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Abstract

In this thesis we provide an introduction to the theory of modular forms. We aim

to show two major results. The first one shows that the space of modular forms is

finite dimensional. The second result is the “Converse Theorem of Weil” on L-functions

associated to modular forms. As we go on we will encounter some very interesting

mathematical objects such as modular curves, Hecke operators and L-functions.



Introduction

A modular form of weight k is a holomorphic function on the upper half complex plane

H, such that it is invariant up to an “automorphy factor” with respect to the action

of congruence subgroups of SL2(Z) on H. This transformation law is known as the

“modularity condition”(See Section 1.1). There are two parameters associated to a

modular form – its weight and the level. The weight is determined by the automorphy

factor and the level depends on the finite index congruence subgroup with respect to

which it satisfies the modularity condition. Modular forms are “holomorphic at the

points at infinity” known as “cusps”. This means that they have a power series expansion

about 0, when viewed as a function on the unit disc (See Section 1.2). Moreover, the

modularity condition implies that these functions are periodic. This gives us a Fourier

series expansion for the function which is exactly the above power series expansion.

Modular forms are one of the central objects of interest in the area of number theory.

They are studied extensively because of the much celebrated Taniyama–Shimura conjec-

ture which highlights a deep relation between these functions and special cubic curves

known as elliptic curves. This conjecture was the key to proving Fermat’s Last Theorem.

However, the classical theory of modular forms can be traced back to the works of Jacobi

and decades later when Ramanujan introduced the famous τ–function. He studied the

product
∏∞
n=1 q(1−qn)24 which can be expanded as a q–series given by

∑∞
n=1 τ(n)qn. Ra-

manujan conjectured that the τ–function is multiplicative. Moreover he discovered that

for a prime p, the coefficients satisfy the property: τ(pn+2) = τ(p)τ(pn+1)−p11τ(pn). In

addition to the above properties, he considered the Dirichlet series
∑∞

n=1 τ(n)n−s and

believed that it has an Euler product representation.

∞∑
n=1

τ(n)n−s =
∏
p

(1− τ(p)p−s + p11−2s)−1

The answers to these remarkable results lie in the fact that the sum defined above with

τ(n) as its coefficients is a modular form. In this thesis, we aim to provide the general

theory behind such results.
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Introduction 2

To begin with, the first three chapters of the thesis is dedicated to proving that the

space of modular forms is finite dimensional. To that end, we will study modular curves.

Suppose Γ is a subgroup of SL2(Z) of finite index. A modular curve with respect to Γ is

the quotient space of orbits under the action of Γ on H. We will see that every modular

curve is in fact a Riemann surface. We will add the points at infinity called “cusps”

to the modular curve so as to make it into a compact Riemann surface. We will see

that a weight 2k modular form with respect to Γ can be viewed as a k-fold differential

form on the associated compact modular curve X(Γ). The dimension is then calculated

using the Riemann Roch Theorem in terms of the known data of the modular curve (See

Theorem 2.13.5).

The answer to the first two results related to the τ–function is dealt by the Hecke theory

of modular forms. This is developed in Chapter 3. We study the space of modular forms

via a family of normal operators called “Hecke operators” acting on it. In particular

for the space of cusp forms we find a suitable basis of orthogonal “eigenforms” for the

family of Hecke operators.

The central object of study in chapter 4 is the L-function associated to a modular form.

Here we will look for an answer to the third property of the τ–function dealing with the

Euler product expansion of the Dirichlet series, in a much more general setting. Suppose

the q–expansion of a modular form f is given by
∑∞

n=0 anq
n. We associate the Dirichlet

series to f given by the sum
∑∞

n=1 ann
−s known as its L-function. Furthermore, we will

show that the modular forms whose L-function have an Euler product expansion are

precisely the “normalized eigenforms”. (See Theorem 4.2.11).

The L-function of a cusp form can be analytically continued to the whole complex

plane. It also satisfies a functional equation. Hecke conjectured and later Weil proved

the Converse Theorem for L-functions associated to cusp forms of level N. Here we will

work with a family of “twisted L-functions.” More precisely these are Dirichlet series

of the form
∑∞

n=1 χ(n)ann
−s where χ is a suitable primitive Dirichlet charcter. Given

sufficiently many such L-series with analytic continuation and a functional equation,

along with appropriate growth conditions on the coefficients an, the Converse Theorem

guarantees that the coefficients come from a cusp form
∑∞

n=1 anq
n of level N. (See

Theorem 4.4.6).

Our main references are the books A first course in modular forms by Diamond and

Shurman[2] and Automorphic forms and representations by Daniel Bump[1].



Chapter 1

The theory of modular forms

Definition 1.0.1 (The modular group). The modular group is the group of all invertible

2 by 2 matrices with integer entries having determinant 1. We denote it by SL2(Z).

The modular group acts on the upper half complex plane, H as follows: For any γ ∈

SL2(Z) such that γ =

(
a b

c d

)
define:

γτ =
aτ + b

cτ + d
.

Lemma 1.0.2. The modular group maps the upper half plane to itself.

Proof. Easy calculations show that Im(γτ) = (ad−bc) Im(τ)
|cτ+d|2 . Since ad − bc = 1, τ ∈ H

implies that Im(τ) > 0. We therefore have that Im(γτ) = Im(τ)
|cτ+d|2 > 0.

One can easily check the following to confirm that the action defined above is in fact a

group action.

