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Abstract

The thesis work concerns the problem of integration in finite terms with special
functions. The main theorem extends the classical theorem of Liouville in the
context of elementary functions to various classes of special functions: error
functions, logarithmic integrals, dilogarithmic and trilogarithmic integrals. The
results are important since they provide a necessary and sufficient condition for an
element of the base field to have an antiderivative in a field extension generated
by transcendental elementary functions and special functions. A special case
of the theorem simplifies and generalizes Baddoura’s theorem for integration in
finite terms with dilogarithmic integrals. The main theorem can be naturally
generalized to include polylogarithmic integrals and to this end, a conjecture is
stated for integration in finite terms with transcendental elementary functions and

polylogarithmic integrals.

xiil
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Chapter 1

Introduction

In this thesis we prove various extensions of Liouville’s Theorem on integration
in finite terms that include special functions such as error functions, logarithmic
integrals, dilogarithms and trilogarithms along with transcendental elementary
functions. A special case of our result generalises Baddoura’s theorem for integration
in finite terms with dilogarithmic integrals. Precise statements of our results can be
found in Theorem 4.3.3, Theorem 4.4.3, Theorem 5.2.9 and Conjecture 5.3.8. Our
results can be naturally generalised to include polylogarithms and to this end, a
conjecture for integration in finite terms with polylogarithmic integrals along with

transcendental elementary functions is stated.

Throughout the thesis, a field always means a field of characteristic zero. For a field
F equipped with a single derivation map ’, the kernel of the map ' is a subfield of
F', which we denote by Cr. We will be working with differential field extensions of
the form E = F(6,,...,0,), Fy := F, F; = F;,_1(0;) such that one of the following
holds:
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(i) 0; is algebraic over F;_;.
(ii) 0, = u'6; for some u € F;_; (i.e. §; = e* and is called exponential of u).
(iii) 0 = u'/u for some u € F;_; (i.e. §; =log(u) and is called logarithm of u).

(iv) 0, = u'/v, where v/ = u//u for some u,v € F;_; (ie. 6; = [u//log(u) and is

called logarithmic integral of u, also denoted by fi(u)).

w2

(v) 0 = u'v, where v/ = (—u?)'v for some u,v € F;_y (i.e. §; = [u'e”™ and is
called error function of u, also denoted by erf(u)).
(vi) 0 = vu'/u, where v/ = —(1 — u)’/(1 — u) for some u,v € F;_; (ie. 6; =

—f %log(l — u) and is called dilogarithmic integral of u, also denoted by

ls(u)).

(vii) 0, = vu'/u, where v' = —(u'/u)log(l — u) for some u,v € F; 1 (ie. 6; =

i %Eg(u) and is called trilogarithmic integral of u, also denoted by #3(u)).

A differential field extension £ = F(6y,...,0,) of F, with Cg = Cp, is called a
DEL—extension (respectively an elementary extension) if each 6; satisfies at least
one of the cases i-vi (respectively i, ii or iii). Elements of an elementary extension

field are called elementary functions.

History. The problem of integration in finite terms for elementary functions
was considered by J. Liouville (1834-35) and by J.F. Ritt (1948). A. Ostrowski
generalized it to a wider class of meromorphic functions in the regions of complex
plane. His approach gave an algebraic aspect to the problem. However, M.
Rosenlicht [13] was the first to give a purely algebraic solution to the problem.

He showed that if E is an elementary field extension of F with Cr = CF and



there is an element u € F such that v’ € F' then there are constants rq,...,7, and
elements w, gi,...,9, € F such that ' = >  ri(g//¢9;) + w'. That is, up to an
element of F', v must be a constant linear combination of logarithms of elements
of F. The problem of extending Liouville’s Theorem to allow special functions was
first studied by J. Moses [10, 11]. Later in [4, 5], G. Cherry proved an extension
of the Theorem to include logarithmic integrals and error functions. In [16], p.968,
M. Singer, B. Saunders and B. Caviness extended Liouville’s Theorem to include a
large class of functions which they called &% —elementary functions. In particular,
if 0, satisfies any one of the cases i—v then it is an &.Z—elementary function.
They proved that if u lies in a field extension of F' containing transcendental
&L —elementary functions and v € F, then «' is a finite linear combination of
derivatives of &.Z —elementary functions over Cr. However, cases vi and vii were
not covered under the &% —class of functions. In [1], p.933, J. Baddoura extended
Liouville’s Theorem to include dilogarithmic integrals. He called the extensions that
satisfy i, ii, iii or vi as dilogarithmic-elementary extensions. He proved that if E is
a transcendental dilogarithmic-elementary extension of F' having an algebraically
closed field of constants C'r and if F' is a liouvillian extension of Cr then any u € F

with ' € F has the following form over F:
w=w+Y rilog(g:)+ > c;D(hy),
i=1 j=1

where each r;,g;,hj,w € F, log(g;) and D(h;) belong to some differential field

extension of F and D(h;) = ’71% log(1 — hj) + %(11__},2)/ log(h;). Baddoura’s proof

involves producing equation of above form over F' when one such equation for u
is given over F'(0), where 0 satisfies ii, iii or vi. The problematic terms here are
r;ilog(g;), where both r; and g¢; are arbitrary elements of F'(¢). Lengthy and involved

calculations, along with a new dilogarithmic identity were needed to obtain the



4 CHAPTER 1. INTRODUCTION

desired expression over F'. In the spirit of Liouville’s theorem as extended by Singer,
Saunders and Caviness, and from an algorithmic view point, it is desirable to obtain
an expression for «’ in terms of elements of F'. However, no such expression for v’

was produced in [1].

Our Theorem 4.3.3 ([6], p.227) restricted to transcendental dilogarithmic-elementary

extensions will yield the following expression for v’ over F':

u/ — Zrzgz + Zslhl —|—w (11)

iel ¢ leL

where for each ¢ € I, [,t € L there are constants c;, d;;, by, with ¢; # 0 whenever

ri # 0, such that

/ 1—q) B
Ti:ciﬂ+2dilh—l and s — Zd,l—+2blt . (1.2)

el Yi tel

The converse also holds: if an element v € F admits an expression as in
Equations 1.1 and 1.2 then an antiderivative of v can be found in some tran-
scendental dilogarithmic-elementary extension of F. We say that v € F admits
a DEL—expression over F if there are finite indexing sets I,.J, K and elements
ri,9; € F for all i € I, elements u;,log(u;) € F and constants a; for all j € J,
elements vy, e % € F and constants b, for all £ € K, and an element w € F such

that

”—Z“%*Z Jlog +Zbkvke RS

il keK
where for each i € I, there is an integer n; such that 7} = »"", ¢;hl;/hy for some
constants ¢; and elements h; € F. A DEL—expression will be called a special
DEL—expression if for each i € I, r; = ¢ (1 — ¢;)’/(1 — ¢;) for some constant

¢; and a special DEL—expression will be called D—expression if each a; = b, =



0. A DEL—extension E = F(0y,...,0,) is called a transcendental dilogarithmic-
elementary extension if Cr = Cp and for each i, 6; is transcendental over F;
and satisfies either case ii or iii or vi. For a transcendental exponential 6 over
F, a DEL—expression for v’ € F over F(A) does not in general reduce to a similar
expression over F', however, when it is a special DE L—expression, it does reduce. We
utilize this fact and set up a special induction procedure to prove our main results.
The problematic terms that appear in our proof are those r;(g;/g;), where 0 # r, =

= cz-l%. However, we only need basic dilogarithmic identities, in particular, we do
not require Baddoura’s dilogarithmic identity, to handle these terms. Consequently,

we obtain a simpler proof of Baddoura’s Theorem which neither requires that F' is

a liouvillian extension of Cr nor that Cr is an algebraically closed field.

Many of our results concerning dilogarithms can be naturally extended to polylog-
arithms. In particular, the induction procedure used for the dilogarithmic set-up
can also be extended. We shall call a differential field extension £ = F(6y,...,6,)
with Cg = Cp, a transcendental trilogarithmic-elementary extension if it satisfies
either ii, iii, vi or vii. We prove that u € F,«' € F and FE is a transcendental

trilogarithmic-elementary extension of F' if and only if

u’:ani/gl—l—Zsjh;/h]jLw’ (13)
iel jed
over I, where I and J are some finite index sets and each w, g;, h;, r;, s; are elements
in F' such that
/ h' / h
T;:tZ&—i‘ Ti'—j, S,~: ’l“l&—F S'k—k
i Z ]hj J Z ]g' Z J hk

b jed iel v keJ

(1—-g) ] g e
té R S LV Z Ci@j#a T;j = cicij; + Z@z‘jkh_k and
el j v keJ
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gi !
=Y ik +) fjklﬁja

icl v leJ
where each ¢; is a non-zero constant, each ¢;;, €k, fjr are some constants and each
ti,ri; and sj; are elements in an extension of F' with e;;;, = e, and sj;, = sy; for

every 1,7 and k.

Note that when w lies in trilogarithmic-elementary extension, the coefficients in
the expression for «' in Equation 1.3 satisfies DEL—expressions and further the
coefficients in those DEL—expressions are sum of logarithms. Whereas, when
u lies in dilogarithmic-elementary extension, u’ satisfies a DEL—expression as
in Equation 1.1 and its coefficients are sum of logarithms. One can restrict
various theorems concerning trilogarithmic integrals to dilogarithmic integrals. In
particular, Theorem 4.3.3 can be deduced from Theorem 5.2.9. However, since the
results concerning trilogarithmic integrals are lengthy and complicated, the proofs

of these theorems are written separately for the convenience of reader.

In a nutshell, we only use standard techniques from differential algebra and many
calculations involved boils down to comparing terms of certain partial fraction
expansions. Many people are interested in constructing algorithms for integration in
finite terms (See [3] and [12] for integration with elementary integrals). Our results
contain both necessary and sufficient conditions and therefore, these results will
help in formatting algorithms for integration in finite terms with transcendental
elementary functions and trilogarithmic integrals. We believe that the results
concerning dilogarithmic and trilogarithmic integrals can be naturally generalised
to polylogarithmic integrals. To this end, we conclude the thesis with a conjecture

on integration in finite terms with polylogarithmic integrals.



The thesis is organized into four chapters.

Chapter 2: We reproduce several well-known results from differential algebra, many of

which are due to Ostrowski, Kolchin and Rosenlicht.

Chapter 3: Several results concerning DE L—extensions, DE L—expressions and dilogarith-

mic identities are proved.

Chapter 4: The main results concerning DEL—extensions along with a generalisation of
Baddoura’s theorem is proved. We conclude the chapter by providing non-

trivial examples that explain our results.

Chapter 5: We extend our results concerning dilogarithmic extensions to trilogarithmic
extensions and state a conjecture for integration in finite terms with polylog-

arithmic integrals along with transcendental elementary functions.
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Chapter 2

Preliminaries

In this chapter we record several standard results and terminologies from differential
algebra to make the thesis self-contained. In particular, we shall include a proof of
Kolchin-Ostrowski Theorem due to Singer & Rubel [15] and Rosenlicht’s proof of

Liouville’s Theorem [13].

2.1 Basic conventions

Definition 2.1.1. A field F' equipped with a linear map ' : F' — F' that satisfies
the Leibnitz rule, that is, (fg)' = f¢'+ f'g for all f,g € F, is called differential field

and the map ' is called a derivation.

For any element f in F' and a non-zero element g in F', the derivation on fraction

flgis (f/g) = (f'g — fg')/g* and for a natural number n, (f*) = nf"'f". In

particular, 1’ = 0. Elements ¢ € F such that ¢ = 0 are called constants. The kernel

9
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of the map denoted by Cr := {c € F': ¢ = 0} forms a field and will be called field

of constants or constant field of F.

Definition 2.1.2. A field extension E D F' is called a differential field extension
of F'if there exists a differential field structure on E which is compatible with the

differential field structure of F.

In the next proposition, we shall show that every field extension of a differential
field is also a differential field. For transcendental extensions, the technique of the
proof follows from [9], p.2 and for algebraic extensions, one can also look into [9],

p-9, Example 1.13.

Proposition 2.1.3. ([13], p.154) Let F' be a differential field and E D F be any
field extension of F. Then there exists a derivation on E that makes E differential
field extension of F. If E is an algebraic extension of F then the derivation on E is

unique.

Proof. Let ' be the derivation on F. Assume E = F(f) where 6 is transcendental over
F. Consider the ring of dual numbers over F'(#) i.e the ring F'(0)[e] = F(0) + F(0)e
where €2 = 0. Since ¢ is nilpotent, an element = = a + be of F'(9)[e] is a unit if and

only if a is a unit of F'(0).

Define a map ap = (id, D) : F|] — F(0)|e] as ap(x) = = + 2'e for every z € F
and ap(f) = 0 + f(0)e, where f(0) is any element in F'(6). It is easy to check that
D : Flf] — F(0), defined as D(x) = 2’ for every x € F and D(0) = f(0), satisfies
a differential structure on F'[f] if and only if ap is a ring homomorphism. Since
6 is a unit in F(0), 0 + f(0)e is a unit in F(0)[¢]. Thus we can extend ap to the
homomorphism ag : F(8) — F(0)[e], which is of the form (id, E'), where F is a

derivation on F() extending D as well as ’.
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Now assume 6 is algebraic over F' with minimal polynomial P(X) = Y7  p; X",
where X is an indeterminate. As observed above, D : F(X) — F(X) mapping X to
any rational function Q(X) € F(X) is a derivation on F(X). Observe D(P(X)) =
St o P XY ip XTIQ(X) and thus YO0 pift+ >0 ipif Q) = 0. Clearly
S ipit # 0 and therefore, we get a unique derivation on F(6) given by

Z?:o pgei
>y it

Thus, any simple field extension of F'is a differential field extension with derivation

D(0) = Q) = -

D. Using Zorn’s lemma, the derivation D can be extended to any arbitrary field

extension of F. N

In literature, differential field means a field with a family of derivations but

throughout this thesis we fix a single derivation map ’ on differential field F.

Definition 2.1.4. ([13], p.153) Let f, g be elements of a differential field F' such
that ¢ # 0 and f’ = ¢’/g then in correspondence to the classical theory, f is called
logarithm of g denoted by log g and ¢ is called exponential of f denoted by e/.

If g has a logarithm in the field F then it is unique up to an additive constant and if f
has an exponential in F' then it is unique up to a multiplicative constant. Therefore,

for some constants ¢, d and elements g;, g2 in F, log(g192) = log g1 + log g2 + ¢ and
log(—g1) = log(g1) + d.

2.2 Liouvillian extensions

Let £ D F be a differential field extension. An element 6 € FE is called primitive

over F' if 0’ € F. Note that a logarithm of some element in F' is primitive over F.
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Definition 2.2.1. ([8], p.408) A differential field extension £ = F(6y,...,6,),
Fy := F, F;, = F;_1(0;) is called liouvillian extension of F' if for each i, either 6; is

algebraic over F;_1, 0//6; € F;_ or 0. € F;_;.

Now we shall describe some properties of liouvillian field extensions.

Proposition 2.2.2. ([6], pp.212-213) Let F' G F(0) be differential fields and 6 be
algebraic over F. Then the following statements hold:

(a) If 0" € F then there is an element x € F such that ' = 6" and Cr) 2 Cp.

(b) If ¢/0 € F then there is an element x € F — 0 and an integer n such that
x'/x = nb'/0. Furthermore, if Cpg) = Cp then the minimal monic polynomial

of 0 over F is of the form P(X) = X"+ cx for some c € Ck.

(¢) Every c € Cp) is algebraic over Chp.

Proof. Let P(X) =" ,a;X", a, =1 and n > 2 be the minimal monic polynomial
of # over F. Differentiating » .  a;0° = 0, we obtain that 6 is also a root of the

polynomial

P(X)=mb +a, )X"" 4+ (ie;0 +a)_) X"+ 4+ a0 + ap € FIX].

If € F then by minimality of P(X), P'(X) must be the zero polynomial. In
particular, (—a,—1/n) = 6" and 0 + (a,—1/n) is constant that is not in Cp. A
similar calculation with the minimal monic polynomial over F' of ¢ € Cp(g) would
give us that a} = 0 for all 7 and thus c is algebraic over Cp. If #'/0 = a € F then

we shall rewrite

P/(X) - naXn + (CL/ -1 + (TL — 1)an_1a)X"_1 —|— e + a6

n
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and observe that P'(X) = naP(X). Then for each i € {1,...,n}, we have

a;_ ;1= (n—(—1))aa;_.
In particular, aj = naay and since ay # 0, we have n6’'/0 = af/ag. Finally, if
Crg) = Cp then ¢; = 0 for all ¢ € {1,...,n —1}. Otherwise, (6" "/a;)’ = 0 and

therefore "% + ca; = 0 for some non zero constant ¢ € Cp. This contradicts the

assumption that P(X) is of degree n. O

Remark 2.2.3. If F is an algebraic closure of the field F then it is clear from the

part (c) of Proposition 2.2.2 that C = CF if and only if Cp is algebraically closed
field.

Proposition 2.2.4. ([6], p.213) Let F' C F(0) be differential fields, 0 be
transcendental over F, ¢ € F and v = Y0 ;6" € F[f] be a polynomial in 0
over F. Suppose that there is a w € F(0) — F such that w' = v.

(a) If Cpey = Cp thenw =Y\, ;6 € F[0], a; #0 and t > 1.

(b) If v = 0, that is Cp) 2 Cr, then there is a non zero constant ¢ € Cg and
ag € F such that (cd + ap)’ = 0.

(c) If v # 0, Cpy = Cp and s =deg(v) then either deg(w)= s or s + 1. In the

former case o = B and in the latter case oy € Cp and (toyd + ay—q) = fs.

(d) If o € F, 2’ # « for allx € F and 0" = o then Cppy = Cp. In general, if
at,...,0, € F are non zero elements then there is a differential field extension

E of F such that Cgp = Cg and E = F(0y,...,60,), where 0, = «;.

Proof. Let there be an element w € F'(0) such that w’ = v. Then there are relatively
prime polynomials P, € F[f], where @) is monic, such that w = P/Q. Taking
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derivatives, we obtain

Q*v=PQ - QP (2.1)
From the above equation, it is immediate that () divides @)’. Since () is monic and
¢ € F we have deg Q' < deg Q. This forces Q' = 0. If Cpp) = Cp, then Q =1 and
thus P = w € F[f] — F. Now suppose that v = 0. If Q@ = 1 then deg P > 1 and
P'=0 and if Q # 1 then deg @ > 1 and as observed earlier () = 0. Thus we have
(ZE:O aiﬁi)/ =0, # 0 and t > 1. Now we compare coefficients and obtain that
a; =0 and (tayf + o4—1)" = tayd’ + a;_, = 0. This proves (b).

From (a), we have
Qb + (togd + o) )0 4ol +ap =) B = (2.2)
i=0

If deg(w) = s > 0 and Cpg) = Cp then it is easy to see that t = sor t = s+ 1. If
t = s then o) = 35, where a; € F and if t = s + 1 then oy € Cr and (touf + 1)’
=toyd + o), = fs.

Suppose that ¢ = a and 2’ # a for all z € F. If w € F(f) — F and v’ = 0 then
from (b) there is a nonzero constant ¢ € Cp and an element oy € F such that
0= (cd+ ap) = ca+ . Thus (—ap/c)’ = a and this is a contradiction. Finally,
let Fy = F' and F),_; be a differential field extension of F' such that Cp, , = Cr and
Fo1=F(b1,...,0,_1), where 6, = «; for all 1 < i < n — 1. If there is no element
x € F,,_; such that 2’ = «, then let ,, be a transcendental and define a derivation
on E := F,_1(0) by defining 0/, = «,. Clearly, Cp = Cr,_, = Cp. On the other

hand if there is an element x € F,,_; such that 2’ = «,, then take 6,, to be x. O

We repeatedly use partial fraction expansions in our results. Thus in this spirit, it

is useful to note the following proposition.
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Proposition 2.2.5. ([6], p.214) Let F(#) D F be a transcendental liouvillian
extension of F with Cp@) = Cp. Let v € F(0), F be an algebraic closure of F and
v = nszl(Q — ;)™ , wheren € F, 0 = ay,...,a, are distinct elements in F and

m; are integers.

(a) Suppose that 0" € F'. Then each 0 —  is a non zero element of F and

%:%/%-;mjg:—i (2.3)
is the partial fraction expansion of v'/v.
(b) Suppose that 6'/6 € F. Then
(b.1)
%=u+§mjgﬁjaj, (2.4)

where = (n'/n)+ 25, m;(0'/0) € F' and p; = a;(6'/0) — o; € F-{0},

is the partial fraction expansion of v'/v.

(b.2) If vy is the constant term of the partial fraction expansion of v in F(0)

then the constant term of v’ is vj.

(c) If v € F(A) has a pole of order m > 1 and 0 € F then v' has a pole of order
m + 1. Similarly, if v € F(0) has a non-zero pole of order m > 1 and §'/0 € F

then v' has a pole of order m + 1.

Proof. 1f ¢ € F' and 0’ = o for some a; then by Proposition 2.2.2, there is an
element © € F such that ' = 2/. Now 6 —x ¢ F is a constant of F(f) and

this contradicts our assumption that Cppy = Cp. Similarly, if 6’/ = x € F and



16 CHAPTER 2. PRELIMINARIES

o, = wa; then again from Proposition 2.2.2, there are an integer n and an element
y € F such that nz = n(0'/0) = y'/y. Thus 0"/y € F(0) — F is a constant
which again contradicts our assumption. A straightforward calculation shows that

Equations 2.3 and 2.4 represents the partial fraction expansion of v'/v. Let
v n
v = ———+ v+ v+ +0v,0",
Z Z O—a)i 0!

i=1 j=1

where elements «;, v; and v;; belong to F be the partial fraction expansion of v over

F. Note that

Uij —jvij(x — ;)

v N _J—ay T -y
(0 — ;) Ui L —ju(zos — o)) —jugw

(9 — Oéi)j (0 — O[Z‘)j+1 (0 — Oji)j

if 0 =zcF

it 0/0—zcF
(2.5)
and
(06 izt + ol if =z € F
V; =
(V] +ivx)d"  if 0/ =z € F.

