
Pattern formation in Complex Dynamical
Networks

A thesis

submitted by

Chandrakala Meena

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Indian Institute of Science Education and Research (IISER)
Mohali

April, 2018



ii



Certificate of Examination

This is to certify that the dissertation titled Pattern formation in Complex Dynamical

Networks submitted by Ms. Chandrakala Meena (Reg. No. PH14032) for the partial

fulfillment of Doctor of Philosophy programme of the Institute, has been examined by the

thesis committee duly appointed by the Institute. The committee finds the work done

by the candidate satisfactory and recommends that the report be accepted.

Dr. Rajeev Kapri Dr. Sanjeev Kumar Professor Sudeshna Sinha

(Supervisor)

iii



iv



Declaration

The work presented in this dissertation has been carried out by me under the guidance

of Prof. Sudeshna Sinha at the Indian Institute of Science Education and Research

Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a fellow-

ship to any other university or institute. Whenever contributions of others are involved,

every effort is made to indicate this clearly, with due acknowledgment of collaborative

research and discussions. This thesis is a bona-fide record of original work done by me

and all sources listed within have been detailed in the bibliography.

Chandrakala Meena

(Candidate)

In my capacity as the supervisor of the candidate’s doctoral thesis, I certify that the

above statements by the candidate are true to the best of my knowledge.

Professor Sudeshna Sinha

(Supervisor)

v



vi



Acknowledgements

It is a great pleasure to convey my deep gratitude to my thesis supervisor, Prof.

Sudeshna Sinha, for her guidance during my PhD research at IISER Mohali. She has

been my guiding light for all academic and non-academic discussions, up and downs dur-

ing my stay at IISER Mohali. Her patience, warm encouragement, flexibility and careful

guidance along with genuine caring and concern has been motivating and enlightening.

She has been always emphasized on the development of an intuitive understanding of a

problem and even very supportive of crazy ideas. Her constant energy and enthusiasm in

life has motivated me and will continue to do so for the rest of my life. For this, I will

be forever grateful for her.

I am thankful to my doctoral committee members, Dr. Rajeev Kapri and Dr. Sanjeev

Kumar for their encouragement and insightful comments during my work. My sincere

thanks to Prof. Elena Surovyatkina and Prof. Jürgen Kurths for offering me the op-

portunity to work with their group at PIK, Potsdam which provided me the chance to

interact with various people working on a diverse set of problems. I would like to thank

Dr. Chiranjit Mitra and Dr. Bedartha for valuable discussions and for making my stay

comfortable at Potsdam Institute for Climate Impact Research (PIK). I am grateful to

Dr. Harvinder K. Jassal, Prof. Jasjeet Bagla, Dr. Abhishek Chaudhuri, Dr. Raman-

deep S. Johal, Prof. Arvind, Dr. Goutam Sheet, Dr. Dipanjan Chakraborty, Dr. Amit

Kulshrestha, Prof. Kapil H. Paranjape, Prof. N. Sathyamurthy, Dr. Samrat Ghosh, Dr.

Lolitika Mandal, Dr. Sudip Madal, Dr. Paramdeep for their encouragement and support.

I convey my gratitude to Dr. Manish D. Shirmali and Dr. K. Murali for many scientific

discussions, inputs, and encouragement.

I am thankful to IISER Mohali for providing high-performance computing facility,

library and other resources useful for research. I thank Department of Science and Tech-

nology (DST), INDIA for Innovation in Science Pursuit for Inspired Research (INSPIRE)

fellowship, Science & Engineering Research Board (SERB), INDIA for the international

travel grant to attend an international conference Perspectives in Nonlinear Dynamics

(PNLD) 2016, held in Germany and Potsdam Institute for Climate Impact Research

(PIK) for financial support during my stay at PIK, Germany.

During a PhD programme, a good support system is essential for surviving and staying

lucid. Over the years it has been my good fortune to encounter many people who have

given me more of their time, companionship and personal help. I am very much thankful

to Karishma and Hema for their valuable time, understanding, support, motivation and

vii



enthusiasm. I express sincere gratitude to Dr. N. G. Prasad for playing a role of my

father at IISER Mohali. I owe thanks to Mrs. Suguna Sathyamurthy and Mrs. Chitra

for their guidance and support.

I am thankful to Pranay for discussion on both academic and non-academic topics

and for his companionship in the scholar room which made it a genial place to work. I

would also like to thank my colleagues Sudhanshu, Promit, Manaoj for their critical com-

ments and discussion. I owe special thanks to Dr. Anshul, Dr. Vivek, Dr. Vinesh, Dr.

Gurpreet, Dr. Karan, Dr. Santosh and Dr. Ramsingh for their motivation and guidance.

I am grateful to Ashok and Priyanka for their genuine caring and delicious homemade

food. I thank my friends Akansha, Kusum, Kritika, Jyoti, Meenakshi, Rajveer, Abhishek,

Arnob, Archana, Renu, Nisha, Swagatam, Avinash, Ankit, Ashish, Ramu, Manoj, Neeraj,

Nitish for their support.

I am very thankful to my maternal family and my parents. Specifically, my maternal

grandmother (“Nani”), she has been a great role model for me. She has inculcated courage

and determination in any hard situation and moral values in me. I am very thankful to

my maternal grandfather, maternal uncles and aunties, cousins, Ramlkhan, Priyanka,

Sarita, Ganesh, Ramroop, Rajkumar and my siblings, Dilkhush, Luvkush, Shweta, Sachin

for their unconditional love and support. My special thanks go to my maternal uncles for

their moral support and for being with me at every phase of my life.

Finally, I would like to thank one and all who have contributed to the completion of

my PhD. Above all, my deepest gratitude to Almighty for his mercies and blessings.

Chandrakala

viii



Preface

The work presented in this thesis falls in the domain of interdisciplinary science, span-

ning Nonlinear Dynamics and Complex Networks. Complex systems generically involve

two basic components. The first is complex dynamics at a local level, modeled by nonlin-

ear differential equations or nonlinear iterated maps. Such systems are capable of yielding

a rich variety of temporal patterns, and exhibit many counter-intuitive phenomena, such

as chaos. The second aspect involves the transmission of information among these local

dynamical elements. Such interactions are often modelled by interesting coupling topolo-

gies and coupling forms, and influences spatiotemporal pattern formation at the global

level. So, on the one hand, chaotic phenomena of individual nonlinear systems continue

to challenge our everyday intuition, for instance El Niño phenomena, chaotic electronic

circuits, metapopulation growth and activity of neurons. On the other hand, complex

networks consisting of interacting nonlinear dynamical systems provide us with a frame-

work to model many interactive physical, environmental, social, biological, chemical and

engineered systems. For instance, the correlations between climate change in different

regions, traffic congestion in large urban centers, cascading failures in power grids, pop-

ulation dynamics in coupled ecosystems. These natural and artificial systems, allow us

to get deeper insights into wide ranging complex phenomena arising from the interplay

of local dynamics and coupling connections.

My thesis is centered around the exploration and characterization of emergent be-

haviour, especially synchronization and chimera states, in mathematical models of com-

plex systems and networks. My research work also focuses on the mechanisms that can

effectively control complex networks of chaotic systems to steady states and robustness of

the steady states. For instance, Random Scale-Free Networks of chaotic populations are

successfully controlled to steady states by threshold activated migrations. My thesis work

includes mathematical modeling, numerical analysis, network theory, theory of chaos and

complex networks for quantifying the rich dynamics exhibit by the complex systems.

In the first research problem, we study the dynamics of two coupled nonlinear delay

differential system modeling the El Niño Southern Oscillation (ENSO) phenomenon. We

investigate the range of temporal patterns emerging from this system under variation of

the time delay in the oceanic waves, the self-delay interaction strength of oceanic waves,

and the coupling strength between the two regions. We explore the collective behaviour of

the coupled systems in the space of these three parameters for homogeneous and heteroge-
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neous cases. Different parameters yield a rich variety of dynamical patterns in our model,

ranging from steady states and homogeneous oscillations to irregular oscillations and co-

existence of oscillatory attractors, without explicit inclusion of noise. The emergence or

suppression of oscillations in our models is a dynamical feature of utmost relevance, as

it signals the presence or absence of ENSO-like oscillations. Our central result for both

cases suggests larger delay and self-delay coupling strengths lead to oscillations, while

strong inter-region coupling kills oscillations.

Further, we study the existence, and basins of attraction of the solutions arising in

the model system, for different representative parameter sets. We explicitly obtain the

basins of attraction for the different steady states and oscillatory states in the model and

these can help in understanding patterns in the sea surface temperatures anomalies in

monitored coupled sub-regions. Our principal result suggests that instead of the single

value criterion (e.g. 0.5◦C, suggested by several agencies such as the National Oceanic

and Atmospheric Administration), an interval should be used as a criterion to determine

if the El-Niño or La-Niña is in progress. Our results might be helpful for forecasting of El

Niño (or La Niña) progress, as it indicates the combination of initial SST anomalies in the

sub-regions that can result in a El Niño/La Niña episodes. We also explore the robustness

of the different dynamical states under noisy evolution, in order to gauge which set of

attractors are typically expected to arise when the system evolves under the influence of

external perturbations. Often when noise is very weak, the system is attracted to states

close to the noise-free case. We found that when noise is stronger, the system switches

randomly between the attractors. Using this method of gauging the robustness of the

different attractors in our multi-stable system, we find that lower strength of self-delay

coupling yields a larger number of robust states, than stronger self-delay coupling. Fur-

ther, larger noise strengths are required to switch between these states, when the strength

of self-delay coupling is low.

In the second research problem, we study Star networks of diffusively, conjugately and

mean-field coupled nonlinear oscillators, with all end nodes connected only to the central

hub node. We find that the end-nodes which are equivalent in terms of the coupling

environment and dynamical equations, yielded chimera states, i.e. the symmetry of the

end-nodes is broken and coexisting groups with different synchronization features and

attractor geometries emerged. We also verify the robustness of these chimera states in

analog circuit experiments. Further, we analyze the global stability of the chimera states

through the measure of basin stability. This allow us to obtain the range of coupling

strengths where chimera states has high prevalence. Surprisingly, such chimera states
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are very wide-spread in this network topology, and large parameter regimes of moderate

coupling strengths evolve to chimera states from generic random initial conditions. Thus

it is evident that star networks provide a promising class of coupled systems, in natural

or human-engineered contexts, where chimeras are prevalent.

In the third research problem, we study Random Scale-Free networks ofN sub-systems

of population patches or “a population of populations”. populations, modeled by a non-

linear map (the Ricker map), typically chaotic, connected by transport that is triggered

when population density in a patch is in excess of a critical threshold level. The broad

scenario of threshold -activated transport is that each population patch has a critical pop-

ulation density it can support, and when the population in the patch, due to its inherent

growth dynamics (which may be chaotic) exceeds this threshold, the excess migrates to

neighbouring patches. The neighbouring patch on receiving the migrant population may

become over-critical too, triggering further migrations. So this form of coupling is pul-

satile and inter-patch transport occurs only when there is excessive build-up of population

density in a patch, which may initiate a cascade of transport events. First, we study the

effect of threshold-activated dispersal on the dynamical patterns emerging in the network.

Next our question is, can threshold-activated coupling serve to stabilize the intrinsically

chaotic populations in the network to regular behaviour, such as steady states or regu-

lar cycles? Our main result suggests threshold-activated dispersal leads to stable fixed

populations, for a wide range of threshold levels, denoted by xc. For instance, a large

window of threshold values (0 ≤ xc < 1) yield fixed point steady states in the network

and for threshold levels 1 < xc < 2 the populations evolve in regular cycles, where low

population densities alternate with a high population densities. Further, we find that

suppression of chaos is facilitated when the threshold-activated migration is more rapid

than the intrinsic population dynamics of a patch and networks with large number of

nodes open to the environment, readily yield stable steady states.

Further, we explore the case of networks with very few (typically 1 or 2) open nodes,

and study the effect of the degree and betweenness centrality of these open nodes on

the control to steady states. We observed that the degree of the open node does not

have significant influence on chaos suppression. However, betweenness centrality of the

open node is important, with the region of control being large when the open node has

the high betweenness centrality, and vice versa. Moreover, to estimate the efficiency and

robustness of the suppression of chaos in the network, we study a couple of qualitative and

quantitative measures, for instance, average redistribution time 〈T 〉 and average range

of threshold values yielding steady states 〈R〉. We find that 〈T 〉 and 〈R〉 depend on the
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network size and fraction of open nodes. If very few nodes are open to the environment,

then these quantities depend most sensitively on the betweenness centrality of the open

node, and to a lesser extent its degree and closeness centrality.

Lastly, we investigate the collective dynamics of multi-stable chaotic systems con-

nected in different network topologies, ranging from rings to scale-free networks and

stars. We estimate the dynamical robustness of such networks by introducing a variant

of the concept of multi-node basin stability, which allows us to gauge the global stability

of the dynamics of the network in response to local perturbations affecting a certain class

of nodes of a system. We show that perturbing nodes with high closeness and betweeness

centrality significantly reduces the capacity of the system to return to the desired state.

This effect is very pronounced for a star network which has one hub node with signifi-

cantly different closeness/betweeness centrality than all the peripheral nodes. In such a

network, perturbation of the single hub node has the capacity to destroy the collective

state. On the other hand, even when a majority of the peripheral nodes are strongly

perturbed, the hub manages to restore the system to its original state, demonstrating

the drastic effect of the centrality of the perturbed node on the dynamics of the network.

Further, we explore Random Scale-Free Networks of multi-stable chaotic dynamical el-

ements. These results are important in deciding which nodes to safeguard in order to

maintain the collective state of this network against targetted localized attacks.

In summary, in this thesis I have explored pattern formation in networks with differ-

ent kinds of connection topologies, from the point of view of local and global stability.

My results shed light on the effects of the interplay of local chaos and the nature of

links. In particular I have demonstrated its crucial influence on spatiotemporal features

ranging from stable spatiotemporal fixed points, to chimera states, attractor hopping in

multi-stable chaotic systems and spatiotemporal chaos.
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Chapter 1

Introduction

Systems that evolve with time are known as dynamical systems. Such dynamical systems

are typically modelled by differential equations and difference equations (also known as

iterated maps). In continuous time the evolution of the systems is given by differential

equations

Ẋ = F (X) (1.1)

where X(t) = {x1(t), x2(t).....xN(t)} is an N -dimensional vector of state variables, t is

time and F (X) = {f1(X), f2(X).....fN(X)} are the functions that describe the dynamics

of the system [1]. The evolution of systems in discrete time is given by difference equations

Xn+1 = F (Xn) (1.2)

where X is state vector and F is the function whose iterations determine the flow of

the phase point. If F is a nonlinear function, then these coupled differential (or iterated

maps) equations allude to nonlinear dynamical systems.

Such nonlinear dynamical systems are difficult to solve analytically because they can-

not be reduced to well-understood linear systems. Further, they may sensitively depend

on initial conditions, which renders the dynamics effectively unpredictable in the long

term. Chaos theory and numerical techniques have been helped us to understand the

dynamical behaviour of such systems that were earlier considered intractable.

Systems consisting of a large number of interacting nonlinear dynamical systems are

known as a complex dynamical systems, for instance, an ecosystem, the human brain,

climate, social and economic organization like (cities, banks), power gird. The collective
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behaviour of complex systems is difficult to understand due to dependencies and inter-

action within components of the systems, as well as between the components and its

environment. Such complex systems often display some characteristic features, for ex-

ample the emergence of spatiotemporal patterns and self-organization [2, 3]. Emergence

refers to the occurrence of a behaviour which could not be anticipated from the single

system. Self-organization refers to the spontaneous occurrence of the emergent patterns

in the system.

The power of computer simulations has been helped us understand the collective be-

haviour of such complex system. In a simulation, the complex system is described by

local dynamics which may be nonlinear, and the nature of interaction between the local

units. The nature of interaction is modelled by (i) network topology, where nodes repre-

sent to the dynamical units and the connections among dynamical units is represented by

(directed or undirected) edges of the graph, (ii) coupling forms, ranging from diffusive to

pulsatile. For instance, the cell is a complex network of chemicals connected by chemical

reactions, the internet is a complex network of routers and computers linked by various

physical or wireless links, social networks are where nodes are human being and edges

represent various relationships, ecological networks such as the food web, have nodes that

are species with edges representing predator-pray relationship between them, power-grid

networks, where the nodes are generators, transformers, and sub-stations and the edges

are high voltage transmission lines [4].

In this thesis our main focus will be on collective spatiotemporal patterns emerging in

complex dynamical networks which are determined by the interplay of the dynamics of the

nodes and the nature of the interactions among the nodes. In order to understand the

emergent collective spatiotemporal behaviour or patterns in complex systems we have

to consider these three relevant quantities: (a) time (b) space and (c) state variables.

States variable depend on physical entities of interest, for instance temperature, pressure,

populations in ecosystems, velocity in fluids etc. Therefore, in order to capture the

dynamical behaviour of complex systems, one needs to follow a set of relevant state

variables over space and time.

In the following sections we will discuss the specific nonlinear dynamical systems and

networks which we have studied in this thesis.
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1.1 Nonlinear Dynamical Systems

Discrete-time dynamical systems

The Ricker map is widely used in ecological literature for modeling population growth

of species with non-overlapping generations [5]. It is discrete-time dynamical system given

by the following form:

xn+1 = f(xn) = xn exp(r(1− xn)) (1.3)

where r is interpreted as an intrinsic growth rate and (dimensionless) xn is the pop-

ulation scaled by the carrying capacity at generation n. This belongs to the class of

Figure 1.1: Figure shows the bifurcation diagram of the Ricker map as defined by Eqn. 1.3
as a function of growth rate parameter, r.
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maps defined over the semi-infinite interval [0,∞) unlike logistic map which is defined in

a finite, bounded interval [0, 1]. Ricker map displays rich dynamics ranging from fixed

point to periodic cycles and chaos (cf. Fig. 1.1). Further, since this map is well defined

over a large range of x values, it allows us to explore a larger range of coupling strengths

between the nodes than the logistic map, which is well-behaved only in a restricted in-

terval.

Continuous-time dynamical systems

Following are continues-time dynamical systems modelled as nonlinear ordinary differen-

tial equations, which we have used in this thesis:

1.1.1 Duffing Oscillator

The Duffing oscillator is governed by the nonlinear second order differential equation

given by Eqn. 1.4. It is used to model certain damped and driven oscillators, for instance

a spring pendulum [6] whose spring stiffness does not exactly obey Hook’s law.

ẍ+ δẋ+ αx+ βx3 = asin(ωt) (1.4)

Associating ẋ = y gives:

ẋ = y (1.5)

ẏ = −(δy + αx+ βx3) + asin(ωt)

Where δ controls the amount of damping, α control the linear stiffness, β controls the

amount of nonlinearity in the resorting force, a is the amplitude and ω is the angular

frequency of the periodic driving force.
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(a) (b)

Figure 1.2: Multi-stable dynamics in the Duffing oscillator (with α = 1, δ = 0.5, β = −1,
ω = 1), for (a) a = 0.1 displaying co-existing limit cycles, and (b) a = 0.36 displaying
co-existing chaotic attractors.

This system displays rich dynamics ranging from fixed point to limit cycles and chaos.

It is evident from Fig. 1.2 that this system shows co-existence of limit cycles and chaotic

attractors.

1.1.2 Rössler Oscillator

The Rössler attractor is a solution to a set of continuous-time coupled ordinary differential

equations given by a German biochemist, Otto Rössler[7, 8] who was motivated by the

search for chemical chaos, corresponding to chaotic behaviour in far-from-equilibrium

chemical kinetics. The following equations, known as Rössler system were proposed by

him :

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c) (1.6)

Here, (x, y, z) ∈ R3 are dynamical variables defining the phase space and (a, b, c) ∈ R3 are

parameters. The Rössler system is one of the minimal continuous-time systems that yield

chaos because (i) its phase space has dimension three, which is the minimum number of

variables needed to obtain chaos in a continuous-time model, and (ii) its nonlinearity is

also minimal because there is only a single quadratic term in the evolution equation of

5



the z variable. Further, it generates a chaotic attractor with a single lobe (cf. Fig. 3.3),

unlike the double-scroll Lorenz attractor (cf. Fig. 1.4).

Figure 1.3: Chaotic trajectory of the Rössler system given by Eqn. 1.6. The values of
the parameters are σ = 0.15,β = 0.4,r = 8.5 in Eqn. 1.6.

1.1.3 Lorenz System

The Lorenz system is comprised of three ordinary differential equations known as Lorenz

equations, proposed by Edward Lorenz. He developed these equations to study a model

of thermal convection in the earth’s atmosphere [9]. The Lorenz equations are given by:

ẋ = σ(y − x)

ẏ = x(r − z)− y

ż = xy − βz (1.7)

Here, (x,y,z) ∈ R3 are dynamical variables defining the phase space and (σ,β,r) ∈ R3 are

parameters. This system is one of the celebrated examples of deterministic chaos. The

most commonly used parameters in simulations where the system exhibits chaos (cf. Fig.

1.4) are σ = 10, β = 8/3 and r = 28. For these parameters the system displays extreme

sensitivity to initial conditions.
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Figure 1.4: Chaotic trajectory of the Lorenz system given by Eqn. 1.7. The values of
parameters are σ = 0.15, β = 0.4, r = 8.5 in Eqn. 1.7.

