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Abstract

The thesis work concerns the problem of integration in finite terms with special

functions. The main theorem extends the classical theorem of Liouville in the

context of elementary functions to various classes of special functions: error

functions, logarithmic integrals, dilogarithmic and trilogarithmic integrals. The

results are important since they provide a necessary and sufficient condition for an

element of the base field to have an antiderivative in a field extension generated

by transcendental elementary functions and special functions. A special case

of the theorem simplifies and generalizes Baddoura’s theorem for integration in

finite terms with dilogarithmic integrals. The main theorem can be naturally

generalized to include polylogarithmic integrals and to this end, a conjecture is

stated for integration in finite terms with transcendental elementary functions and

polylogarithmic integrals.
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Chapter 1

Introduction

In this thesis we prove various extensions of Liouville’s Theorem on integration

in finite terms that include special functions such as error functions, logarithmic

integrals, dilogarithms and trilogarithms along with transcendental elementary

functions. A special case of our result generalises Baddoura’s theorem for integration

in finite terms with dilogarithmic integrals. Precise statements of our results can be

found in Theorem 4.3.3, Theorem 4.4.3, Theorem 5.2.9 and Conjecture 5.3.8. Our

results can be naturally generalised to include polylogarithms and to this end, a

conjecture for integration in finite terms with polylogarithmic integrals along with

transcendental elementary functions is stated.

Throughout the thesis, a field always means a field of characteristic zero. For a field

F equipped with a single derivation map ′, the kernel of the map ′ is a subfield of

F , which we denote by CF . We will be working with differential field extensions of

the form E = F (θ1, . . . , θn), F0 := F , Fi = Fi−1(θi) such that one of the following

holds:

1



2 CHAPTER 1. INTRODUCTION

(i) θi is algebraic over Fi−1.

(ii) θ′i = u′θi for some u ∈ Fi−1 (i.e. θi = eu and is called exponential of u).

(iii) θ′i = u′/u for some u ∈ Fi−1 (i.e. θi = log(u) and is called logarithm of u).

(iv) θ′i = u′/v, where v′ = u′/u for some u, v ∈ Fi−1 (i.e. θi =
∫
u′/ log(u) and is

called logarithmic integral of u, also denoted by `i(u)).

(v) θ′i = u′v, where v′ = (−u2)′v for some u, v ∈ Fi−1 (i.e. θi =
∫
u′e−u

2
and is

called error function of u, also denoted by erf (u)).

(vi) θ′i = vu′/u, where v′ = −(1 − u)′/(1 − u) for some u, v ∈ Fi−1 (i.e. θi =

−
∫

u′

u
log(1 − u) and is called dilogarithmic integral of u, also denoted by

`2(u)).

(vii) θ′i = vu′/u, where v′ = −(u′/u) log(1 − u) for some u, v ∈ Fi−1 (i.e. θi =∫
u′

u
`2(u) and is called trilogarithmic integral of u, also denoted by `3(u)).

A differential field extension E = F (θ1, . . . , θn) of F , with CE = CF , is called a

DEL−extension (respectively an elementary extension) if each θi satisfies at least

one of the cases i-vi (respectively i, ii or iii). Elements of an elementary extension

field are called elementary functions.

History. The problem of integration in finite terms for elementary functions

was considered by J. Liouville (1834-35) and by J.F. Ritt (1948). A. Ostrowski

generalized it to a wider class of meromorphic functions in the regions of complex

plane. His approach gave an algebraic aspect to the problem. However, M.

Rosenlicht [13] was the first to give a purely algebraic solution to the problem.

He showed that if E is an elementary field extension of F with CE = CF and
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there is an element u ∈ E such that u′ ∈ F then there are constants r1, . . . , rn and

elements w, g1, . . . , gn ∈ F such that u′ =
∑n

i=1 ri(g
′
i/gi) + w′. That is, up to an

element of F , u must be a constant linear combination of logarithms of elements

of F . The problem of extending Liouville’s Theorem to allow special functions was

first studied by J. Moses [10, 11]. Later in [4, 5], G. Cherry proved an extension

of the Theorem to include logarithmic integrals and error functions. In [16], p.968,

M. Singer, B. Saunders and B. Caviness extended Liouville’s Theorem to include a

large class of functions which they called E L−elementary functions. In particular,

if θi satisfies any one of the cases i–v then it is an E L−elementary function.

They proved that if u lies in a field extension of F containing transcendental

E L−elementary functions and u′ ∈ F, then u′ is a finite linear combination of

derivatives of E L−elementary functions over CF . However, cases vi and vii were

not covered under the E L−class of functions. In [1], p.933, J. Baddoura extended

Liouville’s Theorem to include dilogarithmic integrals. He called the extensions that

satisfy i, ii, iii or vi as dilogarithmic-elementary extensions. He proved that if E is

a transcendental dilogarithmic-elementary extension of F having an algebraically

closed field of constants CF and if F is a liouvillian extension of CF then any u ∈ E

with u′ ∈ F has the following form over F :

u = w +
m∑
i=1

ri log(gi) +
n∑
j=1

cjD(hj),

where each ri, gi, hj, w ∈ F , log(gi) and D(hj) belong to some differential field

extension of F and D(hj)
′ = −1

2

h′j
hj

log(1 − hj) + 1
2

(1−hj)′
1−hj log(hj). Baddoura’s proof

involves producing equation of above form over F when one such equation for u

is given over F (θ), where θ satisfies ii, iii or vi. The problematic terms here are

ri log(gi), where both ri and gi are arbitrary elements of F (θ). Lengthy and involved

calculations, along with a new dilogarithmic identity were needed to obtain the
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desired expression over F . In the spirit of Liouville’s theorem as extended by Singer,

Saunders and Caviness, and from an algorithmic view point, it is desirable to obtain

an expression for u′ in terms of elements of F . However, no such expression for u′

was produced in [1].

Our Theorem 4.3.3 ([6], p.227) restricted to transcendental dilogarithmic-elementary

extensions will yield the following expression for u′ over F :

u′ =
∑
i∈I

ri
g′i
gi

+
∑
l∈L

sl
h′l
hl

+ w′, (1.1)

where for each i ∈ I, l, t ∈ L there are constants ci, dil, blt, with ci 6= 0 whenever

r′i 6= 0, such that

r′i = ci
(1− gi)′

1− gi
+
∑
l∈L

dil
h′l
hl

and s′l =
∑
i∈I

dil
g′i
gi

+
∑
t∈L

blt
h′t
ht
. (1.2)

The converse also holds: if an element v ∈ F admits an expression as in

Equations 1.1 and 1.2 then an antiderivative of v can be found in some tran-

scendental dilogarithmic-elementary extension of F. We say that v ∈ F admits

a DEL−expression over F if there are finite indexing sets I, J,K and elements

ri, gi ∈ F for all i ∈ I, elements uj, log(uj) ∈ F and constants aj for all j ∈ J ,

elements vk, e
−v2k ∈ F and constants bk for all k ∈ K, and an element w ∈ F such

that

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′,

where for each i ∈ I, there is an integer ni such that r′i =
∑ni

l=1 cilh
′
il/hil for some

constants cil and elements hil ∈ F . A DEL−expression will be called a special

DEL−expression if for each i ∈ I, r′i = ci(1 − gi)
′/(1 − gi) for some constant

ci and a special DEL−expression will be called D−expression if each aj = bk =
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0. A DEL−extension E = F (θ1, . . . , θn) is called a transcendental dilogarithmic-

elementary extension if CE = CF and for each i, θi is transcendental over Fi−1

and satisfies either case ii or iii or vi. For a transcendental exponential θ over

F , a DEL−expression for u′ ∈ F over F (θ) does not in general reduce to a similar

expression over F , however, when it is a special DEL−expression, it does reduce. We

utilize this fact and set up a special induction procedure to prove our main results.

The problematic terms that appear in our proof are those ri(g
′
i/gi), where 0 6= r′i =∑ni

l=1 cil
h′il
hil

. However, we only need basic dilogarithmic identities, in particular, we do

not require Baddoura’s dilogarithmic identity, to handle these terms. Consequently,

we obtain a simpler proof of Baddoura’s Theorem which neither requires that F is

a liouvillian extension of CF nor that CF is an algebraically closed field.

Many of our results concerning dilogarithms can be naturally extended to polylog-

arithms. In particular, the induction procedure used for the dilogarithmic set-up

can also be extended. We shall call a differential field extension E = F (θ1, . . . , θn)

with CE = CF , a transcendental trilogarithmic-elementary extension if it satisfies

either ii, iii, vi or vii. We prove that u ∈ E, u′ ∈ F and E is a transcendental

trilogarithmic-elementary extension of F if and only if

u′ =
∑
i∈I

rig
′
i/gi +

∑
j∈J

sjh
′
j/hj + w′ (1.3)

over F, where I and J are some finite index sets and each w, gi, hj, ri, sj are elements

in F such that

r′i = ti
g′i
gi

+
∑
j∈J

rij
h′j
hj
, s′j =

∑
i∈I

rij
g′i
gi

+
∑
k∈J

sjk
h′k
hk

t′i = −ci
(1− gi)′

1− gi
+
∑
j∈J

cicij
h′j
hj
, r′ij = cicij

g′i
gi

+
∑
k∈J

eijk
h′k
hk

and
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s′jk =
∑
i∈I

eijk
g′i
gi

+
∑
l∈J

fjkl
h′l
hl
,

where each ci is a non-zero constant, each cij, eijk, fjkl are some constants and each

ti, rij and sjk are elements in an extension of F with eijk = eikj and sjk = skj for

every i, j and k.

Note that when u lies in trilogarithmic-elementary extension, the coefficients in

the expression for u′ in Equation 1.3 satisfies DEL−expressions and further the

coefficients in those DEL−expressions are sum of logarithms. Whereas, when

u lies in dilogarithmic-elementary extension, u′ satisfies a DEL−expression as

in Equation 1.1 and its coefficients are sum of logarithms. One can restrict

various theorems concerning trilogarithmic integrals to dilogarithmic integrals. In

particular, Theorem 4.3.3 can be deduced from Theorem 5.2.9. However, since the

results concerning trilogarithmic integrals are lengthy and complicated, the proofs

of these theorems are written separately for the convenience of reader.

In a nutshell, we only use standard techniques from differential algebra and many

calculations involved boils down to comparing terms of certain partial fraction

expansions. Many people are interested in constructing algorithms for integration in

finite terms (See [3] and [12] for integration with elementary integrals). Our results

contain both necessary and sufficient conditions and therefore, these results will

help in formatting algorithms for integration in finite terms with transcendental

elementary functions and trilogarithmic integrals. We believe that the results

concerning dilogarithmic and trilogarithmic integrals can be naturally generalised

to polylogarithmic integrals. To this end, we conclude the thesis with a conjecture

on integration in finite terms with polylogarithmic integrals.
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The thesis is organized into four chapters.

Chapter 2: We reproduce several well-known results from differential algebra, many of

which are due to Ostrowski, Kolchin and Rosenlicht.

Chapter 3: Several results concerning DEL−extensions, DEL−expressions and dilogarith-

mic identities are proved.

Chapter 4: The main results concerning DEL−extensions along with a generalisation of

Baddoura’s theorem is proved. We conclude the chapter by providing non-

trivial examples that explain our results.

Chapter 5: We extend our results concerning dilogarithmic extensions to trilogarithmic

extensions and state a conjecture for integration in finite terms with polylog-

arithmic integrals along with transcendental elementary functions.
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Chapter 2

Preliminaries

In this chapter we record several standard results and terminologies from differential

algebra to make the thesis self-contained. In particular, we shall include a proof of

Kolchin-Ostrowski Theorem due to Singer & Rubel [15] and Rosenlicht’s proof of

Liouville’s Theorem [13].

2.1 Basic conventions

Definition 2.1.1. A field F equipped with a linear map ′ : F → F that satisfies

the Leibnitz rule, that is, (fg)′ = fg′+ f ′g for all f, g ∈ F , is called differential field

and the map ′ is called a derivation.

For any element f in F and a non-zero element g in F , the derivation on fraction

f/g is (f/g)′ = (f ′g − fg′)/g2 and for a natural number n, (fn)′ = nfn−1f ′. In

particular, 1′ = 0. Elements c ∈ F such that c′ = 0 are called constants. The kernel

9
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of the map denoted by CF := {c ∈ F : c′ = 0} forms a field and will be called field

of constants or constant field of F .

Definition 2.1.2. A field extension E ⊇ F is called a differential field extension

of F if there exists a differential field structure on E which is compatible with the

differential field structure of F.

In the next proposition, we shall show that every field extension of a differential

field is also a differential field. For transcendental extensions, the technique of the

proof follows from [9], p.2 and for algebraic extensions, one can also look into [9],

p.9, Example 1.13.

Proposition 2.1.3. ([13], p.154) Let F be a differential field and E ⊃ F be any

field extension of F. Then there exists a derivation on E that makes E differential

field extension of F. If E is an algebraic extension of F then the derivation on E is

unique.

Proof. Let ′ be the derivation on F. Assume E = F (θ) where θ is transcendental over

F. Consider the ring of dual numbers over F (θ) i.e the ring F (θ)[ε] = F (θ) + F (θ)ε

where ε2 = 0. Since ε is nilpotent, an element x = a + bε of F (θ)[ε] is a unit if and

only if a is a unit of F (θ).

Define a map aD = (id,D) : F [θ] → F (θ)[ε] as aD(x) = x + x′ε for every x ∈ F

and aD(θ) = θ + f(θ)ε, where f(θ) is any element in F (θ). It is easy to check that

D : F [θ] → F (θ), defined as D(x) = x′ for every x ∈ F and D(θ) = f(θ), satisfies

a differential structure on F [θ] if and only if aD is a ring homomorphism. Since

θ is a unit in F (θ), θ + f(θ)ε is a unit in F (θ)[ε]. Thus we can extend aD to the

homomorphism aE : F (θ) → F (θ)[ε], which is of the form (id, E), where E is a

derivation on F (θ) extending D as well as ′.
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Now assume θ is algebraic over F with minimal polynomial P (X) =
∑n

i=0 piX
i,

where X is an indeterminate. As observed above, D : F (X)→ F (X) mapping X to

any rational function Q(X) ∈ F (X) is a derivation on F (X). Observe D(P (X)) =∑n
i=0 p

′
iX

i +
∑n

i=1 ipiX
i−1Q(X) and thus

∑n
i=0 p

′
iθ
i +
∑n

i=1 ipiθ
i−1Q(θ) = 0. Clearly∑n

i=1 ipiθ
i−1 6= 0 and therefore, we get a unique derivation on F (θ) given by

D(θ) = Q(θ) = −
∑n

i=0 p
′
iθ
i∑n

i=1 ipiθ
i−1 .

Thus, any simple field extension of F is a differential field extension with derivation

D. Using Zorn’s lemma, the derivation D can be extended to any arbitrary field

extension of F.

In literature, differential field means a field with a family of derivations but

throughout this thesis we fix a single derivation map ′ on differential field F.

Definition 2.1.4. ([13], p.153) Let f, g be elements of a differential field F such

that g 6= 0 and f ′ = g′/g then in correspondence to the classical theory, f is called

logarithm of g denoted by log g and g is called exponential of f denoted by ef .

If g has a logarithm in the field F then it is unique up to an additive constant and if f

has an exponential in F then it is unique up to a multiplicative constant. Therefore,

for some constants c, d and elements g1, g2 in F, log(g1g2) = log g1 + log g2 + c and

log(−g1) = log(g1) + d.

2.2 Liouvillian extensions

Let E ⊃ F be a differential field extension. An element θ ∈ E is called primitive

over F if θ′ ∈ F. Note that a logarithm of some element in F is primitive over F.
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Definition 2.2.1. ([8], p.408) A differential field extension E = F (θ1, . . . , θn),

F0 := F, Fi = Fi−1(θi) is called liouvillian extension of F if for each i, either θi is

algebraic over Fi−1, θ
′
i/θi ∈ Fi−1 or θ′i ∈ Fi−1.

Now we shall describe some properties of liouvillian field extensions.

Proposition 2.2.2. ([6], pp.212-213) Let F $ F (θ) be differential fields and θ be

algebraic over F . Then the following statements hold:

(a) If θ′ ∈ F then there is an element x ∈ F such that x′ = θ′ and CF (θ) % CF .

(b) If θ′/θ ∈ F then there is an element x ∈ F − 0 and an integer n such that

x′/x = nθ′/θ. Furthermore, if CF (θ) = CF then the minimal monic polynomial

of θ over F is of the form P (X) = Xn + cx for some c ∈ CF .

(c) Every c ∈ CF (θ) is algebraic over CF .

Proof. Let P (X) =
∑n

i=0 aiX
i, an = 1 and n ≥ 2 be the minimal monic polynomial

of θ over F . Differentiating
∑n

i=0 aiθ
i = 0, we obtain that θ is also a root of the

polynomial

P ′(X) = (nθ′ + a′n−1)X
n−1 + · · ·+

(
iaiθ

′ + a′i−1
)
X i−1 + · · ·+ a1θ

′ + a′0 ∈ F [X].

If θ′ ∈ F then by minimality of P (X), P ′(X) must be the zero polynomial. In

particular, (−an−1/n)′ = θ′ and θ + (an−1/n) is constant that is not in CF . A

similar calculation with the minimal monic polynomial over F of c ∈ CF (θ) would

give us that a′i = 0 for all i and thus c is algebraic over CF . If θ′/θ = α ∈ F then

we shall rewrite

P ′(X) = nαXn + (a′n−1 + (n− 1)an−1α)Xn−1 + · · ·+ a′0
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and observe that P ′(X) = nαP (X). Then for each i ∈ {1, . . . , n}, we have

a′i−1 = (n− (i− 1))αai−1.

In particular, a′0 = nαa0 and since a0 6= 0, we have nθ′/θ = a′0/a0. Finally, if

CF (θ) = CF then ai = 0 for all i ∈ {1, . . . , n − 1}. Otherwise, (θn−i/ai)
′ = 0 and

therefore θn−i + cai = 0 for some non zero constant c ∈ CF . This contradicts the

assumption that P (X) is of degree n.

Remark 2.2.3. If F is an algebraic closure of the field F then it is clear from the

part (c) of Proposition 2.2.2 that CF = CF if and only if CF is algebraically closed

field.

Proposition 2.2.4. ([6], p.213) Let F ⊂ F (θ) be differential fields, θ be

transcendental over F , θ′ ∈ F and v =
∑s

i=0 βiθ
i ∈ F [θ] be a polynomial in θ

over F . Suppose that there is a w ∈ F (θ)− F such that w′ = v.

(a) If CF (θ) = CF then w =
∑t

i=0 αiθ
i ∈ F [θ], αt 6= 0 and t ≥ 1.

(b) If v = 0, that is CF (θ) % CF , then there is a non zero constant c ∈ CF and

α0 ∈ F such that (cθ + α0)
′ = 0.

(c) If v 6= 0, CF (θ) = CF and s =deg(v) then either deg(w)= s or s + 1. In the

former case α′t = βs and in the latter case αt ∈ CF and (tαtθ + αt−1)
′ = βs.

(d) If α ∈ F , x′ 6= α for all x ∈ F and θ′ = α then CF (θ) = CF . In general, if

α1, . . . , αn ∈ F are non zero elements then there is a differential field extension

E of F such that CE = CF and E = F (θ1, . . . , θn), where θ′i = αi.

Proof. Let there be an element w ∈ F (θ) such that w′ = v. Then there are relatively

prime polynomials P,Q ∈ F [θ], where Q is monic, such that w = P/Q. Taking
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derivatives, we obtain

Q2v = P ′Q−Q′P. (2.1)

From the above equation, it is immediate that Q divides Q′. Since Q is monic and

θ′ ∈ F we have deg Q′ < deg Q. This forces Q′ = 0. If CF (θ) = CF , then Q = 1 and

thus P = w ∈ F [θ] − F . Now suppose that v = 0. If Q = 1 then deg P ≥ 1 and

P ′ = 0 and if Q 6= 1 then deg Q ≥ 1 and as observed earlier Q′ = 0. Thus we have(∑t
i=0 αiθ

i
)′

= 0, αt 6= 0 and t ≥ 1. Now we compare coefficients and obtain that

α′t = 0 and (tαtθ + αt−1)
′ = tαtθ

′ + α′t−1 = 0. This proves (b).

From (a), we have

α′tθ
t + (tαtθ

′ + α′t−1)θ
t−1 + · · ·+ α1θ

′ + α′0 =
s∑
i=0

βiθ
i = v. (2.2)

If deg(w) = s ≥ 0 and CF (θ) = CF then it is easy to see that t = s or t = s + 1. If

t = s then α′t = βs, where αt ∈ F and if t = s + 1 then αt ∈ CF and (tαtθ + αt−1)
′

= tαtθ
′ + α′t−1 = βs.

Suppose that θ′ = α and x′ 6= α for all x ∈ F . If w ∈ F (θ) − F and w′ = 0 then

from (b) there is a nonzero constant c ∈ CF and an element α0 ∈ F such that

0 = (cθ + α0)
′ = cα + α′0. Thus (−α0/c)

′ = α and this is a contradiction. Finally,

let F0 = F and Fn−1 be a differential field extension of F such that CFn−1 = CF and

Fn−1 = F (θ1, . . . , θn−1), where θ′i = αi for all 1 ≤ i ≤ n − 1. If there is no element

x ∈ Fn−1 such that x′ = αn then let θn be a transcendental and define a derivation

on E := Fn−1(θ) by defining θ′n = αn. Clearly, CE = CFn−1 = CF . On the other

hand if there is an element x ∈ Fn−1 such that x′ = αn then take θn to be x.

We repeatedly use partial fraction expansions in our results. Thus in this spirit, it

is useful to note the following proposition.
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Proposition 2.2.5. ([6], p.214) Let F (θ) ⊃ F be a transcendental liouvillian

extension of F with CF (θ) = CF . Let v ∈ F (θ), F be an algebraic closure of F and

v = η
∏s

j=1(θ − αj)mj , where η ∈ F , 0 = α1, . . . , αs are distinct elements in F and

mj are integers.

(a) Suppose that θ′ ∈ F . Then each θ′ − α′j is a non zero element of F and

v′

v
=
η′

η
+

s∑
j=1

mj

θ′ − α′j
θ − αj

(2.3)

is the partial fraction expansion of v′/v.

(b) Suppose that θ′/θ ∈ F . Then

(b.1)

v′

v
= µ+

s∑
j=2

mj
µj

θ − αj
, (2.4)

where µ = (η′/η) +
∑s

j=1mj(θ
′/θ) ∈ F and µj = αj(θ

′/θ)−α′j ∈ F −{0},

is the partial fraction expansion of v′/v.

(b.2) If v0 is the constant term of the partial fraction expansion of v in F (θ)

then the constant term of v′ is v′0.

(c) If v ∈ F (θ) has a pole of order m ≥ 1 and θ′ ∈ F then v′ has a pole of order

m+ 1. Similarly, if v ∈ F (θ) has a non-zero pole of order m ≥ 1 and θ′/θ ∈ F

then v′ has a pole of order m+ 1.

Proof. If θ′ ∈ F and θ′ = α′j for some αj then by Proposition 2.2.2, there is an

element x ∈ F such that θ′ = x′. Now θ − x /∈ F is a constant of F (θ) and

this contradicts our assumption that CF (θ) = CF . Similarly, if θ′/θ = x ∈ F and
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α′j = xαj then again from Proposition 2.2.2, there are an integer n and an element

y ∈ F such that nx = n(θ′/θ) = y′/y. Thus θn/y ∈ F (θ) − F is a constant

which again contradicts our assumption. A straightforward calculation shows that

Equations 2.3 and 2.4 represents the partial fraction expansion of v′/v. Let

v =
l∑

i=1

mi∑
j=1

vij
(θ − αi)j

+ v0 + v1θ + · · ·+ vnθ
n,

where elements αi, vi and vij belong to F be the partial fraction expansion of v over

F . Note that

(
vij

(θ − αi)j

)′
=


v′ij

(θ − αi)j
+
−jvij(x− α′i)

(θ − αi)j+1
if θ′ = x ∈ F

v′ij
(θ − αi)j

+
−jvij(xαi − α′i)

(θ − αi)j+1
+
−jvijx

(θ − αi)j
if θ′/θ = x ∈ F

(2.5)

and

(viθ
i)′ =

ivixθ
i−1 + v′iθ

i if θ′ = x ∈ F

(v′i + ivix)θi if θ′/θ = x ∈ F.

From this observation it follows that when θ′/θ ∈ F , the constant term of v′ is v′0.

Suppose that v has a pole at αi of order mi. Then, −mivimi
(x−α′i) 6= 0 when θ′ ∈ F

and −mivimi
(xαi − α′i) 6= 0 when αi 6= 0 and θ′/θ ∈ F . Therefore, from Equation

2.5, we obtain that v′ has a pole of order mi + 1 at αi.

The following Proposition is due to M. Rosenlicht [13], p.155. Note that only partial

fraction expansions are required to prove the result.

Proposition 2.2.6. ([13], p.155)Let F (θ) ⊃ F be a liouvillian extension with θ

transcendental over F and CF (θ) = CF . Suppose that v, u1, . . . , un ∈ F (θ) and w ∈ F
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are elements such that

v′ +
n∑
i=1

ci(u
′
i/ui) = w,

where c1, . . . , cn are Q−linearly independent constants then

(a) If θ′ ∈ F then ui ∈ F for all i and v = cθ + β for some constant c and β ∈ F .

(b) If θ′/θ ∈ F then v ∈ F and for each i, ui = ηiθ
mi where ηi ∈ F and mi is an

integer.