From this observation it follows that when ¢’/ € F', the constant term of v’ is vy,
Suppose that v has a pole at «; of order m;. Then, —m;v,,(r —a}) # 0 when 0’ € F
and —m; Vi, (ra; — of) # 0 when o; # 0 and 6’/ € F. Therefore, from Equation

2.5, we obtain that v" has a pole of order m; + 1 at «;. O

The following Proposition is due to M. Rosenlicht [13], p.155. Note that only partial

fraction expansions are required to prove the result.

Proposition 2.2.6. ([13], p.155)Let F'(8) D F be a liouwvillian extension with 0

transcendental over F' and Cpg) = Cp. Suppose that v, us, ..., u, € F(0) andw € F
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are elements such that
v+ Z ci(ug/u;) = w,
i=1

where cq, ..., c, are Q—linearly independent constants then

(a) If @ € F then u; € F for alli and v = cl + B for some constant ¢ and 3 € F.

(b) If /0 € F then v € F and for each i, u; = 1;0™ where n; € F and m; is an

integer.

Proof. Let F be an algebraic closure of F' and u; = 7; H;Zl(ﬁ — «a;)™3, where for

each i and j, n; € F, 0 = a,. .., oy are distinct elements in F and m;; are integers.

(a) From Proposition 2.2.5 part a,c, n/n; has poles of order 1 only and if v has poles
then v’ has poles of order greater than 1. For cancellation to take place we must
have Y, ¢;m;; = 0 for each j. Since ¢js are Q—linearly independent constants,
every m;; = 0. Thus for each i, u; € ' and v’ € F. Using Proposition 2.2.4 we have

v = cf + B for some constant ¢ and § € F.

(b) Again from Proposition 2.2.5 part b,c, n}/n; has non-zero poles of order 1 only
and if v has non-zero poles then v' has poles of order greater than 1. Thus it follows

that for all 7 and j = 2,...,¢, m;; =0, u; = n;,0™" and v € F. n

Proposition 2.2.7. ([14], p.338) Let E D F be an algebraic extension of F with
Cg = Cp. Assume F is a liouvillian extension of Cr and suppose that there are

Q—linearly independent constants cy,...,c,, elements uy,...,u, € E*, v € E such

that
v+ ch(u;/ul) eF.
i—1

Then v € F' and there is a non-zero integer m such that u* € F for all i.
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When F' is liouvillian over its constant field C'r then M. Rosenlicht and M. Singer
(See [14], p.338) proved this result for algebraic extensions, similar to previous

proposition.

Proof. We use induction on tr degF'/Cr to prove the result. If tr degF'/Cr = 0 then
Cp = F = E and result is trivial. Assume tr degF'/Cr > 0 and suppose that the

result is true for smaller degrees.

Case-1. Suppose that v + > | ¢;(u}/u;) = 0. Choose a liouvillian extension Fy of
CF contained in F' and an element # such that 6 is transcendental over Fy and F' is

algebraic over Fy(6).

If 0" € Fy then from Proposition 2.2.6(a), we conclude that us, ..., u, are algebraic
over Fy and there is a constant ¢ € C'r such that v + ¢f is algebraic over Fj. Thus
(v+cb) +>°", ci(uw)/uw;) € Fy and by induction hypothesis it follows that v+cf € Fp,

v € F and there is a non-zero integer m such that " € Fy C F for all s.

If 0'/0 € F, then again from Proposition 2.2.6(b), observe that v is algebraic over
Fy and there are integers mg, mq, ..., m, with mg # 0 such that for each i, u;"°6™
is algebraic over Fy. Thus

n (umogmi)/ n 9’
! I A— .
mov + Z-ZIQ WG = ZZI c;my; 7 € F.

We again apply induction hypothesis to conclude that v € Fy C F' and that there
exists a non-zero integer m such that (u;°0™)™ € Fy. This implies (u;"*)™ € Fy(0) =

F. This prove the result in this particular case.

Case-II. In general, let v' + > | ¢;(u;/u;) = w € F, where w is some element in F.

Let L be smallest normal algebraic extension of F' containing u;,v. Let N = [L : F]



2.3. KOLCHIN-OSTROWSKI THEOREM 19

and consider the trace with respect to L then

- Nr(ui>/ / - u; /
;czm + Tr(v) = Nw = N;ciu—i + Nv

and

"L (Nr(u)u; V) -
36 N (T = My =0

Now this reduces to case-1. Therefore, we have Tr(v) — Nv € F and there exists a

non-zero integer m such that (Nr(u;)u; V)™ € F. Hence, v € F and u*¥ € F for

each 1. O

Remark 2.2.8. The condition that F' must be liouvillian over Cr is essential to the
proof of Proposition 2.2.7(See [14], p.339). Consider the field of formal power series
C((z)) with the usual derivation 2’ = 1. Let E = F((x/?)) then «//u = v where

u = exp(z'/?) and v = 2'/2. Here neither v nor any power of u lies in F.

2.3 Kolchin-Ostrowski Theorem

The Theorem provides a criterion for algebraic independence of exponentials and
primitive elements of a differential field. It was first proved, using analytic
techniques, by A. Ostrowski for a set of primitive elements over the field of
meromorphic functions over complex numbers. Later, using the language of
differential Galois theory, the theorem was reformulated and generalised by E.
Kolchin ([7], p.1155) to include exponentials. Kolchin’s proof of the Kolchin-
Ostrowski Theorem uses his Galois theory of strongly normal extensions, whereas
the one we provide here is due to L. Rubel and M. Singer (See [15], Appendix, p.366)

and it uses only elementary techniques from differential algebra. In order to proceed
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with the proof of the theorem we need the following two lemmas. An alternate proof
to the first lemma that uses the theory of differential ideals, can be found in [9],

Chapter-1, pp.7-8.

Lemma 2.3.1. ([15], p.367) Let E D F be differential fields with Cg = Cp. Let

u € E be an algebraic element over F.

(a) If v’ € F then u € F.

(b) If u'/u € F then there is a non-zero integer m such that u™ € F.

Proof. Let P(X) =" p;X" be the minimal monic polynomial of u over F, where

n>1and p, = 1.

(a) When «’ € F), we differentiate P(u) and observe that >_""  (p}_; +ip;u/)u’"t = 0.
But the minimal polynomial of u over F'is of degree n. Therefore p/, | + nu’ = 0

which implies u = (—=1/n)p,_1 + ¢ for some constant ¢ and hence u € F.

(b) When v//u = v € F assume that for some j # 0, p; # 0. Differentiating P(u)
we have Y " (p; + ivp;)u’ = 0. Thus P'(u) must be a multiple of P(u) and hence
P + jup; = nvp;. That is
/ /
L= (p—j w
b =iyt
Therefore, (u"7/p;) = 0. Since C = C we have u" 7 /p; € F and "7 € F. This

completes the proof. n

Lemma 2.3.2. ([15], p.367) Let E D F be differential fields with Cr = Cp. Let

v € E be transcendental over F' and u € E be algebraic over F(v).

(a) If v' € F and v’ € F then there is a constant ¢ such that uw+ cv € F.
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(b) If V' € F and v'/u € F then u™ € F for some non-zero integer m.

(c) If V'Jv € F and u'/u € F then u™v"™ € F, where m and n are some integers,

both not zero.

Proof. (a) Since u is algebraic over F'(v) and v’ € F' C F(v), Lemma 2.3.1(a) implies
u € F(v). From Proposition 2.2.6(a) we have u = cv + w for some constant ¢ and

element w € F.

(b) Since u is algebraic over F'(v) and v'/u € F C F(v), Lemma 2.3.1(b) implies that
u™ € F(v) for some non-zero integer m. Now (u™) /u™ € F and v’ € F, therefore,

from Proposition 2.2.6(a) we have u™ € F.

(c) Again apply Lemma 2.3.1(b) and observe u™ € F(v) for some non-zero integer
m. Since v’ /v € F and (u™)'/u™ € F, from Proposition 2.2.6(b) we have u™ = nv™,

where € F and n is any integer. Thus, uv™" € F. O

Kolchin-Ostrowski’s Theorem. ([7], p.1155) Let E D F be differential fields
with Cg = Cg. Let vy, ..., v, be elements in I/ such that v} € F foreachj=1,...,n
and Uy, . .., Uy, be non-zero elements in E such that u/u; € F for alli=1,... ,m.
If wyy ... Uy, vy, ...,0, are algebraically dependent over F, then either there are
constants cq,...,c,, not all zero, such that Z?Zl c;v; € F or there are integers
N1y .y Ny, not all zero, such that [~ u;* € F.

Proof. We prove the result by using induction on m + n. When m +n = 1, the

problem reduces to Lemma 2.3.1. Suppose m +n > 1.

Case-1. If n # 0 then wuy, ..., Uy, va, ..., v, are algebraically dependent over F'(v;).

Therefore, by induction either » 7, c;v; € F/(v1) for some constants c;, not all zero
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or [[;%, ul € F(v1), where n; are some integers, not all zero. When v, is algebraic
over F, we shall apply Lemma 2.3.1(a) to get 1.v3 + 0.vy + -+ - + 0.v, € F. When v,
is transcendental over F, we apply 2.3.2 and obtain that either v, + ¢ Z?ZQ cjv; € F),

where ¢ is any constant or [[*, u" € F.

Case-II. If m # 0 then similarly us, ..., Uy, v1,...,v, are algebraically dependent
over F'(uy). Therefore, by induction either » 7, cju; € F'(uy) for some constants c;,

not all zero or [[:", u;

€ F(uy), where n; are some integers, not all zero. When
uy is algebraic over F, we apply Lemma 2.3.1(b) to get a non-zero integer n; such
that u* € F. When u, is transcendental over F, we shall apply 2.3.2 and obtain

uf [T2, w/™ € F, where ny, v are some integers, not both zero. ]

Corollary 2.3.3. ([6], p.215) Let E = F(0 = 01,0,,...,0,) be a liouwvillian
extension of F' with Cg = CFp.

(a) If y € E, y € F and for each i, 0, € F theny =Y ., ¢;0; +1n, where ¢; are

constants and n € F.

(b) If 6, € F for all i > 2 and 0 is transcendental over F' then there are elements
Yty Y € {02, ...,0,} such that 0y, ...,y are algebraically independent over
Fand E=F0,y1,...,y)-

(c) Suppose that n =2 and E = F(0,0s) is a transcendental liouvillian extension of
F such that @' € F and 05 =v'/v for somev € F(0) — F. Ify € E andy' € F
then y € F(0) and y = c +n for some constant ¢ and n € F.

Proof. (a) follows from Kolchin-Ostrowski Theorem. Let {y,...,y;} C{0s,...,0,}
be such that 0,1, ...,y; is a transcendence base of E over F'. Suppose that there is

a smallest integer i such that 0; ¢ F* := F(0,y1,...,y;). Then 6; must be algebraic
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over F* and since 0, € F for all ¢ > 2, the field F* is a differential field. Now from
Proposition 2.2.2, we obtain Cp-(s,) 2 Cr and this contradicts our assumption that
Cg = Cp. Finally, if n = 2, 6, = v’ /v for some v € F(0) — F and y € E with ¢/ € F
then we shall use (a) to find some constant ¢ and an element f € F(f) such that

y = cfy + f. Taking derivatives, we obtain

Y = c(v/fv) + f". (2.6)

As in Proposition 2.2.5, we write v =17 H;ZI(H —o;)™, wheren € F,0=a,..., s
are distinct elements in I and m; are integers. Since v € F() — F, we must have
a j such that m; # 0. Now since y' € F C F(0) and f’ € F(0), from Equation 2.3,
we conclude that ¢ must be zero for Equation 2.6 to hold. Thus y — f € Cp C F
and that y € F(#). Now we apply (a) to obtain that y = ¢ + n for some ¢ € Cg
and n € F. O

2.4 Liouville’s Theorem

Here we explain Rosenlicht’s proof of Liouville’s Theorem on integration in finite

terms.

Definition 2.4.1. ([13], p.153) A differential field extension E over F' is called
elementary extension if there is a tower of differential fields F' = F, C F} C --- C
F, = E such that for each 1 < i < n, F; = F,_1(6;) and 0; satisfies one of the

following:

(i) 0; is algebraic over F;_;.

(ii) 0, = u'6; for some u € F;_y (i.e. §; =e*).
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(ili) ¢ = u'/u for some u € F;_; (i.e. 6; =log(u)).

Note that an elementary extension is always a liouvillian extension.

Remark 2.4.2. Note that if uj, us € F and ¢ € Cr then for any p/q € Q, we have

/ / q,,DP\/
Ll puy  c(ujuy)
e =
w qug  q ujub
In general, if uy,...,u, € F and ai,...,a, € Cp then Y " a;(u}/u;) =
b ci(vi/v;), where ¢i,...,¢, is a Q—basis for the vector space spanned by
_ T 9
ai,...,a, over Q and v; —szluj ,q; € 7.

We recall that if E is an algebraic extension of F, u € E and P(X) = X™ +
Qp 1 X™ 1+ ... 4 qq is the minimal monic polynomial of u over F then tr(u) :=
—a—1 and nr(u) = (—1)™ap. Let L be a finite Galois extension of F' containing u
with Galois group G and n := [L : F']. Define Tr(u) := > _,0(u) and Nr(u) :=
[I,cco(u). It is easy to see that Tr(u) and Nr(u) belong to F' and

3l

Tr(u) = %tr(u) and Nr(u) = nr(u)

Liouville’s Theorem. ([13], pp.157-158) Let E O F be an elementary field
extension of ' with Crp = Cr. If there is an element u € E with u' € F' then there
are Q—linearly independent constants ci,...,c,, non-zero elements g1,...,g, € F

and an element w € I such that

n !

Proof. We prove the result by induction on length m of the tower

F=FKCcFHC---CF,=FE.
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If m = 0 the result is trivial. Let m > 0, then by induction the result holds for the
tower Fy; C --- C F,, = E, that is,
n !
=1 J
where ¢; € Cr and g;,w € F for all 4.
Case-I. When 6, is transcendental over F. This case further reduces to two sub

cases.

Sub case-I. If 6; is logarithm over F| that is, #] = 2’/z for some = € F then we
apply Proposition 2.2.6(a) and obtain g; € F for all i and w = cf; + wy for some

constant ¢ and element wy € F. Therefore,

n ! /
- x
W =Sl el v
If c,c1,...,c, are Q—linearly dependent then as noted in Remark 2.4.2, the sum

can be reduced further so that the constants are Q—linearly independent.

Sub case-II. If 0, is exponential over F| that is, #; = 2’6, for some = € F' then we
apply Proposition 2.2.6(b) and obtain w € F and g; = ;6™ where n; € F and

m; € Z for all 1. Therefore,

n

N
u = E =+ E c;mix +w'.
i=1 b=t

Case-II. When 6, is algebraic over F. Let L be a finite Galois extension of F' that

contains F; with Galois group G. Then for any ¢ € GG, we have

u = Z ci (Ugi)/ + (aw)’

O’ .
i=1 Yi

and

3
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Since Nr(g;), Tr(w) € F and constants (1/[L : F])c; are Q—linearly independent, we
obtained the desired result. O

Using this theorem, M. Rosenlicht (See [13], p.160) proved that error functions and
logarithmic integrals are non-elementary functions over F' = C(z), where Cp = C

and z is an indeterminate with derivative 2/ = 1.

2.5 Error functions and logarithmic integrals

Let F be a differential field. For an element u € F, error function ([10], p.18) is

defined as
/ w'e "

A logarithmic integral ([16], p.968) of an element v € F' is defined as
,U/
/ log v

Suppose F' = C(z, 6_32), where Cp = C and 2’ = 1. If an antiderivative of e~ lies

and is denoted by erf(u).

and is denoted by li(v).

in an elementary extension of F, then Liouville’s Theorem implies that there are
non-zero elements uq, ..., u, in F, Q—linearly independent constants ¢y, ..., ¢, and

an element w € F' such that
n u/
) /
e = E ci— 4w
i=1 s

Note that if e=*" lies in some algebraic normal extension L of C(z) then for any

o in Galois group of L over C(z), we have 2[L : C(2)]z = 3 (0e ") /(e ") =
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Nr(e=*")'/Nr(e™?"). That means z = o'/v for some element v € C(z), which is

z

absurd. Therefore, e~ * is transcendental over C(z). Thus we shall apply Proposition

z

2.2.6 and obtain w = wye” gus wy for some wy, wy € C(z) and each wu; is a multiple

z z

of some power of e*°. Comparing the coefficient on e=°, we have 1 = wy — 2zwy,
but there is no such element w; in C(z). Hence, er f(z) is non-elementary function

over F' = C(z,e7 ).

A similar calculation for li(z) over F' = C(z,log z) will give rise to equation 1/z =
w’ 4+ w, which do not have a solution in C(z). Thus, [i(2) is also a non-elementary

function over F' = C(z,log z).
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Chapter 3

Dilogarithmic Integrals and

DE L—Expressions

3.1 Dilogarithmic integrals

A dilogarithm or Spence’s function, named after William Spence, a Scottish
mathematician in early nineteenth century, is the function defined by the power

series

. 2"
Lis(z) = z:l 3 for |z| < 1.
The name and the definition of dilogarithm come from the analogy with the Taylor

series of ordinary logarithm around 1,

[e.e]

—log(l—z):Z% for |z| <1.
n=1

29
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This similarly leads to the definition of polylogarithm

Lim(z)zzs—m for |z] <1, meN,
n=1

where Liy(z) = —log(1 — z). It is clear that for m > 1

d . -y
ELzm(z) = ;Lzm,l(z).

Thus the analytic continuation of the dilogarithm function is

, z du
LZQ(Z):_/ log(1 — u)— for zeC\[1,00).
0 u

Keeping this analytic theory in mind, one can study dilogarithmic integrals from
a purely algebraic stand point. The following algebraic definition of dilogarithmic

integrals is due to Singer, Saunders and Caviness [16]:

Definition 3.1.1. ([16], p.968) Let E' O F be differential fields and g € F'\ {0,1}

be any element. The integral

—/%log(l - 9)

in F is called dilogarithmic integral and is denoted by #¢5(g).

It is clear from the definition that if ¢y € E then log(l — ¢g) € E and /(»(g) is
primitive over F'(log(1 — g)). We shall now explain some basic identities satisfied by

dilogarithmic integrals.

Proposition 3.1.2. Let E D F be differential fields and l3(g) € E for some g €
F\A{0,1}. Then £5(1/g),l5(1 — g) lies in E(logg) and for a constant c,

, 1
(i) Lo (§> = —ly(g) — 3log? g + clogg.
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(i) Lo(1 — g) = —{y(g) —log glog(1 — g).

Proof. From the definition of dilogarithmic integral,

0y (1> _ Wl 1/g) = %log (Q>

g (1/9) g

and

, 1 _ ! /
l(1—g) = —<1—g) log g = %log(l —g) — (log glog(1 —g))".

Since log((g—1)/g) = log(1 —g) —log g+ ¢ for some constant c¢. Thus integrating the
above equations, we shall obtain the desired expressions for (5(1/g) and ¢5(1 — g)

and clearly f5(1/g), ¢2(1 — g) lies in E(log g). O

Let ' = C(z) be a differential field with Cr = C and 2/ = 1. Let E D F be
differential field extension having constant field C'r = C. Assume there is an element
g € F'\{0,1} such that ¢y(g) € E and ¢5(g9) € F(log(1 — g)). Suppose that E
is an elementary extension over F'(log(l — g)). Then Liouville’s Theorem implies
that there exists Q—linearly independent constants ¢y, ..., c,, elements g;,..., g, €

F(log(l —g))* and w € F(log(1 — g)) such that
n /

/
lo(g) = —% log(1—g) =Y &2 +u. (3.1)

i=1 !
Clearly log(1 — g) is transcendental over F' = C(z). Consider the partial fraction
expansion of w and g; for each ¢ as done in Proposition 2.2.5 and note that w is a
polynomial in F[log(1 — g)] with deg(w) < 2. Since >\ | ¢;(¢9:)'/9; € Flog(1 — g)],
using Proposition 2.2.6 we obtain g; € F. Let w = clog®(1 — g) +wy log(1 — g) + wy,
where ¢ € C; wy,wy € F. Then comparing the coefficients of log(1 — g), we obtain
w) = —¢'/g—2c(1—¢")/(1—g). But there is no such element in F| therefore, we arrive
at a contradiction. Thus £ must be a non-elementary extension of F(log(1l — g)),

and hence /l5(g) is non-elementary function over F(log(1 — g)).
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3.2 Special expressions and identities

First we recall the definitions of DEL—extensions and DEL—expressions from

Chapter-1.

Definition 3.2.1. ([6], pp.210-211) A differential field £ O F is called a
DEL—extension of F' if Cp = CFr and there is a tower of differential fields F; such
that

F=FKCcFCFC---CF,=F

and for each i, F; = F;_1(0;) and one of the following holds:

(i) 0; is algebraic over F;_;.
(ii) 0, = u'0; for some u € F;_y (i.e. §; =e*).
(ili) ¢ = u'/u for some u € F;_; (i.e. 6; = log(u)).

(iv) 0, = u'/v, where v = «'/u for some u,v € F;_; (i.e. 6; = [u/log(u), also

denoted by fi(u)).

(v) 0, = u'v, where v/ = (—u?)'v for some u,v € F;_; (ie. 0; = [w'e ™, also

denoted by erf(u)).