1.2 Networks

Network theory is a powerful tool for describing large interactive systems. A network

gives us a very intuitive way of representing the complexity of couplings and linkages

between systems. It can offer a overview and visualization of the interconnections within

a complex system. Through the framework of networks we can get a quick sense of the

significant nodes in the system, and other critical information that help us understand

the system as a whole.

Networks are of two principal types. First, we have homogeneous networks in which all

nodes have the same connection features, for instance Ring networks where all nodes have

the same degree. Secondly, we have heterogeneous networks where the nodes comprising

the network have different connection properties. For instance in Star networks and

Scale-Free networks, the degree of connectivity of the nodes are different.

7



1.2.1 Ring

Ring network is a homogeneous network where all nodes have the same number of neigh-

bours. Each node has degree K (K even) and is connected to K/2 nearest neighbors on

either side (see fig. 1.5).

Figure 1.5: Ring network of size N = 30 and K = 2.

1.2.2 Star Network

In the star network there is one central node, often called hub. This is connected to all

peripheral nodes, and all peripheral nodes are connected only to the central hub node.

Thus indirectly hub node binds to all peripheral nodes together. Star networks are often

found in computer networks, for instance a network where the peripheral nodes are clients

and the central node is the server. This topology makes it simple to add additional nodes

and search for faults. In this topology failure of one work-station does not affect the

work of entire network but the failure of central hub will result in the failure of the whole

network.
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Figure 1.6: Star network of size N = 30.

1.2.3 Random Scale-Free (RSF) Network

The RSF topology is effective in capturing many real-world biological, social and tech-

nological systems. According to the Barabasi-Albert model [10] RSF network emerges in

the presence of two fundamental processes: (i) Network growth, i.e. the scenario where

networks are not static, but grow with time, (ii) Preferential attachment, i.e. the case

where newly added nodes are more likely to link to already highly connected nodes, and

this leads to the formation of hubs. As a result of these two process RSF networks follow

a power-law degree distribution. An important parameter in RSF is the number of links

each new node has, denoted by parameter m.

(a) (b)

Figure 1.7: Random Scale-Free Networks constructed according to Barabasi-Albert model
Ref. [10]) of size N = 100 with m = 1 (a) and m = 2 (b).
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1.3 Outline of the Thesis

The outline of the thesis chapters are as follows:

In Chapter 2 we present the first research problem, where we study the dynamics of two

coupled nonlinear delay differential system modeling the El Niño/ Southern Oscillation

(ENSO) phenomenon. We investigate the range of temporal patterns emerging from this

system under variation of the time delay in the oceanic waves, the self-delay interaction

strength of oceanic waves, and the coupling strength between the two regions. We explore

the collective behaviour of the coupled systems in the space of these three parameters

for homogeneous and heterogeneous cases. Further, we study the existence, and basins

of attraction of the solutions arising in the model system, for different representative pa-

rameter sets. We explicitly obtain the basins of attraction for the different steady states

and oscillatory states in the model and these can help in understanding patterns in the

sea surface temperatures anomalies in monitored coupled sub-regions. We also explore

the robustness of the different dynamical states under noisy evolution, in order to gauge

which set of attractors are typically expected to arise when the system evolves under the

influence of external perturbations.

In Chapter 3 we present the second research problem, where we study Star networks

of diffusively, conjugately and mean-field coupled nonlinear oscillators, with all end nodes

connected only to the central hub node. We find that the end-nodes which are equivalent

in terms of the coupling environment and dynamical equations, yielded chimera states,

i.e. the symmetry of the end-nodes is broken and coexisting groups with different syn-

chronization features and attractor geometries emerged. Further, we analyse the global

stability of the chimera states through the measure of basin stability. This allow us to

obtain the range of coupling strengths where chimera states has high prevalence.

In Chapter 4, we present the third research problem, where we study Random Scale-

Free networks of N sub-systems of population patches or “a population of populations”.

populations, modeled by a nonlinear map (the Ricker map), typically chaotic, connected

by transport that is triggered when population density in a patch is in excess of a crit-

ical threshold level. The broad scenario of threshold-activated transport is that each

population patch has a critical population density it can support, and when the popula-

tion in the patch, due to its inherent growth dynamics (which may be chaotic) exceeds

this threshold, the excess migrates to neighbouring patches. The neighbouring patch on
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receiving the migrant population may become over-critical too, triggering further migra-

tions. So this form of coupling is pulsatile and inter-patch transport occurs only when

there is excessive build-up of population density in a patch, which may initiate a cascade

of transport events. First, we study the effect of threshold-activated dispersal on the dy-

namical patterns emerging in the network. Next our question is, can threshold-activated

coupling serve to stabilize the intrinsically chaotic populations in the network to regular

behaviour, such as steady states or regular cycles? Further, we explore the case of net-

works with very few (typically 1 or 2) open nodes, and study the effect of the degree and

betweenness centrality of these open nodes on the control to steady states. Additionally,

to estimate the efficiency and robustness of the suppression of chaos in the network, we

study a couple of qualitative and quantitative measures, for instance, average redistribu-

tion time 〈T 〉 and average range of threshold values yielding steady states 〈R〉.

In Chapter 5 we investigate the collective dynamics of multistable chaotic systems

connected in different network topologies, ranging from rings and small-world networks,

to scale-free networks and stars. We estimate the dynamical robustness of such networks

by introducing a variant of the concept of multi-node basin stability, which allows us to

gauge the global stability of the dynamics of the network in response to local perturbations

affecting a certain class of nodes of a system. This approach is important in deciding

which nodes to safeguard in order to maintain the collective state of this network against

targetted localized attacks.

We conclude with Chapter 6, where we present a summary of the salient results

obtained in this thesis, and also give a broad outline for open future directions.
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Chapter 2

Coupled nonlinear delayed system

modelling El Niño Southern

Oscillations

Adapted from the work published in :

Chandrakala Meena, Shweta Kumari, Akansha Sharma and Sudeshna Sinha,

Chaos, Solitons and Fractals, 104:668-679, 2017.

Chandrakala Meena, Elena Surovyatkina and Sudeshna Sinha,

Indian Academy of Sciences Conference Series (2017) 1:1 DOI:

10.29195/iascs.01.01.0006.
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2.1 Introduction

El Niño Southern Oscillations (ENSO) is naturally occurring phenomenon in which Equa-

torial Pacific fluctuates between warmer-than-average (El Niño) and colder-than-average

(La Niña) conditions. The changes in Sea Surface Temperatures affect the distribution

of tropical rainfall and atmospheric circulation features. The term El Niño typically

signifies a very large scale warm event, and this dramatic change in Sea Surface Tem-

perature (SST) is one phase of the ENSO, that is an irregular cycle of coupled ocean

temperature and atmospheric pressure oscillations across the equatorial Pacific region

[11, 12, 13, 14](cf. Fig. 2.1). El Niño is an ocean-atmospheric phenomenon, occurring at

intervals of two to seven years. El Niño event especially has great influences on climate

which may further cause extensive natural disasters like flood and drought across the

globe, declines in fisheries, famine, plagues etc. It has attracted much popular interest

as it has global impact that ranges from environment to economics.

Figure 2.1: Figure represents a schematic El Niño phenomenon. Figure retrieved from
http://www.riversideca.gov/elnino/.

In normal years, SST of the western Pacific Ocean is high and pressure is low compared

to the eastern Pacific Ocean. Due to high SST in the western region, evaporation increases

and high rainfall occurs there. Less rainfall occurs in the east due to cold SST and high

pressure levels. A pressure gradient in the east and west pacific ocean induces circulations

of trade winds. These circulating trade winds in turn affect the depth of the thermocline

gradient. In normal conditions, the thermocline is deeper in the western Pacific region

14



and shallower in the eastern region. However when the El Niño becomes very strong,

the circulation of trade winds changes its direction. As a result the thermocline depth

becomes almost the same in both east and west Pacific Ocean. In contrast to El Niño, La

Niña is the cold phase of ENSO, with the cycle of hot and cold phases having an average

periodicity of approximately 3.7 years.

The first modern mechanism underlying ENSO was proposed by Bjerknes. He hy-

pothesized that positive feedback between the atmosphere and the equatorial eastern

Pacific ocean leads to the El Niño effect [15]. Now positive ocean-atmosphere feedback

is responsible for the growth of internal instabilities, that can produce very large SST

anomalies in the eastern tropical Pacific region. To keep the instability in the SST

anomalies bounded, negative feedback is necessary. Therefore to gain understanding of

the positive-negative feedback mechanisms underlying the emergence of ENSO, several

low order models (LOM) have been introduced in the past decades. For instance, one

of the earliest efforts to obtain ENSO-like oscillations was proposed by Zebiak and Cane

[16], and the effect of the ocean and atmosphere on each other was central to their model.

Based on the coupled model of Zebiak and Cane, the recharge oscillator model was pro-

posed by Jin, based on the recharge and discharge process of warm water over tropical

Pacific ocean [17, 18]. Subsequently, consistent with the observations of ENSO, the west-

ern Pacific oscillator model [19, 20] was proposed, where the role of the western Pacific

in ENSO was emphasized. Other attempts include that by Picaut, who introduced an

advective-reflective oscillator, which includes a positive feedback of zonal currents that

advect from the western Pacific warm pool toward the east during El Niño [21]. The main

motivation of such simple models is to gain understanding of the underlying mechanisms

of ENSO, through basic models involving a small number of variables, that are capable

of provide qualitative description of the complex phenomenon of ENSO [22, 23, 24].

One important class of models attempting to understand the behaviour of ENSO is

the deterministic low order delayed action oscillator model [25, 26]. This model will be the

focus of this chapter. Delayed negative feedback models provide a very good, yet simple,

representation of the basic mechanism of ENSO-like oscillations. An important feature

of this class of models is the inclusion of a delayed feedback which incorporates oceanic

wave transit effects, namely the effect of trapped ocean waves propagating in a basin with

closed boundaries. Specifically, the delayed action oscillator model has three terms, and

is a first order nonlinear delay differential equation for the temperature anomaly T , i.e.

the deviation from a suitably long term average temperature, given by:
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dT

dt
= kT − bT 3 − AT (t−∆) (2.1)

Here the coupling constants are k, b and A, with ∆ being the delay. The first term

represents a positive feedback in the ocean-atmosphere system, working through advective

processes giving rise to temperature perturbations that result in atmospheric heating.

The heating in turn leads to surface winds driving the ocean currents which then enhance

the anomalous values of T . The second term is a damping term, due to advective and

moist processes, that limits the temperatures from growing without bound. The delay

term arises from considerations of equatorially trapped ocean waves propagating across

the Pacific and interacting back after a time delay, determined by the width of the Pacific

basin and wave velocities. The strength of this interaction, relative to the nondelayed

feedback is given by A.

We will consider the dimensionless form of this equation [27]:

dT

dt
= T − T 3 − αT (t− δ) (2.2)

where time in Eqn. 2.2 has been scaled by k, temperature by
√
b/k. The dimensionless

constants α = A/k and δ = k∆ [27]. This model allows multiple steady states and when

these fixed points become unstable, self-sustained oscillations emerge. Thus this class of

models provide a simple explanation of ENSO, and provides insights on the key features

that allow the emergence of oscillatory behavior.

The delayed-oscillator model given by Eqns. 2.1-2.2 above considers a single repre-

sentative region in the Pacific Ocean. Now it is clear that the geographical stretch where

El Niño is relevant is too vast to be well-modelled by a single system. Further, several

agencies such as the National Oceanic and Atmospheric Administration (NOAA) in the

United States, monitor the sea surface temperatures in various locations, and there are

five regional blocks in the Equatorial area extending from 80 West to 160 East meridian.

So in order to make potential connections with data from different locations, as well as

to gain some broad understanding of the effect of coupling of sub-regions, it is useful to

study extensions of the delayed oscillator model that incorporate more than one region.

So in this chapter we will consider a coupled delayed oscillator model, mimicking two

coupled Equatorial sub-regions, and explore its dynamical behaviour. We will investigate

emerging patterns in the model with varying self-delay coupling strengths in the sub-

regions along the Equator, as well as varying (possibly strong) delay times. Our principal
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motivation will be to explore the effect of coupling and sub-region heterogeneity on the

ENSO-like oscillations arsing in the model, an aspect not explored in earlier studies.

2.2 Coupled Delayed Oscillator Model

Now we consider the model, extending Eqns. 2.12.2 to incorporate two sub-regions of

the Pacific. Consider two coupled sub-regions, given by following dimensionless delay

differential equations, as introduced in [27]:

dT1
dt

= T1 − T 3
1 − α1T1(t− δ1) + γT2 (2.3)

dT2
dt

= T2 − T 3
2 − α2T2(t− δ2) + γT1

Here Ti, δi and αi with i = 1, 2 are the scaled temperature anomaly, self-delay, strength

of the self-delay of each sub-region, and γ is the inter-region coupling strength between

the two regions. The form of the coupling term models the situation where if one region

is cooler than the other, then the flow of energy across their common boundary will result

in heating one sub-region and cooling the other.

In this chapter we consider two cases. The first case considers coupled identical sub-

regions where values of all the parameters are same, implying that the two regions are

geographically close-by, and the distance from the western boundary is approximately

same. Secondly we consider coupled non-identical sub-regions, where there is hetero-

geneity in the parameters. This implies that the two regions are geographically far or

different, and the distance from the western boundary is also different. We give the salient

dynamical features arising in these systems in the following sections.

2.3 Dynamics of coupled identical sub-regions

First we consider the case of identical sub-regions, i.e. α1 = α2 and δ1 = δ2. This arises

when the two regions are geographically close-by, and the distance from the western

boundary is approximately same, with the same losses and reflection properties for both

regions and similar transient time taken by the oceanic waves. Four distinct types of

behaviour emerge in this case:
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(i) Amplitude Death (AD) : here both regions go to a single steady state. See left

panel of Fig. 2.2 for a representative example.

(ii) Oscillation Death (OD): here the sub-regions go to different steady states. See

right panel of Fig. 2.2 for a representative example.

(iii) Homogeneous oscillations : here the regions oscillate synchronously and there is no

phase or amplitude difference between the oscillations. See Fig. 2.3a for a representative

example.

(iv) Heterogeneous oscillations : here the oscillatory patterns are complex, and the

oscillations in the two sub-regions differ in either phase or amplitude, or both. Further,

the oscillations may be irregular for certain parameters. See Fig. 2.3b for representative

example. Anti-phase synchronization occurs only when initial conditions are T1 = 0.5

and T2 = −0.5.

(a) (b)

Figure 2.2: Temporal evolution of the temperature anomalies of the two sub-regions T1
(in red) and T2 (in green) with α1 = α2 = 0.75, δ1 = δ2 = 1, and inter-region coupling
γ = 0.1 (a) initial condition T1 = 0.5, T2 = 0.5 and (b) initial condition T1 = 0.5,
T2 = −0.5, showing amplitude death and oscillator death behavior respectively.
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(a)

(b)

Figure 2.3: Temporal evolution of the temperature anomalies of the two sub-regions T1
(in red) and T2 (in green) in the left panel, and the corresponding phase portrait in the
T1−T2 plane in the right panel, for α1 = α2 = 0.75, δ1 = δ2 = 4 and γ = 0.1 in Eqn. 2.3.
Initial conditions for (a) T1 = 0.5, T2 = 0.5 and for (b) T1 = 0.5, T2 = −0.5.

In numerical simulations we distinguish between the different dynamical behaviours

as follows: after a long transient period, we calculate the minima and maxima, as well

as the difference in amplitude of T1/T2 of the two sub-regions. If |T1 − T2| is less than a

prescribed small accuracy threshold, and the difference between the maxima and minima

is also less than the threshold, then the state is identified as amplitude death. If |T1−T2|
is less than the threshold, and the difference between the maxima and minima is greater

than the threshold, then the state is identified as homogeneous oscillations. If |T1−T2| is
greater than the threshold, and the difference between the maxima and minima is less than

the threshold, then the state is identified as oscillator death. If |T1 − T2| is greater than

the threshold, and the difference between the maxima and minima is also greater than
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the threshold, then the state is identified as heterogeneous oscillations. Specifically, here

we consider the accuracy threshold value to be 10−3. Note that the emergent dynamical

patterns are not very sensitive to this threshold value. The qualitative dynamical patterns

that may be expected to arise from a generic initial state is evident from the phase

diagrams shown in Figs. 2.4 and 2.5. It is evident from these that oscillations emerge as

the delay δ and strength of self-delay coupling α increases, and as inter-region coupling

strength γ decreases. Importantly, as compared to a single region model, oscillations arise

for larger values of delay in the two coupled sub-regions model. This implies that coupling

of sub-regions yields smaller parameter regions giving rise to ENSO-like oscillations.

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

δ

γ

Figure 2.4: Phase diagram showing the dynamics of the temperature anomaly in mean sea
surface temperature of a sub-region (T1/T2), with respect to inter-region coupling γ and
delay δ1 = δ2 = δ. Here the strength of delayed coupling in the two regions is α1 = α2 =
0.75, in Eqn. 2.3. The black color represents amplitude death, red represents oscillator
death, yellow represents homogeneous oscillations and green represents heterogeneous
oscillations.

We explore the dynamics arising from a large sample of random initial conditions in

the range −1 to 1, and we observe that the number of attractors and their basin stability

depend upon the values of the parameters.

Generically, there is a complex co-existence of attractors. For instance, in Figs. 2.4-
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2.5, the parameter regions with inter-mixed colors implies co-existing dynamical states,

such as co-existing amplitude death (AD) and oscillator death (OD) states where there

are red dots interspersed in the black region. As the strength of the inter-region coupling

γ increases, co-existence of AD and OD decreases.
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Figure 2.5: (a,b) Phase diagram showing the dynamics of the temperature anomaly in
mean sea surface temperature of a sub-region (T1/T2) with respect to delay δ1 = δ2 = δ
and strengths of self-delay coupling α1 = α2 = α. Here the inter-region coupling is γ = 0.1
(a) and γ = 0.4 (b), in Eqn. 2.3. (c,d) Phase diagram of the same system, with respect to
inter region coupling strength γ and strengths of self-delay coupling α1 = α2 = α. Here
the delay in the two regions is δ1 = δ2 = δ equal to (c) 2 and (d) 4, in Eqn. 2.3. The
black color represents amplitude death, red represents oscillator death, yellow represents
homogeneous oscillations and green represents heterogeneous oscillations.

Further, the region of amplitude death increases (cf. Fig. 2.5a), implying that the

ENSO-like oscillations are less likely when two sub-regions are strongly coupled. We

also observe that as delay δ increases, co-existence of AD and OD decreases, and the

parameter region supporting oscillatory behaviour increases (cf. Fig. 2.5b). For instance,
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when δ = 2 oscillations emerge for self-delay coupling strength α ≥ 0.65, while for δ = 4

oscillations emerge in the systems with α ≥ 0.48. So longer delays, namely longer oceanic

wave transit times, favour El Niño oscillations.

2.4 Analysis

On the assumption that delay δ is small (δ < 1), we can consider that the delayed

temperature anomaly T (t − δ) to be approximated by T (t) − δ dTt

dt
. Hence we need to

solve the following dynamical equations:

(1− αδ)dT1
dt

= T1 − T 3
1 − αT1 + γT2 (2.4)

(1− αδ)dT2
dt

= T2 − T 3
2 − αT2 + γT1

The Jacobian of the system above is given by:

J =
1

1− αδ

(
1− 3T 2

1 − α γ

γ 1− 3T 2
2 − α

)
.

The linear stability of the different fixed points that arise in this system, under varying

parameters, are determined by the eigen values of J . Fig. 2.6 shows the number of

steady states for representative parameters α and γ. A noticeable trend is that as the

inter-region coupling γ increases, one obtains fewer fixed points at the same value of

self-delayed coupling strength α. For instance, for small α, nine fixed points exist for

γ = 0.1, while only five fixed points are there for γ = 0.6. The other feature is that the

number of fixed point solutions decreases with α, e.g. for γ = 0.1, there are nine fixed

points for small α and only one for large α.

For γ = 0.1, the stability of the fixed points for different α is as follows: (a) for

0 ≤ α < 0.8 there are 4 stable nodes, 4 saddle points and 1 unstable node, (b) for

0.8 ≤ α < 0.9, there are 2 stable nodes, 2 saddle points and 1 unstable node, (c) for

0.9 ≤ α < 1.1 there are 2 stable nodes and 1 saddle point, and lastly (d) for α ≥ 1.1

we obtain only one fixed point which is a stable node. For γ = 0.6 one obtains a similar

stability pattern, shifted down the α axis, starting with 5 fixed point solutions. So this

indicates that smaller inter-region coupling γ and smaller self-delay coupling α yield larger

number of stable fixed point solutions. One may then expect to find predominance of

oscillator death, where the system goes to different steady states, in parameter regions
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where these quantities are small. This observation is in concurrence with the phase

diagrams shown in the sections above.
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Figure 2.6: Fixed point solutions arising from Eqn. 2.4 versus strength of the self-delay
coupling α for inter-region coupling γ equal to 0.1 (a) and 0.6 (b).

2.5 Dynamics of coupled non-identical sub-regions

Now we will consider the case of non-identical sub-regions, i.e. α1 6= α2 and δ1 6= δ2,

relevant to the case where the distance from the western boundary is different for the

sub-regions and therefore the transient times taken by the oceanic waves are different in

the sub-regions.

