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Preface

The central focus of this thesis is the emergence of synchronization and collective

dynamics in networks of bistable dynamical elements. Specifically, we study different

classes of networks, and identify the properties that are most crucial for the stability of

the synchronized state in these networks.

In the first part of this thesis we focus on the sensitivity of networks to heterogeneity in

small world networks. Here we investigate in detail the dynamics of networks of bistable

elements with varying degrees of randomness in connections through extensive numerics.

We consider both static random links and time-varying random links. We explore how the

presence of a few dissimilar elements affects the collective features of this system, and find

that a network with random links is hyper-sensitive to heterogeneity. Namely, counter-

intuitively, even a small number of distinct elements manages to drastically influence the

collective dynamics of the network, with the mean-field swinging to the steady state of

the minority elements.

We find that the transition in the collective field gets sharper as the fraction of random

links increases, for both static and time-varying links. We also demonstrate that networks

where the links are switched more frequently, synchronize faster. Lastly, we show that as

global bias tends to a critical value, even a single different element manages to drag the

entire system to the natural stable state of the minority element. So it is evident that

when coupling connections are random, a network with even a very small number of links

per node, has the ability to become ultra-sensitive to heterogeneity.

The results mentioned above raised further pertinent questions, such as the following:

Which networks are more conducive to synchronization? What properties in a network

influence synchronization most significantly? So in the second research problem in this

thesis, we investigate the collective dynamics of bistable elements connected in different

network topologies, ranging from rings and small-world networks, to random and deter-

ministic scale-free networks. We focus on the correlation between network properties

and global stability measures of the synchronized state, in particular the average critical

coupling strength 〈εc〉 yielding transition to synchronization. Further we estimate the

robustness of the synchronized state by finding the minimal fraction of nodes fc that

need to be perturbed in order to lose synchronization.

Our central result from these synchronization features is the following: while net-

works properties can provide indicators of synchronization within a network class, they
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fail to provide consistent indicators across network classes. For instance, the hetero-

geneity of degree does not consistently impact synchronization, as evident through the

stark difference in the synchronizability of rings vis-a-vis small-world and star networks,

all of which have same average degree and deviation around the mean degree in the

limit of large networks. Further we demonstrate that clustering coefficient is also not a

consistent feature in determining synchronization. This is clear through the similarity

of synchronization properties in rings with significantly different clustering coefficients,

and the striking difference in synchronization of a star network and a ring having the

same clustering coefficient. Even characteristic path length, which is of paramount im-

portance in determining synchronization, does not provide a one-to-one correspondence

with synchronization properties across classes. Namely, synchronization is significantly

favoured in networks with low path lengths within a network class. However, the same

characteristic path length in different types of networks yields very different 〈εc〉 and fc.

The next research problem addresses the following important question: Which nodes

have the greatest influence on the stability of synchronized state in the network? In

order to address this question, we investigate the collective dynamics of bistable elements

connected in different network topologies, ranging from rings and small-world networks,

to scale-free networks and stars. We estimate the dynamical robustness of such networks

by introducing a variant of the concept of multi-node basin stability, which allows us to

gauge the global stability of the dynamics of the network in response to local perturbations

affecting a certain class of nodes of a system.

We show that perturbing nodes with high closeness and betweeness-centrality signif-

icantly reduces the capacity of the system to return to the desired state. This effect is

very pronounced for a star network which has one hub node with significantly different

closeness/betweeness-centrality than all the peripheral nodes. In such a network, pertur-

bation of the single hub node has the capacity to destroy the collective state. On the

other hand, even when a majority of the peripheral nodes are strongly perturbed, the

hub manages to restore the system to its original state, demonstrating the drastic effect

of the centrality of the perturbed node on the dynamics of the network.

Further, we explore Random Scale-Free Networks of bistable dynamical elements. We

exploit the difference in the distribution of betweeness centralities, closeness centralities

and degrees of the nodes in Random Scale-Free Networks with m = 1 and m = 2, to

probe which centrality property most influences the robustness of the collective dynamics

in these heterogeneous networks. Significantly, we find clear evidence that the betweeness

centrality of the perturbed node is more crucial for dynamical robustness, than closeness
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centrality or degree of the node. This result is important in deciding which nodes to safe-

guard in order to maintain the collective state of this network against targetted localized

attacks.

In conclusion, in this thesis we explore the phenomena of synchronization across wide

classes of networks and we identify the network properties that exert significant influence

on the global stability of the synchronized state. So our results shed light on the collective

dynamics of networks of bistable systems, and may indicate trends for complex dynamical

networks in general.
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Chapter 1

Introduction

In this work, we have studied collective dynamics of a group of coupled bistable elements.

Bistable systems are relevant in a variety of fields, ranging from relaxation oscillators and

multi-vibrators, to light switches and Schmitt triggers. Further it is of utmost importance

in digital electronics, where binary data is stored using bistable elements.

1.1 Bistable system

Throughout this study we have considered three different bistable systems. The most

general one is the following first order differential equation:

ẋ = F (x) = x− x3 (1.1)

We chose this particular function, because it has the simplest nonlinear polynomial

form in one variable, which gives rise to two stable fixed points (see fig. 1.3).

Another bistable system taken in consideration was the piece-wise continuous function

given as following:

F (x) =


βx∗l − αx if x < x∗l

(β − α)x if x∗l ≤ x ≤ x∗u

βx∗u − αx if x > x∗u

(1.2)
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where x∗u and x∗l are the upper and lower thresholds respectively (see fig. 1.1). This

dynamical equation can be realized efficiently in electronic circuits [39].

Figure 1.1: Plot of function F (x) given by equation 1.2.

We also explored different networks of bistable synthetic genetic networks, where the

nodal dynamics was given by [18, 19, 20]:

F (x) =
m(1 + x2 + ασ1x

4)

1 + x2 + σ1x4 + σ1σ2x6
− γxx (1.3)

where x is the concentration of the repressor. The nonlinearity in this F (x) leads to a

double well potential, and different γ introduces varying degrees of asymmetry in the

potential (see fig.1.2).

In order to demonstrate the generality of the results presented in this thesis, and to

show that they hold for a large class of bistable systems, we have verified all results for

all three types of local dynamics described by the equations 1.1,1.2 and 1.3 above.
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Figure 1.2: Plot of function F (x) given by equation 1.3.

Analysis

Now we choose the first system, which is the most general one, in order to illustrate

different features of a bistable system. Note that the analysis here is applicable to all

three systems mentioned above. First we look at the vector field (flow) generated by the

equation 1.1 in one dimension, as shown in fig. 1.3.

We can analytically find the fixed points x? by setting ẋ = 0 in equation 1.1.

ẋ = F (x) = 0 (1.4)

=⇒ x− x3 = 0 (1.5)

=⇒ x(1− x)(1 + x) = 0 (1.6)

=⇒ x = 0,+1,−1 (1.7)

To find the stability of these equations we differentiate equation 1.1 and check the

sign of F ′(x), evaluated at the fixed points x? determined by 1.7.
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Figure 1.3: Flow(vector field) generated by force function ẋ = x− x3 in one dimension.

F (x) = x− x3 (1.8)

=⇒ F ′(x) = 1− 3x2 (1.9)

∴ F ′(0) = 1 (1.10)

and F ′(1) = F ′(−1) = −2 (1.11)

Since F ′(0) > 0, x? = 0 is an unstable fixed point, while F ′(1) = F ′(−1) < 0 implies

that x? = −1, 1 are stable fixed points

Potential Function

Another way of understanding the above system is by defining a quantity analogous to a

potential function, given as:

V (x) = −
∫
F (x)dx (1.12)
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Thus, the above equation yields

V (x) =
x4

4
− x2

2
(1.13)

Fig. 1.4 shows this potential function and marks the stable and unstable points. Thus

for any given initial condition x0 > 0 and x0 < 0 the system is bound to settle to the

stable states x? = +1 and x? = −1 respectively.

Figure 1.4: Flow (vector field) generated by F (x) = x− x3 in one dimension.

Synchronization

Synchronization of complex networks has attracted wide research interest, from fields as

diverse as ecology and sociology to power grids and climatology [25, 26, 16, 27]. Collective

spatiotemporal patterns emerging in dynamical networks are determined by the interplay

of the dynamics of the nodes and the nature of the interactions among the nodes.

The concept of synchronization provides a general approach to the understanding of

the collective behavior of coupled dynamical systems, and the term has expanded in usage

to include several types of correlated collective behaviour. Some of the widely used terms

relating to synchronization are following:
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1. Complete synchronization: The systems are said to be completely synchronized

when there is a set of initial conditions so that the systems eventually evolve iden-

tically in time.

2. Generalized synchronization: This type of synchronization occurs mainly when the

coupled chaotic oscillators are different. Given the dynamical variables (x1, x2, ..., xn)

and (y1, y2, ..., ym) that determine the state of the oscillators, generalized synchro-

nization occurs when there is a functional, φ, such that, after a transitory evolution

from appropriate initial conditions, the following condition holds:

[y1(t), y2(t), ..., ym(t)] = φ[x1(t), x2(t), ..., xn(t)]

.

3. Phase synchronization: Phase synchronization occurs when the coupled chaotic

oscillators keep their phase difference bounded while their amplitudes remain un-

correlated.

4. Anticipated synchronization: This type occurs between chaotic oscillators whose

dynamics is described by delay differential equations, coupled in a drive-response

configuration. The response anticipates the dynamics of the drive.

5. Lag synchronization: This type of synchronization is similar to anticipated syn-

chronization(i.e. the dynamics of these oscillators is described by delay differen-

tial equations, coupled in a drive-response configuration). This occurs when the

strength of the coupling between phase-synchronized oscillators is increased.

The unifying thread in all the different types of synchronization is the emergence of

a consistent relationship between the variables of a set of dynamical systems, and this

can arise in contexts ranging from simple first-order phase oscillators to complex chaotic

systems. Further, these types of synchronization apply to both mono-stable, as well as

multi-stable systems [33].

In this thesis, a synchronized state refers to a state where all nodes in the network

evolve to the same stable state after transients. That is, all the dynamical elements

comprising the network evolve to the same well of the double-well potential function

describing the system.
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1.2 Networks

The principal focus of this thesis is the collective dynamics of a group of bistable elements

connected in different network topologies, ranging from regular rings and small-world

networks on one hand, to deterministic scale-free and random scale-free networks on the

other. So we first present a brief summary of the properties of these networks.

1. Ring: Here each node has degree K (K even) and is connected to K/2 nearest

neighbors on either side (see fig. 1.5). There are two independent parameters which

completely determine the topology, namely system size (denoted by N), number of

neighbors of each node (denoted by k).

Figure 1.5: Construction of a Ring Network of size N = 20 and k = 2.

2. Star network: here all the peripheral nodes are attached to one hub(see fig.1.6). It

has only one independent parameter namely system size (denoted by N).

3. Deterministic scale free network: this has the particular hierarchical structure gen-

erated iteratively for different orders (denoted by g) [37] (see fig.1.7). Here the

order g, which is the only relevant network parameter, determines the number of

nodes in the network, with N = 3g.

4. Random Scale-Free: this is constructed via the Barabasi-Albert preferential attach-

ment algorithm, with the number of links of each new node denoted by parameter

7



Figure 1.6: Construction of a Star Network of size N = 20.

Figure 1.7: Construction of a Deterministic Scale-Free Network (adapted from Ref. [37]).
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m [36](see fig. 1.8, 1.9). Thus, there are two independent parameters which com-

pletely determine the topology, namely system size (denoted by N), number of links

of each new node (denoted by m).

Figure 1.8: Construction of a Scale-Free Network (adapted from Ref. [36]) of size N = 100
with m = 1.

5. Small-World network: This is constructed via the Watts-Strogatz algorithm [6].

Namely, we start from a ring with vertices having degree k (as in 1 above), and

then rewire links to random non-local nodes with probability p (see fig. 1.10). Thus,

there are three independent parameters which completely determine the topology,

namely system size (N), number of neighbors of each node (k) and the probability

p with which we rewire links to random non-local nodes. So p can be roughly

interpreted as fraction of random links in the network.

Outline of the thesis: The thesis is broadly divided into three parts. In the first

part (Chapter 2), we study synchronization in small world networks and we show that

they exhibit the interesting phenomena of hypersensitivity. Specifically we demonstrate

9



Figure 1.9: Construction of a Scale-Free Network (adapted from Ref. [36]) of size N = 100
with m = 2.
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(a) (b)

(c)

Figure 1.10: Construction of a Small world Network (adapted from Ref. [6]) of size N = 20
for different fractions of random links: (a) p = 0.1, (b) p = 0.5, and (c) p = 0.9.

11



that as the fraction p of random links increases, the system readily synchronizes, as well

as becomes more sensitive to heterogeneity, unlike bistable elements coupled in the well

structured ring topology. In the second part (Chapter 3), we study five different classes of

networks and identify the ones that synchronize most readily and those that are difficult

to synchronize. We then attempt to uncover underlying network patterns that may be

correlated with the propensity (or lack thereof) of synchronization in those networks.