(vi) 0, = v/ /u, where v/ = (1 —u)' /(1 —u) (le. 6, = [ % log(1 — u), also denoted

by —l5(u)) for some u,v € F;_;.

Definition 3.2.2. ([6], p.211) We say that v € F' admits a DEL—expression over

I if there are finite indexing sets I, .J, K and elements r;,g; € F for all i € I,
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elements u;,log(u;) € F' and constants a; for all j € J, elements vk,e_vi € F' and

constants b, for all £ € K, and an element w € F such that

v = anz + Z ]log + Z bruke "k + (3.2)

i€l keK

where for each i € I, there is an integer n; such that r, = Zlnzl cahly/hy for some

constants ¢; and elements h; € F.
Definition 3.2.3. ([6], pp.215-216) A DEL—expression will be called

(a) a special DEL—expression if for each i € I, 1, = ¢;(1 — ¢;)'/(1 — g;) for some

constant c;,
(b) a L—expression if for all i, j,k, r; =0, a; = 0 and b, =0,
(c) a D—expression if it is special and for all j, k, a; = by =0,

(d) a DL—-expression if by, = 0 for all k.

An L—expression Y o, ¢;(v}/v;) over F is said to be reduced if constants cy,. .., ¢,
are Q—linearly independent. We observed in Remark 2.4.2 that if v € F' admits
a L—expression over F' then it also admits a reduced L—expression over F. To
this end, whenever we write Y ", a;(u}/u;), we shall assume that ay,...,a,, are

Q-linearly independent. In particular,

(a) we assume that for each 7, the L—expression Y ", ¢;h};/hy that appear in the

definition of DE L—expression is reduced and

(b) if I ={i € I | r; =0} then )., i(gi/g:) is also reduced.
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Definition 3.2.4. A differential field extension E of I’ will be called a logarithmic

extension of F' if Crp = Cr and there are elements hq,...,h,, € F such that £ =
Flog(h), - 1og(hn)).

From Proposition 3.1.2, we shall prove the following propositions.

Proposition 3.2.5. ([6], p.217) Let F\(0) D F be a transcendental DE L— extension

and suppose that

v = Z ri(9i/9:) + w' (3.3)

is a D—expression over a logarithmic extension E of F(6). Then v admits a

D—expression:

v="> Fild/g) + '

iel
over some logarithmic extension E of F(0), containing E, such that for each i, 7; is
a constant or g; € F(0) and 1 — g; = n;P;/Q;, where P; and Q; are monic relatively

prime polynomials over F[0] and n; € F having the following properties:

(a) 0 is neither a factor of P; nor a factor of Q; and deg(Q;) > deg(P;).

(b) If ni # 1 then deg(Qi — miP;) =deg(Q;) and if n; = 1 then log(n;) € Cr.

(c) If&; is the leading coefficient of Q; —n; P; then either deg(P;) =deg(Q;) or & = 1.
Furthermore, eithern; =1 or& =1 or&; = 1—n; and in any event, log(n;)(&:/&;)
is a D—expression over F(log(n;)).

Proof. Let E = F(0)(log(v1),..., log(yn)) for wi,...,y, € F(A) and A, =
F(0)(log(y1), - -, log(yp—1),10g(yp+1), - - - ,1og(yn)). Observe that r; —c;(1—gi)/(1—
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gi) =0 € A,[log(y,)] and that A,(log(y,)) = E. Apply Proposition 2.2.7 and obtain
that 1 — g;, and therefore g;, belongs to A,. Thus g; € F(0) = N,A, for each i € I.
Let 1 — g; = &P;/Q;, where P; and @); are relatively prime monic polynomials over
F and & € F. Then 6 can either divide P; or (); but not both. Suppose that 6
divides P;. Then over the differential field F(log(g;)), using Proposition 3.1.2, we
have r;(g:/g:) = 7:g./G; + (log(gi)r;)’, where 7; = —c¢;log(g;) and g; = 1 — g;. Then
o= rigi/9s) + G/ 5) + (@i +w)
Jel j#i

where w; = log(g;)r;, is a D—expression over E(log(g;)). Note that Q; — &, P; and Q);
are relatively prime polynomials such that 8 neither divides Q); — & P; nor @);. Since
1—g =g = (Q; — &P,)/Q;, we shall factor the leading coefficient 7; of @Q; — & P;
and obtain for all such 7, relatively prime monic polynomials P; and Q; such that

nP=0Q;— &P, 1—g, =9, = ﬁilsi/Qi and that 6 neither dividing P; nor Q;.

Now we suppose that 6 divides ;. We make use of Proposition 3.1.2 and write
ri9i/9i = =70/ Gi+ ((1/2¢;)r?)’, where 7} = ¢;(1—g;)' /(1 — ;). Since 1 —g; = 1/(1~
g:) = (1/&)(Qi/P;), we have 0 dividing the numerator polynomial @);. Therefore,
we shall proceed as in the previous case and obtain 7;, §; and w;. This proves the
first part of (a). To prove the second part of (a), we simply apply Proposition 3.1.2,
to those terms that have deg(P;) = deg(Q;).

Since deg(Q;) > deg(P;), if n; # 1 then the leading coefficient of deg(Q; — n: P;),
which we shall call & is non zero and therefore deg(Q; — n;P;) =deg(Q;). Since
log(n;)" = n./mi, if n; = 1 then log(n;) must be a constant. Note that if deg(Q;) =
deg(FP;) then the polynomial @; — n;F; must be monic, that is, § = 1. If neither
n; = 1 nor & = 1 then it is clear that deg(Q);) = deg(P;) and therefore & =1 — ;.
Thus we have the following observations on log(n;)(&!/&;):
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(log(n:) log(&:))" if ms = 1;
&
log(m)g =140 if ¢ = 1;
Thus, in any event, log(n;)(&]/&;) is a D—expression over F'(log(n;)). O

Proposition 3.2.6. ([6], p.217) Let F(0) D F be differential fields where 6 is
transcendental, Cpgy = Cp and either 0" € F or 0'/0 € I and v € F(0). Suppose
that

v=2_rilgi/g)+w (34)

is a D—expression over F(6).

(a) If & € F then for each i such that v} # 0, we have g; € F.

(b) For each i, r; = a;0 +n; for some constant a; € Cr and n; € F. Furthermore,
each r; belong to F when ' /0 € F.

Proof. We have r}—c¢;(1—g¢;)'/(1—g;) = 0 for some ¢; € Cr. Suppose that ¢; # 0 for
some 7. If § € F then since ¢; # 0, we apply Proposition 2.2.7 and obtain 1 —g; € F
and consequently, g; € F for all i. On the other hand if 6'/0 € F then we have
1 — g; = &0™ for some integer m; and elements & and r; in F'. Thus for each i,
ri € F. From Proposition 2.2.7 it follows that r; = a;0 + n; for some a; € Cr and
n; € F and that each r; € F' (that is, a; = 0) when ¢'/0 € F. O

Following lemma helps us to handle various terms that appear in DE L—expressions.
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Lemma 3.2.7. ([6], p.218) Let F\(f) D F be a transcendental DE L— extension of
F and v € F(0) be an element such that

5 !
]Zajlog ) +Zbkvke —i—;&-%—kw',

keK

where uj,log(u;), vk, eV, wi, w € F(0), 6; € F and a;j, by are constants.

(i) Suppose that 0’ € F. Then each uj, vy and e~ belong to F. Furthermore, if
v € F[0] then w € F[0], v—w' € F and there is a subset J, C J and elements
& € F such that

Finally, if v € F then w = cf + wqy for some constant ¢ and wy € F'.

(it) Suppose that 6'/0 € F. Then each log(u;) and vy belong to F' and there are
elements n; and C; in F' and integers m; and ny such that u; = n;0™ and
e~V = (x0™. Furthermore, if v € F, 0'/0 = 2’ for some x € F and for each
i, 0; 1S a constant or the constant term of the partial fraction expansion of the
corresponding w;/w; is zero, then there are sets J; = {j € J | m; = 0} and
Ky ={k € K | n =0} and an element w € F such that

/ s /

u; ) /
v = a;—— + brve Yk + 02 + .
2 ioglayy T 2 ke 20
1
Proof. Fix an algebraic closure F' of F and write w; = & [[;_, (6 — o)™ with each
a, € F, & € F and integers m;; as in Proposition 2.2.5. Consider the equations
(e

> =(—v})" and log(u;) =

—v .
ek u]
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(i) From Proposition 2.2.7, we have for each k € K, e v € F and —v? = cxf +ny, for
some constant ¢ and np € F. Since 6 is transcendental, the latter equation holds
only if ¢, = 0 and that v, € F. Similarly, we have u; € F and log(u;) = ¢;0 + (j,

where ¢; is a constant and (; € F'.

Now we further suppose that v € F[f]. Write w; as in Proposition 2.2.5 and observe
that the partial fraction expansion of »"7_; §;(w;/w;) contains only poles of order at

most 1 and a constant term (, where

L 8i(E8 hen 0 € F
- 2 i-1 0i(&i/6) when 6 € -

YL 6(E/6) + (S, Xy mad) (9/6) when 0//6 € F.
Let J; = {j € J | log(u;) € F'} and write

'
— T bl e v 5 — .
! Zlajlog(uj) +j€Z c; 0+gj +Z KoRe +Z +w (3.6)

J—J1 keK

Since v € F[f], it is clear from the above equation that v — w’ has poles of order
at most 1. Therefore, from Proposition 2.2.5, we obtain that w has no poles and
thus w € F[f]. Consequently, all the poles of Equation 3.6 must cancel out and we

obtain

v = Z 0 — ~ + Z bevhe % + Zézg—’ +w'. (3.7)

je€N
If v € F then w' € F and we have w = ¢f + wy for some constant ¢ and wy € F.
(i) In this case we have each —v2, and therefore vy, belong to F and e~ = 1;,8™ for
elements 7, € F' and integers ny,. We have log(u;) € F' and each u; = ;0™ for some
(; € F and integers m;. Let 1 ={j € J | m; =0} and K; = {k € K | n, = 0}
and rewrite

/
: om
U= Z ajlogu(;j)—i_j Z_J1 ]/122] J+Z bvie” et Z bivyi0" ’“+Z5

keK1 ke K—K

(3.8)
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where i = (G5/¢;) +m;(0'/0) € F

Let v € F and 0'/0 = 2’ for some x € F'. We rearrange the terms of > 7, d;(w}/w;)
and assume that 0; € Cr for 1 < i < p and the constant term of w}/wj; is zero for

p+1 <i<s. By assumption,  ; 0;(w}/w;) is a sum of poles. Now use Equation

=p+1
3.5, Proposition 2.2.5 and compare the constant terms of Equation 3.8 and obtain

for some wy € F' that

v = Z ajlog —i— Z brue” Ui 4 25 <szu(5i> %/+w6

VISDA keK, i=1 =1
Z jlogu +Zbkvk€ vk+25 (3.9)
jeJ 9 keK,

where ( 27:1 Z?:l mzlcsz) T+ wy=:wy € F. ]
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Chapter 4

An Extension of Liouville’s

Theorem

In this chapter, we provide necessary and sufficient condition for an element to
have an antiderivative in a transcendental DE L—extension. We also obtain a gen-
eralisation of Baddoura’s theorem on integration in finite terms with dilogarithmic
integrals. Several examples can also be found at the end of this chapter, that support

our theorems.

4.1 Integration in DEL—extensions

We recall that special DE L—expression is a DE L—expression

l
2t iy * ke

iel keK

41
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where each 7} = ¢;(1—g;)' /(1 — g;) for some constant ¢;. First we prove the sufficient
condition that if we have a DE L—expression, of a particular type, over a differential

field then definitely its antiderivative lies in some DE L—extension.

Theorem 4.1.1. Let F be a differential field with constant field Cp. Let I, J, K and
L be finite indexing sets such that v € F' has Dﬁﬁ—expression:
9; v?
=Tt Sl St St
el leL jeJ keK

over F, where for each i € I, I,t € L there are constants c;,dy, by, with ¢; # 0

whenever r; # 0, such that

, o (=g) h
ri:ci—+zdilh_l and s = Zdzl——i-Zbltht.

i€l teL

Then there exists a DEL—extension E of F' that contains an antiderivative of v.

Proof. Clearly r; = c¢;log(1 — g;) + >, duloghy + e; and s, = >, dylog g; +
Zte 1, bitlog hy 4 d;, where e;’s and d;’s are some constants. Substitute these values

in the expression for v and obtain

l

gz
U—Zczlog 1—g) 7 —i—de log g; log Iy) +Zblt log h; log hy) +Zajlog

iel v lzei Ltel jeJ ( )
€

0
+ E brue "k +w'.
KeK

It is easy to observe that the integral of above equation is

/U = chfg gi) + Zdll log g; log h; + Z by log hy log hy + Zajlz u;)

el el IteL jed
lel
+ Z brer f(vg) + w.

keK
Thus an antiderivative of v lies in field E = F({log hy,log gi, l2(g:), li(u;), er f(vi)})

which is a DE L—extension. O
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Recall that a differential field extension F O F' is called a logarithmic extension
of F'if Cr = Cr and there are elements hq,...,h,, € F such that £ =
F(log(h1),...,log(hmy)). A DEL—expression is called a special DEL—expression

if 7“2 = Ci(l - gi)//(l - gi) for some constant ¢;.

In the next proposition, we observe that any special DEL—expression over a
logarithmic extension of a field F' can be reduced to a DEL—expression over F.
Also note that the non constant coefficients of logarithmic derivatives involved in

the final DEL— expression are of the type mentioned in Theorem 4.1.1.

Proposition 4.1.2. Let F be a differential field and v € F satisfies a spe-
cial DEL—expression over a logarithmic extension E of F. Then v satisfies a
DEL—expression:
gz v2 /
U—Zm Z—i—Zslhl—i-Z jlog —i—Zbkvke k4w (4.1)
el leL jedJ keK

over F, where for each i € I, I,t € L there are constants c;,dy, by, with ¢; # 0
whenever r; # 0, such that

r;:cl Zd”_ and s = Zd”_ Zbltht. (4.2)

leL i€l 9i tel

Proof. For a positive integer [, let E = F(log(hy),...,log(h;)), where hy,... h € F.
Suppose that there are finite indexing sets I, J, K such that

=T T Tt 6y

i€l keK
where for each i € I, r;,9; € E and 7}, = ¢;(1 — ¢;)'/(1 — ¢:), a; € Cp,u; and
log(u;) € E for each j € J, by, € Cp, vy and e € F for each k € K and w € E.
Without loss of generality, let {log(1 — ¢1),...,log(1 — gn),log(h1),...,log(h,)} be
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transcendental base of E over F. Then, Corollary 2.3.3 implies that every r; can be

written as
ri=clog(l—g)+e  for i=1,...,n (4.4)
and 1r; = Z civlog(l —g,) + Z ei,loghy, + s, (4.5)
v=1 y,:l

where for each i, ¢;, €;, ¢y, €, are some constants and s; € F. From Proposition 2.2.6
and Lemma 3.2.7, we obtain gi,uj,e_”i,vk € Fforalliel,je Jand k € K. As
noted in Proposition 2.2.5, if w has a pole of order 1 then w’ has pole of order 2.
Therefore w is a polynomial in F'[(log(1 — ¢1), ..., log(1 — g,,),1og(h1), . .., log(hn))].
Let J; € J be a finite index set such that J; = {j € J|log(u;) € F}. Since
> ied—a AU /log(u;) is the term containing poles of order 1 only, it must vanish.

Using Proposition 2.2.4, we can write

n

w = Z apqglog(l — g,) log(1 — g,) + Z bys log h, log hs + Z dy log(1 — g;) log hy

D, q—l p,0=1 It=1

+Zyllog 1—g) +Zztloght+wo,

=1

where ayq, bps,d;y are some constants and 1y, 2, wp are some elements in F.
Substituting derivative of w in Equation 4.3 and using Equations 4.4 and 4.5, we

equate the coefficients of log(1 — ¢;) and log h; to zero and obtain

/ m h/
—y) = Cz— + chl + Z ap + alp gg )) + Zdlth—t (4.6)
t

i>n

and

—zt_ZeztgHLZ pt+btp +Zdtﬂ. (4.7)
=1
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Thus, we have
B 9~ ,
U—Zsi;-i-zy +Z%+Z JIO +Zbkvke E 4w,
i>n =1 keK
where s;, 1, 2; are elements as in Equations 4.5, 4.6 and 4.7 and therefore, we get a

desired DEL— expression for v over F. O

It would be remarked in detail later that presence of algebraic elements along with
exponentials and error functions can complicate the problem of integration in finite
terms. However, for DE L—extensions that do not contain exponentials and error

functions, we have following theorem.

Theorem 4.1.3. ([6], pp.219-220) Let E = F(04,--+ ,0,,) D F be a DEL— extension

of F and uw € E be an element with v’ € F'.

(i) If each 0; is neither algebraic over F;_1 nor an exponential of an element of

F;_1 then v’ admits a DEL—expression over F.

(i1) If F be a liouwvillian extension of Cr and each 0; is neither an exponential of

F;_1 nor an error function of F;_1 then u' admits a DL—expression over F.

Proof. We prove the result using an induction on m. When m = 1, we apply
Proposition 2.2.4 (c¢) and get u = cf + n for some constant ¢ € Cp and n € F.
Differentiating this equation we obtain the desired expression for u’. Let I, J, K be
finite indexing sets such that

;rzg’ + Z JIO + lg;{bkvke Gy, 7= ;c#h;t/hit, (4.8)
where elements 7;, g;, w, hy, u;, log(u;), v, and e~ all belong to Fy := F(61), a; and

by are constants and ¢;, - -, ¢, are Q— linearly independent constants for each 1,
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be a DEL—expression for u' over Fy := F(#;). Let F be an algebraic closure of F
and 3; € F and & € F be elements such that

"g, = &€, p =B 4
gz/gl fz/gl + lz:;mzl 91 — B ( 9)

where each m;; is an integer.

(i) We have 0, € F. Then from Proposition 2.2.7 each h; belongs to F' and from
Lemma 3.2.7 each u;, e~ and v, belong to F. If all 7; and log(u;) belong to F
then we shall apply Lemma 3.2.7 and obtain
u = an —1—2 ]1 +Zbkvke k4 0] + wy. (4.10)
iel ¢ j keK

From the definition of 6y, it is clear that the above expression is a DE L—expression

of u over F.

Now suppose that there is an r € {r;,log(u;) | i € I,j € J} and r ¢ F. Since
F(6,) = F(r), we shall find constants ¢; and element 7; € F' such that r; = ¢;r+1n; €
F[0]. We shall take 6; = 7 in Equation 4.9 and rewrite Equation 4.8 over F(r) as

U —Zcz—r—i— (ZZ’rmlcZ ) >7‘+Zm§z +szzlnz

el =1 i€l =1
Sy + S )
keK
Thus,
/ T’ _ﬁl —v?
T B BT RO SUC TR
el el =1 jedJ keK
(4.12)

where & = Y., ma(c;iB + m;) and w is replaced with w4 Y., D1 maci(r — f).
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!

Note that v/ =, , ci%r =D er 771% € F[r], apply Lemma 3.2.7 to the fields F(r) D
F and obtain the following expression for u’:

u _ZCZ&T—’_Z?%& +Z ]log +Zbkvke U (4.13)

el keK

where for j € J;, log(u;) € F. But we know that log(u;) € F(r) for all j and
thus log(u;) € F for all j € J;. We already know that each vy, e~r belongs to F.
Since u' — ., c,-%r — D el 77, € F[r], which is a polynomial of degree one and
that w € F(r), we obtain w' € F[r] C F(r). Now from Proposition 2.2.4, we shall
replace w with an element of F'(r) that satisfies Equation 4.13 and we also conclude
w = dr? + wir 4+ wy, where wy,wy € F and d € Cr. Comparing the coefficients of
r in Equation 4.13, we obtain w| = —2dr'— )., ¢;{;/& and comparing constant
terms, we obtain

&
o — ng +wr + Y a ]log + > bvge™ F ) (4.14)

JjeN keK

Since, for some j, r = r; or r = log(u;), we have ' = Y7 e/(h]}/h) for some
constants e¢; and elements h; € F. Therefore, rewriting Equation 4.14, we obtain

the following DE L—expression for u':
u—Zm +wlzelhl+z ]lo —I—Zbkvke g (4.15)
iel JEJ1 keK
where

IR SS oy
/ 7 ! 7
n; = Cith_it —¢ 2 eZE, wy = —2d €y~ ciz (4.16)

=1 iel v

(ii) Let 6, be algebraic over F' and by, = 0 for all k € K. From Proposition 2.2.7, each
7, log(u;) belong to F' and each u/u; and hj,/h;; belong to F'. For every element
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ve{ujhy|je Jiel 1l <t<n;}, wecan choose the smallest integer n, > 0
such that v™ € F (See Proposition 2.2.2 (b)). Let N be a finite algebraic Galois
extension of F' containing F'(#;) with Galois group G. Then either 0 = tr(v) = Tr(v)
orv € F and Tr(v) = [N : Flv. Moreover for o € G we have o(y') = o(y)’, and
thus Tr(y") = Tr(y)’ ( )) =D vea U((u)) Let J; be the subset of
J such Tr(u;) # 0 for all j € J;. Then u; € F and Tr(u;) = [N : Flu; for all j € J;.