Now we consider the effects of different strength for the self-delay coupling term in

the two sub-regions (i.e. α1 6= α2) with the uniform delays δ1 = δ2 = δ and inter-

region coupling strengths γ. Figs. 2.7-2.8 show the typical dynamics emerging under

varying differences in the two sub-regions ∆α = α1 − α2. When the difference in the

strengths of the self-delay coupling is small (∆α < α1,2), we observe that both sub-

regions display similar behaviour for strong inter-region coupling (cf. Fig. 2.7b). However

for weaker inter-region coupling, different dynamical behaviour emerges in the two sub-

regions. Typically, the region with stronger self-delay coupling shows regular behaviour,

while the region with weaker self-delay coupling shows complex behaviour (cf. Fig. 2.7a

). This type of complex oscillation is qualitatively very similar to ENSO observational

data [28, 29].
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(a)

(b)

Figure 2.7: Temporal evolution of the temperature anomalies of the two sub-regions T1
(in red) and T2 (in green), in the left panels, and the corresponding phase portraits in
the T1 − T2 plane in the right panels, for a system with α1 = 0.75, α2 = 0.5, coupling
delay δ = 4 and inter-region coupling strength γ equal to (a) 0.1 and (b) 0.2, in Eqn.2.3.

When the difference in α is large (∆α > α1,2), then the nature of oscillations in the

two sub-regions can be very different. For instance in Fig. 2.8 one observes that one sub-

region displays large amplitude oscillations in the temperature anomaly, while the other

sub-region displays very small amplitude oscillations. So we see that non-uniformity in the

self-coupling strengths in the systems can significantly affect the temperature anomaly

of mean sea surface temperature in neighbouring sub-regions. The dependence of the

emergence of oscillations on heterogeneity is displayed in more detail in a series of phase

diagrams in figures 2.9 showing the parameter regimes that yield fixed points and those

that gives rise to oscillations in the two sub-regions. As intuitively expected, one now

no longer obtains amplitude death and homogeneous oscillations. Only oscillator death
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and heterogeneous oscillations emerge when the sub-regions are characterized by different

delays and self-delay coupling strength.

Further clearly, the parameter region supporting oscillations is larger for weaker inter-

region coupling strengths and small difference in self-delay coupling strengths of the two

sub-regions.
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Figure 2.9: (a)Phase diagram showing the dynamics of the temperature anomaly in
mean sea surface temperature (T1/T2), with respect to inter-region coupling γ (γ > 0)
and delay δ1 = δ2 = δ. Here the strength of delayed coupling in Eqn. 2.3 is different
in the two regions, with α1 = 0.75, α2 = 0.5 (left) and α1 = 0.75, α2 = 0.25 (right).
(b)Phase diagram of the same system with respect to self-delay coupling strength α1 of
first region and self-delay coupling strength α2 of second region. The inter region coupling
strength γ = 0.1 (left) and γ = 0.2 (right) and delay in the two regions is δ1 = δ2 =
δ = 4 in Eqn. 2.3. The black color represents amplitude death, red represents oscillator
death, yellow represents homogeneous oscillations and green represents heterogeneous
oscillations. Clearly, oscillator death and heterogeneous oscillations are predominant.
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(a)

(b)

(c)

Figure 2.8: Temporal evolution of the temperature anomalies of the two sub-regions T1
(in red) and T2 (in green), in the left panels, and the corresponding phase portraits in
the T1− T2 plane in the right panels, for a system with α1 = 0.75, α2 = 0.25, delay δ = 4
and inter-region coupling strength γ equal to (a) 0.1 and (b) 0.2 with initial condition
T1 = T2 = 0.5,(c) 0.2 with initial condition T1 = 0.5 and T2 = −0.5, in Eqn.2.3.
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(a)

(b)

(c)

Figure 2.10: Time evolution of the temperature anomalies of the two sub-regions, with
α1 = α2 = 0.75 (a) δ1 = 1, δ2 = 2 and γ = 0.1; (b) δ1 = 1, δ2 = 3 and γ = 0.1; (c)
δ1 = 3, δ2 = 5 and γ = 0.1. The temperature anomaly of region 1, T1, is shown in red
and for region 2, T2 is shown in green. The corresponding phase portrait is displayed on
the right panel.
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Interestingly, if we take the self-delay coupling strengths of the two sub-regions to be

such that the temperature of one region goes to a fixed point regime when uncoupled,

while the other system is in the oscillatory regime, then on coupling both systems show

oscillations (see Fig. 2.11). This implies that oscillations may arise in certain sub-regions

through coupling to neighbouring regions. Namely, a sub-region with very low delay

(δ < 2), which would naturally go to a steady state when uncoupled, yields oscillations

when coupled to another sub-region with high enough delay (δ > 2).

Figure 2.11: Time evolution of the temperature anomalies of the two sub-regions, with
self-delay δ1 = 0 in region 1 and δ2 = 2 in region 2. The inter-region coupling strength is
γ = 0.1 and self-delay coupling strength is α = 0.75. The temperature anomaly of region
1, T1, is shown in red and for region 2, T2 is shown in green.

When the self-delays are different, with δ1 6= δ2, complex oscillatory patterns arise.

These complex patterns are also qualitatively similar to the actual observations of the

ENSO phenomenon. Representative examples of these are shown in Fig. 2.10.
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Figure 2.12: Fixed point solutions of T1 and T2 arising from Eqn. 2.4 (red for region
1 and green for region 2) versus strength of the self-delay coupling α2 of region 2, with
α1 = 0.75, and inter-region coupling γ equal to 0.1 (a) and 0.6 (b).

Analysis: We find a richer pattern of fixed point solutions for the heterogeneous case

(cf. Fig. 2.12), as compared to the homogeneous case (cf. Fig. 2.6), as the solutions T1

and T2 may now be different. For weak inter-region coupling, such as γ = 0.1, T1 has 5

fixed points for 0 ≤ α2 ≤ 0.7, of which 2 are stable nodes, 2 are saddle points and 1 is an

unstable node. For 0.7 < α2 < 0.78 we obtain 9 fixed points, of which 4 are stable nodes,

4 are saddle points and 1 is an unstable nodes. For T2 again we get 5 fixed points for

0.78 ≤ α2 ≤ 0.94, of which 2 are stable nodes, 2 are saddle points and 1 is an unstable

node, and for 0.94 < α ≤ 1.5 we get 3 fixed points in which 2 are stable node and 1

is saddle node. The fixed points have different values in the two regions, except for the

unstable node. For strong inter-region coupling, such as γ = 0.6, we get 3 fixed points

for T1 and T2, of which 2 are stable nodes and 1 is a saddle. In this case too the stable

nodes have different values in the two regions, while the saddle points occur at the same

value.

We estimate the basin stability for the fixed point state, by finding the fraction of

initial conditions that evolve to fixed points. If this fraction is one, the fixed point state

is the global attractor of the dynamics. When this fraction is zero, none of the sampled

initial conditions evolve to fixed points, and the system goes to an oscillatory state instead.

When the fraction is larger than zero and less than one, we have co-existence of attractors

(namely certain initial conditions evolve to fixed points, while others yield oscillations).

The basin stability, as a function of α2, keeping α1 fixed, is displayed in Fig. 2.13, for

different values of inter-region coupling strengths. It is clearly seen that the region of

co-existence of fixed points and oscillations is narrower for lower inter-region coupling,
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and wider for higher inter-region coupling strengths. Thus it is a evident that strong

inter-region coupling γ favours larger parameter regions of oscillation suppression, and

also yields a larger parameter range where fixed points states co-exist with oscillatory

states.
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Figure 2.13: Basin Stability of the fixed point state (estimated by the fraction of initial
states that evolve to a steady state), as a function of α2. The red color represents region 1
and green color represents region 2. Here delay δ = 4, and inter-coupling strength γ = 0,
0.1 and 0.5 in Eqn. 2.3, for (a) α1 = 0 and (b) α1 = 0.75.

2.6 Basins of attraction of the different emergent dy-

namical states

The basin of attraction of a dynamical state is the set of points in the space of the

system variables, such that if the initial conditions are chosen in this set, the system will

evolve to that particular state. In our model we have observed many different dynamical

attractors, ranging from fixed points to low-amplitude and high amplitude oscillations.

The number of co-existing attractors and their basins of attraction depend crucially upon

the self delay, delay and inter-region coupling strengths. So the estimation of the basins

of attraction of the different states is important here, as it indicates the prevalence of

the state in general and the probability of observing the state given a window of initial

conditions. We present below representative cases of the different emergent states and

their basins of attraction, for the case of coupled identical sub-regions, as well as coupled

non-identical sub-regions.

We first examine the case of coupled identical sub-regions. Specifically we present the

case of delays δ1 = δ2 = 1, for different inter-region coupling strengths γ. When the
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Figure 2.14: Basins of attraction of the different dynamical attractors, in the space of
scaled temperature anomalies T1 and T2. Here the green, red, magenta and blue colors
represent the basins of attraction of fixed point attractors. The system parameters are
δ1 = δ2 = δ = 1, γ = 0.1 and (a) α1 = α2 = 0.5 and (b) α1 = α2 = α = 0.75. The left
panel is for sub-region 1 and the right panel shows sub-region 2.

inter-region coupling is weak, for instance the case of γ = 0.1 displayed in Fig. 2.14, both

sub-regions have four distinct steady states. For the case of α1 = α2 = 0.5 (Fig. 2.14a),

when the initial values of the sub-regions are both positive or both negative, then both

sub-regions approach the same steady state. However, when the initial states are different,

namely one region is positive and the other negative, then they approach different steady

states, i.e. one positive and one negative steady state. So two dynamical attractors have

the same basins of attraction in the sub-regions, while the other two attractors have

different basins of attraction, with the basins of the two states being switched. Similarly

for the case of α1 = α2 = 0.75 (Fig. 2.14b), we find that two of the fixed-point attractors

have same basin of attraction in T1 − T2 space in the two sub-systems, while the basins

of attraction of the other two fixed-point attractors is switched in the two sub-systems.
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Figure 2.15: Basins of attraction of the different dynamical attractors, in the space of
scaled temperature anomalies T1 and T2. Here the yellow, light blue, magenta, blue and
black and orange colors represent the basins of attraction of a fixed point attractor. The
system parameters are α1 = α2 = α = 0.75, δ1 = δ2 = δ = 1, and (a) γ = 0.2, (b) γ = 0.3
and (c) γ = 0.7. The left panel is for sub-region 1 and the right panel shows sub-region
2.
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Interestingly, now the fixed-point attractors which have same basin of attraction in

both sub-regions, have larger basin volume as compared to the two attractors that have

different basins of attraction in the sub-systems.
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Figure 2.16: Basins of attraction of the different dynamical attractors, in the space of
scaled temperature anomalies T1 and T2. Here the green and red colors represent the
basins of attraction of fixed point attractors. The system parameters are: α1 = α2 =
α = 0.5, δ1 = δ2 = δ = 4, γ = 0.1. The left panel is for sub-region 1 and the right panel
shows sub-region 2.
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Figure 2.17: Basins of attraction of the different dynamical attractors, in the space of
scaled temperature anomalies T1 and T2. Here the green, red, magenta and blue colors
represent the basins of attraction of fixed point attractors. The system parameters are:
α1 = 0.75, α2 = 0.5, δ1 = δ2 = δ = 1, γ = 0.1. The left panel is for sub-region 1 and the
right panel shows sub-region 2.

When γ ≥ 0.2 (cf. Fig. 2.15) we obtain two steady states, one of which is a positive

fixed point and the other a negative fixed point. The positive fixed point state is bounded

entirely in a window of positive values (as represented by the light blue, blue and black

colors) and negative fixed point state is bounded entirely in a window of negative values

(as represented by the yellow, magenta and orange colors). The specific values of the fixed
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points depend on the values of the inter-region coupling strength γ. For a particular value

of γ, the basin of attraction for each attractor is same in both sub-systems and we observe

an inversion symmetry of the attractors along the diagonal.

Further, for large delays, for instance the case of δ1 = δ2 = 4 displayed in Fig. 2.16, it

is clear that the sub-regions yield two attractors of the same type, with the same basins

of attraction in the sub-regions. However, as the delay increases, the basin boundaries

become very complex.
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Figure 2.18: Basins of attraction of the different dynamical attractors, in the space of
scaled temperature anomalies T1 and T2. Here the green, yellow, magenta and orange
colors represent the basins of attraction of fixed point attractors. The black and blue
colors represent the basins of attraction of low amplitude oscillations. For the blue color,
the minimum and maximum values of the oscillations are positive and for the black
color the minimum and maximum values of the oscillations are negative. The gray color
represents large amplitude oscillations, with positive value of maxima and negative value
of minima. The system parameters are: (a) α1 = 0.65, α2 = 0.5, δ1 = δ2 = δ = 2.5, γ =
0.1; (b) α1 = 0.75, α2 = 0.5, δ1 = δ2 = δ = 2, γ = 0.1. The left panel is for sub-region 1
and the right panel shows sub-region 2.

Next we consider the case of coupled non-identical systems. For instance, we display
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an illustrative example of a system with parameters α1 = 0.75, α2 = 0.5, γ = 0.1 and

δ = 1 in Fig. 2.17. Here we observe two types of attractors, and these attractors are

different in the two sub-regions due to the difference in the value of the self-delay coupling

strengths. Specifically, for small delays the dynamical attractors are fixed points, and

the values of these fixed points are dependent on the values of the parameters. As the

delay increases we observe coexistence of fixed points and oscillatory attractors (cf. Fig.

2.18a-b).

From the case of α1 = 0.75, α2 = 0.5, δ = 2, γ = 0.1, displayed in Fig. 2.18b, we

observe that there are three types of attractors for the system when the strength of

self delay is high. Two of these attractors are fixed points (represented by green and

yellow colors) and one is an oscillatory attractor with high amplitude (represented by

the gray color). Systems with weak self-delay strength have four types of attractors,

two of which are fixed points (represented by magenta and orange color) and two are

low-amplitude oscillatory attractors, that are entirely positive-valued or negative-valued.

We also observe that for large delay as strength of self-delay increases, the volume of the

basin of attraction of the fixed point attractors decreases.

2.7 Robustness of the dynamical attractors under

noise

If the system is attracted to a dynamical state, even under the influence of noise, then

the state can be considered robust under noise. In order to examine this, we examine the

system described by Eqn. 2.3, under Gaussian noise:

dT1
dt

= T1 − T 3
1 − α1T1(t− δ1) + γT2 +Dη(t) (2.5)

dT2
dt

= T2 − T 3
2 − α2T2(t− δ2) + γT1 +Dη(t)

where η is a delta-correlated Gaussian noise and D is the strength of the noise. Here

both sub-systems experience the same noise.
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(a) (b)

(c) (d)

Figure 2.19: Temporal evolution of T1 and T2, for system parameters α1 = α2 = α =
0.75, δ1 = δ2 = δ = 1, γ = 0.1 and initial condition T1 = T2 = 0.5. Here the noise strength
is (a) D = 0 (namely without noise), (b) D = 0.01, (c) D = 0.05 and (d) D = 0.1.

First, consider a system with identical strengths of self-delay α1 = α2 = 0.75, delay

δ1 = δ2 = δ = 1 and inter-region coupling γ = 0.1, where there are four fixed point

solutions for the noise-free system: 0.591608, −0.591608, 0.38729 and −0.38729. Now to

check the robustness of the different fixed points, we add noise to the system, and follow

the evolution of the noisy system from different initial values of T1 and T2. Specifically, in

Fig. 2.19, the initial values of T1 and T2 is 0.5. Without noise both sub-systems go to the

fixed point at 0.591608 (cf. Fig. 2.19a). Under weak perturbations this fixed point is still

attractive, with the noisy system confined around the fixed point at 0.591608 for low noise

strengths (cf. Fig. 2.19b-c). However, interestingly, when the noise strength is high, the

system switches between the two states around 0.591608 and −0.591608 (cf. Fig. 2.19d).

The system does not wander to the other two fixed points at 0.38729 and −0.38729 at

all, but only jumps randomly between two bands around 0.591608 and −0.591608.
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Similarly, for the same system evolving from initial condition T1 = 0.5, T2 = −0.5,

it is evident from Fig. 2.20 that each sub-system goes to different states 0.38729 and

−0.38729 when there is no noise (cf. Fig.2.20a). However, when noise strength is low

(e.g. D = 0.01, 0.05), the noisy system goes to either a state around 0.591608 or around

−0.591608, with both sub-systems now approaching the same state (cf. Fig.2.20b-c).

So even under weak noise the system evolves away from the fixed points 0.38729 and

−0.38729, and is attracted to states around the fixed points at 0.591608 and −0.591608.

When noise strength is high, again there is switching between these states (cf. Fig.2.20d).

Thus Figs. 2.19-2.20 suggest that the fixed points 0.591608 and−0.591608 are more robust

to noise than the other two fixed points.

(a) (b)

(c) (d)

Figure 2.20: Temporal evolution of T1 and T2, for system parameters α1 = α2 = α =
0.75, δ1 = δ2 = δ = 1, γ = 0.1 and initial condition T1 = 0.5, T2 = −0.5. Here the
noise strength is (a) D = 0 (namely without noise), (b) D = 0.01, (c) D = 0.05 and (d)
D = 0.1.

37



We now go on to consider another parameter set, α1 = α2 = α = 0.5, δ1 = δ2 =

δ = 1, γ = 0.1, which yields four steady states: 0.774597, −0.774597, 0.632456 and

−0.632456. From initial conditions T1 = T2 = 0.5, both sub-systems go to the fixed point

at 0.774597 in the noise-free case (cf. Fig. 2.21a). Under influence of weak and high noise

(e.g. D = 0.01, 0.1), the sub-systems are still attracted to the same state, as evident from

Fig. 2.21b-c. When noise strength is very high (e.g. D = 0.2), there is switching between

0.774597 and −0.774597 states (cf. Fig. 2.21d). Thus we can infer that these states are

more stable compared to the other two states.

(a) (b)

(c) (d)

Figure 2.21: Temporal evolution of T1 and T2, for system parameters α1 = α2 = α =
0.5, δ1 = δ2 = δ = 1, γ = 0.1 and initial condition T1 = T2 = 0.5. Here the noise strength
is (a) D = 0 (namely without noise), (b) D = 0.01, (c) D = 0.1 and (d) D = 0.2.

On examining the initial condition T1 = 1.5 and T2 = −1.5, we observe from Fig. 2.22(a-

b) that when there is no noise or when noise strengths are very weak (e.g. D = 0.01),

each sub-region goes to a different state, namely the sub-regions are attracted to either
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0.632456 or −0.632456. For stronger noise (e.g. D = 0.1) the system evolves to same

state, namely both sub-regions evolve to states close to either 0.632456 or −0.632456 (cf.

Fig. 2.22c). When noise strength is very high (e.g. D = 0.2), there is switching between

0.632456 and −0.632456 states (cf. Fig. 2.22d). Therefore we conclude from Figs. 2.21-

2.22 that there are four attracting states when the system is under the influence of noise.

Here we observe four robust states for α1 = α2 = α = 0.5, and only two robust states for

α1 = α2 = α = 0.75. We also observe that for lower values of α1,2, larger noise strengths

are required to switch between these states.

(a) (b)

(c) (d)

Figure 2.22: Temporal evolution of T1 and T2, for system parameters α1 = α2 = α =
0.5, δ1 = δ2 = δ = 1, γ = 0.1 and initial condition T1 = 1.5, T2 = −1.5. Here the noise
strength is (a) D = 0 (namely without noise), (b) D = 0.01, (c) D = 0.1 and (d) D = 0.2.
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2.8 Discussions

We have considered a system of coupled delayed action oscillators modelling the El Niño

effect, and studied the dynamics of the sea surface temperature (SST) anomaly. The

existence and stability of the solutions arising in this model depend on three parameters:

self delay, delay and inter-region coupling strengths. In our work we explore the dynamics

in the space of these parameters. The emergence or suppression of oscillations in our

models is a dynamical feature of utmost relevance, as it signals the presence or absence

of ENSO-like oscillations. Note that in contrast to the well-known low order model of

ENSO, the recharge oscillator [30] and its important stochastic extensions [31], where the

influence of the neighbouring regions on the region of interest is modelled as external noise,

we consider neighbouring regions as a coupled deterministic dynamical systems. Different

parameters yield a rich variety of dynamical patterns in our model, ranging from steady

states and homogeneous oscillations to irregular oscillations, without explicit inclusion of

noise.

For identical sub-regions one typically observes a co-existence of amplitude and os-

cillator death behavior for low delays, and heterogeneous oscillations for high delays,

when inter-region coupling is weak. For moderate inter-region coupling strengths one ob-

tains homogeneous oscillations for sufficiently large delays and amplitude death for small

delays. When the inter-region coupling strength is large, oscillations are suppressed al-

together, implying that strongly coupled sub-regions do not yield ENSO-like oscillations.