1. I(τ) = τ where I denotes the identity matrix.

2. (γγ′)τ = γ(γ′τ) for some γ, γ′ ∈ SL2(Z)

Lemma 1.0.3. The modular group is generated by the matrices:

T =

(
1 1

0 1

)
and S =

(
0 −1

1 0

)

Proof. Notice that Tn =

(
1 n

0 1

)
and S2 = −I. Let γ =

(
a b

c d

)
∈ SL2(Z). If c = 0,

then a = d = ±1 so that γ = ±T b′ where b′ = ±b. In this case, γ = T b
′

or S2T b
′
. Next,

3



Chapter 1 4

assume that c 6= 0. Observe that multiplying S with γ switches the rows with a sign

change. Therefore without loss of generality we can assume that |a| ≥ |c|, otherwise

we can multiply by S to interchange the rows. By the division algorithm, there exists

integers q and r such that a = cq + r with 0 ≤ r < c. Multiplying T−q with γ, we see

that

T−qγ =

(
a− cq b− qd
c d

)
=

(
r b− qd
c d

)

Since r < |c|, we again switch the rows by multiplying by S to get

ST−qγ =

(
−c −d
r b− qd

)

Applying the division algorithm and repeating this process, at some point the lower left

entry will become 0 and we’ll be done by the previous case. It follows that, any arbitrary

matrix in SL2(Z) is obtained by multiplying suitable powers of S and T.

The matrix T maps τ to τ + 1. In other words, it acts via translation by 1 on τ. The

second matrix takes τ to −1/τ. Under this transformation the points inside the unit

disc in the upper half plane are mapped to points outside the unit disc and vice versa.

These transformations will help us determine the fundamental domain for the action of

SL2(Z) on H in section 2.1.

1.1 Modular forms

Definition 1.1.1 (Modular form of weight k). Let k be an integer. A modular form of

weight k, for the group SL2(Z), is a function satisfying the following:

1. f is holomorphic on H.

2. (Modularity condition) For all γ ∈ SL2(Z), γ =

(
a b

c d

)

f(γτ) = (cτ + d)kf(τ) for all τ ∈ H.

3. The function f is holomorphic at ∞. We will make this precise in section 1.2.

The first example of a modular form of weight k is the zero function. In fact one can

check that for odd weights, the zero function is the only modular form.
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To check the modularity condition for all the matrices of SL2(Z) is a very tedious job.

However the modularity condition reduces to the following when we check it on the

generators.

f(τ + 1) = f(τ) and f(−1/τ) = τkf(τ) for all τ ∈ SL2(Z). (1.1.2)

The next proposition helps us to conclude that checking the modularity condition for

all the matrices in SL2(Z) is equivalent to checking the condition on the generators. We

introduce some notation first. Suppose γ =

(
a b

c d

)
∈ SL2(Z). Let (γ, τ) = (cτ + d)k.

Denote (cτ+d)−kf(γτ) by f [γ]k. The term (γ, τ) is called the automorphy factor, while

[γ]k is called the weight k operator. The modularity condition for a modular form f is

now equivalent to the following statement: f [γ]k = f.

Proposition 1.1.3. Suppose that f is a modular form of weight k and γ1, γ2 ∈ SL2(Z).

Then,

1. (γ1γ2, τ) = (γ1, γ2τ)(γ2, τ).

2. (f [γ1]k)[γ2]k = f [γ1γ2]k.

The second part, tells us that, if the modularity condition holds for two matrices then

it holds for their product as well. Therefore it is now sufficient to look at the conditions

in (1.1.2).

Proof. Part 4.4.11 is a direct calculation. To see the second part, compute that

(f [γ1]k)[γ2]k(z) = (γ1, γ2z)
−k(γ2, z)

−kf(γ1γ2c)

= (γ1γ2, z)f(γ1γ2z)

= f [γ1γ2]k

It is easy to observe that the set of modular forms of weight k form a vector space over

C with the addition defined by the usual addition of functions.

1.2 The q-expansion of a modular form

The map τ 7→ e2πiτ is a surjective holomorphic map of the upper half plane to the

punctured unit disc. This transformation will help us view modular forms as functions
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on the unit disc instead of the upper half plane. Let q = e2πiτ . Since modular forms are

periodic, it is well defined to set f̃(q) = f(log(q)/2πi) = f(τ). The function f is now

defined on the open punctured unit disc via f̃ . Note that, as τ → i∞, q → 0. We say

that the function f is holomorphic at infinity if f̃ can be analytically extended to the

whole unit disc, so that it is analytic at 0. The function therefore can be written as a

power series around 0. By abuse of notation we write:

f̃(q) = f(q) =
∑
n≥0

anq
n.

1.3 First examples

For the matrix −I, the modularity condition implies that f(τ) = (−1)kf(τ). Therefore,

for odd weights the only modular form is the 0 function. For a non-trivial example of a

modular form of weight k, consider the double sum:

Gk(τ) =
∑
m,n∈Z

(m,n) 6=(0,0)

1

(mτ + n)k

The series converges absolutely when k > 2. We see that when k > 2,

Gk(τ + 1) =
∑
m,n∈Z

(m,n)6=(0,0)

1

(mτ +m+ n)k
= Gk(τ)

The last equality comes from the fact that the series is absolutely convergent, thus we

can change the order of the sum over (m,n) to (m,m + n). One can similarly check

the second modularity condition. The series Gk(τ) is known as the Eisenstien series of

weight k. A specific example of a modular form of weight 12 is the ∆ function given by:

∆(τ) = (60G4(τ))3 − 27(140(G6))2.

The q-expansion of some Eisenstien series are given as follows:

G4(q) = 1/240 + q + 9q2 + 28q3 + 73q4 +O(q5)

G6(q) = −1/504 + q + 33q2 + 244q3 + 1057q4 +O(q5)

The q-expansion of the ∆ function is:

∆(q) = q − 24q2 + 252q3 − 1472q4 + 4830q5 +O(q6)
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Notice that the constant term a0 of the q-series for the ∆ function is 0. Such forms

are called cusp forms. These form a subspace of Mk(SL2(Z)), which we denote by

Sk(SL2(Z)).

