1, . . . , is, j, j + 1, . . . , ir; t) α(i1, . . . , is; j) = 1.

Subcase 3B. (j + 1) ∈ {i1, i2, . . . , ik}, j /∈ {i1, i2, . . . , ik}, and t, (t + 1) ∈
{i1, i2, . . . , ik} :

Assume, (j + 1) = is+1, (t+ 1) = ir+1, t = ir. In this case we have:

Sτi1τi2 ...τik ,τt = α(i1, . . . , ĵ, . . . , ir−1; t),

Sτi1τi2 ...τikτt,τj = β(i1, . . . , is; j),

Sτi1τi2 ...τikτtτj ,τt = β(i1, . . . , j, . . . , ir−1; t),

Sτi1τi2 ...τikτtτjτt,τj = α(i1, . . . , is; j).

So, we get the relations:

α(i1, . . . , is, ĵ, j + 1, . . . , ir−1; t) β(i1, . . . , is; j)

.β(i1, . . . , is, j, j + 1, . . . , ir−1; t) α(i1, . . . , is; j) = 1.
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Subcase 3C. (j+1) ∈ {i1, i2, . . . , ik}, j /∈ {i1, i2, . . . , ik}, (t+1) /∈ {i1, i2, . . . , ik} :

Assume, (j + 1) = is+1. In this case we have:

Sτi1τi2 ...τik ,τt = 1,

Sτi1τi2 ...τikτt,τj = β(i1, . . . , is; j),

Sτi1τi2 ...τikτtτj ,τt = 1,

Sτi1τi2 ...τikτtτjτt,τj = α(i1, . . . , is; j).

Hence, we get the relations:

β(i1, . . . , is; j) α(i1, . . . , is; j) = 1.

Subcase 3D. j, (j+1) ∈ {i1, i2, . . . , ik}, (t+1) ∈ {i1, i2, . . . , ik}, t /∈ {i1, i2, . . . , ik} :

Assume, (j + 1) = is+1, j = is, (t+ 1) = ir+1. In this case we have:

Sτi1τi2 ...τik ,τt = β(i1, . . . , j, . . . , ir; t),

Sτi1τi2 ...τikτt,τj = α(i1, . . . , is−1; j),

Sτi1τi2 ...τikτtτj ,τt = α(i1, . . . , ĵ, . . . , ir; t),

Sτi1τi2 ...τikτtτjτt,τj = β(i1, . . . , is−1; j).

So, we get the relations:

β(i1, . . . , is−1, j, j + 1, . . . , ir; t) α(i1, . . . , is−1; j)

.α(i1, . . . , is−1, ĵ, j + 1, . . . , ir; t) β(i1, . . . , is−1; j) = 1.

Subcase 3E. j, (j + 1) ∈ {i1, i2, . . . , ik}, and t, (t+ 1) ∈ {i1, i2, . . . , ik}:

Assume, (j + 1) = is+1, j = is, (t+ 1) = ir+1, t = ir. In this case we have:

Sτi1τi2 ...τik ,τt = α(i1, . . . , j, . . . , ir−1; t),

Sτi1τi2 ...τikτt,τj = α(i1, . . . , is−1; j),

Sτi1τi2 ...τikτtτj ,τt = β(i1, . . . , ĵ, . . . , ir−1; t),

Sτi1τi2 ...τikτtτjτt,τj = β(i1, . . . , is−1; j).
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Hence, we get the relations:

α(i1, . . . , is−1, j, j + 1, . . . , ir−1; t) α(i1, . . . , is−1; j)

.β(i1, . . . , is−1, ĵ, j + 1, . . . , ir−1; t) β(i1, . . . , is−1; j) = 1.

Subcase 3F. j, (j + 1) ∈ {i1, i2, . . . , ik}, and (t+ 1) /∈ {i1, i2, . . . , ik}:

Assume, (j + 1) = is+1, j = is. In this case we have:

Sτi1τi2 ...τik ,τt = 1,

Sτi1τi2 ...τikτt,τj = α(i1, . . . , is−1; j),

Sτi1τi2 ...τikτtτj ,τt = 1,

Sτi1τi2 ...τikτtτjτt,τj = β(i1, . . . , is−1; j).