Further we observe that larger strengths of self-delay coupling favours oscillations, while

oscillations die out when the delayed coupling is weak. This indicates again that delayed

feedback, incorporating oceanic wave transit effects, is the principal cause of oscillatory

behaviour. So the effect of trapped ocean waves propagating in a basin with closed

boundaries is crucial for the emergence of ENSO-like oscillations. The non-uniformity

in delays, and difference in the strengths of the self-delay coupling of the sub-regions, is

also investigated. As in the uniform case, larger delays and self-delay coupling strengths

lead to oscillations, while strong inter-region coupling kills oscillatory behaviour. The dif-

ference between the uniform case and the non-uniform system, is that amplitude death

and homogeneous oscillations are predominant in the former, while oscillator death and

heterogeneous oscillations are commonly found in the latter. Interestingly, we also find

that when one sub-region has low delay and another has high delay, under weak coupling

the oscillatory sub-region induced oscillations in sub-region that would have gone to a

steady state if uncoupled.
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Moreover, we have also explored the robustness of the different dynamical states under

noisy evolution, in order to gauge which set of attractors are typically expected to arise

when the system evolves under the influence of external perturbations. Typically we find

that the noisy system evolves to a sub-set of the attractors found in the deterministic

system, and those attractors can be considered robust under noise. Often when noise

is very weak, the system is attracted to states close to the noise-free case. However

when noise is stronger, the system switches randomly between the attractors. Using this

method of gauging the robustness of the different attractors in our multi-stable system,

we find that lower strength of self-delay coupling yields a larger number of robust states,

than stronger self-delay coupling. Further, larger noise strengths are required to switch

between these states, when the strength of self-delay coupling is low.

We then investigate the basins of attraction of the different dynamical attractors

arising in our model. Typically, the number of distinct attractors and their basins of

attraction depend upon the values of parameters. For instance, when α1 = α2 = 0.75, δ =

1, we find four steady states for γ = 0.1 and two steady states for γ ≥ 0.2. The value

of the fixed points depend on the values of the inter-region coupling strength γ. For the

typical case of α1 6= α2, each sub-region has two fixed points and two oscillator states,

with the attractors being different in the two regions. Further, generically, in such cases

there is a complex co-existence of attractors.

Now, several agencies such as the National Oceanic and Atmospheric Administration

(NOAA) in the United States, monitor the sea surface temperatures in various regions,

five degrees of latitude on either side of the equator, with Niño 1-2 region located in the

band 80W–90W, Niño 3 region in 90W–150W, and Niño 4 region in 160E–150W. The

Niño 3.4 region (120W–170W) is often the primary focus for monitoring and predicting

El Niño. When the three-month SST average for the area is more than 0.5◦C above

(or below) normal for that period, then an El Niño (or La Niña) is considered to be in

progress.

How our model can explain the 0.5◦C criterion used for the forecasting, we show by

rescaling our result and comparing it with observations. We consider two regions along

the equator, where the first region extends from 90◦ West to 150◦ West (Niño 3 region)

with the mid-point being 120◦ West and the second region extends from 150◦ West to

160◦ East (Niño 4 region) with the mid-point being 175◦ West. The western Pacific

boundary is at 120◦ East. This gives angular separation of 120◦ and 65◦ of longitude

for the waves to travel, for the two regions respectively, and corresponds to a distance

120(2π/360)× rEarth = 13.35× 106m and 65(2π/360)× rEarth = 7.23× 106m for the two
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regions, where rEarth = 6.37×106m. Speed of the Kelvin wave is 1.4ms−1 and 0.47ms−1 for

Rossby wave [27]. These values of speed gives 13.35×106m/0.47ms−1 = 329 days for the

Rossby propagation to the western boundary, and a further 13.35×106m/1.4ms−1 = 110

days for the return of the Kelvin waves, thus total delay of transient time ∆=439 days for

the first region. For the second region it gives 7.23× 106m/0.47ms−1 = 178 days for the

Rossby propagation to the western boundary, and a further 7.23 × 106m/1.4ms−1 = 59

days for the return of the Kelvin waves, thus total delay of transient time ∆= 237 days.

For the first region (Niño 3 region) maximum anomaly temperature (T1) is on average

2.11◦C and for the second region (Niño 4 region) maximum anomaly temperature (T2)

is on average 1.15◦C (these values we have received from the data produced by NOAA

[32, 33]). Parameter set α1 = 0.75, α2 = 0.5, γ = 0.1 and δ = 2, allow us to calculate

k1 = 1.64/years, k2 = 3.03/years, b1 = 0.43◦C−2/years and b2 = 1.66◦C−2/years. So, now

if we consider the 0.5◦C criterion used for the forecasting as T1 = 0.5◦C and T2 = 0.5◦C,

then after rescaling, equivalents to the dimensionless temperatures in two regions in the

model are T
′
1 = 0.256 and T

′
2 = 0.37. Thus, we can find the the criterion location on the

diagram of basins of attraction in Fig. 2.18(b)(left). It belongs to the green basin which

corresponds to the El Niño state, in the vicinity of the boundary with the gray basin

associated with oscillation between El Niño and La Niña states. Hence, the model can

reproduce the 0.5◦C criterion revealed from observations.

Additionally, our modelling result suggests that instead of the single value crite-

rion (as 0.5◦C), an interval should be used as criterion to estimate the El Niño or La

Niña progress. According to the model result, if temperature anomaly of T1 is in the

range 0.5◦C< T1 < 1.6◦C (corresponding 0.32 < T
′
1 < 0.84) and T2 is in the range

−0.06◦C< T2 < 2◦C (corresponding −0.04 < T
′
2 < 1.52),then El Niño is considered to

be in progress. If temperature anomaly T1 is in the range −1.6◦C< T1 < −0.5◦C (corre-

sponding −0.84 < T
′
1 < −0.32) and T2 is in the range −2◦C< T2 < 0.06◦C (corresponding

−1.52 < T
′
2 < 0.04), then La Niña is considered to be in progress. In other range of tem-

perature anomalies, ENSO(successive El Niño and La Niña) episodes are considered to

be in progress.

Hence, the basins of attraction for the different steady states and oscillatory states in

our model may help in understanding patterns in the sea surface temperatures anomalies

in monitored coupled sub-regions. Further, our mapping of the basins of attraction might

be helpful for forecasting of El Niño (or La Niña) progress, as it indicates the combination

of initial SST anomalies in the sub-regions that can result in a El Niño/La Niña episodes.
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In summary then, we have explored a simple model based on coupled delayed action

oscillators modelling the ENSO-like oscillations, and studied the dynamical patterns of

the SST anomaly. Specifically we have presented the existence, stability and basins

of attraction of the solutions arising in the model system, for different representative

parameter sets. Thus our dynamical model may help provide a potential framework

in which to understand patterns in the SST anomalies in different coupled sub-regions,

which is an important feature that has not yet been sufficiently explored.
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Chapter 3

Chimera States in Star Networks

Adapted from the work published in :

Chandrakala Meena, K. Murali and Sudeshna Sinha,

International Journal of Bifurcation and Chaos, Vol. 26, No. 9 (2016) 1630023.
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3.1 Introduction

Chimera states have been extensively studied over the last decade in natural and arti-

ficial networks of coupled identical complex systems, in fields ranging from physics and

chemistry to biology and engineering. At the outset, it was noticed that in a system

of non-locally coupled identical phase oscillators, the system spontaneously broke the

underlying symmetry and split into synchronized and desynchronized oscillator groups

[34, 35]. Namely, there emerged a state where coherent and incoherent sets of oscil-

lators coexisted. This state was dubbed a chimera state, as it was reminiscent of the

greek mythological creature composed of incongruous parts [36]. In recent years chimera

states have also been observed experimentally in optical analogs of coupled map lattices

[37], BelousovZhabotinsky chemical oscillator systems [38], two populations of mechanical

metronomes [39] and modified time-delayed electronic circuit systems [40].

In this chapter, we will show how chimera states also emerge in oscillator networks with

a star topology. The star configuration is one where the network has a central hub position

and all other nodes are linked to this node. This configuration arises extensively in human-

engineered computer networks, where every node connects to a central computer, and the

central computer acts as a server and the peripheral devices act as clients. Further, a

star-like structure is a primary motif in scale-free networks, which have been reported to

arise in large interactive systems ranging from the web-graph of the World Wide Web,

to naturally occurring phenomena, such as protein-protein interaction networks [10].

In this chapter we will show the extensive existence of chimeras in the end-nodes of

the star network, which are identical in terms of the coupling environment and dynam-

ical equations. We will demonstrate how the symmetry of the end-nodes is broken and

coexisting groups with different dynamical behaviors emerge. Further we will provide

an estimate of the basin of attraction of the chimera state. Interestingly, we find that

such chimera states are very wide-spread in this network topology, and large parameter

regimes of coupling strengths typically yield a chimera state.

3.2 Model

We study the dynamics of a star network of N identical nonlinear oscillator systems. In

such networks there is one central hub node (labelled by site index i = 0) and N − 1

environmentally identical peripheral end-nodes connected to the central node (labelled
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by node index i = 1, . . . N − 1). One can also interpret this system as a set of uncoupled

oscillators connected to a common drive. The focus of this study is the dynamical patterns

arising in the N − 1 identical end-nodes of this network.

Here we consider general dynamical model to study N coupled identical oscillators,

which is given by these following nonlinear differential equations:

ẋi = fx(xi, yi, zi) +
N−1∑
j=0

KijH(xi, xj, yi, yj) (3.1)

ẏi = fy(xi, yi, zi)

żi = fz(xi, yi, zi)

Here coupling matrix element for central node i = 0 is K0j = k/2 when j 6= 0, and for

the end-nodes i = 1, . . . N − 1, Ki0 = k/2 and zero otherwise. The coupling strength is

given by k.

In order to establish the generality of our results, we consider three different coupling

forms:

• Conjugate Coupling

Conjugates coupling means the coupling function have dissimilar variable as their

arguments. This form of coupling is relevant in physical systems such as cou-

pled semiconductor lasers and electronic circuits [41]. This type of coupling also

present in natural system for instance cross-predation between population, where

each predator can consume the other pray [42].

• Diffusive Coupling

Diffusive coupling namely that the coupling function have similar variable as their

arguments. This is the most common important coupling present in many systems

for example neurons model, ecosystems etc.

• Mean-field coupling

Mean-field coupling is equivalent to each site evolving diffusively under the influence

of a “local mean field” generated by the coupling neighbourhood of each site.
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We give below the general dynamical equations for the different coupling forms.

H(xi, xj, yi, yj) =



(xj − xi), Diffusive coupling

(yj − xi), Conjugate coupling

(xm − x0), Mean-field diffusive for hub

(x0 − xi), Mean-field diffusive for end-nodes

(3.2)

where xm = 1
N−1

∑
j=1,...N−1 xj is the mean field of the end-nodes.

We study Rössler and Lorenz chaotic systems, coupled in star network configuration,

through the different coupling forms given above. A wide range of coupling strengths,

in networks of size ranging from 3 to 100 oscillators is investigated. The principal ob-

servations of the patterns arising in these networks, from generic random initial states,

are described in following sections. Note that all the synchronization mentioned in this

chapter refers to complete synchronization, where both amplitude and phase are in syn-

chrony.

3.2.1 Dynamical Patterns for Coupled Rössler Oscillators

For the local dynamics at the nodes, we take two prototypical chaotic systems that have

widespread relevance in modelling phenomena ranging from lasers to circuits. First we

consider the Rössler type oscillator at node i, given by the form:

fx(xi, yi, zi) = −[ωi + ε(xi
2 + yi

2)]yi − zi (3.3)

fy(xi, yi, zi) = [ωi + ε(xi
2 + yi

2)]xi + ayi

fz(xi, yi, zi) = b+ zi(xi − c)

in Eqn. 3.1. For each node, ωi + ε(xi
2 + yi

2) is close to the angular velocity of the ith

oscillator, perturbed by amplitude xi
2 + yi

2 when ε 6= 0. Here we take the parameter

values to be: a = 0.15, b = 0.4, c = 8.5, ω1 = ω2 = ω3 = 0.41 and ε = 0.0026 [41],

yielding a chaotic attractor.
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(a) (b)

(c)

Figure 3.1: Space-time plot displaying the evolution of the state xi of the end-nodes
of a star network of conjugately coupled Rössler systems for system size n = 50. Here
coupling strength k = 0.01 (a), k = 0.25 (b), k = 0.35 (c).

We find that as coupling strength increases, the end-nodes go from a de-synchronized

state to a completely synchronized state, via a large coupling parameter regime yielding

chimera states. The chimera states are characterized by the co-existence of synchronized

and de-synchronized sets of end-nodes, and are distinct from the fully synchronized state,

the fully de-synchronized state and the synchronized cluster state.

First we explore the spatiotemporal plots for conjugate, diffusive and mean-field type

of coupling for coupled Rössler oscillators in star network with N = 50. From Figs.

3.1,3.2 and 3.3 we can see the collective behaviour of the dynamical systems for typical

initial conditions with varying coupling strength. We can see clearly that at low coupling

strength: k = 0.01 all end-nodes are in de-synchronized state for the conjugate coupling

(cf. Fig. 3.1)(a), diffusive coupling (cf. Fig. 3.2(a)) and for mean-field coupling (cf. Fig.
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(a) (b)

(c) (d)

Figure 3.2: Space-time plot displaying the evolution of the state xi of the end-nodes of a
star network of diffusively coupled Rössler systems for system size n = 50. Here coupling
strength k = 0.01 (a), k = 0.11 (b), k = 0.35 (c), k = 0.52 (d).

3.3(a)). All end-nodes are in chimera states for moderate coupling strength: k = 0.25 for

conjugate coupling (cf. Fig. 3.1)(b), k = 0.11 for diffusive coupling (cf. Fig. 3.2(b)) and

k = 0.11 for mean-field coupling (cf. Fig. 3.3(b)). All end-nodes are in synchronized state

at high coupling strength: k = 0.35 for conjugate coupling (cf. Fig. 3.1)(c), k = 0.35

for diffusive coupling (cf. Fig. 3.2(c)) and k = 0.25 for mean-field coupling (cf. Fig.

3.3(c)). In conjugate coupling the synchronized state is amplitude death state, but in

diffusive and mean-field coupling the end-nodes go from oscillatory synchronized state to

amplitude death synchronized state (cf. Figs. 3.2, 3.3).

A representative example of a chimera state, obtained from a typical random initial

condition, in a diffusively coupled star network is displayed in Fig. 3.4. In the example,

the identical end-nodes split into a synchronized set and a set of nodes that are not
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(a) (b)

(c) (d)

Figure 3.3: Space-time plot displaying the evolution of the state xi of the end-nodes of a
star network of mean-field coupled Rössler systems for system size n = 50. Here coupling
strength k = 0.01 (a), k = 0.03 (b), k = 0.25 (c), k = 0.35 (d).

in synchrony with any other node. The phase portraits show that the desynchronized

nodes are chaotic attractors with different geometries, while the synchronized nodes show

periodic behavior. So the symmetry of the end-nodes, that have identical dynamical

equations and coupling environments, is broken to yield a synchronized periodic group

and a desynchronized chaotic group.

This feature is highlighted in yet another representative example in Fig. 3.5, displaying

the attractors obtained for the end-nodes in the diffusively coupled case. It is evident

from Fig. 3.5 that sub-sets of the end-nodes display very different attractor geometries,

though they have identical dynamical equations. Fig. 3.6 further shows the state of

synchronization of the different end-nodes i = 1, . . . N − 1 at some representative instant

of time. demonstrating the co-existence of synchronized and de-synchronized groups
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(a)

(b) (c)

Figure 3.4: (a)Time evolution of the x variable of the end-nodes of a diffusively coupled
star network of Rössler systems, after transience, for coupling strength k = 0.284, and
system size N = 100 and the corresponding attractors in phase space in the bottom
row. Here the identical end-nodes split into 2 groups: a synchronized set (shown in red),
and 3 nodes that are not in synchrony with any other node (shown in blue, green and
magenta). The phase portraits show that the desynchronized nodes are chaotic attractors
with different geometries (b), while the synchronized nodes show periodic behaviour (c).

among the identical N − 1 peripheral nodes in the star network. Note that there is no

space ordering of the node index i of the end-nodes. So the (de)synchronized nodes in a

cluster are not “contiguous”, as is usual in regular lattice topologies.
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(a) (b)

Figure 3.5: Phase portraits of diffusively coupled Rössler systems in a star network of
size N = 100, with coupling strength k = 0.32 of the (a) de-synchronized set (blue and
magenta) and (b) three distinct synchronized clusters (black, red and blue).
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Figure 3.6: A matrix displaying the state of synchronization of nodes i and j in a star
network of conjugately coupled Rössler systems (i, j = 1, . . . N − 1). The blue color
indicates that the nodes are synchronized and the green that they are de-synchronized.
Here coupling strength k = 0.24 and system size N = 100. The presence of a synchronized
group of nodes, along-side a de-synchronized set, can be clearly seen.
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3.2.2 Dynamical Patterns for Coupled Lorenz Systems

We also consider the Lorenz system at the nodes given by:

fx(xi, yi, zi) = σ(yi − xi) (3.4)

fy(xi, yi, zi) = (r − zi)xi − yi
fz(xi, yi, zi) = xiyi − βzi

in Eqn. 3.1. With no loss of generality we consider the parameters of the local system to

be σ = 10, r = 28 and β = 8/3, yielding double-scroll attractors.

(a)

(b) (c)

Figure 3.7: Time evolution (a) and the corresponding phase portrait, for a star net-
work of diffusively coupled Lorenz systems with coupling strength k = 9, yielding a
de-synchronized group (b) and a synchronized group (c).

Here again we find that as coupling strength increases, the end-nodes go from a

desynchronized state to a completely synchronized state, via a large coupling parameter
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regime yielding chimera states. We display some representative patterns from the chimera

states in Fig. 3.7 for diffusive coupling and in Fig. 3.8 for conjugate coupling. It is clearly

evident from these that the identical end-nodes split into different dynamical groups,

thereby breaking symmetry. Some of these groups consist of synchronized nodes and some

are clusters of desynchronized elements, as seen from Figs. 3.9, 3.10 and 3.11. Further,

it is also evident from Figs. 3.7 and 3.8 that in addition to different synchronization

properties, the groups also yield different attractor geometries.

(a)

(b) (c)

Figure 3.8: Time evolution (a) and the corresponding phase portrait, for a star network
of conjugate coupled Lorenz systems with coupling strength k = 2.9, yielding a de-
synchronized group (b) and a synchronized group (c).
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Figure 3.9: Space-time plot displaying the evolution of the state xi of the end-nodes of a
star network of conjugately coupled Lorenz systems (i = 1, . . . N − 1), after transience.
Here coupling strength k = 1.32 and system size N = 100. The presence of a synchronized
group of nodes, along with a desynchronized set, can be clearly seen.

Figure 3.10: Space-time plot displaying the evolution of the state xi of the end-nodes of
a star network of diffusively coupled Lorenz systems (i = 1, . . . N − 1), after transience.
Here coupling strength k = 2.48 and system size N = 100. The presence of a synchronized
group of nodes, along with a desynchronized set, can be clearly seen.
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(a) (b)

Figure 3.11: State xi of the end-nodes of a star network of conjugately coupled Lorenz
systems (i = 1, ...N − 1 ), at an instant of time. Here coupling strength k = 1.96(a),
k = 1.98(b) and system size N = 100. The presence of a synchronized group of nodes,
along with a desynchronized set, can be clearly seen.

Figure 3.12: Temporal patterns of the end-nodes of a star network of diffusively coupled
Lorenz systems displaying a breathing chimera state. Here coupling strength k = 4.5 and
system size N = 100.

Further we find that the incoherent state maybe of two distinct types: (i) a stable

chimera, namely a state where the synchronized and desynchronized sets of nodes remain

unchanged in time,or (ii) a breathing chimera, which has an oscillating incoherent group

that goes in and out of synchronization [43]. Such a breathing chimera-like state is

displayed in Figs. 3.12 and 3.13. The occurrence of breathing chimera states is more

common in the coupled Lorenz system than in coupled Rössler systems. In fact breathing

chimeras were also observed in Lorenz systems coupled in a ring configuration in earlier

studies [44].
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Figure 3.13: Synchronization error of the end-nodes of a star network of diffusively
coupled Lorenz systems as a function of time (namely the standard deviation of xi,
i = 1, . . . N − 1, at an instant of time). Here coupling strength k = 5.12 and system
size N = 100. It is clearly evident from the oscillating synchronization error that the
end-nodes move in and out of synchronization.

3.2.3 Prevalence of Chimera states

In order to quantify the probability of obtaining chimera states from random initial states

we calculate the fraction of initial conditions leading to co-existing synchronized and de-

synchronized states in the end-nodes, in a large sample of random initial states. This

provides an estimate of the basin of attraction of the chimera state, and indicates the

prevalence of chimeras in this system. So this measure is important, as it allows us to

gauge the chance of observing chimeras without fixing special initial states.

Specifically, around 103 initial conditions with the state variables spread uniformly

over the interval [−2 : 2] are considered. Figs. 3.14 and 3.15 display this quantity for star

networks of Rössler and Lorenz systems. It is clearly evident from these figures that there

exists extensive regimes of coupling parameter space where the probability of obtaining

a chimera state is close to one. This quantitatively establishes the prevalence of chimeras

in the end-nodes of nonlinear oscillators coupled in star configurations.

Also, Fig. 3.14 shows the dependence of chimera states on the size of the system.

Rather interestingly, it is evident from the figure that larger systems yield larger basins of

attraction for the chimera state, thus having greater prevalence of chimeras. Additionally,

it can be clearly seen from Figs. 3.14-3.15 that conjugate coupling yields larger parameter

windows where the probability of obtaining a chimera state is close to 1, namely there is
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a high prevalence of chimera states in conjugately coupled star networks.

(a) (b)

(c) (d)

Figure 3.14: Probability of obtaining chimera states (red), synchronized clusters (ma-
genta), fully synchronized states (green), and completely de-synchronized states (blue)
in star networks of coupled Rössler systems, for the following cases: 10 nodes under (a)
conjugate coupling and (b) diffusive coupling; 100 nodes under (c) conjugate coupling
and (d) diffusive coupling.
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(a) (b)

Figure 3.15: Probability of obtaining chimera states (red), synchronized clusters (ma-
genta), fully synchronized states (green), and completely de-synchronized states (blue)
in star networks of coupled Lorenz systems, of 100 nodes, under (a) conjugate coupling
and (b) regular diffusive coupling.