In the third part (Chapter 4), we study the ability of a network to recover from large

localized perturbations. In this part we address the question of identifying the nodal

properties that render a network most vulnerable to targetted attacks. We conclude in

Chapter 5 with a summary of our principal results, and indicate some future directions

that arise from the work in this thesis.
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Chapter 2

Random links enhance the

sensitivity of networks to

heterogeneity

Adapted from the work published in :

P. D. Rungta and S. Sinha EPL, 112 (2015) 60004 .
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2.1 Introduction

The study of large interactive nonlinear systems has been a very active area of research in

recent years [1]. In this chapter we will focus on a network of coupled bistable elements

and explore the role of heterogeneity in the emergent spatio-temporal patterns [2, 3].

Now, in the context of the response of coupled bistable systems to heterogeneity, some

counter-intuitive results were obtained recently for the case of global coupling [4, 5].

Specifically, Ref. [4] considered a collection of N nonlinear dynamical elements with two

distinct stable states x∗+ and x∗−, with the equation governing the temporal evolution of

element i given by:

ẋi = G(xi) + ai + C(〈x〉 − xi) + b (2.1)

where element (node) index i = 1, 2, . . . , N , with N being system size. The elements are

coupled through the mean field 〈x〉 = 1
N

∑N
i=1 xi, with C being the strength of coupling.

The local dynamics is determined by G(xi) which is a generic nonlinear function giving

rise to a bistable potential, with two steady states at x∗− (lower well) and x∗+ (upper well).

The local parameter ai may differ from element to element, leading to heterogeneity in

the system. This local parameter determines the location and depth of the stable states

of the nodal dynamics in the uncoupled case. Parameter b is a global bias, common to

the elements, and can be used as a “control lever” to tip the collective behaviour of the

system to different patterns.

Consider a heterogeneous system comprised of two distinct types of elements, with N0

number of elements having ai = 0 in Eqn. 2.1, and the rest of the elements N1 = N −N0

having ai = 1. When uncoupled the collective field is naturally just the weighted average

of the steady states of the elements. When coupled, since the contribution of each node is

of the order of O(1/N), one expects that the dynamics of system should be dominated by

the majority set. Very interestingly however, it was found that under certain conditions

all the elements in the system evolved to the stable state of the minority population [4].

Namely, the entire system was driven to the natural state of the set with a much smaller

number of elements. The underlying reason for this counter-intuitive behavior was the

interplay of the relative depths of the different local steady states due to heterogeneity,

and the strong global coupling of the system which leads to synchronization.

Further it was observed that for suitable global bias b this system could be made

ultra-sensitive to heterogeneity in the system. That is, the collective field reflected the

14



presence of the smallest deviation from uniformity in the local parameter ai. In fact it

was found that in certain systems, even a single element with a different ai, could lead

the entire system to its natural state. Thus, in these conditions the collective field of the

system is any extremely sensitive detector of non-homogeneity.

2.2 Model

In this chapter we will investigate the following important issues regarding this remarkable

phenomena: First, we will attempt to ascertain if global coupling is indeed necessary

to observe this phenomena, or if such hyper-sensitivity can arise in systems where the

coupling range is restricted to much smaller neighbourhoods. Further, we will also seek to

uncover if randomizing connections aids or hinders this sensitivity to heterogeneity. We

will address the pertinent question of the minimal degree of coupling necessay to allow

the minority set to determine the collective behaviour of the system. To probe the above

questions, we study the evolution of N bistable elements, coupled to k neighbours, given

by:

ẋi = G(xi) + ai + C

[
1

k
Σk
j=1(xj − xi)

]
+ b (2.2)

for i = 1, . . . N . In the interaction term, Σ(xj − xi) is a sum over the k neighbors of

the ith node, and gives the local field experienced by each element. When the underlying

connections are regular, we have j = i ± m, with m ranging from 1 to k/2 (with k

considered an even integer in this work).

Specifically we consider the widely studied case of k = 2 (namely two neighbours)

and the nonlinear function G(xi) = xi− x3i at the the nodes of the network, yielding two

steady states x∗− = −1 (lower well) and x∗+ = 1 (upper well). The parameter ai is 1 for N1

randomly selected nodes and 0 for others. The important thing to note is that different

ai gives rise to different potential functions as displayed by different curves in Fig. 2.1-a.

Further, the parameter b is the global bias and is used to tilt the potential wells on

one side. In this study we consider bias b < 0, which tilts and thus makes the negative

well more probable. Fig 2.1 a-c shows the trend of increasing negative bias on potential

wells for both nodes, namely ones with ai = 0 and ones with ai = 1.

The coupling is strong, with coupling constant C = 1. We explored the behavior of

the system arising from a large sample of initial conditions, with the initial state of the

elements drawn randomly from a uniform distribution [−2 : 2]. We also ascertained that

15



(a)

(b)

(c)

Figure 2.1: Plot of potential wells underlying the system ẋ = (xi−x3i ) + a+ b with a = 0
and with a = 1. Figure a-b-c displays the trend of increasing bias.
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the results were robust with respect to the time-step in the numerical simulations, over

orders of magnitude.

To explore the effect of random connections on the collective behaviour of the system,

we study wide-ranging degree-preserving connection topologies, with varying fractions of

random links. We will use the well-known Watts-Strogatz small-world network framework

to interpolate between the completely regular lattice [1] and a completely random network

[6]. Our connection network will consist of a regular graph of nodes, with a fraction p

of the links randomized(see 2.2). In particular we investigate networks of these bistable

systems, with p ranging from 0 (regular lattice) to 1 (random networks). So the local

field is determined by a set of elements, ranging from k nearest neighbours on a ring,

to k random non-local sites, depending on the topology of the underlying network of

connections. Additionally, we consider two classes of connections: (a) static networks,

where the connections remain unchanged, namely the case of frozen or quenched links;

(b) time-varying or dynamically changing networks, where the links switch periodically,

namely the connectivity matrix changes at regular intervals [7, 8, 9, 10, 11, 12, 13, 14].

Generally speaking, these random links provide shortcut paths for the spatial flow of

information, leading to more efficient synchronization [15, 16] and more efficient control

to fixed states [7, 8], as well as suppression of blow-ups in complex networks [9, 10].

In order to probe the effect of local heterogeneity, we consider the network with N0

nodes with ai = 0, and N1 = N−N0 nodes with ai = 1. Figs. 2.3-2.5 show representative

space-time patterns for k = 2. For the case of the regular ring (i.e. p = 0) displayed

in Fig. 2.3 we show three illustrative cases: (a) a homogeneous ring with all elements

having ai = 0; (b) a ring with just a single element having ai = 1 while the rest have

ai = 0 (namely N1 = 1 and N0 = N − 1 >> N1); (c) a ring with a reasonably large set of

elements with ai = 1, e.g. N1 = 30 in a lattice of size N = 100. It is clearly evident that

there is no synchronization in the regular ring when N1 is small, and typically different

elements i evolve to different steady states depending on their individual ai and the initial

state.

In Fig. 2.4 and Fig. 2.5 we show representative spatiotemporal patterns for a ring with

a large number of links randomized, namely a fraction p of nearest neighbour connections

are rewired to random sites in the network. In Fig. 2.4 the connections are static, while

in Fig. 2.5 the links are switched periodically. It is clearly evident that when there is a

sufficiently large fraction of random links, either static or time-varying, global synchro-

nization emerges. When the system is homogeneous and all the elements have ai = 0 then

all the elements in the system go to the lower state. However remarkably, just a single
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Figure 2.2: Small world network with increasing fraction of random links p.
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Figure 2.3: Time evolution of coupled bistable elements xi (i = 1, . . . , N , with N = 100)
governed by Eqn. 2.2, with k = 2, where the number of sites N1 with ai = 1 is (a) 0,
(b) 1 and (c) 30. Here the network is completely regular, without any random links,
namely p = 0, and the global bias b = −0.035. In this figure, as well as in Figs. 2.4
and 3, time runs along the x-axis, the index i of the elements (i = 1, . . . , 100) is given
along the y-axis, and the colors represent the value of state xi of element i at a particular
point in time (with the yellow end of the spectrum representing 1.5 and the indigo end
representing −1.5.

.
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different element in the system can swing the system to the upper state. So the system

with random links is ultra-sensitive to the presence of even the smallest heterogeniety.

In order to quantify this behaviour further, we have probed the time evolution of

the mean field 〈x〉 = 1
N

∑N
i=1 xi where N is the system size, namely we track how the

average value of the state of the elements changes in time, starting from generic initial

conditions. When the asymptotic mean field is close to −1, it implies that most elements

have evolved to the lower well and almost none are in the upper well. However when the

mean field is close to 1, it is signifies that most elements are in the upper well. So the

asymptotic mean field indicates the fraction of elements in the network that have evolved

to the upper well.

Fig. 2.6 shows how the mean field in a network with a large fraction of random links

swings around 1 from −1 when just one of the elements in the network is different. In

contrast, notice that the mean field is effected very little by this in the case of the regular

ring. We will quantify this remarkably strong response to non-uniformity below.

time

x
i

(a)

time

x
i

(b)

Figure 2.4: Time evolution of coupled bistable elements xi (i = 1, . . . , N , with N = 100)
governed by Eqn. 2.2, with k = 2, where the number of sites N1 with ai = 1 is (a) 0 and
(b) 1. Here the fraction of random links is p = 0.8, and the links are static. The global
bias b = −0.035.Again, as in the last figure, time runs along the x-axis, the positions of
the elements are shown along the y-axis, and the colors represent the value of state xi of
element i at a particular point in time. Clearly the presence of just 1 distinct element in
a network of size 100 drastically changes the outcome of the evolution of network.

2.3 Effect of varying heterogeneity

In order to quantitatively examine how collective features, as exemplified by the mean field

〈x〉, are affected by the majority and the minority elements, we calculate the asymptotic
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Figure 2.5: Time evolution of coupled bistable elements xi (i = 1, . . . , N , with N = 100)
governed by Eqn. 2.2, with k = 2, where the number of sites N1 with ai = 1 is (a) 0 and
(b) 1. Here the fraction of random links is p = 0.8, and the links are time-varying (with
the periodicity of switching links being 0.1). The global bias b = −0.035. Again, as in the
last figure, time runs along the x-axis, the positions of the elements are shown along the
y-axis, and the colors represent the value of state xi of element i at a particular point in
time. Clearly the presence of just 1 distinct element in a network of size 100 drastically
changes the outcome of the evolution of network.

(a) (b)

Figure 2.6: Time evolution of the mean field of the coupled system of bistable elements,
governed by Eqn. 2.2, with k = 2 and fraction of random links p = 0.8, for (a) dynamically
changing links (with b = −0.035) and (b) static links (with b = −0.075). The number of
sites N1 with ai = 1 is equal to 0 (blue) and 1 (red). The case of p = 0, with N1 = 0 and
N1 = 1 is shown by the nearly overlapping green and magenta curves respectively. Note
that all curves evolve from the same initial state. Clearly for the case of random links
the presence of just one distinct element in a network of size 100 swings the collective
field from around −1 to 1, while for a regular ring of bistable elements the presence of 1
distinct element changes the mean field incrementally.
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Figure 2.7: Average mean field in a network as a function of N1/N (i.e. fraction of
elements with ai = 1), with different fractions of random links p. Here network size
N = 100, and global bias is b = −0.1. Note that both static random connections(a) and
time-varying random links(b) yield similar results.

mean field, averaged over a large number of initial states. This quantity helps us to

systematically gauge the effect of the relative magnitudes of N0 and N1 on the collective

behaviour of heterogeneous networks.

Figs. 2.7-2.9 shows the transition in the average mean field with increasing hetero-

geneity, indicating sharp change in collective behaviour as N1 increases. It is evident

from the figures that there is a transition from the case where all elements are in the

lower well to a situation where the entire system is in the upper well, i.e. the mean field

swings from approximately x∗− to x∗+.

First, notice how the degree of randomness in spatial connections makes a crucial

difference to the transition in the collective field under increasing heterogenity. The

influence of random links on the sensitivity of collective properties on local non-uniformity

is apparent in Figure 2.7. It is clearly seen that increasing the fraction of random links

p results in a sharper transition. So when the links are increasingly random, one obtains

synchronization of the dynamics of the entire system to the stable state of the minority

group, in response to increasingly small number of elements that are distinct.

Fig. 2.8a demonstrates the trends with changing system size N . It is evident that

larger system sizes give rise to sharper transitions in the collective field under increasing

heterogeneity, with the transition occuring at the same critical N1. This illustrates that

the size of the coupling neighbourhood, relative to the size of system, does not influence

the sensitivity of the network to heterogeneity. In order to infer the trend in the ther-
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modynamic limit, we use finite size scaling. As shown in Fig. 2.8b for a given bias b and

fraction of random links p, the form

F((N1 −N critical
1 )/

√
N)

yields good data collapse.

(a) (b)

Figure 2.8: (a) Average mean field as a function of N1/N (i.e. fraction of elements with
ai = 1 in a network of size N), for networks with N = 100 (red), 250 (green) and 500
(blue); (b) mean field of the networks of different sizes on the y-axis, with respect to scaled
size (N1−N critical

1 )/
√
N on the x-axis, yielding a good data collapse. Here the global bias

b = −0.1, fraction of dynamically varying random links p = 0.8, and N critical
1 /N = 0.16.

Similar results are obtained for the case of static links.