Proof. Let F be an algebraic closure of F and ui = ηi
∏t

j=1(θ − αj)mij , where for

each i and j, ηi ∈ F, 0 = α1, . . . , αt are distinct elements in F and mij are integers.

(a) From Proposition 2.2.5 part a,c, η′i/ηi has poles of order 1 only and if v has poles

then v′ has poles of order greater than 1. For cancellation to take place we must

have
∑n

i=1 cimij = 0 for each j. Since c′is are Q−linearly independent constants,

every mij = 0. Thus for each i, ui ∈ F and v′ ∈ F. Using Proposition 2.2.4 we have

v = cθ + β for some constant c and β ∈ F.

(b) Again from Proposition 2.2.5 part b,c, η′i/ηi has non-zero poles of order 1 only

and if v has non-zero poles then v′ has poles of order greater than 1. Thus it follows

that for all i and j = 2, . . . , t, mij = 0, ui = ηiθ
mi1 and v ∈ F.

Proposition 2.2.7. ([14], p.338) Let E ⊃ F be an algebraic extension of F with

CE = CF . Assume F is a liouvillian extension of CF and suppose that there are

Q−linearly independent constants c1, . . . , cn, elements u1, . . . , un ∈ E∗, v ∈ E such

that

v′ +
n∑
i=1

ci(u
′
i/ui) ∈ F.

Then v ∈ F and there is a non-zero integer m such that umi ∈ F for all i.
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When F is liouvillian over its constant field CF then M. Rosenlicht and M. Singer

(See [14], p.338) proved this result for algebraic extensions, similar to previous

proposition.

Proof. We use induction on tr degF/CF to prove the result. If tr degF/CF = 0 then

CF = F = E and result is trivial. Assume tr degF/CF > 0 and suppose that the

result is true for smaller degrees.

Case-I. Suppose that v′ +
∑n

i=1 ci(u
′
i/ui) = 0. Choose a liouvillian extension F0 of

CF contained in F and an element θ such that θ is transcendental over F0 and F is

algebraic over F0(θ).

If θ′ ∈ F0 then from Proposition 2.2.6(a), we conclude that u1, . . . , un are algebraic

over F0 and there is a constant c ∈ CF such that v + cθ is algebraic over F0. Thus

(v+cθ)′+
∑n

i=1 ci(u
′
i/ui) ∈ F0 and by induction hypothesis it follows that v+cθ ∈ F0,

v ∈ F and there is a non-zero integer m such that umi ∈ F0 ⊂ F for all i.

If θ′/θ ∈ F0 then again from Proposition 2.2.6(b), observe that v is algebraic over

F0 and there are integers m0,m1, . . . ,mn with m0 6= 0 such that for each i, um0
i θmi

is algebraic over F0. Thus

m0v
′ +

n∑
i=1

ci
(um0

i θmi)′

um0
i θmi

=
n∑
i=1

cimi
θ′

θ
∈ F0.

We again apply induction hypothesis to conclude that v ∈ F0 ⊂ F and that there

exists a non-zero integerm such that (um0
i θmi)m ∈ F0. This implies (um0

i )m ∈ F0(θ) =

F . This prove the result in this particular case.

Case-II. In general, let v′+
∑n

i=1 ci(u
′
i/ui) = w ∈ F, where w is some element in F.

Let L be smallest normal algebraic extension of F containing ui, v. Let N = [L : F ]
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and consider the trace with respect to L then

n∑
i=1

ci
Nr(ui)

′

Nr(ui)
+ Tr(v)′ = Nw = N

n∑
i=1

ci
u′i
ui

+Nv′

and
n∑
i=1

ci
(Nr(ui)u

−N
i )′

Nr(ui)u
−N
i

+ (Tr(v)−Nv)′ = 0.

Now this reduces to case-I. Therefore, we have Tr(v) − Nv ∈ F and there exists a

non-zero integer m such that (Nr(ui)u
−N
i )m ∈ F . Hence, v ∈ F and umNi ∈ F for

each i.

Remark 2.2.8. The condition that F must be liouvillian over CF is essential to the

proof of Proposition 2.2.7(See [14], p.339). Consider the field of formal power series

C((x)) with the usual derivation x′ = 1. Let E = F ((x1/2)) then u′/u = v′ where

u = exp(x1/2) and v = x1/2. Here neither v nor any power of u lies in F.

2.3 Kolchin-Ostrowski Theorem

The Theorem provides a criterion for algebraic independence of exponentials and

primitive elements of a differential field. It was first proved, using analytic

techniques, by A. Ostrowski for a set of primitive elements over the field of

meromorphic functions over complex numbers. Later, using the language of

differential Galois theory, the theorem was reformulated and generalised by E.

Kolchin ([7], p.1155) to include exponentials. Kolchin’s proof of the Kolchin-

Ostrowski Theorem uses his Galois theory of strongly normal extensions, whereas

the one we provide here is due to L. Rubel and M. Singer (See [15], Appendix, p.366)

and it uses only elementary techniques from differential algebra. In order to proceed
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with the proof of the theorem we need the following two lemmas. An alternate proof

to the first lemma that uses the theory of differential ideals, can be found in [9],

Chapter-1, pp.7-8.

Lemma 2.3.1. ([15], p.367) Let E ⊃ F be differential fields with CE = CF . Let

u ∈ E be an algebraic element over F.

(a) If u′ ∈ F then u ∈ F.

(b) If u′/u ∈ F then there is a non-zero integer m such that um ∈ F.

Proof. Let P (X) =
∑n

i=0 piX
i be the minimal monic polynomial of u over F, where

n > 1 and pn = 1.

(a) When u′ ∈ F, we differentiate P (u) and observe that
∑n

i=1(p
′
i−1 + ipiu

′)ui−1 = 0.

But the minimal polynomial of u over F is of degree n. Therefore p′n−1 + nu′ = 0

which implies u = (−1/n)pn−1 + c for some constant c and hence u ∈ F.

(b) When u′/u = v ∈ F assume that for some j 6= 0, pj 6= 0. Differentiating P (u)

we have
∑n

i=0(p
′
i + ivpi)u

i = 0. Thus P ′(u) must be a multiple of P (u) and hence

p′j + jvpj = nvpj. That is
p′j
pj

= (n− j)u
′

u
.

Therefore, (un−j/pj)
′ = 0. Since CE = CF we have un−j/pj ∈ F and un−j ∈ F. This

completes the proof.

Lemma 2.3.2. ([15], p.367) Let E ⊃ F be differential fields with CE = CF . Let

v ∈ E be transcendental over F and u ∈ E be algebraic over F (v).

(a) If v′ ∈ F and u′ ∈ F then there is a constant c such that u+ cv ∈ F.



2.3. KOLCHIN-OSTROWSKI THEOREM 21

(b) If v′ ∈ F and u′/u ∈ F then um ∈ F for some non-zero integer m.

(c) If v′/v ∈ F and u′/u ∈ F then umvn ∈ F, where m and n are some integers,

both not zero.

Proof. (a) Since u is algebraic over F (v) and u′ ∈ F ⊂ F (v), Lemma 2.3.1(a) implies

u ∈ F (v). From Proposition 2.2.6(a) we have u = cv + w for some constant c and

element w ∈ F.

(b) Since u is algebraic over F (v) and u′/u ∈ F ⊂ F (v), Lemma 2.3.1(b) implies that

um ∈ F (v) for some non-zero integer m. Now (um)′/um ∈ F and v′ ∈ F, therefore,

from Proposition 2.2.6(a) we have um ∈ F.

(c) Again apply Lemma 2.3.1(b) and observe um ∈ F (v) for some non-zero integer

m. Since v′/v ∈ F and (um)′/um ∈ F, from Proposition 2.2.6(b) we have um = ηvn,

where η ∈ F and n is any integer. Thus, umv−n ∈ F.

Kolchin-Ostrowski’s Theorem. ([7], p.1155) Let E ⊃ F be differential fields

with CE = CF . Let v1, . . . , vn be elements in E such that v′j ∈ F for each j = 1, . . . , n

and u1, . . . , um be non-zero elements in E such that u′i/ui ∈ F for all i = 1, . . . ,m.

If u1, . . . , um, v1, . . . , vn are algebraically dependent over F, then either there are

constants c1, . . . , cn, not all zero, such that
∑n

j=1 cjvj ∈ F or there are integers

n1, . . . , nm, not all zero, such that
∏m

i=1 u
ni
i ∈ F.

Proof. We prove the result by using induction on m + n. When m + n = 1, the

problem reduces to Lemma 2.3.1. Suppose m+ n > 1.

Case-I. If n 6= 0 then u1, . . . , um, v2, . . . , vn are algebraically dependent over F (v1).

Therefore, by induction either
∑n

j=2 cjvj ∈ F (v1) for some constants cj, not all zero
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or
∏m

i=1 u
ni
i ∈ F (v1), where ni are some integers, not all zero. When v1 is algebraic

over F, we shall apply Lemma 2.3.1(a) to get 1.v1 + 0.v2 + · · ·+ 0.vn ∈ F. When v1

is transcendental over F, we apply 2.3.2 and obtain that either v1 + c
∑n

j=2 cjvj ∈ F,

where c is any constant or
∏m

i=1 u
ni
i ∈ F.

Case-II. If m 6= 0 then similarly u2, . . . , um, v1, . . . , vn are algebraically dependent

over F (u1). Therefore, by induction either
∑n

j=1 cjvj ∈ F (u1) for some constants cj,

not all zero or
∏m

i=2 u
ni
i ∈ F (u1), where ni are some integers, not all zero. When

u1 is algebraic over F, we apply Lemma 2.3.1(b) to get a non-zero integer n1 such

that un1
1 ∈ F. When u1 is transcendental over F, we shall apply 2.3.2 and obtain

un1
1

∏m
i=2 u

νni
i ∈ F, where n1, ν are some integers, not both zero.

Corollary 2.3.3. ([6], p.215) Let E = F (θ = θ1, θ2, . . . , θn) be a liouvillian

extension of F with CE = CF .

(a) If y ∈ E, y′ ∈ F and for each i, θ′i ∈ F then y =
∑n

i=1 ciθi + η, where ci are

constants and η ∈ F .

(b) If θ′i ∈ F for all i ≥ 2 and θ is transcendental over F then there are elements

y1, . . . , yt ∈ {θ2, . . . , θn} such that θ, y1, . . . , yt are algebraically independent over

F and E = F (θ, y1, . . . , yt).

(c) Suppose that n = 2 and E = F (θ, θ2) is a transcendental liouvillian extension of

F such that θ′ ∈ F and θ′2 = v′/v for some v ∈ F (θ)− F . If y ∈ E and y′ ∈ F

then y ∈ F (θ) and y = cθ + η for some constant c and η ∈ F .

Proof. (a) follows from Kolchin-Ostrowski Theorem. Let {y1, . . . , yt} ⊂ {θ2, . . . , θn}

be such that θ, y1, . . . , yt is a transcendence base of E over F . Suppose that there is

a smallest integer i such that θi /∈ F ∗ := F (θ, y1, . . . , yt). Then θi must be algebraic
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over F ∗ and since θ′i ∈ F for all i ≥ 2, the field F ∗ is a differential field. Now from

Proposition 2.2.2, we obtain CF ∗(θi) % CF and this contradicts our assumption that

CE = CF . Finally, if n = 2, θ′2 = v′/v for some v ∈ F (θ)−F and y ∈ E with y′ ∈ F

then we shall use (a) to find some constant c and an element f ∈ F (θ) such that

y = cθ2 + f . Taking derivatives, we obtain

y′ = c(v′/v) + f ′. (2.6)

As in Proposition 2.2.5, we write v = η
∏s

j=1(θ−αj)mj , where η ∈ F , 0 = α1, . . . , αs

are distinct elements in F and mj are integers. Since v ∈ F (θ) − F , we must have

a j such that mj 6= 0. Now since y′ ∈ F ⊂ F (θ) and f ′ ∈ F (θ), from Equation 2.3,

we conclude that c must be zero for Equation 2.6 to hold. Thus y − f ∈ CF ⊂ F

and that y ∈ F (θ). Now we apply (a) to obtain that y = cθ + η for some c ∈ CF
and η ∈ F .

2.4 Liouville’s Theorem

Here we explain Rosenlicht’s proof of Liouville’s Theorem on integration in finite

terms.

Definition 2.4.1. ([13], p.153) A differential field extension E over F is called

elementary extension if there is a tower of differential fields F = F0 ⊂ F1 ⊂ · · · ⊂

Fn = E such that for each 1 ≤ i ≤ n, Fi = Fi−1(θi) and θi satisfies one of the

following:

(i) θi is algebraic over Fi−1.

(ii) θ′i = u′θi for some u ∈ Fi−1 (i.e. θi = eu).
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(iii) θ′i = u′/u for some u ∈ Fi−1 (i.e. θi = log(u)).

Note that an elementary extension is always a liouvillian extension.

Remark 2.4.2. Note that if u1, u2 ∈ F and c ∈ CF then for any p/q ∈ Q, we have

c
u′1
u1

+ c
p

q

u′2
u2

=
c

q

(uq1u
p
2)
′

uq1u
p
2

.

In general, if u1, . . . , um ∈ F and a1, . . . , am ∈ CF then
∑m

i=1 ai(u
′
i/ui) =∑p

i=1 ci(v
′
i/vi), where c1, . . . , cp is a Q−basis for the vector space spanned by

a1, . . . , am over Q and vi =
∏m

j=1 u
qj
j , qj ∈ Z.

We recall that if E is an algebraic extension of F , u ∈ E and P (X) = Xm +

αn−1X
m−1 + · · · + α0 is the minimal monic polynomial of u over F then tr(u) :=

−αn−1 and nr(u) = (−1)mα0. Let L be a finite Galois extension of F containing u

with Galois group G and n := [L : F ]. Define Tr(u) :=
∑

σ∈G σ(u) and Nr(u) :=∏
σ∈G σ(u). It is easy to see that Tr(u) and Nr(u) belong to F and

Tr(u) =
n

m
tr(u) and Nr(u) = nr(u)

n
m .

Liouville’s Theorem. ([13], pp.157-158) Let E ⊃ F be an elementary field

extension of F with CE = CF . If there is an element u ∈ E with u′ ∈ F then there

are Q−linearly independent constants c1, . . . , cn, non-zero elements g1, . . . , gn ∈ F

and an element w ∈ F such that

u′ =
n∑
i=1

ci
g′i
gi

+ w′.

Proof. We prove the result by induction on length m of the tower

F = F0 ⊂ F1 ⊂ · · · ⊂ Fm = E.
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If m = 0 the result is trivial. Let m > 0, then by induction the result holds for the

tower F1 ⊂ · · · ⊂ Fm = E, that is,

u′ =
n∑
i=1

ci
g′i
gi

+ w′,

where ci ∈ CF and gi, w ∈ F1 for all i.

Case-I. When θ1 is transcendental over F. This case further reduces to two sub

cases.

Sub case-I. If θ1 is logarithm over F, that is, θ′1 = x′/x for some x ∈ F then we

apply Proposition 2.2.6(a) and obtain gi ∈ F for all i and w = cθ1 + w0 for some

constant c and element w0 ∈ F. Therefore,

u′ =
n∑
i=1

ci
g′i
gi

+ c
x′

x
+ w′0.

If c, c1, . . . , cn are Q−linearly dependent then as noted in Remark 2.4.2, the sum

can be reduced further so that the constants are Q−linearly independent.

Sub case-II. If θ1 is exponential over F, that is, θ′1 = x′θ1 for some x ∈ F then we

apply Proposition 2.2.6(b) and obtain w ∈ F and gi = ηiθ
mi where ηi ∈ F and

mi ∈ Z for all i. Therefore,

u′ =
n∑
i=1

ci
η′i
ηi

+
n∑
i=1

cimix
′ + w′.

Case-II. When θ1 is algebraic over F. Let L be a finite Galois extension of F that

contains F1 with Galois group G. Then for any σ ∈ G, we have

u′ =
n∑
i=1

ci
(σgi)

′

σgi
+ (σw)′

and

[L : F ]u′ =
n∑
i=1

ci
∑
σ∈G

(σgi)
′

σgi
+
∑
σ∈G

(σw)′ =
n∑
i=1

ci
Nr(gi)

′

Nr(gi)
+ Tr(w)′.
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Since Nr(gi),Tr(w) ∈ F and constants (1/[L : F ])ci are Q−linearly independent, we

obtained the desired result.

Using this theorem, M. Rosenlicht (See [13], p.160) proved that error functions and

logarithmic integrals are non-elementary functions over F = C(z), where CF = C

and z is an indeterminate with derivative z′ = 1.

2.5 Error functions and logarithmic integrals

Let F be a differential field. For an element u ∈ F, error function ([10], p.18) is

defined as ∫
u′e−u

2

and is denoted by erf(u).

A logarithmic integral ([16], p.968) of an element v ∈ F is defined as∫
v′

log v

and is denoted by li(v).

Suppose F = C(z, e−z
2
), where CF = C and z′ = 1. If an antiderivative of e−z

2
lies

in an elementary extension of F, then Liouville’s Theorem implies that there are

non-zero elements u1, . . . , un in F, Q−linearly independent constants c1, . . . , cn and

an element w ∈ F such that

e−z
2

=
n∑
i=1

ci
u′i
ui

+ w′.

Note that if e−z
2

lies in some algebraic normal extension L of C(z) then for any

σ in Galois group of L over C(z), we have 2[L : C(z)]z =
∑

σ(σe−z
2
)′/(σe−z

2
) =
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Nr(e−z
2
)′/Nr(e−z

2
). That means z = v′/v for some element v ∈ C(z), which is

absurd. Therefore, e−z
2

is transcendental over C(z). Thus we shall apply Proposition

2.2.6 and obtain w = w1e
−z2 + w0 for some w1, w0 ∈ C(z) and each ui is a multiple

of some power of e−z
2
. Comparing the coefficient on e−z

2
, we have 1 = w′1 − 2zw1,

but there is no such element w1 in C(z). Hence, erf(z) is non-elementary function

over F = C(z, e−z
2
).

A similar calculation for li(z) over F = C(z, log z) will give rise to equation 1/z =

w′ + w, which do not have a solution in C(z). Thus, li(z) is also a non-elementary

function over F = C(z, log z).
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Chapter 3

Dilogarithmic Integrals and

DEL−Expressions

3.1 Dilogarithmic integrals

A dilogarithm or Spence’s function, named after William Spence, a Scottish

mathematician in early nineteenth century, is the function defined by the power

series

Li2(z) =
∞∑
n=1

zn

n2
for |z| < 1.

The name and the definition of dilogarithm come from the analogy with the Taylor

series of ordinary logarithm around 1,

− log(1− z) =
∞∑
n=1

zn

n
for |z| < 1.

29
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This similarly leads to the definition of polylogarithm

Lim(z) =
∞∑
n=1

zn

nm
for |z| < 1, m ∈ N,

where Li1(z) = − log(1− z). It is clear that for m > 1

d

dz
Lim(z) =

z′

z
Lim−1(z).

Thus the analytic continuation of the dilogarithm function is

Li2(z) = −
∫ z

0

log(1− u)
du

u
for z ∈ C \ [1,∞).

Keeping this analytic theory in mind, one can study dilogarithmic integrals from

a purely algebraic stand point. The following algebraic definition of dilogarithmic

integrals is due to Singer, Saunders and Caviness [16]:

Definition 3.1.1. ([16], p.968) Let E ⊃ F be differential fields and g ∈ F \ {0, 1}

be any element. The integral

−
∫
g′

g
log(1− g)

in E is called dilogarithmic integral and is denoted by `2(g).

It is clear from the definition that if `2 ∈ E then log(1 − g) ∈ E and `2(g) is

primitive over F (log(1− g)). We shall now explain some basic identities satisfied by

dilogarithmic integrals.

Proposition 3.1.2. Let E ⊃ F be differential fields and `2(g) ∈ E for some g ∈

F \ {0, 1}. Then `2(1/g), `2(1− g) lies in E(log g) and for a constant c,

(i) `2

(
1

g

)
= −`2(g)− 1

2
log2 g + c log g.
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(ii) `2(1− g) = −`2(g)− log g log(1− g).

Proof. From the definition of dilogarithmic integral,

`2

(
1

g

)′
= −(1/g)′

(1/g)
log (1− 1/g) =

g′

g
log

(
g − 1

g

)
and

`2(1− g)′ = −(1− g)′

1− g
log g =

g′

g
log(1− g)− (log g log(1− g))′.

Since log((g−1)/g) = log(1−g)− log g+c for some constant c. Thus integrating the

above equations, we shall obtain the desired expressions for `2(1/g) and `2(1 − g)

and clearly `2(1/g), `2(1− g) lies in E(log g).

Let F = C(z) be a differential field with CF = C and z′ = 1. Let E ⊃ F be

differential field extension having constant field CE = C. Assume there is an element

g ∈ F \ {0, 1} such that `2(g) ∈ E and `2(g)′ ∈ F (log(1 − g)). Suppose that E

is an elementary extension over F (log(1 − g)). Then Liouville’s Theorem implies

that there exists Q−linearly independent constants c1, . . . , cn, elements g1, . . . , gn ∈

F (log(1− g))∗ and w ∈ F (log(1− g)) such that

`2(g)′ = −g
′

g
log(1− g) =

n∑
i=1

ci
g′i
gi

+ w′. (3.1)

Clearly log(1 − g) is transcendental over F = C(z). Consider the partial fraction

expansion of w and gi for each i as done in Proposition 2.2.5 and note that w is a

polynomial in F [log(1− g)] with deg(w) ≤ 2. Since
∑n

i=1 ci(gi)
′/gi ∈ F [log(1− g)],

using Proposition 2.2.6 we obtain gi ∈ F. Let w = c log2(1− g) +w1 log(1− g) +w0,

where c ∈ C, w1, w0 ∈ F. Then comparing the coefficients of log(1 − g), we obtain

w′1 = −g′/g−2c(1−g′)/(1−g). But there is no such element in F, therefore, we arrive

at a contradiction. Thus E must be a non-elementary extension of F (log(1 − g)),

and hence `2(g) is non-elementary function over F (log(1− g)).
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3.2 Special expressions and identities

First we recall the definitions of DEL−extensions and DEL−expressions from

Chapter-1.

Definition 3.2.1. ([6], pp.210-211) A differential field E ⊃ F is called a

DEL−extension of F if CE = CF and there is a tower of differential fields Fi such

that

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = E

and for each i, Fi = Fi−1(θi) and one of the following holds:

(i) θi is algebraic over Fi−1.

(ii) θ′i = u′θi for some u ∈ Fi−1 (i.e. θi = eu).

(iii) θ′i = u′/u for some u ∈ Fi−1 (i.e. θi = log(u)).

(iv) θ′i = u′/v, where v′ = u′/u for some u, v ∈ Fi−1 (i.e. θi =
∫
u′/ log(u), also

denoted by `i(u)).

(v) θ′i = u′v, where v′ = (−u2)′v for some u, v ∈ Fi−1 (i.e. θi =
∫
u′e−u

2
, also

denoted by erf (u)).

(vi) θ′i = vu′/u, where v′ = (1− u)′/(1− u) (i.e. θi =
∫

u′

u
log(1− u), also denoted

by −`2(u)) for some u, v ∈ Fi−1.

Definition 3.2.2. ([6], p.211) We say that v ∈ F admits a DEL−expression over

F if there are finite indexing sets I, J,K and elements ri, gi ∈ F for all i ∈ I,
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elements uj, log(uj) ∈ F and constants aj for all j ∈ J , elements vk, e
−v2k ∈ F and

constants bk for all k ∈ K, and an element w ∈ F such that

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′, (3.2)

where for each i ∈ I, there is an integer ni such that r′i =
∑ni

l=1 cilh
′
il/hil for some

constants cil and elements hil ∈ F .

Definition 3.2.3. ([6], pp.215-216) A DEL−expression will be called

(a) a special DEL−expression if for each i ∈ I, r′i = ci(1 − gi)′/(1 − gi) for some

constant ci,

(b) a L−expression if for all i, j, k, r′i = 0, aj = 0 and bk = 0,

(c) a D−expression if it is special and for all j, k, aj = bk = 0,

(d) a DL−expression if bk = 0 for all k.

An L−expression
∑p

i=1 ci(v
′
i/vi) over F is said to be reduced if constants c1, . . . , cp

are Q−linearly independent. We observed in Remark 2.4.2 that if v ∈ F admits

a L−expression over F then it also admits a reduced L−expression over F . To

this end, whenever we write
∑m

i=1 ai(u
′
i/ui), we shall assume that a1, . . . , am are

Q−linearly independent. In particular,

(a) we assume that for each i, the L−expression
∑ni

l=1 cilh
′
il/hil that appear in the

definition of DEL−expression is reduced and

(b) if I1 = {i ∈ I | r′i = 0} then
∑

i∈I1 ri(g
′
i/gi) is also reduced.
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Definition 3.2.4. A differential field extension E of F will be called a logarithmic

extension of F if CE = CF and there are elements h1, . . . , hm ∈ F such that E =

F (log(h1), . . . , log(hm)).

From Proposition 3.1.2, we shall prove the following propositions.

Proposition 3.2.5. ([6], p.217) Let F (θ) ⊃ F be a transcendental DEL−extension

and suppose that

v :=
∑
i∈I

ri(g
′
i/gi) + w′ (3.3)

is a D−expression over a logarithmic extension E of F (θ). Then v admits a

D−expression:

v =
∑
i∈I

r̃i(g̃
′
i/g̃i) + w̃′

over some logarithmic extension Ẽ of F (θ), containing E, such that for each i, r̃i is

a constant or g̃i ∈ F (θ) and 1− g̃i = ηiPi/Qi, where Pi and Qi are monic relatively

prime polynomials over F [θ] and ηi ∈ F having the following properties:

(a) θ is neither a factor of Pi nor a factor of Qi and deg(Qi) ≥ deg(Pi).