So, we get the relations:

α(i1, . . . , is−1; j) β(i1, . . . , is−1; j) = 1.

Subcase 3G. (j + 1) /∈ {i1, i2, . . . , ik}, and (t+ 1) ∈ {i1, i2, . . . , ik},
t /∈ {i1, i2, . . . , ik}:

Assume, (t+ 1) = ir+1.

In this case we have:

Sτi1τi2 ...τik ,τt =

{
β(i1, . . . , j, . . . , ir; t) if j ∈ {i1, i2, . . . , ik},
β(i1, . . . , ĵ, . . . , ir; t) if j /∈ {i1, i2, . . . , ik},

Sτi1τi2 ...τikτt,τj = 1,

Sτi1τi2 ...τikτtτj ,τt =

{
α(i1, . . . , ĵ, . . . , ir; t) if j ∈ {i1, i2, . . . , ik},
α(i1, . . . , j, . . . , ir; t) if j /∈ {i1, i2, . . . , ik},

Sτi1τi2 ...τikτtτjτt,τj = 1.

So, we get the relations:

β(i1, . . . , j, . . . , ir; t) α(i1, . . . , ĵ, . . . , ir; t) = 1,

β(i1, . . . , ĵ, . . . , ir; t) α(i1, . . . , j, . . . , ir; t) = 1.
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Subcase 3H. (j + 1) /∈ {i1, i2, . . . , ik}, and t, (t+ 1) ∈ {i1, i2, . . . , ik}:

Assume, (t+ 1) = ir+1, t = ir. In this case we have:

Sτi1τi2 ...τik ,τt =

{
α(i1, . . . , j, . . . , ir−1; t) if j ∈ {i1, i2, . . . , ik},
α(i1, . . . , ĵ, . . . , ir−1; t) if j /∈ {i1, i2, . . . , ik},

Sτi1τi2 ...τikτt,τj = 1,

Sτi1τi2 ...τikτtτj ,τt =

{
β(i1, . . . , ĵ, . . . , ir−1; t) if j ∈ {i1, i2, . . . , ik},
β(i1, . . . , j, . . . , ir−1; t) if j /∈ {i1, i2, . . . , ik},

Sτi1τi2 ...τikτtτjτt,τj = 1.

Hence, we get the relations:

α(i1, . . . , j, . . . , ir−1; t) β(i1, . . . , ĵ, . . . , ir−1; t) = 1,

α(i1, . . . , ĵ, . . . , ir−1; t) β(i1, . . . , j, . . . , ir−1; t) = 1.

Subcase 3I. (j + 1) /∈ {i1, i2, . . . , ik}, and (t+ 1) /∈ {i1, i2, . . . , ik}:
In this case we have:

Sτi1τi2 ...τik ,τt = 1,

Sτi1τi2 ...τikτt,τj = 1,

Sτi1τi2 ...τikτtτj ,τt = 1,

Sτi1τi2 ...τikτtτjτt,τj = 1.

So, we do not get any nontrivial relation from this subcase.

Collecting the relations obtained in all the above cases we have the lemma. �

5. Proof of Theorem 6.1

In this section, we will simplify the presentation for TW ′
n that we deduced in the

previous section. We will apply Tietze transformations on the current presentation

for TW ′
n in order to deduce another presentation for TW ′

n with less number of

generators and relations than the last one. We begin with the following lemma.

Lemma 6.11. For n ≥ 3, TW ′
n has the following presentation:

Generators: β(j), β(i1, i2, . . . , is ; j), for 1 ≤ i1 < i2 < · · · < is < j ≤ n− 2,
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Defining relations:

β(i1, . . . , is, j, ĵ + 1, . . . , ir; t) = β(i1, . . . , is, ĵ, ĵ + 1, . . . , ir; t),

β(i1, . . . , is, j, j + 1, . . . , ir; t) =

β(i1, . . . , is; j)
−1 β(i1, . . . , is, ĵ, j + 1, . . . , ir; t) β(i1, . . . , is; j),

where 1 ≤ i1 < i2 < · · · < is < j < · · · < ir < t ≤ n− 2, j ≤ t− 2.