2.4 Effect of global bias on sensitivity

Fig. 2.9 shows the effect of changing global bias on the collective behaviour of the

network. It is evident from the figure that for negative global bias tending to zero,

namely b → 0−, this transition shifts towards N1 → 1 limit, when p is large. So the

collective field of the network reflects even the smallest degree of non-uniformity in the

system when there are sufficient number of random links in the network. Thus the system

at the appropriate global bias is ultra-sensitive to heterogeneity, with the collective field

displaying a remarkably large swing in response to just one element with ai = 1. So

the transition tends to the N1 = 1 limit, indicating that typically the collective field is

capable of reflecting the presence of even a single different element in a network with

random links, as illustrated for particular examples in Figs. 2.4 and 2.5.
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Remarkably then, we observe that the network exhibits sensitivity to heterogeneity

even when each node is coupled to only two other nodes. This is a significant difference

from earlier results where the system exhibited ultra-sensitivity under mean field cou-

pling. So even when the information flow is constrained to just two other sites, and not

the entire system as in the case of global coupling, the majority elements can synchronize

to the natural state of the minority set if the links are sufficiently random. This result

is potentially very significant for systems where connections are sparse. It is also poten-

tially pertinent for engineered systems where one would like to reduce the cost of adding

coupling connections in order to achieve this effect.
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Figure 2.9: Average mean field as a function of N1/N (i.e. fraction of elements with
ai = 1 in a network of size N), evolving under different values of global bias b equal to
−0.05 (blue), −0.1 (red), −0.2 (magenta) and −0.3 (green). Here network size N = 100,
and fraction of random links p = 0.8. Note that both static random connections and
time-varying random links yield similar results.

2.5 Synchronization

We now focus more on the emergence of synchronization in the network. In order to

probe the degree of synchronization we find the synchronization error (after transience)

given as the root mean square deviation of the local state of the nodes, averaged over

time and different initial conditions, which can be mathematically expressed as:

Zsync =
1

S

∑
S

 1

T

∑
T

{
1

N

N∑
i=1

[xi(t)− 〈x(t)〉]2
}1/2

 (2.3)
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When this measure tends to zero, the system tends to complete synchronization.

Fig. 2.10 shows the average synchronization error as a function of the coupling strength

C in Eqn. 2.2. It is clear that as coupling strength increases, the network gets more

synchronized, as is intuitively expected [16]. Further it is evident that for networks with

random links (i.e. p > 0), after a critical coupling strength complete synchronization is

obtained. This holds true for both static links and dynamically varying links. However,

for a regular ring (namely p = 0) the system never attains complete synchronization, as

corroborated by the space-time patterns in Fig. 2.3. The emergence of synchronization

under random connections is in accordance with earlier results on small-world networks

[17].
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Figure 2.10: Synchronization error (averaged over 1000 random initial conditions) as a
function of coupling strength C, for p = 0 (blue), and for p = 0.8 with static links
(green) and dynamically varying links (purple). Here network size N = 100, global bias
is b = −0.1 and N1 = 0. Notice that both static random connections and time-varying
random links yield similar results.

2.6 Fast synchronization in networks with time vary-

ing connections

We also consider the efficiency of synchronization in different kinds of networks. Com-

parison between Figs. 2.4 and 2.5 shows that synchronization occurs faster when the

network has time-varying links rather than static links. This observation is corroborated

quantitatively by studying the average time taken by a random initial network to reach

the synchronized steady state, and it is clear from Fig. 2.11 that as the switching of links
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becomes more frequent, the time taken to synchronize decreases. The underlying reason

for this fast approach to the asymptotic state is the more efficient flow of information in a

dynamically changing network, as many distant nodes get connected over a short period

of time. So a network with rapidly varying links yields very fast synchronization.

Figure 2.11: Average time taken by a network to reach the synchronized steady state, for
different values of rewiring time period ranging from 0.1 to 50, with fraction of random
links p = 0.8. Here N1 = 1 and global bias b = −0.1 and system size N = 100.

So sufficient number of random links leads to synchronization of all elements in the

network even when there is heterogeneity in the system. Further, when the connections

are switched periodically this synchronization occurs more efficiently, and the time taken

to reach the synchronized state is significantly smaller for dynamically changing connec-

tivity.

2.7 Varying local dynamics and coupling range

Lastly, in order to gauge the generality of our observed phenomena under variation of

the nodal dynamics, we investigated a coupled network where the local bistable system

was given by:

ẋ =


βx∗l − αx if x < x∗l

(β − α)x if x∗l ≤ x ≤ x∗u

βx∗u − αx if x > x∗u

(2.4)
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where x∗u and x∗l are the upper and lower thresholds respectively. This system also

displays ultra-sensitivity when the coupling connections are sufficiently random. Since

this piecewise-linear system has a simple and efficient circuit realization, it can poten-

tially help one verify ultrasensitivity in experiments. Further, we investigated networks

with larger coupling range, such as k = 4, and found similar behaviour, indicating the

generality of the results(see Fig. 2.12 for some representative results).
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Figure 2.12: Average mean field as a function of N1/N (i.e. fraction of elements with
ai = 1 in a network of size N), evolving for different values of global bias b. Here network
size N = 100, and fraction of random links p = 0.3(a,b) and p = 0.7(c,d). Note that both
static random connections(a,c) and time-varying random links(b,d) yield similar results.

Further, in order to demonstrate the generality of these observations, we also explored

different networks of bistable synthetic genetic networks, where the nodal dynamics was

given by [18, 19, 20]:

F (x) =
m(1 + x2 + ασ1x

4)

1 + x2 + σ1x4 + σ1σ2x6
− γxx (2.5)
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where x is the concentration of the repressor. The nonlinearity in this F (x) leads to a

double well potential, and different γ introduces varying degrees of asymmetry in the

potential. We find that the qualitative trends in both these bistable systems is similar to

that described above, indicating the generality of the central results presented here(see

Fig. 2.13).
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Figure 2.13: Average mean field as a function of N1/N (i.e. fraction of elements with
ai = 1 in a network of size N), evolving for different values of global bias b. Here network
size N = 100, and fraction of random links p = 0.3(a,b) and p = 0.7(c,d). Note that both
static random connections(a,c) and time-varying random links(b,d) yield similar results.

2.8 Effect of noise

Additionally, we checked that the qualitative trends are not degraded by the presence of

weak noise. This is indicative of the robustness of the phenomena. Thus we added noise
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to the dynamical equation given by:

ẋi = G(xi) + ai + C

[
1

k
Σk
j=1(xj − xi)

]
+ b+Dη (2.6)

where η is obtained from a Gaussian distribution(mean 0, variance 1) and D is the

strength of the noise. All other terms are as before(refer equation 2.1). We numerically

integrated the above equation using the EulerMaruyama method.

Fig. 2.14 shows the results of our simulation. Clearly, we can observe that the

qualitative trends of the phenomena is stable and persistent under low noise. Thus, we

can guarantee the validity of hypersensitivity in practical applications.
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Figure 2.14: Average mean field as a function of N1/N (i.e. fraction of elements with
ai = 1 in a network of size N), evolving under the influence of low noise(D=0.1) for
different values of global bias b. Here network size N = 100, and fraction of random links
p = 0.3. Note that both static random connections(a) and time-varying random links(b)
yield similar results.

2.9 Potential application

Without loss of generality, we use the bistable elements to stably encode N binary items

(0 or 1) by setting ai (i = 1, . . . N) to take values 0 or 1, respectively [see Fig.1(a)].

This creates a (unsorted) binary database. Then, using the scalable ultra-sensitivity

demonstrated above, one can search this arbitrarily large database for the existence of a

single different bit (say a single 1 in a string of 0’s) by making just one measurement of

the evolved mean field of the whole array. That is, a single global operation can determine

29



the existence of very few special items in a given, arbitrarily large, unsorted database of

general items.

Lastly, we suggest this ultra-sensitivity may find application in handling problems

involving a large number of variables, such as the important and difficult problem of

designing search engines for large unsorted databases [4], which can be posed in layman’s

language as “finding a needle in a haystack”. So a query such as the existence (or not) of

any different bits in a collection of items, can be addressed without measuring the entire

system item by item,. Rather, by using the ultra-sensitive response to heterogeneity, one

can gauge the presence of a different element by just one mean field measurement.

2.10 Conclusion

In summary, in this work we have investigated the dynamics of networks of bistable ele-

ments with varying degrees of randomness in connections, considering both static random

connections and time-varying random links. We probed how the presence of a few dissim-

ilar elements affects the collective features of this system, and find that a network with

random links is hyper-sensitive to heterogeneity. Namely, even a small number of distinct

elements manages to drastically influences the collective dynamics of the network, with

the mean-field swinging to the stable value of the minority elements. We find that the

transition in the collective field gets sharper as the fraction of random links increases, for

both static and time-varying links. We also demonstrated that networks where the links

are switched more frequently, synchronize faster. Lastly, we showed that as global bias

tends to a critical value, even a single different element manages to drag the entire system

to the natural stable state of the minority element. So it is evident that when coupling

connections are random, a network with even a very small number of links per node, has

the ability to become ultra-sensitive to heterogeneity. This phenomenon can potentially

be observed in social and biological networks [21], and implemented in experiments such

as coupled nano-mechanical resonators [22, 23] and coupled laser arrays [24].
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Chapter 3

Are network properties consistent

indicators of synchronization?

Adapted from the work published in :

P. D. Rungta, A. Choudhary, C. Meena and S. Sinha EPL, 117 (2017) 20003 .
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3.1 Introduction

Synchronization of complex networks has attracted wide research interest, from fields as

diverse as ecology and sociology to power grids and climatology [25, 26, 16, 27]. Collective

spatiotemporal patterns emerging in dynamical networks are determined by the interplay

of the dynamics of the nodes and the nature of the interactions among the nodes. So it is

of utmost relevance to ascertain how connection properties impact synchronization, and

this important issue has attracted much research effort, though still not attained clarity

yet [28, 29, 30, 31, 32].

In broad terms, the concept of synchronization provides a general approach to the

understanding of the collective behavior of coupled dynamical systems, and the term has

expanded in usage to include several types of correlated collective behaviour, such as

complete synchronization, generalized synchronization, phase synchronization, lag syn-

chronization, and anticipated synchronization. The unifying thread in all the different

types of synchronization is the emergence of a consistent relationship between the vari-

ables of a set of dynamical systems, and this can arise in contexts ranging from simple

first-order phase oscillators to complex chaotic systems. Further, these types of synchro-

nization apply to both mono-stable, as well as multi-stable systems [33]. However, while

synchronization in mono-stable systems is commonly studied, synchronization of multi-

stable systems is still not that well explored. One underlying reason for this, is that

the concept of a linearly stable synchronized state is inadequate to capture the collec-

tive dynamics of multi-stable systems, and consequently even the simple phenomenon of

complete synchronization necessitates global measures in order to adequately understand

the collective behaviour in systems with co-existing attractors [34, 35].

In this chapter, we consider the collective dynamics of a group of bistable elements

connected in different network topologies, ranging from regular rings and small-world

networks on one hand, to deterministic scale-free and random scale-free networks on

the other. Bistable systems are relevant in a variety of fields, ranging from relaxation

oscillators and multivibrators, to light switches and Schmitt triggers. The basic question

we will address is the following: are there features of the underlying connection network

that provide consistent markers for the emergence of complete synchronization and the

robustness of the synchronized state? Specifically, complete or identical synchronization

is the phenomena where the difference between the dynamical variables of the constituent

dynamical systems in the network is zero. Since we consider bistable systems, complete

synchronization here naturally implies that all nodes in the network evolve to the same
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well.

In particular, we consider the system of N coupled bistable elements given as:

ẋi = F (xi) + ε
1

ki

∑
j

(xj − xi) (3.1)

Here i is the node index (i = 1, . . . N) and ε is the coupling constant, reflecting the

strength of coupling. The j in Eqn. 3.1 gives the node index of the set of ki “neighbours”

of the ith node, with the set depending on the topology of the underlying connectivity.

The function F (x) gives rise to a double well potential, with two stable states x∗− and

x∗+. For instance one can choose

F (x) = x− x3

yielding two stable steady states x∗± at +1 and −1, separated by an unstable steady state

at 0. So complete synchronization in this network implies that the dynamical variable

xi evolves to the same well, for all i (namely all xi > 0, or all xi < 0, in this particular

case).

We explore the behaviour of these bistable dynamical elements coupled in five distinct

network classes, namely:

i ) Ring: Here each node has degree K (K even) and is connected to K/2 nearest

neighbors on either side(see fig. 3.1). Namely, ki = K for all nodes i in Eqn. 3.1,

with connections existing between node i and j if 0 < |i− j| mod(N − 1− K
2

) ≤ K
2

.

The clustering coefficient C in a ring is independent of size, and its value for K = 2

is zero, while for K = 4 it is 0.5. The characteristic path length L is N
2K

, and it

increases linearly with size N .

ii ) Star network: here all the peripheral nodes are attached to one hub(see fig.3.2).

The clustering coefficient of this network is zero, and its path length tends to 2 for

large networks.

iii ) Small-World network: This is constructed via the Watts-Strogatz algorithm [6].