1.4 Congruence subgroups of SL2(Z)

We saw that there are no modular forms of odd weights with respect to SL2(Z). There

are also some modular forms which satisfy the modularity condition not for the whole

group but for a particular subgroup of SL2(Z). For example, the theta function

θ(τ) =
∞∑
n=0

r(n, 4)e2πinτ

is a modular form of weight 2 with respect to the subgroup generated by the matrices:(
1 1

0 1

)
and

(
1 0

4 1

)

The coefficient r(n, 4) denotes the number of ways n can be written as a sum of four

squares. This is a non trivial result. The above fact and the fact that the space of

modular forms is finite dimensional is used to derive an explicit formula for r(n, 4). We

won’t go into the details, but this gives us enough motivation to describe some subgroups

of SL2(Z) of particular interest to us. The subgroup Γ0(N) is described by the following

set:

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣
(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
mod N

}
We also have the subgroup:

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣
(
a b

c d

)
≡

(
1 ∗
0 1

)
mod N

}

The principle congruence subgroup Γ(N) is defined as,

Γ(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣
(
a b

c d

)
≡

(
1 0

0 1

)
mod N

}

We will work with a much generalized class of subgroups. These are called the congruence

subgroups.

Definition 1.4.1 (Congruence subgroup). A subgroup Γ of SL2(Z) is a congruence sub-

group of level N if Γ(N) ⊆ Γ for some positive integer N.
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When −I /∈ Γ, modular forms of odd weights may exist with respect to Γ, unlike in the

case of SL2(Z).

Next, we move onto proving certain properties of the subgroups described above.

Proposition 1.4.2. The group SL2(Z/NZ) isomorphic to SL2(Z)/Γ(N).

This requires a small result to be proven first:

Lemma 1.4.3. Suppose (c, d,N) = 1, where (c, d,N) denotes the greatest common divisor

of c, d and N. Then there exists c′ = c + tN and d′ = d + tN for some integers s and t

such that (c′, d′) = 1.

Proof. Let c1 = (c,N) so that c = c1c2 for some c2. Now, (c2, N) = 1. This implies that

there exists u and v ∈ Z such that 1 = c2u + Nv. Let m = v − dv. Then observe the

following:

d+mN = d+ (v − dv)N

≡ 1 mod c2

using the fact that Nv ≡ 1 mod c2. Let c = c′ and d+mN = d′.

Claim 1.4.4. (c′, d′) = 1.

Suppose p | c′ and p | d′ for some prime p. Then p | c1c2 and p | (d+mN). Thus p | c1 or

p | c2 and p | (d+mN). Discard the case when p | c2 and p | (d+mN). This is because

c2 | (d + mN − 1), and so p - (d + mM). Therefore, p | c1 = (c,N) and p | (d + mN).

Thus, p | (c, d,N) = 1 proving that p = 1.

Proof of Proposition 2.8. Consider the following homomorphism:

ϕ : SL2(Z)→ SL2(Z/NZ)

such that ϕ(γ) = γ mod N . Using the lemma we will show that this map is a surjection.

Let γ =

(
a b

c d

)
∈ SL2(Z/NZ). Since c and d ∈ SL2(Z/NZ), (c, d,N) = 1. Using

Lemma 1.4.3, we can find integers c′ and d′ such that c′ ≡ c mod N and d′ ≡ d mod N

and (c′, d′) = 1. We need to find k and l such that there exists a lift of γ given by(
a+ kN b+ lN

c′ d′

)
∈ SL2(Z). That is, we want integers k and l such that the following

condition is satisfied: (a+ kN)d′ − (b+ lN)c′ = 1. This is equivalent to saying that

ad′ + bc′ + (kd′ − lc′)N = 1 (1.4.5)
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Now ad′ − bc′ = 1 + jN for some integer j. Substituting in (1.4.5), we see that, we

need integers k and l which satisfy that j = lc′ − kd′. Since c′ and d′ are co-prime, such

integers clearly exist. The kernel of the map is clearly Γ(N).

Corollary 1.4.6. The subgroup Γ(N) is normal in SL2(Z).

Proof. Being the kernel of a surjective homomorphism, this follows directly from the

proof of Proposition 1.4.2.

Proposition 1.4.7. The group (Z/NZ)∗ is isomorphic to Γ0(N)/Γ1(N).

Proof. Consider the homomorphism

ψ : Γ0(N)→ (Z/NZ)∗(
a′ b′

c′N d′

)
7→ d′ mod N

To prove that this map is a surjection, let d ∈ (Z/NZ)∗ with (N, d) = 1. This implies

that there exist integers a and b such that bd−aN = 1. Take γ =

(
b a

N d

)
. This clearly

belongs to Γ0(N) and ψ(γ) = d. The kernel of ψ is clearly Γ1(N) and so the result

follows.

The above proof also shows that Γ1(N) is normal in Γ0(N).

Proposition 1.4.8. Any congruence subgroup Γ is of finite index in SL2(Z).

Proof. Since Γ(N) ⊆ Γ for some N and [SL2(Z) : Γ(N)] is finite. Therefore, Γ has finite

index.

We further develop the definition of a modular form with respect to a congruence sub-

group. In the usual definition of a modular form, the only thing which needs more work

is the “holomorphy at ∞” condition. We develop this definition keeping in mind the

following points:

1. Since Γ(N) ⊆ Γ for some N , each congruence subgroup Γ of SL2(Z) contains

a translation matrix

(
1 h

0 1

)
for some minimal h ∈ Z+. Therefore any modular

form with respect to Γ is h-periodic and therefore by the same argument in section

1.2, there exists a corresponding function f̃ : D′ → C where D′ is a punctured

disc around 0. But now, f(τ) = q̃h where qh = e2πiτ/h. As argued before f is
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holomorphic on H and so it is analytic on D′. We define f to be holomorphic at ∞
if f̃ can be analytically extended to the whole disc. Again, we will get a Fourier

series expansion on D′ given by the following expression:

f(q) =
∑
n≥0

anq
n
h .