For each o € G we have

+Zd

jeJ

el
Therefore, we sum over all ¢ € G and obtain

T Z Z log + Z ow)" and thus

el o jeJ

ZnNr +Zd]log] FEAhe) e

’l

u_

Using Proposition 2.2.7 (¢), we choose an integer n > 0 such that A}, € F for all it
and observe that
r=3o i)
—~ n  hj

Thus Equation 4.17 provides a DL—expression for u’ over F. n

Remark 4.1.4. (Problem of Algebraic Elements) When dealing with expressions
involving algebraic elements, the only method known, to obtain a similar expression
over the base field is the standard method of taking “Trace” as done in Theorem
4.1.3(ii). This method fails when we deal with error functions: If u, e~ belongs to

an algebraic extension of F' with the same field of constants as F' then from equation
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we only obtain u? € F and that (e*")2 € F (see [16] , p.977, Theorem 4.1). Moreover,
such error functions do exists (see [16], p.968, Example 1.1). Thus Tr(u/e™*’) can’t
be simpliﬁed further to obtain a similar expression over F'. Similarly, for some v € F'

!
( g) , is a D—expression of v over an algebraic extension of

ifv:r , where ' = ¢
F' then r must be in F. However, we only know that some power of 1 — g belongs to

F'. Now taking Trace, we obtain

U_TNT‘() and <T>’_iNT(1—g)/

- T ) = N g (4.18)

m
Since N7(1—g) need not equal a constant multiple of 1 — Nr(g), the above equation
does not provide a D—expression over F'. Nonetheless, Equation 4.18 does provide a

DL—expression over F' and indeed, this argument was used in the proof of Theorem

4.1.3 (ii).

4.2 Induction step

Let £ = F(6q,...,0,) be a DEL—extension of F. The proof of our main theorem
uses an induction on n and the crucial argument (the induction step) is the following:

First we show that if

i€l jeJ keK
ri=c(l—g)/(1—g:)
is a special DEL—expression over a logarithmic extension Fj_;(log(f1),...,log(fy))

of Fl_y = Fj_5(0,_1), where f1,..., f, € F;_1 then one can find elements hy, ..., h, €
F_5 such that v/ admits a special DEL—expression over Fj_;(log(hy), ..., log(h,)).

Next, we show that there is an element h € F;_, such that v/ admits a special
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DE L—expression over Fj_s(log(h),log(hy),...,log(h,)) which then completes the

induction argument.

Remark 4.2.1. The induction process used is different from the usual induction.
The reason we did not follow the usual induction is that a DEL—expression
over a field F(0), where 0 is a transcendental exponential, may not reduce to a
DEL—expression over F. For example, let v = rg¢'/g € F, where r,g € F(6)
and 7 = h'/h for some h € F(6). Clearly v holds a DEL—expression over F(6).
Assume 0'/0 = 2’ for some x € F. Then using Proposition 2.2.6, we can write
v =rn/n+rnz and v = &'/ + ma’, where n, ¢ are the constant coefficients in
the partial fraction of g and h, respectively, n,m are integers and r € F. From
the expression of v itself, it is clear that expression need not necessarily be a

DE L—expression over F.

The following lemma contains our crucial induction argument.

Lemma 4.2.2. ([6], p.223) Let F(0) D F be a transcendental DEL— extension
of F. If v € F admits a special DEL—expression over the differential field
F(0)(log(y1), .- .,1log(ys)), each y; € F(0), having the same field of constants
as F then there is a differential field M = F(log(hy),...,log(hy),0), where
h; € F and having the same field of constants as F such that v admits a special
DEL—expression over M. Moreover, if 0 is exponential over F then v admits a

special DEL— expression over F(log(hy), ..., log(hy)).

!

_ g Y 1 —v? / :
Proof. Let v = 3 ey Tigt + Xjes Gty T 2kex brvre™ + w' be a special

DE L—expression over some logarithmic extension E = F(0)(log(y1), ..., log(y,))
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of F(). For convenience, we shall rewrite

v = Zﬂgz + Z jlog Z Tlg—z + Z bevhe " + ', (4.19)

iel i jeJ len—-1 7' ker

where I = {i € I; | r; is not a constant}. We can apply Proposition 3.2.5 to

the D—expression » —|— w’, enlarge E to a logarithmic extension of F() to

’LEIl
include log(g;) and assume that 1 —g; = n;:P;/Q;, where P;, Q; € F[0] are relatively
prime monic polynomials, § neither divides P; nor @;, deg(Q;) >deg(P;) and n; €
F. Now since r; € F(f), there are constants c;, such that 7, — > c;,log(y,) €
F(#) and in particular, r; € Ap[log(y,)] for each i, where A, = F(0)(log(y1),. ..,
log(yp—1),108(Ypt1); - - - ,10og(yn)). Observe that v — 3. ri(gi/g:) € Ap[log(yp)] and
that

U—Zri(gg/gi) —Z Jlog Z rlgl +Zbkvk€ R 4

el jedJ lel—I keK

Let v := v —>,,7(9;/9;) — w" and apply Lemma 3.2.7 to get that v € A, for
each p. Thus v € F(6). Now a repeated application of Lemma 3.2.7 to the field
extension E of F(#), with v = v and w = 0, would tell us that we could assume
uj,log(u;), v, e~ and g; belong to F(6). We enlarge E to include log(g;) and
replace w with w +,.; _;mlog(g;) and write

9;
U—an + S+, (4.20)
el ¢

where 7;,w is in some logarithmic extension E of F(#), g € F(f) and S =

u'. 02
D jes Gitogty T 2ner Orvpe™".
Fix F an algebraic closure of F. It is easy to see that there is a subset A = {0 =
a1,...,a;} of I such that the following holds:
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(i) P=TIm(0—a), Q=TT (0 — )™ and Qi — P = & [T,y (0 — ay)™

for some ; € F', where [;;, m;; and n;; are non negative integers.

(ii) w € M;({log(fd — a) | a € A}), where M, = F({log(n:), log(&;),0 |i € I}).

Let M = F({log(n:), log(&),0 | i € I}) and choose a differential subfield M*
of My such that F' C M*, @ is transcendental over M* and M*(§) = M, (See
Corollary 2.3.3 (b)). Let a;; = l;; — my; and b;; = n;; — m;; and observe that
> iy aij =deg(P)—deg(Q;) and Y}, by =deg(Q; — 1, P;)—deg(Q;). We have

t
ri = ¢;log(n;) + Z cia;;log(0 — o) +¢;  for some e; € Cp (4.21)
=2
i 0 — o
gi/gi =& /& + JZ_; bij@——a; and therefore (4.22)
_ Z gz/‘ /
v=>» n=+5S+w
el 7
i /
=Y uylog0—ay) + > e log(m)% + 84w, (4.23)
j=2 iel t

where u; := ), ¢;ai;(9i/g:) is a L—expression over F(0) and w € M;({log( —
a) | a e A}).

Consider the differential fields M; = M*(8) D M*. It is easy to see that log(f —
as), ..., log(6 — o) are algebraically independent over M* (See [1], pp.931-933,
Propositions 3 and 4). Also observe w’ € M;[{log(§ — a)|a € A}], then using
Proposition 2.2.4 we can write w = 237122 cjilog(0— o) log(6 — ) —1—22-:2 f;log(6—

a;) + wp, where ¢y are constants and f;, wy € M;. Then comparing the constant
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terms we obtain

¢
0" — a 0 — q

nge_ +chlog7h +S+wo, fi=—u =Y epg—at. (420

el =2

Substituting Equation 4.22 in Equation 4.24 we obtain the following expression for

v over M*(0):

o —
v = Z (f] - waczlog i ) 7 aj + Zczlog ni)(&/&) + S +wy,  (4.25)

i€l el

where f; =0 and for all j > 1,

t

9 _ 9/ A
fi= Z Czazj 5@ Z Z ciab iy~ zll - Z Cilg — ((JZZ’ (4.26)

i€l =1 i€l =2

From Proposition 3.2.5, we have ) ., ¢;log(n;)(&;/&;) is a D—expression over M and
that S+ >,.; cilog(m)(§/&) is a special DEL—expression over M. We only need

to the handle the first and last term appearing on the above expression of v.

First we suppose that ¢/ € F. Since (3, bijci log(ni))' =Y e bigci(ni/n;), from
Equation 4.26 and Proposition 2.2.7, we have f; + 3 .., bijc;log(n;) = d;0 + h; for
some d; € Cp and h; € M*. Similarly, log(n;) — N6 € M* for some \; € Cp. Thus

:Zd0+h i —|—Zczlogm +S+
J i€l

t

:Z(da]Jrh

Jj=1

+ Z ¢; log( 771 + S+, (4.27)

where W = wg + Z;Zl d;j(0 — o) € M*(0) and djo; + h; € F. Since v —
P eilog(n)(€l/€) € M*[A], we shall apply Lemma 3.2.7 to the fields M*(0) D M*

=1

and obtain

v = Z c; log( 777, -l— Z Jlog —|— Z vhe Uk i (4.28)

iel keK
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where v — @’ is a special DE L—expression over M = F({log(n;), log(&;),0 | i € I}).
This implies that @' € M. Since w € M*[f] C My, which is an algebraic extension
of M, we shall apply Proposition 2.2.2 and replace w with an element w € M such
that w’ = w@’. This settles the case when 6’ € F.

Now we suppose that /0 = 2/ € F for some z € F and consider Equations 4.25
and 4.26. We have for each i and j both f; and log(n;) belong to M*. Using the
fact that

0 — o r'a; — o

:x’—i—

9—06]' G—Oéj ’

we rewrite Equation 4.25 as

v —Z (fy + szjcz log(n; ) ( %) + Zci log(n;)(€./&) + S+w6-

el i€l

(4.29)

As in Equation 3.8, we find sets J; = {j € J | m; =0} and Ky = {k € K | nj, = 0}

and we rewrite

t I )
o — o
o XTI (R [C2

iel 1€l
/
1560 o2
+chlogm (&/&) —i—Z ]10 ]u Z jljj —i—Zbkvke k
iel je J jeJ—J1 g k€K
+ Z bV} nE0™ 4+ wy,
keK—Ki

where p; = ((;/¢5) +m;(0'/0) € F. Now comparing the constant coefficients, we

obtain
u;
U—ijij(Zwaczlogm)x —l—Zclegm +Z ]m
el j=1 il JE€N s\
+ Z brvpe ™ + wh,. (4.30)

ke K,
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Consider 2321 bijcilog(n;). If m; # 1 then deg(Q; — n;P;) = deg(Q;) and therefore
Z;:l b;; = 0 and thus ijl bijeilog(n;) = 0. If m; = 1 then log(n;) € Cr and we
have 23:1 bijcilog(m;) € Cp. Thus, in any event, d := ) ., 22:1 bijcilog(n;) € Chp.
Therefore

v= fz' + ZCZ log( 771 + Z jlog Z bruge” Vi 4 (woo +dz)’,  (4.31)

iel jen keKy
where f = Z;Zl fi = Z;':z fi- As observed earlier, > ., c;log(n;)(&/&) is a
dilogarithmic expression over M. Now we will show that f is either a constant
or fa' = h' for some h € F'; and wyy € F({log(n;),log(&;) | i € I}). Comparing the

constant term of the equation 4.26, we obtain

Z Z ang —ca’, for some constant ¢ € CF.
3

il j=2
If Z;:Q a;; # 0 then since a;; = 0 for all i € I, we have deg(Q;) = deg(F;) and as
observed in Proposition 3.2.5, § = 1 for all such 4. Thus ., Z;ZQ aijg—f = 0 and
therefore f = —ca’. Now it follows that either f’ = 0 or (—f?/(2¢)) = fz'. Let w :=
woo + dx — f?/(2¢) and observe from Equation 4.31 that @' € F({log(n;),log(&)|i €
I}). Therefore, from Proposition 2.2.6 we obtain @ € F({log(m;),log(&)]i € I}).
Since F({log(n;),1og(&;)}) is an algebraic extension of F({log(n;),1log(&;)}), we shall
apply Proposition 2.2.2 and find an element w € F({log(n;),log(&;)|i € I}) such
that w' = o' O

4.3 Extension theorems

Recall that a differential field extension £ O F' is called a logarithmic extension

of I'if Cr = Cr and there are elements hq,...,h,, € F such that £ =
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F(log(hy), ... log(hm)).

Theorem 4.3.1. ([6], p.226) Let F'(§) D F be transcendental DEL—extension
of F' such that F(0) # F(log(h)) for any h € F. Ifv € F admits a special

DE L—expression over F(0) then v admits a special DEL—expression over F.

Proof. As in Equation 4.19, let

U—ngl—kz ]1og + Z rl —i—Zbkvke ) (4.32)

iel lel; -1 keK

!l =c;(1—g)'/(1 — g;) where each ¢; # 0, (4.33)

be a special DEL—expression over F'(#). Suppose that 6'/0 = x’ for some z € F.
We use Proposition 2.2.7 to Equation 4.33 and if necessary, Proposition 3.1.2 and

obtain r; € F and 1 — g; = n;/0™ for some integer m; > 0 and n; € F. Now

g (0™ —m) (™) maln =

9i o —m; o gme —m;
and therefore g./g; has no constant term when m; = 0. We now apply Lemma 3.2.7
and obtain a special DEL—expression for v over F'. On the other hand, if ' € F
then (r;/¢;) = (1 — ¢;)'/(1 — g;) and therefore g; € F'. From our hypothesis r; € F.
Now we have v — ., 7i(gi/g;) € F and we can apply Lemma 3.2.7 to conclude

that v admits a special DEL—expression over F. O]

We recall from Chapter-1 that a differential field extension E = F(6y,...,6,) is
called a transcendental dilogarithmic-elementary extension of F' if for each ¢, 6; is
transcendental over F;_; and satisfies either case ii or iii or vi in the definition of

DE L—extensions.

The following theorems provide an extension of Liouville’s Theorem.



4.3. EXTENSION THEOREMS o7

Theorem 4.3.2. ([6], p.227) Let E = F(64,...,0,) be a transcendental DEL—
extension of F with Cp = Cr. Suppose that there is an element u € E with u' € F
then v’ admits a special DEL—expression over some logarithmic extension of F.
Furthermore, if E is a transcendental dilogarithmic-extension of F' then u' admits a

D—expression over some logarithmic extension of F.

Proof. We shall use an induction on n to prove the theorem. The case when n =1,
we have u € F(0) and that u = ¢ + w for some ¢ € Cp and w € F and therefore
u' = cf + w'. Now the definition of ¢ proves that, in fact, v’ admits a special
DE L—expression over F itself. Note that v’ € F' C F(f) and suppose that v’ admits
a special DEL—expression (respectively a D—expression) over some logarithmic
extension of F'(f) having the same field of constants as F. Then we shall apply
Lemma 4.2.2 and obtain that ' admits a special DEL—expression (respectively
a D—expression) over M = F(0,log(hy),...,log(hy)), where hy,... h, € F and
Cy = Cp. Let F* = F(log(hy), ..., log(h,,)) and suppose that F*(0) = F*(log(h))
for some h € F*. If there is an integer p such that h € A,(log(h,)) — A,, where A, is
the field generated by F' and all log(h;) except log(h,), then we shall apply Theorem
2.3.3 to the fields M = A,(log(h,))(log(h)) D F* = A,(log(h,)) D A, and obtain
that 8 € F*. This implies M is a logarithmic extension of F'. If no such p exists then
h € F and we have M = F(log(h),log(hy), ... ,log(h.)), which is again a logarithmic
extension of F. On the other hand if for any h € F*, log(h) ¢ F*(0) — F"* then
we shall apply Theorem 4.3.1 and show that u' admits a special DE L—expression
(respectively a D—expression) over the logarithmic extension F*. This completes

the induction argument. O

Theorem 4.3.3. Let E = F(b,,...,0,) be a transcendental DEL— extension of F

with Cg = Cp. Suppose that there is an element u € E with v’ € F then there are
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finite indexing sets I, J, K and L such that u' satisfies DE L— expression:

U —Z?‘lgz —I—Zsz——i-z ]log —i—Zbkvke %4

iel 9i leL h keK

over F, where for each i € I, I,t € L there are constants c;,dy, by, with ¢; # 0

whenever r; # 0, such that

rh = Zd’l and s = E:dzlgZ +Zblth )
leL t

o gl iel tel

Proof. From Theorem 4.3.2, we know that u' admits a special DEL—expression
over a logarithmic extension of F'. We shall now apply Theorem 4.1.2 and obtain a

DE L—expression for v over F. O

4.4 Generalisation of Baddoura’s theorem

Using techniques from Proposition 2, p.923 of [1] and our Theorem 4.3.2, we
shall generalise and provide a proof of Baddoura’s Theorem. We recall that
a DEL—extension £ = F(6y,...,0,) is called a transcendental dilogarithmic-
elementary extension if Cr = CF and for each i, 6; is transcendental over F;
and satisfies either case ii or iii or vi. Before we proceed to the proof of Baddoura’s
Theorem, we recall the definitions of ¢3(g) and D(g) from [1], p.912. Let E be a
differential field extension of F' and g € F'\ {0,1} be an element of F. If y € E is

an element such that
/

/ g
y = —log(l—g)=
( )g

then we shall pick one such element y and denote it by ¢2(g). Note that any other

element in E whose derivative equal f5(g) differs from ¢3(g) by some constant of
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E. The element ¢5(g) + (1/2)log(g) log(1 — g) will be denoted by D(g), which is

sometimes called the Bloch- Wigner-Spence function of g and its derivative is:

lg 1(1-g)
D(g) = —=L log(1 — 2P og(y).
(9) 5 og(l—g) + 3 - 0g(9)

Baddoura uses Bloch Wigner Spence function in place of dilogarithmic integrals,
if the dilogarithmic integrals appear in the integral, and proved that the Bloch
Wigner Spence functions appear in linear way while the logarithms can appear
in a possible non-linear way. The extension of Liouville’s theorem to include

dilogarithmic integrals, as done by Baddoura (Theorem, p.933, [1]), is stated as

Theorem 4.4.1. ([1], p.933) Let F be a differential field of characteristic zero and
the field of constants Cr be algebraically closed. Assume F' is liouvillian extension
of Cr. Let there be a transcendental dilogarithmic-elementary extension E of F' and

an element v € F such that fv € FE then

[ o= ciDlg)+ Y filog(h) + w.
j=1 i=1

where c;-s are constants and each g, fi, hi,w € F.

To prove this theorem, Baddoura stated and proved two identities of dilogarithmic
integrals ([1], pp.922-923, Lemma 2 and Proposition 2), the former gives a relation
between D(1/g) and D(g), while the latter provides an expansion of Spence function

of a rational function. We shall state the latter identity here:

Proposition 4.4.2. ([1], p.923) Let F' be a differential field of characteristic zero,
and 0 be transcendental over F with Cpg) = Cp. Let g € F(0) and E be splitting
field of g and 1 — g. Let o and 8 be zero or pole of g and 1 — g, respectively, then

Do) = D) + Y- ordo(aoris(1 - )0 (=2 )
a76
a#B
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modulo the vector space generated by constant multiples of logarithms over E(0),
where n € F' is the constant in partial fraction expansion of g and ord,(g) denotes
the multiplicity of 0 — « in g which s positive if a is zero and negative if v is pole

of g.

To prove the above proposition, Baddoura considered partial fraction expansions of
g and 1 — g and compared their poles in E. The proof involves lengthy calculations.
On the other hand, we prove Theorem 4.4.1 without the hypothesis that Cr is
algebraically closed and that F' is liouvillian over C'r and our proof is relatively
simpler. Furthermore, we do not require dilogarithmic identity from Proposition

4.4.2.

Theorem 4.4.3. ([6], p.228) Let E = F(6,...,0,) be a transcendental dilogarithmic-
elementary extension of F. Suppose that there is an element u € E with u' € F.

Then

n

w=_c;D(g;) +_ filog(hs) +w, (4.34)

j=1 i=1
where each f;, h;,gj,w € F, ¢; are constants and log(h;) and D(g;) belong to some

dilogarithmic-elementary extension of F.

Proof. From Theorem 4.3.2 we have the D—expression v’ =, I rz-:g—f + w' over a
logarithmic extension F = F(log(hy),...,log(h,,)) of F. As done in Equation 4.19,
we shall rewrite this expression as:
u = an—; +idl% + ',
el 9 oW

ri=—c(l=g)' /(1= gi), (4.35)
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where each ¢; is a non zero constant. From Remark 2.4.2, we shall assume that

{dy,...,d,} are Q—linearly independent constants of F.

Claim: Each g; and w; belong to F' and F can be chosen to be the differential field
F({log(1—g¢;) | i € I}).

As denoted earlier, let A, be the field generated by F' and all log(h;) except log(h,).
We know from Proposition 3.2.6 that each g; € A, and each r; is a polynomial in

/

log(hy) of degree one. Thus u' — 3", ; TZ% € A,llog(h,)]. Now, from Proposition
2.2.5 and from the fact that d,,...,d, are Q—linearly independent, it follows that
w; € A,. Since p € I is arbitrary, we have g; € F' and that w; € F'. Note that each
r; € E and consider the differential subfield F* := F({log(1 — ¢;) | i € I}) of E.

* ) 9; q ﬂ * : I
Then r; € F* and observe that v :=v'— >, ;rigt — >, diy,l € F*. Since w’ = v,

m

we apply Theorem 2.3.3 and write w = 37", ajlog(h;) + w, for some constants

a; € Cr and w € F*. Thus
/

q / m

g{ wy h; ~/

Ul:g T¢J+E d—+§ aj—L +
e 94 lwl j=1 "hy

and this proves the claim.