Namely, we start from a ring with vertices having degree K (as in 1 above), and

then rewire links to random non-local nodes with probability p(see fig. 3.3). Here

ki = K in Eqn. 3.1, with j being nearest neighbours with probability 1 − p and

random non-local nodes with probability p. For K = 2, the clustering coefficient

C varies from 0 at p = 0, to around 0.02 at p ∼ 1. The characteristic path length
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Figure 3.1: Construction of a Ring Network of size N = 20 and k = 2.

varies from ∼ 25 at p = 0 to around 5.5 at p ∼ 1.

iv ) Deterministic Scale-Free: this has the particular hierarchical structure, generated

iteratively for different orders (denoted by g) [37]. Here the order g, which is the only

relevant network parameter, determines the number of nodes in the network, with

N = 3g(see fig. 3.4). Here the set of neighbours for node i are all the nodes directly

connected by an edge. It can be shown analytically that the degree distribution

P (k) is a power-law here, as in the Random Scale-Free case. Namely P (k) ∼ k−γ

with exponent γ = ln 3
ln 2

[37]. In Deterministic Scale-Free networks, the clustering

coefficient is zero, and the characteristic path length depends on the order g. Table

3.1 lists the characteristic path lengths L for Deterministic Scale-Free networks with

g = 3, 4, 5, 6.

Deterministic Scale-Free Network N L
g = 3 27 2.77
g = 4 81 3.51
g = 5 243 4.46
g = 6 729 5.34

Table 3.1: Mean Path Length L of Deterministic Scale-Free (DSF) networks of different
size N = 3g. Here the degree distribution is P (k) ∼ k−1.585.

v ) Random Scale-Free: this is constructed via the Barabasi-Albert preferential at-

tachment algorithm, with the number of links of each new node denoted by param-

eter m [36](see fig. 3.5,3.6). The network is characterised by a fat-tailed degree
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Figure 3.2: Construction of a Star Network of size N = 20.

distribution. The clustering coefficients C and characteristic path lengths L, de-

pends on m. Table 3.2 lists the clustering coefficients C and characteristic path

lengths L for Random Scale-Free networks with m = 1, 2, 3, 4.

Random Scale-Free Network C L
m = 1 0.00 4.67
m = 2 0.14 2.99
m = 3 0.16 2.58
m = 4 0.19 2.35

Table 3.2: Clustering Coefficient C and Mean Path Length L of Random Scale-Free (RSF)
networks with varying m (see text) consisting of 100 nodes. Here the degree distribution
of the RSF is P (k) ∼ k−3, for all m.
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(a) (b)

(c)

Figure 3.3: Construction of a Small world Network (adapted from Ref. [6]) of size N = 20
for different fractions of random link ( p = 0.1(a), p = 0.5(b), p = 0.9(c) ).
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Figure 3.4: Construction of a Deterministic Scale-Free Network (adapted from Ref. [37]).

Figure 3.5: Construction of a Scale-Free Network (adapted from Ref. [36]) of size N = 100
with m = 1.
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Figure 3.6: Construction of a Scale-Free Network (adapted from Ref. [36]) of size N = 100
with m = 2.
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3.2 Analysis of synchronized state

The focus of our investigation is the asymptotic state of the coupled bistable elements,

starting from a random initial state which can be very far from the synchronized state.

Our attempt is to determine which connection topologies, typically, are most conducive

to attracting all the elements to the same well. Note that synchronization of a system

depends on the particular realization of the connection network, and so systems with the

same network parameters may yield different synchronization transitions [28, 29]. The

measure of relevance for a network class would then be some averaged quantity, reflecting

the typical behaviour arising from a generic random initial state and network realization.

So, in this work, we estimate the average critical coupling strength characteristic of

a network, denoted by 〈εc〉. This is the coupling strength after which synchronization

occurs for a specific initial state and a specific realization of the network,averaged over

a large range of initial states and network realizations. smaller values of this global

averaged quantity 〈εc〉 indicates that the synchronization transition occurs at weaker

coupling strengths on average, namely the system is typically more easily synchronized.

Figs. 3.7-3.8 shows the synchronization error, given by the time and ensemble-averaged

mean square deviation of the spatial profile, for different network classes: rings, small-

world networks, Random Scale-Free networks, Deterministic Scale-Free networks and star

networks. The central observations are the following:
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Figure 3.7: Synchronization error for varying coupling strengths, for a system of coupled
bistable elements given by Eqn.3.1, with different underlying connection networks: regu-
lar Ring with K = 2 (N = 100, 250, 500 shown in orange, yellow, navy blue respectively),
Small-World network with K = 2 and p = 0.5 (N = 100, 250, 500 shown in violet, green,
blue respectively) and Star (for N = 100, 250, 500 shown in red, black, pink respectively).
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Figure 3.8: Synchronization error for varying coupling strengths, for a system of coupled
bistable elements given by Eqn.3.1, with different underlying connection networks: (a)
Random Scale-Free for N = 100, 250, 500 shown in violet, green, blue for m = 1 and
N = 100, 250, 500 shown in orange, yellow, navy blue for m = 2 respectively, and (b)
Deterministic Scale-Free (for N = 81, 243, 729 shown in violet, green, blue respectively).

(i) The Star network synchronizes most readily, with the synchronization transition

occurring at very low coupling strength, irrespective of the size of the network (cf.

Fig. 3.7).

(ii) Small-World networks with high degree of randomness in connections (namely high

p) also yield synchronization at low coupling strengths. Fig. 3.9 shows the aver-

age synchronization error as a function of coupling strength, for varying fractions of

random links p in the Small-World network. It is clearly evident that as p increases,

synchronization occurs at increasingly weaker coupling strengths. Namely, the crit-

ical coupling 〈εc〉 after which synchronization ensues, decreases with increasing p.

So it is clear that a greater degree of randomness in networks, where characteristic

path lengths are significantly shorter, assists synchronization.

(iii) Rings and Deterministic Scale-Free networks and Random Scale-Free networks with

m = 1 (namely, where a new node has one link to the existing nodes) do not yield

synchronization even for very high coupling strengths (cf. Fig. 3.8).

(iv) However, Random Scale-Free networks with m ≥ 2 (namely, where a new node has

two or more links to the existing nodes), allows stable synchronization, even for low

coupling strengths (cf. Fig. 3.8).

So the synchronization transition is markedly different in Random Scale-Free networks

having the same qualitative degree distribution, but different path lengths, as evident

through the lack of synchronization of Random Scale-Free networks with m = 1 vis-a-vis
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Figure 3.9: Synchronization error as a function of varying coupling strengths, for a system
of coupled bistable elements given by Eqn.3.1, in Small-World networks having different
fractions of random links p (p = 0.2, 0.4, 0.6, 0.8 for violet, green, blue, orange respec-
tively). Here N = 100. Inset: Dependence of the average critical coupling strength for
the onset of synchronization 〈εc〉, on the fraction of random links p in Small-World net-
works. The points are obtained from numerical simulations and the solid line displays
the best fit curve.

the efficient synchronization of Random Scale-Free networks with m ≥ 2. This indicates

that degree distribution does not influence synchronization [28], though the characteristic

path length needs to be sufficiently small in order to give rise to a stable synchronized

state.

Additionally there is also very notable difference in the synchronization properties of

Deterministic Scale-Free networks and Random Scale-Free networks with higher m, both

of which have power-law degree distributions but markedly different characteristic path

lengths. This further corroborates that, while shorter characteristic path lengths assists

synchronization, the qualitative nature of the degree distribution is not the key feature

that determines synchronization.

Further, the heterogeneity of degree also does not consistently influence synchroniza-

tion either [30]. This is clearly inferred through the stark difference in the synchronization

of Rings and Small-World networks (where the mean square deviation of the degree is

zero) and Star networks (where the mean square deviation of the degree tends to zero in

the limit of large N).
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3.3 Dependence of critical coupling strength on sys-

tem size

In this section, we estimate the average critical coupling strength characteristic of a

network, denoted by 〈εc〉. This is the coupling strength after which synchronization occurs

for a specific initial state and a specific realization of the network, averaged over a large

range of initial states and network realizations. Smaller values of this global averaged

quantity 〈εc〉 indicates that the synchronization transition occurs at weaker coupling

strengths on an average, namely the system is typically more easily synchronized. Figure

3.10 show the dependence of critical coupling on system size N in different classes of

networks.
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Figure 3.10: Dependence of Critical coupling strength 〈εc〉 on system size N in different
classes of networks.

Further, we investigate the variation of critical coupling strength in small world net-

works for different fractions of random links. Figure. 3.11 shows the average trend and

demonstrates the power law fit for the data.
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Figure 3.11: Dependence of Critical coupling strength 〈εc〉 on fraction of random links p
in small world network for size N = 100.

3.4 Comparative synchronizability of different net-

work classes

Inspite of a wide range of studies over the years, no clear picture has emerged on what class

of networks synchronize most readily [28, 29, 30, 31, 32]. Here we address this issue by

attempting to compare the average critical coupling strength of different network classes

(cf. Fig. 3.12). Further, we will try to correlate this with the characteristic path length,

which emerged as the network property which most strongly impacts synchronization.

Fig. 3.13 shows the dependence of 〈εc〉 of different classes of networks on characteristic

path length 1. It is clearly evident that, within a particular network class, decreasing

path length improves synchronization.It is clear from Fig. 3.7 and Fig. 3.8 that for Star,

Random Scale-Free and Small-World networks, changing system size N does not make

any appreciable difference. On the other hand, synchronization properties of the Ring

is very sensitive to system size. This again is directly related to the sensitivity of the

characteristic path length of these networks to size N (cf. Fig. 3.14).

1 Specifically, the value of critical coupling is given by the minimum ε beyond which the time and
ensemble-averaged synchronization error is bounded within a prescribed threshold. Note that the quali-
tative trends reported here are robust under variation of threshold values over orders of magnitude. In
a broader context, the critical coupling thus defined is relevant experimentally, as all instruments have
finite sensitivity (namely, least count). So in practice the synchronization error cannot be zero with
infinite precision and only bounds on the synchronization error are relevant.
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Figure 3.12: Average critical coupling 〈εc〉 for different classes of networks. Ring and
Random Scale-Free networks with m = 1 do not synchronize at all for ε ≤ 10, and thus
do not appear in the figure. Here system size is N = 243 for all networks, and the
threshold synchronization error is considered to be 0.02. Low 〈εc〉 (namely, low bars)
indicate greater ease of synchronization.

We also probe the commonly used measures of synchronizability obtained through

the linear stability analysis to check if it can offer a more consistent indicator of 〈εc〉.
Since the average critical coupling strength is obtained by sampling a large set of initial

conditions, typically far from the synchronized state, it provides a global indicator of the

stability of the synchronized state. So at the outset it is not clear how local measures can

capture these global trends. In order to ascertain the correlation of local synchronizability

measures and the average critical coupling, we calculated the synchronizability measure

obtained through master stability analysis. Following the formalism outlined in Ref. [38],

the synchronizability index of a system of size N can be assessed by the spread of eigen-

values of the network Laplacian L (defined as L = D−A, where D is diagonal of row sums

of the network adjacency matrix A). Ordering the eigen-values as: 0 = λ1 < λ2 ≤ λ3 ≤
. . . λN , where λ1 has multiplicity 1 and all other eigen-values are strictly positive, the

synchronizability index is given by the ratio λ2
λN

, with larger values of this ratio implying

greater propensity for synchronization.

It can be seen from Fig. 3.15 that a similar trend as observed above is followed from

Synchronizability analysis i.e., within a class of network, decreasing path length improves

synchronizability.

However there is a caveat: across network classes the comparison does not hold.

First, there does not appear to be a critical characteristic path length, below which
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Figure 3.13: Average critical coupling 〈εc〉 vs characteristic path length of different net-
work classes: Deterministic Scale-Free (DSF) in blue, Random Scale-Free (RSF) with
m = 2 in green, Small-World (SW) in red and Ring with K = 2 in cyan. Here the system
size of the DSF networks and RSF networks vary from 27 to 729, and the system size of
the Ring varies from 8 to 24. SW networks with varying p are shown, for network size
N = 100.

synchronization is ensured. Nor is there a one-to-one correspondence between path length

and ease of synchronization. For example, Small-World networks with high p have greater

characteristic path lengths than certain Ring and the Deterministic Scale-Free networks.

Yet these Ring and Deterministic Scale-Free networks are much harder to synchronize

and consequently have significantly higher 〈εc〉.

Fig. 3.16 shows the dependence of 〈εc〉 of Random Scale Free and Small world network

on clustering coefficient. It is observed that within a network class, increasing clustering

coefficient aids synchronization. However the sensitivity of synchronization on clustering

coefficient in the different network is markedly different. For instance, in Random Scale-

Free networks increasing the clustering coefficient has very little effect on the critical

coupling strength, while in Small-World networks the effect is stronger. The lack of one-

to-one correspondence is very pronounced for the case of clustering coefficient, as evident

through the extremely different synchronization properties of Star networks and Rings

with nearly same clustering coefficients, and almost same synchronization properties of

Rings with very different clustering coefficients. Further that symmetry of the connection

graph, as reflected by the order of its automorphism group, is also not a consistent

indicator of the synchronization efficiency. This is evident from the fact that the ring

which has more symmetry than small-world networks is less synchronizable than small-
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classes of networks.

world systems, while a star network with much more symmetry than small-world networks

is much more synchronizable.

