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Abstract

This thesis examines the genesis of and the advances in the field of

Quantum Metrology. An overview of terminologies and definitions in this

emerging field is given, with a focus on Shot Noise Limit and the

Standard Quantum Limit for monitoring free mass position, and the

efforts to overcome them are examined. Ideas from these two subfields

are then taken together and developed in a unique way, namely, in using

a free system of two coupled particles to beat the SQL in monitoring

mass position. Four such entangled systems are developed to introduce

new degrees of freedom to share the burden of uncertainty in position in

order to help them beat the SQL.
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Introduction

Metrology is the science of measurement. The pursuit of science always needs mea-

surement to validate it, and so the field of measurement has always been one of the

most important frontiers of science. It gains a life of its own in the fields of statistical

analysis. However, the world was changed a hundred years ago by the emergence of

Quantum Mechanics, and where before we could tell one electron from another (and

still can, in truth), now we cannot even tell if the cat is dead or alive. Given the

central role that measurement plays in quantum mechanics, it is no wonder that a

new study of measurements was needed, with a quantum flavor.

Although the field proper itself was birthed a little later than the formulation of

Quantum Mechanics as we know it today, the field today is full of an exciting buzz

of activity, and finding applications in all multiple fields, from quantum computation

to medical physics, to communication and information, to condensed and nanomatter

technologies, and in lithography and biomedical physics. It has the potential to make

revolutionary changes wherever there is a quantum interaction involved. Because at

its core, Quantum Metrology is the science of beating classical limits on experiments

by using quantum correlation.

Classical experimental designs often impose classical limitations on the outcomes of

the results, limitations that can be overcome by using quantum tricks. The noise in

the value of a parameter of an experiment scaling inversely with the square root of

the number of independent measurements performed is a result of classical statistics,

and classical physics experiments follow this result. However, we can break this limit

by using quantum correlations, and bring down the scaling of noise to the ulitimate

limit, derived from the fundamental Uncertainty Relations in Quantum Mechanics.
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During the course of my final year, I have focussed on two subfields of Quantum

Metrology. I have studied the efforts to beat the Shot Noise Limit in Interferometers

and the attempts at defining and breaking the Standard Quantum Limit in monitoring

the position of a free mass. Both the questions are crucial, among other things, to

Gravitational Wave Detectors. However, they are always treated separately. In fact,

while we have been successful in beating the Shot Noise Limit in the Interferometers,

we are still struggling to understand the Standard Quantum Limit (SQL) in position

measurement, let alone beat it. There have been and are many definitions of the SQL,

some more popular than others, but they all deal with monitoring force on a single, free

mass, sometime with one detector, sometimes with many. The regime of SQL shares

with the Interferometer the identical detectors part, because in the Interferometer,

photons in large numbers are the detectors, but there is a glaring difference between

these approaches. There is always only one particle being monitored for its position

in any schemes attempting to break the SQL, but in ther Interferometer, where these

methods will be applied one day, there are two mirrors being monitored.

It is for this reason that for my MS thesis, I have explored ways to turn this multi-

bodiedness of system to my advantage. This thesis thus serves to outline four ways,

or four entanglements in two body systems, that can beat the SQL.

I shall begin this thesis with a brief introduction, an overview of the field and ev-

erything the reader must know to understand the final proceedings. Our daunting

task will begin with the case of Shot Noise Limit in Chapter 1. After introducing

the paradigm of Quantum Light and Interferometry, I shall derive the Shot Noise

Limit and the fundamental Heisenberg Limit in Section 1. The next two sections

will be devoted to examining the efforts in beating the Shot Noise Limit and achieve

the Heisenberg Limit. The section will end chapter with comments on where this

technology stands in terms of experiments.

The next chapter will be devoted to the SQL in monitoring mass position and shall

follow a similar path as before. The first, introductory section will detail the weak

measurement model as given by Von Neumann, followed by an account of the mea-

surement protocol given by Aruthurs and Kelly to monitor conjugate observables

simultaneously. Section 1 will then present the first derivation of the SQL as was
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done by Braginsky and Vorontsov, and then the next three sections will follow the

efforts as were made to beat and/or to redifine the SQL. The chapter will close with

a section introducing Quantum Nondemolition techniques and Backaction Evading

measures.

In Chapter 3, we shall turn to my own explorations of how one might beat the SQL in

repetitive position measurements by using a system of two coupled particles. In the

first section of Chapter 3, I shall present my motivation for the idea and its origins.

Here I shall justify my approach, and then in the next section, I shall present the four

systems I have found to beat the SQL. I shall close the chapter, and this thesis, with

concluding remarks and comments on where we might expect to go from here.
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Chapter 1

Shot Noise Limit

A Michelson interferometer is a crucial component in many signal processing and

analyzing techniques, but most notably, for the purpose of this thesis, it is one of the

leading methods for Gravitational Wave Detection (from Wikipedia page on Michelson

Interferometer)

Figure 1.1: Schematic of a Michelson Interferometer working as a Gravitational Wave
Detector (taken from [Caves 81])

The Interferometer, as the name indicates, uses interference of light to make inference

about its properties. Its use in detecting gravitational waves comes from the fact
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that as gravitational waves passes over the interferometer, they act differently on the

two perpendicular arms. One arm of the Interferometer is squeezed, and the other

is elongated. The resulting difference in the lengths of the arms leads to a phase

difference between the light beams traveling through these arms, phase difference

which can be measured using the interference pattern of these two beams.

However, the detection of the induced phase difference is limited by the so called

”Shot Noise Limit”. In this chapter I shall derive the theory around the Shot Noise

Limit, and present the methods used to beat this limit. But first, we will start with

understanding the quantum treatment of light and the Interferometry.

1.0.1 Quantum Treatment of Light

Coherent light is represented as |α〉 = D̂(α) |0〉 where D̂(α) = eαâ
†−α∗â is the Dis-

placement Operator, |0〉 is the vacuum state and α is a complex number. â and â†

are the annihilation and the creation operators of light, which are constructed from

x̂ and p̂ as

â =

√
mω

2h̄
x̂ + i

p̂√
2mωh̄

(1.1)

giving [â, â†] = 1.

The Coherent state |α〉 is an eigenstate of the operator â, obeying â |α〉 = α |α〉. X̂1

and X̂2 are the two quadratures of light, and are defined as

X̂1 =
â + â†

2
X̂2 =

â− â†

2i
(1.2)

They obey the uncertainty relation

∆X1∆X2 ≥
1

4
, (1.3)

and for the coherent light, take values ∆X1 = ∆X2 = 1
2
. The coherent state is

the displaced ground state, and thus is a minimally uncertain state. However, as
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long as the equation 1.3 is obeyed, physics allows to us lower the uncertainty in one

quadrature at the expense of the uncertainty in the other. This is called squeezing.

Ŝ(ξ) is the Squeezing Operator, defined as

Ŝ(ξ) = e
1
2

(ξ∗â2−ξâ†2) (1.4)

where ξ = reiθ, r is the squeezing parameter, and 0 ≤ θ ≤ 2π [Caves 81].

The Squeezing Operator satisfies relations

Ŝ
−1

(ξ) = Ŝ
†
(ξ) = Ŝ(−ξ) (1.5)

Ŝ
†
(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r (1.6)

Ŝ
†
(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r (1.7)

and acts on the vacuum state as

Ŝ(ξ) |0〉 = |ξ〉 . (1.8)

For θ = 0, the state |ξ〉 gives

(∆X1)2 =
1

4
e−2r ≤ 1

4
(1.9)

(∆X2)2 =
1

4
e2r ≥ 1

4
(1.10)

thereby preserving the Uncertainty Relation (4). For θ = 0, squeezing is in the X1

quadrature. For θ = π
2
, it will in the X2 quadrature. For arbitrary θ, we can define

Ŷ 1 and Ŷ 2 as
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 Ŷ 1

Ŷ 2

 =

 cos θ
2

sin θ
2

− sin θ
2

cos θ
2

 X̂1

X̂2

 (1.11)

to get the squeezing as

(∆Y1)2 =
1

4
e−2r (1.12)

(∆Y2)2 =
1

4
e2r (1.13)

The effects of squeezing on a coherent state are compared with the normal coherent

state in a complex amplitude plane in Figure 1.2.

Figure 1.2: (a)Error circle for the coherent state|α〉. (b) Error ellipse for the squeezed
coherent state

∣∣α, reiθ〉. (Figure taken from [Caves 81])

1.0.2 Interferometry with Coherent Light

An idealized Interferometer has been shown in Figure 1.3. The Interferometer has

two input ports, 0 and 1. We can associate creation and annihilation operators â0, â†0

and â1, â†1 respectively for these ports for photons associated with them. These make

for two modes of light in the Interferometer. These modes, and by extensions, the

operators corresponding to them, in the Heisenberg Picture, transform into modes 2

7



Figure 1.3: Idealized Michelson Interferometer with arm lengths l1 and l2 and effective
phase difference φ with indicated respective modes of light.

and 3 as follows:

â0 →
â2 − iâ3√

2
(1.14)

â1 →
−iâ2 + â3√

2
. (1.15)

Upon reflecton from the mirrors, we get transformations

â2 → â4 (1.16)

â3 → e−iφâ5, (1.17)

where the phase shift from reflection in both modes has been ignored as it will be the

same for both, and an effective phase shift of φ = ω(l1 − l2)/c has been assumed in

the light travelling through the vertical arm due to path length differences between

the two arms. These operators, upon the next action of the Beam Splitter (BS2),
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transform for the last time as

â4 →
â6 − iâ7√

2
(1.18)

â5 →
−iâ6 + â7√

2
. (1.19)

Thus, in the Heisenberg Picture, the output modes are related to the input modes by

the relation

â6 =
(1− eiφ)â0 + i(1 + eiφ)â1

2
(1.20)

â7 =
i(1 + eiφ)â0 − (1− eiφ)â1

2
(1.21)

If we are using only the port 0 of the interferometer, injecting coherent light into it,

the state of the input ports is |Ψ0,1〉 = |α〉0 |0〉1, signifying the fact that when port 1

isn’t being used, it is in a state of vacuum, which is the ground state |0〉. Working in

the Schrödinger picture, from the above transformations in equations 1.14 to 1.21, we

can derive the action of the Interferometer Γ̂ = ( ˆBS2)(P̂S)( ˆBS1), where ˆBS1 and

ˆBS2 are the first and the second actions of the Beam Splitter respectively, and P̂S is

the action of an assumed phase shifter.