Proof. From Lemma 6.9, we have α(j) = β(j)−1, α(i1, i2, . . . , is ; j) =

β(i1, i2, . . . , is ; j)−1. Hence, we replace α(j) by β(j)−1 and α(i1, i2, . . . , is ; j)

by β(i1, i2, . . . , is ; j)−1 in all other defining relations for TW ′
n, and remove all

α(j), α(i1, i2, . . . , is ; j) from the set of generators. This completes the proof of

Lemma 6.11. �

5.1. Observation. Consider the defining relations:

β(i1, . . . , is, j, ĵ + 1, . . . , ir; t) = β(i1, . . . , is, ĵ, ĵ + 1, . . . , ir; t).

Note that here we have j ≤ t− 2. Let us look at the following example.

Consider the generator β(3, 4, 6, 7, 9, 10, 11; 12) in TW ′
15. From the above set of

relations, as ‘5’ does not appear in β(3, 4, 6, 7, 9, 10, 11; 12), we can conclude that

β(3, 4, 6, 7, 9, 10, 11; 12) = β(3, 6, 7, 9, 10, 11; 12).

As ‘4’ is missing in β(3, 6, 7, 9, 10, 11; 12), we get

β(3, 6, 7, 9, 10, 11; 12) = β(6, 7, 9, 10; 11).

We can go further. Using the same relations we get

β(6, 7, 9, 10; 11) = β(6, 9, 10; 11) = β(9, 10; 11).

From the above observation it is clear that using the above defining relations

finitely many times, any generator β(i1, i2, . . . , is; j) can be shown to be equal to a

generator of the form β(j − p, j − p+ 1, . . . , j − 1 ; j) for some p < j, or be equal

to β(j). Let’s call these the normal forms of the generators.
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5.2. Notation: We will follow the notations for the normal forms as below:

For 1 ≤ p < j, βp(j) := β(j − p, . . . , j − 1; j), and β0(j) := β(j).

As every generator is equal to its normal form, we replace all the generators

with their normal forms in all the defining relations and remove all the generators

except the normal forms from the generating set. For clarity of exposition, we

define the following.

Definition 6.12. For a generator β(i1, i2, . . . , is; j) we define the highest

missing entry in β(i1, i2, . . . , is; j) to be the integer k, where i1− 1 ≤ k ≤ j − 1,

if k /∈ {i1, i2, . . . , is, j} but for any m with k < m ≤ j, m ∈ {i1, i2, . . . , is, j}.

Now we are ready to prove Theorem 6.1.

5.3. Proof of Theorem 6.1. From Lemma 6.11, we have the following defin-

ing relations in the presentation for TW ′
n, n ≥ 3:

β(i1, . . . , is, j, j + 1, . . . , ir; t) =

β(i1, . . . , is; j)
−1 β(i1, . . . , is, ĵ, j + 1, . . . , ir; t) β(i1, . . . , is; j),

where 1 ≤ i1 < i2 < · · · < is < j < · · · < ir < t ≤ n− 2, j ≤ t− 2.

We replace the generators appearing in these relations by their normal forms

βp(j)’s. Our goal is to find the modified relations after the substitution.

Consider the left hand side of the above relations. We have β(i1, . . . , is, j, j +

1, . . . , ir; t). Note that the highest missing entry in β(i1, . . . , is, j, j + 1, . . . , ir; t)

cannot be j or j + 1, as both are present as entries. So we can have 2 possibilities.

We examine the 2 cases separately below.

Case 1: The highest missing entry in β(i1, . . . , is, j, j + 1, . . . , ir; t) is greater

than j + 1.