2. Till now we have only defined the action of SL2(Z) on the points of H. However, we

will later see that in order to make the space of modular forms finite dimensional,

we need to define the action on the point “∞” as well and adjoin its “SL2(Z)

translates” to H. These are precisely the rational numbers Q as we will see in

section 2.5. We call the set {Q} ∪∞ as cusps.

3. The crucial point to note is that we need the modular forms to be holomorphic at

cusps as well. We will prove in section 2.5 that each s ∈ Q is of the form α(∞)

for some α ∈ SL2(Z). Thus, holomorphy of f at the cusps is naturally defined in

terms of holomorphy of the function f [α]k at ∞.

4. In order to make sense of the last sentence of the previous point note that for

any δ ∈ SL2(Z), δ−1Γ(N)δ = Γ(N) by Corollary 1.4.6. This implies that Γ(N) ⊆
α−1Γα for some N. Thus, α−1Γα is a congruence subgroup. Notice that f [α]k

satisfies the modularity condition with respect to the subgroup α−1Γα since for

any γ ∈ Γ, (f [α]k)[α
−1γα]k = f [α]k By the argument in 1, holomorphy at ∞ of

the function f [α]k is precisely defined.

Definition 1.4.9. (Modular form with respect to Γ) Let Γ be a congruence subgroup of

SL2(Z) and let k be an integer. A function f : H → C is a modular form of weight k

with respect to Γ if

1. f is holomorphic on H.

2. f satisfies the modularity condition for all matrices in Γ.

3. The function f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

In addition, if a0 = 0 in the Fourier expansion of f [α]k for all α ∈ SL2(Z), then f is a

cusp form of weight k with respect to Γ.

For a modular form f with respect to SL2(Z), condition 3 in the above definition is

reduced to the usual definition of “holomorphy of f” at∞. We denote the set of modular

forms with respect to Γ as Mk(Γ) and similarly, the cusp forms as Sk(Γ).

The following proposition is useful in checking the third condition mentioned in the

above definition of modular forms.
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Proposition 1.4.10. Let Γ be a congruence subgroup of SL2(Z) of level N, and let qN =

e2πiτ/N for τ ∈ H. Suppose that the function f : H → C satisfies conditions 1 and 2

in definition 1.4.9. In the Fourier expansion f(τ) =
∑∞

n=0 anq
n
N , let the coefficients for

n > 0 be such that |an| ≤ Cnr for some positive constants C and r. Then f also satisfies

condition 3 in definition 1.4.9. Therefore, f ∈Mk(Γ).

Proof. For every α ∈ SL2(Z), the function (f [α]k)(τ) is holomorphic and weight k

invariant with respect to the subgroup α−1Γα. As pointed out in the above discussion,

we get a Laurant series expansion about 0.

f([α]k)(τ) =

∞∑
n∈Z

a′nq
n
N

In order to show that f [α]k is holomorphic for all α ∈ SL2(Z), we show that the Laurant

series truncates from the left to give a power series. This amounts to showing that

limqN→0 |f [α]k(τ)qN | = 0. To that end, we begin by estimating the function f. Since

f =
∑∞

n≥0 anq
n
N , and |an| ≤ Cnr writing τ = x+ iy, observe that,

|f(τ)| ≤ |a0|+ C
∞∑
n=1

nre−2πny/N . (1.4.11)

Consider the function g(t) = tre−2πty/N . A little bit of calculus shows that g has only

one maximum at t = rN/2πy. Also, g(0) = 0. So the graph of g increases from 0 to

rN/2πy and then decays to 0. We estimate the sum in (1.4.11) using the area under the

curve of the function g. Suppose g(t0) = rN/2πy such that t0 lies between the integers

d and d+ 1. Then the graph of the function g helps us conclude that,

|f(τ)| ≤ |a0|+ C(e−2πy/N + · · ·+ dre−2πdy/N + (d+ 1)re−2π(d+1)y/N + . . . )

≤ |a0|+ C

(∫ ∞
0

g(t)dt+ (d+ 1)re−2πi(d+1)y/N

)
= |a0|+ C

(∫ ∞
0

g(t)dt+ (rN/2πy)re−r
)

This implies that |f(τ)| ≤ |a0|+C ′(
∫∞

0 g(t)dt+ (1/y)r) for some constant C ′. Next, we

estimate the integral of g(t) from 0 to ∞.∫ ∞
0

g(t) =

∫ ∞
0

tre−2πyt/Ndt

Writing x = 2πyt/N and doing a change of variable we arrive at the following integral:

(N/2πy)r+1

∫ ∞
0

xre−xdx
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The integral in the above expression is the Gamma function denoted by Γ(r) and for a

positive integer r it takes the value (r+1)! We will talk more about the Gamma function

in section 4.1.

It now follows that
∫∞

0 g(t)dt = O(1/yr+1). Combining all the observations we land

up with the following inequality for some positive constants c0 and c1: |f(τ)| ≤ c0 +

c1/(Im τ)r. Moreover this implies that,

|f(ατ)| ≤ c0 + c1/(Im(ατ))r (1.4.12)

Using this and the formula for Im(ατ) in the proof of Lemma 1.0.2, we compute:

lim
qN→0

|f [α]k(τ)qN | = lim
qN→0

|(α, τ)−kf(ατ)qN |

= lim

∣∣∣∣c0(α, τ)−k + c1(α, τ)|2r−k
∣∣∣∣e−2πy/N

Notice that |(α, τ)| = O(y2). Using the fact that exponential decay dominates polyno-

mial growth, and observing that as qN → 0, y → ∞, we see limqN→0 |f [α]k(τ)qN | = 0.

The result now follows.