ˆBS1 =

 1 i

i 1

 = ˆBS2 (1.22)

P̂S =

 1 0

0 e−iφ

 (1.23)

Thus,

|Ψ6,7〉 = Γ̂ |α〉0 |0〉1

= ( ˆBS2)(P̂S)( ˆBS1)

 α

0


=

1

2

 α− αe−iφ

iα + iαe−iφ


⇒ |Ψ6,7〉 =

∣∣∣∣α− αe−iφ2

〉
6

∣∣∣∣iα + iαe−iφ

2

〉
7

(1.24)
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Ports 6 and 7 are output ports, light from which is incident onto detectors to get an

interference pattern, which is denoted by
〈
N̂
〉

=
〈
N̂7

〉
−
〈
N̂6

〉
, where

N̂i = â†i âi. (1.25)

Thus,
〈
N̂6

〉
= 〈Ψ6,7|N̂6|Ψ6,7〉 = ‖α‖2 sin2 φ

2
(1.26)

and
〈
N̂7

〉
= 〈Ψ6,7|N̂7|Ψ6,7〉 = ‖α‖2 cos2 φ

2
. (1.27)

⇒
〈
N̂
〉

= ‖α‖2 cosφ. (1.28)

Therefore, from the interference pattern, we can deduce the phase difference that is

induced by the arms of the Interferometer. In Gravitational Wave Detectors, the

lengths of the arms are equal, i. e., l1 = l2, which means that φ is zero. However, a

passing gravitational wave introduces changes in arm lengths, and then a change in

interference pattern can be observed according to equation 1.28. However, there is an

error associated with this measurment, and that is where we shall go next.

1.1 Shot Noise

The previous section focused on counting the photon number as a way to measure the

phase shift the two light beams undergo with respect to each other. However, with

each measurement, there exists an associated uncertainty, and this is even more true

in a Quantum framework.

Given that our intended final measurement is the difference in lengths of the arms,

we write the phase difference φ between the two light beams in the respective arms

as

φ =
zω

c
, (1.29)

where z = l1 − l2 is the difference between the lengths of the two arms, ω is the

frequency of light used, and c is the speed of light. As the average trips the light would

make inside the interferometer will remain the same for all time, we are taking it to

be one. The error ẑ depends on the error in φ via the radiation pressure error (∆ẑrp)

- which arises due to the bombardment of photons on the mirrors and momentum

10



they exchange - and on photon counting error(∆ẑpc) - which arises from the power

fluctuations in the source of light (which is where the name Shot Noise comes from).

We assume that the these two errors are independent of each other, and write

∆2ẑ = ∆2ẑrp + ∆2ẑpc. (1.30)

These errors are derived below, starting with the radiation pressure error.

1.1.1 Radiation Pressure Error

Intuitively, an error associated with reflection will depend on the number of photons

striking it, and thereby will be related to input power fluctuations. However, given

that the Beam Splitter splits the input power equally into the two arms, it should dis-

tribute the error in pressure equally, thereby cancelling it out for an interference pat-

tern, which is essentially a subtracting operation. However, Caves [Caves 81] showed

that the Radiation Pressure error was not due to power fluctuations, but rather due

to interference of the vacuum injected from port 1.

Radiation pressure ∆ẑrp is then related to the momentum exchanged as

∆ẑrp =
∆p̂τ

2m
, (1.31)

where τ is the time interval under consideration. The momentum exchanged depends

only on the number of photons entering the respective arms.

〈p̂〉 =
2h̄ω

c

〈
â†3â3 − â†2â2

〉
=

2h̄ω

c

〈
â†1â0 − â†0â1

〉
(from equations 1.16-1.17) (1.32)

= 0 (1.33)

which confirms our intuition of the power being distribution being symmetric and

cancelling each other out. However, 〈∆2p̂〉 = 〈p̂2〉−〈p̂〉2 (from now on, the uncertainty
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expectation values such as 〈∆2p̂〉 shall be written as ∆2p), and for 〈p̂2〉, we find

〈
p̂2
〉

=
4h̄2ω2

c2

〈
â†1â0â

†
1â0 − â†1â0â

†
0â1 − â†0â1â

†
1â0 + â†0â1â

†
0â1

〉
=

4h̄2ω2

c2
|α|2 (1.34)

⇒ ∆2p =
4h̄2ω2

c2
|α|2 (1.35)

⇒ ∆ẑrp =
h̄ωτ

mc
|α|. (1.36)

1.1.2 Photon Counting Error

Unlike the radiation pressure error, where the expectation value of pressure difference

on the two mirrors itself was zero, the value of
〈
N̂
〉

is not zero, and is also depen-

dent on φ (equation 1.28). Thus, the error will depend on the phase accumulated.

Therefore, the entire evolution of light in the Interferometer needs to be considered

to derive the error in photon counting. From equation 1.28, we have

〈
N̂
〉

= |α|2 cosφ .

and from equation 1.24, we can find out
〈
N̂2
〉

〈
N2
〉

= |α|2(1 + |α|2 cos2 φ) (1.37)

∆2N = ∆2N7 + ∆2N6

= |α|2. (1.38)

As the detected number of photons at a time depends on the phase accumulated, we

have ∆N = ∆φ
[
∂N
∂φ

]
. But also, since φ = 2zω

c
, we have ∆φ = ∆z 2ω

c
. Thus, if we only

consider contribution from photon counting error, we have

∆zpc =
c

2ω
∆N

[
∂N

∂φ

]−1

=
c

2ω

1

|α|
1

sinφ
(1.39)

which is the inverse relationship between the error and number of photons than the
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one we found coming from radiation pressure error.

Hence we see that if we increase the power of the source, it will decrease the error

coming from ∆zpc,, but it shall increase the contribution from ∆(z)rp. The overall

error ∆z at cosφ = 0 is

∆2z = ∆2zpc + ∆2zrp (1.40)

=
c2

4ω2

1

|α|2
+
h̄2ω2τ 2

m2c2
|α|2. (1.41)

Minimizing this error with respect the laser power |α|2 gives optimal power P0 for an

optimal error.

|α|2min = P0 =
mc2

2h̄ω2τ
[Caves 81] (1.42)

⇒ ∆zmin =

√
h̄τ

m
, (1.43)

which is incidently equal to the SQL in position measurement of a free mass.

For a gravitational wave detector with mirros of mass m ≈ 105g, interaction time

τ ≈ 2× 10−3 sec, ω ≈ 4× 1015 rad sec−1, this minimum optimal power comes out to

be approximately 8 × 103w[Caves 81], which is a power far higher than laser power

available for GWDs. At available powers, phase resolution of these interferometers

isn’t limited by the SQL, but rather by the photon counting error, popularly called

as the Shot Noise limit, which shows a scaling of

∆zSNL ∝
1√
N

=
1

|α|
. (1.44)

The Shot Noise Limit, thus, comes from the limitations of the experimental design.

The true limit, called the Heisenberg Limit, is derived below.

1.1.3 The Heisenberg Limit

The so called Heisenberg Limit on the minimum error in photon counting is calculated

from the energy-time uncertainty relation as follows. Let B̂ be a time independent

13



operator. Then the Ehrenfest Theorem gives

d

dt

〈
B̂
〉

= − i
h̄

〈
[Ĥ, B̂]

〉
(1.45)

At the same time, the uncertainty relation says

∆H∆B ≥ 1

2

∣∣∣〈[Ĥ, B̂]
〉∣∣∣.

Putting the value of [Ĥ, B̂] from equation 1.45, and writing ∆B̂ = ∆t d
dt

〈
B̂
〉

we get,

〈
∆Ĥ

〉
∆t

d

dt

〈
B̂
〉
≥ h̄

2

d

dt

〈
B̂
〉

⇒ ∆Ĥ∆t ≥ h̄

2
(1.46)

We know Ĥ = h̄ω(N̂ + 1
2
) for light waves, and ∆t can be written as ∆t = ∆φ

ω
, which

gives us

(h̄ω∆N)(ω∆φ) ≥ h̄

2
(1.47)

⇒ ∆N∆φ ≥ 1

2
. (1.48)

Given that the largest value ∆N can have is N , we find that the minimum possible

sensitivity to phase is

∆φ ∝ 1

N
(1.49)

or, for a coherent state |α〉,

∆φ ∝ 1

|α|2
. (1.50)

This is called as the Heisenberg Limit. As we can see from equation 1.44, this limit

is an order of magnitude smaller than the Shot Noise. Deriving as it does from the

Uncertainty Relation and not from any limitations of the apparatus of the experiment

or the type of light used, this is thought to be a fundamental limit[Giovannetti 04]

that cannot be surpassed, unlike the Shot Noise Limit. In the next section, we shall
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examine the scheme given by C. M. Caves to surpass the Shot Noise Limit.

1.2 Squeezing the Vacuum to Beat the SNL

As we have seen, the experimental regime sets the Shot Noise Limit on the sensitivity

to phase change in an Interferometer. In 1982, C. M. Caves effectively opened the

field of Quantum Metrology by proposing a method to use squeezed vacuum states to

beat the Shot Noise Limit.

It was Caves who proved that the radiation pressure error was arising due to the

vacuum state injected from the unused port interfering with the coherent state input

from port 0. To reduce the overall error, Caves proposed the input state be

|Ψ〉 = |α〉0 |ξ〉1

in place of |α〉0 |0〉1, where |ξ〉 denotes a squeezed state as defined in 1.0.1. For this

input, we find that both the photon counting error and radiation pressure error get

modified.

1.2.1 Photon Counting Error

For an input of |ψ〉 = |α〉1 |ξ〉0, where ξ = reiθ we get

〈
N̂
〉

=
〈
N̂7 − N̂6

〉
= (|α|2 − sinh2 r) cosφ,

∆2N = ∆2N7 + ∆2N6

= |α|2 cos2 φ+ 2 cos2 φ cosh2 r sinh2 r + sin2φ(|α|2e−2r + sinh2 r)

then, going as before,

∆ẑpc =
c

2ω
∆N

[
∂N

∂φ

]−1

=

[
cot4 φ

|α|2
+

2 cot2 φ cosh2 r sinh2 r

|α|4
+

e−2r

|alpha|2
+

sinh2 r

|α|4

]1/2

(1.51)

Equation 1.51 has terms coming from the individual powers of the light sources, as

well as terms coming from the interference between them. Working at the point
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cosφ = 0 in the interference pattern, and under the assumption that the power of

the source of the squeezed vacuum state is very low as compared to the power of the

coherent source, i. e., sinh2 r � |α|2, we get

(∆ẑ)pc '
c

2ω

1

α

1

er
. (1.52)

Thus, the photon counting error is reduced when squeezing is introduced with r ≥ 0.