Suppose the highest missing entry in β(i1, . . . , is, j, j+1, . . . , ir; t) is j+(l−1)

for some l ≥ 3. Also suppose the highest missing entry in β(i1, . . . , is; j) is m − 1

for some 1 ≤ m ≤ j.
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Then, the relations are equivalent to the following relations:

for all l ≥ 3, 1 ≤ m ≤ j, j ≤ t− 2,

β(j + l, . . . , t− 1; t) = β(m, . . . , j − 1; j)−1β(j + l, . . . , t− 1; t)β(m, . . . , j − 1; j).

So, after the substitution by normal forms the relations become:

βt−(j+l)(t) = βj−m(j)−1 βt−(j+l)(t) βj−m(j), for all l ≥ 3, 1 ≤ m ≤ j, j ≤ t− 2.

Equivalently,

βj−m(j) βt−(j+l)(t) = βt−(j+l)(t) βj−m(j), for all l ≥ 3, 1 ≤ m ≤ j, j ≤ t− 2.

Case 2: The highest missing entry in β(i1, . . . , is, j, j + 1, . . . , ir; t) is less

than j.

Suppose the highest missing entry in β(i1, . . . , is, j, j+ 1, . . . , ir; t) is m− 1 for

some 1 ≤ m ≤ j. Then clearly the highest missing entry in β(i1, . . . , is; j) is also

m− 1.

So, after the substitution by normal forms the relations become:

βt−m(t) = βj−m(j)−1 βt−(j+1)(t) βj−m(j), for all 1 ≤ m ≤ j, j ≤ t− 2.

This completes the proof of Theorem 6.1.

6. Proof of Theorem 6.2 and corollaries

We shall further reduce the number of generators in the presentation by remov-

ing all βp(j) with p > 1 by using the defining relations:

βt−m(t) = βj−m(j)−1 βt−(j+1)(t) βj−m(j),

for m, j, t ∈ {1, . . . , n− 2} with 1 ≤ m ≤ j ≤ t− 2.

Note that, if we consider the cases where j = m in the above set of relations,

we obtain the following set of relations:

βt−m(t) = β0(m)−1 βt−(m+1)(t) β0(m),

for all m, t ∈ {1, . . . , n− 2} with 1 ≤ m ≤ t− 2.

So, if t −m ≥ 2, we can express βt−m(t) as the conjugate of βt−(m+1)(t)

by β0(m). We do this iteratively to express βt−m(t) as the conjugate of β1(t)
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by the element β0(t − 2) . . . β0(m) and thus remove all βp(j) with p ≥ 2 from the

set of generators after replacing them with the above values in all the remaining

relations.

We have the following lemma.

Lemma 6.13. For n ≥ 3, TW ′
n has a finite presentation with (2n−5) generators.

Proof. After performing the above substitution we are left with βp(j) with

p ≤ 1 and 1 ≤ j ≤ n − 2. Hence, corresponding to every 2 ≤ j ≤ n − 2 we have

2 generators β0(j) and β1(j). For j = 1, we have only 1 generator, namely β0(1).

So, we have total 2× (n− 3) + 1 = 2n− 5 generators in the final presentation for

TW ′
n for n ≥ 3.

Note that the presentation given in Theorem 6.1 has finitely many defining

relations. As finitely many βp(j) are being replaced and each βp(j) appears finitely

many times in all the defining relations, after the above substitution we will have

finitely many defining relations in the final presentation.

This completes the proof of the lemma. �

6.1. Proof of Theorem 6.2. We consider the abelianization of TW ′
n for

n ≥ 3, (TW ′
n)ab = TW ′

n/TW
′′
n . In order to find a presentation for (TW ′

n)ab

we insert all possible commuting relations βp(j) βq(i) = βq(i) βp(j), for all i, j ∈
{1, . . . , n− 2}, 0 ≤ p < j, 0 ≤ q < i, in the presentation for TW ′

n. This gives the

following presentation for (TW ′
n)ab:

Generators: βp(j), 0 ≤ p < j ≤ n− 2.