Thus ¢; and w; belong to F and we shall assume E = F({log(1 — g¢;) | i € I}).
“Taking integrals” we see that there is some dilogarithmic elementary extension E*
of F' containing F such that

q

u= Z cila(g;) + Z d; log(w;) +w + ¢, (4.36)
1

i€l 1=
where ¢ € Cp and each ¢5(g;) and log(w;) belong to E*. We shall first show that

w € Fllog(1—g1),...,log(1—gy)] is a polynomial of total degree at most 2 and then

show how to combine terms of w with f5(g;) of Equation 4.36 to obtain Equation
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4.34'.  Without loss of generality, assume that I = {1,2,....m} and {log(1 —
g1),-..,log(l — g,)} is a transcendence base of E over F for some n, 1 < n < m.
Then £ = F(log(1—g1),...,log(l —g,)) and since r; € F, we have constants ¢; and
e; such that

ri = —cilog(l —¢;) +e;, for 1 <i<m (4.37)

and we shall also rewrite r; forn +1 <7 <m as
= Z Cis lOg(l - gs) — Zi, (438)

where ¢;; are constants and elements z; € F. In particular, r; is a polynomial in
log(1 —g,) over A, of degree at most 1 and w € A,[log(1 —g,)] for any p, 1 < p < n.
Now from Proposition 2.2.4, we have w is a polynomial in log(l — g,) over A, of
degree at most 2 whose leading coefficient is a constant. Since p is arbitrary, we
have w € Fllog(1 — ¢1),...,log(1 — g,)] is a polynomial of total degree at most 2.
Write

w = Zas log(1 — g,)* Z zs log(l — g5) log(1l — g:) sz log(1 — gs) + wo,
s,t=1 s=1
5§t

(4.39)

where as € Cp and x4, xs, wy belong to F. Then

- 1 1—g)
w' = Z 2as(1 — + xl + Z (a:st log(1—¢;) + :cstﬂ) log(1 — gs)
s=1 t=1,s5t
- 1—g,) u 1—g,)
+ Z xst% log(1 — g¢) + Z%(l—g) + wp. (4.40)

st=1,s5t s s=1 s

!The technique used to combine terms is taken from Proposition 1, in particular pp.920-921, of

[1].
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Substituting Equations 4.38 and 4.40 in Equation 4.35 and comparing the coefficients
of log(1 — gs), we obtain

Therefore Z?:mgt 2, log(l — g;) € F and since {log(1 —g;) | ¢ = 1,2,--- ,n} is
algebraically independent over F', we must have 2/, = 0 for all s < t. Now it follows

that there is a constant a € Cr such that

n xs n :L‘ .
aslog(1 — gs) + il log(1—g;) + il log(1—g;) =
= 2 = 2
sSt tgs
Cs = Cis Tg
Elog(gs) - Z > log(g;) — 5 T
i=n-+1

Now we multiply the above equation by log(1 — gs) and sum over all of s to obtain

n

Zas lOg(l - 98)2 + Z Tst log(l - gt) =
s=1

t=1,s=1

sSt
n CS m Czs n
> (51%‘“(93) - > 7@(90) (log(1—g)) = > (— - a) log(1 — gs).
s=1 i=n+1 s=1
(4.42)
We have

n

U—Zcz& 9i +Z aslog(1 — g) +Zx5tlog 1—g) | log(1 - gs)
s<t

+ Z cila(9g; —i—szlog 1—gs) —|—Zdllog wy) + wo + c.

i=n+1 s=1
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Replace wy + ¢ by wy and we shall use Equation 4.42 to rewrite the above equation

and get
n C; i = —Cis
u=>"(atalg) + 5 log(g:) log(1 — 9)+ > (Z 5 log(1 - gs)> log(g:)
i=1 i=n+1 \s=1

m n n q
Zs
+ D aila(g) + ) S log(l—g0) +a) log(l—g.)+ ) dilog(ur) +w.
s=1 s=1 =1

i=n+1 =

Now from Equations 4.38 and 4.37, we have

n

—Cis T Zi C; Zi + €;
log(l—gs) = —— — — = —log(l — g;) —
; S log(l—g.) = -5 — 5 = log(1 —g;) — =
for each i, n +1 <7 < m. Therefore
n ¢ m ¢
=" (citalgs) + 5 log(g) log(1 — ) + > (etalgr) + 5 log(g) log(1 - g5))
i=1 i=n+1

n m n q
T Zi + €
+ E Elog(l —gs) — E 5 log(gi) +a E log(1 —gs) + E dy log(wy) + wo
s=1

i=n+1 s=1 =1

and thus we shall rewrite

u=>Y ¢;D(g;)+ > filog(hi) +w
j=1 i=1
for suitable f;, h; and w in F. n

4.5 Examples

Example 4.5.1. Let F' = C(z,log(1 + 2)) be the ordinary differential field with
derivation ' := d/dz and E = F;, D F; D Fy = F be the dilogarithmic-elementary

extension of F, where
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(a) Fy = F(log 2),
(b) F2 = Fl(ég(l — Z))

Assume u € E — Fj such that ' € F. Then for some w € F; and constant ¢, we

have u = c¢l5(1 — z) + w. That is,

u = (1 — Z),

—C
—Z

log z +w'. (4.43)

Now w’ is a polynomial in F'[log z], therefore using Proposition 2.2.4 we get that w
is a polynomial in F[log z] with deg(w) < 2. Let w = ¢; log® z 4 w; log z + wy, for
some constant ¢; and elements wy, wy € F. Then comparing the coefficients of log z

in the expression of u/, we get

It is obvious that ¢ = ¢; = 0 and u € F}, which is a contradiction. Therefore there

is no element u in E — F} whose derivative «/ lies in F. ]

Example 4.5.2. Let ' = C(z, ¢*) be the ordinary differential field with derivation
":=d/dz and E = F, D F} D Fy = F be the dilogarithmic-elementary extension of
F, where

(a) Fy = F(log(1 —¢€?)),
(b) Fy = Fi({x(e?)).

Assume u € E such that v’ € F. Then for some w € F; and constant ¢, we have

u = cly(e®) + w. That is,

: (e*)'

u = —c¢
e?

log(1 —e*) + w' = —clog(1l — €*) + w', (4.44)
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which is a special DE L—expression over Fj. Then using Proposition 2.2.4, we can
write w = ¢, log®(1 — €*) + wy log(1 — €*) + wy, for some constant ¢; and elements
wi,wy € F. Substituting w’ in Equation 4.44 and comparing the coefficients of

log(1 — %), obtain
(1—e?)

/
w :C—QC _—.
1 1

1—e?

Clearly ¢; = 0 and «' satisfies DE L—expression

/ (1 ez)/ /
— - 7 + ,
u = w; o wy

I eF)
where w; = ¢ = c>. -

Example 4.5.3. ([6], pp-231-233) Let log(z), log(z — 1), log(z + 1) and log(z* +
z — 1) be designated solutions of the differential equations v/ = 1/z, v/ = 1/(z — 1),
v =1/(2+1)and ¢/ = (22+1)/(2%+2—1) respectively. Denote log(z)+log(z—1)+
log(22 + 2 — 1) and log(z) +log(z + 1) by log(z(z — 1)(22 + 2 — 1)) and log(z(z + 1))
respectively. Let F' = C(z,log(z + 1),log(2(z — 1)(2* + 2 — 1))) be the ordinary
differential field with the derivation ' := d/dz and E = F3 D Fy D F} D Fy = F be

the dilogarithmic-elementary extension of F', where

(a) Fy = F(log z),
(b) F2 :F1 (gz(l_z))a £2<1—Z)/: —(11+Zz)l10g2 and

(0) Fs=F(b(1—-2(:z+1), &(1—=2z+1) = -5 og(2(2 + 1)),

Note that

log(z) +1log(z — 1) +log(z* + 2 —1) = log(z) +log(1 — z) +log(1 — z — 2*) +¢, (4.45)
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for some constant ¢ € C'r and consider the element

—log(z +1) (11:2((21:11))) +log (2(z — 1)(z* + 2 — 1)) z;’ +vy=veF, (4.46)

where vy € F' is arbitrary.

Note that for g, :=1— 2 — 22, go :== 2z € F,

/ /
v=r 4,22 + vg,
g1 92

1_ / / 1 /
where Ti:—ﬂ_’_@:_( +Z) and
l—q 92 142

1_ / / / 1_21 Z/ 1_Z_Z2/
rgzﬂ+&+@:u+_+%
1—9 g1 92 1—=2 z 1—2—2

Over the field Fi, we rewrite v as

(1—2(z+1)) (1—2)
V= ) log(z(z+1)) — T log 2 (4.47)
N ((1—z(z+1))’ (1—2)

1—2(z+1) 1—=2

/
) log z 4+ log (2(z — 1)(z* + 2 — 1)) z; + vg.

Let w = —(1/2)1log?(2) + log (2(z — 1)(2® + z — 1)) log(z) + vo and observe that

(I =z(z+1)) (1—2)
v 1—2(z4+1) log(z(z +1)) - 11—z

log z +w'. (4.48)

Thus we have u := ly(1 — 2(2 + 1)) + l2(1 — z) + w € E, and from Equations 4.46
and 4.48, we have v/ = v € F. From Equations 4.46, 4.48 we see that v admits
a DEL—expression over F' and a special DEL—expression over the extension field

Fy = F(log(z)) respectively.
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Representation of u’ in terms of Bloch Wigner Spence function: Observe that

w=D(1—2(z+1)) — %log(z(z + 1)) log(1 — 2(2 + 1)) + D(1 — 2)
— %logzlog(l —z)— %logQ(z) +log (2(z — 1)(2* + 2 — 1)) log(z) + vo.
=D(1—-2(2+1)+D(1—=2)— %log(z)(log(l —z(z+1)) +log(l —2) + log(z)>

+log(z)log (2(z = 1)(2* + 2 — 1)) — %log(z + 1)log(l — 2(z + 1)) + vo.

Now we shall substitute Equation 4.45 in the above equation to obtain

u=D(1—-2(z+1))+D(1—2)+ %log(z) log (2(z = 1)(2* + 2 — 1)) + %clog(z)
(4.49)

1
b log(z + 1) log(1 — z(z + 1)) + wvo.

Since the elements log (2(z — 1)(2% + z — 1)) and log(z + 1) belong to F', the above

equation provides the Bloch-Wigner-Spence function representation of u over F.

Now we will show that u’ does not admit a special DEL—expression over I of the

form:

o /_Z g; / r_ (1_91')/

v=1u = it wy, 1= c————, r;, g, wo € F' and ¢; € C. (4.50)

et Ji L—gi

(1—-g) _
1 =g

0, which belong to the rings C (z,log(z + 1)) [log(z(z — 1)(2* + z — 1))] as well as

Suppose that v’ does admit such an expression over F'. Then since 7, —¢;

C(z,log(2(z—1)(2*+2—1)))[log(z+1)], we apply Proposition 2.2.7 and obtain that
1 —g; € C(z). On the other hand, by Theorem 2.3.3, there are constants ¢;1, ¢;o € C

and an element d; € C(z) such that

7 = cilog(z + 1) + ciplog(z(z — 1)(2* + 2 — 1)) + d;. (4.51)
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Taking derivatives, we obtain

1—gq) 1 1 1 1 1
1—g z z z—1 z—w; z—ws

where w; = (=1 ++/5)/2, ws = (—1 — v/5)/2 and mij = ¢;;/¢; for j =1,2. For any

x € C(z) we write
n
_ clle; 2 — o
H;n:1 2= B

where ¢, o, f; € C and observe that 2’ has no poles of order 1 and that z//z is

T

either zero (that is z € C) or a sum of poles of order 1. Thus from Equation
4.52, we obtain d; € C, m; and m;y are integers and that 1 — ¢g; = a;(z +
1)mit (2(z — 1)(22 + 2z — 1))™” for some constant a; € C. We shall use Proposition
3.1.2 and assume that m;; > 0. From Equations 4.46, 4.50, 4.51 and 4.52, we obtain

W =log(z+1) ((1—z(z+1)),+zcﬂg_§>

1—2(z+1) e ;

+log (2(2 — 1)(22 + 2 — 1)) (—% + Zci2%> + Zdi%, (4.53)

iel iel
where w = vy — wy. It follows that w must be a polynomial in log(z + 1) and

log(z(z — 1)(2% + 2 + 1)) over C(z) of total degree 2. Write

w =e; log®(z(z — 1) (2% + 2 — 1)) + ez log®(z + 1)
+ezlog (2(z — 1)(2° + 2 — 1)) log(z + 1) + oy log (2(z — 1)(2* + z — 1))
+ aglog(z+1)+ 5
and substitute in Equation 4.53 and obtain eq, e5 and e3 are constants. Moreover,

from algebraic independence of logarithms, we also obtain that the coefficients of

log(z + 1) and log(z(z — 1)(2* + z — 1)) must be zero. Thus

1 q! 1 1 1 1 1
S ot =2 - "’
Z+;ngi el(z+z—1+z—w1+z—w2)+63z+1+a1
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where e; and e are constants, a; € C(z). Note that o} has no poles of order 1.
Any pole of )., cia(gi/9:) is a pole of g;/g; for some i such that c;; # 0. If for some
i, ¢io = 0 (that is, when m;s # 0) then g¢./g; has no poles at 0,1, w; and wy. Thus,
> icr Ci2(gi/gi) has no poles at 0, 1,w; and w,. Now by comparing poles of the above

equation, one arrives at a contradiction. 0

Example 4.5.4. Let log(z), log(1 — z), log(1 + 2) and log(1 — z?) be designated
solutions of the differential equations ¢y = 1/z, 4/ = 1/(1 — 2), ¥ = 1/(1 + z) and
Yy = —22/1 — 2? respectively. Denote log(1 — 2) + log(1 + 2) by log(1 — z?). Let
F = C(z,log(z),log(1 — z?)) be the ordinary differential field with the derivation
":=d/dz and E; = F(l5(2?),l2(1 + 2)) be a dilogarithmic-elementary extension of
F.

Note that the element u = l5(2%) + 205(1 + 2) + ug, where ug is arbitrary element in

F, has derivative:

4 (1+2)
"= 2% log(1 — 2%) —2
u . og(l —z7) T,

log z + g, (4.54)

which is D—expression over F' itself.

Over a logarithmic extension F'(log(1 + z)) D F, we can rewrite u’ as:

!/ 1 !/
u = —QZ—(log(l —2)+1log(l+2)) — % log z + uy. (4.55)
z z

Note that log(1 —z) € F(log(1+ 2)) because log(1 — 2) = —log(1+ z) + log(1 — 2?).
For w := —2log(z) log(1l + 2) + up we have

/

W = 2= log(1 — 2) +w' = 205(2) + ' (4.56)
z

in a dilogarithmic-elementary extension Ey = F(log(1 + 2), l5(2)).
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We claim that F; and E5 are two distinct dilogarithmic-elementary extensions.

Assume l5(2%) € Es. Since f3(2?) is primitive over F(log(l + z)), by Kolchin-
Ostrowski Theorem, f5(2?) = cly(z) + v for some constant ¢ # 0 and element v

in F(log(1l + 2)). Therefore,
Z' 2!
—2% log(1 — 2%) = —c=log(1 — 2) + v
z z
/
= —cz—(log(l —2%) —log(1 +2)) +v'. (4.57)
z
Since log(1 + z) is transcendental over F, we apply Proposition 2.2.4 and obtain
v = ¢;log?(1 + 2) 4+ wy log(1 4 z) + vy, for some constant ¢; and wy,vy € F. We
compare the coefficients of log(1 + z) in above equation and get

(1+2)
1+ =2

/! !/
—2% log(1 — 27%) = _CZ; log(1 — 2%) — ¢ log(z) + vg. (4.58)

Now we know that log(z) is transcendental over C (z,log(1 — 2?)) , apply Proposition

2.2.4 again and observe ¢ = 0, which is a contradiction. ]

Example 4.5.5. Let log(z), log(1 — z), log(1 + 2) and log(1 + z — 2?) be designated
solutions of the differential equations ' = 1/z, ¢ = 1/(1 — 2), v = 1/(1 + z) and
y = (1 —22)/1+ 2z — 2% respectively. Let F' = C(z,e?,log(1 + z),log(1 + z — 2?))
be the ordinary differential field with the derivation ' := d/dz and E = F({5(1 +
€),02(2%/(1 + 2)), l5(2(z — 1))) be a dilogarithmic-elementary extension of F.

Now the element u = lo(1 + €2),l5(22/(1 + 2)) — 203(2(2 — 1)) + 20o(—2) in E has

oo AEe) (2 (ke (12t
1+ e 1+z2 1+ =2

z
/ -1V !

+2 (z— + (2 1) ) log(1+ z — 22) — 2= log(1 + 2) (4.59)
z z— z

derivative:
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which is D—expression over F'itself. Further simplification of above expression gives

p__(te) (A +2)(1—2)?)

ST T e T a2 ot b2
S B b1
- %' (log(1 4+ 2)(1 — 2)° — 2log(1 — 2)) + ((:zz))' log(1 + 2). (4.60)

Let g1 :=1+¢€% go:=(1+2)(1—2)? g3:= 2z and g4 := —z € F then we have r; =
—log(1—g1) = z, 1o = log(1—go) —log g3 = log z(14+2z—2%)—log z = log(1+2—2?%) €
F,r3 = —2log(1—g3)+log g, = —2log(1l—2)+log((142)(1—2)%) =log(1+2) € F
and ry = log(1 — g4) = log(1 + 2) € F.

Thus the expression of u’ in Equation 4.60 is also a DE L—expression of u’ over F)

that satisfies our hypothesis in Theorem 4.1.1. 0

If in the Theorem 4.1.1, the constant coefficients of in r; and gl in s;, that is, d’s
are not same then v need not satisfy a special DE L—expressmn over any logarithmic

extension of F' and thus antiderivative of v need not to be in a DEL—extension.

Example 4.5.6. Let log(z), log(1 — z), log(1+ 2) and log(1 — z — 2?) be designated
solutions of the differential equations ¢y = 1/z, 4/ = 1/(1 —2), ¥ = 1/(1 + z) and
y = (—1-22)/1+2z—2% respectively. Let F' = C (z,log z,1og(1 — 2),log(1 — z — 2?))
be the ordinary differential field with the derivation ’ := d/dz. Let v € F satisfies a
DE L—expression:

(1—2z—22)

IR log z + w' (4.61)

/
v=" (log(1 — 2) +log(1l — 2z — 2%)) +2
z

over F. Replacing log(z)log(1 — z — 2%) + w with w, we obtain

2 (1—2z—22)

U:;log(l—z%l— T log 2z + w'. (4.62)
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Claim: v cannot be written as a special DEL—expression over any logarithmic

extension of F.

Let L = F(log(z — aq),...,log(z — o)), a;’s € C, be a logarithmic extension
of F. Since ' = C(z,logz,log(l — 2),log(l — z — 2?)), we can assume L =
C(z,log(z — 1), . ..,log(z — a,)) where log(z — a;)’s are algebraically independent
over C. Suppose
- (Z — aj)/ / - (Z — aj)/ /
— Sl VA — Too(1 — » — q. ) %)
v ZT] e— + v ZC] og(l — 2z — aj) + v,

Z— Q5
j=1 J

j=1
where ¢; € C and vy € L, is a special DEL—expression of v over L. It is evident

that w — vy is a quadratic polynomial in C(z)[log(z — a1),...,log(z — ay)].

Let w—vg = Y7 djlog*(z—a;)+ Y7, wjlog(z—a;)+wp, where d;’s are constants

and w;’s are in C(z). Thus

2 (1—2z—22) = (z — ;)
= Nog(1 — VT27%) oo s = oo(1 — » — q ) E %)
. og(l—2)+ ogz E cjlog(l — z — )

1—2— 22 Z—

j=1
n n /
— (Z d;jlog?(z — aj) + ij log(z — a;) + wo) :
j=1 j=1

Let ag = 0 and ay = 1, compare the coefficient of log(z — ;) i.e log z and obtain

(-2-2) (-1 o F
1—2—22 z—1

which is absurd because no such element w; lies in C(z). This proves our claim.

Therefore, v does not hold antiderivative in any DE L—extension. 0
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Chapter 5

Integration with Polylogarithmic

Integrals

We study integration in finite terms with polylogarithmic integrals along with
transcendental elementary functions in this chapter. In the first two sections of this
chapter, we define polylogarithmic integral of order 3, namely trilogarithmic integrals
and extend the Liouville’s Theorem to include trilogarithmic integrals. Though the
proofs concerning trilogarithmic integrals are quite lengthy and calculations are
exhaustive, the techniques used are similar to that of dilogarithmic integrals. In the
third section we note that one can inductively extend these results to polylogarithmic
integral of order m. We expect proofs concerning polylogarithmic integrals to be
quite complicated and therefore we shall only state the conjecture for integration in

finite terms with polylogarithmic integrals.

75
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5.1 Trilogarithmic integrals

In Chapter-3, we defined polylogarithm as
= 2
Liy,(z) = E —
Z (Z) n=1 n
and
d 2!

d—Lim(z) = —Lin-1(2), for any positive integer m.
z z

In particular, for m = 3
d

, Y
ngg(z) = ;LZQ(Z).

Therefore from an algebraic point of view, we shall define trilogarithmic integrals as

below:

Definition 5.1.1. Let £ D F be differential fields and g € F — {0,1} be any

/%62(9)

in F is called trilogarithmic integral of g and is denoted by f3(g).

element. Then the integral

It is clear from the definition that for g € F, ¢3(g) is primitive over the field F'(log(1—
9),02(g)). Now we look into some identities of trilogarithmic integrals whose proofs
involve only basic algebra. One of the fact which we will use widely is noted as a

remark below. The approach to the remark is similar to the one used by Baddoura

in [1], pp.924-925.