We shall return to this quantity after examining the change in radiation pressure

error.

1.2.2 Radiation Pressure Error

Again, after considering the number of photons entering the different arms, we get

the radiation pressure difference as

〈p̂〉 = 〈ξ, α|â†3â3 − â†2â2|ξ, α〉0,1

= 0,

and the radiation pressure error as

(∆p̂)2 =
4h̄2ω2

c2
(|α|2e2r + sinh2 r) (1.53)

⇒ ∆ẑrp =
h̄ωτ

mc

[
|α|2e2r + sinh2 r

] 1
2 (1.54)

We again see inverse relationship of the radiation pressure error and the photon count-

ing error via the power of the light sources. In this case, increasing the squeezing (r)

increases the radiation pressure while decreasing the photon counting error. However,

we find that the required power of the coherent source for the minimum total error
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also changes with a change in squeezing of the vacuum source.

∆ẑ =
[
(∆z)2

pc + (∆z)2
rp

] 1
2 (1.55)

=

[
c2

4ω2

1

|α|2e2r
+
h̄2ω2τ 2

m2c2
|α|2e2r

] 1
2

. (1.56)

⇒ |α|2opt '
mc2

2h̄ω2τ
× e−2r (1.57)

' |α|20 × e
−2r (1.58)

Thus, we can lower the optimum power by increasing the squeezing parameter. The

minimum error again is

∆zmin =

√
h̄τ

m
, (1.59)

which is equal to the SQL in determining position.

Thus, we have reduced the required power to get the minimum error. The Shot Noise

Limit scaled as 1
|α| , but, from the equation (of optimum power), we can see that the

new limit scales as
√
h̄τ/m ∝ er/|α|opt. However, because we have neglected the

sinh2 r term in the photon counting error, there is a limit on how much we can reduce

the optimum power by increasing r. Caves gives rmax = 1
3

ln |α|0[Caves 81] to be the

maximum value of squeezing before the term coming from the power of the squeezed

source begins dominating the e−r/|α| term in optimum sensitivity. At this level of

squeezing, we find

(|α|2opt)min ' (|α|20)
4
3 . (1.60)

Thus (1.61)

Nmin ∝
[
h̄ω

τ

]− 2
3

= (∆zmin)−
4
3

or, (1.62)

∆zmin ∝
1

(Nmin)3/4
(1.63)

Therefore, the minimum error scales with the N−3/4, which, while an improvement

on the Shot Noise scaling of N−1/2, hasn’t yet reached the Heisenberg Limit of N−1

17



scaling. In the next section, we shall examine another approach to increase the phase

sensitivity of the interferometers, this time reaching the Heisenberg Limit.

1.3 NOON States

Coherent states of light are easy to produce. In fact, due to the statistics they follow,

they are called the most classical of the quantum states. However, light comes in

many different colors, and the most fundamental of them is the number state.

1.3.1 Number States

We have, of course, already been using a number state. |0〉 is the vacuum state, or

in other words, the state that has n = 0 photons in it. Defined as it is in a similar

vein to the Simple Harmonic Oscillator in a metallic cavity which is then extended to

infinity, there are creation and annihilation operators corresponding to the states of

light as defined in section 1.1. They act on the number state |n〉 as

â† |n〉 =
√
n+ 1 |n+ 1〉 ; â |n〉 =

√
n |n− 1〉 . (1.64)

Thus, the excited state |n〉 is related to the ground state |0〉 as

|n〉 =
(â†)n√
n!
|0〉 (1.65)

More imprtant for us, however, while studying the evolution of light in the interfer-

ometer, is the time evolution of light, or, in the Heisenberg picture, the time evolution

of the creation and the annihilation operator. Given that the two operators follow the

commutator relation
[
â, â†

]
= 1, we can see how these operators evolve with time in

the Heisenberg picture by the Heisenberg Equation of Motion

dâ(t)

dt
=
i

h̄

[
Ĥ, â

]
, (1.66)

where Ĥ = h̄ω
(
â†â + 1

2

)
is the Hamiltonian by which the photon/number state
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evolves. If â0 is the annihilation operator at t = 0, then we find

â(t) = â0e
−iωt â † (t) = â†0e

iωt.

Writing ωt = φ, we get

â(t) = â0e
−iφ; â†(t) = â†0e

iφ (1.67)

This type of evolution leads to some interesting reasults. The major one being the

difference between the phase accumulation by coherent light and the number states.

The expression of Coherent Light, |α, t = 0〉 = eαâ
†
0−α∗â0 |0〉 leads to time evolution as

|α, t〉 = eαâ
†
0e
iφ−α∗â0e−iφ |0〉

= e(αeiφ)â†0−(αeiφ)∗â0 |0〉

=
∣∣eiφα〉 . (1.68)

But the expression is very different for the number state |n〉

|n, t〉 =
(â†eiφ)n√

n!
|0〉

= ei n φ
(â†)n√
n!
|0〉

= ei n φ |n, t = 0〉 (1.69)

Thus, we see the phase accumulation in the number state depends on the number

of photons in the number state. More the number of photons, more will be the

accumulated phase. This result is drastically different than the result for coherent

light.

It is now easy to see why the nonclassical light states which we call as number states

might be tried in interferometers. Couple this with the goal of increasing phase

sensitivity for a number of photons used in an Interferometer, and we get the NOON

states.
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1.3.2 NOON State Interferometry

NOON states have interested scientists as being a type of Schrödinger Cat States

since the 1980s. But the interest in them was regenerated when they were redis-

covered by J. P. dowling in 2000 in connection with its properties with regards to

lithography[P. Dowling 09].

NOON states are maximally entangled states. For modes a and b, they are represented

as

|NOON〉 =
|N〉a |0〉b + |0〉a |N〉b√

2
. (1.70)

From the representation, it is clear why these states would be called Schrödinger

Cat States. The photon NOON State is a superposition of photon states such that

detecting the photons in one mode will make the number of photons in the other

mode collapse to zero. The cat detected as alive won’t be dead, and vice versa.

In the Michelson Interferometer, to exploit the properties of the NOON states, the

treatment has to be different than the one for coherent light. NOON states need

to be introduced into the arms 2 and 3 after the first beam splitter action, and the

evolved states need to be measured before the second beam splitter action. That is,

the evolution will be

|N〉2 |0〉3 + |0〉2 |N〉3√
2

→ |N〉4 |0〉5 + e−iN φ |0〉4 |N〉5√
2

This state then needs to be measured for the operator

Â = |N〉a |0〉b 〈0|a 〈N |b + |0〉a |N〉b 〈N |a 〈0|b

= |N, 0〉 〈0, N |+ |0, N〉 〈N, 0| .
(1.71)

The expectation value of Â is then found to be

〈
Â
〉

= N cosNφ, (1.72)

which is now giving us a signal that changes faster by a factor of N than the signal
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in the coherent light input case. Calculating the uncertainty of Â gives us

∆2A = N sin2Nφ. (1.73)

Thus, evaluating ∆φ = ∆A
[
∂A
∂φ

]−1

, we find

∆φ =
1

N
, (1.74)

which is the Heisenberg Limit.

However, while the NOON state interferometry is a quadratic improvement on clas-

sical interferometry , in reality, by 2004, only NOON states uptil N = 4 photons had

been kept going long enough to demonstrate the Heisenberg Limit sensitivity[P. Dowling 09].

A similar picture exists in spectroscopy, where NOON states comprising of atom spin

states with N = 6 been successfully used at the Heisnberg Limit in 2011[Pezzè 18].

The difficulty with NOON states is, as with squeezed states of light, not only pro-

tecting the entanglement until after the measurement process is complete, but also

the generation of these states. After arranging single photon inputs at each ports,

itself a difficult task, an input of |Ψ〉 = |1〉0 |1〉1 to the Interferometer will, due to the

Hong-Ou-Mandel effect, introduce NOON states into the Interferomter with N = 2.

But for N ≥ 2, the 50-50 Beam Splitter produces states of the form[P. Dowling 09]∣∣∣∣N2
〉

0

∣∣∣∣N2
〉

1

BSI−−→ CN |N〉2 |0〉3+CN−2 |N − 2〉2 |2〉3+· · ·+CN−2 |2〉2 |N − 2〉3+CN |0〉2 |N〉3 ,

(1.75)

where the states with photons ≤ N cannot achieve Heisenberg Limit. NOON states

then are needed to be produced by unwanted states by post-selection, or by simply

not processing the signals further when the detectors click in both arms of the Inter-

ferometer. But these types of approaches reduce the odds of NOON states appearing,

thereby increasing the number of photons used. And all this only for NOON states

with a low N.
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1.4 Conclusion

While squeezing and producing NOON states might seem difficult, the SNL itself

allows for the LIGO interferometers to reach a sensitivity of a 10−18m (∆φ = 10−12).

This sensitivity is enough to detect gravitational waves, expected themselves to bring

about a relative shift in the position of the mirrors on the scale of 10−18m. In fact,

detection of the Gravitational Waves announced in 2016 did not use any quantum

tricks on the light used, instead they eliminated as many sources of classical noise as

they could and reached the SNL.

However, this does not negate the importance of the techniques developed above.

Squeezing and NOON states are both used in spectroscopy[Pezzè 18], and NOON

states allow us to beat the Rayleigh Diffraction Limit in Lithography to allow for a

sensitivity of λ
N

[N. Boto 99]. And there exist methods other than NOON states and

squeezed vacuum to allow for precision higher than the respective classical limits in

different fields[Barnett 03],[P. Dowling 09], the study of which were beyond the scope

of my thesis.

We shall then leave our discussion of Interferometers here, for the time being, and turn

to a more somber field, one that seems only to be progressing on paper. Nonetheless,

the question of surpassing the SQL in measurement of position is just as important

to the realm of Interferometers as it is to anything else. In the next chapter, I shall

give an overview of what upheavals that area of Quantum Metrology has underwent.
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Chapter 2

SQL in Monitoring Position of a

Mass

Introduction

To monitor a force acting on a mass, one needs to know the position of the mass at

at least two points in space. But such a measurement is limited by what is called the

Standard Quantum Limit (SQL) in monitoring position of a free mass.

The SQL has multiple formulations, some of them voided, some of them beaten, some

of them contested. The multitude of papers on the topic is in sharp contrast with the

experimental advances in realizing any of these measurements, however. Indeed, while

the discussions of breaking the Shot Noise Limit and the Standard Quantum Limit

began around similar times and around the same topic of detecting Gravitational

Waves, it is only in the area of Shot Noise that we have significant experiments to

compliment our theoretical achievements.