(b) If ηi 6= 1 then deg(Qi − ηiPi) =deg(Qi) and if ηi = 1 then log(ηi) ∈ CF .

(c) If ξi is the leading coefficient of Qi−ηiPi then either deg(Pi) =deg(Qi) or ξi = 1.

Furthermore, either ηi = 1 or ξi = 1 or ξi = 1−ηi and in any event, log(ηi)(ξ
′
i/ξi)

is a D−expression over F (log(ηi)).

Proof. Let E = F (θ)(log(y1), . . . , log(yn)) for y1, . . . , yn ∈ F (θ) and Λp =

F (θ)(log(y1), . . . , log(yp−1), log(yp+1), . . . , log(yn)). Observe that r′i− ci(1− g′i)/(1−
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gi) = 0 ∈ Λp[log(yp)] and that Λp(log(yp)) = E. Apply Proposition 2.2.7 and obtain

that 1− gi, and therefore gi, belongs to Λp. Thus gi ∈ F (θ) = ∩pΛp for each i ∈ I.

Let 1− gi = ξiPi/Qi, where Pi and Qi are relatively prime monic polynomials over

F and ξi ∈ F . Then θ can either divide Pi or Qi but not both. Suppose that θ

divides Pi. Then over the differential field E(log(gi)), using Proposition 3.1.2, we

have ri(g
′
i/gi) = r̃ig̃

′
i/g̃i + (log(gi)ri)

′, where r̃i = −ci log(gi) and g̃i = 1− gi. Then

v =
∑

j∈I,j 6=i

rj(g
′
j/gj) + r̃i(g̃

′
i/g̃i) + (w̃i + w)′,

where w̃i = log(gi)ri, is a D−expression over E(log(gi)). Note that Qi− ξiPi and Qi

are relatively prime polynomials such that θ neither divides Qi− ξiPi nor Qi. Since

1 − g̃i = gi = (Qi − ξiPi)/Qi, we shall factor the leading coefficient η̃i of Qi − ξiPi
and obtain for all such i, relatively prime monic polynomials P̃i and Qi such that

η̃iP̃i = Qi − ξiPi, 1− g̃i = gi = η̃iP̃i/Qi and that θ neither dividing P̃i nor Qi.

Now we suppose that θ divides Qi. We make use of Proposition 3.1.2 and write

rig
′
i/gi = −r̂iĝ′i/ĝi+((1/2ci)r

2
i )
′, where r̂′i = ci(1− ĝi)′/(1− ĝi). Since 1− ĝi = 1/(1−

gi) = (1/ξi)(Qi/Pi), we have θ dividing the numerator polynomial Qi. Therefore,

we shall proceed as in the previous case and obtain r̃i, g̃i and w̃i. This proves the

first part of (a). To prove the second part of (a), we simply apply Proposition 3.1.2,

to those terms that have deg(Pj) 	 deg(Qj).

Since deg(Qi) ≥ deg(Pi), if ηi 6= 1 then the leading coefficient of deg(Qi − ηiPi),

which we shall call ξi is non zero and therefore deg(Qi − ηiPi) =deg(Qi). Since

log(ηi)
′ = η′i/ηi, if ηi = 1 then log(ηi) must be a constant. Note that if deg(Qi) 	

deg(Pi) then the polynomial Qi − ηiPi must be monic, that is, ξi = 1. If neither

ηi = 1 nor ξi = 1 then it is clear that deg(Qi) = deg(Pi) and therefore ξi = 1 − ηi.

Thus we have the following observations on log(ηi)(ξ
′
i/ξi):
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log(ηi)
ξ′i
ξi

=


(log(ηi) log(ξi))

′ if ηi = 1;

0 if ξi = 1;

log(ηi)
(1−ηi)′
1−ηi if ξi = 1− ηi.

Thus, in any event, log(ηi)(ξ
′
i/ξi) is a D−expression over F (log(ηi)).

Proposition 3.2.6. ([6], p.217) Let F (θ) ⊃ F be differential fields where θ is

transcendental, CF (θ) = CF and either θ′ ∈ F or θ′/θ ∈ F and v ∈ F (θ). Suppose

that

v =
∑
i∈I

ri(g
′
i/gi) + w′ (3.4)

is a D−expression over F (θ).

(a) If θ′ ∈ F then for each i such that r′i 6= 0, we have gi ∈ F .

(b) For each i, ri = aiθ + ηi for some constant ai ∈ CF and ηi ∈ F . Furthermore,

each ri belong to F when θ′/θ ∈ F .

Proof. We have r′i−ci(1−gi)′/(1−gi) = 0 for some ci ∈ CF . Suppose that ci 6= 0 for

some i. If θ′ ∈ F then since ci 6= 0, we apply Proposition 2.2.7 and obtain 1−gi ∈ F

and consequently, gi ∈ F for all i. On the other hand if θ′/θ ∈ F then we have

1 − gi = ξiθ
mi for some integer mi and elements ξi and ri in F . Thus for each i,

r′i ∈ F . From Proposition 2.2.7 it follows that ri = aiθ + ηi for some ai ∈ CF and

ηi ∈ F and that each ri ∈ F (that is, ai = 0) when θ′/θ ∈ F .

Following lemma helps us to handle various terms that appear in DEL−expressions.



3.2. SPECIAL EXPRESSIONS AND IDENTITIES 37

Lemma 3.2.7. ([6], p.218) Let F (θ) ⊃ F be a transcendental DEL−extension of

F and v ∈ F (θ) be an element such that

v =
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k +

s∑
i=1

δi
w′i
wi

+ w′,

where uj, log(uj), vk, e
−v2k , wi, w ∈ F (θ), δi ∈ F and aj, bk are constants.

(i) Suppose that θ′ ∈ F . Then each uj, vk and e−v
2
k belong to F . Furthermore, if

v ∈ F [θ] then w ∈ F [θ], v−w′ ∈ F and there is a subset J1 ⊂ J and elements

ξi ∈ F such that

v =
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k +

s∑
i=1

δi
ξ′i
ξi

+ w′.

Finally, if v ∈ F then w = cθ + w0 for some constant c and w0 ∈ F .

(ii) Suppose that θ′/θ ∈ F . Then each log(uj) and vk belong to F and there are

elements ηj and ζk in F and integers mj and nk such that uj = ηjθ
mj and

e−v
2
k = ζkθ

nk . Furthermore, if v ∈ F , θ′/θ = x′ for some x ∈ F and for each

i, δi is a constant or the constant term of the partial fraction expansion of the

corresponding w′i/wi is zero, then there are sets J1 = {j ∈ J | mj = 0} and

K1 = {k ∈ K | nk = 0} and an element w̃ ∈ F such that

v =
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K1

bkv
′
ke
−v2k +

s∑
i=1

δi
ξ′i
ξi

+ w̃′.

Proof. Fix an algebraic closure F of F and write wi = ξi
∏n

l=1(θ − αl)mil with each

αl ∈ F , ξi ∈ F and integers mil as in Proposition 2.2.5. Consider the equations(
e−v

2
k

)′
e−v

2
k

=
(
− v2k

)′
and log(uj)

′ =
u′j
uj
.
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(i) From Proposition 2.2.7, we have for each k ∈ K, e−v2k ∈ F and −v2k = ckθ+ηk for

some constant ck and ηk ∈ F . Since θ is transcendental, the latter equation holds

only if ck = 0 and that vk ∈ F . Similarly, we have uj ∈ F and log(uj) = cjθ + ζj,

where cj is a constant and ζj ∈ F .

Now we further suppose that v ∈ F [θ]. Write wi as in Proposition 2.2.5 and observe

that the partial fraction expansion of
∑s

i=1 δi(w
′
i/wi) contains only poles of order at

most 1 and a constant term ζ, where

ζ =


∑s

i=1 δi(ξ
′
i/ξi) when θ′ ∈ F∑s

i=1 δi(ξ
′
i/ξi) + (

∑s
i=1

∑n
l=1milδi) (θ′/θ) when θ′/θ ∈ F.

(3.5)

Let J1 = {j ∈ J | log(uj) ∈ F} and write

v =
∑
j∈J1

aj
u′j

log(uj)
+
∑

j∈J−J1

aj
u′j

cjθ + ζj
+
∑
k∈K

bkv
′
ke
−v2k +

s∑
i=1

δi
w′i
wi

+ w′. (3.6)

Since v ∈ F [θ], it is clear from the above equation that v − w′ has poles of order

at most 1. Therefore, from Proposition 2.2.5, we obtain that w has no poles and

thus w ∈ F [θ]. Consequently, all the poles of Equation 3.6 must cancel out and we

obtain

v =
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k +

s∑
i=1

δi
ξ′i
ξi

+ w′. (3.7)

If v ∈ F then w′ ∈ F and we have w = cθ + w0 for some constant c and w0 ∈ F .

(ii) In this case we have each −v2k, and therefore vk, belong to F and e−v
2
k = ηkθ

nk for

elements ηk ∈ F and integers nk. We have log(uj) ∈ F and each uj = ζjθ
mj for some

ζj ∈ F and integers mj. Let J1 = {j ∈ J | mj = 0} and K1 = {k ∈ K | nk = 0}

and rewrite

v =
∑
j∈J1

aj
u′j

log(uj)
+
∑

j∈J−J1

aj
µjζjθ

mj

log(uj)
+
∑
k∈K1

bkv
′
ke
−v2k+

∑
k∈K−K1

bkv
′
kηkθ

nk+
s∑
i=1

δi
w′i
wi

+w′,

(3.8)
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where µj = (ζ ′j/ζj) +mj(θ
′/θ) ∈ F .

Let v ∈ F and θ′/θ = x′ for some x ∈ F . We rearrange the terms of
∑s

i=1 δi(w
′
i/wi)

and assume that δi ∈ CF for 1 ≤ i ≤ p and the constant term of w′i/wi is zero for

p+1 ≤ i ≤ s. By assumption,
∑s

i=p+1 δi(w
′
i/wi) is a sum of poles. Now use Equation

3.5, Proposition 2.2.5 and compare the constant terms of Equation 3.8 and obtain

for some w0 ∈ F that

v =
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K1

bkv
′
ke
−v2k +

p∑
i=1

δi
ξ′i
ξi

+

(
p∑
i=1

n∑
l=1

milδi

)
θ′

θ
+ w′0

=
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K1

bkv
′
ke
−v2k +

p∑
i=1

δi
ξ′i
ξi

+ w̃′0, (3.9)

where (
∑p

i=1

∑n
l=1milδi)x+ w0 =: w̃0 ∈ F .
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Chapter 4

An Extension of Liouville’s

Theorem

In this chapter, we provide necessary and sufficient condition for an element to

have an antiderivative in a transcendental DEL−extension. We also obtain a gen-

eralisation of Baddoura’s theorem on integration in finite terms with dilogarithmic

integrals. Several examples can also be found at the end of this chapter, that support

our theorems.

4.1 Integration in DEL−extensions

We recall that special DEL−expression is a DEL−expression

∑
i∈I

ri
g′i
gi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′,

41
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where each r′i = ci(1−gi)′/(1−gi) for some constant ci. First we prove the sufficient

condition that if we have a DEL−expression, of a particular type, over a differential

field then definitely its antiderivative lies in some DEL−extension.

Theorem 4.1.1. Let F be a differential field with constant field CF . Let I, J,K and

L be finite indexing sets such that v ∈ F has DEL−expression:

v =
∑
i∈I

ri
g′i
gi

+
∑
l∈L

sl
h′l
hl

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′

over F, where for each i ∈ I, l, t ∈ L there are constants ci, dil, blt, with ci 6= 0

whenever r′i 6= 0, such that

r′i = ci
(1− gi)′

1− gi
+
∑
l∈L

dil
h′l
hl

and s′l =
∑
i∈I

dil
g′i
gi

+
∑
t∈L

blt
h′t
ht
.

Then there exists a DEL−extension E of F that contains an antiderivative of v.

Proof. Clearly ri = ci log(1 − gi) +
∑

l∈L dil log hl + ei and sl =
∑

i∈I dil log gi +∑
t∈L blt log ht + dl, where ei’s and dl’s are some constants. Substitute these values

in the expression for v and obtain

v =
∑
i∈I

ci log(1− gi)
g′i
gi

+
∑
i∈I
l∈L

dil (log gi log hl)
′ +
∑
l,t∈L

blt(log hl log ht)
′ +
∑
j∈J

aj
u′j

log(uj)

+
∑
k∈K

bkv
′
ke
−v2k + w′.

It is easy to observe that the integral of above equation is∫
v =−

∑
i∈I

ci`2(gi) +
∑
i∈I
l∈L

dil log gi log hl +
∑
l,t∈L

blt log hl log ht +
∑
j∈J

ajli(uj)

+
∑
k∈K

bkerf(vk) + w.

Thus an antiderivative of v lies in field E = F ({log ht, log gi, `2(gi), li(uj), erf(vk)})

which is a DEL−extension.
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Recall that a differential field extension E ⊃ F is called a logarithmic extension

of F if CE = CF and there are elements h1, . . . , hm ∈ F such that E =

F (log(h1), . . . , log(hm)). A DEL−expression is called a special DEL−expression

if r′i = ci(1− gi)′/(1− gi) for some constant ci.

In the next proposition, we observe that any special DEL−expression over a

logarithmic extension of a field F can be reduced to a DEL−expression over F.

Also note that the non constant coefficients of logarithmic derivatives involved in

the final DEL− expression are of the type mentioned in Theorem 4.1.1.

Proposition 4.1.2. Let F be a differential field and v ∈ F satisfies a spe-

cial DEL−expression over a logarithmic extension E of F. Then v satisfies a

DEL−expression:

v =
∑
i∈I

ri
g′i
gi

+
∑
l∈L

sl
h′l
hl

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′ (4.1)

over F, where for each i ∈ I, l, t ∈ L there are constants ci, dil, blt, with ci 6= 0

whenever r′i 6= 0, such that

r′i = ci
(1− gi)′

1− gi
+
∑
l∈L

dil
h′l
hl

and s′l =
∑
i∈I

dil
g′i
gi

+
∑
t∈L

blt
h′t
ht
. (4.2)

Proof. For a positive integer l, let E = F (log(h1), . . . , log(hl)), where h1, . . . , hl ∈ F.

Suppose that there are finite indexing sets I, J,K such that

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′, (4.3)

where for each i ∈ I, ri, gi ∈ E and r′i = ci(1 − gi)
′/(1 − gi), aj ∈ CF , uj and

log(uj) ∈ E for each j ∈ J, bk ∈ CF , vk and e−v
2
k ∈ E for each k ∈ K and w ∈ E.

Without loss of generality, let {log(1− g1), . . . , log(1− gn), log(h1), . . . , log(hm)} be
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transcendental base of E over F. Then, Corollary 2.3.3 implies that every ri can be

written as

ri = ci log(1− gi) + ei for i = 1, . . . , n (4.4)

and ri =
n∑
ν=1

ciν log(1− gν) +
m∑
µ=1

eiµ log hµ + si, (4.5)

where for each i, ci, ei, ciν , eiµ are some constants and si ∈ F. From Proposition 2.2.6

and Lemma 3.2.7, we obtain gi, uj, e
−v2k , vk ∈ F for all i ∈ I, j ∈ J and k ∈ K. As

noted in Proposition 2.2.5, if w has a pole of order 1 then w′ has pole of order 2.

Therefore w is a polynomial in F [(log(1− g1), . . . , log(1− gn), log(h1), . . . , log(hm))].

Let J1 ⊆ J be a finite index set such that J1 = {j ∈ J | log(uj) ∈ F}. Since∑
j∈J−J1 aju

′
j/ log(uj) is the term containing poles of order 1 only, it must vanish.

Using Proposition 2.2.4, we can write

w =
n∑

p,q=1

apq log(1− gp) log(1− gq) +
m∑

ρ,δ=1

bρδ log hρ log hδ +

n,m∑
l,t=1

dlt log(1− gl) log ht

+
n∑
l=1

yl log(1− gl) +
m∑
t=1

zt log ht + w0,

where apq, bρδ, dlt are some constants and yl, zt, w0 are some elements in F.

Substituting derivative of w in Equation 4.3 and using Equations 4.4 and 4.5, we

equate the coefficients of log(1− gl) and log ht to zero and obtain

−y′l = cl
g′l
gl

+
∑
i>n

cil
g′i
gi

+
n∑
p=1

(apl + alp)
(1− gp)′

(1− gp)
+

m∑
t=1

dlt
h′t
ht

(4.6)

and

−z′t =
∑
i>n

eit
g′i
gi

+
m∑
ρ=1

(bρt + btρ)
h′ρ
hρ

+
n∑
l=1

dlt
(1− gl)′

1− gl
. (4.7)
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Thus, we have

v =
∑
i>n

si
g′i
gi

+
n∑
l=1

yl
(1− gl)′

1− gl
+

m∑
t=1

zt
h′t
ht

+
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′0,

where si, yl, zt are elements as in Equations 4.5, 4.6 and 4.7 and therefore, we get a

desired DEL− expression for v over F.

It would be remarked in detail later that presence of algebraic elements along with

exponentials and error functions can complicate the problem of integration in finite

terms. However, for DEL−extensions that do not contain exponentials and error

functions, we have following theorem.

Theorem 4.1.3. ([6], pp.219-220) Let E = F (θ1, · · · , θm) ⊃ F be a DEL−extension

of F and u ∈ E be an element with u′ ∈ F .

(i) If each θi is neither algebraic over Fi−1 nor an exponential of an element of

Fi−1 then u′ admits a DEL−expression over F .

(ii) If F be a liouvillian extension of CF and each θi is neither an exponential of

Fi−1 nor an error function of Fi−1 then u′ admits a DL−expression over F .

Proof. We prove the result using an induction on m. When m = 1, we apply

Proposition 2.2.4 (c) and get u = cθ + η for some constant c ∈ CF and η ∈ F .

Differentiating this equation we obtain the desired expression for u′. Let I, J,K be

finite indexing sets such that

u′ =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′, r′i =

ni∑
t=1

cith
′
it/hit, (4.8)

where elements ri, gi, w, hit, uj, log(uj), vk and e−v
2
k all belong to F1 := F (θ1), aj and

bk are constants and ci1, · · · , cini
are Q− linearly independent constants for each i,
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be a DEL−expression for u′ over F1 := F (θ1). Let F be an algebraic closure of F

and βj ∈ F and ξi ∈ F be elements such that

g′i/gi = ξ′i/ξi +

p∑
l=1

mil
θ′1 − β′l
θ1 − βl

, (4.9)

where each mil is an integer.

(i) We have θ′1 ∈ F . Then from Proposition 2.2.7 each hit belongs to F and from

Lemma 3.2.7 each uj, e
−v2k and vk belong to F . If all ri and log(uj) belong to F

then we shall apply Lemma 3.2.7 and obtain

u′ =
∑
i∈I

ri
ξ′i
ξi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + c1θ

′
1 + w′0. (4.10)

From the definition of θ1, it is clear that the above expression is a DEL−expression

of u′ over F .

Now suppose that there is an r ∈ {ri, log(uj) | i ∈ I, j ∈ J} and r /∈ F . Since

F (θ1) = F (r), we shall find constants ci and element ηi ∈ F such that ri = cir+ηi ∈

F [θ1]. We shall take θ1 = r in Equation 4.9 and rewrite Equation 4.8 over F (r) as

u′ =
∑
i∈I

ci
ξ′i
ξi
r +

(∑
i∈I

p∑
l=1

milci
r′ − β′l
r − βl

)
r +

∑
i∈I

ηi
ξ′i
ξi

+
∑
i∈I

p∑
l=1

milηi
r′ − β′l
r − βl

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′. (4.11)

Thus,

u′ −
∑
i∈I

ci
ξ′i
ξi
r −

∑
i∈I

ηi
ξ′i
ξi

=

p∑
l=1

δl
r′ − β′l
r − βl

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′,

(4.12)

where δl =
∑

i∈I mil(ciβl + ηi) and w is replaced with w +
∑

i∈I
∑p

l=1milci(r − βl).
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Note that u′−
∑

i∈I ci
ξ′i
ξi
r−
∑

i∈I ηi
ξ′i
ξi
∈ F [r], apply Lemma 3.2.7 to the fields F (r) ⊃

F and obtain the following expression for u′:

u′ =
∑
i∈I

ci
ξ′i
ξi
r +

∑
i∈I

ηi
ξ′i
ξi

+
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′, (4.13)

where for j ∈ J1, log(uj) ∈ F . But we know that log(uj) ∈ F (r) for all j and

thus log(uj) ∈ F for all j ∈ J1. We already know that each vk, e
−v2k belongs to F .

Since u′ −
∑

i∈I ci
ξ′i
ξi
r −

∑
i∈I ηi

ξ′i
ξi
∈ F [r], which is a polynomial of degree one and

that w ∈ F (r), we obtain w′ ∈ F [r] ⊂ F (r). Now from Proposition 2.2.4, we shall

replace w with an element of F (r) that satisfies Equation 4.13 and we also conclude

w = dr2 + w1r + w0, where w1, w0 ∈ F and d ∈ CF . Comparing the coefficients of

r in Equation 4.13, we obtain w′1 = −2dr′−
∑

i∈I ciξ
′
i/ξi and comparing constant

terms, we obtain

u′ =
∑
i∈I

ηi
ξ′i
ξi

+ w1r
′ +
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′0. (4.14)

Since, for some j, r = rj or r = log(uj), we have r′ =
∑q

l=1 el(h
′
l/hl) for some

constants el and elements hl ∈ F . Therefore, rewriting Equation 4.14, we obtain

the following DEL−expression for u′:

u′ =
∑
i∈I

ηi
ξ′i
ξi

+ w1

q∑
l=1

el
h′l
hl

+
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′, (4.15)

where

η′i =

ni∑
t=1

cit
h′it
hit
− ci

q∑
l=1

el
h′l
hl
, w′1 = −2d

q∑
l=1

el
h′l
hl
−
∑
i∈I

ci
ξ′i
ξi
. (4.16)

(ii) Let θ1 be algebraic over F and bk = 0 for all k ∈ K. From Proposition 2.2.7, each

ri, log(uj) belong to F and each u′j/uj and h′it/hit belong to F . For every element
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v ∈ {uj, hit | j ∈ J, i ∈ I, 1 ≤ t ≤ ni}, we can choose the smallest integer nv ≥ 0

such that vnv ∈ F (See Proposition 2.2.2 (b)). Let N be a finite algebraic Galois

extension of F containing F (θ1) with Galois group G. Then either 0 = tr(v) = Tr(v)

or v ∈ F and Tr(v) = [N : F ]v. Moreover for σ ∈ G we have σ(y′) = σ(y)′, and

thus Tr(y′) = Tr(y)′ for all y ∈ N and Nr(u)′

Nr(u)
=
∑

σ∈G
σ(u)′

σ(u)
. Let J1 be the subset of

J such Tr(uj) 6= 0 for all j ∈ J1. Then uj ∈ F and Tr(uj) = [N : F ]uj for all j ∈ J1.

For each σ ∈ G we have

u′ =
∑
i∈I

ri
σ(gi)

′

σ(gi)
+
∑
j∈J

dj
σ(uj)

′

log(uj)
+ (σw)′.

Therefore, we sum over all σ ∈ G and obtain

[N : F ]u′ =
∑
i∈I

ri
∑
σ

σ(gi)
′

σ(gi)
+
∑
j∈J

dj
∑
σ

σ(uj)
′

log(uj)
+
∑
σ

(σw)′ and thus

u′ =
1

[N : F ]

∑
i∈I

ri
Nr(gi)

′

Nr(gi)
+
∑
j∈J1

dj
u′j

log(uj)
+

1

[N : F ]
Tr(w)′. (4.17)

Using Proposition 2.2.7 (c), we choose an integer n ≥ 0 such that hnit ∈ F for all i, t

and observe that

r′i =

ni∑
t=1

cit
n

(hnit)
′

hnit
.

Thus Equation 4.17 provides a DL−expression for u′ over F .

Remark 4.1.4. (Problem of Algebraic Elements) When dealing with expressions

involving algebraic elements, the only method known, to obtain a similar expression

over the base field is the standard method of taking “Trace” as done in Theorem

4.1.3(ii). This method fails when we deal with error functions: If u, e−u
2

belongs to

an algebraic extension of F with the same field of constants as F then from equation

(−u2)′ = (e−u
2
)′

e−u2
,
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we only obtain u2 ∈ F and that (eu
2
)2 ∈ F (see [16] , p.977, Theorem 4.1). Moreover,

such error functions do exists (see [16], p.968, Example 1.1). Thus Tr(u′e−u
2
) can’t

be simplified further to obtain a similar expression over F . Similarly, for some v ∈ F

if v = r g
′

g
, where r′ = c (1−g)

′

1−g , is a D−expression of v over an algebraic extension of

F then r must be in F. However, we only know that some power of 1− g belongs to

F . Now taking Trace, we obtain

v =
r

m

Nr(g)′

Nr(g)
and

( r
m

)′
=

c

m2

Nr(1− g)′

Nr(1− g)
. (4.18)

Since Nr(1−g) need not equal a constant multiple of 1−Nr(g), the above equation

does not provide a D−expression over F . Nonetheless, Equation 4.18 does provide a

DL−expression over F and indeed, this argument was used in the proof of Theorem

4.1.3 (ii).