1.5 Meromorphic modular forms

As the name suggests these are meromorphic functions on the upper half plane satisfying

the same properties as holomorphic modular forms. Meromorphy at ∞ means that

the function is now allowed to have a pole at infinity and so f has a Laurant series

expansion around 0. To make this precise: Let h ∈ Z+ be the smallest number such that(
1 h

0 1

)
∈ Γ. Since f satisfies the modularity condition with respect to Γ, it has period

h. Suppose f has no poles in the region {τ ∈ H | Im(τ) > c}. Then f has a Laurant

series expansion in the corresponding punctured disk about 0:

f̃(q) =
∞∑

n=−∞
anq

n
h ; Im(τ) > c (1.5.1)

The function f is defined to be meromorphic at ∞ if f̃ is meromorphic at 0, that is, the

series in 1.5.1 truncates from the left. Meromorphy at the cusps is defined in a similar

fashion as done previously.

Definition 1.5.2. (Meromorphic modular forms) Let Γ be a congruence subgroup of

SL2(Z) and let k be an integer. A function f : H → C is a modular form of weight k

with respect to Γ if
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1. f is meromorphic on H.

2. f satisfies the modularity condition for all matrices in Γ.

3. The function f [α]k is meromorphic at ∞ for all α ∈ SL2(Z).

One of the first examples of a meromorphic modular form of weight 0 is the j function.

It is given by the following expression:

j(τ) = 1728
(60G4)3

∆
(τ). (1.5.3)

The first few terms of the q-expansion of the j are:

j(q) = q−1 + 744 + 196884q + 21493760q2 +O(q3) (1.5.4)

Notice that the j function is of weight 0, that is, it is SL2(Z) invariant. It follows that,

it is a well defined function on the space SL2(Z)/H. This space is called a modular curve

of level 1. We denote it by Y (1). We will elaborate more on modular curves in the next

section.

The set of meromorphic modular forms of weight k with respect to the subgroup Γ also

form a vector space. We denote it by Ak(Γ). It contains the subspace of holomorphic

modular forms which we denote by Mk(Γ).
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Modular curves and the

dimension theory

Throughout this chapter Γ dentotes a subgroup of SL2(Z) of finite index.

Definition 2.0.1 (Modular curves). Define a modular curve Y (Γ) to be the quotient of

the upper half plane under the action of Γ.

Two points τ and τ ′ are in the same orbit if and only if there exists some γ ∈ Γ such

that γτ = τ ′. We give Y (Γ) the quotient topology via the map Π : H → Y (Γ). This

means that U ⊂ Y (Γ) is open if and only if Π−1(U) is open in H. Note that Π is an

open map.

We next state a very important proposition and its consequences which we will use

extensively later.

Proposition 2.0.2. Let τ1 and τ2 ∈ H be given. Then there exist neighborhoods U1 of τ1

and U2 of τ2 in H with the property that for any γ ∈ SL2(Z), γ(U1) ∩ U2 6= ϕ implies

that γ(τ1) = τ2.

In simple words, when we take τ1 = τ2 and U1 = U2, the above proposition guarantees the

existence of a neighborhood for every point τ ∈ H, in which it is the sole representative

of its Γ-orbit. As a direct consequence we have that:

Corollary 2.0.3. Let τ ∈ H. For any γ ∈ SL2(Z), there exists a neighborhood U such

that γU ∩ U 6= ϕ implies that γ belongs to Γτ , where Γτ denotes the stabilizer of τ in

SL2(Z).

In order to prove the proposition, we need a small lemma.

Lemma 2.0.4. For any compact sets A and B ∈ H, the set S = {γ ∈ Γ | γA∩B 6= ϕ} is

finite.

14
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Proof. Let A and B be compact subsets of H. Then the set {Im τ | τ ∈ B} ⊆ [c1, c2]

in R with c1 > 0. Suppose that τA ∈ A and τB ∈ B such that γτB = τA. Then

Im(τA)/|cτA + d|2 = Im(τB) ≥ c1. We also have that,

Im(τA) ≤ Im(τB)|cτA + d|2 ≤ c2|cτA + d|2 (2.0.5)

Combining the two inequalities, we get

Im(τA)/c2 ≤ |cτA + d|2 ≤ Im(τA)/c1 (2.0.6)

Since A and B are compact, the imaginary parts of τA and τB are bounded below and

from above as well. Therefore, there are finitely many possibilities for tuples (c, d) ∈ Z2

which satisfy the inequality (2.0.6). We next show that we have only finitely many

possibilities of matrices having the second row entries as (c, d) which satisfy (2.0.6).

This follows from the following claim:

Claim 2.0.7. If two matrices γ =

(
a1 b1

c d

)
and δ =

(
a2 b2

c d

)
have the same second

row entries (c, d), then γδ−1 =

(
1 n

0 1

)
.

We need to show that for matrices in the above claim, a1 = a2 + nc and b1 = b2 + nc

for some n. This is seen as follows: a1d − b1c = a2d − b2c = 1. This implies that

c/d = (a1 − a2)/(b1 − b2). Since (c, d) = 1, we conclude that (a1 − a2)/n = c and

(b1 − b2)/n = d for some n. It follows that a1 = a2 + nc and b1 = b2 + nc so that the

condition in the claim is satisfied.

The integer n is bounded since A and B are compact sets. This implies that there are

only finitely many possibilities for the entries of matrices in S. This makes S finite.

Proof of Proposition 2.0.2. Suppose that τ1 and τ2 ∈ H and C1 and C2 are closed neigh-

borhoods about τ1 and τ2 respectively. Let S(C1, C2) = {γ ∈ Γ | γC1∩C2 6= φ and τ1 6=
τ2}. By Lemma 2.0.4, this set is finite. If the set S(C1, C2) is empty, then we can

take U1 ⊂ C1 and U2 ⊂ C2 both open to satisfy the condition stated in the proposi-

tion. For γU1 ∩ U2 6= ϕ will imply that γτ1 = τ2. Now suppose that S(C1, C2) is non

empty. Let γ ∈ S(C1, C2). As H is Hausdorff, we can find disjoint neighborhoods V1

and V2 of γτ1 and τ2 respectively. We see that γ−1V1 is an open neighborhood of τ1

and it contains a closed disc C ′1 ⊆ C1 around τ1. Similarly, we can find a closed disk

C ′2 ⊆ V2∩C2 about τ2. This implies that S(C ′1, C
′
2) ⊆ S(C1, C2). Observe that γC ′1 ⊆ V1.