Figure 3.16: Probability of obtaining chimera states (red), synchronized clusters (ma-
genta), fully synchronized states (green), and completely de-synchronized states (blue)
in star networks of coupled Rössler systems with mean-field diffusive coupling (cf. Eqns.
3-4) for a network of 100 nodes.

60



Lastly, we estimate the probability of obtaining the chimera state in the star network

with mean- field diffusive coupling by finding, through numerical simulations, the fraction

of initial states that evolve to chimera states. The results are displayed in Fig. 3.16, and

it is clear that this form of coupling yields a large parameter regime where the typical

initial state gives rise to a chimera state in the end-nodes.

3.2.4 Conclusions

In summary, we have investigated star networks of diffusively, conjugately and mean-field

coupled nonlinear oscillators, with all end-nodes connected only to the central hub node.

Though the end-nodes are identical in terms of the coupling environment and dynami-

cal equations, they yielded chimera states. Namely, the symmetry of the end-nodes was

broken and coexisting groups with different synchronization features and attractor ge-

ometries emerged. We find that as coupling strength increases, the end-nodes go from a

de-synchronized state to a completely synchronized state, via a large coupling parame-

ter regime yielding chimera states. The occurrence of breathing chimera states is more

common in the coupled Lorenz system compare to coupled Rössler systems.

We estimated the basin of attraction of chimera states by evaluating the fraction of

initial states that evolve to a chimera state, in a large sample of random initial condi-

tions. This measure showed that in extensive regimes of coupling parameter space the

probability of obtaining a chimera state is close to one. We found that larger networks

yield larger basins of attraction for the chimera state. Conjugate coupling yields larger

bands with high prevalence of chimera states compare to mean field diffusive and diffusive

coupling.

Thus it is clearly evident from our numerical analysis that large parameter regimes of

moderate coupling strengths yield chimera states from generic random initial conditions

in this network topology. So star networks provide a promising class of coupled systems,

in natural or human-engineered contexts, where chimeras are pervasive.
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Chapter 4

Threshold-activated transport

stabilizes chaotic populations to

steady states

Adapted from the work published in :

Chandrakala Meena, Pranay Deep Rungta and Sudeshna Sinha,

PLoS ONE, 12(8):e0183251, 2017.
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4.1 Introduction

Nonlinear systems, describing both natural phenomena as well as human-engineered de-

vices, can give rise to a rich gamut of patterns ranging from fixed points to cycles and

chaos. An important manifestion of our understanding of a complex system is the ability

to control its dynamics, and so the search for mechanisms that enable a chaotic system

to maintain a fixed desired activity has witnessed enormous research attention [45, 46].

In early years the focus was on controlling low-dimensional chaotic systems, and guiding

chaotic states to desired target states [47, 48, 49, 50]. Efforts then moved on to the arena

of lattices modelling extended systems, and the control of spatiotemporal patterns in such

systems [51]. With the advent of network science to describe connections between com-

plex sub-systems, the new challenge is to find mechanisms or strategies that are capable

of stabilizing these large interactive systems [52].

In this chapter we consider a network of population patches [53, 54], or “a population

of populations” [55]. Now, in analogy with reaction-diffusion processes, diffusive coupling

has been very widely studied as a model of connections between population patches,

with most models of metapopulation dynamics considering density dependent dispersal

[56, 57, 58, 59, 60]. However, here we will investigate a different class of coupling, namely

threshold-activated transport. The broad scenario underlying this is that each population

patch has a critical population density it can support, and when the population in the

patch, due to its inherent growth dynamics (which may be chaotic) exceeds this threshold,

the excess migrates to neighbouring patches. The neighbouring patch on receiving the

migrant population may become over-critical too, triggering further migrations. So this

form of coupling is pulsatile and inter-patch transport occurs only when there is excessive

build-up of population density in a patch, which may initiate a cascade of transport events

[50, 61]. Though much less explored, in many situations this form of coupling may be

expected to offer a more appropriate description of the connections between spatially

distributed population patches.

In this chapter we will then aim to obtain broad insights on the dynamics of a complex

network under threshold-activated transport, through the specific illustrative example of

spatially distributed populations connected by threshold-activated migrations. Our prin-

cipal question will be the following: what is the effect of threshold-activated dispersal

on the dynamical patterns emerging in the network, and in particular, can threshold-

activated coupling serve to stabilize the intrinsically chaotic populations in the network

to regular behaviour, such as steady states or regular cycles? In this chapter first we will
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analyze the dynamics of a single population patch under threshold-activated transport

and then we will discuss details of the nodal dynamics, as well as the salient features

of pulsatile transport triggered by threshold mechanisms in Random Scale-Free network.

We will then go on to demonstrate, through qualitative and quantitative measures, that

such threshold-activated connections manage to stabilize chaotic populations to steady

states. Further we will explore how the critical threshold that triggers the migration,

and the timescales of the nodal dynamics vis-a-vis transport, influences the emergent

dynamics.

4.2 Analysis of a single population patch under threshold-

activated transport

We study a prototypical map, the Ricker (Exponential) map, modelling a single popula-

tion patch. Such a map has been considered as a reasonably accurate model of population

growth of species with non-overlapping generations [5]. It is given by the functional form:

xn+1 = f(xn) = xn exp(r(1− xn)) (4.1)

where r is interpreted as an intrinsic growth rate and (dimensionless) xn is the pop-

ulation scaled by the carrying capacity at generation n. We consider r = 4, namely, an

isolated uncoupled population patch displays chaotic behaviour. We will now analyze

the dynamics of a single Ricker map, under threshold-activated transport. Specifically

then we have the following scenario: in the dynamical evolution of the system, if the

updated state exceeds a critical threshold xc, it transports the excess out of the system

and“re-sets” to level xc. So the effective map of the dynamics is:

xn+1 = f(xn) if f(xn) < xc (4.2)

xn+1 = xc if f(xn) ≥ xc

This is effectively a “beheaded” or “flat-top” map, with the curve lying above xn+1 >

xc in the usual Ricker map being “sliced” to xc (cf. Fig. 4.1a). The level at which the

map is chopped off depends on the threshold xc. The fixed point solution x? occurs at the

intersection of this f(x) curve and the 450 line, namely x? = xc. Remarkably, this fixed
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point is super-stable if the intersection occurs at the “flat top”, since f ′(x?) = 0 there.

Clearly, as the threshold increases the intersection of the effective map and the 450

line is no longer located at the “flat-top”. This is clear for the effective maps for xc = 0.5

vis-a-vis that for xc = 1.5 in Fig. 4.1a. So x? for sufficiently high xc will no longer be

stable (eg. xc = 1.5 will not yield a stable fixed point). So we go on to inspect the second

iterate of the effective map, in order to ascertain if a stable period-2 cycle is obtained (cf.

Fig. 4.1b). Now the period-2 cycle solutions occur at the intersection of the f 2(x) curve

and the 450 line, and again this cycle is stable if and only if the intersection occurs at

the “flat top”, namely where f ′(x) = 0. In the illustrative example displayed in Fig. 4.1b

it is clear that for xc = 0.5, where the fixed point is super-stable, the period-2 is also

naturally super-stable. Interestingly now, for xc = 1.5, which had an unstable fixed point

solution, the period-2 solution is super-stable. So higher xc also controls the intrinsic

chaos. However, instead of a stable steady state, it yields stable periodic behaviour.

Alternately, one can understand the emergence of stable cycles under threshold control

as follows: The ergodicity of the system ensures that the system will explore the available

phase space fully, and the state variable is thus guaranteed to exceed threshold at some

point in time. So one can analyse the dynamics of the effective map starting with the

initial state at xc. Now starting from xc the dynamics will run as in the usual Ricker

population map until xn+1 > xc, at which point it is re-set back to xc and the cycle

starts again. So once it exceeds the critical value it is trapped immediately in a stable

cycle whose periodicity is determined by the value of the threshold. Further, this allows

us to exactly obtain the values of threshold xc that yield stable fixed points x∗ (namely

period-1). This is simply the range of xc for which the first iterate of the Ricker map

lies above xc. In this range f(xc) > xc. So starting from an initial state xc, we will be

updated in the next iterate to a state greater than xc, leading to the transport of the

excess f(x)− xc out of the system and the “relaxation” of the system to xc.

The curves fn(xc) as a function of threshold xc are displayed in Fig. 4.2. For n = 0,

f0(xc) = xc; for n = 1, f1(xc) = xc exp(r(1− xc)), and in general fn(xc) = f ◦ fn−1(xc) =

f ◦ f ◦ . . . f(xc). From the figure it can be clearly seen that in the range of xc ∈ [0 : 1],

f(xc) > xc. So if the threshold is in this range, the system will evolve quickly to a steady

state at x∗ = xc, and transport the excess, namely f(xc) − xc, out of the system after

every update of the population in the patch.

Similarly, it can be seen that f2(xc) = f(f(xc)) is larger than xc (while f(xc) < xc)

in the range of threshold xc ∈ (1, 2]. So in this range of threshold, we obtain a stable
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period 2 cycle. Namely, the population at xc evolves to f(xc) < xc which then evolves

to f 2(xc). Since f 2(xc) > xc, it is mapped back to xc. Hence a cycle of period 2 arises,

with the values of the two points in the cycle being xc and f(xc). It can be seen from

Fig. 4.2 that this range is from xc ∼ 1 to xc ∼ 2. This also corroborates the analysis

using effective “flat-top” maps (cf. Fig. 4.1).

(a) (b)

Figure 4.1: (a) f(x) vs. x and (b) f 2(x) vs. x, for the effective threshold-controlled
Ricker map (r = 4), for critical threshold levels: xc = 0.5 (green) and xc = 1.5 (blue).
The fixed point solution occurs at the intersection of the f(x) curve and the 450 line, and
is stable if the intersection occurs at the “flat top”, namely where f ′(x) = 0.

Figure 4.2: Plot of fn(x) vs x. Here n = 0, 1, 2, where fn(x) is the nth iterate starting
from initial condition x = xc of the Ricker map with r = 4: f0(x) (red), f1(x) (green)
and f2(x) (blue).
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Fig. 4.3 shows the range of threshold values yielding period-1 and period-2 behaviour

considering a single threshold-limited map.

Figure 4.3: Bifurcation diagram of the threshold-controlled Ricker map (namely, the
“flat-top” map), with respect to threshold level xc.

4.3 Model

Now we will consider a network of N sub-systems, characterized by variable xn(i) at each

node/site i (i = 1, . . . N) at time instant n. Nodal dynamics is given by the functional

form:

xn+1(i) = f(xn(i)) = xn(i) exp(r(1− xn(i))) (4.3)

Where xn(i) is the population scaled by the carrying capacity at generation n at

node/site i. Note that the results we will subsequently present here, hold qualitatively

for a wide class of unimodal nonlinear maps, of which the Ricker map is a specific example.

The coupling in the system is triggered by a threshold mechanisms [50, 62, 63, 64].

Namely, the dynamics of node i is such that if xn+1(i) > xc, the variable is adjusted

back to xc and the “excess” xn+1 − xc is distributed to the neighbouring patches. The

threshold parameter xc is the critical value the state variable has to exceed in order to

initiate threshold-activated coupling. So this class of coupling is pulsatile, rather than
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the more usual continuous coupling forms, as it is triggered only when a node exceeds

threshold.

Specifically, we study such population patches coupled in a Random Scale-Free net-

work, where the network of underlying connections is constructed via the Barabasi-Albert

preferential attachment algorithm, with the number of links of each new node denoted

by parameter m [10]. The resultant network is characterized by a fat-tailed degree dis-

tribution, found widely in nature. The underlying web of connections determines the

“neighbours” to which the excess is equi-distributed. Further, certain nodes in the net-

work may be open to the environment, and the excess from such nodes is transported out

of the system. Such a scenario will model an open system, and such nodes are analogous

to the “open edge of the system”. We denote the fraction of open nodes in the network,

that is the number of open nodes scaled by system size N , by f open. We also consider

closed systems with no nodes open to the environment, where nothing is transported out

of the system, i.e. f open = 0.

So the scenario underlying this is that each population patch has a critical population

density xc it can support, and when the population in the patch, due to its inherent chaotic

growth dynamics, exceeds this threshold, the excess population moves to a neighbouring

patch. The neighbouring patch on receiving the excess may exceed threshold too. Thus a

few over-critical patches may initiate a domino effect, much like an “avalanche” in models

of self-organized criticality [65] or cascade of failures in models of coupled map lattices

[66]. So the main mechanisms for mitigating excess is through redistribution of excess,

which ensures that nodes that are under-critical will absorb some excess population, and

through the transport of excess out of the network via the open nodes. All transport

activity in the network stops, namely the cascade ceases, when all patches are under the

critical value, i.e. all x(i) < xc.

So there are two natural time-scales here. One time-scale characterizes the chaotic

update of the populations at node i. The other time scale involves the redistribution

of population densities arising from threshold-activated transport. We denote the time

interval between chaotic updates, namely the time available for redistribution of excess

resulting from threshold-activated transport processes, by TR. This is analogous to the re-

laxation time in models of self-organized criticality, such as the influential sandpile model

[65]. TR then indicates the comparative time-scales of the threshold-activated migration

and the intrinsic population dynamics of a patch.
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4.4 Results

We have simulated this threshold-coupled scale-free network of populations, under varying

threshold levels xc (0 ≤ xc ≤ 2). We considered networks with varying number of open

nodes, namely systems that have different nodes/sites open to the environment from

where the excess population can migrate out of the system. Further, we have studied

a range of redistribution times TR, capturing different timescales of migration vis-a-vis

population change [67].

With no loss of generality, in the following sections, we will present salient results for

Random Scale-Free networks with m = 1, and specifically demonstrate, both qualitatively

and quantitatively, the stabilization of networks of chaotic populations to steady-states

under threshold-activated coupling. We will also present some qualitatively important

results for Random Scale-Free networks with m = 2.

4.4.1 Influence of redistribution time on emergence of steady

states

First, we consider the case of large TR, where the transport processes are fast compared to

the population dynamics, or equivalently, the population dynamics of the patch is slow

compared to inter-patch migrations. Namely, since the chaotic update is much slower

than the transport between nodes, the situation is analogous to the slow driving limit

[65]. In such a case, the system has time for many transport events to occur between

chaotic updates, and avalanches can die down, i.e. the system is “relaxed” or “under-

critical” between the chaotic updates. So when the transport/migration is significantly

faster than the population update (namely the time between generations), the system

tends to reach a stationary state where all nodal populations are less than critical.
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(a) (b)

Figure 4.4: State of the nodes (coded in color) in a Random Scale-Free Network of
intrinsically chaotic populations under threshold-activated coupling, at different instants
of time. Here the steady state value represented by the light green color. Panel (a)
displays the network at initial time, showing the random initial state of the network.
Panel (b) shows the network after 100 time steps, clearly showing that all nodes have
evolved to a steady state (as evident from the uniform light green color). The critical
threshold xc = 0.5, system size N = 100, m = 1 and there is a single node open to the
environment. Redistribution time TR = 5000.

(a) (b)

Figure 4.5: Bifurcation diagrams of the state of a representative node, with respect to
critical threshold xc, in a threshold-coupled Random Scale-Free network of intrinsically
chaotic populations with m = 1 . Here TR = 5000 and the network has a single open
node, of degree (a) 1 and (b) 15.

An illustrative case of the state of the nodes in the network is shown in Fig. 4.4.

Without much loss of generality, we display results for a network of size N = 100, for a

representative large value of redistribution time TR = 5000. It is clear that all the nodes
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(a) (b)

Figure 4.6: State of the nodes (coded in color) in a Random Scale-Free Network of intrin-
sically chaotic populations under threshold-activated coupling with m = 1, at different
instants of time. Here the steady state value represented by the light green color. Panel
(a) displays the network at initial time, showing the random initial state of the network
and (b) shows the network after 100 time steps, clearly showing that all nodes have
evolved to a steady state (as evident from the uniform light green color). The critical
threshold xc = 0.5, and there is a single node open to the environment. Redistribution
time TR = 500.

in the network gets stabilized to a fixed point, namely all population patches evolve to a

stable steady state.

The next natural question is the influence of the critical threshold xc on the emergent

dynamics, and this will be demonstrated through a series of bifurcation diagrams. Note

that in all the bifurcation diagrams presented in this chapter we will display on the

vertical axis the state x of a representative site in the network, over several time steps

after transience, with respect to threshold xc which runs along the horizontal axis.

It is clearly evident from the bifurcation diagrams in Fig. 4.5 that a large window of

threshold values (0 ≤ xc < 1) yield spatiotemporal steady states in the network [68, 69,

70]. It is also apparent that the degree of the open node does not affect the emergence

of steady states here. Further, for threshold values beyond the window of control to

fixed states, one obtains cycles of period 2. Namely for threshold levels 1 < xc < 2 the

populations evolve in regular cycles, where low population densities alternate with a high

population densities. This behaviour is reminiscent of the field experiment conducted by

Scheffer et al [71] which showed the existence of self-perpetuating stable states alternating

between blue-green algae and green algae. When there is enough time to relax between

chaotic updates (namely TR is large and/or the number of open nodes is sufficiently high),
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the collective excess of the network is transported out of the system. This implies that

the individual nodes behave essentially like the “flat-top” map analysed in section 4.2.

This explains why the range of threshold values yielding fixed points and period-2 cycles

obtained in networks of threshold-coupled chaotic systems (cf. Fig. 4.5) matches so well

with that obtained there (cf. Fig. 4.3).

So our first result can be summarized as follows: when redistribution time TR is large

and the critical threshold xc is small, we have very efficient control of networks of chaotic

populations to steady states. This suppression of chaos and quick evolution to a stable

steady states occurs irrespective of the number of open nodes.

4.4.2 Influence of the number of open nodes on the suppression

of chaos

Now we focus on the network dynamics when TR is small, and the time-scales of the nodal

population dynamics and the inter-patch transport are comparable. When redistribution

time TR is small then we do not have very efficient control of networks of chaotic pop-

ulations to steady states (cf. Fig. 4.6). So now there will be nodes that may remain

over-critical at the time of the subsequent chaotic update, as the system does not have

sufficient time to “relax” between population updates.

The network is then akin to a rapidly driven system, with the de-stabilizing effect of

the chaotic population dynamics competing with the stabilizing influence of the threshold-

activated coupling. So for small TR, the system does not get enough time to relax to

under-critical states and so perfect control to steady states may not be achieved. Now

we will see the effect of the number of open edge nodes on suppression of chaos in the

network.

Importantly now, the fraction of open nodes f open is crucial to chaos suppression.

In general, a larger fraction of open nodes facilitates control of the intrinsic chaos of

the nodal population dynamics, as the de-stabilizing “excess” is transported out of the

system more efficiently. We investigate this dependence, through space-time plots of

representative networks with varying number of open nodes and redistribution times

(cf. Fig. 4.7), and through bifurcation diagrams of this system with respect to critical

threshold xc (cf. Fig. 4.8).

It is apparent from Fig. 4.7, that when there are enough open nodes, the network
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relaxes to the steady state even for low redistribution times. Also notice from Fig. 4.7(d)

that the system reaches the steady state very rapidly, namely within a few time steps,

from the random initial state. So more open nodes yields better control of the intrinsic

chaos of the nodal population dynamics to fixed populations.

(a) (b)

(c) (d)

Figure 4.7: Space-time plots displaying the spatiotemporal behaviour of a Random Scale-
Free network of intrinsically chaotic populations with m = 1 . Panel (a) shows the case
of uncoupled chaotic populations evolving from a representative random initial state.
Panels (b), (c), (d), (e) and (f) show the evolution of the same populations connected
through threshold-activated coupling. System size N = 50, the critical threshold xc = 0.5,
redistribution time TR = 50, and the number of open nodes in the network is (b) 1, (c)
10, (d) 30.

This is also corroborated in the bifurcation diagrams displayed in Fig. 4.8, where

control to steady states is seen even for low TR, when there are large number of open
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nodes, vis-a-vis networks with few open nodes. Further contrast this with the dynamics

of a system with large TR, shown earlier in Fig. 4.5, where even a single open node leads

to stable steady states for a large range of threshold values.

(a) (b)

(c) (d)

Figure 4.8: Bifurcation diagrams for one representative node in a threshold-coupled Ran-
dom Scale-Free network of intrinsically chaotic populations with m = 1, with respect to
critical threshold xc with m = 1. Here TR = 50 and the number of open nodes is (a) 1,
(b) 10, (c) 30 and (d) 60.

Similar qualitative trends are also borne out in Random Scale-Free network with

m = 2, where again more open nodes (cf. Fig. 4.9) and longer redistribution times result

in better control to fixed population densities (cf. Fig. 4.10).
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(a) (b)

(c) (d)

Figure 4.9: Space-time plots displaying the spatiotemporal behaviour of a Random Scale-
Free network of intrinsically chaotic populations with m = 2. Panel (a) shows the case
of uncoupled chaotic populations evolving from a representative random initial state.
Panels (b), (c), (d), (e) and (f) show the evolution of the same populations connected
through threshold-activated coupling. System size N = 50, the critical threshold xc = 0.5,
redistribution time TR = 50, and the number of open nodes in the network is (b) 1, (c)
10, (d) 30.
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(a) (b)

Figure 4.10: Bifurcation diagrams of the state of a representative node, with respect to
critical threshold xc, in a threshold-coupled Random Scale-Free network of intrinsically
chaotic populations with m = 2 . Here the network has a single open node randomly
chosen and TR = 500 for (a), TR = 5000 for (b)

4.4.3 Suppression of chaos in closed system

As a limiting case, we also studied the spatiotemporal behaviour of threshold-coupled

networks without open nodes. Here the network of coupled population patches is a

closed system.