Remark 5.1.2. Let f € F(f) be any non-zero rational element and assume 0 is

transcendental over F. Let F be an algebraic closure of F' containing all the zeroes
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and poles of f and 1 — f. Let {ay, as, ..., a;} be the set of all zeroes and poles of f
and 1 — f in F. Write
t Q-
:nH(G—aj)“j and 1—f= Q —g_zgn

J=1 Jj=1

where 7,& € F, P, and R are co-prime monic polynomials in F[f] and a;,b; are
some integers. Without loss of generality, assume P(a;) = 0 for j = 1,...,m,
Qo) =0for j=m+1,...,nand R(e;) =0 for j =n+1,...,t. Since P, and
R are co-prime polynomials, it is clear that by =--- =0, =0, a1 =---=a; =0

and a; =b; for j=m+1,...,n

Consider the expression

/

T = Z akb —CL]bk o ks
- k

7,k=1
k#j

where vy is any element in some extension of F(6) and divide T into three parts

T =T, +T5+ T; where

:;ak< zt: bo‘:zz>

Jj=m+1
“Loh— o
b
-y (z =L
k=n+1
n o — o
_ 7 k
T3— Z (ak Z b —ak_bkz%a'—ak>vk’
k=m+1 j=m+1 j=1 J
Since nP + &R = Q, if P(ag) =0 for some k = 1,...,m then {R(ay) = Q(ay) and
its logarithmic derivative is R((O";)) %((2’;))/ = _%. Thus,

t

S 5,0 —Zk _ R Qw) _ €
- Gk

Rlow) Qo) '3

j=m+1
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Similarly for some k =n+1,...,t,

Note that for k=m+1,...,n, ap = b and

n

ag Z ba :zk—bk Z a]a _akZO.

—
j=m+1 j=m+1 k

Also, Q(ag) =0 for any k =m +1,...,n and nP(ay) = —{R(ay). Therefore,

—aj, —aj, o
y;lb B ; A ]Zn;‘lba ok ;aﬂa]_ak
Play)  Rlay)
Play)  R(ow)
RS
n

k=n+1 k=1 k=m+1
t
B n ¢
= Z bk_ — akg Vk -
k=1 n O

Since derivative of trilogarithmic integral involves dilogarithmic integrals, it is useful
to have some more identities of dilogarithmic integrals. Baddoura [1] described an
identity for dilogarithmic integrals in terms of Bloch-Wigner-Spence function. We
shall state and prove a similar identity which involves only dilogarithmic integrals
and its proof is similar to one mentioned in [1], p.923, Proposition 2 (which we have

also noted here as Proposition 4.4.2).
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Proposition 5.1.3. Let F(0) D F be a transcendental field extension with Cp@y =
Cp. Let f(0) be a rational element in F(0) and {ay;j = 1,...,t} be the set of all
zeroes and poles of f(0) and 1 — f(0) in an algebraic closure of F. Also, for some
integers a;, b;, let f(0) = 77]_[;:1(9 —a;)%, 1—f(0) = 5]_[2.:1(0 — )%, then for

some constant c,

t

G(F0) = La(n) = > ajbily (9 — O‘j) - % > ajbilog®(0 — ay)

: 0 — ay ;
Jk=1 Ji.k=1
k#j

t
— Zak log(0 — ay) log & —
k=1

t
Z a by, log (Z - aj) log(a; — o) + c.

—
k=1 k
k#j

Proof. From the definition of dilogarithm, we have

/

0(F(0) = —§1og<1 s (5.1)

Replacing f,1 — f with their partial fraction expansion and rearranging the terms,

obtain

/

O(f) =— n log & + Zaj log(0 — aj)é— - Zbk log(0 — ak)n—
U § = U

— zi log(0 — ay) — <Z a;jlog(f — a; ) log g) . (5.2)

jik=1 J

J=1

From the definition of dilogarithm, observe

. : Y
Z a;bily (0 - aj) - Z a;by (log(6 — a;) — log(0 — ay,)) OZJ. -

Jk=1,k#j 0= au Jk=1,k#£j] Qj — Xk
t
0/ — O/- 9’ a’
+ a;b S k) log(0 — o
> ot (Gt = S g0 - a
Ji.k=1,k#j

_ ( i a;by log (z — ) log(ay; — ak)>/. (5.3)

Jk=1,k#j
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Using remark 5.1.2, the Equation 5.3 can be written as

t / t

(9 . .
5 (0 o)+ 3 o = - (2

k

k=1 jk=1 j =1
k#j
d 0 — a d 0 — a; /
+ Z a;by, 7 a: log(0 — ay) + ( Z a;by log (9 — ai) log(a; — ()ék)) :
7,k=1 ]}Cl;:'l
j

From Equation 5.2, we see that LHS of above equation equals —/¢5(f) — %logf —
/
<Z§-:1 a;log(6 — o) log 5) . Therefore,

o) =~ Do~ Y auts (475 ) = 3 bt kogto )
7.k

0— «
7,k=1 k
k#j

— (Z ar log(0 — ay) log §> — ( Z a;by log (Z : Zj) log(a; — ak)> .

k=1 7,k=1 k
k#j

When deg(P) < deg(Q) or deg(P) = deg(Q) with n = 1, in both cases the term
%/logf = 0, otherwise £ = 1 —n and —%’ log & = ¢4(n). Thus integrating the above

equation we shall obtain desired result. O

We note one more basic identity for dilogarithmic integrals in the following remark.

Remark 5.1.4. Let F(f) D F be a transcendental differential field extension and

Cr@) = Cr. Let a, 8 be algebraic over F. Then, for some constants c,g and c in F,

A (Z:g) — 0 <Z_B)+log(0—oz)log(0—6)

~ 5 (08206~ ) 410820~ 8)) + coplog (=3 ) +¢

Proof. From the definition of dilogarithm, it is clear that

% (5=5) =~ (= - 7=7) == (5=5)
AN f—a 0-7 3
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and

g (0=B\_ _(#=8 0=\  (B-a

2(9—a>__(9—5_9—a>0g(9—a)

9/_6/ 0 — o Oé—ﬁ
(75 (s (5=0) v o).

Adding the above two equation gives

/ /

6 (5=5) + 4 (522 ) =logt0 — )log(v - 8) - 5= log(0 - a)

0—p _
0 —p 0 —o 0 —-p
_ log (0 — . — .
Rearranging the above terms and integrating gives us the desired relation. O
We are dealing with dilogarithmic integrals of the form Zg(zz—g). The question

of algebraic independence of such dilogarithmic integrals is natural. From above
remark it is clear that Ez(z:—g) and 62(%) are algebraically dependent over a field
containing log(f — ) and log(6 — 3). Now we will show that the set {/, (Z:—gi) ik >
J.a; # ap for j # k} is algebraically independent over a logarithmic extension of

F(6).

Recall that a differential field extension F of F' is called a logarithmic extension

of F''if Cr, = (Cr and there are elements hq,...,h,, € F such that F =
Flog(hy), ., 1og(hn).

Lemma 5.1.5. Let F(0) D F be a transcendental differential field extension
of F' and Crp = Cp. Let ay,...,0p be distinct elements in F. Then the set
{ls (G_—O‘z) ik > j} is algebraically independent over the logarithmic extension

00—«

E = F(0)({log(a; — ax),log(0 — ay); 5,k =1,...,t}) of F(6).
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Proof. Suppose the set {5 (%) ;k > j} is algebraically dependent over E. Since

for each k > j, the derivative £, (g:zi ) lies in E, we shall apply Corollary 2.3.3 and
obtain .
0— o 0— a;
l = il ]
2<‘9—a2) -kzl Cjk2<9—ak>+v7
S

where each ¢ is a constant and v € E. Taking derivative of the above equation, we

get

¢ / ! ' /

- Y (o - e g (S ) 4 (5.4)
Since log(f — ay) is transcendental over the field Fy = F(6)({log(a; — ay); j, k =
L,...,t})({log(0 — «);j # 2}), we can apply Proposition 2.2.4 and therefore, for
some constant ¢; and elements vy,vy € F5, we shall write v = ¢ log2(9 — ag) +
v1log( — ae) + vg. Comparing the coefficient of log(f — a) in the above equation,
we will obtain

0 —aof O —d 0 —

/
_ :2 2 /'
0 — oy 0 — oy 619—a2+vl

It is obvious that ¢; = —1/2 and for a constant ¢, v; = log(f — o) + ¢. Thus the
Equation 5.4 becomes

- (9 L ‘O“Q)log(al—ag):

6—061 9—062

t
0 — o 0 — o L o — o
- Y (e - T o () T o0 - )+ 0 44

0 — a; 0 — «
jk=1 J 2
k>, kA2

Now since log(f# — aq) is transcendental over Fy = F(0)({log(a; — ay);j, k =
L...,t})({log(0 — a;);7 # 1,2}), we reapply Proposition 2.2.4 and repeat the
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same process. For some constant c; and elements wy,wy € Fi, we write vy =
colog?(0 — ay) +wy log(f — o) +wp. Comparing the coefficient of log( — ay) in the
above equation, we shall obtain

/ / / /

+ 2c¢
6)—062 9-0[1

+ wj = 0.

It is clear that there exists no such w; in Fj. Thus we arrive at a contradiction
and therefore, the set {/s (Z:—ZZ) ;k > j} is algebraically independent over the

logarithmic extension F of F. O]

The trilogarithmic integrals ¢5(1 — g) and ¢3(g) have no known identity. However,

l3(1/g) and ¢5(g) do satisfy a relation which we note in the next remark.

Remark 5.1.6. Let F D F' be differential fields and v, r, g, w € E such that

/

U:rg—+w',

9

where 1’ = —clog(1—g)g'/g, that is, r = cls(g). Since £5(g) = —l(1/g9)—(1/2)log? g,

(1/9)
(1/9)

where 1 = —(c/6)log® g + w. In other words, ¢3(1/g) = ¢3(g)+some element in the

~

Q

/
logzg% +w' = cly(1/9g)

v=—cly(1/g) g + ',

< |

field containing log g.

5.2 Liouville’s theorem for 7 —extensions

We shall consider trilogarithmic integrals in our field of definition and extend

Liouville’s Theorem to such extensions.
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Definition 5.2.1. A differential field £ D F is called a 7 —eatension of F' if Cg =
Cr and there is a tower of differential fields F; such that

F=FKCFHCkKcCc---CF,=F

and for each i, F; = F;_1(0;) and one of the following holds:

(i) 0; is algebraic over F;_;.
(ii) 0, = u'6; for some u € F;_y (i.e. §; =e*).
(iii) 0 =« /u for some u € F;_y (i.e. 6; = log(u)).
(iv) 0 = vu'/u, where v/ = (1 —w)'/(1 — u) for some u,v € F;, 1 (ie. 0; =

[ “log(1 — u), also denoted by —fs(u)).

(v) 0 = vu'Ju, where v/ = —u/log(1—u) /u for some u, v € Fi_1 (i.e. 0; = [ “ly(u),

also denoted by 3(u)).

Definition 5.2.2. We say that v € F admits a T —expression over F if there are
finite indexing sets I, J and elements r;, g; € F' for all i+ € I, elements s;, h; € I for

all 7 € J and an element w € F' such that
/ .
v = E rdi 4 g th_] + ', (5.5)
i J

where for each ¢ € I, there is a constant ¢; and log(1 — g;) € F such that r, =

—cig;log(1l — g;)/gi, and for each j € J there is a constant d; such that s} =
dj(1 = hy)' /(1 = hy).

If in expression 5.5, 7’s satisfy some DEL—expressions and s;’s are constant linear
o . . g W
combinations of logarithms over F' then the expression: 3, rii* + > ey j55 + w

will be called general T —expression.
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Definition 5.2.3. We call a differential field extension E of F' to be a diloga-
rithmic extension of F if their field of constants coincides and there are elements

Yooy Ys Ao 2m € F such that B = F(log(ya), .., 10g(yn), 2(z1); - - £a(2m))-

Note that for a T —expression:

g, R, . . .
ier iyt + D jes8ipt + W' over a dilogarithmic
J

extension M D F, where r; = —¢;g} log(l — gi)/gi and s} = d;(1 — hy)'/(1 — hy),
we shall combine the term -, ; s]-Z—;: = (2 jes djla(hy))" with w' and consider

the T —expression over M as > ot w’ only. Similar to Proposition 4.1.2 for

zEI
DE L—expressions, we first prove that a ’T—expression over a dilogarithmic extension
of field F' can be written as a general T —expression: ) .., 7:g;/g; + w', where 7;

satisfies some DE L—expressions.

Proposition 5.2.4. Let F' be a differential field and v € F satisfies a T —expression
over a dilogarithmic extension E of F. Then v satisfies a general T —expression:
v="> rigl/gi+ Y sihl/hy+ (5.6)
iel jeJ
over F, where I and J are some finite index sets and each w, g;, hj,r;, s; are elements

in F such that

T —tgl—i—erh s :erg’—i—z,sjk (5.7)

jeJ i€l i keJ
t = —c;—T% (1—g:) +ch = ¢iC; ~|—Ze and
i ) 1_ g ) zyh ) 2] z]k
’ 9i ey
9; h
= egp— + Z fjkl (5.8)
iel 9i leJ

- /
where each c; is a non-zero constant whenever r; # 0, each c;j, €k, fjm are some
constants and each t;,r;; and sj, are in some extension of F with e, = e;; and

Sk = Sk; for everyi,j and k.
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Proof. Suppose E = F(logy,...,l0gYn, la(21),...,l2(2y)) is a dilogarithmic ex-
tension over F, where yi,...,Yn,21,---,2m € F forms a transcendental base of F
over F. We can also assume that each log(1l — z;) lies in F(logyi,...,logy,). Let
v o= ZZE[ —i— w' be T —expression over E. Since each f5(z;) is primitive over

E, = F(logys,...,logy,), we shall apply Corollary 2.3.3 and write

m
E cijla(zj) + si

j=1
for some constants c¢;; and elements s; in E;. Considering Proposition 2.2.4, we
assume w = » 75 djla(25)la(2k) + D71, wila(25) +wo, where each djy, is a constant
and each w;,wy lies in Ej. Since {ly(z;)} are transcendental over Ej, we shall
compare the coefficients of /5(z;) in the expression of v and obtain
o

v = Z slg’ Zw] log(1 —I— wp, (5.9)

’L

iel
where s; = ¢;l5(g;) Zczjég ;) (5.10)
7j=1
and  w) = ZcugZ + Z ik + dij) log(1 — zk) : (5.11)
el 9o
Since dilogarithmic integrals are non-elementary functions and ¢5(z1), . .., l2(2,,) are
algebraically independent over Ey, dj, + dy; must be 0. Thus, w}; = — >, ; cijg—i.

Now each s; € Fy and s, is a polynomial in F[logys,...,logy,]. We shall apply

Proposition 2.2.4 and write

8; = Z eirt log y log y + Z ik log yp + ¢4, (5.12)
kd—1 1
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for some constants ¢;,; and elements s;;,t; € F. Also using Corollary 2.3.3, write

w; = Z e;r 1og yi + wjo, (5.13)
k=1
log(1—¢;) = Z d;x logyr + a; and (5.14)
k=1
log(1—2;) = Y fixlogyx + B, (5.15)
k=1

where each e, d;, and fjy, is constant and each wjo, o, 3; is some element in F. From
Equation 5.9, it is clear that wj € F[logy,...,logy,] is a polynomial of degree 2.

Therefore, a repeated application of Proposition 2.2.4 gives

wo = Y ciulogy;logyelogy + Y vwlogyslogy + Y vk logyk + vo,
Gk l=1 k=1 k=1

where ¢ € Cp and v, v, v9 € F. Take derivative of s; in Equation 5.10 and
substitute values of log(1 — ¢;) and log(1l — z;) in it. Also take the derivative of s;

in Equation 5.12. Comparing these two expressions for s;, we shall obtain

! m z/, n /
Sik = _Cidik& + Z cijfin=" — Z(eikl + eilk)% and (5.16)
9 4 A Yi
9N~ a4 N~ Y
t; = —cii= + Z cii b= — Zsik—k- (5.17)
g = S

Now substituting the values of s;,w;,log(l — 2;) and wy in Equation 5.9 and

comparing the coefficients of log? i, and log vy, observe that

AL 2= Y
(vrt + i) = — Z(eikl + eilk)% + Z(ejkfjl + ejifin) = — Z ej_]. (5.18)

J
Z.
i€l j:l 7
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/ n /

+ ) (0w + o)L, (5.19)

%N z
and — vy = E sik; — E (wjo fir + €rf;) "
% =1

Zj
iel j=1 “j
where e; = dess Co(j)o(k)o()- Comparing the constant terms of Equation 5.9, we

obtain

9%~ %N U
T DI ST NS pre e
e I O o Y
The above expression is the desired general 7 —expression for v, where the derivatives
of the coefficients, that is, t;, (w;of;)" and vj, satisfies the DEL—expressions given
by Equations 5.17, 5.13, 5.15 and 5.19. Further observe that coefficients in these
DE L—expressions satisfies L—expressions given by Equations 5.14, 5.15, 5.16 and

5.18. u

Remark 5.2.5. Note that in Proposition 4.1.2, when we reduce a D—expression
over a logarithmic extension of F' to a general D—expression over F., we obtained
“two sets of equations”, namely, 4.1, 4.2. In a similar way, in Proposition 5.2.4
when we reduce a T —expression over a dilogarithmic extension of F' to a general
T —expression over F, we obtained “three sets of equations”, namely, 5.6, 5.7 and
5.8. Thus inductively we can conjecture that for any polylogarithmic extension of
order m, a P—expression will reduce to a general P—expression consisting of “m-sets

of equations”. We will explain this in detail in the next section.

Proposition 5.2.6. Let F' be a differential field and v € F satisfies a general
T —eapression: ) ., 7ig;/9i + w over F, where the elements r; € F are chosen as
in Proposition 5.2.4. Then there exists a dilogarithmic extension K of F such that
v satisfies a T —expression over K and there exists a T —extension E of F that

contains an antiderivative of v.



5.2. LIOUVILLE’S THEOREM FOR T—-EXTENSIONS 89

Proof. As in Proposition 5.2.4, consider a general T —expression:
Zrigg/gi + Z sl hj +w'
iel jeJ
over F, where I and J are some finite index sets and each w, g;, h;j, r;, s; are elements

in F' such that

/

rztij#—z:r”h s —ergl—FZ Jk

jeJ iel gi keJ

/ - gl gz

t, = —cl 1 + E clcwh 7" = czcm + E emk and
- gz z

jeJ keJ

]k = Zez]kgl + ijkl_

iel 9i leJ

where each ¢; is a non-zero constant whenever 7, # 0, each c¢;;, ek, fjm are some

constants, e;jr = e;; and sj, = s; for every 7, j and k.

Over the extension F'({log g;,log h;}), we can replace w—>_,_; r;log g;i—> ;¢ ; s;log

with w and write v as
v = —Zrl’-loggi — Zs;loghj +w'.
iel jed
Substituting values of 7 and s, we obtain
gz 9i
__Z( —|—erh>loggZ Z(er —i—Zsjk >logh +w'.
iel 9i jeJ jeJ \iel 9i keJ

We shall replace w with w — 1/23°,,t:log> i — > ,c; > jesTijloghjlogg; —
1/23 ;i res Sixlog hylog hy,, we get

1 1
=5 Zt; log? g; + Z r;j log hjlog g; + 3 Z s;-k log hjlog hy, + w'.

icl i€l jeg jked
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Now substitute ¢, r.. and sgk in the above expression for v, thus

i ag
1 1 - gz
v :52 <—c2 1—g + ZCZCU ) log i
i€l
- Z (CZCU + Z Cijk7— ) 10g h log g;
icl,jeJ 9i s
1 g,
+ 2 Z <Zewkgl +ngkl ) log h;log hy, + W',
],kEJ iel leJ

where f;; are some constants. Note that for some constants cjy, we can
h/
assume fjp = ZUGSg Co(j)o(k)o@) and thus the term ZMJEJ fjklh_i log hj log hy, equals
(2= ke Cixi log hylog by log By)'. Also note that the last term in second sum and
first term in the third sum combines to give (Ziel’j7keJ eiji log g; log h;log hy,)'.
Similarly last term in first sum and first term in the second sum combines to give
(3 Yier > jesCicijlogh; log? g;)'. We shall replace w with 3 > icrjey CiCijlog h; log? ¢;
+ Ziel,j,ke] eijr log g;log h; log hy, + % Zj,k,leJ c;r log hjlog hy log hy +w and observe

Again replace w with w — £ >, .; ¢;log(1 — g;) log? g; and obtain

/
v = Zci& 108;(1 - gi) log g; + w' = — Zcin(gi))/log g; + w'.

ier 7t il
Now consider the differential field extension F({logg;,logh;,l2(g;)}), which is

obviously a dilogarithmic extension of F' and replace w with the element ), ¢;l2(g;)

log g; + w. Therefore,

v = chgg gl

el 9i

Thus v satisfies a special T —expression over the dilogarithmic extension
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F({log gi,log h;, l5(g;)}) of F' and if we consider the trilogarithmic extension E =
F({log g;,log h;, €2(g9:)})({€3(g:)}) then [v =", ;cils(g:) + w lies in E. O

From Propositions 5.2.4 and 5.2.6, we obtain necessary and sufficient condition that
v satisfies a T —expression over some dilogarithmic extension of F' if and only if v
satisfies a general 7 —expression over F' whose coefficients satisfies the relation given
in Proposition 5.2.4. Proposition 5.2.6 also gives a sufficient condition for existence
of an element v € F' whose antiderivative lies in some trilogarithmic extension of F.

The necessary condition for this result is discussed in Theorem 5.2.10.

The following lemma, whose proof is lengthy and involved, plays a role similar to

that of Lemma 4.2.2 and is required to prove the Theorem 5.2.10.

Lemma 5.2.7. Let F(0) D F be a transcendental T —extension of F. Suppose there
is an element v € F such that v admits a T —expression over the differential field
E =F(0)(log(y1),...,108(yn), l2(21), ..., la(2m)) where each y;, z; € F(0) and Cp =
Cp. Then there is a differential field M = F(log(p1), .. .,log(p), 2(q1), - - ., la(q:), 0),
where each p;,q; € F, having the same field of constants as F' such that v admits

a T —expression over M. Moreover, if 0 is exponential over F then v admits a

T —expression over F(log(p1),-..,log(p), la(q1), - -, ¥2(qr)).