4.2 Induction step

Let E = F (θ1, . . . , θn) be a DEL−extension of F . The proof of our main theorem

uses an induction on n and the crucial argument (the induction step) is the following:

First we show that if

u′ =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′,

r′i = ci(1− gi)′/(1− gi)

is a special DEL−expression over a logarithmic extension Fl−1(log(f1), . . . , log(fp))

of Fl−1 = Fl−2(θl−1), where f1, . . . , fp ∈ Fl−1 then one can find elements h1, . . . , hq ∈

Fl−2 such that u′ admits a special DEL−expression over Fl−1(log(h1), . . . , log(hq)).

Next, we show that there is an element h ∈ Fl−2 such that u′ admits a special
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DEL−expression over Fl−2(log(h), log(h1), . . . , log(hq)) which then completes the

induction argument.

Remark 4.2.1. The induction process used is different from the usual induction.

The reason we did not follow the usual induction is that a DEL−expression

over a field F (θ), where θ is a transcendental exponential, may not reduce to a

DEL−expression over F. For example, let v = rg′/g ∈ F, where r, g ∈ F (θ)

and r′ = h′/h for some h ∈ F (θ). Clearly v holds a DEL−expression over F (θ).

Assume θ′/θ = x′ for some x ∈ F . Then using Proposition 2.2.6, we can write

v = rη′/η + rnx′ and r′ = ξ′/ξ + mx′, where η, ξ are the constant coefficients in

the partial fraction of g and h, respectively, n,m are integers and r ∈ F. From

the expression of v itself, it is clear that expression need not necessarily be a

DEL−expression over F.

The following lemma contains our crucial induction argument.

Lemma 4.2.2. ([6], p.223) Let F (θ) ⊃ F be a transcendental DEL−extension

of F . If v ∈ F admits a special DEL−expression over the differential field

F (θ)(log(y1), . . . , log(yn)), each yi ∈ F (θ), having the same field of constants

as F then there is a differential field M = F (log(h1), . . . , log(hm), θ), where

hi ∈ F and having the same field of constants as F such that v admits a special

DEL−expression over M . Moreover, if θ is exponential over F then v admits a

special DEL−expression over F (log(h1), . . . , log(hm)).

Proof. Let v =
∑

i∈I1 ri
g′i
gi

+
∑

j∈J aj
u′j

log(uj)
+
∑

k∈K bkv
′
ke
−v2k + w′ be a special

DEL−expression over some logarithmic extension E = F (θ)(log(y1), . . . , log(yn))
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of F (θ). For convenience, we shall rewrite

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
l∈I1−I

rl
g′l
gl

+
∑
k∈K

bkv
′
ke
−v2k + w′, (4.19)

where I = {i ∈ I1 | ri is not a constant}. We can apply Proposition 3.2.5 to

the D−expression
∑

i∈I1 ri
g′i
gi

+ w′, enlarge E to a logarithmic extension of F (θ) to

include log(gi) and assume that 1− gi = ηiPi/Qi, where Pi, Qi ∈ F [θ] are relatively

prime monic polynomials, θ neither divides Pi nor Qi, deg(Qi) ≥deg(Pi) and ηi ∈

F . Now since r′i ∈ F (θ), there are constants cip such that ri −
∑n

p=1 cip log(yp) ∈

F (θ) and in particular, ri ∈ Λp[log(yp)] for each i, where Λp = F (θ)(log(y1), . . . ,

log(yp−1), log(yp+1), . . . , log(yn)). Observe that v −
∑

i∈I ri(g
′
i/gi) ∈ Λp[log(yp)] and

that

v −
∑
i∈I

ri(g
′
i/gi) =

∑
j∈J

aj
u′j

log(uj)
+
∑
l∈I1−I

rl
g′l
gl

+
∑
k∈K

bkv
′
ke
−v2k + w′.

Let γ := v −
∑

i∈I ri(g
′
i/gi) − w′ and apply Lemma 3.2.7 to get that γ ∈ Λp for

each p. Thus γ ∈ F (θ). Now a repeated application of Lemma 3.2.7 to the field

extension E of F (θ), with v = γ and w = 0, would tell us that we could assume

uj, log(uj), vk, e
−v2k and gl belong to F (θ). We enlarge E to include log(gl) and

replace w with w +
∑

l∈I1−I rl log(gl) and write

v =
∑
i∈I

ri
g′i
gi

+ S + w′, (4.20)

where ri, w is in some logarithmic extension E of F (θ), gi ∈ F (θ) and S =∑
j∈J aj

u′j
log(uj)

+
∑

k∈K bkv
′
ke
−v2k .

Fix F an algebraic closure of F . It is easy to see that there is a subset A = {0 =

α1, . . . , αt} of F such that the following holds:
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(i) Pi =
∏t

j=1(θ−αj)lij , Qi =
∏t

j=1(θ−αj)mij and Qi− ηiPi = ξi
∏t

j=1(θ−αj)nij

for some ξi ∈ F , where lij,mij and nij are non negative integers.

(ii) w ∈M1({log(θ − α) | α ∈ A}), where M1 = F ({log(ηi), log(ξi), θ |i ∈ I}).

Let M = F ({log(ηi), log(ξi), θ | i ∈ I}) and choose a differential subfield M∗

of M1 such that F ⊂ M∗, θ is transcendental over M∗ and M∗(θ) = M1 (See

Corollary 2.3.3 (b)). Let aij = lij − mij and bij = nij − mij and observe that∑t
j=1 aij =deg(Pi)−deg(Qi) and

∑t
j=1 bij =deg(Qi − ηiPi)−deg(Qi). We have

ri = ci log(ηi) +
t∑

j=2

ciaij log(θ − αj) + ei for some ei ∈ CF (4.21)

g′i/gi = ξ′i/ξi +
t∑

j=1

bij
θ′ − α′j
θ − αj

and therefore (4.22)

v =
∑
i∈I

ri
g′i
gi

+ S + w′

=
t∑

j=2

uj log(θ − αj) +
∑
i∈I

ci log(ηi)
g′i
gi

+ S + w′, (4.23)

where uj :=
∑

i∈I ciaij(g
′
i/gi) is a L−expression over F (θ) and w ∈ M1({log(θ −

α) | α ∈ A}).

Consider the differential fields M1 = M∗(θ) ⊃ M∗. It is easy to see that log(θ −

α2), . . . , log(θ − αt) are algebraically independent over M∗ (See [1], pp.931-933,

Propositions 3 and 4). Also observe w′ ∈ M1[{log(θ − α)|α ∈ A}], then using

Proposition 2.2.4 we can write w =
∑t

j,l=2 cjl log(θ−αj) log(θ−αl)+
∑t

j=2 fj log(θ−

αj) + w0, where ckl are constants and fj, w0 ∈ M1. Then comparing the constant



4.2. INDUCTION STEP 53

terms we obtain

v =
t∑

j=2

fj
θ′ − α′j
θ − αj

+
∑
i∈I

ci log(ηi)
g′i
gi

+ S + w′0, f ′j = −uj −
t∑
l=2

cjl
θ′ − α′l
θ − αl

. (4.24)

Substituting Equation 4.22 in Equation 4.24 we obtain the following expression for

v over M∗(θ):

v =
t∑

j=1

(
fj +

∑
i∈I

bijci log(ηi)

)
θ′ − α′j
θ − αj

+
∑
i∈I

ci log(ηi)(ξ
′
i/ξi) + S + w′0, (4.25)

where f1 = 0 and for all j > 1,

f ′j = −
∑
i∈I

ciaij
ξ′i
ξi
−

t∑
l=1

∑
i∈I

ciaijbil
θ′ − α′l
θ − αl

−
t∑
l=2

cjl
θ′ − α′l
θ − αl

. (4.26)

From Proposition 3.2.5, we have
∑

i∈I ci log(ηi)(ξ
′
i/ξi) is a D−expression over M and

that S +
∑

i∈I ci log(ηi)(ξ
′
i/ξi) is a special DEL−expression over M . We only need

to the handle the first and last term appearing on the above expression of v.

First we suppose that θ′ ∈ F . Since
(∑

i∈I bijci log(ηi)
)′

=
∑

i∈I bijci(η
′
i/ηi), from

Equation 4.26 and Proposition 2.2.7, we have fj +
∑

i∈I bijci log(ηi) = djθ + hj for

some dj ∈ CF and hj ∈M∗. Similarly, log(ηi)− λiθ ∈M∗ for some λi ∈ CF . Thus

v =
t∑

j=1

(djθ + hj)
θ′ − α′j
θ − αj

+
∑
i∈I

ci log(ηi)
ξ′i
ξi

+ S + w′0

=
t∑

j=1

(djαj + hj)
θ′ − α′j
θ − αj

+
∑
i∈I

ci log(ηi)
ξ′i
ξi

+ S + w̃′, (4.27)

where w̃ = w0 +
∑t

j=1 dj(θ − αj) ∈ M∗(θ) and djαj + hj ∈ F . Since v −∑p
i=1 ci log(ηi)(ξ

′
i/ξi) ∈M∗[θ], we shall apply Lemma 3.2.7 to the fields M∗(θ) ⊃M∗

and obtain

v =
∑
i∈I

ci log(ηi)
ξ′i
ξi

+
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K

v′ke
−v2k + w̃′, (4.28)
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where v− w̃′ is a special DEL−expression over M = F ({log(ηi), log(ξi), θ | i ∈ I}).

This implies that w̃′ ∈ M . Since w̃ ∈ M∗[θ] ⊂ M1, which is an algebraic extension

of M , we shall apply Proposition 2.2.2 and replace w̃ with an element w ∈ M such

that w′ = w̃′. This settles the case when θ′ ∈ F .

Now we suppose that θ′/θ = x′ ∈ F for some x ∈ F and consider Equations 4.25

and 4.26. We have for each i and j both fj and log(ηi) belong to M∗. Using the

fact that
θ′ − α′j
θ − αj

= x′ +
x′αj − α′j
θ − αj

,

we rewrite Equation 4.25 as

v =
t∑

j=1

(
fj +

∑
i∈I

bijci log(ηi)

)(
x′ +

x′αj − α′j
θ − αj

)
+
∑
i∈I

ci log(ηi)(ξ
′
i/ξi) + S + w′0.

(4.29)

As in Equation 3.8, we find sets J1 = {j ∈ J | mj = 0} and K1 = {k ∈ K | nk = 0}

and we rewrite

v =
t∑

j=1

(
fj +

∑
i∈I

bijci log(ηi)
)
x′ +

t∑
j=1

(
fj +

∑
i∈I

bijci log(ηi)

)(
x′αj − α′j
θj − αj

)
+
∑
i∈I

ci log(ηi)(ξ
′
i/ξi) +

∑
j∈J1

aj
u′j

log(uj)
+
∑

j∈J−J1

aj
µjζjθ

mj

log(uj)
+
∑
k∈K1

bkv
′
ke
−v2k

+
∑

k∈K−K1

bkv
′
kηkθ

nk + w′0,

where µj = (ζ ′j/ζj) + mj(θ
′/θ) ∈ F . Now comparing the constant coefficients, we

obtain

v =
t∑

j=1

fjx
′ +

(∑
i∈I

t∑
j=1

bijci log(ηi)

)
x′ +

∑
i∈I

ci log(ηi)
ξ′i
ξi

+
∑
j∈J1

aj
u′j

log(uj)

+
∑
k∈K1

bkv
′
ke
−v2k + w′00. (4.30)
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Consider
∑t

j=1 bijci log(ηi). If ηi 6= 1 then deg(Qi − ηiPi) = deg(Qi) and therefore∑t
j=1 bij = 0 and thus

∑t
j=1 bijci log(ηi) = 0. If ηi = 1 then log(ηi) ∈ CF and we

have
∑t

j=1 bijci log(ηi) ∈ CF . Thus, in any event, d :=
∑

i∈I
∑t

j=1 bijci log(ηi) ∈ CF .

Therefore

v = fx′ +
∑
i∈I

ci log(ηi)
ξ′i
ξi

+
∑
j∈J1

aj
u′j

log(uj)
+
∑
k∈K1

bkv
′
ke
−v2k + (w00 + dx)′, (4.31)

where f =
∑t

j=1 fj =
∑t

j=2 fj. As observed earlier,
∑

i∈I ci log(ηi)(ξ
′
i/ξi) is a

dilogarithmic expression over M . Now we will show that f is either a constant

or fx′ = h′ for some h ∈ F , and w00 ∈ F ({log(ηi), log(ξi) | i ∈ I}). Comparing the

constant term of the equation 4.26, we obtain

f ′ = −
∑
i∈I

t∑
j=2

aij
ξ′i
ξi
− cx′, for some constant c ∈ CF .

If
∑t

j=2 aij 6= 0 then since ai1 = 0 for all i ∈ I, we have deg(Qi) 	 deg(Pi) and as

observed in Proposition 3.2.5, ξi = 1 for all such i. Thus
∑

i∈I
∑t

j=2 aij
ξ′i
ξi

= 0 and

therefore f ′ = −cx′. Now it follows that either f ′ = 0 or (−f 2/(2c))′ = fx′. Let w̃ :=

w00 + dx− f 2/(2c) and observe from Equation 4.31 that w̃′ ∈ F ({log(ηi), log(ξi)|i ∈

I}). Therefore, from Proposition 2.2.6 we obtain w̃ ∈ F ({log(ηi), log(ξi)|i ∈ I}).

Since F ({log(ηi), log(ξi)}) is an algebraic extension of F ({log(ηi), log(ξi)}), we shall

apply Proposition 2.2.2 and find an element w ∈ F ({log(ηi), log(ξi)|i ∈ I}) such

that w′ = w̃′.

4.3 Extension theorems

Recall that a differential field extension E ⊃ F is called a logarithmic extension

of F if CE = CF and there are elements h1, . . . , hm ∈ F such that E =
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F (log(h1), . . . , log(hm)).

Theorem 4.3.1. ([6], p.226) Let F (θ) ⊃ F be transcendental DEL−extension

of F such that F (θ) 6= F (log(h)) for any h ∈ F . If v ∈ F admits a special

DEL−expression over F (θ) then v admits a special DEL−expression over F .

Proof. As in Equation 4.19, let

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

aj
u′j

log(uj)
+
∑
l∈I1−I

rl
g′l
gl

+
∑
k∈K

bkv
′
ke
−v2k + w′, (4.32)

r′i = ci(1− gi)′/(1− gi) where each ci 6= 0, (4.33)

be a special DEL−expression over F (θ). Suppose that θ′/θ = x′ for some x ∈ F .

We use Proposition 2.2.7 to Equation 4.33 and if necessary, Proposition 3.1.2 and

obtain ri ∈ F and 1− gi = ηi/θ
mi for some integer mi ≥ 0 and ηi ∈ F . Now

g′i
gi

=
(θmi − ηi)′

θmi − ηi
− (θmi)′

θmi
=
mix

′ηi − η′i
θmi − ηi

and therefore g′i/gi has no constant term when mi 	 0. We now apply Lemma 3.2.7

and obtain a special DEL−expression for v over F . On the other hand, if θ′ ∈ F

then (ri/ci)
′ = (1− gi)′/(1− gi) and therefore gi ∈ F . From our hypothesis ri ∈ F .

Now we have v −
∑

i∈I ri(g
′
i/gi) ∈ F and we can apply Lemma 3.2.7 to conclude

that v admits a special DEL−expression over F .

We recall from Chapter-1 that a differential field extension E = F (θ1, . . . , θn) is

called a transcendental dilogarithmic-elementary extension of F if for each i, θi is

transcendental over Fi−1 and satisfies either case ii or iii or vi in the definition of

DEL−extensions.

The following theorems provide an extension of Liouville’s Theorem.
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Theorem 4.3.2. ([6], p.227) Let E = F (θ1, . . . , θn) be a transcendental DEL−

extension of F with CE = CF . Suppose that there is an element u ∈ E with u′ ∈ F

then u′ admits a special DEL−expression over some logarithmic extension of F .

Furthermore, if E is a transcendental dilogarithmic-extension of F then u′ admits a

D−expression over some logarithmic extension of F .

Proof. We shall use an induction on n to prove the theorem. The case when n = 1,

we have u ∈ F (θ) and that u = cθ + w for some c ∈ CF and w ∈ F and therefore

u′ = cθ′ + w′. Now the definition of θ′ proves that, in fact, u′ admits a special

DEL−expression over F itself. Note that u′ ∈ F ⊂ F (θ) and suppose that u′ admits

a special DEL−expression (respectively a D−expression) over some logarithmic

extension of F (θ) having the same field of constants as F . Then we shall apply

Lemma 4.2.2 and obtain that u′ admits a special DEL−expression (respectively

a D−expression) over M = F (θ, log(h1), . . . , log(hm)), where h1, . . . , hm ∈ F and

CM = CF . Let F ∗ = F (log(h1), . . . , log(hm)) and suppose that F ∗(θ) = F ∗(log(h))

for some h ∈ F ∗. If there is an integer p such that h ∈ Λp(log(hp))−Λp, where Λp is

the field generated by F and all log(hi) except log(hp), then we shall apply Theorem

2.3.3 to the fields M = Λp(log(hp))(log(h)) ⊃ F ∗ = Λp(log(hp)) ⊃ Λp and obtain

that θ ∈ F ∗. This implies M is a logarithmic extension of F . If no such p exists then

h ∈ F and we haveM = F (log(h), log(h1), . . . , log(hm)), which is again a logarithmic

extension of F . On the other hand if for any h ∈ F ∗, log(h) /∈ F ∗(θ) − F ∗ then

we shall apply Theorem 4.3.1 and show that u′ admits a special DEL−expression

(respectively a D−expression) over the logarithmic extension F ∗. This completes

the induction argument.

Theorem 4.3.3. Let E = F (θ1, . . . , θn) be a transcendental DEL−extension of F

with CE = CF . Suppose that there is an element u ∈ E with u′ ∈ F then there are
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finite indexing sets I, J,K and L such that u′ satisfies DEL−expression:

u′ =
∑
i∈I

ri
g′i
gi

+
∑
l∈L

sl
h′l
hl

+
∑
j∈J

aj
u′j

log(uj)
+
∑
k∈K

bkv
′
ke
−v2k + w′

over F, where for each i ∈ I, l, t ∈ L there are constants ci, dil, blt, with ci 6= 0

whenever r′i 6= 0, such that

r′i = ci
(1− gi)′

1− gi
+
∑
l∈L

dil
h′l
hl

and s′l =
∑
i∈I

dil
g′i
gi

+
∑
t∈L

blt
h′t
ht
.

Proof. From Theorem 4.3.2, we know that u′ admits a special DEL−expression

over a logarithmic extension of F . We shall now apply Theorem 4.1.2 and obtain a

DEL−expression for u′ over F .

4.4 Generalisation of Baddoura’s theorem

Using techniques from Proposition 2, p.923 of [1] and our Theorem 4.3.2, we

shall generalise and provide a proof of Baddoura’s Theorem. We recall that

a DEL−extension E = F (θ1, . . . , θn) is called a transcendental dilogarithmic-

elementary extension if CE = CF and for each i, θi is transcendental over Fi−1

and satisfies either case ii or iii or vi. Before we proceed to the proof of Baddoura’s

Theorem, we recall the definitions of `2(g) and D(g) from [1], p.912. Let E be a

differential field extension of F and g ∈ F \ {0, 1} be an element of F . If y ∈ E is

an element such that

y′ = − log(1− g)
g′

g

then we shall pick one such element y and denote it by `2(g). Note that any other

element in E whose derivative equal `2(g) differs from `2(g) by some constant of
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E. The element `2(g) + (1/2) log(g) log(1 − g) will be denoted by D(g), which is

sometimes called the Bloch-Wigner-Spence function of g and its derivative is:

D(g)′ = −1

2

g′

g
log(1− g) +

1

2

(1− g)′

1− g
log(g).

Baddoura uses Bloch Wigner Spence function in place of dilogarithmic integrals,

if the dilogarithmic integrals appear in the integral, and proved that the Bloch

Wigner Spence functions appear in linear way while the logarithms can appear

in a possible non-linear way. The extension of Liouville’s theorem to include

dilogarithmic integrals, as done by Baddoura (Theorem, p.933, [1]), is stated as

Theorem 4.4.1. ([1], p.933) Let F be a differential field of characteristic zero and

the field of constants CF be algebraically closed. Assume F is liouvillian extension

of CF . Let there be a transcendental dilogarithmic-elementary extension E of F and

an element v ∈ F such that
∫
v ∈ E then∫

v =
m∑
j=1

cjD(gj) +
n∑
i=1

fi log(hi) + w,

where c′js are constants and each gj, fi, hi, w ∈ F.

To prove this theorem, Baddoura stated and proved two identities of dilogarithmic

integrals ([1], pp.922-923, Lemma 2 and Proposition 2), the former gives a relation

between D(1/g) and D(g), while the latter provides an expansion of Spence function

of a rational function. We shall state the latter identity here:

Proposition 4.4.2. ([1], p.923) Let F be a differential field of characteristic zero,

and θ be transcendental over F with CF (θ) = CF . Let g ∈ F (θ) and E be splitting

field of g and 1− g. Let α and β be zero or pole of g and 1− g, respectively, then

D(g) = D(η) +
∑
α,β
α6=β

ordα(g)ordβ(1− g)D

(
θ − β
θ − α

)
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modulo the vector space generated by constant multiples of logarithms over E(θ),

where η ∈ F is the constant in partial fraction expansion of g and ordα(g) denotes

the multiplicity of θ − α in g which is positive if α is zero and negative if α is pole

of g.

To prove the above proposition, Baddoura considered partial fraction expansions of

g and 1− g and compared their poles in E. The proof involves lengthy calculations.

On the other hand, we prove Theorem 4.4.1 without the hypothesis that CF is

algebraically closed and that F is liouvillian over CF and our proof is relatively

simpler. Furthermore, we do not require dilogarithmic identity from Proposition

4.4.2.

Theorem 4.4.3. ([6], p.228) Let E = F (θ1, . . . , θn) be a transcendental dilogarithmic-

elementary extension of F . Suppose that there is an element u ∈ E with u′ ∈ F .

Then

u =
m∑
j=1

cjD(gj) +
n∑
i=1

fi log(hi) + w, (4.34)

where each fi, hi, gj, w ∈ F , cj are constants and log(hi) and D(gj) belong to some

dilogarithmic-elementary extension of F .

Proof. From Theorem 4.3.2 we have the D−expression u′ =
∑

i∈I1 ri
g′i
gi

+ w′ over a

logarithmic extension E = F (log(h1), . . . , log(hm)) of F . As done in Equation 4.19,

we shall rewrite this expression as:

u′ =
∑
i∈I

ri
g′i
gi

+

q∑
l=1

dl
w′l
wl

+ w′,

r′i = −ci(1− gi)′/(1− gi), (4.35)
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where each ci is a non zero constant. From Remark 2.4.2, we shall assume that

{d1, . . . , dq} are Q−linearly independent constants of F .

Claim: Each gi and wl belong to F and E can be chosen to be the differential field

F ({log(1− gi) | i ∈ I}).

As denoted earlier, let Λp be the field generated by F and all log(hi) except log(hp).

We know from Proposition 3.2.6 that each gi ∈ Λp and each ri is a polynomial in

log(hp) of degree one. Thus u′ −
∑

i∈I ri
g′i
gi
∈ Λp[log(hp)]. Now, from Proposition

2.2.5 and from the fact that d1, . . . , dq are Q−linearly independent, it follows that

wl ∈ Λp. Since p ∈ I is arbitrary, we have gi ∈ F and that wl ∈ F . Note that each

ri ∈ E and consider the differential subfield F ∗ := F ({log(1 − gi) | i ∈ I}) of E.

Then ri ∈ F ∗ and observe that v := u′ −
∑

i∈I ri
g′i
gi
−
∑q

l=1 dl
w′l
wl
∈ F ∗. Since w′ = v,

we apply Theorem 2.3.3 and write w =
∑m

j=1 aj log(hj) + w̃, for some constants

aj ∈ CF and w̃ ∈ F ∗. Thus

u′ =
∑
i∈I

ri
g′i
gi

+

q∑
l=1

dl
w′l
wl

+
m∑
j=1

aj
h′j
hj

+ w̃′

and this proves the claim.

Thus gi and wl belong to F and we shall assume E = F ({log(1 − gi) | i ∈ I}).

“Taking integrals” we see that there is some dilogarithmic elementary extension E∗

of F containing E such that

u =
∑
i∈I

ci`2(gi) +

q∑
l=1

dl log(wl) + w + c, (4.36)

where c ∈ CF and each `2(gi) and log(wl) belong to E∗. We shall first show that

w ∈ F [log(1−g1), . . . , log(1−gm)] is a polynomial of total degree at most 2 and then

show how to combine terms of w with `2(gi) of Equation 4.36 to obtain Equation
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4.341. Without loss of generality, assume that I = {1, 2, . . . ,m} and {log(1 −

g1), . . . , log(1 − gn)} is a transcendence base of E over F for some n, 1 ≤ n ≤ m.

Then E = F (log(1−g1), . . . , log(1−gn)) and since r′i ∈ F , we have constants ci and

ei such that

ri = −ci log(1− gi) + ei, for 1 ≤ i ≤ m (4.37)

and we shall also rewrite ri for n+ 1 ≤ i ≤ m as

ri =
n∑
s=1

cis log(1− gs)− zi, (4.38)

where cis are constants and elements zi ∈ F . In particular, ri is a polynomial in

log(1− gp) over Λp of degree at most 1 and w ∈ Λp[log(1− gp)] for any p, 1 ≤ p ≤ n.

Now from Proposition 2.2.4, we have w is a polynomial in log(1 − gp) over Λp of

degree at most 2 whose leading coefficient is a constant. Since p is arbitrary, we

have w ∈ F [log(1 − g1), . . . , log(1 − gn)] is a polynomial of total degree at most 2.