The intersection V1 ∩ V2 = ϕ, implies that γC ′1 ∩ C ′2 = ϕ. Therefore γ /∈ S(C ′1, C
′
2) and

S
(
C ′1, C

′
2) ( S(C1, C2). This set is again finite, and so we can keep repeating the process
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to get C
(n)
1 and C

(n)
2 such that S(C

(n)
1 , C

(n)
2 ) = ϕ. Now, by the argument in the beginning,

we get open neighborhoods about τ1 and τ2 with the property in the proposition.

Corollary 2.0.8. The modular curve Y (Γ) is Hausdorff.

Before going on to proving the corollary we will need a small result.

Claim 2.0.9. Let U1 and U2 be open neighborhoods. Then Π(U1) ∩ Π(U2) = ϕ in Y (Γ)

if and only if Γ(U1) ∩ U2 = ϕ in H.

Suppose that γU1∩U2 = ϕ for all γ ∈ Γ. To the contrary assume that Π(U1)∩Π(U2) 6= ϕ

Then there exists x ∈ Π(U1)∩Π(U2). Now, x ∈ Π(U1) implies that Π−1(x) =
⋃
γ∈Γ γU1,

while x ∈ Π(U2) implies that there exists τ ∈ U2 such that Π(τ) = x. Moreover this gives

us that τ ∈ Π−1(x). Therefore, τ ∈ δU1 for some δ ∈ Γ. Finally, τ ∈ δU1 ∩ U2 which

is a contradiction to our assumption. Conversely, suppose that Π(U1) ∩ Π(U2) = ϕ.

We want to show that Γ(U1) ∩ U2 = ϕ. Suppose not. Then there exists τ ∈ U2 such

that y = γτ ′ for some τ ′ ∈ U1 and γ ∈ Γ. This implies that Π(τ) = Π(τ ′). But then

Π(τ) ∈ Π(U1) ∩Π(U2), a contradiction.

Proof of Corollary 2.0.8. Let Π(τ1) and Π(τ2) be two distinct points in Y (Γ). Take

neighborhoods U1 and U2, as in Proposition 2.0.2. Since Γτ1 6= τ2, by Proposition

2.0.2, ΓU1 ∩ U2 = ϕ. By the previous claim 2.0.9, Π(U1) ∩ Π(U2) = ϕ. Therefore, there

exists disjoint neighborhoods Π(U1) and Π(U2) of Π(τ1) and Π(τ2) respectively, in Y (Γ).

This proves that Y (Γ) is Hausdorff.

2.1 The fundamental domain

A fundamental domain for the action of Γ on H is a region on the upper half plane such

that for every point τ in H, the region contains exactly one point which is in the same

Γ-orbit as τ. In this section we will find out the fundamental domain for SL2(Z).

Proposition 2.1.1. The fundamental domain D for the action of SL2(Z) is the region

D = {τ ∈ H : |Re(τ)| ≤ 1/2, |τ | ≥ 1}.

The region is shown in figure 2.1. Let S and T be matrices as given in 1.0.3.

Proof. We first show that for every τ ∈ Z there exists τ ′ ∈ D such that τ = γτ ′ for some

γ ∈ SL2(Z). This will show that any point in H is SL2(Z)-equivalent to a point in D.
Choose any τ ∈ H and apply the matrix Tn for some n ∈ Z to translate τ by n to the
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D

•
−1/2

•
1/2

•
i

Figure 2.1: The fundamental domain

vertical strip {τ : |Re(τ)| ≤ 1/2}. If τ translates to D, then we are done. If not, then

|τ | < 1. Now, notice that Im(−1/τ) = Im(τ)/|τ |. Thus when |τ | < 1, Im(−1/τ) > Im(τ).

Therefore, the next step would be to repeatedly apply the matrix S until Im(τ) > 1. We

need to make sure the above process stops at a finite number of steps. To see this, notice

that for any τ there are only finite number of integer pairs (c, d) such that |cτ + d| < 1.

Since Im(γτ) = Im(τ)/|cτ + d|2, there are only finitely many transformations such that

Im(γτ) > Im(τ). It follows that the above process terminates at some point.

However, notice that the line Re(τ) = 1/2 is identified with the line Re(τ) = −1/2. The

two halves of the boundary arc τ = 1 are also identified via τ 7→ −1/τ. We next show

that these are the only two identifications.

Proposition 2.1.2. Suppose τ1 and τ2 are distinct points in D such that τ2 = γτ1 for

some γ ∈ SL2(Z). Then only the following cases are possible:

1. Re(τ1) = ±1/2 and τ2 = τ1 + 1

2. |τ1| = 1 and τ2 = −1/τ1.

Proof. Without loss of generality, assume that Im(τ2) ≥ Im(τ1). Let γ =

(
a b

c d

)
6= ±I.

Using the fact that Im(τ2) = Im(τ1)/|cτ + d|2, we see that |cτ + d| < 1. Observe that

|c|
√

3/2 ≤ |c| Im(τ1) = Im(cτ1 + d) ≤ |cτ1 + d| ≤ 1 since τ1 ∈ D. We finally get that

|c| ≤ 2/
√

3. Thus, the only possibility for c is that |c| ∈ {0, 1}. We now divide the

argument into different cases as follows:
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1. If c = 0, then γ = ±

(
1 b

0 1

)
. So, τ2 = τ1+b which implies that Re(τ2) = Re(τ1)+b.