(a) (b)

Figure 4.11: Bifurcation diagram displaying the state of a representative site, for
threshold-coupled populations in a Random Scale-Free network with m = 1. Here
TR = 5000 and there are no open nodes. Panel (a) shows the bifurcation diagram of
one node and (b) shows for another node.
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Again the intrinsic chaos of the populations is suppressed to regular behaviour, for

large ranges of threshold values. However, rather than steady states, one now obtains

period-2 cycles. This is evident through the bifurcation diagram of a closed network (cf.

Fig. 4.11) vis-a-vis networks with at least one open node (cf. Fig. 4.5). Also, note the

similarity of the bifurcation diagram of the closed system with that of a system with low

TR and few open nodes. This similarity stems from the underlying fact that in both cases

the network cannot relax to completely under-critical states by redistribution of excess

between the population updates, either due to paucity of time for redistribution (namely

low TR) or due to the absence of open nodes to transport excess out of the system.

4.4.4 Influence of nodal properties in suppression of chaos

Further, we explore the case of networks with very few (typically 1 or 2) open nodes,

and study the effect of the degree and betweenness centrality 1 of these open nodes on

the control to steady states. We expect the degree and betweenness centrality of the

open nodes to play a significant role for the following reason: the main mechanism for

mitigating excess is through the transport of excess out of the network via the open

nodes. This implies that the emergence of steady states is crucially dependent on the

movement of excess occuring at any node in the network to an open edge in TR steps.

So if an open node has more links to other nodes (namely, is of high degree), this would

naturally facilitate the transport of excess to it, in parallel, through its many links. Also,

an open node with high betweeness centrality implies that the node lies on many shortest

paths connecting pairs of nodes. So this too should aid the process, as excess can reach

the open node in fewer time steps.

Our expectations above are indeed verified through extensive simulations, where we

observe the following: when there are very few open nodes, the degree and betweenness

centrality of the open node is important, with the region of control being large when the

open node has the high degree/betweenness centrality, and vice versa 2 See: [72]. This

interesting behaviour is clearly seen in the bifurcation diagrams shown in Figs. 4.12a-d,

which demonstrate that the degree and betweeness centrality of the open node has a

pronounced influence on control.

1Betweenness centrality of a node is given as b(i) =
∑
s,t∈I

σ(s,t|i)
σ(s,t) , where I is the set of all nodes,

σ(s, t) is the number of shortest paths between nodes s and t and σ(s, t|i) is the number of shortest paths
passing through the node i.

2This is similar to the behaviour of heterogeneously connected networks of active-inactive elements,
whose ability to maintain its dynamical activity is dependent on the degree of the node where local
perturbations occured.

78



(a) (b)

(c) (d)

Figure 4.12: Bifurcation diagrams displaying the state of a representative node, with
respect to critical threshold xc, in a threshold-coupled Random Scale-Free network of
intrinsically chaotic populations with m = 1. Here TR = 500 and there is a single open
node, with this open node having (a) the highest betweenness centrality, (b) the lowest
betweenness centrality, (c) the highest degree and (d) the lowest degree in the network.
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4.4.5 Quantitative Measures of the Efficiency of Chaos Suppres-

sion

We now investigate a couple of quantitative measures that provide indicators of the

efficiency and robustness of the suppression of chaos in the network. The first quantity

is the average redistribution time 〈T 〉, defined as the time taken for all nodes in a system

to be under-critical (i.e. xi < xc for all i), averaged over a large sample of random

initial states and network configurations. So 〈T 〉 provides a measure of the efficiency

of stabilizing the system, and reflects the rate at which the de-stabilizing “excess” is

transported out of the network.
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Figure 4.13: Average redistribution time 〈T 〉, as a function of the logarithm of the network
size N . Here 〈T 〉 is defined as the time taken for all nodes in a system to be under-critical
(i.e. xi < xc,∀i), averaged over a large sample of random initial states and network
configurations, the fraction of open nodes in the network is 0.2 and xc = 0.5.

Fig. 4.13 shows the dependence of 〈T 〉 on system size N . Clearly, while larger networks

need longer redistribution times in order to reach steady states, this increase is only

logarithmic. This can be rationalized as follows: the average redistribution time needed
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for all nodes in a system to be under-critical reflects the average time taken by the excess

from any over-critical node in the network to reach some open edge. So this should be

determined by the diameter of the random scale-free graph, namely the maximum of the

shortest path lengths over all pairs of nodes in the network, which scales with network

size as lnN .

This is further corroborated by calculating the average fraction of nodes in the network

that go to steady states with respect to the redistribution time TR, for networks of different

sizes, with varying number of open nodes (cf. Fig. 4.14). Clearly for small systems, with

sufficiently high f open, very low TR can lead to stabilization of all nodes. Importantly,

when the fraction of open nodes is very small, the average redistribution time 〈T 〉 depends

sensitively on the betweenness centrality of the open node, and to a lesser extent its

degree. Figs. 4.15a-b present illustrative results demonstrating this observation.
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Figure 4.14: Fraction of nodes in the network that go to steady states, denoted by ffixed,
with respect to the redistribution time TR. Here ffixed is averaged over different network
configurations and initial states, xc = 0.5 and the fraction of open nodes f open in the
network is 0.01, 0.02, 0.05, 0.1 for N = 100 (i.e. 1, 2, 5, 10 open nodes in the network
respectively) and 0.1 for N = 10 (i.e. 1 open node in the network). Inset: data collapse
indicating the scaling relation ffixed ∼ g(TRf

open).
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Next we examine the range of threshold values yielding steady states, averaged over

a large sample of network configurations and initial states, denoted by 〈R〉. Larger

〈R〉 implies that steady states will be obtained in a larger window in xc space, thereby

signalling a more robust control. We have explored the dependence of this quantity on

redistribution time TR, and also on the fraction of open nodes in the network, denoted by

f open. From Fig. 4.16 we see that the steady-state window in xc rapidly converges to ∼ 1

(namely, the range 0 ≤ xc < 1), as the number of open nodes increases. So the window

yielding suppression of chaos is almost independent of the number of open nodes, after

a sufficiently large fraction of open nodes. Also notice that there is a critical fraction

of open nodes f open
c , after which the network yields a non-zero range of steady states,

namely 〈R〉 > 0 for f open > f open
c .
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Figure 4.15: Average redistribution time 〈T 〉, as a function of the fraction of open nodes
in the network f open. Here 〈T 〉 is defined as the time taken for all nodes in the threshold-
coupled Random Scale-Free Network of chaotic populations, to be under-critical (i.e.
xi < xc,∀i), averaged over a large sample of random initial states and network configura-
tions. There are 100 chaotic populations connected via threshold-activated transport in
a Random Scale-Free network. In panel (a) the case of open nodes chosen in descending
order of degree starting from nodes with the highest k (marked as khigh) and the case
of open nodes chosen in ascending order of degree starting from nodes with the lowest k
(marked a klow), are displayed. In panel (b) the case of open nodes chosen in descending
order of betweeness centrality starting from nodes with the highest b (marked as bhigh)
and the case of open nodes chosen in ascending order of betweeness centrality starting
from nodes with the lowest b (marked a blow), are displayed. In both panels, the case of
open nodes chosen at random is also shown for reference.
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Figure 4.16: Range of threshold values that yield steady states, 〈R〉, as a function of the
fraction of open nodes in the network f open. Here 〈R〉 is averaged over different network
configurations and initial states and the open nodes are randomly chosen. Results from
different redistribution times (TR = 50, 500, 1000, 5000) and system sizes (N = 10, 100)
are shown.

We observe that f open
c tends to zero as the redistribution time increases and system size

decreases, implying that very few open nodes are necessary in order to lead the network

to a steady state 3 See:[73].

3The transition to a global steady state after a critical fraction of open nodes is reminiscent of the
effect of inactive elements at fixed states on a group of active elements in oscillatory states. In that
situation too there was a transition to a macroscopic steady state, with respect to increasing number of
inactive elements, at a critical value of inactive nodes.
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Figure 4.17: Average redistribution time 〈T 〉, as a function of the betweeness centrality
b of the open node. Here 〈T 〉 is defined as the time taken for all nodes in the threshold-
coupled Random Scale-Free Network of chaotic populations, to be under-critical (i.e. xi <
xc,∀i), averaged over a large sample of random initial states and network configurations,
in a network with a single open node. The solid curve shows the best quadratic polynomial
fit. Inset: Average redistribution time 〈T 〉, as a function of the closeness centrality C of
the open node.

One can understand these observations by noting that f open
c is determined by the time

available to the system for threshold-activated transport (i.e. TR), and the system size

N . Now, as mentioned earlier, the average redistribution time needed for all nodes in a

system to be under-critical, which reflects the time taken by the excess from any over-

critical node in the network to reach some open edge, should scale with the diameter

of the random scale-free network. This is known to scale with network size as lnN .

Further, note that not all nodes are open, and so the probability of reaching an open

edge is inversely proportional to f open. This implies that it takes longer to move all the

excess to the open node(s) when f open is smaller. In order to reach a steady state the

average time for cascades to cease should be less than the available time TR. So if the
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available redistribution time TR is low, and the network size N is large, the cumulative

excess from all the over-critical nodes in the system will not manage to reach the open

edge. So no steady states will emerge (i.e. 〈R〉 = 0). However, once f open > lnN/TR,

a global steady state will emerge. This offers as estimate of f open
c . For instance, for

N = 100 and TR = 50, this argument suggests that f open
c ∼ 0.09, which is close to the

numerically obtained value. This also implies that for sufficiently large redistribution

time, or small enough network size, the system can attain steady state even when there

is a single open node (i.e. f open
c → 0). In fact we can also obtain an estimate for the

minimum TR, which we denote as Tmin
R , necessary for allowing the network to reach a

steady state with just a single open node, namely f open
c = 1/N . So for networks of size

N = 100 one obtains Tmin
R ∼ N lnN ∼ 460, while for networks of size N = 10 one obtains

Tmin
R ∼ 23. This estimate is consistent with the numerical results shown in Fig. 4.16,

from where it is clear that for when TR > Tmin
R , e.g. for N = 10, TR = 50 and for

N = 100, TR = 500, 1000, 5000, 〈R〉 is always non-zero, while for N = 100, TR = 50 (i.e.

when TR < Tmin
R ) 〈R〉 = 0 for f open < f open

c , after which there is a transition to non-zero

〈R〉.

Lastly we explore the scenario of very few open nodes (f open << f open
c ) in greater

depth, through the quantitative measures 〈R〉 and 〈T 〉. In particular, we investigate the

limiting case of a single open node. Our attempt will be to understand the influence of

the degree k and betweeness centrality b of the open node on the capacity to suppress

chaos. We have already observed the significant effect of the betweeness centrality of the

open node on the efficiency of control to steady states through bifurcation diagrams in

Fig. 4.12. This is now further corroborated quantitatively by the dependence of 〈R〉 and

〈T 〉, displayed in Figs. 4.17 and 4.18(b). The effect of the degree of the open node is less

pronounced, though it also does have a discernable effect on the suppression of chaos. As

evident from Fig. 4.18(a), when the open node has a higher degree, it has a higher 〈R〉,
indicating that open nodes with higher degree yield larger steady state windows.

Finally, note that the different centrality measures are most often strongly correlated

and therefore do not offer new insights. For instance, we have also studied the network

with respect to open nodes of varying closeness centrality, where closeness centrality is

the average length of the shortest path between the node and all other nodes in the graph.

We find that qualitatively same broad trends emerge with respect to closeness centrality,

as observed for betweenness centrality (cf. Fig. 4.17 and its inset).

These results can be understood intuitively as follows: the emergence of steady states

is crucially dependent on the efficacy of the excess being transported out of the network.
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Namely, excess population from any over-critical node in the network needs to reach an

open node within TR steps. So if an open node has high degree transport of excess is

facilitated, as the excess can flow to the node simultaneously through its many links.

Further one can rationalize the effect of the betweeness centrality of an open node on

the stabilization of the steady state, as betweeness is a measure of centrality in a graph

based on shortest paths. If an open node has high betweenness centrality, a large number

of shortest paths pass through it. This naturally aids the cascading process, as excess

reaches the open node in fewer time steps. The trends expected from these arguments

are corroborated in the results from simulations shown in Figs. 4.17 and 4.18.
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Figure 4.18: Range of threshold values that yield steady states 〈R〉, as a function of the
(a) degree k, and (b) betweeness centrality b, of the open node. Here 〈R〉 is averaged
over different network configurations and initial states, in a network with a single open
node, (with the solid curve showing the best quadratic polynomial fit).

4.5 Conclusions

We have explored Random Scale-Free networks of populations under threshold-activated

transport. Namely we have a system comprising of many spatially distributed sub-

populations connected by migrations triggered by excess population density in a patch.

We have simulated this threshold-coupled Random Scale-Free network of populations,

under varying threshold levels xc. We considered networks with varying number of open

nodes, namely systems that have different nodes/sites open to the environment from

where the excess population can migrate out of the system. Further, we have studied

a range of redistribution times TR, capturing different timescales of migration vis-a-vis

population change.
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Our first important observation is as follows: when redistribution time TR is large and

the critical threshold xc is small (0 ≤ xc < 1), we have very efficient control of networks

of chaotic populations to steady states. This suppression of chaos and quick evolution

to a stable steady states occurs irrespective of the number of open nodes. Further, for

threshold values beyond the window of control to fixed states, one obtains cycles of period

2. Namely for threshold levels 1 < xc < 2 the populations evolve in regular cycles, where

low population densities alternate with a high population densities. This behaviour is

reminiscent of field experiments [71] that show the existence of alternating states. We

offer an underlying reason for this behaviour through the analysis of a single threshold-

limited map.

For small redistribution time TR, the system does not get enough time to relax to

under-critical states and so perfect control to steady states may not be achieved. Im-

portantly, now the number of open nodes is crucial to chaos suppression. We clearly

demonstrate that when there are enough open nodes, the network relaxes to the steady

state even for low redistribution times. So more open nodes yields better control of the

intrinsic chaos of the nodal population dynamics to fixed populations. We corroborate

all qualitative observations by quantitative measures such as average redistribution time,

defined as the time taken for all nodes in a system to be under-critical, and the range of

threshold values yielding steady states.

We also explored the case of networks with very few (typically 1 or 2) open nodes in

detail, in order to gauge the effect of the degree and betweenness centrality of these open

nodes on the control to steady states. We observed that the degree of the open node does

not have significant influence on chaos suppression. However, betweenness centrality of

the open node is important, with the region of control being large when the open node

has the high betweenness centrality, and vice versa.

The emergence of steady states in this system, not only suggests potential underlying

mechanisms for stabilization of intrinsically chaotic populations, but also has bearing on

the broad problem of control in complex networks. When a steady state is the desired

state of the nodal populations in the network, the threshold mechanism offers a very

simple and potent strategy for achieving this, as we have demonstrated clearly. If the

aim is to prevent steady states, as may be the case in variants of this model relevant to

neuronal dynamics, our results suggest what threshold levels need to be avoided in order

to prevent evolution to global fixed points. Note that a large class of control strategies

entail complicated algorithms to calculate feedback, and these require knowledge of the

global network topology and details of the network dynamics, which are often unknown.
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Here on the other hand, the nodes respond independently at the local level to a simple

threshold limiter condition, requiring knowledge of only the local state at any point in

time.

Lastly, interestingly, analogs of this class of coupling have been realized in CMOS

circuit implementation using pulse-modulation approach [74, 75]. So some of these re-

sults may be of potential interest to the engineering community as well. In the bio-

logical context, some experiments have studied similar dynamics in replicate laboratory

metapopulations of Drosophila [76]. So our results have the potential to be demonstrated

in extensions of such experiments in the future.

In summary, threshold-activated transport yields a very potent coupling form in a

network of populations, leading to robust suppression of the intrinsic chaos of the nodal

populations on to regular steady states or periodic cycles. So this suggests a mechanism

by which chaotic populations can be stabilized rapidly through migrations or dispersals

triggered by excess population density in a patch.
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Chapter 5

Robustness of networks of

multi-stable chaotic systems to

targetted attacks
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5.1 Introduction

Collective spatiotemporal patterns emerging in dynamical complex systems are deter-

mined by the interplay of the dynamics of each node and the nature of the interactions

among the nodes. Interactions among nodes are often modelled by interesting coupling

topologies and coupling forms, and these interactions influence spatiotemporal pattern

formation in the network. So it is of utmost relevance to ascertain how significantly the

properties of an individual node impact the collective dynamics of a network. The in-

fluence of a node on the dynamics of a network depends on how much information flows

through this node and how critical the node is to that flow. Understanding this signif-

icance will allow us to determine which nodes render the network most susceptible to

external influences. Alternately, it will potentially suggest which nodes to protect more

stringently from perturbations in order to protect the dynamical robustness of the entire

network.

In particular, we consider three properties of the nodes, and try to correlate these

with the robustness of the collective dynamics. The three nodal features we focus on are

the following:

(i) Normalized degree of a node i in an undirected network: this is given by the

number of neighbors that are directly connected to the node scaled by the total number

of nodes N , and is denoted by ki. So a high degree node indicates that there is direct

contact with a larger set of nodes.

(ii) Normalized betweeness centrality of a node i [77, 78]: this is defined as

bi =
2

(N − 1)(N − 2)

∑
s,t∈I

σ(s, t|i)
σ(s, t)

where I is the set of all nodes, σ(s, t) is the number of shortest paths between nodes s

and t and σ(s, t|i) is the number of shortest paths passing through the node i. So if node

i has high betweeness centrality, it implies that it lies on many shortest paths, and thus

there is high probability that a communication from s to t will go through it.

(iii) Normalized Closeness Centrality: this is defined as

ci =
N − 1∑
j d(j, i)

where d(j, i) is the shortest path between node i and node j in the graph. Namely, it is
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the inverse of the average length of of the shortest path between the node and all other

nodes in the network[79]. So high closeness centrality indicates short communication

path to other nodes in the network, as there are minimal number of steps to reach other

nodes.

Since the above features of a node determine the efficiency of information transfer

originating from it, or through it, they are expected to influence the propagation of

perturbations emanating from the node. As a test-bed for understanding this we consider

the collective dynamics of a group of coupled Duffing oscillators in this Chapter. First

we analyse the dynamical behaviour of the Duffing oscillators and identify the parameter

values where co-existing attractors are present. We look for both coexisting limit cycles,

as well as coexisting chaotic attractors. We will then go on to explore pattern formation

in such multi-stable Duffing oscillators, connected in star, ring and random scale-free

networks.

In an earlier work [80] we had investigated the basin stability of the synchronized state

in networks of coupled bi-stable elements. That is, we considered dynamical systems with

two co-existing fixed points, coupled in different network topologies. Our focus was the

stability of the collective state where all the elements were in the same well, i.e. in the

vicinity of the same fixed point attractor. The central result of that study was that the

betweeness centrality of the perturbed node was most crucial for dynamical robustness,

and influenced the stability of the network much more strongly than closeness centrality

or degree of the perturbed node. This result will potentially help us decide which nodes

to safeguard in order to maintain the collective state of this network against targetted

localized attacks. In this chapter we will exploit the fact that the Duffing oscillator has

multi-stable attracting states that are dynamically more complex, such as co-existing

limit cycles and chaotic attractors, unlike previous studies where the co-existing states

were all fixed points. So we will use the Duffing system as a test-bed to generalize

our earlier results from networks of fixed point attractors to networks of more complex

dynamical attractors. Also note that in this Chapter a “synchronized state” will imply

one where all nodes in the network are in the basin of attraction of the same attractor of

the multi-stable oscillator. So it does not imply complete synchronization. Rather, the

constituent oscillators inhabit the same region of phase space, associated with the basin

of one, or the other, of the coexisting dynamical states.

To gauge the global stability and robustness of a state, we will introduce a variant

of the recent framework of multi-node basin stability [81]. In general, the basin stability

of a particular attractor of a multi-stable dynamical system is given by the fraction of
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perturbed states that return to the basin of the attraction of the dynamical state under

consideration. We will first discuss some concepts we will use to assess the effect of

different nodal properties on the resilience of a network. At the outset we will consider

all nodes of the network localized on one of the two stable attractors, i.e. {xi, yi} of all

nodes i lie on different phase-space points of one of the attractors. We then give a large

perturbation to some fraction of nodes, denoted by f . We consider three distinct types

of perturbations:

(i) Perturbations onto another Attractor (P1): here we perturb the nodes on to ran-

domly chosen phase-space points lying on a different attractor. For instance, for the case

of Duffing oscillators with two co-existing limit cycles, if the initial states of the nodes in

the network are localized on the attractor with negative x values (cf. Fig 5.2(d)), then

the perturbed nodes will lie on the limit cycle with positive x values (cf. Fig 5.2(b)).

(ii) Perturbations onto a small phase-space volume in the basin of attraction of another

co-existing attractor (P2).