Not only is the position of a free mass continuously changing through feedback from

the particle’s momentum, the schemes proposed to measure the position of particles

through quantum interactions have no physical realizations as of yet, and this is

the simple reason for the situation described in the above paragraph. So for the

time being, we shall ignore the question of whether the interactions and situations

described in this thesis can have a physical realization. Indeed, even the question of
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what is measurement itself will be raised in the course of the review this thesis will

present. And that is where we must start. The next two subsections will develop the

paradigm of weak and approximate measurements, which will set the stage for the

derivation of the SQL.

2.0.1 Von Neumann Model of Approximate Measurements

Unlike spin or the number of photons, position is a continuous variable. It is only

for discrete variables that we have found state measurement with infinite precision

to be possible[”Ozawa” 15], whereas for continuous variables, the most one can do

is to determine their values within an interval with a probability. One of the way

to measure quantum variables was outlined by Von Neumann, presented here by

following the treatment given by Ozawa[”Ozawa” 15] and Wheeler[Wheeler 12] in the

context of continuous variables, more particularly, the measurement of position.

Von Neumann defined two kinds of measurements. The Measurement of the First

kind and the Measurement of the Second Kind. All measurements involve a system

which is to be measured, and a detector which will perform this measurement. The

Measurement of the Second Kind is the one where the quantum state of the system

is destroyed through its measurement by a detector. The macroscopic measurements

of photon in a photon counting detector are a measurement of the second kind. The

measurement of the first kind, however, involves quantum interaction between a de-

tector system and the target system in such a way that the target system retains its

quantum state, and a measurement of the second kind of the detector gives us infor-

mation about the target system, acquired by the detector during the the interaction.

As the current technology stands, a measurement of the first kind always has to be

preceeded by a measurement of the second kind. However, recently a photon has been

measured without being destroyed[Nogues 99]), so this might change one day.

Von Neumann model of approximate measurement is a measurement of the first kind,

and involves a linear coupling between two properties of the probe and the target

system respectively, the justification being that the system and the detector interact

by some properties associated with them. For a target system ψ with variables {x̂, p̂}

and a probe φ described with {Q̂, P̂}, a standard coupling used to detect the position
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of the target system is

Hint = kx̂P̂ (2.1)

where k is the strength of the coupling. The coupling is supposed to be brief enough

that the free evolution of two particles is ignored. In other words, the impulse approx-

imation is used and the enviornment is ignored. The standard procedure is to solve

this Hamiltonian by using Schrödinger Equation, but because it will be relevant in

this article later, I shall present a solution using the Heisenberg Equation of Motion

as well.

Schrödinger Equation

If the composite system of the target-detector is Ψ(x,Q, t), then at just before the

interaction is turned ’on’, the state is Ψ(x,Q, 0) = ψ(x)φ(Q) (where, the two quantum

states are assumed to be saperable because they are two different particles). Then,

working in the Schrödinger Picture, the Schrödinger Equation says

∂Ψ

∂t
= −iHΨ, (2.2)

where h̄ is set to 1, here and henceforth in this article, unless it is taken for the sake of

complying with the standard equation. The subscript of Hint shall also be supressed.

Putting in the values, we get,

∂Ψ

∂t
= −kx̂ ∂

∂Q
ψ(x)φ(Q)

Taking Fourier Transform with respect to Q,∫ ∞
−∞

∂Ψ

∂t
e−iPQdQ = −kx

∫ ∞
−∞

Ψ(x,Q)e−iPQdQ

⇒ ∂Ψ̂

∂t
= −ikxP Ψ̂

where Ψ̂ =

∫ ∞
−∞

ψe−iPQdQ

⇒ Ψ̂(P, x, t) = A0e
−ikxpt.

Thus, given that Ψ(x,Q, 0) = ψ(x)φ(Q),

Ψ(x,Q, t) =

∫ ∞
−∞

A0e
−ikxPt+iPQdP = F (x,Q− xt/τ)

(2.3)
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where k is taken to be equal to the reciprocal of the interaction time τ , here and

henceforth wherever needed. The final state at the end of the interaction then is

Ψ(x,Q, τ) = ψ(x)φ(Q− x) (2.4)

If we prepare the probe φ in such a way that at the start of the interaction, the

expectation value of its position is 0, i.e., 〈Q̂〉0 =
〈
φ(Q, t = 0)

∣∣∣Q̂∣∣∣φ(Q, t = 0)
〉

= 0,

then, after the interaction is complete and the position of φ is measured destructively,

we find 〈Q̂〉 = x, from which we can infer that the position of ψ was x at the time of

the measurement.

Heisenberg Equation of Motion

Heisenberg Equation of Motion says that, in the Heisenberg Picture, for a time inde-

pendent operator Â on a system whose evolution followes the Hamiltonian H,

dÂ(t)

dt
= i
[
Ĥ, Â

]
. (2.5)

For our system Ψ(x,Q) = ψ(x)φ(Q) and Hint = kx̂P̂, The Heisenberg Equations of

Motion are

dx̂(t)

dt
= i
[
Ĥ, x̂

]
= 0

⇒ x̂(t) = x̂(0)

dQ̂(t)

dt
= i
[
Ĥ, Q̂

]
= kx̂

⇒ Q̂(t) = Q̂(0) + kx̂(0)t

(2.6)

From this, we can directly get the expectation value of Q̂(τ) to be x(0) with the

assumptions that we had made while solving in the Schrödinger Picture, that is,

Q̂(0) = 0 and τ = 1/k. However, if we want to go back from here to the Schrödinger

Picture, we must realize that the operator Q in the Schrödinger Picture is the same

at time t and 0. To reconcile this with equation 2.3, we can look at this as a shift of

origin. The state φ has moved from the point Q to Q− kxt. Thus, we have

Ψ(x,Q, τ) = ψ(x)φ(Q− x) and 〈Q̂〉 = x (2.7)
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From the above equations, one can easily see that the momentum of the target system

isn’t conserved [Kosugi 10] in all frames of references. For some reason, this is an

acceptable consequence to the scientific community at large, given that I only found a

reference to this fact in one paper, though I read many talking on this measurement.

The largest flaw, it can be argued, is that this type of measurement doesn’t have a

physical realization as of yet. This, of course, does not invalidate the approach. And

as far as blind steps go, this one goes a long way in following quantum mechanics and

increasing our knowledge of where one might find the right way.

As noted above, this measurement method has been very useful, especially in the

development of the concept of weak measurement protocols which can leave the target

system undisturbed while still giving us some information about it. Another area is

that this type of protocol allows us to measure commutating variables simultaneously,

the description of which is given below.

2.0.2 Simultaneous Measurement of Commutating Observ-

abes

Based on the ideal measurement given by Von Neumann, Arthurs and Kelly[Arthurs 65]

devised a method to measure two conujugate non-commuting variables q̂ and p̂ of a

system simultaneously. Following Wheeler[Wheeler 12], we define two near-variants

of q̂ and p̂

Q̂ = q̂ + Â (2.8)

P̂ = p̂ + B̂, (2.9)

where Â and B̂ model the noise terms coming due to the imprecise measurements

of q̂ and p̂ we are making by measuring Q̂ and P̂. On these operators, impose the

condition that they can be simultaneously measured:

[
Q̂, P̂

]
= [q̂, p̂] +

[
q̂, B̂

]
+
[
Â, p̂

]
+
[
Â, B̂

]
= 0

⇒
[
Â, B̂

]
= −iI −

[
q̂, B̂

]
−
[
Â, p̂

] (2.10)
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when q̂ and p̂ are position and momentum operator respectively. Compute ∆Q and

∆P , and we have

∆2Q = ∆2q + 〈Â2〉 and ∆2P = ∆2p+ 〈B̂2〉 (2.11)

Hence,

∆2Q̂∆2P̂ = ∆2q̂∆2p̂ + 2
∆2q̂ 〈B̂2〉+ ∆2p̂ 〈Â2〉

2
+ 〈Â2〉 〈B̂2〉

≥ ∆2q̂∆2p̂ + 2∆q̂∆p̂

√
〈Â2〉 〈B̂2〉+ 〈Â2〉 〈B̂2〉

∆Q̂∆P̂ ≥ 1

2
+

√
〈Â2〉 〈B̂2〉,

(2.12)

where the AM-GM inequality has been used, and the Heisenberg Uncertainty Relation,

∆q̂∆p̂ ≥ 1
2
, has been used. Assuming that the expectation value of the noise terms

is zero, and assuming

〈q̂Â〉 = 〈Âq̂〉 = 〈p̂B̂〉 = 〈B̂p̂〉 = 0 (2.13)

we get

∆2Â∆2B̂ = 〈Â2〉 〈B̂2〉 ≥ 1

2

∣∣∣〈[Â, B̂]〉∣∣∣2
=

1

2

∣∣∣−〈iI〉 − 〈[q̂, B̂]〉− 〈[Â, p̂]〉∣∣∣
=

1

4
.

(2.14)

Putting this in equation 2.12, we get

∆Q̂∆P̂ ≥ ∆q̂∆p̂ +
1

2

≥ 1 (2.15)

Thus, we find that such a simultaneous measurement will follow an uncertainty re-

lation twice as strong as the Heisenberg Relation. Arthurs and Kelly demonstrate

such a measurement for position and momentum of a system. For a system ψ in with
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variables {q, p}, Arthurs and Kelly give an interaction

H = k(xPx − pPy), (2.16)

where x, Px and y, Py are position and momenta operators of the two detectors M(x)

and N(y) respectively[Arthurs 65].

Though I have followed the solution of the above Hamiltonian as given by Wheeler

[Wheeler 12] (Arthurs and Kelly do not make it easy to follow their solution, as none

is offered), who solves it by the method of Schrödinger Equation, I shall here present

a solution by the Heisenberg Equation of Motion as it is easier to follow and doesn’t

require Mathematica to be solved.