The results are displayed in Fig. 3.17, and it is evident again that there is no one-to-

one correspondence between synchronizability (as defined above) and the average critical

coupling. For instance, we observe that a Small-World network and a ring, with the

same value of synchronizability have different average critical coupling strengths. So

the relationship between synchronizability and the average critical coupling strength is

not one-to-one, and same values of synchronizability do not guarantee that the network

will synchronize at similar coupling strengths on an average. Further, the dependence

of 〈εc〉 on synchronizability shows different trends for different network classes, with

〈εc〉 decreasing much faster with respect to synchronizability for some networks (such

as Small-World networks), and quite slowly for others (such as Deterministic Scale-Free

networks).

Lastly, we check if a combination of the two properties clustering coefficient and

Characteristic Path Length offers a complete picture of the properties determining syn-

chronization. Fig. 3.18 suggests that there is no such correlation. All this suggests that

linear stability approaches, like Master Stability Function analysis, also does not offer a

complete picture for global measures of synchronizability.
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3.5 Robustness of the Synchronized State

To check the robustness of the synchronized state, we now investigate the number of ele-

ments that need to be perturbed in order to push the system away from the synchronized

state. In order to gauge this we calculate a measure, denoted as f -node basin stability,

given as follows: we initialize the network to its synchronized stable state, with a small

spread in the values of xi, all of which are in the same well. We then perturb f number of

randomly chosen nodes such that the values of xi for these nodes are strongly perturbed

and kicked to the basin of attraction of the other well. We then ascertain whether all the

elements return to the original well after this perturbation. We repeat this “experiment”

over a large sample of perturbed nodes and perturbation strengths, and find the fraction

of times the system manages to revert to the synchronized state. This measure is quite

analogous to Basin Stability measures [34], and is indicative of the robustness of the

synchronized state to localized perturbations in the network.

It can be observed in figure 3.19-3.21 that the synchronized state of bistable elements

coupled in a ring is robust if the number of nodes perturbed is less than approximately

10%. Similar robustness holds for bistable elements coupled in a Deterministic Scale-Free

network. If the number of nodes perturbed is more than about 15%, one almost never

obtains a state where all nodes are in the original well. In contrast, it can be seen that the

synchronized state of bistable elements coupled in a Small-World network, or a Random

Scale-Free network with m = 2, is robust even when the number of nodes perturbed is

as high as 40-45%.
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Figure 3.19: Basin Stability (namely, fraction of perturbed systems that remain synchro-
nized) vs fraction of nodes perturbed, in a system of N bistable elements coupled in (a)
Small-World (SW) network for different values of fractions of random links.
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Figure 3.20: Basin Stability (namely, fraction of perturbed systems that remain synchro-
nized) vs fraction of nodes perturbed, in a system of N bistable elements coupled in
Deterministic Scale-Free (DSF) network with g = 3 and g = 4.

Further we can obtain the critical number of nodes fc needed, on an average, to destroy

synchronization, namely the value of f for which the Basin Stability falls below a threshold

value (taken to be ≈ 0.9 here). Fig. 3.22 displays this as a function of characteristic

path length for the Small-World case. It is apparent that the number of nodes that

need to be perturbed increases significantly with decreasing characteristic path length.

However, again, across network classes there is no one-to-one correspondence between

critical fraction fc and the characteristic path length. This is clear from the comparison

of Random Scale-Free networks and Small-World networks, which have similar fc, but

very different characteristic path lengths. Further, Deterministic Scale-Free networks

having shorter characteristic path lengths than Small-World networks have considerably

lower fc, namely less robust synchronized states.

50



0.0 0.1 0.2 0.3 0.4 0.5
Fraction of nodes perturbed

0.0

0.2

0.4

0.6

0.8

1.0

Ba
sin

 S
ta

bi
lit

y

m=1
m=2
m=3
m=4

Figure 3.21: Basin Stability (namely, fraction of perturbed systems that remain synchro-
nized) vs fraction of nodes perturbed, in a system of N bistable elements coupled in
Random Scale-Free (RSF) network (green) with m = 1, 2, 3, 4 and N = 100.
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3.6 Varying Nodal Dynamics

In order to demonstrate the generality of these observations, we also explored different

networks of bistable synthetic genetic networks, where the nodal dynamics was given by

[18, 19, 20]:

F (x) =
m(1 + x2 + ασ1x

4)

1 + x2 + σ1x4 + σ1σ2x6
− γxx (3.2)

where x is the concentration of the repressor. The nonlinearity in this F (x) leads to a

double well potential, and different γ introduces varying degrees of asymmetry in the

potential. Fig. 3.23-3.25 shows some of the representative plots indicating the generality

of central results.
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Figure 3.23: Synchronization error for varying coupling strengths, for a system of coupled
bistable elements given by Eqn.3.2, with different underlying connection networks: Small-
World network with K = 2 and N = 100 for different values of p.
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Figure 3.24: Synchronization error for varying coupling strengths, for a system of coupled
bistable elements given by Eqn.3.2, with different underlying connection networks: (a)
Random Scale-Free for N = 100, 250, 500 for m = 1 (b) Random Scale-Free for N =
100, 250, 500 for m = 2 respectively.
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Figure 3.25: Synchronization error as a function of varying coupling strengths, for a
system of coupled bistable elements given by Eqn.3.2, in Deterministic scale free network
for different values of g = 4, 5, 6.
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Further we studied different networks of a piece-wise linear bistable system, that can

be realized efficiently in electronic circuits [39], given by:

F (x) =


βx∗l − αx if x < x∗l

(β − α)x if x∗l ≤ x ≤ x∗u

βx∗u − αx if x > x∗u

(3.3)

where x∗u and x∗l are the upper and lower thresholds respectively. We simulated the

coupled dynamics of this bistable systems for different network topologies as well. Fig.

3.26-3.28 shows some of the representative plots, again demonstrating that the qualitative

trends in this bistable systems is similar to that described above, and thus, indicating

the generality of the central results presented here.
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Figure 3.26: Synchronization error for varying coupling strengths, for a system of coupled
bistable elements given by Eqn.3.3, with different underlying connection networks: Small-
World network with K = 2 and N = 100 for different values of p.
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Figure 3.27: Synchronization error for varying coupling strengths, for a system of coupled
bistable elements given by Eqn.3.3, with different underlying connection networks: (a)
Random Scale-Free for N = 100, 250, 500 for m = 1 (b) Random Scale-Free for N =
100, 250, 500 for m = 2 respectively.
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Figure 3.28: Synchronization error as a function of varying coupling strengths, for a
system of coupled bistable elements given by Eqn.3.3, in Deterministic scale free network
for different values of g = 4, 5, 6.
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3.7 Conclusions

In summary, we have explored the collective dynamics of bistable elements connected in

different network topologies, ranging from rings and small-world networks, to random

and deterministic scale-free networks. We have focussed on the correlation between net-

work properties and global synchronization features. In particular, we have estimated the

average critical coupling strength yielding transition to synchronization, a quantity indi-

cating the ease of synchronization. Further we estimated the minimal number of nodes

that need to be perturbed in order to lose synchronization, and this quantity indicates

the robustness of the synchronized state.

Easily synchronizes Difficult to synchronize
Star Deterministic Scale Free
Random Scale Free m = 2 Random Scale Free m = 1
Small world (high p) Ring

Table 3.3: Ability of different network classes to synchronize, as reflected by global mea-
sures such as the average critical coupling strength 〈εc〉. As one goes down the columns,
〈εc〉 increases, namely the network synchronizes less easily.

Our central result is that, while networks properties can provide indicators of synchro-

nization within a network class, they fail to provide consistent indicators across network

classes (cf. Table 3.3 for a summary). For instance, we demonstrate that clustering

coefficient is not a key feature in determining synchronization. This is clear through

the similarity of synchronization properties in rings with significantly different cluster-

ing coefficients, and the striking difference in synchronization of a star network and a

ring having the same clustering coefficient. Even characteristic path length, which is of

paramount importance in determining synchronization, does not provide a one-to-one

correspondence with synchronization properties across classes. Namely, while synchro-

nization is significantly favoured in networks with low path lengths within a network class,

the same characteristic path length in different types of networks yields very different 〈εc〉
and fc. Further, there appears to be no critical minimal characteristic path length that

ensures synchronization from generic random initial states. All this suggests that local

properties determined by the connection network does not provide a complete picture of

global measures of synchronization.

Our observations then have potential applications. For instance, if one needs to

achieve synchronization in a network of bistable elements, such as electronic circuits,

constrained by certain connection properties, our analysis can guide the choice of preferred

topology [33]. More importantly, in the context of the general understanding of dynamical
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networks, our observations suggest important caveats to correlating network features to

global dynamical phenomena.
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Chapter 4

Identifying nodal properties that are

crucial for the dynamical robustness

of multi-stable networks

Adapted from the work published in :

P. D. Rungta, C. Meena and S. Sinha

arXiv preprint arXiv, 1801.02409 (2018).
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4.1 Introduction

The influence of the interplay of nodal dynamics and the nature of links on the emergent

collective patterns in dynamical networks is a broad question of utmost relevance. It has

bearing on the basic issue of information flow emanating from nodes in networks, as well

as on practical issues such as determination of the nodes to safeguard most stringently

in the scenario of targeted attacks on the network. So this aspect of complex networks

has attracted much recent research attention [40, 41, 42, 31, 29, 43] as it has considerable

import, both from the fundamental, as well as the applied point of view. However inspite

of intense research focus, the problem still eludes complete understanding and is still

surprisingly open. In fact there exist some mutually contradictory results [41, 31, 44]

that make it difficult to obtain clarity on this important problem [45]. There are two key

complementary questions here: one involves finding patterns common to networks that

allow greater synchronizability; the second question involves identifying common nodal

features that render a network most vulnerable to localized perturbations targeting those

nodes. In this work we focus on the latter question. Namely, we attempt to identify the

nodal property that most significantly influences the global stability of the network.

Lastly note that in a network modeling power grids it had been observed that higher

degree nodes which are not adjacent to the end-nodes show higher resilience to perturba-

tions, while perturbations to low degree nodes or end-nodes rendered the network more

vulnerable to desynchronization. In the Star network we have the situation where the

high degree node is adjacent to the low degree end-nodes. We also find that, in dis-

tinct contrast to [42], that the network is significantly more vulnerable to attacks on the

hub. So high degree nodes adjacent to low degree nodes display very different response

to perturbation as compared to high degree nodes occuring at some distance from the

periphery.

As a test-bed for understanding this we consider the collective dynamics of a group of

coupled bi-stable elements. Bi-stable systems are relevant in a variety of fields, ranging

from relaxation oscillators and multi-vibrators, to light switches and Schmitt triggers.

Further it is of utmost importance in digital electronics, where binary data is stored

using bi-stable elements. Specifically then, in this work we will explore bi-stable elements,

connected in different network topologies, ranging from regular rings to random scale-free

and star networks. We focus on the response of this network to localized perturbations

on a sub-set of nodes. The central question we will investigate here is the following: what

characteristics of the nodes (if any) significantly affect the global stability? So we will
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search for consistent discernable patterns amongst the nodes that aid the maintenance of

the stability of the collective dynamics of the network on one hand, and the nodes that

rapidly destroy it on the other. In particular, we consider three properties of the nodes:

degree, betweenness centrality and closeness centrality. Since these features of a node

determine the efficiency of information transfer originating from it, or through it, they

are expected to influence the propagation of perturbations emanating from the node.

Normalized degree of a node i in an undirected network is given by the number of

neighbors that are directly connected to the node scaled by the total number of nodes N ,

and is denoted by ki. So a high degree node indicates that there is direct contact with a

larger set of nodes. Normalized betweenness centrality of a node i is given as:

bi =
2

(N − 1)(N − 2)

∑
s,t∈I

σ(s, t|i)
σ(s, t)

where I is the set of all nodes, σ(s, t) is the number of shortest paths between nodes s

and t and σ(s, t|i) is the number of shortest paths passing through the node i. So if node

i has high betweenness-centrality, it implies that it lies on many shortest paths, and thus

there is high probability that a communication from s to t will go through it. Normalized

Closeness Centrality is defined as:

ci =
N − 1∑
j d(j, i)

where d(j, i) is the shortest path between node i and node j in the graph. Namely, it is

the inverse of the average length of of the shortest path between the node and all other

nodes in the network. So high closeness centrality indicates short communication path to

other nodes in the network, as there are minimal number of steps to reach other nodes.

We have seen in ref [29, 31] that some works suggest that betweenness centrality is

an important property in determining synchronization in networks. Also, in our previous

chapter we have extensively studied synchronization in different classes of network and

effect of some network properties that may or may not influence the synchronization. We

also studied the effect of these network properties in determining basin stability.

Thereby, an important follow up question that one can ask on the scale of nodes is

that how important each node is in determining basin stability. Thus, we have classified

nodes based on the betweenness centrality and studied its effects on basin stability.