Proof. Let I, J be finite indexing sets and there be constants ¢;(# 0),d; in F' for all
1 € I and j € J such that

9. i
A " 5.20
v ngi+Zthj+w ( )
i€l jeJ
9i 1—h;)
ri = —cilog(l —gi)>, s; = djg. (5.21)

Gi (1 - hj)
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where 74, g;,1og(1 — ¢;),sj,hj,w € E for all i € I and j € J. That is, v admits
T —expression over E. Since st—;: = —d;ly(h;) or st—; = (s;log(h;))" (when d; = 0),
if necessary we enlarge £ and assume (3(h;) € E. Replace v’ with w' + Z] cJ S Zl
and write

v = Zrzgz' +w'. (5.22)

ic1 9

Observe that log'(1 — g;) — (11__—3;1_)/ =0 € F(0), we use Proposition 2.2.6 repeatedly
and obtain 1 — g; and thus g¢; lies in F(0) for each i. Assume g; = nig ', where
n; € F and P;,Q; € FIf] are relatively prime monic polynomials. If for some i,
deg(P;) >deg(Q;) then use Remark 5.1.4 so that for each i, deg(P;) <deg(Q;). Let
F be an algebraic closure of F' and A = {0 = ay, ..., a;} be a subset of F such that
Py =TT2i (0 — a;)',Q; = TTj—, (6 — a)™ and Q; — P = &I, (6 — ;)" for

some §; € F, where [;;, m;;, and n;; are non negative integers.

Let My = F({log(n:),log(&:), fa(m)li € I}, {log(a; — ap)ljsk = 1,...,t,j # k}6)
be a differential extension such that w € M, ({log(ﬁ —a),ly (g:—g) la, B € A}) :
Consider M = F({log(a; — ox)lj b = 1,17 # k}, {log(m), log(&), Ex(m)li €
I},0) and let M* be a differential subfield of AM; such that I C M* 6 is
transcendental over M* and M*(0) = M;. This setup is similar to the one in

Lemma 4.2.2. Let Q5 = lz‘j — Ty and bz’j = Ni; — My and note that Z;:l Q5 =

deg(P;) — deg(Q;) and Z] 1 bij = deg(Q; — n; P;) — deg(Q;). Using Proposition 5.1.3

we have
t
0 —
T, =Ci€; + C; (62(’[7@) — Z aijbikgg (0 Oé]) — — Z a/z]bzk log (0 - ak)
k=1 — Q% k=1
k#j
— Zazk log(0 — ay) log & — Z a;;bi, log ( ) log (o — o@), (5.23)

7,k=1
k#j
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where e; are some constants. It is clear from Remark 5.1.4 that for some non-negative

integers j, k, (o (Z:Zi ) and (y <z:3’?> are algebraically dependent over M ({log(6 —
a)|la € A}). In order to make these factors algebraically independent we use Remark
5.1.4 and observe

t t

0— o
ri=¢ (52(771') - Z (aijbir — aixbij)ls ( a]) — Z airbijlog(0 — a;)log (0 — )

: 0 — oy ;
J,k=1 k=1
k>j k>j
t
- Z a;;log(6 — a;)log & — Z a;;bii, log < > log(cy; — ou)
j=1 j,k=1
k#j
1 < 1o
— 5 Z (aijbik — aikbij) 10g2(9 — (l/k) — 5 Z aijbz-j 10g2(9 — Ozj) + 6i>. (524)
7,k=1 j=1

k>j

Using Remark 5.1.2, — Z;zl a;jlog(0 — o) log & — Zj k=1 @;;bi; log < ) log(a;
k#j

ay) can be replaced with —ZZZI bir logn;log(0 — a) + > k= firlog (9:043').
k#j

0—oap
Therefore,
t
iel G k=1
e (7
¢ t
— ) awbi;log(6 — a;)log(0 — ax) — > b log n;log(6 — ay,)
Jik=1 k=1
k>j
1 « L y
2 Z (aizbix — abiy) log™(0 — ) — 5 Z a;;bijlog? (0 — aj)) g—’ +u.
k=1 = ;

E>j

(5.25)

Note that here we have replaced ),

M ({log(0 — o), b (g:gi) k> j,j = 1,...,t}) and o' € M({log(d — a)la €

cieigi/g; + w' with w'. Now since w €
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i) k>j,7=1,... ,t}], we apply Proposition 2.2.4 and assume

ap [{e (=

: t
2. AN SRS 0,
= . mg J g g ’
’ jklmzlc]kl 2(9_ak) 2<9—am)+ Wik 2(9—ak>+w07
k7>7j7,m>l =

where ¢jp, are some constants and each wj, wy are some elements in M (log(6 —

a)la € A).

Substitute w’ in equation 5.25 and compare the coefficients of ¢, (z:Zi ), for each

j.k, we get

_Zcz (aizbir — azksz + Z Cirim ( ~ ) + wy, = 0.

iel Yi I,m=1
m>l

It is clear that cjrm, = 0 for each j, k,1,m and wj, = >, ¢i(aijbir—aubi;) log gi+ejy,

where e, are some constants in /. Thus,

t
v = Z 1 (EQ ;) Z a;kbijlog(0 — a;) log(6 — o) — Z bir logm; log(0 — ay,)

iel 4 k=1 k=1
k>j
t o 1 t
] 2
T Z fik log< ak) 9 Z aijbir, — aixbij) log™ (6 — ay)
j,k=1 k,
kyéj k>j

9i
_ _Za”bw log ))g
0 —a), 0—a aj — Qg
+ Z (Zci(aijbik — aixbij) log g; + ejk) (0 — a: = 04;) log ( 9]— Qg )

jk=1  4cl
k>3

+ wp. (5.26)

We divide the rest of proof in two parts.
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Case I: When 6 is an antiderivative, that is, §’ € F.
As observed in Lemma 4.2.2 it is easy to see that log(d — aq),...,log(6 — ay) are
algebraically independent over M*. Apply Proposition 2.2.4 to wy and write

t t
wy = Z cjr log(d — ;) log(0 — o) log(8 — oy) + Z vj, log (0 — o) log(8 — ay)

Gk l=1 Gk=1

+ Z vjlog (6 ) + woo,

for some constants c;;, and elements v, v;, woo € M. Expand logg; as logn; +
25:1 a; log(6 — ;). Substitute wy, log g; in Equation 5.26 and compare the constant

coefficients, we have

0 —a) 0 —q]
V= Z (ZCZ azg ik — aikbij>10gni+6jk> (Q_a: — R >10g< _ak)
J

7,k=1 el
k>j
! 0 — o
+ Z cils( 771 : Z . a: + Wy (5.27)
iel -

Again with the use of Remark 5.1.2, we have

t
9/ _ Oé, 9/ _ Oé/'
>y (Zci(aijbik — aixbij) log 771‘) (9 — a: . Oéj') log(a; — o) =

k=1 el J
k>j

i 0 — «
> (ailog& — by logn + dig) log n;——*
k=1

60— [07%
for some constants d;;. Therefore,

t
gz Q_Qk 9—04
—E Lo (n; E 1 —
v cila(n;) + €gk( T 9_%> og(a; — ay)

el J,k=1
k>j

t t
0 — o 0 — o
+ Z(aik log & — bir logm; + diy,) log m; 7 ak + Z kawk +wpo.  (5.28)
k=1 TR = k
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To know more about the element vy, we compare the coefficients of log(6—«;) log(6—

ay) and log(f — ay) for each j, k in Equation 5.26 and observe that

.

1

(Ujk + 'Ukj)l = aikbij for k> j,

/

1 !
Vi = B ( Z (a;jbir, — airbij) + az’kbik> %

1<j<k ¢

and

/ t 0 — o /
_— | b i 'y A a 4
e iel ; (bm 10gma " Za”blk log 7 0 —a; - Z (fix fka);i

>k 1<j<k
t
0 — o 0 —a; 0 —a
o Sent —bsn e =2 ) - 8 (- G).
j=1 J 1<j<k J

Note that for each i, logn;,log&;, ¢2(n;) € M*(0) where 6 is transcendental over M*.
Also, for some 1, if ¢5(n;) € M* then it is obvious that log&; € M*. Therefore, there
are only three sub cases possible:

(a) IOg i, logfia EQ(T/Z) € M~

(b) logn;,log& € M* and ly(n;) € M*(0).

(c) logé&;, la(n;) € M* and logn; € M « (0).

We divide the index I into three subsets I, I, and I3 consisting of those #’s for which
(a),(b) and (c) holds, respectively.

Then clearly

/ / t
U;C = Z C; (bik log n;+ Z (f]k—fk]))%—i-z C; (bik logni%+Aik9’) +Z Bjka;-

i€, Ul 1<j<k toel; j=1
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which implies
! bix log” A;l t B
= 5;@ ik 108 Th‘-ir; i Ogm‘i‘; kO T+ €k,
for some constants A;, By, e,. Suppose for each 1, j, k, log(co; — ay) — cji, logm; —

d;0,0x(n;) — fi € M* where ¢y, d;, fi are constants. Then Equation 5.28 reduces to

t

v = Z cifg(m —i— Zczfl Zazk 0" — o) + Z ejkcjk(oz; —a})

iel icly jk=1
i<k
0 — o
- Z Czd Z bzkz - ak + Z C; Z Ak 10g fz bzk 1Og 772) 10g nze—a:
i€1l3 €13 =
+ terms containing poles + wy,. (5.29)

Let L = Zielg ci 22:1(%% log& — %b,-k logm)logm%’:ﬁ“ and logn; = d;0 + (3,
where (3; € M?*. Then the constant term in L is Ziel 1 22:1(%’16 log &d; —
i (420 + 2d, 8, + dZwy,) ) (0" — o). Since we assumed deg(P;) <deg(Q;), if deg(P;) <

deg(Q;) then log¢; is a constant and Y, , by, = 0. So the constant term in L
becomes ) ;. cis Sy bin((d20+2d;8;) ), — d20a,) which can be further written as
=Y ier, G 2oy b (20 +2di B g+ p' = = Y icp, 6Dy bikdiz—f% + ¢ for some p €
M*. From Remark 5.1.2, we have — ZZ 1 bikn—;ak = ZZ 1 bik Z;:L#k aij%ak =
Zk 1 bik Z] 1,5k awav_ak Zk 1 bik Z] 1,5k a;(a — o) = _22:1 aij%aj -
Zk:l il ijl,j#k aij(a—ay) = — Zk:l bis Zj:l,j;ﬁk aij(a;—ay). Thus the constant
term in L is a derivative in M*. Similarly, if deg(F;) = deg(Q;) and & = 1 — n;,
we proceed in the same manner and observe that v equals sum of derivatives of
trilogarithmic integrals over M and an element over M. Since M; is algebraic over
M, using the Proposition 2.2.2 we can find a suitable element w € M such that v

satisfies a T —expression over M.
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Case II: When 6 is exponential over F', that is, for an element = € F,0 = 2/0.

Then log(f# — a;) = x € F. Using Remark 5.1.2, v can be rewritten as

t t
v = Z C; <(€2(77¢) - Z aixbirlog(0 — ay) — Z aixbijlog( — a;) log(0 — )

iel k>1 Gk>1

k>
t t
— bz logm; — Z bir log m; log (60 — ) + Z fie(z —log(0 — ay))
k>1 k>1
t 1 1
+ Z fr1(log(0 — o) — ) — B Z(ailbik — axbin) log?(0 — ay,) — §ailbz‘1$2
k>1 k>1
1 ¢ ) 1o , q.
-3 > (aijbix — aibi;) log*(0 — ) — 5 > aisby log*(0 — aﬁ) -
Jk>1 j>1 9i
k>
t 0 — o
+ ) (aijlog& — bijlogm; + di;) log(g:) —
i=1 ’

t
0 —of 0—a
- Z (aijbir — aibij) log(g;) log(0 — ax) ( ko J))

0—ar 0—aq;

k=1
k>3
t
0 —a, 0—a] i — Qy
; — 1 J r. 5.30
+,k2:16]k<9—ock 0 — o 8 0 — ap o ( )
ks

Again apply Proposition 2.2.4 to wy. Thus for some constants cj;; and elements

Vjk, Vj, Woo € My, we shall write

t t
wy = Z cjr log(d — ;) log(0 — o) log(8 — ay) + Z vj, log (0 — o) log(8 — ay)

Jk,1>1 Jk>1

t
—+ Z Uj IOg(Q — O./j) —+ Woo-
§>1
Expand log g; as logn; + anx + Z§>1 aylog(6 — o). Equate the coefficient of the
product log(f — ;) log(8 — ay,), for each j, k such that & > j, in Equation 5.30 to
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zero and after removal of the pole part in it(which has to be zero), we get

(vjk, + vij) Z iy ( + ajpx ) + hjpa’, (5.31)
el i
where hjr = =), Ci((ailbik —abi)ai; + (b — aijbﬂ)aik) is constant. Similarly

we equate coefficient of log®(6 — ay,), for each k, in Equation 5.30 to zero and after

removal of the pole part in it, we get

1 /
Uk =5 Z Ci <(az‘1bz’k — akbi) + Z (aijbix — awxbi;) + az’kbz’k> (Z + (lﬂﬂU/)

(2

iel 1<j<k
- Z ci(anbir — airbi)aga’. (5.32)
iel

Therefore, it is obvious that vj; 4 vi; and vy, are some elements in M*. Compare

the coefficient of log(6 — ;) in Equation 5.30 and obtain

0 — ozj
Z C; <_aikbi1x - bzk log i — flk; + fkl + Z 27 log 52 bzg log Ui + dzg)azk 0
i€l L= a
0 —ao. 0—d

- Z (aijbix — airbij)(log ni + anx) ( 7 a: — 7= aj))

1<j<k

0" — a;c 0 a; v

S () g im0 o

1<j<k

Divide the indices 7 > 1 into three parts, replace the fraction ¢;/g; with its partial

fraction expansion and compare the coefficients of (6 — })/(0 — a;) as follows:

Sub-case I. When j < k:

Z Ci((—aikbuﬂﬁ — birlogni — fie + fr1)ai; + (aibi — aubi;)(logni + ainx) + e

el

=+ (aij IOg 52 — bij IOg ;i + dw)azk) — ejk =+ Ujk + Ukj = 0 (534)
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Sub-case II. When j = k:
Z C; ((_aikbilx — b logmi — fie + fer)ai — ((@inbik — aixbin) (log(n;) + ainz) + ex)
iel

— Z((ailbik — aikbir) (logm; + anx) + e) + (aix log & — bix log n; + dzk)%k)
i<k

k
+ Z €k + 2'0kk = 0.
j=1

Sub-case III. When j > k:

(5.35)

Z ¢i((—aixbinx — biglogn; — fik + fra)ai; + (ai;log & — bijlogn; + dij)au)
icl

+ ’Ujk + ’Ukj =0. (536)

Adding the above three equations we get

t
Z Ci(Z(_aikbilx — big, log N — flk + fkl)aij - (ailbik - aikbil)(log n + ailﬂﬁ)

el 7>1
t t
— €1k + Z(aij log & — bij logn; + dw)alk> + Z(’Ujk + Ukj) =0. (537)
J>1 j>1

The constant term in the Equation 5.33 is
/

Z Ci((_aikbilx — b, log i — fik + fkl) (Z + ai1$,> + ((ailbik - aikbil)(log Ul

iel i
+ apx) + ep)x’ + (an log & — by logn; + dil)aik:c’> + vy, (5.38)

which equals 0. Substitute the term . ; ¢;(ai1bix — airbir)(log n; + ainx) 4 eqy, from
Equation 5.37 and observe

iel

' t
Z C; <(—az’kbi1$ — bir logn; — fix + fk;l) <% + Z az’jil?/>
7 j=1

t t
—+ Z((Iij 10g éz — bl']' log ;i + dij)aich') + Z(U]’k + Ukj)JJ/ + U/k = 0. (539)

j=1 7>1
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Since v, € M*(0) and v;, € M*, it is clear from Proposition 2.2.6 that v, € M* for
each k > 1. Now we move back to the expression of v in Equation 5.30 and look at
the constant terms (i.e terms without log(6 — «;)). Thus,

1 2\ 9
v ZZ & ((@ n;i) — bz logn; + Z Jie — fr)z §az‘1b¢1$ >—

icl k>1 i

! 0" -«
+ ) (aijlog & — bixlog i + di)(logm; + aix)

1 Q—Oéj
0 —a) 0 —a; L0 —d
—i—];lejk(e_ak - 6_%>log P — Qg +]Z>;v]9_ +wpy.  (5.40)

k>j

Compare the coefficients of (¢' — ) /(6 — ozj) in above equation, we have

1
Z C; <aij (52(771') bz logn; + Z Jik — fr)z azlbllx )
i€l k>1

+ (logn; + anx)(a;;log & — b;jlogn; + dij)) + ey log(—a;)

t

+ Z ex; log(ay — o) — Zejk log(o; — ay) +v; =0 (5.41)

1<k<j k>j

Take the summation of above equation for 1 < j < t, observe

t
Z G Z ((EQ 771 zlxlog i + Z(flk - fkl)l‘ - %ailbﬂxQ)aij

el 7>1 k>1

t
+ (log i + aila:)(aij log fl — bij log 7; + d”)> + Z €1j log(—ozj) + Z ’Uj =0

§>1 >1
(5.42)

The constant term in the expression 5.40,which is

1 4
V= Z C; (<€2 772 - bzlx log i + Z flk - fkl)x - §azlbzlx > (Z + ailx/>+
el k>1 ¢
t

(log 7; + ailx) (ail log §z — bil lOg i + dil).f(]/) — Z €1k 10g<—0é]€)l’/ -+ wIOO (543)
k>1
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can be rewritten (using Equation 5.42) as

t / t
v = Z Ci <<£2(7h‘) — baxlogm; + Z(flk — fr1)r — %%1@1132) <Z + Z aijx/)

el k>1

t t
+ Z(log ni + ainx)(aijlog& — bijlogn; + dij)x’) + Z v’ + wyg. (5.44)

j=1 k>1

Replace wqg with wyy — ZZ>1 vpr to get

¢ t
v = Z G <<£2<77i) — bj1xlogn; + Z(flk - fkl)l' - %%1@1132) (Z—; + Z az‘jl’/)
) j=1

1€l k>1

t t
+ Z(log ni + anx)(aijlog & — byjlogn; + dij)x/> — Z VT + W (5.45)

j=1 k>1

Substitute the value of v, from Equation 5.39 and obtain

t ¢
1 !
v = Z Ci ((52(771') — bpxlogn; + Z(flk - fkl)x - §ailbil$2) (% + Z az‘ﬂ?/)
el k>1 j=1

t

+ Z(log i + anx)(ag;log & — bijlogn; + dij)a’

j=1
t 7]/ 3
+ Z(—@ikbnﬂﬁ — bixlogni — fix + fia1) (77_2 + Z @ijx/)x
k>1 J=1

t t t
+ Z Z(aij log & — b;jlogm; + dij)aikxlx) + Z (v + vz’ + wiy. (5.46)

k>1 j=1 J,k>1

From Equations 5.31 and 5.32, we have
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t
v = Z ¢ <€2 i) Z birx logn; — azlbzlﬂi — Z aipbix ) (%; + Z aijx/)
i I

i€l k>1

t
+2 Z Z ciabij(logn; + apx)re

G.k>1 i€l
k>3

¢ k
+ Z Z G <(ai1bik — aixbin) + Z(az‘jbik — aipbij) + aikbz‘k> <10g n; + aiﬂ) xx'

k>1 i€l 7>1

t
+ Z hjk$2x/ -2 Z ci(aﬂbik — aikbﬂ)x%' + wéo. (547)
7,k>1 el
k>j

Since we assumed deg(P;) < deg(Q;), then either Z§'=1 a; =0, 22:1 bij = 0 or
both. If 23':1 a;; # 0 then & = 1 and note that in the expansion of log(1 — g;),
there will be no constant term, that is, log&; = 0. So lets divide the indexing set [
into three sets Iy, Iy and I3, where for each i € I, 23:1 a;j = Zzzl b;; = 0, for each

i € Iy we have Zt. L a;; = 0 and Z;:l b;; # 0 (in this case n; = 1) and for ¢ € I3,
Z§ 1 azg 7é 0 and Zj 1 =0. Therefore

!
v = E c,((ég n;) + azlblla: )(Z) + a1 b logmxw’)
i

’LEIl
1 n; )
+ ZCZ ( (i) + zanbax ) — | + a;1b;; log iz
2 M
i€la
1 t , t
+ Z C; ((f (m:) — aﬂbiﬂz - Z aikbi1$2> (Z + Z aiﬂ/)
icly k>1 -
t t
+ (—aﬂbil -2 Z aikbﬂ)xaﬁ’(log ;i + Z (lw’l')) + U_)/. (548)

k>1 j=1

For i € I3, l5(n;) is just a constant because lo(n;) = —Z—: log& = 0. Also as w' € M

and M* is algebraic over M, therefore, for a suitable @' € M we obtain
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/
v= 37 b+ (5.49)
i€l Ul 772
which is T —expression over F({log(n;),log&;, la(n;)]i € I}). O

The difficulty in the setup lies in exponential case. If our field of definition involve
only antiderivatives (i.e logarithms, dilogarithmic integrals and trilogarithmic
integrals) then the proof of Lemma 5.2.7 does not require dilogarithmic identity

in Proposition 5.1.3 and can be simplified as follows:
Remark 5.2.8. Alternate proof of Lemma 5.2.7 when 6 is an antiderivative.