Defining relations: βp(j) βq(i) = βq(i) βp(j), ∀i, j ∈ {1, . . . , n− 2},

βt−m(t) = βt−(j+1)(t), 1 ≤ m ≤ j, j + 2 ≤ t ≤ n− 2.

Iterating the last set of relations, we deduce that βp(j) = β1(j) for all p ≥ 2 and

for all j ≥ 3. Hence, we remove all βp(j) with p ≥ 2 from the set of generators by

replacing them with β1(j). After this replacement we get the following presentation
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for (TW ′
n)ab:

Generators: β0(1), β0(j), β1(j), 2 ≤ j ≤ n− 2.

Defining relations: βp(j) βq(i) = βq(i) βp(j), ∀i, j ∈ {1, . . . , n−2}, p, q ∈ {0, 1}.

Clearly, this is the presentation for direct sum of (2n − 5) copies of Z, i.e.

Z2n−5. So, (TW ′
n)ab is isomorphic to Z2n−5. Hence, rank of (TW ′

n)ab is (2n−5).

As, (TW ′
n)ab is the homomorphic image of TW ′

n under the quotient homo-

morphism TW ′
n −→ (TW ′

n)ab, rank of (TW ′
n)ab is less than or equal to the rank

of TW ′
n. Thus, rank( TW ′

n ) ≥ rank( (TW ′
n)ab ) = 2n− 5. From Lemma 6.13 we

get rank( TW ′
n ) ≤ 2n− 5. So, we conclude that rank( TW ′

n ) = 2n− 5.

6.2. Proof of Corollary 6.3: In the proof of Theorem 6.2 we observed that

for n ≥ 3, TW ′
n/TW

′′
n is isomorphic to direct sum of (2n − 5) copies of Z. So, we

conclude that TW ′
n 6= TW ′′

n , and hence TW ′
n is not perfect for any n ≥ 3. This

proves the corollary.

For n ≤ 5, TW ′
n are well known groups. We have the following proposition.

Proposition 6.14. We have the following:

(i) TW ′
2 is the identity group {1}.

(ii) TW ′
3 is the infinite cyclic group Z.

(iii) TW ′
4 and TW ′

5 are free groups of rank 3 and 5, respectively.

Proof. Note that, TW2 = 〈 τ1 | τ 21 = 1 〉 = Z/2Z and Z/2Z is an abelian

group. Hence, TW ′
2 is the identity group.

From Theorem 6.1 it follows that TW ′
3 = 〈 β0(1) 〉 which is isomorphic to

the infinite cyclic group Z.

From Theorem 6.1 it follows that TW ′
4 = 〈 β0(1), β0(2), β1(2) 〉 which is

the free group of rank 3.
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From Theorem 6.1 it follows that:

TW ′
5 = 〈 β0(1), β0(2), β1(2), β0(3), β1(3), β2(3) | β2(3) = β0(1)−1 β1(3) β0(1) 〉

= 〈 β0(1), β0(2), β1(2), β0(3), β1(3) 〉.

Hence, TW ′
5 is free of rank 5. This completes the proof of Proposition 6.14. �

From [PV16] we have a necessary and sufficient condition for the commutator

subgroup of a right-angled Coxeter group to be free. Since TWn is a right-angled

Coxeter group, we check the condition for TWn. We note the following definitions.

Definition 6.15. A graph Γ is called chordal if for every cycle in Γ with at

least 4 vertices there is an edge (called chord) in Γ joining 2 non-adjacent vertices

of the cycle.

Definition 6.16. The Coxeter graph ΓTWn corresponding to TWn is defined

as follows. Corresponding to each generator τi of TWn we have a vertex vi in

ΓTWn . Corresponding to each commuting defining relation τiτj = τjτi, |i− j| > 1,

we have an edge in ΓTWn joining vi and vj.

We have the following proposition.

Proposition 6.17. For n ≥ 6, TW ′
n is not a free group.