In this chapter we will explore the extent to which the features of the nodes given
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above influence the recovery of a network from large localized perturbations. In order

to gauge the global stability and robustness of the collective state of this network, we

will introduce a variant of the recent framework of multi-node basin stability [34, 35]. In

general, the basin stability of a particular attractor of a multi-stable dynamical system

is given by the fraction of perturbed states that return to the basin of the attraction

of the dynamical state under consideration. In our variant of this measure, we consider

an initial state where all the bi-elements in the network are in the same well, and we

will refer to this as a ‘synchronized state’. So a synchronized state here does not imply

complete synchronization. Rather it implies a collective state where the states of the

nodes are confined to the neigbourhood of the same attracting stable state, i.e. lies

within the basin of attraction of one of the two attracting states. We then perturb a

specific number of nodes of a prescribed type, with the perturbations chosen randomly

from a given subset of the state space. The multi-node basin stability (BS) is then defined

as the fraction of such perturbed states that manage to revert back to the original state

from these localized perturbations. Namely, multi-node BS reflects the fraction of the

volume of the state space of a sub-set of nodes that belong to the basin of attraction of

the synchronized state. So the importance of multi-node BS stems from the fact that

it determines the probability of the system to remain in the same well in multi-stable

systems when random perturbations throw a specific number of nodes to some other well.

This allows us to extract the contributions of individual nodes to the overall stability of

the collective behaviour of the dynamical network. Further, since one perturbs subsets

of nodes with certain specified features, our variant of the concept of multi-node BS will

suggest which nodal properties make the network more vulnerable to attack.

4.2 Model

Specifically we consider the system of N diffusively coupled bi-stable elements, whose

dynamics is given as:

ẋi = F (xi) + C
1

Ki

∑
j

(xj − xi) = F (xi) + C(〈xnbhdi 〉 − xi) (4.1)

where i is the node index (i = 1, . . . N) and C is the coupling constant reflecting the

strength of coupling. The set of Ki neighbours of node i depends on the topology of

the underlying connectivity, and this form of coupling is equivalent to each site evolving

diffusively under the influence of a “local mean field” generated by the coupling neigh-
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bourhood of each site i, 〈xnbhdi 〉 = 1
Ki

∑
j xj, where j is the node index of the neighbours

of the ith node, with Ki being the total number of neighbours of the node.

The function F (x) gives rise to a double well potential, with two stable states x∗− and

x∗+. For instance one can choose

F (x) = x− x3

yielding two stable steady states x∗± at +1 and −1, separated by an unstable steady state

at 0. Note that the synchronized state here is a state where xis for all i are in the same

well, i.e. xi of all the elements in the network are in the neighbourhood of x∗−, or they

are all in the neighbourhood of x∗+.

We first investigate the two limiting network cases:

1. Ring: where all nodes have the same degree, closeness and betweenness central-

ity(see fig. 4.1).

Figure 4.1: Construction of a Ring Network of size N = 20 and k = 2.

2. Star network: where the central (hub) node has the maximum normalized degree

(khub = 1), betweenness centrality (bhub ∼ 1), and closeness centrality (chub = 1),

while the rest of the nodes, namely the peripheral nodes (“leaves”) have very low

degree (kperi ∼ 0 for large networks), betweenness centrality (bperi = 0) and closeness

centrality cperi ∼ 0.5(see fig 4.2).

So on one hand we have the Ring which is completely homogeneous, and on the other
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Figure 4.2: Construction of a Star Network of size N = 20.

hand we have the Star network where the difference in degree, closeness and between-

ness centrality of the hub and the peripheral nodes is extremely large. Exploring these

limiting cases allows us to gain understanding of the robustness of the network to large

perturbations affecting nodes with different properties.

As indicated earlier, to gauge the effect of different nodal features on the robustness

of the dynamical state of the network, we do the following: we first consider a network

close to a stable synchronized state, namely one where the states xi of all the nodes i have

a small spread in values centered around x∗− or x∗+, i.e. all elements are confined to the

same well. We order nodes by some appropriate property, such as increasing or decreasing

degree, closeness or betweenness centrality. We then give a large perturbation to a small

fraction of nodes, denoted by f . This strong perturbation typically kicks the state of the

perturbed nodes to the basin of attraction of the other well. We then ascertain whether

all the elements return to their original wells after this perturbation, i.e. if the perturbed

system recovers completely to the initial state. We repeat this “experiment” over a large

sample of perturbed nodes and perturbation strengths, and find the fraction of times the

system manages to revert to the original state. This measure of global stability is then a

variant of multi-node Basin Stability and it is indicative of the robustness of the collective

state to perturbations localized at particular nodes of a certain type in the network.
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4.3 Dynamics of a Ring of Bistable Systems

We first investigate the spatiotemporal evolution of a ring of bistable elements, all of

whose states are confined to the same well, other than a few nodes that experience a

large perturbation which pushes their state to the basin of the other well.

In Fig. 4.3 we show the representative cases of a ring of N = 100 elements, with (a) 2

and (b) 4 nodes that are perturbed strongly. It is evident that in case (a) the perturbed

nodes recover and return to their original well. However, when the fraction of perturbed

nodes is slightly larger, such as in Fig. 4.3b (where the fraction of perturbed nodes is 0.04),

the perturbed nodes fail to return to their original well, and remain out of synchronization

with the rest of the elements in the ring. This is evident from the switched colors of the

asymptotic state of the perturbed nodes in Fig. 4.3b. This suggests that the ring is

not robust against such localized perturbations, and even when the fraction of perturbed

nodes is very small, these nodes are unable to return to the original well. That is, the

elements in the Ring are unable to drag the few perturbed nodes back to the well of the

majority of the elements, suggesting that the Ring is not robust against such localized

perturbations.
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Figure 4.3: Space-time plot showing the evolution of a ring of bi-stable elements given
by Eqn. 4.1. Here system size N = 100, ki = 2 for all i, and the coupling strength C = 1.
The number of nodes perturbed are in clusters (i.e. they are contiguous nodes), and two
nodes are perturbed in (a) and four in (b).

Next we attempt to discern the effect of coupling on the robustness of the dynamics.

Fig. 4.4 shows the multi-node basin stability for this system, as the coupling strength is

increased in the range 0 to 2, for clusters of perturbed nodes with f ranging from 0.01 to

0.08. It is evident from the basin stability of the system, that there is a sharp transition

from zero basin stability, namely the situation where no perturbed state returns to the

original state, to basin stability close to one, namely where all sampled perturbed states
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return to the original state. This indicates that the system recovers from large localized

perturbations more readily if it is strongly coupled. Further, the figure also demonstrates

the extreme sensitivity of basin stability to the number of nodes being perturbed. We find

that the system fails to return to the original state, even at very high coupling strengths,

when more than 5% of the nodes experience perturbations. For instance, Fig. 4.4 shows

the case of a single perturbed node (i.e. f = 0.01), where the entire network recovers for

coupling strengths stronger than approximately 0.2. In contrast, for f = 0.08, where a

cluster of 8 nodes are perturbed in the Ring of 100 elements, there is zero basin stability

in the entire coupling range. So a Ring loses its ability to return to the original state

rapidly with increasing number of perturbed nodes.
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Figure 4.4: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.1, with the number of perturbed nodes. Here the size
of the ring is N = 100, and size of the coupling neighbourhood is k = 2, namely each site
couples to its two nearest neighbours. The perturbed nodes f occur in clusters.

For very small f , the entire network returns to its original state, and basin stability is

close to 1. On increasing f one observes that there exists a minimum fraction, which we

denote as fcrit, after which the basin stability sharply declines from 1. So fcrit indicates

the minimum fraction of nodes one typically needs to perturb in order to destroy the

collective state where all elements are in the same well. We find that stronger coupling

yields larger fcrit. For instance, fcrit ≈ 0.02 for C = 0.5 and fcrit ≈ 0.04 for C = 1. So

for stronger coupling, the bulk of the elements are capable of pulling the perturbed nodes

back to original well, increasing the resilience of the network.
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Due to the structure of the ring, the stability of the system with respect to localized

perturbations depends on whether the perturbed nodes are contiguous and occur in a

cluster (cf. the case in Fig. 4.4, 4.6) or randomly spread over the ring, where the locations

of the perturbed nodes are uncorrelated. Fig 4.5 shows the multi-node basin stability

when nodes perturbed are chosen randomly for different values of coupling. We observe

that the system is more stable here, as compared to the case when nodes are perturbed in

cluster, namely perturbations at random locations in a ring allows the system to recover

its original dynamical more readily than perturbations on a cluster of contiguous nodes.
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Figure 4.5: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.1, with the number of perturbed nodes. Here the size
of the ring is N = 100, and size of the coupling neighbourhood is k = 2, namely each site
couples to its two nearest neighbours. Figure shows the multi-node basin stability for the
case of perturbations on randomly located nodes, for f = 0.08. The case of perturbation
in clusters (orange) is also shown for reference, for the same fraction of perturbed nodes.

Further, Fig. 4.7 shows the dependence of multi-node basin stability on the fraction

of perturbed nodes f for different system sizes N . We find that fcrit ∼ C
N

, implying that

fcrit → 0 as system size N → ∞. This indicates that in a very large Ring, even the

smallest finite fraction of perturbed nodes can disturb the Ring from its original steady

state. So one can conclude that the synchronized state in the Ring is very susceptible to

destruction, as only very few nodes in the system need to be perturbed in order to push

the system out of the original state. Namely, in a ring of bi-stable elements, the collective

state where all elements are in the same well, is a very fragile state.
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Figure 4.6: Dependence of Multi-Node Basin Stability on fraction of nodes perturbed, for
a ring of bistable elements given by Eqn. 4.1. Here the size of the ring is N = 100, and
size of the coupling neighbourhood is k = 2, namely each site couples to its two nearest
neighbours. Figure shows the multi-node basin stability for the case of perturbations on
randomly located nodes, for C = 1. The case of perturbation in clusters is also shown
for reference, for the same coupling values.
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Figure 4.7: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.1, with the number of perturbed nodes f for different
system sizes N , for C = 1. Here the size of the coupling neighbourhood is k = 2, namely
each site couples to its two nearest neighbours.
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4.4 Dynamics of a Star Network of Bistable Systems

Now we study the spatiotemporal evolution of bistable elements connected in a star

configuration. Here the central hub node has the maximum degree, betweenness and

closeness centrality, while the rest of the nodes, namely the peripheral leaf nodes have very

low degree, betweenness and closeness centrality. Namely, in this network the difference

in degree, closeness and betweenness centrality of the hub and the peripheral nodes is

extremely large. So this network offers a good test-bed to investigate the correlation

between specific properties of a node and the resilience of the network to large localized

perturbations at such nodes.

Figs. 4.8a-b display the dynamics for two illustrative cases. In Fig. 4.8(a), only the

hub node is perturbed in the star network consisting of 100 elements. We notice, that

this single perturbed node pulls all the other nodes of the network away from its original

state. So the star network is extremely vulnerable to perturbations at the hub, and cannot

typically recover from disturbances to the state of the hub, even if all the other nodes are

unperturbed. On the other hand, Fig. 4.8(b), shows what ensues when a large number of

peripheral nodes are perturbed. Now, even when as many as 90% of the peripheral nodes

in the network experience a disturbance in their state, the entire network still manages

to recover to its original state. This dramatic difference in the outcome of perturbations

clearly illustrates how sensitively the robustness of a dynamical state depends on the

degree, closeness and betweenness centrality of the perturbed node.
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Figure 4.8: Time evolution of 100 bistable elements coupled in star configuration, given
by Eqn. 4.1, with coupling strength C = 1. In (a) only the hub node is perturbed; in (b)
90 peripheral nodes are perturbed.

Next we examine the multi-node basin stability of the network, for fraction f of

perturbed nodes ranging from 1/N (namely single node in Fig. 4.9(a) ) to f ∼ 1, namely

the case where nearly all nodes in the system are perturbed. As evident from Fig. 4.9

69



(b), when only the peripheral nodes are perturbed, even for values of f as high as 0.7,

there is no discernable difference in the basin stability, which remains close to 1. This

implies that even when more than half the nodes in the network are perturbed the entire

system almost always recovers to the original state. In contrast, in Fig. 4.9(a) shows

the single-node basin stability for the case of the hub node being perturbed, where the

basin stability is clearly drastically reduced and approaches zero very quickly. It is clear

that just a single node is enough to destroy the stability of the network, if that node

has very high degree, closeness and betweenness centrality, such as the hub node. These

quantitative results are consistent with the qualitative spatiotemporal patterns observed

in Fig. 4.8.
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Figure 4.9: (a) Multi-node Basin Stability vs coupling strength for a Star network of size
N = 100, where the hub node is perturbed (blue) and a single peripheral node is perturbed
(green); (b) Multi-node Basin Stability vs number of nodes perturbed in the Star network
of bistable elements. Here the size of the network N = 100 and coupling strength C = 1.
The blue curve represents the case where only peripheral nodes are perturbed, while green
represents the case where the hub is perturbed along with peripheral nodes.

Further Fig. 4.9(b) shows the decline in Multi-node Basin Stability with increasing

fraction of perturbed nodes f . Interestingly, when only the peripheral nodes are per-

turbed, Basin Stability is close to one even when a very large fraction of nodes in the

system are perturbed, and fcrit ≈ 0.7. So when only peripheral nodes are perturbed,

the perturbed nodes manage to return to their original state, even when a majority of

nodes in the system have been pushed to the basin of attraction of the other state. How-

ever when the perturbed nodes include the central hub node, the basin stability declines

rapidly with increasing f , and fcrit ≈ 1/N . So our analysis reveals how significant the
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degree, closeness and betweenness of nodes are in determining the resilience of the net-

work. In fact, very clearly, the hub node holds the key to the maintenance of the collective

state 1.