Write

w =
n∑
s=1

as log(1− gs)2 +
n∑

s,t=1
s�t

xst log(1− gs) log(1− gt) +
n∑
s=1

xs log(1− gs) + w0,

(4.39)

where as ∈ CF and xst, xs, w0 belong to F . Then

w′ =
n∑
s=1

2as
(1− gs)′

1− gs
+ x′s +

n∑
t=1,s�t

(
x′st log(1− gt) + xst

(1− gt)′

1− gt

) log(1− gs)

+
n∑

s,t=1,s�t

xst
(1− gs)′

1− gs
log(1− gt) +

n∑
s=1

xs
(1− gs)′

1− gs
+ w′0. (4.40)

1The technique used to combine terms is taken from Proposition 1, in particular pp.920-921, of

[1].
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Substituting Equations 4.38 and 4.40 in Equation 4.35 and comparing the coefficients

of log(1− gs), we obtain

−cs
g′s
gs

+
m∑

i=n+1

cis
g′i
gi

+ 2as
(1− gs)′

1− gs
+ x′s +

n∑
t=1
s�t

(
x′st log(1− gt) + xst

(1− gt)′

1− gt

)

+
n∑
t=1
t�s

xts
(1− gt)′

(1− gt)
= 0. (4.41)

Therefore
∑n

t=1,s�t x
′
st log(1 − gt) ∈ F and since {log(1 − gi) | i = 1, 2, · · · , n} is

algebraically independent over F , we must have x′st = 0 for all s � t. Now it follows

that there is a constant a ∈ CF such that

as log(1− gs) +
n∑
t=1
s�t

xst
2

log(1− gt) +
n∑
t=1
t�s

xts
2

log(1− gt) =

cs
2

log(gs)−
m∑

i=n+1

cis
2

log(gi)−
xs
2

+ a.

Now we multiply the above equation by log(1− gs) and sum over all of s to obtain

n∑
s=1

as log(1− gs)2 +
n∑

t=1,s=1
s�t

xst log(1− gt) =

n∑
s=1

(
cs
2

log(gs)−
m∑

i=n+1

cis
2

log(gi)

)
(log(1− gs))−

n∑
s=1

(xs
2
− a
)

log(1− gs).

(4.42)

We have

u =
n∑
i=1

ci`2(gi) +
n∑
s=1

as log(1− gs) +
n∑
t=1
s�t

xst log(1− gt)

 log(1− gs)

+
m∑

i=n+1

ci`2(gi) +
n∑
s=1

xs log(1− gs) +

q∑
l=1

dl log(wl) + w0 + c.
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Replace w0 + c by w0 and we shall use Equation 4.42 to rewrite the above equation

and get

u =
n∑
i=1

(
ci`2(gi) +

ci
2

log(gi) log(1− gi)
)

+
m∑

i=n+1

(
n∑
s=1

−cis
2

log(1− gs)

)
log(gi)

+
m∑

i=n+1

ci`2(gi) +
n∑
s=1

xs
2

log(1− gs) + a

n∑
s=1

log(1− gs) +

q∑
l=1

dl log(wl) + w0.

Now from Equations 4.38 and 4.37, we have

n∑
s=1

−cis
2

log(1− gs) = −ri
2
− zi

2
=
ci
2

log(1− gi)−
zi + ei

2

for each i, n+ 1 ≤ i ≤ m. Therefore

u =
n∑
i=1

(
ci`2(gi) +

ci
2

log(gi) log(1− gi)
)

+
m∑

i=n+1

(
ci`2(gi) +

ci
2

log(gi) log(1− gi)
)

+
n∑
s=1

xs
2

log(1− gs)−
m∑

i=n+1

zi + ei
2

log(gi) + a
n∑
s=1

log(1− gs) +

q∑
l=1

dl log(wl) + w0

and thus we shall rewrite

u =
m∑
j=1

cjD(gj) +
n∑
i=1

fi log(hi) + w

for suitable fi, hi and w in F .

4.5 Examples

Example 4.5.1. Let F = C(z, log(1 + z)) be the ordinary differential field with

derivation ′ := d/dz and E = F2 ⊃ F1 ⊃ F0 = F be the dilogarithmic-elementary

extension of F, where
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(a) F1 = F (log z),

(b) F2 = F1(`2(1− z)).

Assume u ∈ E − F1 such that u′ ∈ F. Then for some w ∈ F1 and constant c, we

have u = c`2(1− z) + w. That is,

u′ = −c(1− z)′

1− z
log z + w′. (4.43)

Now w′ is a polynomial in F [log z], therefore using Proposition 2.2.4 we get that w

is a polynomial in F [log z] with deg(w) ≤ 2. Let w = c1 log2 z + w1 log z + w0, for

some constant c1 and elements w1, w0 ∈ F. Then comparing the coefficients of log z

in the expression of u′, we get

w′1 = c
(1− z)′

1− z
− 2c1

z′

z
.

It is obvious that c = c1 = 0 and u ∈ F1, which is a contradiction. Therefore there

is no element u in E − F1 whose derivative u′ lies in F. �

Example 4.5.2. Let F = C(z, ez) be the ordinary differential field with derivation

′ := d/dz and E = F2 ⊃ F1 ⊃ F0 = F be the dilogarithmic-elementary extension of

F, where

(a) F1 = F (log(1− ez)),

(b) F2 = F1(`2(e
z)).

Assume u ∈ E such that u′ ∈ F. Then for some w ∈ F1 and constant c, we have

u = c`2(e
z) + w. That is,

u′ = −c(ez)′

ez
log(1− ez) + w′ = −c log(1− ez) + w′, (4.44)
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which is a special DEL−expression over F1. Then using Proposition 2.2.4, we can

write w = c1 log2(1 − ez) + w1 log(1 − ez) + w0, for some constant c1 and elements

w1, w0 ∈ F. Substituting w′ in Equation 4.44 and comparing the coefficients of

log(1− ez), obtain

w′1 = c− 2c1
(1− ez)′

1− ez
.

Clearly c1 = 0 and u′ satisfies DEL−expression

u′ = w1
(1− ez)′

1− ez
+ w′0,

where w′1 = c = c (e
z)′

ez
. �

Example 4.5.3. ([6], pp.231-233) Let log(z), log(z − 1), log(z + 1) and log(z2 +

z − 1) be designated solutions of the differential equations y′ = 1/z, y′ = 1/(z − 1),

y′ = 1/(z+1) and y′ = (2z+1)/(z2+z−1) respectively. Denote log(z)+log(z−1)+

log(z2 + z− 1) and log(z) + log(z+ 1) by log(z(z− 1)(z2 + z− 1)) and log(z(z+ 1))

respectively. Let F = C (z, log(z + 1), log(z(z − 1)(z2 + z − 1))) be the ordinary

differential field with the derivation ′ := d/dz and E = F3 ⊃ F2 ⊃ F1 ⊃ F0 = F be

the dilogarithmic-elementary extension of F , where

(a) F1 = F (log z),

(b) F2 = F1 (`2(1− z)), `2(1− z)′ = − (1−z)′
1−z log z and

(c) F3 = F2 (`2 (1− z(z + 1))), `2 (1− z(z + 1))′ = − (1−z(z+1))′

1−z(z+1)
log(z(z + 1)).

Note that

log(z)+log(z−1)+log(z2 +z−1) = log(z)+log(1−z)+log(1−z−z2)+c, (4.45)
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for some constant c ∈ CF and consider the element

− log(z + 1)
(1− z(z + 1))′

1− z(z + 1)
+ log

(
z(z − 1)(z2 + z − 1)

) z′
z

+ v′0 =: v ∈ F, (4.46)

where v0 ∈ F is arbitrary.

Note that for g1 := 1− z − z2, g2 := z ∈ F,

v = r1
g′1
g1

+ r2
g′2
g2

+ v′0,

where r′1 = −(1− g1)′

1− g1
+
g′2
g2

= −(1 + z)′

1 + z
and

r′2 =
(1− g2)′

1− g2
+
g′1
g1

+
g′2
g2

=
(1− z)′

1− z
+
z′

z
+

(1− z − z2)′

1− z − z2

Over the field F1, we rewrite v as

v =− (1− z(z + 1))′

1− z(z + 1)
log(z(z + 1))− (1− z)′

1− z
log z (4.47)

+

(
(1− z(z + 1))′

1− z(z + 1)
+

(1− z)′

1− z

)
log z + log

(
z(z − 1)(z2 + z − 1)

) z′
z

+ v′0.

Let w = −(1/2) log2(z) + log (z(z − 1)(z2 + z − 1)) log(z) + v0 and observe that

v = −(1− z(z + 1))′

1− z(z + 1)
log(z(z + 1))− (1− z)′

1− z
log z + w′. (4.48)

Thus we have u := `2(1 − z(z + 1)) + `2(1 − z) + w ∈ E, and from Equations 4.46

and 4.48, we have u′ = v ∈ F. From Equations 4.46, 4.48 we see that v admits

a DEL−expression over F and a special DEL−expression over the extension field

F1 = F (log(z)) respectively.
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Representation of u′ in terms of Bloch Wigner Spence function: Observe that

u = D(1− z(z + 1))− 1

2
log(z(z + 1)) log(1− z(z + 1)) +D(1− z)

− 1

2
log z log(1− z)− 1

2
log2(z) + log

(
z(z − 1)(z2 + z − 1)

)
log(z) + v0.

= D(1− z(z + 1)) +D(1− z)− 1

2
log(z)

(
log(1− z(z + 1)) + log(1− z) + log(z)

)
+ log(z) log

(
z(z − 1)(z2 + z − 1)

)
− 1

2
log(z + 1) log(1− z(z + 1)) + v0.

Now we shall substitute Equation 4.45 in the above equation to obtain

u =D(1− z(z + 1)) +D(1− z) +
1

2
log(z) log

(
z(z − 1)(z2 + z − 1)

)
+

1

2
c log(z)

(4.49)

− 1

2
log(z + 1) log(1− z(z + 1)) + v0.

Since the elements log (z(z − 1)(z2 + z − 1)) and log(z + 1) belong to F , the above

equation provides the Bloch-Wigner-Spence function representation of u over F .

Now we will show that u′ does not admit a special DEL−expression over F of the

form:

v = u′ =
∑
i∈I

ri
g′i
gi

+ w′0, r′i = ci
(1− gi)′

1− gi
, ri, gi, w0 ∈ F and ci ∈ C. (4.50)

Suppose that u′ does admit such an expression over F . Then since r′i− ci
(1− gi)′

1− gi
=

0, which belong to the rings C (z, log(z + 1)) [log(z(z − 1)(z2 + z − 1))] as well as

C
(
z, log(z(z−1)(z2+z−1))

)
[log(z+1)], we apply Proposition 2.2.7 and obtain that

1− gi ∈ C(z). On the other hand, by Theorem 2.3.3, there are constants ci1, ci2 ∈ C

and an element di ∈ C(z) such that

ri = ci1 log(z + 1) + ci2 log(z(z − 1)(z2 + z − 1)) + di. (4.51)
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Taking derivatives, we obtain

(1− gi)′

1− gi
= mi1

1

z + 1
+mi2

(
1

z
+

1

z − 1
+

1

z − ω1

+
1

z − ω2

)
+ d′i, (4.52)

where ω1 = (−1 +
√

5)/2, ω2 = (−1−
√

5)/2 and mij = cij/ci for j = 1, 2. For any

x ∈ C(z) we write

x =
c
∏n

i=1 z − αi∏m
j=1 z − βj

,

where c, αi, βj ∈ C and observe that x′ has no poles of order 1 and that x′/x is

either zero (that is x ∈ C) or a sum of poles of order 1. Thus from Equation

4.52, we obtain di ∈ C, mi1 and mi2 are integers and that 1 − gi = ai(z +

1)mi1 (z(z − 1)(z2 + z − 1))
mi2 for some constant ai ∈ C. We shall use Proposition

3.1.2 and assume that mi2 ≥ 0. From Equations 4.46, 4.50, 4.51 and 4.52, we obtain

w′ = log(z + 1)

(
(1− z(z + 1))′

1− z(z + 1)
+
∑
i∈I

ci1
g′i
gi

)

+ log
(
z(z − 1)(z2 + z − 1)

)(
−z
′

z
+
∑
i∈I

ci2
g′i
gi

)
+
∑
i∈I

di
g′i
gi
, (4.53)

where w = v0 − w0. It follows that w must be a polynomial in log(z + 1) and

log(z(z − 1)(z2 + z + 1)) over C(z) of total degree 2. Write

w =e1 log2(z(z − 1)(z2 + z − 1)) + e2 log2(z + 1)

+ e3 log
(
z(z − 1)(z2 + z − 1)

)
log(z + 1) + α1 log

(
z(z − 1)(z2 + z − 1)

)
+ α2 log(z + 1) + β

and substitute in Equation 4.53 and obtain e1, e2 and e3 are constants. Moreover,

from algebraic independence of logarithms, we also obtain that the coefficients of

log(z + 1) and log(z(z − 1)(z2 + z − 1)) must be zero. Thus

−1

z
+
∑
i∈I

ci2
g′i
gi

= 2e1

(
1

z
+

1

z − 1
+

1

z − ω1

+
1

z − ω2

)
+ e3

1

z + 1
+ α′1,
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where e1 and e3 are constants, α1 ∈ C(z). Note that α′1 has no poles of order 1.

Any pole of
∑

i∈I ci2(g
′
i/gi) is a pole of g′i/gi for some i such that ci2 6= 0. If for some

i, ci2 	 0 (that is, when mi2 6= 0) then g′i/gi has no poles at 0, 1, ω1 and ω2. Thus,∑
i∈I ci2(g

′
i/gi) has no poles at 0, 1, ω1 and ω2. Now by comparing poles of the above

equation, one arrives at a contradiction. �

Example 4.5.4. Let log(z), log(1 − z), log(1 + z) and log(1 − z2) be designated

solutions of the differential equations y′ = 1/z, y′ = 1/(1 − z), y′ = 1/(1 + z) and

y′ = −2z/1 − z2 respectively. Denote log(1 − z) + log(1 + z) by log(1 − z2). Let

F = C (z, log(z), log(1− z2)) be the ordinary differential field with the derivation

′ := d/dz and E1 = F (`2(z
2), `2(1 + z)) be a dilogarithmic-elementary extension of

F .

Note that the element u = `2(z
2) + 2`2(1 + z) + u0, where u0 is arbitrary element in

F, has derivative:

u′ = −2
z′

z
log(1− z2)− 2

(1 + z)′

1 + z
log z + u′0, (4.54)

which is D−expression over F itself.

Over a logarithmic extension F (log(1 + z)) ⊃ F, we can rewrite u′ as:

u′ = −2
z′

z
(log(1− z) + log(1 + z))− 2

(1 + z)′

1 + z
log z + u′0. (4.55)

Note that log(1− z) ∈ F (log(1 + z)) because log(1− z) = − log(1 + z) + log(1− z2).

For w := −2 log(z) log(1 + z) + u0 we have

u′ = −2
z′

z
log(1− z) + w′ = 2`2(z)′ + w′ (4.56)

in a dilogarithmic-elementary extension E2 = F (log(1 + z), `2(z)).
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We claim that E1 and E2 are two distinct dilogarithmic-elementary extensions.

Assume `2(z
2) ∈ E2. Since `2(z

2) is primitive over F (log(1 + z)), by Kolchin-

Ostrowski Theorem, `2(z
2) = c`2(z) + v for some constant c 6= 0 and element v

in F (log(1 + z)). Therefore,

−2
z′

z
log(1− z2) = −cz

′

z
log(1− z) + v′

= −cz
′

z
(log(1− z2)− log(1 + z)) + v′. (4.57)

Since log(1 + z) is transcendental over F, we apply Proposition 2.2.4 and obtain

v = c1 log2(1 + z) + w1 log(1 + z) + v0, for some constant c1 and w1, v0 ∈ F. We

compare the coefficients of log(1 + z) in above equation and get

−2
z′

z
log(1− z2) = −cz

′

z
log(1− z2)− c(1 + z)′

1 + z
log(z) + v′0. (4.58)

Now we know that log(z) is transcendental over C (z, log(1− z2)) , apply Proposition

2.2.4 again and observe c = 0, which is a contradiction. �

Example 4.5.5. Let log(z), log(1− z), log(1 + z) and log(1 + z− z2) be designated

solutions of the differential equations y′ = 1/z, y′ = 1/(1 − z), y′ = 1/(1 + z) and

y′ = (1 − 2z)/1 + z − z2 respectively. Let F = C (z, ez, log(1 + z), log(1 + z − z2))

be the ordinary differential field with the derivation ′ := d/dz and E = F (`2(1 +

ez), `2(z
2/(1 + z)), `2(z(z − 1))) be a dilogarithmic-elementary extension of F .

Now the element u = `2(1 + ez), `2(z
2/(1 + z)) − 2`2(z(z − 1)) + 2`2(−z) in E has

derivative:

u′ =− (1 + ez)′

1 + ez
z −

(
2
z′

z
− (1 + z)′

1 + z

)
log

(
1 + z − z2

1 + z

)
+ 2

(
z′

z
+

(z − 1)′

z − 1

)
log(1 + z − z2)− 2

z′

z
log(1 + z) (4.59)
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which is D−expression over F itself. Further simplification of above expression gives

u′ = −(1 + ez)′

1 + ez
z +

((1 + z)(1− z)2)′

(1 + z)(1− z)2
log(1 + z − z2)

= −(1 + ez)′

1 + ez
z +

((1 + z)(1− z)2)′

(1 + z)(1− z)2
(
log z(1 + z − z2)− log z

)
− z′

z

(
log(1 + z)(1− z)2 − 2 log(1− z)

)
+

(−z)′

(−z)
log(1 + z). (4.60)

Let g1 := 1 + ez, g2 := (1 + z)(1− z)2, g3 := z and g4 := −z ∈ F then we have r1 =

− log(1−g1) = z, r2 = log(1−g2)−log g3 = log z(1+z−z2)−log z = log(1+z−z2) ∈

F, r3 = −2 log(1−g3)+log g2 = −2 log(1−z)+log((1+z)(1−z)2) = log(1+z) ∈ F

and r4 = log(1− g4) = log(1 + z) ∈ F.

Thus the expression of u′ in Equation 4.60 is also a DEL−expression of u′ over F,

that satisfies our hypothesis in Theorem 4.1.1. �

If in the Theorem 4.1.1, the constant coefficients of
h′l
hl

in r′i and
g′i
gi

in s′l, that is, dil’s

are not same then v need not satisfy a special DEL−expression over any logarithmic

extension of F and thus antiderivative of v need not to be in a DEL−extension.

Example 4.5.6. Let log(z), log(1− z), log(1 + z) and log(1− z− z2) be designated

solutions of the differential equations y′ = 1/z, y′ = 1/(1 − z), y′ = 1/(1 + z) and

y′ = (−1−2z)/1+z−z2 respectively. Let F = C (z, log z, log(1− z), log(1− z − z2))

be the ordinary differential field with the derivation ′ := d/dz. Let v ∈ F satisfies a

DEL−expression:

v =
z′

z

(
log(1− z) + log(1− z − z2)

)
+ 2

(1− z − z2)′

1− z − z2
log z + w′ (4.61)

over F. Replacing log(z) log(1− z − z2) + w with w, we obtain

v =
z′

z
log(1− z) +

(1− z − z2)′

1− z − z2
log z + w′. (4.62)
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Claim: v cannot be written as a special DEL−expression over any logarithmic

extension of F.

Let L = F (log(z − α1), . . . , log(z − αl)), αj’s ∈ C, be a logarithmic extension

of F. Since F = C(z, log z, log(1 − z), log(1 − z − z2)), we can assume L =

C(z, log(z − α1), . . . , log(z − αn)) where log(z − αj)’s are algebraically independent

over C. Suppose

v =
n∑
j=1

rj
(z − αj)′

z − αj
+ v′0 =

n∑
j=1

cj log(1− z − αj)
(z − αj)′

z − αj
+ v′0,

where cj ∈ C and v0 ∈ L, is a special DEL−expression of v over L. It is evident

that w − v0 is a quadratic polynomial in C(z)[log(z − α1), . . . , log(z − αn)].

Let w−v0 =
∑n

j=1 dj log2(z−αj)+
∑n

j=1wj log(z−αj)+w0, where dj’s are constants

and wj’s are in C(z). Thus

z′

z
log(1− z) +

(1− z − z2)′

1− z − z2
log z =

n∑
j=1

cj log(1− z − αj)
(z − αj)′

z − αj

−

(
n∑
j=1

dj log2(z − αj) +
n∑
j=1

wj log(z − αj) + w0

)′
.

Let α1 = 0 and α2 = 1, compare the coefficient of log(z − α1) i.e log z and obtain

(1− z − z2)
1− z − z2

= c2
(z − 1)′

z − 1
− 2d1

z′

z
− w′1

which is absurd because no such element w1 lies in C(z). This proves our claim.

Therefore, v does not hold antiderivative in any DEL−extension. �
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Chapter 5

Integration with Polylogarithmic

Integrals

We study integration in finite terms with polylogarithmic integrals along with

transcendental elementary functions in this chapter. In the first two sections of this

chapter, we define polylogarithmic integral of order 3, namely trilogarithmic integrals

and extend the Liouville’s Theorem to include trilogarithmic integrals. Though the

proofs concerning trilogarithmic integrals are quite lengthy and calculations are

exhaustive, the techniques used are similar to that of dilogarithmic integrals. In the

third section we note that one can inductively extend these results to polylogarithmic

integral of order m. We expect proofs concerning polylogarithmic integrals to be

quite complicated and therefore we shall only state the conjecture for integration in

finite terms with polylogarithmic integrals.

75
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5.1 Trilogarithmic integrals

In Chapter-3, we defined polylogarithm as

Lim(z) =
∞∑
n=1

zn

nm

and

d

dz
Lim(z) =

z′

z
Lim−1(z), for any positive integer m.

In particular, for m = 3

d

dz
Li3(z) =

z′

z
Li2(z).

Therefore from an algebraic point of view, we shall define trilogarithmic integrals as

below:

Definition 5.1.1. Let E ⊃ F be differential fields and g ∈ F − {0, 1} be any

element. Then the integral ∫
g′

g
`2(g)

in E is called trilogarithmic integral of g and is denoted by `3(g).

It is clear from the definition that for g ∈ F, `3(g) is primitive over the field F (log(1−

g), `2(g)). Now we look into some identities of trilogarithmic integrals whose proofs

involve only basic algebra. One of the fact which we will use widely is noted as a

remark below. The approach to the remark is similar to the one used by Baddoura

in [1], pp.924-925.

Remark 5.1.2. Let f ∈ F (θ) be any non-zero rational element and assume θ is

transcendental over F. Let F be an algebraic closure of F containing all the zeroes
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and poles of f and 1− f. Let {α1, α2, . . . , αt} be the set of all zeroes and poles of f

and 1− f in F . Write

f = η
P

Q
= η

t∏
j=1

(θ − αj)aj and 1− f =
Q− ηP
Q

= ξ
R

Q
= ξ

t∏
j=1

(θ − αj)bj ,

where η, ξ ∈ F, P,Q and R are co-prime monic polynomials in F [θ] and aj, bj are

some integers. Without loss of generality, assume P (αj) = 0 for j = 1, . . . ,m,

Q(αj) = 0 for j = m + 1, . . . , n and R(αj) = 0 for j = n + 1, . . . , t. Since P,Q and

R are co-prime polynomials, it is clear that b1 = · · · = bm = 0, an+1 = · · · = at = 0

and aj = bj for j = m+ 1, . . . , n.

Consider the expression

T =
t∑

j,k=1
k 6=j

(akbj − ajbk)
α′j − α′k
αj − αk

vk,

where vk is any element in some extension of F (θ) and divide T into three parts

T = T1 + T2 + T3 where

T1 =
m∑
k=1

ak

(
t∑

j=m+1

bj
α′j − α′k
αj − αk

)
vk

T2 = −
t∑

k=n+1

bk

(
n∑
j=1

aj
α′j − α′k
αj − αk

)
vk

T3 =
n∑

k=m+1

(
ak

t∑
j=m+1

bj
α′j − α′k
αj − αk

− bk
n∑
j=1

aj
α′j − α′k
αj − αk

)
vk.

Since ηP + ξR = Q, if P (αk) = 0 for some k = 1, . . . ,m then ξR(αk) = Q(αk) and

its logarithmic derivative is R(αk)
′

R(αk)
− Q(αk)

′

Q(αk)
= − ξ′

ξ
. Thus,

t∑
j=m+1

bj
α′j − α′k
αj − αk

=
R(αk)

′

R(αk)
− Q(αk)

′

Q(αk)
= −ξ

′

ξ
.
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Similarly for some k = n+ 1, . . . , t,

n∑
j=1

aj
α′j − α′k
αj − αk

=
P (αk)

′

P (αk)
− Q(αk)

′

Q(αk)
= −η

′

η
.

Note that for k = m+ 1, . . . , n, ak = bk and

ak

n∑
j=m+1

bj
α′j − α′k
αj − αk

− bk
n∑

j=m+1

aj
α′j − α′k
αj − αk

= 0.

Also, Q(αk) = 0 for any k = m+ 1, . . . , n and ηP (αk) = −ξR(αk). Therefore,

t∑
j=m+1

bj
α′j − α′k
αj − αk

−
n∑
j=1

aj
α′j − α′k
αj − αk

=
t∑

j=n+1

bj
α′j − α′k
αj − αk

−
m∑
j=1

aj
α′j − α′k
αj − αk

= −P (αk)
′

P (αk)
+
R(αk)

′

R(αk)

=
η′

η
− ξ′

ξ
.