Proof. As proved in [PV16], for a right-angled Coxeter group G, the com-

mutator subgroup G′ is free if and only if the Coxeter graph of G, ΓG, is chordal.

Figure 1. Cycle with 4 vertices but no chord in ΓTWn , n ≥ 6

Consider the Coxeter graph ΓTWn corresponding to TWn. Note that for n ≥ 6,

ΓTWn contains the cycle v1v4v2v5v1 joining the vertices v1, v4, v2, v5 (as in the figure

above). Clearly this cycle does not have any chord; as τ1, τ2 do not commute and

τ4, τ5 do not commute. This shows that for n ≥ 6 ΓTWn is not chordal.

Consequently, TW ′
n is not free for n ≥ 6, proving Proposition 6.17. �
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6.3. Proof of Corollary 6.4. Corollary 6.4 follows from Proposition 6.14.

and Proposition 6.17.

6.4. Proof of Corollary 6.5. It is clear from the presentation in Theorem 6.1

that for m ≥ 4, TW ′
m+2 contains free abelian subgroups of rank ≥ 2. By [Mou88,

Theorem B], this shows that TWm+2 is not word-hyperbolic for m ≥ 4. Whereas

from Corollary 6.4 we observe that TWm+2 is virtually free for m ≤ 3. Hence

TWm+2 is word-hyperbolic for m ≤ 3.

6.5. Proof of Corollary 6.6. Gordon, Long and Reid proved in [GLR04]

that a Coxeter group G is virtually free if and only if G does not contain a surface

group. Since TWm+2 is finitely generated, by Corollary 6.5, it can not be virtually

free for m ≥ 4.

6.6. Proof of Corollary 6.7. According to [KL04, Theorem B], and also

[Krs92, Theorem 1], any finite extension of a free group of finite rank has a finitely

presented automorphism group. Noting that TWn/TW
′
n is a finite group and using

Corollary 6.4 it is clear that the automorphism group of TWm+2 is finitely presented

for m ≤ 3.

7. Remarks

Presentation for TW ′
6. As follows from the above, TW ′

6 is the first non-free

group in the family of TW ′
n, n ≥ 3. Here, we note down a presentation for TW ′

6

with minimal number of generators:

Generators: β0(1), β0(2), β1(2), β0(3), β1(3), β0(4), β1(4).

Defining relations:

β0(1) β0(4) = β0(4) β0(1),

β1(2)−1 β1(4) β1(2) = β0(1)−1 β0(2)−1 β1(4) β0(2) β0(1).

Note that, the rank of TW ′
n mentioned in Theorem 6.2 is attained in the above

presentation for TW ′
6.
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CHAPTER 7

Future research directions

Here we note down some research directions (suggested by the referees) related

to the generalized braid groups.

Problem 1: Investigate whether the groups WBn, GV Bn, FV Bn, FWBn

and TWn are linear groups, i.e. whether they admit faithful linear representations.

Problem 2: If possible, express WB′n as a nontrivial amalgamated product.

Do the same for the groups GV B′n, FV B
′
n, FWB′n and TW ′

n.

Problem 3: For each of the generalized braid groups considered in this thesis,

construct explicit CW-complex whose fundamental group is the group in considera-

tion; and prove finite generation or finite presentability of the group using geometric

techniques.

Problem 4: Find the commutator widths of the generalized braid groups.

Problem 5: Does there exist a torsion free group G which is non-adorable and

none of the terms in the derived series of G is free?

Problem 6: Is TWn non-adorable?

Let G be a group and φ be an endomorphism of G. Then, two elements x, y ∈ G
are said to be Reidemeister equivalent if there exists another element z ∈ G such

that x = z y φ(z)−1; and the corresponding equivalence classes are called the

Reidemeister classes or twisted conjugacy classes. The Reidemeister number of φ,

denoted by R(φ), is the number of Reidemeister classes in G corresponding to φ.

A group G has the R∞ property if for every automorphism φ of G, R(φ) is infinite.

Problem 7: Do the generalized braid groups have the R∞ property?
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