4.4.1 Analysis

We will now rationalize the above results by analyzing the dynamical equations of star

networks under large perturbations, and attempt to provide an explanation of why nodes

with high centrality measure impact the basin stability to such a high extent. We give

the equations for the dynamics at the nodes of the star network explicitly below.

For the hub node (i = 0):

ẋ0 = F (x0) + ε(

∑N−1
j=1 xj

(N − 1)
− x0) (4.2)

For peripheral nodes (i = 1, . . . N − 1):

ẋi = F (xi) + ε(x0 − xi) (4.3)

With no loss of generality, we consider the specific case of F (xi) = xi − x3i , with the

initial state of all nodes at the negative fixed point xi = −1 (where F (xi) = 0) for all i.

When fraction f of the nodes in the network are strongly perturbed, their state is pushed

to the positive well, and thus go to values around +1. We consider the perturbed nodes

to be i = 1, . . . , fN , with no loss of generality. We also consider coupling strength ε to

be of O(1).

1. First consider the case when fraction f of peripheral nodes are perturbed to the

other well. The dynamics of the hub right after the perturbation, is governed by

1Note that in a network modeling power grids in Ref. [42] it had been observed that higher degree nodes
which are not adjacent to the end-nodes show higher resilience to perturbations, while perturbations to
the end-nodes rendered the network more vulnerable to desynchronization. In the Star network the high
degree hub node is adjacent to the end-nodes, and the network is significantly more vulnerable to attacks
on the hub. So we can infer that high degree nodes adjacent to end-nodes display very different response
to perturbation, vis-a-vis high degree nodes occurring at some distance from the periphery.
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the equation:

ẋ0 ≈ ε(

∑
N−1−fN(−1) +

∑
fN(+1)

N − 1
− (−1))

=⇒ ẋ0 ≈ ε(
2fN

N − 1
)

For large network size N , the above is approximately 2εf

For peripheral nodes undergoing perturbation (i = 1, . . . , fN), the dynamics is

given approximately by:

ẋi = ε((−1)− (+1))

=⇒ ẋi ≈ −2ε

For the rest of the peripheral nodes (i = fN + 1, . . . , N − 1) the dynamics after

perturbation is governed by the equation:

ẋi = ε((−1)− (−1))

=⇒ ẋi ≈ 0

So the coupling term is significant only for the perturbed nodes, and not for any of

the other peripheral nodes. It is also clearly evident from the above equations that

the magnitude of the coupling term for the hub node (i.e. 2εf) is significant (i.e. of

order O(1)) only when f > 1
2
. So more than half the peripheral nodes need to be

strongly perturbed in order to have impact on the system. This is consistent with

our numerical results, which suggest that f ∼ 0.7 to destroy the stability of the

network. That is, remarkably, even when as many as 70% of the peripheral nodes

are perturbed, the network still manages to return to its original state.

2. Secondly, consider the case where only the hub node is perturbed to other well,

that is x0 ≈ 1 and xi ≈ −1 ∀i = 1, . . . , N − 1. The dynamical equations right after

perturbation, for the hub and peripheral nodes is given below.

For the perturbed hub (i = 0)

ẋ0 ≈ ε(

∑
(−1)

N − 1
− 1)

=⇒ ẋ0 ≈ −2ε
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For all peripheral nodes (i = 1, . . . N − 1):

ẋi ≈ ε((+1)− (−1))

=⇒ ẋi ≈ 2ε

So in contrast to the case of perturbations on peripheral nodes, here the coupling

term is large for all nodes (∼ O(1)), even though only one node is perturbed. This

indicates why there is such a dramatic difference between localized perturbations

on the hub and on the peripheral nodes, as clearly observed in the numerical sim-

ulations as well.

4.5 Dynamics of a Random Scale-Free Network of

Bistable Systems

We will now go on to explore Random Scale-Free (RSF) Networks of bi-stable dynamical

elements. In particular, we construct these networks via the Barabasi-Albert preferential

attachment algorithm, with the number of links of each new node denoted by parameter

m [36](see fig. 4.10,4.11).

The network is characterised by a fat-tailed degree distribution. Specifically we will

display results for networks of size N = 100, with m = 1 and m = 2. Figs. 4.12a-b shows

two contrasting representative cases where (a) twenty nodes with highest betweenness

centrality are perturbed, and (b) twenty nodes with the lowest betweenness centrality were

perturbed. It is observed that perturbation on nodes with high betweenness centrality

destabilises the entire network, and the perturbed nodes rapidly drag all the other nodes

to a different well. This is evident from the switched colors of the asymptotic state

in Fig. 4.12a. On the other hand, when the perturbed nodes have low betweenness

centrality, the network recovers quickly from the perturbation and reverts to the original

well, as clearly seen in Fig.4.12b. These completely different outcomes occur even though

the number of perturbed nodes is the same in both cases, thereby clearly illustrating

that nodes with high betweenness-centrality have much stronger influence on the global

stability of the system and that the network is very sensitive to perturbations on nodes

with high betweenness centrality.

We will now present the dependence of the global stability of the collective dynamics

on different centrality measures in this heterogeneous network, quantitatively, through
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Figure 4.10: Construction of a Scale-Free Network (adapted from Ref. [36]) of size N =
100 with m = 1.

multi-node basin stability measures. In particular, in order to explore the correlation

between a given centrality measure of the nodes and the resilience of the system, we

will estimate the multi-node basin stability under perturbations on sub-sets of nodes

with increasing (or decreasing) values of the centrality under consideration. That is, we

order the nodes according to the centrality we are probing, and consider the effect of

perturbations on fraction f of nodes with the highest (or lowest) centrality.

The influence of perturbations on nodes with the highest and lowest betweenness,

closeness and degree centrality in a Random Scale-Free network are displayed in Figs. 4.13a-

c. The broad trends are similar for all three centrality measures, and it is clearly evident

that when nodes with the highest betweenness, closeness and degree centrality are per-

turbed, multi-node basin stability falls drastically. On the other hand, perturbing the

same number of nodes of low centrality leaves the basin stability virtually unchanged. Fur-

ther, when nodes of low centrality are perturbed, for sufficiently high coupling strengths,

the network almost always recovers to its original state, yielding a basin stability of 1.
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Figure 4.11: Construction of a Scale-Free Network (adapted from Ref. [36]) of size N =
100 with m = 2.

So one can conclude that perturbing nodes with high betweenness, closeness and degree

centrality destroys the synchronized state readily, while perturbing nodes of low cen-

trality allows the perturbed nodes to return to the original state, thereby restoring the

synchronized state. For reference, Fig. 4.13 also shows the basin stability of a network

where the perturbed nodes are randomly chosen, corresponding to random attacks on a

subset of nodes. Clearly, a targeted attack on nodes with high centrality can destroy the

collective dynamics much more efficiently than random attacks.

Further we observe(from fig. 4.13 top panels) that the response to perturbations

on random nodes is closer to that obtained from perturbing nodes of low centrality.

This can be rationalized by noting that the probability to draw a node of low centrality

in a Random Scale-Free network is significantly larger than that for a node with high

centrality. So a randomly chosen node is more likely to have low centrality. However,

when there is a targetted attack on the nodes, the extreme sensitivity of the network to

perturbations on nodes of high centrality will be most pertinent.
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Figure 4.12: Time evolution of 100 bistable elements coupled in a Random Scale-Free
network with m = 2, given by Eqn. 4.1, with coupling strength C = 1. In (a) 20 nodes
of highest betweenness centrality are perturbed; in (b) 20 nodes of lowest betweenness
centrality are perturbed. Here the original state of the networks has all nodes in the
negative well, i.e. all xi < 0 at t = 0.

Now we investigate which centrality measure is most crucial in determining the global

robustness of collective behaviour in the network. We do this through the following nu-

merical experiment: we compare the basin stability of the collective dynamics of Random

Scale-Free networks with m = 1 and m = 2. Interestingly, the distribution of the be-

tweenness centrality, closeness centrality and degree of the nodes in RSF networks with

m = 1 and m = 2 are significantly different, as evident in Fig. 4.14 (top panels). It is

clear that for m = 1 the distribution of the degree and closeness centrality of the nodes

in the network is shifted towards lower k and c values as compared to RSF networks with

m = 2, while the distribution of betweenness centrality shifts towards higher values in

RSF networks with m = 1 vis-a-vis the distribution of the betweenness centrality in RSF

networks with m = 2.

So in RSF networks with m = 1 the nodes with the highest betweenness centrality

typically have significantly higher b than in RSF networks with m = 2 of the same size.

On the other hand, since the tail of the probability distribution of degree and closeness

centrality of the nodes in a RSF network with m = 2 extends further than that in a

RSF network with m = 1, the nodes with the highest degree and closeness centrality

typically have lower k and c in RSF networks with m = 1 compared to RSF networks

with m = 2. So these networks can potentially provide a test-bed for determining which

of the centrality properties most crucially influence dynamical robustness. Note that

it was not possible to use the Ring to probe this issue, as all nodes there have identical

centrality properties. Nor did the Star network offer a system where one could distinguish

between the effects of different centrality measures on dynamical robustness, as the nodes

there split into two classes, the single hub and the periphery, with all the peripheral
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Figure 4.13: (a) Dependence of the Multi-node Basin Stability of Random Scale-Free
networks of size N = 100, with m = 2, on coupling strength C, with f = 0.2 (top panels)
and fraction f of perturbed nodes, with C = 1 (bottom panels). In the panels, three cases
are shown. In the first case, the perturbed nodes are chosen at random (green curves).
In the second case (red curves) the perturbed nodes are chosen in descending order of
(a) betweenness centrality, (b) closeness centrality and (c) degree (i.e. the perturbed
nodes are the ones with the highest b, c or k centrality measures). In the third case (blue
curves) the perturbed nodes are chosen in ascending order of (a) betweenness centrality,
(b) closeness centrality and (c) degree (i.e. the perturbed nodes are the ones with the
lowest b, c or k centrality measures).

nodes having identical betweenness, closeness and degree. However, one can compare the

response of Random Scale-Free networks with different m to probe which nodal property

renders a heterogeneous network most vulnerable to large localized perturbations. This

implies that if we consider nodes with the highest betweenness in the network with m = 1

with m = 2, we will typically have nodes with higher betweenness, and lower degree and

closeness centrality, than the m = 2 network.

Fig. 4.14 (bottom panels) displays the dependence of the multi-node Basin stability

on the fraction of perturbed nodes f in the Random Scale-Free network with m = 1

and m = 2. A feature to be observed is that nodes with high betweenness centrality

are more influential in determining the basin stability of Random scale free network

than closeness centrality. As number of nodes perturbed increases, the multi-node basin

stability falls significantly for RSF networks with m = 1, while RSF networks with m = 2

remains robust up to a critical fraction fcrit of perturbed nodes, with fcrit ∼ 0.2. One can

rationalize this, by noting the difference in the typical values of betweenness centrality at
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Figure 4.14: Top panel: Probability distribution of the (a) betweenness centrality, (b)
closeness centrality and (c) degree of the nodes in a Random Scale-Free network of size
N = 100, with m = 1 (blue) and m = 2 (green). Bottom panel: Multi-node basin
Stability vs fraction f of nodes perturbed, for Random Scale-Free network of size N =
100, coupling strength C = 1, with m = 1 and m = 2, where the perturbed nodes
are chosen in descending order of (a) betweenness centrality, (b) closeness centrality and
(c) degree (i.e. the perturbed nodes are the ones with the highest b, c or k centrality
measures).

the highest end in the RSF network with m = 1 and m = 2. For instance, if one considers

10% of nodes with the highest betweenness centrality in these networks of size N = 100,

typically b lies between 0.1 to 0.9 for m = 1 and between 0.01 and 0.5 for m = 2. So the

marked difference in the sensitivity of the global stability to perturbations in Random

Scale-Free networks with m = 1 and m = 2 stems from the higher betweenness centrality

of the nodes in the former network.

Now when nodes of the highest closeness centrality and degree are perturbed we

observe the same trend as above. This occurs inspite of the tail of the distribution of

closeness centrality and degree extending to higher values for RSF networks with m = 2

as compared to RSF networks with m = 1, implying that the nodes with highest degree

and closeness centrality for the m = 2 case will have a larger value of k and c, as compared

to the m = 1 case. So one may have expected that the RSF network with m = 2 would

be less stable than the RSF network with m = 1. However, the observations are contrary

to this expectation and this surprising result stems from the following: the set of nodes

with the highest betweenness centrality, closeness centrality and degree, overlap to a very

large extent. So for instance, for f = 0.1 in a network of size N = 100, the set of 10
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nodes with the highest betweenness centralities, is practically the same as the set of nodes

with the highest closeness centralities and highest degrees. However, in the RSF network

with m = 1 these nodes have higher betweenness centrality, while having lower closeness

centrality and degree, than the corresponding set in the RSF network with m = 2. Now

higher betweenness centrality should inhibit stability, while lower closeness and degree

should aid the stability of the collective state. So the comparative influence of these

two opposing trends will determine the comparative global stability of these two classes

of networks. If the betweenness centrality of the perturbed nodes is more crucial for

stability, the multi-node Basin Stability of the network with m = 1 will go to zero faster

than the network with m = 2. On the other hand if closeness centrality (and/or degree)

of the perturbed nodes dictates global stability rather than betweenness centrality, the

network with m = 2 will lose global stability faster than the one with m = 1. Now,

since we find that network with m = 1 always loses stability faster than the network with

m = 2, we can conclude that the effect of betweenness centrality on the global stability

is more dominant than the effect of the closeness centrality and degree of the perturbed

nodes.
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Figure 4.15: Multi-node basin Stability vs fraction f of nodes perturbed, for Random
Scale-Free network of size N = 50 (blue), 100 (green), 200 (red) for m = 2 and m = 1.