Proceeding with respect to the equation 2.5, we write the time evolution of the position

and momenta operators of the entire enseble:

q̂′(t) = kP̂y P̂′y(t) = 0 (2.17)

x̂′(t) = kq̂ P̂′x(t) = 0 (2.18)

ŷ′(t) = kp̂ p̂′(t) = −kP̂x (2.19)

Solving these simple differential equations is much easier than solving the cumbersom,

second order differential equation that appears in the Schrödinger Equation. The

solutions we get, after rearranging the equations so that the original operators at

time t = 0 appear on the left side and the operators at time t on the right, are:

q̂(0) = q̂(t)− kP̂y(t)t (2.20)

x̂(0) = x̂(t)− kq̂(t) +
1

2
k2Py(t)t

2 (2.21)

ŷ(0) = ŷ(t)− kp̂(t) +
3

2
k2Px(t)t

2 (2.22)

giving a state at the end of interaction time τ = 1/k as

Ψ(q, x, y, t) = ψ(q − Py)M(x− q +
1

2
Py)N(y − p+

3

2
Px) (2.23)
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After this, one can follow Wheeler [Wheeler 12] to get an agreement with his answers

upto a multiplicative phase factor. Or, we can continue with the Heisenberg Equations

of Motion. The new operators at t = 1/k when the coupling is turned off are

q̂(τ) = q̂(0) + P̂y(0) (2.24)

p̂(τ) = p̂(0) + P̂x(0) (2.25)

x̂(τ) = x̂(0) + q̂(0) +
1

2
Py(0) (2.26)

ŷ(τ) = ŷ(0) + p̂(0)− 1

2
Px(0) (2.27)

To impose the conditions of noise described in 2.10 and 2.13, Arthurs and Kelly choose

gaussian detectors M and N whose initial conditions are

M(x) =

(
2

πb

) 1
4

e−
x2

b

N(y) =

(
2b

π

) 1
4

e−by
2

.

(2.28)

This immediately makes 〈x̂(0)〉 = 〈ŷ(0)〉 = 〈P̂x(0)〉 = 〈P̂y(0)〉 = 0 and we see

that the expectation value of x̂ is the expectation value of position of the system just

before the measurement, and the expectation value of ŷ is the expectation value of the

momentum of the system just before the measurement. Moreover, the new state of

the system will reflect the values of 〈x̂(t)〉 and 〈ŷ(t)〉 respectively in its position and

momentum. That is, the state of the system after the measurement is determined by

the outcome of the measurement. We can calculate the uncertainties in the projective

measurements of x and y by using equations 2.24 to 2.27:

∆2x̂(t) = ∆2x̂(0) + ∆2q̂(0) +
1

4
∆2P̂y(0) (2.29)

∆2ŷ(t) = ∆2ŷ(0) + ∆2p̂(0) +
1

4
∆2P̂x(0). (2.30)

(2.31)
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From equations 2.28, we can see that

∆2x̂(0) =
b

4
∆2P̂x(0) =

1

b

∆2ŷ(0) =
1

4b
∆2P̂y(0) = b

Thus, the measurement uncertainties become become

∆2x̂(t) = ∆2q̂(0) +
1

2
b (2.32)

∆2ŷ(t) = ∆2p̂(0) +
1

2b
(compare with equation 2.11) (2.33)

Therefore, while the state of the system after the measurement reflects the readout

values of the detectors, the errors in these redouts depend on the uncertainties in the

system before the measurement. Minimizing the product ∆x̂(t)∆ŷ(t) with respect to

b and using the uncertainty relation of q and p, we get

∆x̂(t)∆ŷ(t) ≥ 1 (2.34)

In conclusion, Arthurs and Kelly have given a protocol for measuring conjugate ob-

servables simultaneously, with the uncertainty relation between these measurement

being twice as large as the uncertainty relation between momentum and position of

a particle.

2.1 The Standard Quantum Limit

After the rather lengthy introduction to Quantum Measurements, we are now equipped

to define the Standard Quantum Limit for repeated measurements of free mass posi-

tion. Bragginsky and Vorontsov first defined the SQL in 1974 when deriving the SQL

for determining a force F acting on a free mass. A force F acting on a mass m for

time τ will produce a displacement of δx = Fτ 2/2m for the mass[Kosugi 10]. Thus, if

we measure the position of the mass at t = 0 and t = τ and the displacement differs

from what it would be under a free evolution, we can attribute the change to the act

of the force and thereby measure the force. However, if the change in the readout
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from the value expected from free evolution is lesser than the position uncertainty of

the mass, we cannot know if the change we are seeing is due to the quantum uncer-

tainty in the position or due to a force acting on the mass. Worse, as momentum is

a conjugate observable of position and appears in its free evolution, it worsens the

position uncertainty of the particle as it evolves through time.

Over the years, the formulation of the SQL has changed, however, the need for it

has remained the same, to monitor the force acting on a free particle. The standard

procedure to determine the SQL followed by Braginsky involved studying the free

evolution of the position uncertainty. From the free Hamiltonian

H =
p2

2m

we get the Heisenberg Equation of motion for position as

x̂(t) = x̂(0) +
t

m
p̂(0). (2.35)

This gives the expression of the uncertainty at time t as

∆2x(t) = ∆2x(0) +
t2

m2
∆2p(0) +

t

m
〈∆x(0)∆p(0) + ∆p(0)∆x(0)〉 . (2.36)

The standard assumption was that the last term in equation2.36, called the correlation

term in statistics, was always non-negative and thus could be dropped, giving

∆2x(t) = ∆2x(0) +
t2

m2
∆2p(0) ≥ 2

t

m
∆x(0)∆p(0) (2.37)

≥ t

m
|[x̂(0), p̂(0)]| (2.38)

=
h̄t

m
(2.39)

Thus, the SQL is written as

∆x(τ) =

√
h̄τ

m
. (2.40)

However, there were some problems raised concerning this picture, as we shall see in

the next section.
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2.2 Yuen’s Contractive States

Yuen [P. Yuen 83] showed that there might exist some states for which the correlation
term in equation [? ] might be negative. A set of states he names as ’Twisted Coherent
States’ |µναω〉 are eigenstates of the operator µâ+νâ†, with arbitrary ω of unit sec−1

and |µ|2 − |ν|2 = 1. The twisted coherent states are written in the position space as

〈x|µναω〉 =

(
mω

πh̄|µ− ν|2

) 1
4
exp

−mω2h̄

1 + iξ

|µ− ν|2

x− ( 2h̄

mω

) 1
2
α1

2

+ i

(
2mω

h̄

) 1
2
α2

x− ( 2h̄

mω

) 1
2
α1

 (2.41)

(µâ + νâ†) |µναω〉 = (µα + να∗) (2.42)

where ξ = Im(µ∗ν), α = α1 + iα2, and α1, α2 are real. Here, the operator â is adopted

from the annihilation operator of harmonic oscillators, and defined for a mass m with

position x and momentum p as [P. Yuen 83]

â = x
(mω

2h̄

) 1
2

+ ip(2h̄mω)
1
2 ,[â, â†] = 1 (2.43)

Then the free Hamiltonian can be written as

H =
p2

2m
=

1

2
h̄ω

(
â†â− 1

2
â2 − 1

2
â†2 +

1

2

)
. (2.44)

Under these conditions, the state |µναω〉 shows following properties

〈x̂〉 = (
2h̄

mω
)

1
2α1, 〈p̂〉 = (2h̄mω)

1
2α2 (2.45)

〈∆2x〉 =
2h̄ζ

mω
, 〈∆2p〉 = 2h̄mωη (2.46)

ζ =
|µ− ν|2

4
, η =

|µ+ ν|2

4
, ζη =

1 + 4ξ2

16
(2.47)

〈∆x̂∆p̂−∆p̂∆x̂〉 = 2ξh̄ (2.48)

〈p̂2〉
2m

= h̄ω(α2
2 + η), (2.49)

〈∆2x̂(t)〉 =
2h̄

m

(
ζ

ω
− ξt+ ηωt2

)
. (2.50)

Thus, the position uncertainty of the TCS has a quadratic dependence on time, with
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a minima at

tm =
ξ

2ηω
, (2.51)

giving ∆2x(tm) =
2h̄tm
m

1

8ξ
(2.52)

for ξ ≥ 0.

Thus, for a ξ ≥ 0, the TCS show a reduction in its position uncertainty for some

time. Yuen calls Contractive States, and he argues that for large ξ, their uncertainty

at time t can be made arbitrarily small thereby violating the SQL. One just has to

make the second measurement before the time t = 2tm.

However, to bring the free mass into a contractive state at t = 0, Yuen suggests

a set of Gordon-Louisell measurements, of a class whose validity in under question.

Gordon Loisell measurements are represented by operators of the form
∣∣ψM〉 〈ψS∣∣

and will bring the system to the state
∣∣ψM〉 after the measurement with probability∣∣〈ψS∣∣ψS〉∣∣2. However, due to being a measurement of a non self-adjoint operator, not

everyone accepts their validity.

2.3 Caves’s redifination of the SQL

Regardless of whether or not Gordon-Louisell measurements exist, Yuen had found a

serious flaw in the derivation of the SQL. Following that, Caves gave a new formulation

of the SQL that holds for specific models of measurement. He gave the following

definition of the SQL[Caves 85]:

Let a free mass m undergo unitary evolution during the time τ between

two measurements of its position x, made with identical measuring appa-

ratuses; the result of the second measurement cannot be predicted with

uncertainty smaller than (h̄τ/m)1/2.

Caves defines the variance of the measurement (∆) as the error in the result, and takes

it to be the sum of the resolution (σ) of the apparatus/detector and the uncertainty
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Figure 2.1: A repetitive measurement scheme with mass ψ(x) and detector φ(Q)

of the system (∆x).

variance of the measurement = ∆2 = σ2 + ∆2x (2.53)

He assumes that after a measurement of the system by a detector of resolution σ,

the state of the system is reduced to one with the uncertainty ∆x ≤ σ. Thus, for

repeated measurement, the first measurement ensures that

∆x(0) ≤ σ (2.54)

Then, the error ∆2
2 of the next measurement of the freely evolving mass by the same

detector φ(Q) will be

∆2
2 = σ2 + ∆2x̂(τ) ≥ ∆2x̂(0) + ∆2x̂(τ) (2.55)

≥ 2∆x̂(0)∆x̂(τ) (2.56)

≥ h̄τ

m
(2.57)

Ozawa[”Ozawa” 15] points out flaws in this construction. His objection is mainly

to the assumption Caves makes about the uncertainty of the free mass after the

measurement falling below the resolution of the detector before the measurement.

In the regime of Quantum Measurement, it isn’t yet entirely clear what the results of

measurement are. It is a point of debate whether the prior state of the system caused

the measurement readout to be what it is and the subsequent state of the system

might be different because of the effect of the measurement process, or whether the

readout tells the state of the system after the measurement because the measurement
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changes the state of the system which might be in related with the readout. In areas

of computing errors, this might get even more confusing.