Combining the above three parts, T becomes

T =
t∑

k=n+1

bkvk
η′

η
−

m∑
k=1

akvk
ξ′

ξ
+

n∑
k=m+1

vk

(
bk
η′

η
− ak

ξ′

ξ

)

=
t∑

k=1

(
bk
η′

η
− ak

ξ′

ξ

)
vk.

�

Since derivative of trilogarithmic integral involves dilogarithmic integrals, it is useful

to have some more identities of dilogarithmic integrals. Baddoura [1] described an

identity for dilogarithmic integrals in terms of Bloch-Wigner-Spence function. We

shall state and prove a similar identity which involves only dilogarithmic integrals

and its proof is similar to one mentioned in [1], p.923, Proposition 2 (which we have

also noted here as Proposition 4.4.2).
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Proposition 5.1.3. Let F (θ) ⊃ F be a transcendental field extension with CF (θ) =

CF . Let f(θ) be a rational element in F (θ) and {αj; j = 1, . . . , t} be the set of all

zeroes and poles of f(θ) and 1 − f(θ) in an algebraic closure of F . Also, for some

integers aj, bj, let f(θ) = η
∏t

j=1(θ − αj)aj , 1 − f(θ) = ξ
∏t

j=1(θ − αj)bj , then for

some constant c,

`2(f(θ)) = `2(η)−
t∑

j,k=1
k 6=j

ajbk`2

(
θ − αj
θ − αk

)
− 1

2

t∑
j,k=1

ajbk log2(θ − αk)

−
t∑

k=1

ak log(θ − αk) log ξ −
t∑

j,k=1
k 6=j

ajbk log

(
θ − αj
θ − αk

)
log(αj − αk) + c.

Proof. From the definition of dilogarithm, we have

`′2(f(θ)) = −f
′

f
log(1− f) (5.1)

Replacing f, 1− f with their partial fraction expansion and rearranging the terms,

obtain

`2(f) =− η′

η
log ξ +

t∑
j=1

aj log(θ − αj)
ξ′

ξ
−

t∑
k=1

bk log(θ − αk)
η′

η

−
t∑

j,k=1

ajbk
θ′ − α′j
θ − αj

log(θ − αk)−

(
t∑

j=1

aj log(θ − αj) log ξ

)′
. (5.2)

From the definition of dilogarithm, observe

t∑
j,k=1,k 6=j

ajbk`
′
2

(
θ − αj
θ − αk

)
=

t∑
j,k=1,k 6=j

ajbk (log(θ − αj)− log(θ − αk))
α′j − α′k
αj − αk

+
t∑

j,k=1,k 6=j

ajbk

(
θ′ − α′j
θ − αj

− θ′ − α′k
θ − αk

)
log(θ − αk)

−

(
t∑

j,k=1,k 6=j

ajbk log

(
θ − αj
θ − αk

)
log(αj − αk)

)′
. (5.3)
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Using remark 5.1.2, the Equation 5.3 can be written as

t∑
k=1

(
bk
η′

η
− ak

ξ′

ξ

)
log(θ − αk) +

t∑
j,k=1

ajbk
θ′ − α′j
θ − αj

log(θ − αk) =
t∑

j,k=1
k 6=j

ajbk`
′
2

(θ − αj
θ − αk

)

+
t∑

j,k=1

ajbk
θ′ − α′k
θ − αk

log(θ − αk) +

(
t∑

j,k=1
k 6=j

ajbk log

(
θ − αj
θ − αk

)
log(αj − αk)

)′
.

From Equation 5.2, we see that LHS of above equation equals −`2(f) − η′

η
log ξ −(∑t

j=1 aj log(θ − αj) log ξ
)′
. Therefore,

`′2(f(θ)) =− η′

η
log ξ −

t∑
j,k=1
k 6=j

ajbk`
′
2

(
θ − αj
θ − αk

)
−

t∑
j,k=1

ajbk
θ − α′k
θ − αk

log(θ − αk)

−

(
t∑

k=1

ak log(θ − αk) log ξ

)′
−

(
t∑

j,k=1
k 6=j

ajbk log

(
θ − αj
θ − αk

)
log(αj − αk)

)′
.

When deg(P ) < deg(Q) or deg(P ) = deg(Q) with η = 1, in both cases the term

η′

η
log ξ = 0, otherwise ξ = 1 − η and −η′

η
log ξ = `′2(η). Thus integrating the above

equation we shall obtain desired result.

We note one more basic identity for dilogarithmic integrals in the following remark.

Remark 5.1.4. Let F (θ) ⊃ F be a transcendental differential field extension and

CF (θ) = CF . Let α, β be algebraic over F . Then, for some constants cαβ and c in F ,

`2

(
θ − α
θ − β

)
=− `2

(
θ − β
θ − α

)
+ log(θ − α) log(θ − β)

− 1

2

(
log2(θ − α) + log2(θ − β)

)
+ cαβ log

(
θ − α
θ − β

)
+ c.

Proof. From the definition of dilogarithm, it is clear that

`′2

(
θ − α
θ − β

)
= −

(
θ′ − α′

θ − α
− θ′ − β′

θ − β

)
log

(
α− β
θ − β

)
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and

`′2

(
θ − β
θ − α

)
= −

(
θ′ − β′

θ − β
− θ′ − α′

θ − α

)
log

(
β − α
θ − α

)
= −

(
θ′ − β′

θ − β
− θ′ − α′

θ − α

)(
log

(
α− β
θ − α

)
+ cαβ

)
.

Adding the above two equation gives

`′2

(
θ − α
θ − β

)
+ `′2

(
θ − β
θ − α

)
= (log(θ − α) log(θ − β))′ − θ′ − α′

θ − α
log(θ − α)

− θ′ − β′

θ − β
log(θ − β) + cαβ

(
θ′ − α′

θ − α
− θ′ − β′

θ − β

)
.

Rearranging the above terms and integrating gives us the desired relation.

We are dealing with dilogarithmic integrals of the form `2(
θ−α
θ−β ). The question

of algebraic independence of such dilogarithmic integrals is natural. From above

remark it is clear that `2(
θ−α
θ−β ) and `2(

θ−β
θ−α) are algebraically dependent over a field

containing log(θ−α) and log(θ−β). Now we will show that the set {`2
(
θ−αj

θ−αk

)
; k >

j, αj 6= αk for j 6= k} is algebraically independent over a logarithmic extension of

F (θ).

Recall that a differential field extension E of F is called a logarithmic extension

of F if CE = CF and there are elements h1, . . . , hm ∈ F such that E =

F (log(h1), . . . , log(hm)).

Lemma 5.1.5. Let F (θ) ⊃ F be a transcendental differential field extension

of F and CF (θ) = CF . Let α1, . . . , αt be distinct elements in F. Then the set

{`2
(
θ−αj

θ−αk

)
; k > j} is algebraically independent over the logarithmic extension

E = F (θ)({log(αj − αk), log(θ − αj); j, k = 1, . . . , t}) of F (θ).
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Proof. Suppose the set {`2
(
θ−αj

θ−αk

)
; k > j} is algebraically dependent over E. Since

for each k > j, the derivative `′2

(
θ−αj

θ−αk

)
lies in E, we shall apply Corollary 2.3.3 and

obtain

`2

(
θ − α1

θ − α2

)
=

t∑
j,k=1

k>j,k 6=2

cjk`2

(
θ − αj
θ − αk

)
+ v,

where each cjk is a constant and v ∈ E. Taking derivative of the above equation, we

get

−
(
θ′ − α′1
θ − α1

− θ′ − α′2
θ − α2

)
log

(
α1 − α2

θ − α2

)
=

−
t∑

j,k=1
k>j,k 6=2

cjk

(
θ′ − α′j
θ − αj

− θ′ − α′k
θ − αk

)
log

(
αj − αk
θ − αk

)
+ v′. (5.4)

Since log(θ − α2) is transcendental over the field F2 = F (θ)({log(αj − αk); j, k =

1, . . . , t})({log(θ − αj); j 6= 2}), we can apply Proposition 2.2.4 and therefore, for

some constant c1 and elements v1, v0 ∈ F2, we shall write v = c1 log2(θ − α2) +

v1 log(θ − α2) + v0. Comparing the coefficient of log(θ − α2) in the above equation,

we will obtain
θ′ − α′1
θ − α1

− θ′ − α′2
θ − α2

= 2c1
θ′ − α′2
θ − α2

+ v′1.

It is obvious that c1 = −1/2 and for a constant c, v1 = log(θ − α1) + c. Thus the

Equation 5.4 becomes

−
(
θ′ − α′1
θ − α1

− θ′ − α′2
θ − α2

)
log (α1 − α2) =

−
t∑

j,k=1
k>j,k 6=2

cjk

(
θ′ − α′j
θ − αj

− θ′ − α′k
θ − αk

)
log

(
αj − αk
θ − αk

)
+
θ′ − α′2
θ − α2

(log(θ − α1) + c) + v′0.

Now since log(θ − α1) is transcendental over F1 = F (θ)({log(αj − αk); j, k =

1, . . . , t})({log(θ − αj); j 6= 1, 2}), we reapply Proposition 2.2.4 and repeat the
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same process. For some constant c2 and elements w1, w0 ∈ F1, we write v0 =

c2 log2(θ−α1) +w1 log(θ−α1) +w0. Comparing the coefficient of log(θ−α1) in the

above equation, we shall obtain

θ′ − α′2
θ − α2

+ 2c2
θ′ − α′1
θ − α1

+ w′1 = 0.

It is clear that there exists no such w1 in F1. Thus we arrive at a contradiction

and therefore, the set {`2
(
θ−αj

θ−αk

)
; k > j} is algebraically independent over the

logarithmic extension E of F.

The trilogarithmic integrals `3(1 − g) and `3(g) have no known identity. However,

`3(1/g) and `3(g) do satisfy a relation which we note in the next remark.

Remark 5.1.6. Let E ⊃ F be differential fields and v, r, g, w ∈ E such that

v = r
g′

g
+ w′,

where r′ = −c log(1−g)g′/g, that is, r = c`2(g). Since `2(g) = −`2(1/g)−(1/2) log2 g,

v = −c`2(1/g)
g′

g
− c

2
log2 g

g′

g
+ w′ = c`2(1/g)

(1/g)′

(1/g)
+ w̃′,

where w̃ = −(c/6) log3 g + w. In other words, `3(1/g) = `3(g)+some element in the

field containing log g.

5.2 Liouville’s theorem for T −extensions

We shall consider trilogarithmic integrals in our field of definition and extend

Liouville’s Theorem to such extensions.
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Definition 5.2.1. A differential field E ⊃ F is called a T −extension of F if CE =

CF and there is a tower of differential fields Fi such that

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = E

and for each i, Fi = Fi−1(θi) and one of the following holds:

(i) θi is algebraic over Fi−1.

(ii) θ′i = u′θi for some u ∈ Fi−1 (i.e. θi = eu).

(iii) θ′i = u′/u for some u ∈ Fi−1 (i.e. θi = log(u)).

(iv) θ′i = vu′/u, where v′ = (1 − u)′/(1 − u) for some u, v ∈ Fi−1 (i.e. θi =∫
u′

u
log(1− u), also denoted by −`2(u)).

(v) θ′i = vu′/u, where v′ = −u′ log(1−u)/u for some u, v ∈ Fi−1 (i.e. θi =
∫

u′

u
`2(u),

also denoted by `3(u)).

Definition 5.2.2. We say that v ∈ F admits a T −expression over F if there are

finite indexing sets I, J and elements ri, gi ∈ F for all i ∈ I, elements sj, hj ∈ F for

all j ∈ J and an element w ∈ F such that

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

sj
h′j
hj

+ w′, (5.5)

where for each i ∈ I, there is a constant ci and log(1 − gi) ∈ F such that r′i =

−cig′i log(1 − gi)/gi, and for each j ∈ J there is a constant dj such that s′j =

dj(1− hj)′/(1− hj).

If in expression 5.5, r′i’s satisfy some DEL−expressions and sj’s are constant linear

combinations of logarithms over F then the expression:
∑

i∈I ri
g′i
gi

+
∑

j∈J sj
h′j
hj

+ w′

will be called general T −expression.
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Definition 5.2.3. We call a differential field extension E of F to be a diloga-

rithmic extension of F if their field of constants coincides and there are elements

y1, . . . , yn, z1, . . . , zm ∈ F such that E = F (log(y1), . . . , log(yn), `2(z1), . . . , `2(zm)).

Note that for a T −expression:
∑

i∈I ri
g′i
gi

+
∑

j∈J sj
h′j
hj

+ w′ over a dilogarithmic

extension M ⊃ F, where r′i = −cig′i log(1 − gi)/gi and s′j = dj(1 − hj)
′/(1 − hj),

we shall combine the term
∑

j∈J sj
h′j
hj

= (
∑

j∈J dj`2(hj))
′ with w′ and consider

the T −expression over M as
∑

i∈I ri
g′i
gi

+ w′ only. Similar to Proposition 4.1.2 for

DEL−expressions, we first prove that a T −expression over a dilogarithmic extension

of field F can be written as a general T −expression:
∑

i∈I rig
′
i/gi + w′, where r′i

satisfies some DEL−expressions.

Proposition 5.2.4. Let F be a differential field and v ∈ F satisfies a T −expression

over a dilogarithmic extension E of F. Then v satisfies a general T −expression:

v =
∑
i∈I

rig
′
i/gi +

∑
j∈J

sjh
′
j/hj + w′ (5.6)

over F, where I and J are some finite index sets and each w, gi, hj, ri, sj are elements

in F such that

r′i = ti
g′i
gi

+
∑
j∈J

rij
h′j
hj
, s′j =

∑
i∈I

rij
g′i
gi

+
∑
k∈J

sjk
h′k
hk
, (5.7)

t′i = −ci
(1− gi)′

1− gi
+
∑
j∈J

cicij
h′j
hj
, r′ij = cicij

g′i
gi

+
∑
k∈J

eijk
h′k
hk

and

s′jk =
∑
i∈I

eijk
g′i
gi

+
∑
l∈J

fjkl
h′l
hl
, (5.8)

where each ci is a non-zero constant whenever r′i 6= 0, each cij, eijk, fjkl are some

constants and each ti, rij and sjk are in some extension of F with eijk = eikj and

sjk = skj for every i, j and k.
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Proof. Suppose E = F (log y1, . . . , log yn, `2(z1), . . . , `2(zm)) is a dilogarithmic ex-

tension over F, where y1, . . . , yn, z1, . . . , zm ∈ F forms a transcendental base of E

over F. We can also assume that each log(1 − zj) lies in F (log y1, . . . , log yn). Let

v =
∑

i∈I ri
g′i
gi

+ w′ be T −expression over E. Since each `2(zj) is primitive over

E1 = F (log y1, . . . , log yn), we shall apply Corollary 2.3.3 and write

ri =
m∑
j=1

cij`2(zj) + si

for some constants cij and elements si in E1. Considering Proposition 2.2.4, we

assume w =
∑m

j,k=1 djk`2(zj)`2(zk)+
∑m

j=1wj`2(zj)+w0, where each djk is a constant

and each wj, w0 lies in E1. Since {`2(zj)} are transcendental over E1, we shall

compare the coefficients of `2(zj) in the expression of v and obtain

v =
∑
i∈I

si
g′i
gi
−

m∑
j=1

wj log(1− zj)
z′j
zj

+ w′0, (5.9)

where si = ci`2(gi)−
m∑
j=1

cij`2(zj) (5.10)

and w′j = −
∑
i∈I

cij
g′i
gi

+
m∑
k=1

(djk + dkj) log(1− zk)
z′k
zk
. (5.11)

Since dilogarithmic integrals are non-elementary functions and `2(z1), . . . , `2(zm) are

algebraically independent over E1, djk + dkj must be 0. Thus, w′j = −
∑

i∈I cij
g′i
gi
.

Now each si ∈ E1 and s′i is a polynomial in F [log y1, . . . , log yn]. We shall apply

Proposition 2.2.4 and write

si =
n∑

k,l=1

eikl log yk log yl +
n∑
k=1

sik log yk + ti, (5.12)



5.2. LIOUVILLE’S THEOREM FOR T −EXTENSIONS 87

for some constants cikl and elements sik, ti ∈ F. Also using Corollary 2.3.3, write

wj =
n∑
k=1

ejk log yk + wj0, (5.13)

log(1− gi) =
n∑
k=1

dik log yk + αi and (5.14)

log(1− zj) =
n∑
k=1

fjk log yk + βj, (5.15)

where each ejk, dik and fjk is constant and each wj0, αi, βj is some element in F. From

Equation 5.9, it is clear that w′0 ∈ F [log y1, . . . , log yn] is a polynomial of degree 2.

Therefore, a repeated application of Proposition 2.2.4 gives

w0 =
n∑

j,k,l=1

cjkl log yj log yk log yl +
n∑

k,l=1

vkl log yk log yl +
n∑
k=1

vk log yk + v0,

where cjkl ∈ CF and vjk, vk, v0 ∈ F. Take derivative of si in Equation 5.10 and

substitute values of log(1 − gi) and log(1 − zj) in it. Also take the derivative of si

in Equation 5.12. Comparing these two expressions for s′i, we shall obtain

s′ik = −cidik
g′i
gi

+
m∑
j=1

cijfjk
z′j
zj
−

n∑
l=1

(eikl + eilk)
y′l
yl

and (5.16)

t′i = −ciαi
g′i
gi

+
m∑
j=1

cijβj
z′j
zj
−

n∑
k=1

sik
y′k
yk
. (5.17)

Now substituting the values of si, wj, log(1 − zj) and w0 in Equation 5.9 and

comparing the coefficients of log2 yk and log yk, observe that

(vkl + vlk)
′ = −

∑
i∈I

(eikl + eilk)
g′i
gi

+
m∑
j=1

(ejkfjl + ejlfjk)
z′j
zj
−

n∑
j=1

ej
y′j
yj

(5.18)
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and − v′k =
∑
i∈I

sik
g′i
gi
−

m∑
j=1

(wj0fjk + ejkβj)
z′j
zj

+
n∑
l=1

(vkl + vlk)
y′l
yl
, (5.19)

where ej =
∑

σ∈S3
cσ(j)σ(k)σ(l). Comparing the constant terms of Equation 5.9, we

obtain

v =
∑
i∈I

ti
g′i
gi
−

m∑
j=1

wj0βj
z′j
zj

+
n∑
k=1

vk
y′k
yk

+ v′0.

The above expression is the desired general T −expression for v, where the derivatives

of the coefficients, that is, t′i, (wj0βj)
′ and v′k satisfies the DEL−expressions given

by Equations 5.17, 5.13, 5.15 and 5.19. Further observe that coefficients in these

DEL−expressions satisfies L−expressions given by Equations 5.14, 5.15, 5.16 and

5.18.

Remark 5.2.5. Note that in Proposition 4.1.2, when we reduce a D−expression

over a logarithmic extension of F to a general D−expression over F, we obtained

“two sets of equations”, namely, 4.1, 4.2. In a similar way, in Proposition 5.2.4

when we reduce a T −expression over a dilogarithmic extension of F to a general

T −expression over F, we obtained “three sets of equations”, namely, 5.6, 5.7 and

5.8. Thus inductively we can conjecture that for any polylogarithmic extension of

order m, a P−expression will reduce to a general P−expression consisting of “m-sets

of equations”. We will explain this in detail in the next section.

Proposition 5.2.6. Let F be a differential field and v ∈ F satisfies a general

T −expression:
∑

i∈I rig
′
i/gi + w over F, where the elements ri ∈ F are chosen as

in Proposition 5.2.4. Then there exists a dilogarithmic extension K of F such that

v satisfies a T −expression over K and there exists a T −extension E of F that

contains an antiderivative of v.
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Proof. As in Proposition 5.2.4, consider a general T −expression:

∑
i∈I

rig
′
i/gi +

∑
j∈J

sjh
′
j/hj + w′

over F, where I and J are some finite index sets and each w, gi, hj, ri, sj are elements

in F such that

r′i = ti
g′i
gi

+
∑
j∈J

rij
h′j
hj
, s′j =

∑
i∈I

rij
g′i
gi

+
∑
k∈J

sjk
h′k
hk
,

t′i = −ci
(1− gi)′

1− gi
+
∑
j∈J

cicij
h′j
hj
, r′ij = cicij

g′i
gi

+
∑
k∈J

eijk
h′k
hk

and

s′jk =
∑
i∈I

eijk
g′i
gi

+
∑
l∈J

fjkl
h′l
hl
,

where each ci is a non-zero constant whenever r′i 6= 0, each cij, eijk, fjkl are some

constants, eijk = eikj and sjk = skj for every i, j and k.

Over the extension F ({log gi, log hj}), we can replace w−
∑

i∈I ri log gi−
∑

j∈J sj log hj

with w and write v as

v = −
∑
i∈I

r′i log gi −
∑
j∈J

s′j log hj + w′.

Substituting values of r′i and s′j, we obtain

v = −
∑
i∈I

(
ti
g′i
gi

+
∑
j∈J

rij
h′j
hj

)
log gi −

∑
j∈J

(∑
i∈I

rij
g′i
gi

+
∑
k∈J

sjk
h′k
hk

)
log hj + w′.

We shall replace w with w − 1/2
∑

i∈I ti log2 gi −
∑

i∈I
∑

j∈J rij log hj log gi −

1/2
∑

j,k∈J sjk log hj log hk, we get

v =
1

2

∑
i∈I

t′i log2 gi +
∑

i∈I,j∈J

r′ij log hj log gi +
1

2

∑
j,k∈J

s′jk log hj log hk + w′.
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Now substitute t′i, r
′
ij and s′jk in the above expression for v, thus

v =
1

2

∑
i∈I

(
−ci

(1− gi)′

1− gi
+
∑
j∈J

cicij
h′j
hj

)
log2 gi

+
∑

i∈I,j∈J

(
cicij

g′i
gi

+
∑
k∈J

eijk
h′k
hk

)
log hj log gi

+
1

2

∑
j,k∈J

(∑
i∈I

eijk
g′i
gi

+
∑
l∈J

fjkl
h′l
hl

)
log hj log hk + w′,

where fjkl are some constants. Note that for some constants cjkl, we can

assume fjkl =
∑

σ∈S3
cσ(j)σ(k)σ(l) and thus the term

∑
j,k,l∈J fjkl

h′l
hl

log hj log hk equals

(
∑

j,k,l∈J cjkl log hj log hk log hl)
′. Also note that the last term in second sum and

first term in the third sum combines to give (
∑

i∈I,j,k∈J eijk log gi log hj log hk)
′.

Similarly last term in first sum and first term in the second sum combines to give

(1
2

∑
i∈I
∑

j∈J cicij log hj log2 gi)
′.We shall replace w with 1

2

∑
i∈I,j∈J cicij log hj log2 gi

+
∑

i∈I,j,k∈J eijk log gi log hj log hk + 1
2

∑
j,k,l∈J cjkl log hj log hk log hl +w and observe

v = −1

2

∑
i∈I

ci
(1− gi)′

1− gi
log2 gi + w′.

Again replace w with w − 1
2

∑
i∈I ci log(1− gi) log2 gi and obtain

v =
∑
i∈I

ci
g′i
gi

log(1− gi) log gi + w′ = −
∑
i∈I

ci(`2(gi))
′ log gi + w′.

Now consider the differential field extension F ({log gi, log hj, `2(gi)}), which is

obviously a dilogarithmic extension of F and replace w with the element
∑

i∈I ci`2(gi)

log gi + w. Therefore,

v =
∑
i∈I

ci`2(gi)
g′i
gi

+ w′.

Thus v satisfies a special T −expression over the dilogarithmic extension
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F ({log gi, log hj, `2(gi)}) of F and if we consider the trilogarithmic extension E =

F ({log gi, log hj, `2(gi)})({`3(gi)}) then
∫
v =

∑
i∈I ci`3(gi) + w lies in E.

From Propositions 5.2.4 and 5.2.6, we obtain necessary and sufficient condition that

v satisfies a T −expression over some dilogarithmic extension of F if and only if v

satisfies a general T −expression over F whose coefficients satisfies the relation given

in Proposition 5.2.4. Proposition 5.2.6 also gives a sufficient condition for existence

of an element v ∈ F whose antiderivative lies in some trilogarithmic extension of F.

The necessary condition for this result is discussed in Theorem 5.2.10.

The following lemma, whose proof is lengthy and involved, plays a role similar to

that of Lemma 4.2.2 and is required to prove the Theorem 5.2.10.

Lemma 5.2.7. Let F (θ) ⊃ F be a transcendental T −extension of F . Suppose there

is an element v ∈ F such that v admits a T −expression over the differential field

E = F (θ)(log(y1), . . . , log(yn), `2(z1), . . . , `2(zm)) where each yi, zi ∈ F (θ) and CE =

CF . Then there is a differential field M = F (log(p1), . . . , log(pl), `2(q1), . . . , `2(qt), θ),

where each pi, qi ∈ F, having the same field of constants as F such that v admits

a T −expression over M. Moreover, if θ is exponential over F then v admits a

T −expression over F (log(p1), . . . , log(pl), `2(q1), . . . , `2(qt)).