Lastly, we study the effect of system size on multi-node basin stability, perturbing

nodes in decreasing order of betweenness centrality. Figs. 4.15a-b shows the results for

networks sizes ranging from 50 to 200. We have found an appropriate finite-size scaling

that allows data collapse (cf. Fig. 4.16), and this indicates the value fcrit in the limit of

large network size. We observe that a Random Scale-Free network with m = 1 yields

fcrit → 0 (i.e. the smallest fraction of perturbed nodes destroy the collective state), while

fcrit ∼ 0.13 for the case of m = 2(also see fig. 4.17). So a RSF network with m = 2 is

more robust to localized perturbations than a RSF network with m = 1, as in the m = 2
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Figure 4.16: Scaling resulting in data collapse, for the case of m = 1(a) and m = 2(b).
The nodes perturbed are the ones with highest value of betweenness centrality.

case, even when nearly 13% of the nodes of the highest betweenness centrality are per-

turbed the entire network still manages to return to the original state. This compelling

difference again arises due to the fact that the highest betweenness centrality found in

the RSF network with m = 1 is significantly higher on an average than that in RSF

networks of the same size with m = 2. This again corroborates the results in Fig. 4.14,

and highlights the profound influence of betweenness centrality on global stability.
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Figure 4.17: fcrit vs coupling for random scale free network with size N=100 and m=2.
Here the nodes with highest betweenness centrality were perturbed. The threshold value
of basin stability here is taken to be 90% probability.
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4.6 Robustness of the phenomena:

In order to ascertain the generality of our observations, we have considered different

nonlinear functions F (x) in Eq.(1). For example, we explored a system of considerable

biological interest, namely, a system of coupled synthetic gene networks. We used the

quantitative model, developed in [18, 19, 20], describing the regulation of the operator

region of λ phase, whose promoter region consists of three operator sites. The chemical

reactions describing this network, given by suitable re-scaling yields [18, 19, 20]

Fgene(x) =
m(1 + x2 + ασ1x

4)

1 + x2 + σ1x4 + σ1σ2x6
− γxx (4.4)

where x is the concentration of the repressor. The non linearity in this Fgene(x) leads to

a double well potential, and different γ introduces varying degrees of asymmetry in the

potential. We studied a system of coupled genetic oscillators given by: ẋi = Fgene(xi) +

C(〈xnbhdi 〉 − xi), where C is the coupling strength and 〈xnbhdi 〉 is the local mean field

generated by the set of neighbours of site i. Fig 4.18-4.21 shows some of the representative

results.
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Figure 4.18: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.4, with the number of perturbed nodes(nodes perturbed
in clusters). Here the size of the ring is N = 100, and size of the coupling neighbourhood
is k = 2, namely each site couples to its two nearest neighbours.
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Figure 4.19: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.4, with the number of perturbed nodes(nodes perturbed
in clusters). Here the size of the ring is N = 100, and size of the coupling neighbourhood
is k = 2, namely each site couples to its two nearest neighbours.

Further we studied different networks of a piece-wise linear bi-stable system, that can

be realised efficiently in electronic circuits [39], given by:

F (x) =


βx∗l − αx if x < x∗l

(β − α)x if x∗l ≤ x ≤ x∗u

βx∗u − αx if x > x∗u

(4.5)

where x∗u and x∗l are the upper and lower thresholds respectively

We simulated the coupled dynamics of these two bi-stable systems for different network

topologies as well. We find that the qualitative trends in both these bi-stable systems is

similar to that described above, indicating the generality of the central results presented

here. Fig 4.22-4.25 shows some of the representative results.
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Figure 4.20: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.4, with the number of perturbed nodes(nodes perturbed
in clusters). Here the size of the ring is N = 100, and size of the coupling neighbourhood
is k = 2, namely each site couples to its two nearest neighbours.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Coupling Strength

0.0

0.2

0.4

0.6

0.8

1.0

M
ul

ti-
no

de
 B

as
in

 S
ta

bi
lit

y

lowest betweenness
highest betweenness

Figure 4.21: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.4, with the number of perturbed nodes(nodes perturbed
in clusters). Here the size of the ring is N = 100, and size of the coupling neighbourhood
is k = 2, namely each site couples to its two nearest neighbours.
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Figure 4.22: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.5, with the number of perturbed nodes(nodes perturbed
in clusters). Here the size of the ring is N = 100, and size of the coupling neighbourhood
is k = 2, namely each site couples to its two nearest neighbours.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Coupling Strength

0.0

0.2

0.4

0.6

0.8

1.0

M
ul

ti-
no

de
 B

as
in

 S
ta

bi
lit

y

periphery
hub

Figure 4.23: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.5, with the number of perturbed nodes(nodes perturbed
in clusters). Here the size of the ring is N = 100, and size of the coupling neighbourhood
is k = 2, namely each site couples to its two nearest neighbours.
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Figure 4.24: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.5, with the number of perturbed nodes(nodes perturbed
in clusters). Here the size of the ring is N = 100, and size of the coupling neighbourhood
is k = 2, namely each site couples to its two nearest neighbours.
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Figure 4.25: Dependence of Multi-Node Basin Stability on coupling strength, for a ring of
bistable elements given by Eqn. 4.5, with the number of perturbed nodes(nodes perturbed
in clusters). Here the size of the ring is N = 100, and size of the coupling neighbourhood
is k = 2, namely each site couples to its two nearest neighbours.
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4.7 Conclusions

In conclusion, we have introduced a variant of multi-node basin stability to obtain a

measure reflecting the response of the network to localized perturbations. This provides

a quantity that can clearly indicate which nodes have the greatest influence on the ro-

bustness of the dynamical state of the network, and allowed us to find which particular

characteristic of the perturbed nodes significantly affects the capacity of the system to

return to its original state.

We have investigated the collective dynamics of bi-stable elements connected in dif-

ferent network topologies, ranging from rings and small-world networks, to scale-free

networks and stars. Our focus was a question of utmost relevance: identification of the

properties of the nodes of a network that crucially impact collective dynamics. This ap-

proach enables us to address the important reverse question: perturbation of what class

of nodes in the network have the most significant effect on the resilience of the network?

Understanding this potentially allows us to determine which nodes render the network

most susceptible to external influences. Alternately, it suggests which nodes to protect

more stringently from perturbations in order to protect the dynamical robustness of the

entire network.

Specifically, we estimated the dynamical robustness of such networks by introduc-

ing a variant of the concept of multi-node basin stability which allowed us to gauge the

global stability of the dynamics of the network in response to local perturbations affect-

ing particular nodes of a system. We show that perturbing nodes with high closeness

and betweenness-centrality significantly reduces the capacity of the system to return to

the desired stable state. This effect is very pronounced for a star network which has one

hub node with significantly different closeness/betweenness-centrality than the peripheral

nodes. Considering such a network with all nodes in one well, if one perturbs the hub

to another well, this single perturbed node drags the entire system to its well, thereby

preventing the network from recovering its dynamical state. In contrast, even when all

peripheral nodes are kicked to the other well, the hub manages to restore the entire sys-

tem back to the original well. Lastly we explore explore Random Scale-Free Networks

of bi-stable dynamical elements. Since the distribution of betweenness centralities, close-

ness centralities and degrees of the nodes is significantly different for Random Scale-Free

Networks with m = 1 and m = 2, these networks have the potential to provide a test-bed

for determining which of these centrality properties most influences the robustness of the

collective dynamics. The comparison between the global stability of these two classes of
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networks provides clear indications that the betweenness centrality of the perturbed node

is more crucial for dynamical robustness, than closeness centrality or degree of the node.

This result is important in deciding which nodes to safeguard in order to maintain the

collective state of this network against targeted localized attacks.
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Chapter 5

Conclusion

The work in this thesis focussed on synchronization in networks of bistable elements, with

the coupling ranging over different scales and connection topologies. Currently, there is

no well established mathematical framework which addresses the broad question of the

stability of the synchronized state in its entirety. The only available solutions are linear

stability approaches which fail to capture the global picture (as discussed in chapter3).

Thus we attempted to estimate the global stability of the collective synchronized state

through concepts such as Basin Stability and drew conclusions from our numerics which

are statistically very relevant. As indicated by probability theory, our results might fail

in a particular realization of a network, but the analysis holds on an average and offers

indications of the typical outcome that may be expected in classes of networks.

At the nodal level, the networks considered here have bistable systems, with coexisting

fixed point attractors. Such systems are commonly found in a variety of fields, ranging

from relaxation oscillators and multi-vibrators, to light switches and Schmitt triggers. An

important application of bistable elements is in digital electronics, where data stored is

binary. Our focus is on the spatiotemporal properties of networks of such bistable systems.

These networks exhibit very interesting phenomena, that range from hypersensitivity to

heterogeneity (cf. Chapter 2), to robustness under generic large perturbations or large

targetted perturbations (cf. Chapter 4 and 3 respectively).

In the first part, we explored the role of heterogeneity in the emergent spatio-temporal

patterns in small-world networks of bistable elements. We demonstrated that under

certain conditions all the elements in the system evolved to the stable state of the minority

population, i.e. the entire system was driven to the natural state of the set with a much

smaller number of elements. Further it was observed that for suitable parameters this
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system could be made ultra-sensitive to heterogeneity in the system. It was found that

in certain systems, even a single element with a different local parameter, could lead the

entire system to its attracting state. Thus, in these conditions the collective field of the

system is any extremely sensitive detector of non-homogeneity in the system.

In the second part, we considered the collective dynamics of a group of bi-stable

elements connected in different network topologies, ranging from regular rings and small-

world networks on one hand, to deterministic scale-free and random scale-free networks

on the other. The basic question we addressed was the following: are there features of

the underlying connection network that provide consistent markers for the emergence

of complete synchronization and the robustness of the synchronized state? We focussed

on the correlation between network properties and global synchronization features. Our

central result was that, while networks properties can provide indicators of synchroniza-

tion within a network class, they failed to provide consistent indicators across network

classes. This suggests that local properties determined by the connection network does

not provide a complete picture of global measures of synchronization. Our observations

then have potential applications. For instance, if one needs to achieve synchronization in

a network of bi-stable elements, such as electronic circuits, constrained by certain con-

nection properties, our analysis can guide the choice of preferred topology [33]. More

importantly, in the context of the general understanding of dynamical networks, our ob-

servations suggest important caveats to correlating network features to global dynamical

phenomena.

In the third part, we attempted to identify the nodal property that most significantly

influences the global stability of the network. We again explored bi-stable elements,

connected in different network topologies, ranging from regular rings to random scale-

free and star networks. We focussed now on the response of this network to localized

perturbations on a sub-set of nodes. The central question we investigated here was the

following: what characteristics of the nodes (if any) significantly affect the global stability?.

We considered three properties of the nodes: degree, betweenness centrality and closeness

centrality and studied the propagation of perturbations emanating from these nodes.

We showed that perturbing nodes with high closeness and betweenness-centrality sig-

nificantly reduces the capacity of the system to return to the desired stable state. This

effect is very pronounced for a star network which has one hub node with significantly

different closeness/betweenness-centrality than the peripheral nodes. The comparison

between the global stability of these two classes of networks, namely Random Scale-

Free Networks with m = 1 and m = 2,, provides clear indications that the betweenness
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centrality of the perturbed node is more crucial for dynamical robustness, than closeness

centrality or degree of the node. This result is important in deciding which nodes to safe-

guard in order to maintain the collective state of this network against targeted localized

attacks.

Studying these broad classes of networks has the advantage that many naturally

occurring or human-engineered networks in the real world are very likely to lie in one of

these classes. On the other hand there are special classes of networks which have not

been considered in this thesis. These can then form the basis of future work.

Further, this thesis has considered bistable systems. The generality of the results here

need to be verified in the context of multi-stable systems, with more than two co-existing

attractors. Exploring this aspect, by studying networks of different multi-stable systems

at the nodal level, can offer yet another avenue of promising new research.

Lastly, an important direction for future investigations involves the study of networks

of systems exhibiting multi-stable chaotic dynamics, namely systems that have co-existing

chaotic attractors. Our results here will then form the basis for what to expect in those

networks. It would be exciting to see what broad similarities or significant differences

emerge when we enter the realm of chaos. In summary, the results in this thesis shed

light on the collective behaviour of networks of coupled bistable systems in particular,

and has potential relevance for networks of multi-stable dynamical elements in general.
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