Ozawa thus defines two error terms related to measurement of mass position. First,

precision ε is the error of the measurement if the mass was in a position eigenstate just

before the measurement. Second, resolution σ is the deviation of the mass position

from the readout just after the measurement. For a position measurement of ψ where

the readout result is a, he gives following expressions for ε and σ

ε2(x) =

∫
da (a− x)2G(a, x) ε2(ψ) =

∫
dx ε2(x)|ψ(x)|2 (2.58)

σ2(a) =

∫
dx (a− x)2|ψa(x)|2 σ2(ψ) =

∫
da σ2(a)P (a|ψ), (2.59)

where ψa(x) is the state of the system just after the measuremen, and P (a|ψ) is the

probability of getting the readout value a:

P (a|ψ) =

∫
dxG(a, x)|ψ(x)|2, (2.60)

and G(a, x) is the normalized conditional probability density of the readout a given

that the free massm is in the position x at the time of measurement. G(a, x) = δ(x−a)

for the case of noiseless/discrete case, giving P (a|ψ) = |ψ(a)|2. With the assumption

that the mean value of the readout is equal to the mean position of the mass just

before the measurement
(∫

aP (a|ψ)da =
∫
x|ψ(x)|2dx

)
, we get the expressions

∆2 = ε2(ψ) + ∆2x(ψ) (2.61)

σ2(ψ) =

∫
daP (a|ψ)∆2x(ψa) +

∫
daP (a|ψ)(a− 〈ψa|x̂|ψa〉)2 (2.62)

where ∆ is the variance of the measurement. The proofs of these expressions are as

follows. From the equation 2.58:

ε2(ψ) =

∫
dx ε2(x)|ψ(x)|2

=

∫
dx da (a− x)2G(a, x)|ψ(x)|2

=

∫
dx da a2G(a, x)|ψ(x)|2 +

∫
dx da x2G(a, x)|ψ(x)|2 − 2

∫
dx da axG(a, x)|ψ(x)|2

(2.63)
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We have, from definitions and assumptions, including normalization of states, rela-

tions saying

∫
daG(a, x) = 1

∫
dx |ψ(x)|2 = 1∫

da a2G(a, x) = 〈a2〉
∫
dx x2|ψ(x)|2 = 〈x2〉∫

aP (a|ψ) da =

∫
x|ψ(x)|2 dx

⇒
∫
aG(a, x)|ψ(x)|2 da dx =

∫
x|ψ(x)|2 dx, 2

∫
dx da a xG(a, x)|ψ(x)|2 =

∫
x2|ψ(x)|2 dx.

Hence, 2.63 reduces to

ε2(ψ) = 〈a2〉 − 〈x2〉 (2.64)

= 〈a2〉 − 〈a〉2 − 〈x2〉+ 〈x〉2

= ∆2 −∆2x(ψ)

⇒ ∆2 = ε2(ψ) + ∆2x(ψ).

Following a similar procedure for the resolution, we can write

σ2(ψ) =

∫
daP (a|ψ)

∫
dx (a− x)2|ψa(x)|2

=

∫
da dx a2P (a|ψ)|ψa(x)|2 +

∫
da dx x2P (a|ψ)|ψa(x)|2 − 2

∫
da dx aP (a|ψ)x|ψa(x)|2

=

∫
da dx a2P (a|ψ)|ψa(x)|2 +

∫
da dxP (a|ψ) 〈x2(ψa)〉 −

∫
da dxP (a|ψ) 〈x(ψa)〉2

+

∫
da dxP (a|ψ) 〈x(ψa)〉2 − 2

∫
da dx aP (a|ψ)x|ψa(x)|2

=

∫
daP (a|ψ)∆2x(ψa) +

∫
daP (a|ψ)(a− 〈ψa|x̂|ψa〉)2

With these definitions Ozawa shows that in the second measurement at the time τ is

∆2
2(τ, ψ, a) = ε2(Uτψa) + ∆2x(Uτψa), (2.65)

where Uτψa is the state of the mass after evolving freely for time τ after the first

measurement. Caves argues that since we do not know what the readout of the first

measurmene will be, one must average the error in the second measurement over
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all the possible values of the readout to predict the SQL. That is, take the average

uncertainty in the second measurement:

∆2
2(τ, ψ) =

∫
daP (a|ψ)ε2(Uτψa) +

∫
daP (a|ψ)∆2x(Uτψa) (2.66)

Ozawa shows that if σ2(ψ) ≤ [ε2(Uτψa)], where the brackets [] signifies an average

over all possible readout values a, then the SQL given by Caves holds:

[ε2(Uτψa)] ≥ σ2(ψ) (2.67)

=

∫
daP (a|ψ)∆2x(ψa) +

∫
daP (a|ψ)(a− 〈ψa|x̂|ψa〉)2

≥
∫
daP (a|ψ)∆2x(ψa) = [∆2x(ψa)] (2.68)

⇒ ∆2
2 = [ε2(Uτψa)] + [∆2x(Uτψa)] (2.69)

≥ [∆2x(ψa)] + [∆2x(Uτψa)] (2.70)

≥ 2∆x(ψa)∆x(Uτψa) (2.71)

≥ [x̂(0), x̂(τ)] (2.72)

=
h̄τ

m
(2.73)

Caves demonstrates the validity of this SQL for Von Neumann’s approximation mea-

surement model. Here, I present his measurement scheme in the framework given

by Ozawa. Keeping with the Von Neumann model of approximate measurements,

consider the system ψ in the Hilbert space {x, p} and the detector φ in {Q,P} to be

entangled at t = −τ̃ until t = 0 under the impulse approximation by the Hamiltonian

H = kx̂P̂, (2.74)

where k = 1
τ̃
. Assume that

〈
φ
∣∣∣Q̂∣∣∣φ〉 =

〈
φ
∣∣∣P̂∣∣∣φ〉 = 0. As seen before, first measure-

ment then results in the transformation,

Ψ(x,Q, t = −τ̃) = ψ(x)φ(Q)⇒ Ψ(x,Q, t = 0) = ψ(x)φ(Q− x) (2.75)

If Q is the readout of the measurement of the detector, then, by the Hamiltonian
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above, we have

Q =

∫
dQdx Q̂|Ψ(x,Q− x)|2 (2.76)

=

∫
dQdx Q̂|ψ(x)|2|φ(Q− x)|2 (2.77)

=

∫
dQdx (Q− x)|ψ(x)|2|φ(Q− x)|2 (2.78)

=

∫
dQdxQ|ψ(x)|2|φ(Q− x)|2 −

∫
dQdxQ|ψ(x)|2|φ(Q− x)|2 (2.79)

=

∫
dQdxQ|ψ(x)|2|φ(Q− x)|2 (2.80)

= 〈x〉0 (2.81)

The same relation can be obtained by Heisenberg Equation of Motion. The variance

of measurement (∆2
1) can also be calculated by the Heisenberg Equation of Motion.

Q̂(0) = Q̂(−τ̃) + x̂(−τ̃) (2.82)

⇒ ∆2Q̂(0) = ∆2Q+ ∆2x̂(−τ̃) = ∆2
1, (2.83)

Where we have taken the initial variance in Q as ∆2Q. Thus, we find

ε2(ψ) = ∆2Q (2.84)

The same result can be arrived at by following the procedure in the proof of the

precision and recognizing that G(a, x) =
∣∣Ψ(Q− x)

∣∣2, P (Q|ψ) =
∣∣φ(Q− x)

∣∣2, and

that the posterior state ψQ(x) is ψ(x) itself. We get the resolution to be

σ2(ψ) =

∫
dQP (Q|ψ)∆2x(ψ) +

∫
dQP (Q|ψ)(Q−

〈
ψ
∣∣∣̂(x)

∣∣∣ψ〉)2 (2.85)

=

∫
dQx2 P (Q|ψ) +

∫
dQQ

2
P (Q|ψ)−

∫
dQx2 P (Q|ψ) (2.86)

= ∆2Q (2.87)

Thus, the condition 2.67 given by Ozawa is met as ε = σ = ∆Q for the model of Von

Neumann measurement. And, thus, the SQL holds for Von Neumann’s measurement

model. However, Ozawa holds that it is not at all obvious that this condition will be

met by every measurement protocol[”Ozawa” 15]. He gives his own Hamiltonian to
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beat the SQL.

2.4 The Hamiltonian by Ozawa for Beating the

SQL

In his paper Realization of Measurement and the Standard Quantum Limit[”Ozawa” 15],

Ozawa proves that every Gordon Louisell measurement is realizable by the standards

given by Von Neumann. He also gives a Hamiltonian that realizes a Gordon-Louisell

Measurement of the type envisoned by Yuen that leaves the free mass in contractive

state. For a particle ψ in Hilbert Space {x, p} and the detector φ in space {Q,P}, he

proposes an entanglement given by the Hamiltonian

H =
kπ

3
√

3

(
2
(
x̂P̂− p̂Q̂

)
+
(
x̂p̂− Q̂P̂

))
. (2.88)

Solving this evolution the help of Heisenberg Equation of Motion, we find

Q̂(t) = Q̂(0)

(
cos

kπt

3
− 1√

3
sin

kπt

3

)
+

2√
3
x̂(0) sin

kπt

3
(2.89)

x̂(t) = x̂(0)

(
cos

kπt

3
+

1√
3

sin
kπt

3

)
− 2√

3
q̂(0) sin

kπt

3
(2.90)

From these equations, we can derive the operators at time t = 0 in terms of opeartors

at time t, and find the state of the composite system Ψ(x,Q, t) to be

Ψ(x,Q, t) = ψ

(
2√
3

(
x sin

(1− kt)π
3

+Q sin
kπt

3

)(
φ

(
2√
3

(
Q sin

(1 + kt)π

3
− x sin

kπt

3

))
⇒ Ψ(x,Q, t = τ = 1/k) = ψ(Q)φ(Q− x)

Therefore, we can see that for this measurement, we have G(Q, x) = δ(Q − x) and

P (Q|ψ) =
∫
dx
∣∣Ψ(x,Q, t)

∣∣2 =
∣∣ψ(Q)

∣∣2, which means ε(ψ) = 0. Ozawa argues that

if the probe is initially prepared in a contractive state |µνaω〉 such that before the

coupling is turned on, 〈Q〉 = a = 0 and 〈P 〉 = 0, then the posterior state of the free

mass after the measurement is given by
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ψ(x|Q) =

[
1

P (Q|ψ)

]1/2

Ψ(x,Q) (2.91)

=

[
ψ(Q)

ψ(Q)

]
φ(Q− x) (2.92)

= C
〈
x
∣∣µνQω〉 (2.93)

which is now a contractive state. Then, by the analysis given by Yuen, and the

fact that the precision of the measurement is zero and cannot be greater than the

average uncertainty of the free mass after the measurement which runs counter to the

condition 2.67 given by Ozawa for the SQL to hold, the SQL is beaten.