Proof. Let I, J be finite indexing sets and there be constants ci(6= 0), dj in F for all

i ∈ I and j ∈ J such that

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

sj
h′j
hj

+ w′, (5.20)

r′i = −ci log(1− gi)
g′i
gi
, s′j = dj

(1− hj)′

(1− hj)
. (5.21)
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where ri, gi, log(1 − gi), sj, hj, w ∈ E for all i ∈ I and j ∈ J. That is, v admits

T −expression over E. Since sj
h′j
hj

= −dj`′2(hj) or sj
h′j
hj

= (sj log(hj))
′ (when dj = 0),

if necessary we enlarge E and assume `2(hj) ∈ E. Replace w′ with w′ +
∑

j∈J sj
h′j
hj

and write

v =
∑
i∈I

ri
g′i
gi

+ w′. (5.22)

Observe that log′(1 − gi) − (1−gi)′
1−gi = 0 ∈ F (θ), we use Proposition 2.2.6 repeatedly

and obtain 1 − gi and thus gi lies in F (θ) for each i. Assume gi = ηi
Pi

Qi
, where

ηi ∈ F and Pi, Qi ∈ F [θ] are relatively prime monic polynomials. If for some i,

deg(Pi) >deg(Qi) then use Remark 5.1.4 so that for each i, deg(Pi) ≤deg(Qi). Let

F be an algebraic closure of F and A = {0 = α1, . . . , αt} be a subset of F such that

Pi =
∏t

j=1(θ − αj)lij , Qi =
∏t

j=1(θ − αj)mij and Qi − ηiPi = ξi
∏t

j=1(θ − αj)nij for

some ξi ∈ F, where lij,mij, and nij are non negative integers.

Let M1 = F ({log(ηi), log(ξi), `2(ηi)|i ∈ I}, {log(αj − αk)|j, k = 1, . . . , t, j 6= k}θ)

be a differential extension such that w ∈ M1

(
{log(θ − α), `2

(
θ−α
θ−β

)
|α, β ∈ A}

)
.

Consider M = F ({log(αj − αk)|j, k = 1, . . . , t, j 6= k}, {log(ηi), log(ξi), `2(ηi)|i ∈

I}, θ) and let M∗ be a differential subfield of M1 such that F ⊂ M∗, θ is

transcendental over M∗ and M∗(θ) = M1. This setup is similar to the one in

Lemma 4.2.2. Let aij = lij − mij and bij = nij − mij and note that
∑t

j=1 aij =

deg(Pi)− deg(Qi) and
∑t

j=1 bij = deg(Qi− ηiPi)− deg(Qi). Using Proposition 5.1.3

we have

ri =ciei + ci

(
`2(ηi)−

t∑
j,k=1
k 6=j

aijbik`2

(
θ − αj
θ − αk

)
− 1

2

t∑
j,k=1

aijbik log2(θ − αk)

−
t∑

k=1

aik log(θ − αk) log ξi −
t∑

j,k=1
k 6=j

aijbik log

(
θ − αj
θ − αk

)
log(αj − αk)

)
, (5.23)
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where ei are some constants. It is clear from Remark 5.1.4 that for some non-negative

integers j, k, `2

(
θ−αj

θ−αk

)
and `2

(
θ−αk

θ−αj

)
are algebraically dependent over M1({log(θ−

α)|α ∈ A}). In order to make these factors algebraically independent we use Remark

5.1.4 and observe

ri = ci

(
`2(ηi)−

t∑
j,k=1
k>j

(aijbik − aikbij)`2
(
θ − αj
θ − αk

)
−

t∑
j,k=1
k>j

aikbij log(θ − αj) log(θ − αk)

−
t∑

j=1

aij log(θ − αj) log ξi −
t∑

j,k=1
k 6=j

aijbik log

(
θ − αj
θ − αk

)
log(αj − αk)

− 1

2

t∑
j,k=1
k>j

(aijbik − aikbij) log2(θ − αk)−
1

2

t∑
j=1

aijbij log2(θ − αj) + ei

)
. (5.24)

Using Remark 5.1.2, −
∑t

j=1 aij log(θ−αj) log ξi−
∑t

j,k=1
k 6=j

aijbik log
(
θ−αj

θ−αk

)
log(αj −

αk) can be replaced with −
∑t

k=1 bik log ηi log(θ − αk) +
∑t

j,k=1
k 6=j

fjk log
(
θ−αj

θ−αk

)
.

Therefore,

v =
∑
i∈I

ci

(
`2(ηi)−

t∑
j,k=1
k>j

(aijbik − aikbij)`2
(θ − αj
θ − αk

)
+

t∑
j,k=1
k 6=j

fjk log

(
θ − αj
θ − αk

)

−
t∑

j,k=1
k>j

aikbij log(θ − αj) log(θ − αk)−
t∑

k=1

bik log ηi log(θ − αk)

− 1

2

t∑
j,k=1
k>j

(aijbik − aikbij) log2(θ − αk)−
1

2

t∑
j=1

aijbij log2(θ − αj)
)
g′i
gi

+ w′.

(5.25)

Note that here we have replaced
∑

i∈I cieig
′
i/gi + w′ with w′. Now since w ∈

M1({log(θ − αj), `2

(
θ−αj

θ−αk

)
|k > j, j = 1, . . . , t}) and w′ ∈ M1({log(θ − α)|α ∈
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A})
[
{`2
(
θ−αj

θ−αk

)
|k > j, j = 1, . . . , t}

]
, we apply Proposition 2.2.4 and assume

w =
t∑

j,k,l,m=1
k>j,m>l

cjklm`2

(
θ − αj
θ − αk

)
`2

(
θ − αl
θ − αm

)
+

t∑
j,k=1
k>j

wjk`2

(
θ − αj
θ − αk

)
+ w0,

where cjklm are some constants and each wjk, w0 are some elements in M1(log(θ −

α)|α ∈ A).

Substitute w′ in equation 5.25 and compare the coefficients of `2

(
θ−αj

θ−αk

)
, for each

j,k, we get

−
∑
i∈I

ci(aijbik − aikbij)
g′i
gi

+
t∑

l,m=1
m>l

cjklm`
′
2

(
θ − αl
θ − αm

)
+ w′jk = 0.

It is clear that cjklm = 0 for each j, k, l,m and wjk =
∑

i∈I ci(aijbik−aikbij) log gi+ejk,

where ejk are some constants in F . Thus,

v =
∑
i∈I

ci

(
`2(ηi)−

t∑
j,k=1
k>j

aikbij log(θ − αj) log(θ − αk)−
t∑

k=1

bik log ηi log(θ − αk)

+
t∑

j,k=1
k 6=j

fjk log

(
θ − αj
θ − αk

)
− 1

2

t∑
j,k=1
k>j

(aijbik − aikbij) log2(θ − αk)

− 1

2

t∑
j=1

aijbij log2(θ − αj)
)
g′i
gi

+
t∑

j,k=1
k>j

(∑
i∈I

ci(aijbik − aikbij) log gi + ejk

)(θ′ − α′k
θ − αk

−
θ − α′j
θ − αj

)
log

(
αj − αk
θ − αk

)

+ w′0. (5.26)

We divide the rest of proof in two parts.
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Case I: When θ is an antiderivative, that is, θ′ ∈ F.

As observed in Lemma 4.2.2, it is easy to see that log(θ − α1), . . . , log(θ − αt) are

algebraically independent over M∗. Apply Proposition 2.2.4 to w0 and write

w0 =
t∑

j,k,l=1

cjkl log(θ − αj) log(θ − αk) log(θ − αl) +
t∑

j,k=1

vjk log(θ − αj) log(θ − αk)

+
t∑

j=1

vj log(θ − αj) + w00,

for some constants cjkl, and elements vjk, vj, w00 ∈ M1. Expand log gi as log ηi +∑t
l=1 ail log(θ−αl). Substitute w0, log gi in Equation 5.26 and compare the constant

coefficients, we have

v =
t∑

j,k=1
k>j

(∑
i∈I

ci(aijbik − aikbij) log ηi + ejk

)(θ′ − α′k
θ − αk

−
θ′ − α′j
θ − αj

)
log(αj − αk)

+
∑
i∈I

ci`2(ηi)
g′i
gi

+
t∑

k=1

vk
θ′ − α′k
θ − αk

+ w′00. (5.27)

Again with the use of Remark 5.1.2, we have

t∑
j,k=1
k>j

(∑
i∈I

ci(aijbik − aikbij) log ηi

)(θ′ − α′k
θ − αk

−
θ′ − α′j
θ − αj

)
log(αj − αk) =

t∑
k=1

(aik log ξi − bik log ηi + dik) log ηi
θ′ − α′k
θ − αk

for some constants dik. Therefore,

v =
∑
i∈I

ci`2(ηi)
g′i
gi

+
t∑

j,k=1
k>j

ejk

(
θ′ − α′k
θ − αk

−
θ′ − α′j
θ − αj

)
log(αj − αk)

+
t∑

k=1

(aik log ξi − bik log ηi + dik) log ηi
θ′ − α′k
θ − αk

+
t∑

k=1

vk
θ′ − α′k
θ − αk

+ w′00. (5.28)
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To know more about the element vk, we compare the coefficients of log(θ−αj) log(θ−

αk) and log(θ − αk) for each j, k in Equation 5.26 and observe that

(vjk + vkj)
′ = aikbij

η′i
ηi

for k > j,

v′kk =
1

2

( ∑
1≤j<k

(aijbik − aikbij) + aikbik

)
η′i
ηi

and

v′k =
∑
i∈I

ci

(
bik log ηi

η′i
ηi

+
t∑

j>k

aijbik log ηi
θ′ − α′j
θ − αj

+
∑

1≤j<k

(fjk − fkj)
g′i
gi

− aik
t∑

j=1

(aij log ξi − bij log ηi + dij)
θ′ − α′j
θ − αj

)
−
∑

1≤j<k

ejk

(
θ′ − α′j
θ − αj

− θ′ − α′k
θ − αk

)
.

Note that for each i, log ηi, log ξi, `2(ηi) ∈M∗(θ) where θ is transcendental over M∗.

Also, for some i, if `2(ηi) ∈M∗ then it is obvious that log ξi ∈M∗. Therefore, there

are only three sub cases possible:

(a) log ηi, log ξi, `2(ηi) ∈M∗.

(b) log ηi, log ξi ∈M∗ and `2(ηi) ∈M∗(θ).

(c) log ξi, `2(ηi) ∈M∗ and log ηi ∈M ∗ (θ).

We divide the index I into three subsets I1, I2 and I3 consisting of those i′s for which

(a),(b) and (c) holds, respectively.

Then clearly

v′k =
∑

i∈I1∪I2

ci

(
bik log ηi+

∑
1≤j<k

(fjk−fkj)
)
η′i
ηi

+
∑
i∈I3

ci

(
bik log ηi

η′i
ηi

+Aikθ
′
)

+
t∑

j=1

Bjkα
′
j
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which implies

vk =
1

2

∑
i∈I

cibik log2 ηi +
∑
i∈I

Ai log ηi +
t∑

j=1

Bjkαj + ek,

for some constants Ai, Bjk, ek. Suppose for each i, j, k, log(αj − αk) − cjk, log ηi −

diθ, `2(ηi)− fi ∈M∗ where cjk, di, fi are constants. Then Equation 5.28 reduces to

v =
∑
i∈I

ci`2(ηi)
η′i
ηi

+
∑
i∈I2

cifi

t∑
k=1

aik(θ
′ − α′k) +

t∑
j,k=1
j<k

ejkcjk(α
′
j − α′k)

−
∑
i∈I3

cidi

t∑
k=1

bik(θ
′ − α′k) +

∑
i∈I3

ci

t∑
k=1

(aik log ξi −
1

2
bik log ηi) log ηi

θ′ − α′k
θ − αk

+ terms containing poles + w′00. (5.29)

Let L =
∑

i∈I3 ci
∑t

k=1(aik log ξi − 1
2
bik log ηi) log ηi

θ′−α′k
θ−αk

and log ηi = diθ + βi,

where βi ∈ M∗. Then the constant term in L is
∑

i∈I3 ci
∑t

k=1(aik log ξidi −
1
2
bik(d

2
i θ+ 2diβi + d2iαk))(θ

′−α′k). Since we assumed deg(Pi) ≤deg(Qi), if deg(Pi) <

deg(Qi) then log ξi is a constant and
∑t

k=1 bik = 0. So the constant term in L

becomes
∑

i∈I3 ci
1
2

∑t
k=1 bik((d

2
i θ+2diβi)α

′
k−d2i θα′k) which can be further written as

−
∑

i∈I3 ci
∑t

k=1 bik(d
2
i θ
′+2diβ

′
i)αk+ρ′ = −

∑
i∈I3 ci

∑t
k=1 bikdi

η′i
ηi
αk+ρ′ for some ρ ∈

M∗. From Remark 5.1.2, we have −
∑t

k=1 bik
η′i
ηi
αk =

∑t
k=1 bik

∑t
j=1,j 6=k aij

α′j−α′k
αj−αk

αk =∑t
k=1 bik

∑t
j=1,j 6=k aij

α′j−α′k
αj−αk

αj −
∑t

k=1 bik
∑t

j=1,j 6=k aij(α
′
j − α′k) = −

∑t
j=1 aij

ξ′i
ξi
αj −∑t

k=1 bik
∑t

j=1,j 6=k aij(α
′
j−α′k) = −

∑t
k=1 bik

∑t
j=1,j 6=k aij(α

′
j−α′k). Thus the constant

term in L is a derivative in M∗. Similarly, if deg(Pi) = deg(Qi) and ξi = 1 − ηi,

we proceed in the same manner and observe that v equals sum of derivatives of

trilogarithmic integrals over M and an element over M1. Since M1 is algebraic over

M, using the Proposition 2.2.2 we can find a suitable element w̃ ∈ M such that v

satisfies a T −expression over M.
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Case II: When θ is exponential over F , that is, for an element x ∈ F, θ′ = x′θ.

Then log(θ − α1) = x ∈ F. Using Remark 5.1.2, v can be rewritten as

v =
∑
i∈I

ci

((
`2(ηi)−

t∑
k>1

aikbi1x log(θ − αk)−
t∑

j,k>1
k>j

aikbij log(θ − αj) log(θ − αk)

− bi1x log ηi −
t∑

k>1

bik log ηi log(θ − αk) +
t∑

k>1

f1k(x− log(θ − αk))

+
t∑

k>1

fk1(log(θ − αk)− x)− 1

2

t∑
k>1

(ai1bik − aikbi1) log2(θ − αk)−
1

2
ai1bi1x

2

− 1

2

t∑
j,k>1
k>j

(aijbik − aikbij) log2(θ − αk)−
1

2

t∑
j>1

aijbij log2(θ − αj)
)g′i
gi

+
t∑

j=1

(aij log ξi − bij log ηi + dij) log(gi)
θ − α′j
θ − αj

−
t∑

j,k=1
k>j

(aijbik − aikbij) log(gi) log(θ − αk)
(
θ′ − α′k
θ − αk

−
θ − α′j
θ − αj

))

+
t∑

j,k=1
k>j

ejk

(
θ′ − α′k
θ − αk

−
θ − α′j
θ − αj

)
log

(
αj − αk
θ − αk

)
+ w′0. (5.30)

Again apply Proposition 2.2.4 to w0. Thus for some constants cjkl and elements

vjk, vj, w00 ∈M1, we shall write

w0 =
t∑

j,k,l>1

cjkl log(θ − αj) log(θ − αk) log(θ − αl) +
t∑

j,k>1

vjk log(θ − αj) log(θ − αk)

+
t∑

j>1

vj log(θ − αj) + w00.

Expand log gi as log ηi + ai1x +
∑t

l>1 ail log(θ − αl). Equate the coefficient of the

product log(θ − αj) log(θ − αk), for each j, k such that k > j, in Equation 5.30 to
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zero and after removal of the pole part in it(which has to be zero), we get

(vjk + vkj)
′ =
∑
i∈I

ciaikbij

(
η′i
ηi

+ ai1x
′
)

+ hjkx
′, (5.31)

where hjk = −
∑

i∈I ci
(
(ai1bik−aikbi1)aij + (ai1bij−aijbi1)aik

)
is constant. Similarly

we equate coefficient of log2(θ − αk), for each k, in Equation 5.30 to zero and after

removal of the pole part in it, we get

v′kk =
1

2

∑
i∈I

ci

(
(ai1bik − aikbi1) +

∑
1<j<k

(aijbik − aikbij) + aikbik

)(η′i
ηi

+ ai1x
′
)

−
∑
i∈I

ci(ai1bik − aikbi1)aikx′. (5.32)

Therefore, it is obvious that vjk + vkj and vkk are some elements in M∗. Compare

the coefficient of log(θ − αk) in Equation 5.30 and obtain

∑
i∈I

ci

(
(−aikbi1x− bik log ηi − f1k + fk1)

g′i
gi

+
t∑

j=1

(aij log ξi − bij log ηi + dij)aik
θ′ − α′j
θ − αj

−
∑

1≤j<k

(aijbik − aikbij)(log ηi + ai1x)

(
θ′ − α′k
θ − αk

−
θ − α′j
θ − αj

))

−
∑

1≤j<k

ejk

(
θ′ − α′k
θ − αk

−
θ − α′j
θ − αj

)
+

t∑
j>1

(vjk + vkj)
θ′ − α′j
θ − αj

+ v′k = 0. (5.33)

Divide the indices j > 1 into three parts, replace the fraction g′i/gi with its partial

fraction expansion and compare the coefficients of (θ′ − α′j)/(θ − αj) as follows:

Sub-case I. When j < k:

∑
i∈I

ci

(
(−aikbi1x− bik log ηi − f1k + fk1)aij + (aijbik − aikbij)(log ηi + ai1x) + ejk

+ (aij log ξi − bij log ηi + dij)aik

)
− ejk + vjk + vkj = 0. (5.34)
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Sub-case II. When j = k:∑
i∈I

ci

(
(−aikbi1x− bik log ηi − f1k + fk1)aik − ((ai1bik − aikbi1)(log(ηi) + ai1x) + e1k)

−
∑
l<k

((ailbik − aikbil)(log ηi + ai1x) + elk) + (aik log ξi − bik log ηi + dik)aik

)
+

k∑
j=1

ejk + 2vkk = 0. (5.35)

Sub-case III. When j > k:∑
i∈I

ci((−aikbi1x− bik log ηi − f1k + fk1)aij + (aij log ξi − bij log ηi + dij)aik)

+ vjk + vkj = 0. (5.36)

Adding the above three equations we get∑
i∈I

ci

( t∑
j>1

(−aikbi1x− bik log ηi − f1k + fk1)aij − (ai1bik − aikbi1)(log ηi + ai1x)

− e1k +
t∑

j>1

(aij log ξi − bij log ηi + dij)aik

)
+

t∑
j>1

(vjk + vkj) = 0. (5.37)

The constant term in the Equation 5.33 is∑
i∈I

ci

(
(−aikbi1x− bik log ηi − f1k + fk1)

(η′i
ηi

+ ai1x
′
)

+ ((ai1bik − aikbi1)(log ηi

+ ai1x) + e1k)x
′ + (ai1 log ξi − bi1 log ηi + di1)aikx

′
)

+ v′k (5.38)

which equals 0. Substitute the term
∑

i∈I ci(ai1bik − aikbi1)(log ηi + ai1x) + e1k from

Equation 5.37 and observe∑
i∈I

ci

(
(−aikbi1x− bik log ηi − f1k + fk1)

(η′i
ηi

+
t∑

j=1

aijx
′
)

+
t∑

j=1

(aij log ξi − bij log ηi + dij)aikx
′

)
+

t∑
j>1

(vjk + vkj)x
′ + v′k = 0. (5.39)
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Since vk ∈ M∗(θ) and v′k ∈ M∗, it is clear from Proposition 2.2.6 that vk ∈ M∗ for

each k > 1. Now we move back to the expression of v in Equation 5.30 and look at

the constant terms (i.e terms without log(θ − αj)). Thus,

v =
∑
i∈I

ci

((
`2(ηi)− bi1x log ηi +

∑
k>1

(f1k − fk1)x−
1

2
ai1bi1x

2
)g′i
gi

+
t∑

j=1

(aij log ξi − bik log ηi + dij)(log ηi + ai1x)
θ′ − α′j
θ − αj

)

+
t∑

j,k=1
k>j

ejk

(
θ′ − α′k
θ − αk

−
θ′ − α′j
θ − αj

)
log(αj − αk) +

t∑
j>1

vj
θ′ − α′j
θ − αj

+ w′00. (5.40)

Compare the coefficients of (θ′ − α′j)/(θ − αj) in above equation, we have∑
i∈I

ci

(
aij

(
`2(ηi)− bi1x log ηi +

t∑
k>1

(f1k − fk1)x−
1

2
ai1bi1x

2
)

+ (log ηi + ai1x)(aij log ξi − bij log ηi + dij)

)
+ e1j log(−αj)

+
∑

1<k<j

ekj log(αk − αj)−
t∑

k>j

ejk log(αj − αk) + vj = 0 (5.41)

Take the summation of above equation for 1 < j < t, observe∑
i∈I

ci

t∑
j>1

((
`2(ηi)− bi1x log ηi +

t∑
k>1

(f1k − fk1)x−
1

2
ai1bi1x

2
)
aij

+ (log ηi + ai1x)(aij log ξi − bij log ηi + dij)

)
+

t∑
j>1

e1j log(−αj) +
t∑

j>1

vj = 0

(5.42)

The constant term in the expression 5.40,which is

v =
∑
i∈I

ci

((
`2(ηi)− bi1x log ηi +

t∑
k>1

(f1k − fk1)x−
1

2
ai1bi1x

2
)(η′i

ηi
+ ai1x

′
)

+

(log ηi + ai1x)(ai1 log ξi − bi1 log ηi + di1)x
′
)
−

t∑
k>1

e1k log(−αk)x′ + w′00 (5.43)
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can be rewritten (using Equation 5.42) as

v =
∑
i∈I

ci

((
`2(ηi)− bi1x log ηi +

t∑
k>1

(f1k − fk1)x−
1

2
ai1bi1x

2
)(η′i

ηi
+

t∑
j=1

aijx
′
)

+
t∑

j=1

(log ηi + ai1x)(aij log ξi − bij log ηi + dij)x
′
)

+
t∑

k>1

vkx
′ + w′00. (5.44)

Replace w00 with w00 −
∑t

k>1 vkx to get

v =
∑
i∈I

ci

((
`2(ηi)− bi1x log ηi +

t∑
k>1

(f1k − fk1)x−
1

2
ai1bi1x

2
)(η′i

ηi
+

t∑
j=1

aijx
′
)

+
t∑

j=1

(log ηi + ai1x)(aij log ξi − bij log ηi + dij)x
′
)
−

t∑
k>1

v′kx+ w′00. (5.45)

Substitute the value of v′k from Equation 5.39 and obtain

v =
∑
i∈I

ci

((
`2(ηi)− bi1x log ηi +

t∑
k>1

(f1k − fk1)x−
1

2
ai1bi1x

2
)(η′i

ηi
+

t∑
j=1

aijx
′
)

+
t∑

j=1

(log ηi + ai1x)(aij log ξi − bij log ηi + dij)x
′

+
t∑

k>1

(−aikbi1x− bik log ηi − f1k + fk1)
(η′i
ηi

+
t∑

j=1

aijx
′
)
x

+
t∑

k>1

t∑
j=1

(aij log ξi − bij log ηi + dij)aikx
′x

)
+

t∑
j,k>1

(vjk + vkj)xx
′ + w′00. (5.46)

From Equations 5.31 and 5.32, we have
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v =
∑
i∈I

ci

(
`2(ηi)−

t∑
k=1

bikx log ηi −
1

2
ai1bi1x

2 −
t∑

k>1

aikbi1x
2
)(η′i

ηi
+

t∑
j=1

aijx
′
)

+ 2
t∑

j,k>1
k>j

∑
i∈I

ciaikbij(log ηi + ai1x)xx′

+
t∑

k>1

∑
i∈I

ci

(
(ai1bik − aikbi1) +

k∑
j>1

(aijbik − aikbij) + aikbik

)(
log ηi + ai1x

)
xx′

+
t∑

j,k>1
k>j

hjkx
2x′ − 2

∑
i∈I

ci(ai1bik − aikbi1)x2x′ + w′00. (5.47)

Since we assumed deg(Pi) ≤ deg(Qi), then either
∑t

j=1 aij = 0,
∑t

j=1 bij = 0 or

both. If
∑t

j=1 aij 6= 0 then ξi = 1 and note that in the expansion of log(1 − gi),

there will be no constant term, that is, log ξi = 0. So lets divide the indexing set I

into three sets I1, I2 and I3, where for each i ∈ I1,
∑t

j=1 aij =
∑t

j=1 bij = 0, for each

i ∈ I2 we have
∑t

j=1 aij = 0 and
∑t

j=1 bij 6= 0 (in this case ηi = 1) and for i ∈ I3,∑t
j=1 aij 6= 0 and

∑t
j=1 bij = 0. Therefore,

v =
∑
i∈I1

ci

((
`2(ηi) +

1

2
ai1bi1x

2
)(η′i

ηi

)
+ ai1bi1 log ηixx

′
)

+
∑
i∈I2

ci

((
`2(ηi) +

1

2
ai1bi1x

2
)(η′i

ηi

)
+ ai1bi1 log ηixx

′
)

+
∑
i∈I3

ci

((
`2(ηi)−

1

2
ai1bi1x

2 −
t∑

k>1

aikbi1x
2
)(η′i

ηi
+

t∑
j=1

aijx
′
)

+ (−ai1bi1 − 2
t∑

k>1

aikbi1)xx
′(log ηi +

t∑
j=1

aijx)

)
+ w̄′. (5.48)

For i ∈ I3, `2(ηi) is just a constant because `2(ηi)
′ = −η′i

ηi
log ξi = 0. Also as w̄′ ∈M

and M∗ is algebraic over M, therefore, for a suitable w̃′ ∈M we obtain
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v =
∑

i∈I1∪I2

ci`2(ηi)
η′i
ηi

+ w̃′, (5.49)

which is T −expression over F ({log(ηi), log ξi, `2(ηi)|i ∈ I}).