Since v € F admits a T —expression over dilogarithmic extension E of F'(#), consider
V= e riif—f, where each 7, g; lies in some dilogarithmic extension of F(f) and
ri = —c¢;log(1 — gi)%’ as done in proof of Lemma 5.2.7. If necessary, enlarge £ and
assume log g; € E. Since w belongs to dilogarithmic extension of F'(f) that contains
each r; and log g;, replace w with w — ., r;log g; and observe
v = Z ng_i log(1 — g;)log g; +w'.
i€l '
By our assumption log g;,log(1 — ¢;) € Fy = F(0)(logy,...,logy,) and therefore,

w' € log g;,log(1—g;) € Fi. We use Proposition 2.2.4 and write w = > e;jla(z;) +

7j=1
wy, for some element wy € F; and constants e;. Thus

m /

4 Z,;
v = ch% log(1 — g;)log g; — Zejj log(1 — z;) + wy,.

el j=1 I
As observed earlier, log'(1 — g;) — (1_91 = 0,log(1l — z; — (1 ZJ) ) € F(0), we use
Proposition 2.2.6 repeatedly and obtain 1 — g;, 1 — 2; and thus g;, z; lies in F'(¢) for

each 1, J.
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Let F be an algebraic closure of F' that contains all the zeroes and poles of
9,1 — gi,zj,1 — 2. Let A = ay,...,a; be the set of all zeroes and poles of
91— gi, 2,1 — z; and assume g; = 17; [T, (0 — a)™*, 1 — gi = [T,y (0 — o),
zj = 7 [1hey (0 — )P and 1 — z; = p; [T}_, (0 — o) %*, where each 1;, &, v, p; € F
and a;x, bik, Pjk, ¢jr are some integers. Then instead of F; we can consider the field

F(9)({log n;, log &;,1og 75, log p; })({log( — ax)}). Using partial fraction expansion,

we have
v—Zq(n’vLZ ik > log &; +szk10g9_ak))(log77z
i€l C——
Xt: a log(0 — ay)) — i e; (Pyj + Z Jk > (log p; + Z%k log(6 — ay))
k=1 = k=1
+ wy.

Now the set {log(f — i)} is algebraically independent over the differential
field F(0)({logn:, log &, log~;,log p;}). We enlarge our field under consideration to
include l5(n;) for each i, and name it M;. Consider the differential field M =
F(0)({logn;,log&;,logv;,1log p;})({€2(n;)}) and M* be a subfield of M; which is
algebraic over M and M*(0) = M (See Corollary 2.3.3 (b)). Using Proposition 2.2.4,
we also write wy = Z;‘,k,lzl cjri log(0 — o) log(0 — ax,) log(0 — o) + 22,1:1 wyy log (6 —
ag)log(0 — ay) + 22:1 wy log(8 — o) + v, where wjy, wy, vy € M;. Comparing the
coefficients of log(6 — a;) log(6 — o) and log(€ — o) in the expression of v, we obtain

/
each ¢ji = 0, (W + wi) = — Do) Cilaby + aibik)%j and

/

??‘\

0 —
Z Cz azk lOg fl + bzk lOg 772 Z CiQk Z (%] lOg 52 bzl IOg 772) —

iel i iel

Z azkg 771 Z Cz ik IOg 772 Z CiQik Z (427} log 5@ bzl IOg 772> - al :
el

el el
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Since logn;,log&; and 6 are primitive over M* assume logn; = d;0 + D; and log &; =
fi0 + F;, where d;, f; are some constants. Therefore, with the help of Proposition
2.2.6, we obtain

chazkg 771 ZC’L ik log 77@ chazkz a/lld 'Llf'L )

i€l el i€l
Thus the constant term in the expression of v remains
) log p;

U—ZCZ <m+z ik >logfllogm Zej (% +Z Jk

el
0 — a,
+ E wk +UO
k=1

Substituting the value of wy, we get

0 — «
v=) ¢t L “log & log i + Z ci (am@(m) Sbixlog® 1; + az log & log m) .
0 — (675
el 12511
+ U4os

/
: 1S same as we

where vyg is some element in M;. Note that the coefficient of
obtained in Proof of Lemma 5.2.7, Case-I after the Equation 5.40. So we divide

the index set I into three parts and proceed in the same manner, and observe that

the term 22:1 Y i Ci (aikﬂg(ni) — %bik log® n; 4 ay log & log 77i) %:S: sums up as a
derivative of some element in M;. We adjoin this term with vf,, and get
n;
v = Z c;i—log & log n; + vgy = — Z ci(€2(n:)) log mi + vgo-
i€l ¢ i€l
Replace vgg with voo 4 >,/ ¢il2(n;) log n; and observe

v = Z cila(n;) = ‘|‘ Vg-

el i
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Note that » ., ¢ils (nZ)Z—; is sum of derivatives of trilogarithmic integrals over M and
voo is an element in M*(0). Since M is algebraic over M, using the Proposition 2.2.2
we can find a suitable element @ € M such that v satisfies a 7 —expression over M.

O

We recall that a differential field extension E of F' to be a dilogarithmic extension of
F if their field of constants coincides and there are elements ¥y, ..., Ypn, 21, -+, 2m € F

such that E' = F(log(y1),-..,10g(yn), l2(21), - - -, €a(zm)).

The following theorems provide an extension of Liouville’s Theorem.

Theorem 5.2.9. Let E = F(6y,...,0,) be a transcendental T —extension of F.
Suppose that there is an element u € E with v’ € F then u' admits a T — expression

over some dilogarithmic extension of F.

Proof. We prove the theorem using induction on n. For n = 1, we have u € F(0)
with «/ € F then from Proposition 2.2.4, u = ¢f +w for some constant ¢ and w € F.
Therefore, v = cf' + w' and from the definition of #’ it is clear that u' admits a
T —expression over F. Now suppose that «’ admits a T —expression over some dilog-
arithmic extension of F'(f). Then we shall apply the Lemma 5.2.7 and obtain that
u' admits a T —expression over M = F(0,log(y1),...,log(yn),l2(21), ..., la(zm)),
where y1,...,Yn,21,...2m € F and constant field of M coincides with that of
F. If /0 € F then it is evident from the case-II of Lemma 5.2.7 that «'
admits a T —expression over F(log(y),...,log(yn),?2(z1),...,0(2m)), which is a
dilogarithmic extension of F. If 6 is logarithm or dilogarithm over F, then M is indeed

a dilogarithmic extension of F. So the only case left is when 6 is a trilogarithmic
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integral over F. Let

N, o
W=D g kD sy
el jeJ
/ /Y,
ri = —c;log(l — gz)% and s} = d; ﬁ (5.50)

where I, J are finite indexing sets, each ¢; # 0, d; is constant. From Proposition 2.2.6
it is clear that each g;, h; € F(log(y1), .. .,log(yn), l2(21), ..., l2(2y)). Since triloga-
rithmic integrals cannot be written as sum of dilogarithm and logarithms over con-
stants, we have r;,s; € F(log(y1),...,l0g(yn), l2(21), . . ., ¢2(zm)). Using Proposition
2.2.4 we can write w = cf 4wy where wy € F(log(y1), . ..,108(yn), la(21), - . ., la(2m))
and thus w' = cf’ +wy. So the definition of #" proves that « admits a 7 —expression

over the dilogarithmic extension of F. This completes the argument. O]

Theorem 5.2.10. Let E = F(6y,...,0,) be a transcendental T —extension of F.
Suppose that there is an element u € E with v’ € F then
— Zrigg/gi + Zsjh;/hj +w'
iel jeJ
over I, where I and J are some finite index sets and each w, g;, hj, r;, s; are elements
in F' such that

/
T —tzl—{—Zr,]h s —27“13914—28]1@

jeJ i€l 9i keJ

(1—g) g’~

r_ 7

t, = cZ 1— g, E clclj h 7’] Czcwg E ewkhk and
! Y oked

S;'k; = Zez]kzz + Zf]k:l_

iel t leJ

where each ¢; is a non-zero constant whenever r; # 0, each ci;, ek, fim are some

constants, e;j; = €ix; and sj, = Si; for every i,j and k.
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Proof. From Theorem 5.2.9 we know that «' admits 7 —expression over some
dilogarithmic extension M = F(logyi,...,10gyn, l2(21),. .., la(2m)) of F. Now we
apply Proposition 5.2.4 and obtain the desired result. O

5.3 Integration with polylogarithmic integrals

In the view of Theorems 4.3.3 and 5.2.10, we shall inductively state a conjecture
for integration in finite terms involving polylogarithmic integrals along with
transcendental elementary functions. We shall include polylogarithmic integrals

in our field of definition and provide an extension of Liouville’s Theorem.
The following definition is due to J. Baddoura (See [2], p.232)

Definition 5.3.1. Let E D F be differential fields and g € F'\ {0, 1} be any element.

Then for an integer m > 0, the integral

[ Lensto)

in F is called polylogarithmic integral of order m and is denoted by ¢,,(g).

Note that for m = 2, 3 we called the polylogarithmic integral a dilogarithmic integral
and trilogarithmic integral, respectively, and ¢,(g) = —log(1 — g).

We shall now provide an identity for polylogarithms.

Proposition 5.3.2. Let F' be a differential field and g € F be any non-zero, non-
wdentity element. Then for every integer m > 0, there is a polynomial P of degree

m in Cp[X], where X is an indeterminate, such that

U G) + (=1)"ln(g) = P(logg).
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Proof. We prove this identity by induction. For m =1,

0 <1) = —log (1—1) = —log(g—1)+logyg
g g

= —log(1l — g) +log g + ¢, for some constant c

= (1(g) + Pi(log g),

where P, = X + ¢ is a polynomial of order 1 in Cp(X). For m = 2, the result is
clearly true from Proposition 3.1.2. Assume the result is true for any integer k > 0.

From the definition of polylogarithmic integral

(-

By induction, for some polynomial Py of degree k in C'r(X), we have

/

4%1($>:=(—(—1V€Ag)+l%00ggn

= (=14 (9) + Pillogg)

Note that since Pg(logg) is a polynomial in log g over Cr, the term Py (log g)% is a

derivative of some polynomial P of degree k over Cr. Therefore, we obtain

Ut <$) + (1) y41(9) = P(logg).

Thus, by induction the result is true for any integer m > 0. O]

Definition 5.3.3. A differential field £ D F' is called a P—extension of order m if
Cgr = Cr and there is a tower of differential fields F; such that

F=FCFCFc--CF,=F

and for each i, F; = F;_1(6;) and one of the following holds:
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(i) 0; is algebraic over F;_;.
(ii) 0, = u'0; for some u € F;_y (i.e. §; =e*).
(iii) 0 = u'/u for some u € F;_y (i.e. 6; = log(u)).

(iv) 0. = vu’/u where v = (;_1(u) for some u,v € F;_y and j < m (ie. 0; =

Je Y 1 (u), also denoted by £;(u)).

Definition 5.3.4. We say that v € F' admits a general P—expression of order m
over F'if there are finite index sets Iy, ..., I, and elements r;, g;, € F' for all i; € I;
and an element w € F' such that
Sy 5
=1 i;€l; ’j

where for each i; € I;, r;; is sum of polylogarlthmlc integrals of order < j — 1.

Definition 5.3.5. A general P—expression will be called a P-expression if for each

. . )
ij € I, ri; = ci;;_1(gi;) where ¢;,’s are constants .

Definition 5.3.6. A differential field extension E of F’ will be called a polylogarith-
mic extension of F of order m if Cr = Cr and the base of E over F consists of

polylogarithmic integrals of order less than or equal to m over F'.

Now in this context of polylogarithmic integrals, we shall inductively extend the

Lemmas 4.2.2 and 5.2.7 and conjecture the following lemma.

Lemma 5.3.7. Let F'(8) D F be a transcendental P—extension of order m. Suppose
there is an element v € F such that v admits a P—expression of order m over a
polylogarithmic extension of F(0) of order m — 1. Then there is polylogarithmic
extension M of F of order m — 1 such that v admits a P—expression of order m

over M(0).
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Using this lemma we can obtain a general P—expression for v over F. Thus the main

extension theorem for polylogarithmic integrals can be conjectured as follows:

Conjecture 5.3.8. Let E = F(04,...,0,) be a transcendental P— extension of order
m. Suppose there is an element v € E with v € F then u' admits a general

P—expression of order m over the field F.

5.3.1 A Note on Polylogarithmic Integrals of Order 4

Let E D M D F be differential fields such that E is a P—extension of order 4
over F' and M is a polylogarithmic extension of order 3 over F. Then the results of
Propositions 4.1.2 and 5.2.4 can be extended to polylogarithmic integrals of order
4. That is, if v € F' satisfies a P—expression of order 4 over M then one can check

that v satisfies a general P—expression over F':

U—anz +Zsj—+w

i€l jeJ
where
gz 9@
r =t,— —|— g T”h s = g TZJ + g sjk
jeJ iel Yi keJ
l o gz 2 ! gz 2 § gz §
+ tlj h T’Lj — l] + Tl]k jk — TZ]k + S]kl_
jeJ 9i keJ iel 9i leJ
/o ]- - gz
;= —Cl 1—g * Clc” h ti; = @ClJ + Clewk
v 9 es
/ _ gz d /
Tijk = Ci€ijk— + fzgkl and  S;p = fzgkl + ejklm )
iel Yi leJ iel 9i meJ

where each ¢; is a non-zero constant whenever 7, # 0, each c¢;;, €, fijil, €jim are

constants, each 7, s;, ¢;, h; and w are some elements in F, t;, 75, Sk, Di, tij, Tijks Skl
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are elements in M with e;jx = eirj, Sjx = Skj, Tijk = Tikj, Sjkl = So(j)o(k)o(l)s fijki =
fio()otk)o@) a0d €jkim = €4(j)p(k)p(l)p(m) fOr €ach 7, 7, k, 1, m and any permutation o in

Ss3 and p in Sy.

Conversely (Similar to Propositions 4.1.1 and 5.2.6), in the next proposition we shall
show that if we have such an expression for an element v in F' then there exists a
P—extension of F' that contains an antiderivative of v. The major work here is to
show that if there is an element u in a transcendental P—extension F of order 4
over F' such that v lies in F, then u satisfies a P—expression over a polylogarithmic
extension M of order 3. Therefore, in order to prove the conjecture for any order m,

this part would be crucial.

Proposition 5.3.9. Let v € F satisfies a general P—expression over F':

/ h'
U:ZTi&+Zth +w
iel Yi jeJ
where
/
g i
O Z"‘erh S_ZTUZ"‘Z Jk
g'l jEJ el Z keJ
/ !
t;:pi%+2tij#, ri; = tij Z"‘ZTU’C Jk_zrwk Z+Zsjkl
v jed J keJ iel 9 es
1 - gz g/' h?c
p; = —Ci 1—g, + Zczcuh zg = cicij; + ; Cieijkh_k’
r;jk = Z Czezjk + Z fzgkl_ and S;’kl Z fzgkl + Z egklm )
iel i leJ iel meJ

where each c¢; is a non-zero constant whenever r; # 0, each c;;, ek, fiju are
constants, each 1,55, 9;, hj and w are some elements in F, t;,7:;, Sjk, Pi, tij, Tijks Sjki
are elements in M with e;ji, = €j, Sjk = Skj, Tijk = Tikj> Sjkl = So(j)o( ), fijkt =

fio()ok)o) and Ejkim = €x(j)pk)pl)p(m) fOT each i, j, k,l,m and any permutation o in
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Ss and p in Sy. Then there exists a P—extension E of F of order 4 that contains

[v.

Proof. Replace w with an element w—> 7, ;log g; — > . ; jlog h; in a logarithmic
extension of F' and obtain
v = —Zréloggi - Zs}loghj +w'.
i€l jed
Substitute the given values of 7 and s, we shall get
gz 9i
:—Z( —i—Zr”h>loggZ Z(er Z—l—Zsjk >logh +w'.
il Je€J JeJ iel keJ

We shall combine the second and third term and replace w with w+1/2% ., t; log? g;
+ D icrjes Tijloghjlog gi +1/237. 5 sjklog hjlog Ry, to obtain

1 1
=3 Zt; log? g; + Z r;j log hjlog g; + 3 Z s;k log h; log by + w'.

iel i€l jet jkeJ

Substituting the values of t}, 7, s%;, we have
2 9’ ti-2 )1 % log h; 1
v _5 Z + Z i h Og 9i + Z z] + Z rzyk 0og 0g g;
iel jeJ iel,jeJ Yi keJ
+ = Z (Zr%gz +Zs]kl ) log hjlog hy, + w'.

gkeJ iel 9i leJ
Now we shall combine second and third term, fourth and fifth term,respectively
and replace w with w — 1/6) .., c;ip; log®g; — 1/2 > icrjey Citijlog h; log® ¢; —

1/23 icrines Tigk 10g gilog hylog by, —1/6 3. 1 ; Sjki log by log hy. log hy. Here we are
using the fact that r;j, = rix; and s = Se(j)ek)e@) for any o in S3. Then v becomes

1 1 1
V=3 Zp; log® g; — 5 Z t;;log hy log® g; — 5 Z riik log gi log hjlog hy,

iel iel,jeJ iel,j,keJ

1
5 Z 8% log hylog hy log by + w'.
jkled
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We shall again substitute pj, t;;, 7} and s%;, and obtain

hl
:_—Z< ¢ 1_gl +chcwh)log Ji

el
1 9 R,
P O (RS S A PR
iel,jeJ i ked
Z (Z Czezjk + Z fzgkl ) lOg Gi lOg h lOg hk
zEIj keJ \iel Yi leJ
_ = Z <Zfz]klgz+zh )logh log hy, log hy + w'.
g kleJ \iel 9 meJ

Combine the terms second and third, fourth and fifth, sixth and seventh, respectively
and replace w with w + % Ziel,jeJ cicijlog log3 gi + }l Ziel’j’kg cieiji log hjlog hy,
log? gitg > icriries Jijki 10g gilog hy log Ry, log hi+ o7 > ikimer 08 hjlog hy log hylog huy,.
Thus, v reduces to
- —Zczlog 973 _gl)/ +w'.
iel

Observe that in a polylogarithmic extension M of order 3 containing ¢5(g;), ¢5(g;),
we can replace w with w — 1/6Y",_; ¢;log® g;log(1 — ¢;) — 1/2Y",; cilog? gila(g;) +
> icr10g gils(g;) and thus obtain

v = chfg gl +w and

i€l
/'U — Z Cz€4 gz
el
Hence, antiderivative of v lies in a P—extension £ D M D F. O

We shall conclude the thesis with the following example.
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Example 5.3.10. Consider a transcendental P—extension F = F'(log(1—g;), l2(g:),
03(9:),04(g;) | i = 1,2) of order 4 over F. Through this example, we shall characterize
all elements u of E whose derivative lies in F. Assume there is an element u € E

such that ' € F' then there exists some constants ¢;, ¢o such that
=" cils(g) L+, (5.52)
: g

where w is some element in F'(log(1 — g¢;),¢2(9:),¢3(g:)| i = 1,2). Since w’ lies in

the polynomial ring F'(log(1 — ¢;), f2(g:))[¢5(g;)], we shall use Proposition 2.2.4 and

write
w=> " ails(g)ls(g;) + Y wils(g:) + wo,
ij=1,2 i=1,2
where a;;’s are constants and w;,wy € F(log(l — ¢;),¢2(g:;)| @ = 1,2) Since

l3(g1), £3(ge) are transcendental over F'(log(1—g;),¢2(g;)| ¢ = 1,2), we shall compare

the coefficients in Equation 5.52 and obtain

/ /
u = Z wiﬁg(gi)& +w, and w; = L (5.53)
; 9i 9i
1=1,2

for each i. Now the Equation 5.53 is similar to Equation 5.52 and wyj, is an element

in the polynomial ring F'(log(1 — g;))[¢2(g;)], we shall repeat the same process and

write
Wy = Z biil2(gi)l2(g;) + Z wiola(g:) + woo
ij=1,2 i=1,2

for some constants b;; and elements w;o, wop in F(log(1l — g;) |i = 1,2). Comparing

the coefficients in Equation 5.53, we obtain

/

i

., (5.54)

/
u =— Z wip log(1 — gl)% +wyy and wi; = —w
i=1,2 ¢

Again this equation is similar to Equation 5.52 and wy, lies in the polynomial ring

Fllog(1 — g;)]. Therefore, we shall write woo = >, ;_; 5 ¢ijlog(1 — g;) log(1 — g;) +



5.3. INTEGRATION WITH POLYLOGARITHMIC INTEGRALS 117

Zi:l,Q w0 log(1l — g;) + v for some elements v, w;o0 € F' and constants ¢;;. Thus,

comparing the coefficients we shall obtain

/
U/ = Z wio(]& + U/, (555)
9i

i=1,2

where
/ / /

r 7 /o g; I g;
Wiy = Wip=, W;p = —w;— and w; = —¢;=.

Gi gi gi
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List of Notations

F A differential field

E A differential field extension of F
F Algebraic closure of F

Cr Field of constants of F’

[E: F] Index of E over F

tr deg E/F Transcendence degree of E over F
C The field of complex numbers

Q The field of rational numbers

u’ Derivative of u

Jv Integral of v

et Exponential of u

log(u) Logarithm of u

log™ (u) m fold product of log(u) i.e. (logu)™
u'fu Logarithmic derivative of ¢

li(u) Logarithmic integral of u

erf(u) Error function of u

lo(u) Dilogarithmic integral of u

l3(u) Trilogarithmic integral of u
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Con (w) Polylogarithmic integral of u of order m

D(g) Bloch-Wigner Spence function of g

deg(P(X)) Degree of polynomial P(X)

n Constant term in the partial fraction expansion of g

13 Constant term in the partial fraction expansion of 1 — g
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