In his paper defending the SQL after Yuen’s Contractive State paper was published,

Caves concedes that he does not prove the SQL, but rather, demonstrates it for

a certain type of measurements, namely the Von Neumann model for approximate

measurement. He asserts that to beat the SQL, one must look at other types of inter-

actions, interactions that follow Hamiltonians which don’t utilize linear relationships

observed in Von Neumann’s model. However, as Caves points out, in such models,

it is often difficult to ascertain just what is being measured [Caves 85]. Ozawa’s

Hamiltonian, however, uses the type of linear relationship witnessed in Von Neumann

measurement model, and is used to beat the SQL by realizing a Gordon-Louisell

measurement (this interaction doesn’t conserve momentum of the particle-detection

system either, however[Kosugi 10]). Thus, it would seem there is at least one protocol

for measurement that can beat the SQL.

We are near the end of the literature review necessary for this thesis. But before going

on to discuss the idea of using two entangled particles to beat the SQL, we must first

introduce ourselves with a closely related field of QND measurements.

2.5 Quantum Nondemolition Measurements and Back-

action evading measures

Apart from the Hamiltonian given by Ozawa, there exist other methods to beat the

SQL (including one given by Kosugi [Kosugi 10], which incidently also conserves the
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momentum of the system during the measurement process). However, most of these

methods employ more than one detectors to interact with the system during the

measurement, which almost always means that one of the detectors performs the

actual measurement, while the subsequent detector interactions prepare the state

for the subsequent measurement[”Ozawa” 15],[Ni 86]. While these setups may be

necessary and optimal for some experiments, they do not, in theory, invalidate the

SQL, which insists on similar measurements and free evolution of the system.

Another field that is closely related to the topic of the SQL and precision measure-

ments is Quantum Nondemolition methods and Backaction Evading measurements.

Seeing as we have done that the SQL depends on the commutator [x̂(0), x̂(t)], and

that this commutator isn’t zero due to the presence of p̂(0) in the expression for x̂(t),

it is important to note that position is not only observable whose conjugate interfers

in its subsequent measurement. The commutator of the type
[
Â(0), Â(t)

]
belongs

to the field of Quantum Nondemolition Measurements (QND Measurements). The

observable Â for which the commutator

[x̂(0), x̂(t)] = 0 ∀ t (2.94)

is called a QND observable. And the observables for which this commutator is zero at

certain times are called Stroboscopic QND observables[Bahrami 14], measurements

of which need to be done very quickly at the prescribed times in order to evade

backaction from the conjugate observables.

Given that continuous QND variables exist, it is obvious that not all conjugate vari-

ables interfer with the measurement of their cojugate. For instance, position of a

particle does not give any back action to its momentum measurement, and hence,

the commutator [p̂(0), p̂(t)] = 0, which makes the momentum of a free particle a

continuous QND variable.

To better demonstrate stroboscopic QND observables and back action evding mea-

sures, let us take the example of a a Simple Harmonic Oscillator We can write the
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evolution of position and momentum for an SHO with frequency ω and mass m as

x̂(t) = x̂(0) cosωt+
p̂(0)

mω
sinωt (2.95)

p̂(t) = −mωx̂(0) sinωt+ p̂(0) cosωt (2.96)

Here, we find that

[x̂(0), x̂(t)] = i
sinωt

mω

= 0 when sinωt = 0.

∆2x(t) = ∆2x(0) cos2 ωt+
∆2p(0)

m2ω2
sin2 ωt

+
sinωt cosωt

mω
〈∆x(0)∆p(0) + ∆p(0)∆x(0)〉

= ∆2x(0) when sinωt = 0.

(2.97)

Thus, the operators x̂(0) and x̂(t) commute at the times when sinωt = 0. They share

all their eigenstates, and therefore, their uncertainties are equal. Thus, there is no

back action from the momentum of the particle affecting the position measurement

at these times. This makes the position of a SHO a stroboscopic observable. And

when we examine the quadratures of the Oscillator, we find that

X1(t) =
â†(t) + â(t)√

2
=

â†(0)eiωt + â(0)e−iωt√
2

X2(t) =
â†(t)− â(t)√

2
=

â†(0)eiωt − â(0)e−iωt√
2

,

where â is the annihilation operator of the Oscillator and ω is the frequency. Thus,

we find that the two conjugates X1 and X2 do not appear in the time evolution of

each other, thereby allowing us measure one quadrature as precisely as we want at the

expense of increasing the uncertainty in the other quadrature but evading any back

action thereof. Thus, these measurements can be classified as backaction evading

measurements.

After a long and arduous background review, we are finally in a position to get on with

explorations of using two mass systems to beat the SQL, or rather, using two mass

systems to engineer QND and backaction evading measures. For this, we proceed to
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the next chapter.
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Chapter 3

Entanglement to beat the SQL

Introduction

The study of Quantum Metrology is both theoretic and experiment intensive. There

is often assymetric development across the board of theoretic knowledge and exper-

imental ability, especially in Quantum Mechanics. For the purpose of beating the

SQL by using entangled systems of two particles, I have made a few assumptions,

the motivations and justifications for which I shall provide in the next section. Does

this approach then indeed beat the SQL or is it only classified as backaction evading

and/or stroboscopic QND measurements, I shall leave for the reader (and my thesis

comitee) to decide.

3.1 Assumptions and their Justifications

We have examined two subfields of Quantum Metrology. The field of the Interfer-

ometers and the Shot Noise Limit, and the field of the Standard Quantum Limit in

monitoring mass position. In both the cases, we are concerned with measurement.

In both the cases there are detectors and the systems to be measured; in the context

of the Interferometer, the photons are the detectors, as they are interacting with the

Interferometer and getting entangled with the position of its mirrors, and the mirror

or the arms of the Interferometer, or the Interferometer itself, is the system to be

measured.
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From this comparison, one thing discrepency jumps out. While the debate over the

SQL was concerned with only one system, indeed, even when there might be more

than one detector, there was only one system to be measured, there are two masses,

namely the mirrors, whose position is being measured in the Interferometers. As

Quantum Metrology is the science of using quantum correlations to reduce errors in

measurements, it is natural to ask what correlations or entanglements between these

two particles can we engineer to reduce measurement error.

In the following chapter, I give four such entanglements that are seen to bring the error

of the second measurement below the derived SQL for two unentangled particles. My

first assumption is that the measurements of these particles by the detectors follows

the Impulse Approximation, which here means that in excluding the free evolution of

the particles, the measurement protocol will also exclude the entanglement between

the particles. I feel that this is an appropriate assumption given that we can control

the timespan of the measurement process (in theory), and can also set the strength

of the coupling between our two particles.

My second assumption is about what signifies a free system. As we have seen, the

SQL is defined for one particle. A Hydrogen atom travelling freely in space is a

free particle, but the sole proton and the electron that form it, when taken saper-

ately, aren’t free particles. One can argue that the position of the center of mass of

these two particles is evolving freely, that is, its momentum is conserved. Thus the

coupled system of the proton and electron, which is they Hydrogen atom, is a free

system. However, in the entanglements I have taken, the momentum of the center of

mass isn’t always conserved. But the same is true for Von Neumann’s approximate

measurement model, Arthurs and Kelly’s general protocol to measure position and

momentum simultaneously, and Ozawa’s Hamiltonian given to beat the SQL. Hence,

I have tailored the intuitive definition of a free system to say ”the system is free if the

environment does not appear in the Hamiltonian of the system”, rather than basing

it on the momentum of the center of mass.

However, the question still remains of whether these types of system beat the SQL. If

we take two particles ψ1 and ψ2 with variables {x1, p1} and {x2, p2} respectively, and

set up a detector φ with variables {x, p} to measure the position difference x2 − x1

46



between them (taking after what the Interference pattern of a coherent state input in

the Interferometer tells us) by taking the interaction Hamiltonian between them to

be

H = k (x̂2p̂− x̂1p̂) , (3.1)

we find

x̂(τ = 1/k) = x̂(0) + (x̂2(0)− x̂1(0)) (3.2)

x̂1(τ) = x̂1(0) (3.3)

x̂2(τ) = x̂2(0) (3.4)

∆2x(τ) = ∆2
1 = ∆2x(0) + ∆2x1(0) + ∆2x2(0) (3.5)

⇒ ε2(ψ1, ψ2) = ∆2x = σ(ψ1, ψ2) ≥ [∆2x1(0)] + [∆2x2(0)] (3.6)

⇒ ∆2
2 = [ε(Uτψ1ψ2)] + [∆2x1(ψ1)] + [∆2x1(ψ2)] (3.7)

≥ [∆2x1(0)] + [∆2x2(0)] + [∆2x1(τ)] + [∆2x1(τ)]

≥ 2h̄τ

m
(3.8)

Thus, for two particles, the SQL to be beaten is 2h̄τ/m, twice the limit for one mass.

The same limit is arrived at even if we use two different detectors to measure the

positions of the two particles. However, the SQL as formulated by Caves insists on

free evolution of the mass between measurements, and indeed, methods where this free

evolution is not allowed are judged to not violate the SQL. And so, in our formalism of

two entangled particles, where we have seen that the two particles taken individually

do not undergo free evolution, the question of whether my methods beat the SQL as

given by Caves, I leave for the reader to decide. These methods however, certainly

beat the SQL for two particles as derived in 3.8. Now I shall detail these methods.

3.2 Entangled Systems to beat the SQL

The first entanglement I consider is modeled after Von Neumann’s approximation

model. I assume two particles ψ1 and ψ2 with variables {x1, p1} and {x2, p2} respec-
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tively to be entangled according to the Hamiltonian

H =
p̂2

1

2m
+

p̂2
2

2m
+ kx̂2p̂1, (3.9)

where I have assumed that the two particles have equal masses for simplicity. As

promised, the Hamiltonian only has terms concerning to the two particles taken, and

the environment isn’t present, so by my assumption, this is taken as a free and isolated

system. The positions of these two particles then evolve as following

x̂1(t) = x̂1(0) +
t

m
p̂1(0) + k t x̂2(0) +

k

m

(
1

2
t2p̂2(0)− 1

6
k t3p̂1(0)

)
(3.10)

x̂2 = x̂1(0) +
t

m
p̂2(0)− k t2

2m
p̂1(0) (3.11)

⇒ |[x̂1(0), x̂1(t)]| = h̄t

m
− h̄k2t3

6m
(3.12)

⇒ |[x̂2(0), x̂2(t)]| = h̄t

m
(3.13)

From equation 2.72, we know that the commutator of the position operators at time

0 and t decides the SQL. From equations 3.12 and 3.13, we see that the commutator

we are concerned with for the first particle goes to zero at time t =
√

6/k, whereas

the same commutator for the second particle does not go to zero at all after t = 0.