The difficulty in the setup lies in exponential case. If our field of definition involve

only antiderivatives (i.e logarithms, dilogarithmic integrals and trilogarithmic

integrals) then the proof of Lemma 5.2.7 does not require dilogarithmic identity

in Proposition 5.1.3 and can be simplified as follows:

Remark 5.2.8. Alternate proof of Lemma 5.2.7 when θ is an antiderivative.

Since v ∈ F admits a T −expression over dilogarithmic extension E of F (θ), consider

v =
∑

i∈I ri
g′i
gi
, where each ri, gi lies in some dilogarithmic extension of F (θ) and

r′i = −ci log(1− gi)g
′
i

gi
, as done in proof of Lemma 5.2.7. If necessary, enlarge E and

assume log gi ∈ E. Since w belongs to dilogarithmic extension of F (θ) that contains

each ri and log gi, replace w with w −
∑

i∈I ri log gi and observe

v =
∑
i∈I

ci
g′i
gi

log(1− gi) log gi + w′.

By our assumption log gi, log(1 − gi) ∈ F1 = F (θ)(log y1, . . . , log yn) and therefore,

w′ ∈ log gi, log(1−gi) ∈ F1. We use Proposition 2.2.4 and write w =
∑m

j=1 ej`2(zj)+

w0, for some element w0 ∈ F1 and constants ej. Thus

v =
∑
i∈I

ci
g′i
gi

log(1− gi) log gi −
m∑
j=1

ej
z′j
zj

log(1− zj) + w′0.

As observed earlier, log′(1 − gi) − (1−gi)′
1−gi = 0, log(1 − zj − (1−zj)′

1−zj ) ∈ F (θ), we use

Proposition 2.2.6 repeatedly and obtain 1− gi, 1− zj and thus gi, zj lies in F (θ) for

each i, j.
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Let F be an algebraic closure of F that contains all the zeroes and poles of

gi, 1 − gi, zj, 1 − zj. Let A = α1, . . . , αt be the set of all zeroes and poles of

gi, 1− gi, zj, 1− zj and assume gi = ηi
∏t

k=1(θ − αk)aik , 1− gi = ξ
∏t

k=1(θ − αk)bik ,

zj = γj
∏t

k=1(θ−αk)pjk and 1− zj = ρj
∏t

k=1(θ−αk)qjk , where each ηi, ξi, γj, ρj ∈ F

and aik, bik, pjk, qjk are some integers. Then instead of F1 we can consider the field

F (θ)({log ηi, log ξi, log γj, log ρj})({log(θ − ak)}). Using partial fraction expansion,

we have

v =
∑
i∈I

ci

(η′i
ηi

+
t∑

k=1

aik
θ′ − α′k
θ − αk

)
(log ξi +

t∑
k=1

bik log(θ − αk))(log ηi+

t∑
k=1

aik log(θ − αk))−
m∑
j=1

ej

(
γ′j
γj

+
t∑

k=1

pjk
θ′ − α′k
θ − αk

)
(log ρj +

t∑
k=1

qjk log(θ − αk))

+ w′0.

Now the set {log(θ − αk)} is algebraically independent over the differential

field F (θ)({log ηi, log ξi, log γj, log ρj}). We enlarge our field under consideration to

include `2(ηi) for each i, and name it M1. Consider the differential field M =

F (θ)({log ηi, log ξi, log γj, log ρj})({`2(ηi)}) and M∗ be a subfield of M1 which is

algebraic over M and M∗(θ) = M (See Corollary 2.3.3 (b)). Using Proposition 2.2.4,

we also write w0 =
∑t

j,k,l=1 cjkl log(θ−αj) log(θ−ak) log(θ−αl)+
∑t

k,l=1wkl log(θ−

αk) log(θ − αl) +
∑t

k=1wk log(θ − αk) + v0, where wjk, wk, v0 ∈ M1. Comparing the

coefficients of log(θ−αk) log(θ−αl) and log(θ−αk) in the expression of v, we obtain

each cjkl = 0, (wkl + wlk)
′ = −

∑
i∈I ci(aikbil + aibik)

η′i
ηi

and

w′k = −
∑
i∈I

ci
η′i
ηi

(aik log ξi + bik log ηi)−
∑
i∈I

ciaik

t∑
l=1

(ail log ξi − bil log ηi)
θ′ − α′l
θ − αl

=
∑
i∈I

ciaik`
′
2(ηi)−

1

2

∑
i∈I

cibik(log2 ηi)
′ −
∑
i∈I

ciaik

t∑
l=1

(ail log ξi − bil log ηi)
θ′ − α′l
θ − αl

.
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Since log ηi, log ξi and θ are primitive over M∗, assume log ηi = diθ+Di and log ξi =

fiθ + Fi, where di, fi are some constants. Therefore, with the help of Proposition

2.2.6, we obtain

w′k =
∑
i∈I

ciaik`
′
2(ηi)−

1

2

∑
i∈I

cibik(log2 ηi)
′ −
∑
i∈I

ciaik

t∑
l=1

(aildi − bilfi)(θ′ − α′l).

Thus the constant term in the expression of v remains

v =
∑
i∈I

ci

(
η′i
ηi

+
t∑

k=1

aik
θ′ − α′k
θ − αk

)
log ξi log ηi −

m∑
j=1

ej

(
γ′j
γj

+
t∑

k=1

pjk
θ′ − α′k
θ − αk

)
log ρj

+
t∑

k=1

wk
θ′ − α′k
θ − ak

+ v′0.

Substituting the value of wk, we get

v =
∑
i∈I

ci
η′i
ηi

log ξi log ηi +
t∑
i∈I
k=1

ci

(
aik`2(ηi)−

1

2
bik log2 ηi + aik log ξi log ηi

)
θ′ − α′k
θ − αk

+ v′00,

where v00 is some element in M1. Note that the coefficient of
θ′−α′k
θ−αk

is same as we

obtained in Proof of Lemma 5.2.7, Case-I after the Equation 5.40. So we divide

the index set I into three parts and proceed in the same manner, and observe that

the term
∑t

k=1

∑
i∈I ci

(
aik`2(ηi)− 1

2
bik log2 ηi + aik log ξi log ηi

) θ′−α′k
θ−αk

sums up as a

derivative of some element in M1. We adjoin this term with v′00 and get

v =
∑
i∈I

ci
η′i
ηi

log ξi log ηi + v′00 = −
∑
i∈I

ci(`2(ηi))
′ log ηi + v′00.

Replace v00 with v00 +
∑

i∈I ci`2(ηi) log ηi and observe

v =
∑
i∈I

ci`2(ηi)
η′i
ηi

+ v′00.
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Note that
∑

i∈I ci`2(ηi)
η′i
ηi

is sum of derivatives of trilogarithmic integrals over M and

v00 is an element in M∗(θ). Since M1 is algebraic over M, using the Proposition 2.2.2

we can find a suitable element w̃ ∈M such that v satisfies a T −expression over M.

�

We recall that a differential field extension E of F to be a dilogarithmic extension of

F if their field of constants coincides and there are elements y1, . . . , yn, z1, . . . , zm ∈ F

such that E = F (log(y1), . . . , log(yn), `2(z1), . . . , `2(zm)).

The following theorems provide an extension of Liouville’s Theorem.

Theorem 5.2.9. Let E = F (θ1, . . . , θn) be a transcendental T −extension of F.

Suppose that there is an element u ∈ E with u′ ∈ F then u′ admits a T − expression

over some dilogarithmic extension of F.

Proof. We prove the theorem using induction on n. For n = 1, we have u ∈ F (θ)

with u′ ∈ F then from Proposition 2.2.4, u = cθ+w for some constant c and w ∈ F.

Therefore, u′ = cθ′ + w′ and from the definition of θ′ it is clear that u′ admits a

T −expression over F. Now suppose that u′ admits a T −expression over some dilog-

arithmic extension of F (θ). Then we shall apply the Lemma 5.2.7 and obtain that

u′ admits a T −expression over M = F (θ, log(y1), . . . , log(yn), `2(z1), . . . , `2(zm)),

where y1, . . . , yn, z1, . . . zm ∈ F and constant field of M coincides with that of

F. If θ′/θ ∈ F then it is evident from the case-II of Lemma 5.2.7 that u′

admits a T −expression over F (log(y1), . . . , log(yn), `2(z1), . . . , `2(zm)), which is a

dilogarithmic extension of F. If θ is logarithm or dilogarithm over F, thenM is indeed

a dilogarithmic extension of F. So the only case left is when θ is a trilogarithmic
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integral over F. Let

u′ =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

sj
h′j
hj

+ w′,

r′i = −ci log(1− gi)
g′i
gi

and s′j = dj
(1− hj)′

(1− hj)
, (5.50)

where I, J are finite indexing sets, each ci 6= 0, dj is constant. From Proposition 2.2.6

it is clear that each gi, hj ∈ F (log(y1), . . . , log(yn), `2(z1), . . . , `2(zm)). Since triloga-

rithmic integrals cannot be written as sum of dilogarithm and logarithms over con-

stants, we have ri, sj ∈ F (log(y1), . . . , log(yn), `2(z1), . . . , `2(zm)). Using Proposition

2.2.4 we can write w = cθ+w0 where w0 ∈ F (log(y1), . . . , log(yn), `2(z1), . . . , `2(zm))

and thus w′ = cθ′+w′0. So the definition of θ′ proves that u′ admits a T −expression

over the dilogarithmic extension of F. This completes the argument.

Theorem 5.2.10. Let E = F (θ1, . . . , θn) be a transcendental T −extension of F.

Suppose that there is an element u ∈ E with u′ ∈ F then

u′ =
∑
i∈I

rig
′
i/gi +

∑
j∈J

sjh
′
j/hj + w′

over F, where I and J are some finite index sets and each w, gi, hj, ri, sj are elements

in F such that

r′i = ti
g′i
gi

+
∑
j∈J

rij
h′j
hj
, s′j =

∑
i∈I

rij
g′i
gi

+
∑
k∈J

sjk
h′k
hk
,

t′i = −ci
(1− gi)′

1− gi
+
∑
j∈J

cicij
h′j
hj
, r′ij = cicij

g′i
gi

+
∑
k∈J

eijk
h′k
hk

and

s′jk =
∑
i∈I

eijk
g′i
gi

+
∑
l∈J

fjkl
h′l
hl
,

where each ci is a non-zero constant whenever r′i 6= 0, each cij, eijk, fjkl are some

constants, eijk = eikj and sjk = skj for every i, j and k.
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Proof. From Theorem 5.2.9 we know that u′ admits T −expression over some

dilogarithmic extension M = F (log y1, . . . , log yn, `2(z1), . . . , `2(zm)) of F. Now we

apply Proposition 5.2.4 and obtain the desired result.

5.3 Integration with polylogarithmic integrals

In the view of Theorems 4.3.3 and 5.2.10, we shall inductively state a conjecture

for integration in finite terms involving polylogarithmic integrals along with

transcendental elementary functions. We shall include polylogarithmic integrals

in our field of definition and provide an extension of Liouville’s Theorem.

The following definition is due to J. Baddoura (See [2], p.232)

Definition 5.3.1. Let E ⊃ F be differential fields and g ∈ F \{0, 1} be any element.

Then for an integer m > 0, the integral∫
g′

g
`m−1(g)

in E is called polylogarithmic integral of order m and is denoted by `m(g).

Note that for m = 2, 3 we called the polylogarithmic integral a dilogarithmic integral

and trilogarithmic integral, respectively, and `1(g) = − log(1− g).

We shall now provide an identity for polylogarithms.

Proposition 5.3.2. Let F be a differential field and g ∈ F be any non-zero, non-

identity element. Then for every integer m > 0, there is a polynomial P of degree

m in CF [X], where X is an indeterminate, such that

`m

(
1

g

)
+ (−1)m`m(g) = P (log g).
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Proof. We prove this identity by induction. For m = 1,

`1

(
1

g

)
= − log

(
1− 1

g

)
= − log(g − 1) + log g

= − log(1− g) + log g + c, for some constant c

= `1(g) + P1(log g),

where P1 = X + c is a polynomial of order 1 in CF (X). For m = 2, the result is

clearly true from Proposition 3.1.2. Assume the result is true for any integer k > 0.

From the definition of polylogarithmic integral

`′k+1

(
1

g

)
= `k

(
1

g

)
(1/g)′

(1/g)
.

By induction, for some polynomial Pk of degree k in CF (X), we have

`′k+1

(
1

g

)
=
(
−(−1)k`k(g) + Pk(log g)

) −g′
g

= (−1)k`′k+1(g) + Pk(log g)
g′

g
.

Note that since Pk(log g) is a polynomial in log g over CF , the term Pk(log g)g
′

g
is a

derivative of some polynomial P of degree k over CF . Therefore, we obtain

`k+1

(
1

g

)
+ (−1)k+1`k+1(g) = P (log g).

Thus, by induction the result is true for any integer m > 0.

Definition 5.3.3. A differential field E ⊃ F is called a P−extension of order m if

CE = CF and there is a tower of differential fields Fi such that

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = E

and for each i, Fi = Fi−1(θi) and one of the following holds:
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(i) θi is algebraic over Fi−1.

(ii) θ′i = u′θi for some u ∈ Fi−1 (i.e. θi = eu).

(iii) θ′i = u′/u for some u ∈ Fi−1 (i.e. θi = log(u)).

(iv) θ′i = vu′/u, where v = `j−1(u) for some u, v ∈ Fi−1 and j ≤ m (i.e. θi =∫
u′

u
`j−1(u), also denoted by `j(u)).

Definition 5.3.4. We say that v ∈ F admits a general P−expression of order m

over F if there are finite index sets I1, . . . , Im and elements rij , gij ∈ F for all ij ∈ Ij
and an element w ∈ F such that

v =
m∑
j=1

∑
ij∈Ij

rij
g′ij
gij

+ w′, (5.51)

where for each ij ∈ Ij, rij is sum of polylogarithmic integrals of order ≤ j − 1.

Definition 5.3.5. A general P−expression will be called a P-expression if for each

ij ∈ Ij, rij = cij`j−1(gij) where cij ’s are constants .

Definition 5.3.6. A differential field extension E of F will be called a polylogarith-

mic extension of F of order m if CE = CF and the base of E over F consists of

polylogarithmic integrals of order less than or equal to m over F .

Now in this context of polylogarithmic integrals, we shall inductively extend the

Lemmas 4.2.2 and 5.2.7 and conjecture the following lemma.

Lemma 5.3.7. Let F (θ) ⊃ F be a transcendental P−extension of order m. Suppose

there is an element v ∈ F such that v admits a P−expression of order m over a

polylogarithmic extension of F (θ) of order m − 1. Then there is polylogarithmic

extension M of F of order m − 1 such that v admits a P−expression of order m

over M(θ).
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Using this lemma we can obtain a general P−expression for v over F. Thus the main

extension theorem for polylogarithmic integrals can be conjectured as follows:

Conjecture 5.3.8. Let E = F (θ1, . . . , θn) be a transcendental P−extension of order

m. Suppose there is an element u ∈ E with u′ ∈ F then u′ admits a general

P−expression of order m over the field F.

5.3.1 A Note on Polylogarithmic Integrals of Order 4

Let E ⊃ M ⊃ F be differential fields such that E is a P−extension of order 4

over F and M is a polylogarithmic extension of order 3 over F. Then the results of

Propositions 4.1.2 and 5.2.4 can be extended to polylogarithmic integrals of order

4. That is, if v ∈ F satisfies a P−expression of order 4 over M then one can check

that v satisfies a general P−expression over F :

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

sj
h′j
hj

+ w′,

where

r′i = ti
g′i
gi

+
∑
j∈J

rij
h′j
hj
, s′j =

∑
i∈I

rij
g′i
gi

+
∑
k∈J

sjk
h′k
hk
,

t′i = pi
g′i
gi

+
∑
j∈J

tij
h′j
hj
, r′ij = tij

g′i
gi

+
∑
k∈J

rijk
h′k
hk
, s′jk =

∑
i∈I

rijk
g′i
gi

+
∑
l∈J

sjkl
h′l
hl
,

p′i = −ci
(1− gi)′

1− gi
+
∑
j∈J

cicij
h′j
hj
, t′ij = cicij

g′i
gi

+
∑
k∈J

cieijk
h′k
hk
,

r′ijk =
∑
i∈I

cieijk
g′i
gi

+
∑
l∈J

fijkl
h′l
hl

and s′jkl =
∑
i∈I

fijkl
g′i
gi

+
∑
m∈J

ejklm
h′m
hm

,

where each ci is a non-zero constant whenever r′i 6= 0, each cij, eijk, fijkl, ejklm are

constants, each ri, sj, gi, hj and w are some elements in F, ti, rij, sjk, pi, tij, rijk, sjkl
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are elements in M with eijk = eikj, sjk = skj, rijk = rikj, sjkl = sσ(j)σ(k)σ(l), fijkl =

fiσ(j)σ(k)σ(l) and ejklm = eρ(j)ρ(k)ρ(l)ρ(m) for each i, j, k, l,m and any permutation σ in

S3 and ρ in S4.

Conversely (Similar to Propositions 4.1.1 and 5.2.6), in the next proposition we shall

show that if we have such an expression for an element v in F then there exists a

P−extension of F that contains an antiderivative of v. The major work here is to

show that if there is an element u in a transcendental P−extension E of order 4

over F such that u′ lies in F, then u′ satisfies a P−expression over a polylogarithmic

extension M of order 3. Therefore, in order to prove the conjecture for any order m,

this part would be crucial.

Proposition 5.3.9. Let v ∈ F satisfies a general P−expression over F :

v =
∑
i∈I

ri
g′i
gi

+
∑
j∈J

sj
h′j
hj

+ w′,

where

r′i = ti
g′i
gi

+
∑
j∈J

rij
h′j
hj
, s′j =

∑
i∈I

rij
g′i
gi

+
∑
k∈J

sjk
h′k
hk
,

t′i = pi
g′i
gi

+
∑
j∈J

tij
h′j
hj
, r′ij = tij

g′i
gi

+
∑
k∈J

rijk
h′k
hk
, s′jk =

∑
i∈I

rijk
g′i
gi

+
∑
l∈J

sjkl
h′l
hl
,

p′i = −ci
(1− gi)′

1− gi
+
∑
j∈J

cicij
h′j
hj
, t′ij = cicij

g′i
gi

+
∑
k∈J

cieijk
h′k
hk
,

r′ijk =
∑
i∈I

cieijk
g′i
gi

+
∑
l∈J

fijkl
h′l
hl

and s′jkl =
∑
i∈I

fijkl
g′i
gi

+
∑
m∈J

ejklm
h′m
hm

,

where each ci is a non-zero constant whenever r′i 6= 0, each cij, eijk, fijkl are

constants, each ri, sj, gi, hj and w are some elements in F, ti, rij, sjk, pi, tij, rijk, sjkl

are elements in M with eijk = eikj, sjk = skj, rijk = rikj, sjkl = sσ(j)σ(k)σ(l), fijkl =

fiσ(j)σ(k)σ(l) and ejklm = eρ(j)ρ(k)ρ(l)ρ(m) for each i, j, k, l,m and any permutation σ in
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S3 and ρ in S4. Then there exists a P−extension E of F of order 4 that contains∫
v.

Proof. Replace w with an element w−
∑

i∈I ri log gi−
∑

j∈J sj log hj in a logarithmic

extension of F and obtain

v = −
∑
i∈I

r′i log gi −
∑
j∈J

s′j log hj + w′.

Substitute the given values of r′i and s′j, we shall get

v = −
∑
i∈I

(
ti
g′i
gi

+
∑
j∈J

rij
h′j
hj

)
log gi −

∑
j∈J

(∑
i∈I

rij
g′i
gi

+
∑
k∈J

sjk
h′k
hk

)
log hj + w′.

We shall combine the second and third term and replace w with w+1/2
∑

i∈I ti log2 gi

+
∑

i∈I,j∈J rij log hj log gi + 1/2
∑

j,k∈J sjk log hj log hk to obtain

v =
1

2

∑
i∈I

t′i log2 gi +
∑

i∈I,j∈J

r′ij log hj log gi +
1

2

∑
j,k∈J

s′jk log hj log hk + w′.

Substituting the values of t′i, r
′
ij, s

′
jk, we have

v =
1

2

∑
i∈I

(
pi
g′i
gi

+
∑
j∈J

tij
h′j
hj

)
log2 gi +

∑
i∈I,j∈J

(
tij
g′i
gi

+
∑
k∈J

rijk
h′k
hk

)
log hj log gi

+
1

2

∑
j,k∈J

(∑
i∈I

rijk
g′i
gi

+
∑
l∈J

sjkl
h′l
hl

)
log hj log hk + w′.

Now we shall combine second and third term, fourth and fifth term,respectively

and replace w with w − 1/6
∑

i∈I cipi log3 gi − 1/2
∑

i∈I,j∈J citij log hj log2 gi −

1/2
∑

i∈I,j,k∈J rijk log gi log hj log hk−1/6
∑

j,k,l∈J sjkl log hj log hk log hl. Here we are

using the fact that rijk = rikj and sjkl = sσ(j)σ(k)σ(l) for any σ in S3. Then v becomes

v =− 1

6

∑
i∈I

p′i log3 gi −
1

2

∑
i∈I,j∈J

t′ij log hj log2 gi −
1

2

∑
i∈I,j,k∈J

r′ijk log gi log hj log hk

− 1

6

∑
j,k,l∈J

s′jkl log hj log hk log hl + w′.
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We shall again substitute p′i, t
′
ij, r

′
ijk and s′jkl and obtain

v =− 1

6

∑
i∈I

(
−ci

(1− gi)′

1− gi
+
∑
j∈J

cicij
h′j
hj

)
log3 gi

− 1

2

∑
i∈I,j∈J

(
cicij

g′i
gi

+
∑
k∈J

cieijk
h′k
hk

)
log hj log2 gi

− 1

2

∑
i∈I,j,k∈J

(∑
i∈I

cieijk
g′i
gi

+
∑
l∈J

fijkl
h′l
hl

)
log gi log hj log hk

− 1

6

∑
j,k,l∈J

(∑
i∈I

fijkl
g′i
gi

+
∑
m∈J

h′m
hm

)
log hj log hk log hl + w′.

Combine the terms second and third, fourth and fifth, sixth and seventh, respectively

and replace w with w + 1
6

∑
i∈I,j∈J cicij log hj log3 gi + 1

4

∑
i∈I,j,k∈J cieijk log hj log hk

log2 gi+
1
6

∑
i∈I,j,k,l∈J fijkl log gi log hj log hk log hl+

1
24

∑
j,k,l,m∈J log hj log hk log hl log hm.

Thus, v reduces to

v =
1

6

∑
i∈I

ci log3 gi
(1− gi)′

1− gi
+ w′.

Observe that in a polylogarithmic extension M of order 3 containing `2(gi), `3(gi),

we can replace w with w− 1/6
∑

i∈I ci log3 gi log(1− gi)− 1/2
∑

i∈I ci log2 gi`2(gi) +∑
i∈I log gi`3(gi) and thus obtain

v =
∑
i∈I

ci`3(gi)
g′i
gi

+ w′ and

∫
v =

∑
i∈I

ci`4(gi) + w.

Hence, antiderivative of v lies in a P−extension E ⊃M ⊃ F.

We shall conclude the thesis with the following example.
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Example 5.3.10. Consider a transcendental P−extension E = F (log(1−gi), `2(gi),

`3(gi), `4(gi) | i = 1, 2) of order 4 over F. Through this example, we shall characterize

all elements u of E whose derivative lies in F. Assume there is an element u ∈ E

such that u′ ∈ F then there exists some constants c1, c2 such that

u′ =
∑
i=1,2

ci`3(gi)
g′i
gi

+ w′, (5.52)

where w is some element in F (log(1 − gi), `2(gi), `3(gi)| i = 1, 2). Since w′ lies in

the polynomial ring F (log(1− gi), `2(gi))[`3(gi)], we shall use Proposition 2.2.4 and

write

w =
∑
i,j=1,2

aij`3(gi)`3(gj) +
∑
i=1,2

wi`3(gi) + w0,

where aij’s are constants and wi, w0 ∈ F (log(1 − gi), `2(gi)| i = 1, 2) Since

`3(g1), `3(g2) are transcendental over F (log(1−gi), `2(gi)| i = 1, 2), we shall compare

the coefficients in Equation 5.52 and obtain

u′ =
∑
i=1,2

wi`2(gi)
g′i
gi

+ w′0 and w′i = −ci
g′i
gi

(5.53)

for each i. Now the Equation 5.53 is similar to Equation 5.52 and w′0 is an element

in the polynomial ring F (log(1 − gi))[`2(gi)], we shall repeat the same process and

write

w0 =
∑
i,j=1,2

bij`2(gi)`2(gj) +
∑
i=1,2

wi0`2(gi) + w00

for some constants bij and elements wi0, w00 in F (log(1 − gi) |i = 1, 2). Comparing

the coefficients in Equation 5.53, we obtain

u′ = −
∑
i=1,2

wi0 log(1− gi)
g′i
gi

+ w′00 and w′i0 = −wi
g′i
gi
. (5.54)

Again this equation is similar to Equation 5.52 and w′00 lies in the polynomial ring

F [log(1 − gi)]. Therefore, we shall write w00 =
∑

i,j=1,2 cij log(1 − gi) log(1 − gj) +
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∑
i=1,2wi00 log(1 − gi) + v for some elements v, wi00 ∈ F and constants cij. Thus,

comparing the coefficients we shall obtain

u′ =
∑
i=1,2

wi00
g′i
gi

+ v′, (5.55)

where

w′i00 = wi0
g′i
gi
, w′i0 = −wi

g′i
gi

and w′i = −ci
g′i
gi
.
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