(iii) Perturbations randomly chosen in a large phase-space volume (P3) : This type

of perturbation is most commonly used in previous studies. For instance, for the case

of coupled Duffing oscillators we perturb the nodes onto a randomly chosen phase-space

point in the phase-space box x ∈ [−1 : 1] and y ∈ [−1 : 1].

After perturbations, we check whether all the oscillators return to their original at-

tractors, i.e. if the perturbed system recovers completely to the initial state. We repeat

this “experiment” over a large sample of perturbed nodes and perturbations strengths,

and find the fraction of times the system manages to revert to the original state. This

measure of global stability is then a variant of multi-node basin stability and it is indica-

tive of the robustness of the collective state to perturbations localized at particular nodes

in the network. It reflects the fraction of the volume of the state space of a sub-set of

nodes that belong to the basin of attraction of the synchronized state. The importance

of this concept stems from the fact that it determines the probability of the system to

remain in the basin of attraction of the synchronized state when random perturbations

affect a specific number of nodes. This allows us to extract the contributions of individual

nodes to the overall stability of the collective behaviour of the dynamical network. Fur-

ther, since one perturbs subsets of nodes with certain specified features, our variant of

multi-node BS will suggest which nodal properties make the network more vulnerable to

attack.

So the focus of this chapter will be to examine the global stability of a network of cou-
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pled multi-stable nonlinear systems with co-existing limit cycles and co-existing chaotic

attractors. Specifically we will investigate Duffing oscillators in the multi-stable regime,

coupled in different network topologies. First we will analyze the dynamics of single Duff-

ing oscillator and then we will explore collective behaviour and multi-node basin stability

of different networks of Duffing oscillators, under the three above mentioned classes of

perturbations. The central question we will investigate here is the following: what are the

effects of the characteristics of the perturbed nodes on the global stability of the network?

So we will search for discernable patterns amongst the nodes that aid the maintenance of

the stability of the collective dynamics of the network on one hand, and the nodes that

rapidly destroy it on the other. That is, we will explore the extent to which the features

of the nodes, given by its degree and centrality properties, influences the recovery of a

network from large localized perturbations.

5.2 Study of the single Duffing Oscillator

First we analyze the dynamical behaviour of single Duffing oscillator, under varying

parameter values and initial conditions. This analysis will be helpful in understanding

the problem of networks of coupled Duffing oscillators.

The Duffing oscillator is governed by the nonlinear second order differential equation

given by Eqn. 5.1. Associating ẋ = y gives:

fx(x, y) = y (5.1)

fy(x, y) = −(δy + αx+ βx3) + asin(ωt)

Where δ controls the amount of damping, α control the linear stiffness, β controls

the amount of nonlinearity in the resorting force, a is the amplitude and ω is the angular

frequency of the periodic driving force. Here we consider parameter values α = 1, δ = 0.5,

β = −1 and ω = 1, and we vary the amplitude of the periodic driving force given by

parameter a.
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Figure 5.1: Bifurcation diagram of the state of the Duffing oscillator given by Eqn. 5.1
(with the x-variable displayed), as a function of amplitude of periodic forcing a.

(a) (b)

(c) (d)

Figure 5.2: Time series and phase portraits of the single Duffing oscillator for a = 0.1,
evolving from different initial conditions.
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The Duffing oscillator displays rich dynamics of multi-stable limit cycle and chaos, as

evident from its bifurcation diagram (cf. Fig. 5.1). Importantly, we find that there is

coexistence of limit cycles in the parameter range 0 < a < 0.35, co-existence of chaotic

attractors in the range 0.35 < a < 0.85 and a single limit cycle attractor for 0.85 < a < 1.

Time series and phase portraits of the co-existing limit cycles are displayed in Fig. 5.2,

the co-existing chaotic attractors in Fig. 5.3, and the single limit cycle in Fig. 5.4. So

it is clearly evident that the Duffing oscillator is a multi-stable system, with co-existing

attractors bounded in distinct regions of phase space.

(a) (b)

(c) (d)

Figure 5.3: Time series and phase portraits of the single Duffing oscillator for a = 0.36,
evolving from different initial conditions.

In order to quantitatively characterize the nature of the multi-stable dynamical states,

we explore the basin volume of the co-existing limit cycle and chaotic attractors. It is

evident from the basins of attraction shown in Fig. 5.5 that the basin volume for the

co-existing limit cycles for a = 0.1 is different from the basin volume for the co-existing
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chaotic attractors for a = 0.36, with the basin boundary being more complex for co-

existing chaotic attractors.

(a) (b)

Figure 5.4: Time series and phase portrait of the single Duffing oscillator for a = 0.9.

(a) (b)

Figure 5.5: Basins of attraction of a single Duffing oscillator with (a) a = 0.1 and (b)
a = 0.36. The purple color indicates the results for one type of attractor and the yellow
color represents a different co-existing attractor.

5.3 Coupled Oscillators

Now we consider a mean-field diffusive coupled network of Duffing oscillators. The general

form of a coupled system comprised of the local dynamics, and the coupling interactions,

is given as:

96



ẋi = fx(xi, yi) + C
1

Ki

∑
j

(xj − xi) = fx(xi, yi) + C(〈xnbhdi 〉 − xi) (5.2)

ẏi = fy(xi, yi)

where index i specifies the site/node in the network, with i = 1, . . . N , where N is the

size of the network. C is the coupling constant reflecting the strength of coupling. The

set of Ki neighbours of node i depends on the topology of the underlying connectivity,

and this form of coupling is equivalent to each site evolving diffusively under the influence

of a “local mean field” generated by the coupling neighbourhood of each site i, 〈xnbhdi 〉 =
1
Ki

∑
j xj, where j is the node index of the neighbours of the ith node, with Ki being

the total number of neighbours of the node. In this work, the isolated dynamics at each

node/site of the network is given by the Duffing oscillator (cf. Eqn. 5.1).

5.3.1 Random Scale-Free network of multi-stable Duffing oscil-

lators

We will first investigate Random Scale-Free (RSF) Networks of Duffing oscillators. Specif-

ically, we construct these networks via the Barabasi-Albert preferential attachment al-

gorithm, with the number of links of each new node denoted by parameter m [10]. In

particular, we will show representative results for networks of size N = 100, with m = 1

and m = 2. For the nodal dynamics we will take the value of parameter a = 0.1 yielding

co-existing limit cycles, and a = 0.36 yielding co-existing chaotic attractors. In the fol-

lowing sections we will explore the features of the perturbed nodes which influence the

recovery of a network from large localized perturbations under the three perturbations

schemes (P1, P2, P3) mentioned above.

Perturbations onto another Attractor (P1)

Here we consider the initial states of the nodes to be randomly distributed on the

attractor with negative x, and the perturbed nodes to be on the other attractor with

positive x. Nodal dynamics with co-existing limit cycles, as well as chaotic attractors

will be studied. First we explore the influence of the fraction f of perturbed nodes on the

collective dynamics of oscillators in a network. We investigate this dependence, through

space-time plots and phase space plots of the networks with varying number of perturbed
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nodes. Here nodes with the highest betweeness centrality are chosen for perturbation.

From Figs. 5.6, 5.7 and 5.8 we observe the following: when the fraction of perturbed

nodes is relatively small (f < 0.2), then these perturbed nodes return to their original

states, and remain synchronized with the other oscillators. When there are moderately

large number of perturbed nodes, then the perturbed nodes switch their states to other

attractor and also disturb the stability of some other oscillators dragging them to the other

attracting state. When the number of perturbed nodes reach a critical value, then all

oscillators switch from their original attractor to the other attractor, i.e. all the oscillators

move from the negative attractor to the positive one. So one can say that as the fraction

of perturbed nodes increases, the stability of one synchronized state (where all oscillators

are in the negative state, in our example) is lost, while another synchronized state (where

all oscillators are in the positive state) gains stability. This transition occurs via a short

range of co-existence of these two synchronization states. The important question then

is as follows: what is the critical fraction of perturbed nodes needed for loss of dynamical

robustness, for different types of dynamical attractors. In order to answer this question,

we will first analyse the case of co-existing limit cycles and then we go on to the case of

co-existing chaotic attractors.

We will now present the dependence of the global stability of the collective dynamics

on different centrality measures in this heterogeneous network, quantitatively, through

multi-node basin stability measures. In particular, in order to explore the correlation

between a given centrality measure of the nodes and the resilience of the system, we

will estimate the multi-node basin stability under perturbations on sub-sets of nodes

with increasing (or decreasing) values of the centrality under consideration, starting from

nodes with lowest (or highest) centrality. That is, we order the nodes according to the

centrality we are probing, and consider the effect of perturbations on fraction f of nodes

with the highest (or lowest) centrality.

The influence of perturbations on nodes with the highest and lowest betweeness,

closeness and degree centrality in a RSF network are displayed in Fig. 5.9a-c for the case

of co-existing limit cycles and in Fig. 5.9d-f for the case of co-existing chaotic attractors.

The broad trends are similar for all three centrality measures, as is intuitively expected.

It is clearly evident from Figs. 5.9 that when nodes with the highest betweeness, closeness

and degree centrality are perturbed, multi-node basin stability falls drastically. On the

other hand, on perturbing the same number of nodes of low centrality results in the

multi-node stability falling slowly. We also observe that for the case of co-existing limit

cycles, when nodes of increasing closeness centrality, starting from nodes with lowest c, are

perturbed (cf. Fig. 5.9b vis-a-vis 5.9a and Fig. 5.9c) the system loses stability at much

98



(a) (b)

(c) (d)

Figure 5.6: Time evolution of 100 Duffing oscillators coupled in a Random Scale-Free
network with m = 2, given by Eqn. 5.2, with coupling strength C = 1 and a = 0.1. Here
perturbed nodes are of highest betweeness centrality and the number of perturbed nodes
are (a) 15, (b) 25, (c) 30 and in (d) 35.

lower f than for the case where the perturbed have the lowest degree and betweeness

centrality. This difference is also discernable for the case of co-existing chaotic attractors,

though not as pronounced as in the case of co-existing limit cycles. The underlying

reason for this lies in the marked difference in the probability distribution of the different

centrality measures at the low end. For closeness centrality, the probability of finding

nodes with low c is very low. This is in contradistinction to the case for degree and

betweeness, where the probability of finding nodes with low b and k is the highest.

Fig. 5.9 also shows the basin stability of a network where the perturbed nodes are

randomly chosen, corresponding to random attacks on a subset of nodes. Clearly, a

targetted attack on nodes with high centrality can destroy the collective dynamics much

more efficiently than random attacks.

Now we will investigate two important questions. First, which property of the nodes
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(a) (b)

(c) (d)

Figure 5.7: Phase portrait of 100 Duffing oscillators coupled in a Random Scale-Free
network with m = 2, given by Eqn. 5.2, with coupling strength C = 1 and a = 0.1. Here
perturbed nodes are of highest betweeness centrality and the number of perturbed nodes
are (a) 15, (b) 25, (c) 30 and in (d) 35.

is most crucial in determining the global robustness of the synchronization state in the

network of multi-stable Duffing oscillators? Secondly, is this property is independent of

the dynamical nature of the attractors? To answer these questions we go through the

following numerical experiment: we compare the basin stability of the collective dynamics

of RSF networks withm = 1 andm = 2 for networks of Duffing oscillators with co-existing

chaotic and limit cycle attractors, sampled over different nodal centrality measures.

Fig. 5.10 displays the dependence of the multi-node basin stability on the fraction of

perturbed nodes f in the RSF network with m = 1 and m = 2. For the limit cycle case,

as number of perturbed nodes increases, the multi-node basin stability falls significantly

for RSF networks with m = 1, while RSF networks with m = 2 remain robust up to
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(a) (b)

(c)

Figure 5.8: Phase portrait of 100 Duffing oscillators coupled in a Random Scale-Free
network with m = 2, given by Eqn. 5.2, with coupling strength C = 1 and a = 0.36.
Here perturbed nodes are of highest betweeness centrality and the number of perturbed
nodes are (a) 25, (b) 80, (c) 40.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Dependence of the multi-node basin stability of Random Scale-Free networks
of size N = 100, with m = 2 and C = 1, on the fraction of perturb nodes. For the top
row (a,b,c) a = 0.1 and for the bottom row (d,e,f) a = 0.36. In the panels, three cases
are shown. In the first case, the perturbed nodes are chosen at random (green curves).
In the second case (red curves) the perturbed nodes are chosen in descending order of
(a,d) betweeness centrality, (b,e) closeness centrality and (c,f) degree (i.e. the perturbed
nodes are the ones with the highest b, c or k centrality measures). In the third case (blue
curves) the perturbed nodes are chosen in ascending order of (a,d) betweeness centrality,
(b,e) closeness centrality and (c,f) degree (i.e. the perturbed nodes are the ones with the
lowest b, c or k centrality measures).

a critical fraction fcrit of perturbed nodes, with fcrit ∼ 0.1, For the case of co-existing

chaotic attractors, as the fraction of perturbed nodes increases, the multi-node basin

stability falls rapidly for RSF networks with m = 1 as well as m = 2. It is clearly

evident from Fig. 5.10 then, that a network of oscillators with co-existing limit cycles is

much more robust than a network of oscillators with co-existing chaotic attractors. So

when nodes with high centrality are perturbed, the type of dynamics at the nodes plays

a significant role in determining the global stability of the collective dynamics.

Lastly, we study the effect of system size on multi-node basin stability. Networks sizes

ranging from 50 to 200 are studied, perturbing nodes in decreasing order of betweeness

centrality. The results for networks of Duffing oscillators with co-existing limit cycles and

co-existing chaotic attractors are displayed in Fig. 5.11a-b and Fig. 5.11c-d respectively.

We observe that a Random Scale-Free network with limit cycle dynamics, yields fcrit → 0
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: Multi-node basin stability vs fraction f of nodes perturbed, for Random
Scale-Free network of size N = 100, coupling strength C = 1, with m = 1 and m = 2,
where the perturbed nodes are chosen in descending order of (a,d) betweeness centrality,
(b,e) closeness centrality and (c,f) degree (i.e. the perturbed nodes are the ones with the
highest b, c or k centrality measures). In the top row (a,b,c) a = 0.1 and a = 0.36 for the
bottom row (d,e,f).

for m = 1 i.e. the smallest non-zero fraction of perturbed nodes destroy the collective

state in this network. On the other hand, fcrit ∼ 0.1 for the case of m = 2. So in the

m = 2 case, even when nearly 10% of the nodes with the highest betweeness centrality are

perturbed, the entire network still manages to return to the original state. This implies

that a RSF network with m = 2 is more robust to localized perturbations than a network

with m = 1. Notice though, that RSF networks of oscillators with co-existing chaotic

attractors, are very sensitive to perturbations on the nodes with the highest centrality,

for both m = 1 and m = 2. So the smallest fraction of perturbed nodes destroy the

collective state in RSF networks with m = 1 and 2, when the dynamics is chaotic.
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(a) (b)

(c) (d)

Figure 5.11: Multi-node basin stability vs fraction f of nodes perturbed, for C = 1,
a = 0.1, Random Scale-Free network of size N = 50 (blue), 100 (green) and 200 (red) for
m = 1 (a,c) and m = 2 (b,d), where the perturbed nodes are chosen in descending order
of betweeness centrality. In the top row a = 0.1 and a = 0.36 for the bottom row.

Perturbations onto a small phase-space volume in the basin of attraction

of another co-existing attractor:

In this perturbation scheme, initial states of the nodes in the network are localized on

the phase space points of one attracting state, and fraction f of nodes are perturbed onto

a small sub-set of the basin volume of the other co-existing attractor. The influence of this

type of large perturbation on nodes with the highest and lowest betweeness, closeness and

degree in a RSF network are displayed in Fig. 5.12a-c for limit cycles and in Fig. 5.12d-f

for chaotic attractors. The broad trends are similar for all three centrality measures, as

we had observed in our earlier perturbation scheme.
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Dependence of the multi-node basin stability of Random Scale-Free networks
of size N = 100, with m = 2 and C = 1, on the fraction of perturb nodes. For the top
row a = 0.1 and for the bottom row a = 0.36. In the panels, three cases are shown. In
the first case, the perturbed nodes are chosen at random (green curves). In the second
case (red curves) the perturbed nodes are chosen in descending order of (a,d) betweeness
centrality, (b,e) closeness centrality and (c,f) degree (i.e. the perturbed nodes are the
ones with the highest b, c or k centrality measures). In the third case (blue curves)
the perturbed nodes are chosen in ascending order of (a,d) betweeness centrality, (b,e)
closeness centrality and (c,f) degree (i.e. the perturbed nodes are the ones with the lowest
b, c or k centrality measures).

It is clearly evident from Figs. 5.12 that when nodes with the highest betweeness,

closeness and degree centrality are perturbed, multi-node basin stability falls drastically.

On the other hand, on perturbing the same number of nodes of low centrality results in

the multi-node stability falling slowly. We again observe that for the case of co-existing

limit cycles, when nodes of increasing closeness centrality, starting from nodes with lowest

c, are perturbed (cf. Fig. 5.12b vis-a-vis 5.12a and Fig. 5.12c) the system loses stability at

much lower f than for the case where the perturbed have the lowest degree and betweeness

centrality. This difference is also discernable for the case of co-existing chaotic attractors,

but again not as pronounced as in the case of co-existing limit cycles. As before, we also

show the basin stability of a network where the perturbed nodes are randomly chosen,

corresponding to random attacks on a subset of nodes. Again clearly, a targetted attack

on nodes with high centrality can destroy the collective dynamics much more efficiently
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than random attacks. Further one notices that on increasing the fraction of perturbed

nodes, where the nodes are chosen in ascending order of centrality, the robustness of the

network of limit cycle oscillators is lost faster vis-a-vis networks of chaotic attractors.

Fig. 5.13 displays the dependence of the multi-node basin stability on the fraction of

perturbed nodes f in the RSF network with m = 1 and m = 2, for the case of networks

of oscillators with co-existing limit cycles (a,b,c) and with co-existing chaotic attractors

(d,e,f). As the fraction of perturbed nodes increases, the multi-node basin stability falls

significantly for RSF networks with m = 1, while RSF networks with m = 2 remains

robust up to a critical fraction fcrit of perturbed nodes, with fcrit ∼ 0.05 for limit cycle

dynamics and fcrit ∼ 0.1 for chaotic dynamics.

(a) (b) (c)

(d) (e) (f)

Figure 5.13: Multi-node basin stability vs fraction f of nodes perturbed, for Random
Scale-Free network of size N = 100, coupling strength C = 1, with m = 1 and m = 2,
where the perturbed nodes are chosen in descending order of (a,d) betweeness centrality,
(b,e) closeness centrality and (c,f) degree (i.e. the perturbed nodes are the ones with the
highest b, c or k centrality measures). In the top row a = 0.1 and in the bottom row
a = 0.36.

Lastly, we study the effect of system size on multi-node basin stability. Networks sizes

ranging from 50 to 200 are studied, perturbing nodes in decreasing order of betweeness

centrality. The results for networks of Duffing oscillators with co-existing limit cycles and

co-existing chaotic attractors are displayed in Fig. 5.14a-b and Fig. 5.14c-d respectively.
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We observe that a RSF network with m = 1 yields fcrit → 0 (i.e. the smallest fraction of

perturbed nodes destroy the collective state), while for the case of m = 2, for the limit

cycle case, fcrit ∼ 0.06 and fcrit ∼ 0.1 for the chaotic case. So a RSF network with m = 2

is more robust to localized perturbations than a a RSF network with m = 1, as in the

m = 2 case, even when nearly 10% of the nodes of the highest betweeness centrality are

perturbed the entire network still manages to return to the original state.

(a) (b)

(c) (d)

Figure 5.14: Multi-node basin Stability vs fraction f of nodes perturbed, for C = 1,
Random Scale-Free network of size N = 50 (blue), 100 (green) and 200 (red) for m = 1
(a,c) and m = 2 (b,d), where the perturbed nodes are chosen in descending order of
betweeness centrality. In the top row a = 0.1 and a = 0.36 for the bottom row.

Perturbations randomly chosen in a large phase-space volume:

In this perturbation scheme, initial states of the nodes in the network are localized

on one of the two co-exiting attractors, and then a fraction f of nodes are given large
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perturbations that take them to phase points randomly distributed in a large volume

of phase space. This perturbation scheme is closer to the commonly used method of

estimating basin stability. The influence of this type of large perturbation on nodes with

the highest and lowest betweeness, closeness and degree in a RSF network are displayed

in Fig. 5.15a-c for limit cycles and in Fig. 5.15d-f for chaotic attractors. The broad trends

are similar for all three centrality measures, as we had observed in our earlier perturbation

schemes. It is clearly evident from Figs. 5.15 that when nodes with the highest betweeness,

closeness and degree centrality are perturbed, multi-node basin stability falls drastically.

On the other hand, on perturbing the same number of nodes of low centrality results in

the multi-node stability falling slowly. Further notice that the distinct trends for the case

of perturbed nodes with increasing closeness centrality, though still discernable for the

limit cycles, is much less pronounced than for the perturbation schemes above.