Further, we see |Re(τ2) − Re(τ1)| = |b| ≤ 1 since τ1 and τ2 ∈ D and so b = 1. It

follows that τ2 = τ1 + 1 giving us that Re(τ1) = ±1/2. Thus 1 is satisfied.

2. If |c| = 1 then |cτ1 + d| = |τ ± d| ≤ 1. This implies that

(Re(τ1)± d)2 ≤ 1− Im(τ1)2 ≤ 1− (
√

3/2)2 = 1/4. (2.1.3)

This gives us that |Re(τ1 +d)| ≤ 1/2. Since Re(τ) ≤ 1/2 for all τ ∈ D, we get that

|d| = 1 or 0. Considering two sub cases:

(a) If d = 1 then |Re(τ1)± 1| = 1/2. This is because |Re(τ1)± 1| < 1/2 implies

Re(τ1) > 1/2 which is not possible and so the equality holds. Therefore, in

this case Re(τ1) = ±1/2. The inequality (2.1.3) implies that Im(τ1) = ±
√

3/2.

This implies that |τ1| is one of ±1/2 +
√

3/2. We also have that cτ1 + d = 1

which gives us that Im(τ1) = Im(τ2). Hence τ2 = 1/2 +
√

3/2 when τ1 =

−1/2 +
√

3/2 and vice versa. So in this case, both 1 and 2 hold.

(b) If d = 0, then |cτ + d| ≤ 1 implies that |τ1| ≤ 1. Since τ1 ∈ D, |τ1| = 1. As in

the previous case we again have that Im(τ1) = Im(τ2). By running the same

argument as in case 2 for γ−1 instead of γ, we again land in 2 cases depending

on the corner right entry of γ−1. One sub case is already dealt with in point

(a). The other sub case for γ−1
2 gives that |τ2| = 1 by the same reasoning

done for τ1 above. Therefore, τ1 and τ2 are lie on the arc in D with the same

imaginary parts. This implies that Re(τ1)2 = Re(τ2)2. Since τ1 and τ2 are

distinct,Re(τ1) = −Re(τ2). Thus τ1 = −τ2. The matrix γ in this case looks

like ±

(
a −1

1 0

)
. Finally what we have is the following:

γτ1 = τ2 = (aτ1 − 1)/τ1

= (−aτ̄2 − 1)/(−τ̄2)

which gives us that −|τ2|2 = −1 = (−aτ̄2 − 1). Hence, a = 0 and in this case

as well, 2 holds.

The above discussion shows that up to some boundary identifications, the region D is

homeomorphic to Y (1). In the proposition to follow, we find a suitable fundamental

domain for the action of any congruence subgroup on H.
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Proposition 2.1.4. Suppose Γ is a congruence subgroup and the set {γj}j are the coset

representatives of {±I}Γ in SL2(Z). That is, the group is decomposed as SL2(Z) =⋃
j{±I}Γγj . Then,

⋃
j{±I}γjD surjects to Y (Γ).

The above proposition shows that up to some boundary identifications
⋃
j{±I}γjD is

homeomorphic onto Y (Γ).

Proof. Taking inverse in the given decomposition of SL2(Z) we see that SL2(Z) =⋃
j γ
−1
j {±I}Γ. In order to show that we get a surjection onto Y (Γ), we show that for

any τ ∈ H, there exists some τ ′ in
⋃
j{±I}γjD such that τ = γτ ′ for some γ ∈ Γ.

Let τ ∈ H, then there exists some matrix δ in SL2(Z) such that δτ ∈ D. The matrix

δ lies in γj
−1{±}Γ for some j. Writing δ = {±I}γj−1γ′ for some γ′ in Γ we see that

γ′τ ∈ {±I}γjD. This completes the proof of the proposition.

2.2 Realising a modular curve as a Riemann surface

A Riemann surface is a Hausdorff, second countable topological space, which locally

“looks like” the complex plane. In order to give modular curves a Riemann structure,

we need to make sure that every point on the modular curve has a neighborhood homeo-

morphic to an open set in the complex plane. These are called local charts which define

a local coordinate structure on the Riemann surface. More precisely, a Riemann surface

X consists of the following:

1. A collection (Ui, Vi, ϕi)i∈I for some indexing set I, where Ui are open in C, the

neighborhood Vi are open in X and ϕi : Vi → Ui are homeomorphisms. We call Vi

charts and the set {Vi}i∈I , an atlas on X.

2. If the intersection of any two charts Vi and Vj is non-empty, then the map ϕ−1
j ◦ϕi :

ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) is holomorphic.

Condition 2 helps us to smoothly go from one chart to another via the intersection.

The simplest example of a Riemann surface is the complex sphere. The torus is also

a Riemann surface. In fact, any g holed surface is an example of a Riemann surface.

We will later see that when we compactify the modular curve Y (1), it is topologically a

sphere.

It is simplest to define a coordinate chart around the points whose stabiliser consist only

of ±I. We define local charts around such points as follows: Take a neighborhood U of τ
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which satisfies the condition in Corollary 2.0.3. Suppose V is its image in Y (Γ). Define

ϕ = Π|U .

Claim 2.2.1. The map ϕ : U → V is a homeomorphism.

Proof. The map ϕ is clearly a surjection. Let τ1 and τ2 be two points in U such that

Π(τ1) = Π(τ2). Then τ1 = γτ2 for some γ ∈ Γ. We know that the intersection γ′U ∩U is

empty for all γ′ ∈ Γ/{±I}. Corollary 2.0.3 implies that γ is I or −I. Thus τ1 = τ2. The

function ϕ is therefore an injection as well. Since Π is an open map, we see that ϕ is a

homeomorphism from U to V .