But there is a bigger problem here. If we write the position uncertainty terms of the

first mass (we don’t need to do this for the second mass as we already know that it is

not going to beat the SQL), we find

∆2x1(t) = ∆2X1 +
t2

m2
∆2P1 + k2t2∆2X2 +

k2

m2

(
1

4
t4∆2P2 +

1

36
k2t6∆2P1

)
+ (∆X1∆P1 + ∆P1∆X1)

(
t

m
− k2t3

6m

)
+
k2t3

6m
(∆X2∆P2 + ∆P2∆X2), (3.14)

where X = x̂(0) and P = p̂(0) for the respective particles. Comparing this with the
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uncertainty of the free particle

∆2xfree(t) = ∆2X +
t2

m2
∆2P +

t

m
(∆X∆P + ∆P∆X)

∆2x1(t)−∆2xfree(t) = k2t2∆2X2 +
k2t4

4m2
∆2P2 +

k2t3

2m
(∆X2∆P2 + ∆P2∆X2)

+
k4t6

36m2
∆2P1 −

k2t3

6m
(∆X1∆P1 + ∆P1∆X1), (3.15)

we find that the entanglement has added randomness to the picture. However, since

it is clear that the second particle is not going to break the SQL as a free mass, we

can take liberties with it. Remembering Yuen’s contractive states, if we prepare the

second particle in a contractive state, then we can reduce the contribution of the

second particle in the uncertainty of the first particle as much as we want, and the

equation 3.15 reduces to

∆2x1(t)−∆2xfree(t) ≥
k2t2

2m

1

16ωη
+

k4t6

36m2
∆2P1 −

k2t3

6m
(∆X1∆P1 + ∆P1∆X1),

(3.16)

This equation then can go below zero, but only for specific values of ∆2p1(0) and that

of the correlation term of the first particle. As p̂ is a continuous QND variable, it

is easy to establish its value and uncertainty for a free mass without disturbing the

system too much, but the correlation term might be harder to keep track of. Thus,

this entanglement will not break the SQL as a general case, but only if the correlation

term is known. Also, in an interferometer, if such a scheme were to be realized, a

total of four particles must be used, two pairs of entanglements as detailed above. In

all, this has not been a very satisfactory result.

The next entanglement I consider is similar to the previous one. The Hamiltonian is

given by

H =
p̂2

1

2m
+

p̂2
2

2m
+ k(x̂1p̂2 − x̂2p̂1) (3.17)
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The two particles evolve as

x̂1(t) = x̂1(0) cos k t− v̂2(0) sin k t+
t

m
(p̂1(0) cos k t− p̂2(0) sin k t) (3.18)

x̂2(t) = x̂1(0) sin k t+ v̂2(0) cos k t+
t

m
(p̂1(0) sin k t+ p̂2(0) cos k t) (3.19)

⇒ |[x̂1(0), x̂1(t)]| = |[x̂2(0), x̂2(t)]| = t

m
cos kt = 0 when cos kt = 0 (3.20)

So we see that the time evolution commutator for position of both particles goes to

zero at the same time. But again, the uncertainties of the particles compare with the

uncertainty of the free particle with a twist.

∆2x1(t)−∆2xfree(t) = [(∆2X2 −∆2X1) +
t2

m2
(∆2P2 −∆2P1)

+
t

m
((∆X1∆P1 + ∆P1∆X1)− (∆X2∆P2 + ∆P2∆X2))] sin2 kt

(3.21)

∆2x2(t)−∆2xfree(t) = −(∆2x1(t)−∆2xfree(t)) (3.22)

We see that only one of the particles can have reduced uncertainty than the unentan-

gled case at a time. Again, only one of the particles can beat the SQL at a time, and

like the picture before, the Interferometer again would need four particles. However,

this time we have a lot of control over the reduction, in that the reduction in the

uncertainty of the target particle can be reduced to arbitrary levels by increasing the

initial uncertainty in the accompanying particle.

The third Hamiltonian I have considered is a quantumm analog of two particles on a

spring.

H =
p̂2

1

2m
+

p̂2
2

2m
+ k(x̂1 − x̂2)2 (3.23)

=
p̂2

+

2m
+

p̂2
−

2m
+ kx2

−, (3.24)

where p+ = p1+p2√
2

and p− = p1−p2√
2

, and a similar relationship for the position variables.

The coordinate frame transform helps us ignore the motion of the center of mass and

focus on the motion of the particles with respect to the center of mass, which makes

the calculations easier (It also tells us that the momentum of the center of mass is
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conserved in this entanglement).

The system then evolves as

x̂+(t) = p̂+(0) +
t

m
p̂+(0) (3.25)

x̂−(t) = x̂(0) cosω t+
1

m
p̂−(0)

sinω t

ω
, where ω =

√
k

m
(3.26)

x̂1(t) =
1

2
x̂1(0)(1 + cosω t) + x̂2(0)(1− cosω t) +

p̂1(0)

m

(
t+

sinω t

ω

)
+

p̂2(0)

m

(
t− sinω t

ω

)
(3.27)

x̂2(t) =
1

2
x̂1(0)(1− cosω t) + x̂2(0)(1 + cosω t) +

p̂1(0)

m

(
t− sinω t

ω

)
+

p̂2(0)

m

(
t+

sinω t

ω

)
(3.28)

⇒ |[x̂1(0), x̂1(t)]| = |[x̂2(0), x̂2(t)]| = 1

2m

(
t+

sinω t

ω

)
≥ 1

2m

(
t− 1

ω

)
.

(3.29)

Thus, we see that both the particles, while either one not being stroboscopic QND

variables, beat the SQL at times when sinω t ≤ 0. And the problems with that arose

in the previous pictures do not arise here.

∆2x1(t)−∆2xfree(t) =
1

4
(cos2 ωt+ 2 cosωt− 3)∆2X1 +

1

4
(cos2 ωt− 2 cosωt− 3)∆2X2

+
1

m2

(
sinω t

ω
+ 2t

)
sinω t

ω
∆P

1

+
1

m2

(
sinω t

ω
− 2t

)
sinω t

ω
∆P

2

+
1

2m

(
sinωt cosωt

ω
+

sinωt

ω
+ t cosωt− t

)
(∆X1∆P1 + ∆P1∆X1)

+
1

2m

(
sinωt cosωt

ω
− sinωt

ω
− t cosωt− t

)
(∆X2∆P2 + ∆P2∆X2)

(3.30)

If we examine the coefficients of ∆2X1, ∆2P1, ∆2X2, ∆2P2 and of the two correlation

terms in 3.30, we find that we can determine when the uncertainty of our entangled

particle will be lesser than that of the free particle. The coefficient of ∆2X1 and

∆2X2 are negative at all times. The coefficient of ∆2P1 is negative when sinωt is

negative, and that of ∆2P2 is negative when sinωt is positive. As for the correlation
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terms, both of their coefficients are negative when sinωt = 0. The result is similar for

the second particle due to the symmetry in the entanglement, except that the cases

of the correlation terms are interchanged. Thus, it is easy to identify times when

the entangled uncertainty of the particles go below the free uncertainty by knowing

what state we have prepared them in. The lowest value for the SQL determining

commutator is h̄t/2m for when ω →∞, which is an improvement over the SQL by a

factor of
√

2.

Of the three entanglements we have discussed, this one might be the most realizable

in practice, as coherent states of simple harmonic oscillators have been demonstrated

using trapped ions.[Kienzler 15]. Moreover, this entanglement, as noted before, also

conserves the momentum of the system through it’s evolution between measurements.

The last entanglement that I have considered, characterized by the Hamiltonian

H =
p̂2

1

2m
+

p̂2
2

2m
+ k(x̂1 + x̂2)2 (3.31)

H =
p̂2

+

2m
+

p̂2
−

2m
+ kx2

+, (3.32)

follows the same treatment and exhibits the same results as the previous one in terms

of position uncertainty, although I couldn’t find a classical analog for it. Maybe that

is why it doesn’t conserve momentum of the system either.

3.3 Concludig Remarks and The Future

Thus, I have derived four types of entanglements that can help us beat the SQL in

an experimental setting. The problem of how to bring the mass into a contractive

state to enjoy their contractiveness has been sidestepped by allowing for particles to

be prepared in those states at the beginning itself, which should offset any concerns

about using twice as many particles as before. For the last two Hamiltonians, even

this trick is not necessary, although it can certainly be applied if necessary.

The work in this thesis should be seen as a first step to beating the SQL, especially

in the regime of the Interferometers, and wherever there are more than one particles

being used. When I first started studying this field, reviewing the literature on In-
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terferometry and Shot Noise Limit, it struck me that the reason why we were able

to counter the Photon Counting Error and the Radiation Pressure Error was the fact

that we could see how they appeared via the quantum treatment of the evolution of

light. But we haven’t been able to do so for the SQL error in the Interferometer,

because we do not have a completely quantum treatment of the photon’s interaction

with the mirrors. That is where our next step should be. To realize position measure-

ment by a measurement of the first kind. Hopefully, once we understand more about

light particle interaction, we may have a basis for where to apply the entanglements

outlined in the previous section.

And the entanglements themselves need to be examined. This thesis was only the

first step. The next natural step is to examine real world entanglements and how we

can engineer them in the contexts of interferometers and wherever else they might be

needed. For these, particle-particle interactions need to be investigated to see what

types of entanglements they might show and how we can exploit them.

Another step one can take, and probably the easiest of all of these, is to apply such

entanglements in atom interferometry. In Atom Interferometry, the roles of light and

matter are reversed from their roles in the traditional Michelson Interferometer. Atom

waves are injected into the arms of the interferometers and light pulses are used as

Beam Splitters and mirrors. We know more about light entanglement than we do

about matter entanglement, and this should make the construction of SQL beating

entanglements and their implementation easier. After that, it might even be possible

to bring these techniques back to the traditional interferometers and beat the SQL

once and for all for all practical purposes.
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