(a) (b) (c)

(d) (e) (f)

Figure 5.15: Dependence of the multi-node basin stability of Random Scale-Free networks
of size N = 100, with m = 2 and C = 1, on the fraction of perturb nodes. For the top
row a = 0.1 and for the bottom row a = 0.36. In the panels, three cases are shown. In
the first case, the perturbed nodes are chosen at random (green curves). In the second
case (red curves) the perturbed nodes are chosen in descending order of (a,d) betweeness
centrality, (b,e) closeness centrality and (c,f) degree (i.e. the perturbed nodes are the
ones with the highest b, c or k centrality measures). In the third case (blue curves)
the perturbed nodes are chosen in ascending order of (a,d) betweeness centrality, (b,e)
closeness centrality and (c,f) degree (i.e. the perturbed nodes are the ones with the lowest
b, c or k centrality measures).
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As before, we also show the basin stability of a network where the perturbed nodes are

randomly chosen, corresponding to random attacks on a subset of nodes. Again clearly,

a targetted attack on nodes with high centrality can destroy the collective dynamics

much more efficiently than random attacks. Further one notices that on increasing the

fraction of perturbed nodes, where the nodes are chosen in ascending order of centrality,

the robustness of the network of limit cycle oscillators is lost faster vis-a-vis networks of

chaotic attractors.

(a) (b) (c)

(d) (e) (f)

Figure 5.16: Multi-node basin Stability vs fraction f of nodes perturbed, for Random
Scale-Free network of size N = 100, coupling strength C = 1, with m = 1 and m = 2,
where the perturbed nodes are chosen in descending order of (a,d) betweeness centrality,
(b,e) closeness centrality and (c,f) degree (i.e. the perturbed nodes are the ones with the
highest b, c or k centrality measures). a = 0.1 for the top row (a,b,c)and a = 0.36 for the
bottom row (d,e,f).

Fig. 5.16 displays the dependence of the multi-node basin stability on the fraction

of perturbed nodes f in the RSF network with m = 1 and m = 2, for the case of

networks of oscillators with co-existing limit cycles (top panels) and with co-existing

chaotic attractors (bottom panels). As the fraction of perturbed nodes increases, the

multi-node basin stability falls significantly for RSF networks with m = 1, while RSF

networks with m = 2 remains robust up to a critical fraction fcrit of perturbed nodes, with

fcrit ∼ 0.28 for limit cycle dynamics and fcrit ∼ 0.5 for chaotic dynamics. Notice that the

fcrit here is larger than the fcrit obtained in the earlier two perturbation schemes. The
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reason for this is the following: in the two perturbation schemes above the perturbation

considered pushed the node to the basin of attraction of the other co-existing attractor.

However here the perturbation is as large in magnitude as in the earlier schemes, but it

is not designed to push the perturbed node to the other basin. So now we have a lower

probability of the perturbation taking the perturbed node to the basin of attraction of

the other co-existing attractor. Hence the fraction of nodes needed to de-stabilize the

collective dynamics here is larger on an average (i.e. fcrit is larger).

(a) (b)

(c) (d)

Figure 5.17: Multi-node basin stability vs fraction f of perturbed nodes, for C = 1, RSF
network of size N = 50 (blue), 100 (green) and 200 (red) for m = 1 (a,c) and m = 2
(b,d), where the perturbed nodes are chosen in descending order of betweeness centrality.
In the top row (a,b) a = 0.1 and a = 0.36 for the bottom row (c,d).

Lastly, we study the effect of system size on multi-node basin stability. Networks sizes

ranging from 50 to 200 are studied, perturbing nodes in decreasing order of betweeness

centrality. The results for networks of Duffing oscillators with co-existing limit cycles and
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co-existing chaotic attractors are displayed in Fig. 5.17a-b and Fig. 5.17c-d respectively.

We observe that a RSF network with m = 1 yields fcrit → 0 (i.e. the smallest fraction of

perturbed nodes destroy the collective state), while for the case of m = 2, for the limit

cycle case, fcrit ∼ 0.28 and fcrit ∼ 0.5 for the chaotic case. So a RSF network with m = 2

is more robust to localized perturbations than a a RSF network with m = 1.

In conclusion, the following broad trends hold for all three schemes of perturbations:

(i) Firstly, we find that when nodes with the highest betweeness, closeness and degree

centrality are perturbed, the multi-node basin stability falls drastically. On the other

hand, on perturbing the same number of nodes of low centrality results in the multi-node

stability falling slowly.

(ii) Secondly, the network is less vulnerable to perturbations on randomly chosen

nodes, corresponding to random attacks on a subset of nodes. This implies that a target-

ted attack on nodes with high centrality can destroy the collective dynamics much more

efficiently than random attacks.

(iii) Lastly, we showed that under increasing fraction of perturbed nodes with high

betweeness centrality, the multi-node basin stability falls rapidly for RSF networks with

m = 1, while RSF networks with m = 2 remain robust up to a critical fraction fcrit of

perturbed nodes. This can be rationalized by the difference in the probability distribu-

tions of the centrality measures in m = 1 and m = 2 networks, with nodes in a m = 1

network having a significantly greater probability of having high betweeness values.

5.3.2 Dynamics of a Ring of multi-stable Duffing oscillators

Now we study a ring of oscillators, that is, a one-dimensional lattice with periodic bound-

ary conditions. We consider each node to be connected to two nearest neighbours. In a

ring network all nodes have the same degree, closeness and betweeness centrality. There-

fore, now our focus is on the effect of the fraction of perturbed nodes and the distribution

of the perturbed nodes on multi-node basin stability.

So we consider a ring where initially the states of all the nodes are distributed over

phase points of one of the attractors. Then we perturb a fraction f of nodes by a large

perturbation to the phase space points of the other coexisting attractor (i.e. perturbation

scheme P1). We perturb the nodes in clusters, where the perturbed nodes are contigu-

ous to each other. We also examine the case where the perturbed nodes are randomly
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distributed over the ring.

(a) (b)

(c) (d)

Figure 5.18: Dependence of multi-node basin stability on coupling strength, for a ring
of Duffing oscillators given by Eqn. 5.2, with the fraction of perturbed nodes f equal
to 0.01 (blue), 0.02 (green) and 0.08 (red). Here the size of the ring is N = 100, and
size of the coupling neighbourhood is k = 2, namely each site couples to its two nearest
neighbours. Left panel shows the case where the perturbed nodes occur in clusters for
(a) a = 0.1 and (c) a = 0.36. Right panel shows the multi-node basin stability for the
case of perturbations at randomly located nodes, for f = 0.08 for (b) a = 0.1 and (d)
a = 0.36. The case of perturbation in clusters (blue) is also shown for reference, for the
same fraction of perturbed nodes in panels (b) and (d).

First we investigate the effect of coupling on the robustness of the dynamics. Fig. 5.18(a,c)

shows the multi-node basin stability for this system, as the coupling strength is increased

in the range 0 to 2, for clusters of perturbed nodes, with f ranging from 0.01 to 0.08. It

is evident from the basin stability of the system, that there is a sharp transition for the

limit cycle case (cf. Fig. 5.18a) from zero basin stability, namely the situation where no

112



perturbed state returns to the original state, to basin stability close to one, namely where

all sampled perturbed states return to the original state. Unlike limit cycles, for the case

of co-existing chaotic attractors (cf. Fig. 5.18a) the transition is less sharp and the

transition to complete recovery on increasing coupling strength is more gradual (cf. Fig.

5.18c). Further, the figure also demonstrates the extreme sensitivity of basin stability

to the number of nodes being perturbed. We find that the system fails to return to the

original state, even at very high coupling strengths, even when only few nodes experience

perturbations. For instance, for f = 0.08, where a cluster of 8 nodes are perturbed in

the ring of 100 elements, there is zero basin stability in the entire coupling range. In

contrast, Fig. 5.18(a) shows the case of a single perturbed node (i.e. f = 0.01), where

the entire network recovers for coupling strengths stronger than approximately 0.4. So

a ring loses its ability to return to the original state rapidly with increasing number of

perturbed nodes.

So clearly, the stability of the ring with respect to localized perturbations depends on

whether the perturbed nodes are in a cluster (cf. the case in Fig. 5.18(a,c)) or randomly

spread over the ring, with the locations of the perturbed nodes being uncorrelated. Fig

5.18(b,d) shows the multi-node basin stability when nodes perturbed are chosen randomly

for different values of coupling. We observe that the system is more stable here, as

compared to the case when nodes are perturbed in clusters, namely perturbations at

random locations in a ring allows the system to recover its original dynamical more readily

than perturbations on a cluster of contiguous nodes. Also, it is clearly evident that a

network of Duffing oscillators with co-existing limit cycles is more robust compared with

a network where the oscillators have co-existing chaotic attractors.

5.3.3 Dynamics of Star Network of Multi-stable Duffing oscil-

lators

Lastly, we study a star network of multi-stable Duffing oscillators. In this network there

exists a very large difference between the degree, closeness and betweeness centrality of

the central hub node and that of the peripheral (edge) nodes. So this network provides a

good framework to investigate the correlation between specific properties of a node and

the resilience of the network to large localized perturbations at such nodes. In this study

we consider a star network where the initial states of all the nodes are distributed over

phase points of one of the attractors. Then we perturb a fraction f of nodes by a large

perturbation to the phase space points of the other coexisting attractor (i.e. perturbation
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scheme P1), and estimate the multi-node basin stability of the network.

(a) (b)

(c) (d)

Figure 5.19: In the left panel (a,c) multi-node basin stability vs coupling strength for a
star network of size N = 100: the hub node is perturbed (blue) and a single peripheral
node is perturbed (green). In the right panel (b,d) multi-node basin stability vs number
of nodes perturbed in the star network of Duffing oscillators. Here the size of the network
N = 100 and coupling strength C = 1. The green curve represents the case where only
peripheral nodes are perturbed, while blue represents the case where the hub is perturbed
along with peripheral nodes. In the top row a = 0.1 and in the bottom row a = 0.36.

We consider fraction f of perturbed nodes ranging from single node in Fig. 5.19(a) to

the case where nearly all nodes in the system are perturbed f ∼ 1. It is evident from the

single node basin stability of a network of Duffing oscillators with co-existing limit cycles,

where the single perturbed node is the hub (cf. Fig. 5.19a), that the basin stability is

almost zero even for high coupling strength. Similarly, the single node basin stability

of a network of Duffing oscillators with co-existing chaotic attractors, where the single

perturbed node is the hub (cf. Fig. 5.19c), shows that the basin stability is very low even
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for high coupling strengths. So it is clear that just a single node is enough to destroy

the stability of the network, if that node has very high degree, closeness and betweeness

centrality, such as the hub node, irrespective of the nature of the nodal dynamics.

Next we study the multi-node basin stability for the case where some fraction of the low

centrality peripheral nodes are perturbed. It is evident from Fig. 5.19b, for networks

of Duffing oscillators with co-existing limit cycles, that even when f is as high as 0.8

(i.e. where 80% of the peripheral nodes are strongly perturbed), there is no discernable

difference in the basin stability, which remains close to 1. This implies that even when

more than half the nodes in the network are perturbed, the entire system almost always

recovers to the original state. However, for the case of networks of Duffing oscillators

with co-existing chaotic attractors, even when very few peripheral nodes are perturbed

(e.g. f = 0.08) the network loses its stability (cf. Fig. 5.19d). In the conclusion we

can say that the resilience of a star network on localized perturbations on low centrality

peripheral nodes depends on the type of nodal dynamics, with chaotic attractors being

more vulnerable to destabilization.

5.4 Conclusions

We have explored the collective dynamics of multi-stable Duffing oscillators connected

in different network topologies, ranging from Rings to Random Scale-Free networks and

Stars, under mean-field diffusive coupling. We estimated the dynamical resilience of such

networks by introducing a variant of the concept of multi-node basin stability, using three

types of perturbation schemes. This measure allowed us to gauge the global stability of

the dynamical network in response to perturbations affecting the nodes of the system.

First we have explored Random Scale-Free Networks with m = 1 and m = 2, under

the three perturbation schemes. We showed that for all types of perturbations, the

perturbed nodes with high centrality significantly reduce the capacity of the system to

return to the desired attractor. We also showed that RSF networks with m = 2 are more

robust than RSF networks with m = 1 under targetted attckes on highest betweeness

centrality nodes. Further, we observed that the robustness of the network of multi-stable

systems depends on the nature of the dynamical attractors, as well as the perturbation

schemes. For instance, when nodes are perturbed onto another coexisting attractor, then

networks of limit cycles oscillators are more robust than networks of chaotic attractors.

However, interestingly, when nodes are perturbed onto a small phase space volume of

another attractor, or they are perturbed to randomly chosen points in a large volume
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of phase-space, then the network of chaotic attractors is more robust than network of

limit cycles. The underlying reason for this could be the interplay of two competing

factors. The first is the distance in phase-space between the co-existing attractors (this is

more for co-existing limit cycles compraed to co-existing chaotic attractors). The second

contributing factor is the typical amplitude of the perturbations in each scheme, and

probability of the perturbation taking the node to the basin of attraction of some other

attractor.

Lastly, we explored the robustness of rings and star networks of multi-stable Duffing

oscillators to large localized perturbations. Here we consider all nodes of the initial system

to be on one of the attractors. Then a fraction of nodes are perturbed onto the other

attractor. We observed the following: a ring network is more robust to random attacks

compared to attacks on a cluster of nodes. Further, the network with co-existing limit

cycles is more stable than co-existing chaotic attractors. In the star network, when the

central hub node was perturbed, the stability of the network was lost very quickly. This

de-stabilization occured even for a very small fraction of perturbed nodes, as well as for

low coupling strengths, if the perturbed nodes include the hub.

In summary, targetted attack on nodes with high centrality in a scale-free networks,

and targetted attacks on clusters of nodes in a ring network, can destroy the collective

dynamics much more efficiently than random attacks. This feature appears to be general

and holds for networks of coupled limit cycles, as well as coupled chaotic attractors.
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Chapter 6

Conclusions and future directions

Broadly speaking, in this thesis we have explored the effect of the interplay of dynami-

cal complexity and structural complexity on emergent collective dynamical behaviour in

complex systems. Development of a general theory or the establishment of a mathemati-

cal framework to understand emergent phenomena in complex systems is a fundamental

challenge in this interdisciplinary field of science. This thesis addresses some of these

important aspects of complex systems.

For instance, in the first problem, we have studied El Niño phenomenon which glob-

ally affects the climate and economic conditions. To understand this phenomenon, we

have considered a system of two coupled delayed action oscillators to model ENSO phe-

nomenon in two sub-regions and studied the dynamics of the sea surface temperature

(SST) anomalies. We have explored the dynamics of ENSO phenomenon in the space of

three parameters: self-delay, delay, and inter-region coupling strengths. The emergence

or suppression of oscillations in our models is a dynamical feature of utmost relevance, as

it signals the presence or absence of ENSO-like oscillations. Different parameters yield a

rich variety of dynamical patterns in our model, ranging from steady states and homoge-

neous oscillations to irregular oscillations. We have also displayed how non-uniformity in

delays, and the difference in the strengths of the self-delay coupling of the sub-regions,

affect the rise of oscillations. We have also explored the robustness of the different dynam-

ical states under noisy evolution, in order to gauge which set of attractors are typically

expected to arise when the system evolves under the influence of external perturbations.

We then investigated the basins of attraction of the different dynamical attractors arising

in our model. Typically, the number of distinct attractors and their basins of attraction

depend upon the values of parameters. Mapping of the basins of attractions from our
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numerical results suggests that instead of the single value criterion (as 0.5◦C which is

given by NOAA agencies), an interval should be used as criterion to estimate the El

Niño or La Nina progress, based on the combinations of SST anomalies that lie in the

relevant basin of attraction. Thus our dynamical model may help in providing a potential

framework to understand patterns in the SST anomalies in different coupled sub-regions.

In the future, we can extend our work to develop mathematical models which have a

rich variety of phase space structures and include all possible terms that are responsible

for realistic ENSO phenomenon. We would like to analyze real data of the sea surface

temperature anomalies of various equatorial regions to understand the El Niño effect.

From the observation of the trends in temperature anomalies over the past years we can

develop ideas that could help in the very important problem of forecasting El Niño/La

Niña years.

In the second problem we have studied star networks of diffusively, conjugately and

mean-field coupled Rössler and Lorenz systems. Now in the star network, all end-nodes

are identical in terms of the coupling environment and dynamical equations, because they

are all connected only to the central hub node. Remarkably we observe, we observe that

the symmetry of the end-nodes is broken and coexisting groups with different synchro-

nization features and attractor geometries emerge. We find that as coupling strength

increases, the end-nodes go from a de-synchronized state to a completely synchronized

state, via a large coupling parameter regime yielding chimera states. Further, based on

our simulations, the robustness of these chimera states in analog circuit experiments un-

der diffusive coupling and mean-field coupling was also demonstrated. Therefore, our

numerical and experimental investigations indicate that chimera states in star network of

Rössler and Lorenz systems is very prevalent. In the future, one can explore similar star

networks of chaotic oscillators under nonlinear coupling, as well as threshold-activated

coupling. Such a study would enable us to assess the prevalence of chimera states in star

networks of chaotic systems, under different types of coupling functions. The general

motivation here would be to find the coupling functions that allow the star network to

show chimera states over the largest parameter ranges. Further, we would like to simulate

network systems that can be verified readily in electronic analog circuit experiments or

other laboratory set-ups.

Many natural phenomena as well as human-engineered devices, modelled by non-

linear systems can give rise to a rich gamut of patterns ranging from fixed point to

cycle and chaos. These days the search for mechanisms that enable a chaotic complex

system to maintain a fixed desired activity has witnessed broad research attention. The

third research problem presented in this thesis is motivated in this direction. Here we
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established a mechanism to control intrinsically chaotic meta-population to the steady

states and periodic behaviour. For that we have explored Random Scale-Free networks of

populations, modelled by chaotic Ricker maps, connected by transport that is triggered

when population density in a patch is more than a critical threshold level. Our central

result was that threshold-activated dispersal leads to stable fixed populations, for a wide

range of threshold levels. Further, suppression of chaos is facilitated when the threshold-

activated migration is more rapid than the intrinsic population dynamics of a patch.

Additionally, networks with a large number of nodes open to the environment, readily

yield stable steady states. Lastly, we demonstrated that in networks with very few open

nodes, the degree and betweeness centrality of the node open to the environment has a

pronounced influence on control. All qualitative trends were corroborated by quantitative

measures, reflecting the efficiency of control, and the width of the steady state window.

In the future, one can implement this control strategy on a variety of complex networks,

in order to verify the generality of this control idea. Further we would like to find

other methods to control emergent dynamical behaviour, hence contributing towards the

understanding of control of complex systems to target states.

As we know that emergent collective spatiotemporal patterns in dynamical networks

are determined by the interplay of the dynamics of the nodes and nature of the interac-

tions (modelled by network topologies and coupling forms). Intuitively, if we consider a

heterogeneous network of identical dynamics under a specific coupling scheme then the

collective spatiotemporal patterns will depend only on the nodal properties. Now the

important question here is the following: which nodal property plays the most significant

role in determining the robustness of the synchronized state of the network in response to

large perturbations targetted on the node. In order to investigate this problem we have

explored the response of Random Scale-Free Networks of multi-stable Duffing oscillators

to large localized perturbations. Specifically, we investigated the basin-stability of the

state where all systems at the nodes were in the same basin of attraction, for the case of

co-existing limit cycles as well as co-existing chaotic attractors. To gauge the global sta-

bility of the synchronized state we introduced a variant of the concept of multi-node basin

stability. Our study involved perturbations on the nodes under three different schemes:

(i) perturbations on to phase-space points of another co-existing attractor, (ii) perturba-

tions on to a small phase-space volume in the basin of attraction of another co-existing

attractor, and (iii) perturbations on to randomly chosen phase-space points in a large

phase-space volume. We observed the following well-defined common trends for all three

perturbation schemes:

(i) Perturbed nodes with highest betweeness centrality, closeness centrality and degree

119



significantly reduces the capacity of scale free networks to return to the original synchro-

nized state.

(ii) Random Scale-Free networks with m = 2 is more robust than Random Scale-Free

networks with m = 1 under targetted attacks on highest betweeness centrality nodes.

This implies that RSF networks with higher connectedness are more robust than those

with lower connectedness.

(iii) Targetted attacks on clusters of nodes in ring network can destroy the collective

dynamics much more efficiently than random attacks.

In the future, one can study a wide range of dynamical systems with co-existing attractors

of varying geometries, in order to make a more general statement on the robustness of

scale-free networks of multi-stable systems in the presence of large localized perturbations.

In summary, in this thesis we have explored the emergent spatiotemporal patterns in

a broad range of complex systems modelling nonlinear phenomena ranging from climate

to population dynamics, as well as engineered dynamical systems. We have considered

network topologies ranging from ring and star networks to random scale-free networks,

and we have investigated diffusive, conjugate, mean-field and threshold-activated coupling

forms. Our salient results are the following:

(i) Mapping of the basins of attraction in coupled delayed action oscillator models

modelling the El Niño phenomena. This might be of potential use in the forecasting of

the El Niño and La Nina years.

(ii) Demonstrated the prevalence of chimera states in Star networks of chaotic oscilla-

tors. These results show that Star networks provide a promising class of coupled systems,

in natural or human-engineered contexts, where chimeras are prevalent.

(iii) Proposed mechanisms for controlling networks of intrinsically chaotic meta-populations,

to steady states and periodic behaviour. These ideas (or extensions there of) may be use-

ful in controlling other complex dynamical networks, for instance neuronal networks.

(iv) Investigated the influence of the properties of perturbed nodes on the global

stability of networks of multi-stable chaotic atttractors. These results can help assess the

robustness and resilience of complex networks to targetted localized attacks.

So in conclusion, the work in this thesis can potentially contribute to the understand-

ing of complex systems in general, as well as help us gain insights on pattern formation

in specific systems ranging from model ecological and climate networks to engineered

electronic circuits.
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