We have a slight problem when the stabilizer of a point τ in the upper half plane is

a non trivial subgroup of the modular group. For example, consider the point i ∈ H
and the transformation S given in 1.0.3. One can easily see that Si = i. If we take any

neighborhood around i, the matrix S acts as a rotation by π around i. To see this, assume

that U is any neighborhood around i. Notice that the transformation δ =

(
1 −i
1 i

)
takes

i to 0. Thus δ(U) is a neighborhood around 0. Also, δ is a homeomorphism from U to

δ(U). The transformation S fixes i if and only if δSδ−1 fixes 0. Therefore S acts on the

point τ in U in the same way as δSδ−1 acts on the point δτ in δ(U). We can easily

calculate that δSδ−1 maps z in δ(U) to −z, that is, it acts as a rotation by π about 0.

The above argument shows that we will always have Γ-equivalent points in any neigh-

borhood around i and we cannot use the previous argument to define a local coordinate.

In general, the points with a non-trivial stabilizer are called elliptic points.

Definition 2.2.2 (Elliptic point). We say τ ∈ H is an elliptic point if Γτ/{±I} is not

equal to {I}.

2.3 More on elliptic points

In this section we elaborate on elliptic points. We will give some idea on how to calculate

elliptic points for the modular curve Y (1).

2.3.0.1 Finding elliptic points for Y (1)

Let γ =

(
a b

c d

)
be a non-trivial matrix in SL2(Z) such that γτ = τ for some τ ∈

H. After solving the equation (aτ + b)/(cτ + d) = τ, we get the quadratic equation

cτ2 + (d− a)τ − b = 0. If c = 0, then a = d = ±1 gives us that τ + b = τ. This implies



Chapter 2 21

that b = 0 and γ = ±I. Since we assumed γ to be nontrivial, we have two distinct

solutions to the above quadratic equation given by:

τ =
−(d− a)±

√
(d− a)2 + 4bc

2c

The term (d − a)2 + 4bc < 0 as τ ∈ H. On simplifying we get that |a + d| < 2. We

therefore have that a+ d = ±1 or 0.

Next, notice that the characteristic polynomial of γ is x2 − (a + d)x + 1. So the only

possibilities for the characteristic polynomial are x2 + 1, x2 − x + 1 or x2 + x + 1. The

polynomial x2 + 1 is a factor of x4 − 1 while x2 − x + 1 and x2 + x + 1 are factors of

x6 − 1. By Caley Hamilton Theorem, γ satisfies its own characteristic polynomial. It

follows that γ4 = I or γ6 = I. Therefore the possible orders for γ are 1, 2, 3, 4 or 6. One

can easily check that γ = ±I when γ has order 1 or 2.

The next theorem characterizes the matrices of order 3, 4 or 6 in SL2(Z).

Theorem 2.3.1. Let γ ∈ SL2(Z). Denote the following matrices as:

R =

(
0 1

−1 −1

)
;S =

(
0 −1

1 0

)
;W =

(
0 −1

1 1

)

1. if γ has order 3, then γ is conjugate to R±1.

2. if γ has order 4, then γ is conjugate to S±1.

3. if γ has order 6, then γ is conjugate to W±1.

An immediate consequence of the above theorem is the following corollary:

Corollary 2.3.2. The elliptic points for SL2(Z) are the points SL2(Z)i and SL2(Z)µ3

where µ3 = e2πi/3. The modular curve Y (1) therefore has just two elliptic points.

Proof. The matrices R and W fix µ3, while S fixes i. Recall that any matrix that fixes

some point τ ∈ H is conjugate to R,S or W in SL2(Z). Suppose δ is a transformation in

SL2(Z) such that δ = γSγ−1 for some γ ∈ SL2(Z). Then δ fixes γi. Similarly, we argue

for W and R and conclude that the elliptic points for the modular group are SL2(Z)i

and SL2(Z)µ3.

From the discussion in section 2.1 we know that the orbits of i and µ3 are not equal in

Y (1). Therefore, Y (1) has two elliptic points.

Proof of Proposition 2.3.1. We give a proof of part 3 first and the rest will follow sim-

ilarly. Let γ be such that γ6 = I. Define a lattice L = Z2 consisting of column vectors
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with integers. L can be made into a module over Z[µ6] where µ6 = e2πi/6 by defining

the action as follows: Let v be any vector in L. Then,

(a+ bµ6) · v = (aI + bγ)v

where the operation on the right hand side is the usual matrix multiplication. Now,

Z[µ6] is a PID and L is finitely generated over Z[µ]6. By the structure theorem for

finitely generated modules over a PID we have:

Z2 ∼=
⊕
k

Z[µ6]/Ik

for some ideals Ik in Z[µ6]. Observe that every non-zero ideal of Z[µ6] has rank 2 as an

abelian group This is because if Ik = 〈x〉, then x and µ6x are linearly independent. This

implies that Z[µ6]/Ik is a torsion abelian group. However, L as an abelian group is free.

Thus, for each k, Ik is zero. It follows that Z2 ∼= Z[µ6]. Using this isomorphism, we will

show that γ is conjugate to the matrix W. Let

φγ : Z[µ6]→ L

be the module isomorphism map such that φγ(1) = u and φγ(µ6) = v. Let [u v] denote a

2× 2 matrix with first column u and second column v. This is the matrix of the module

isomorphism. Therefore, [u v]−1 exists and so det[u v] = ±1. We make the following

claim:

Claim 2.3.3. The matrix γ = [u v]W [u, v]−1

Notice that γu = µ6 · φγ(1) = φγ(µ6) = v. Similarly, γv = µ6φγ(µ6) = φγ(µ6 − 1) =

−u + v. This is because µ6 satisfies the equation: µ2
6 − µ6 + 1 = 0. We therefore have

that: γ[u v] = [v − u+ v]. Writing [u, v] =

(
u1 v1

u2 v2

)
, one can check that

γ[u v] = [v − u+ v] = [u v]W

which proves the claim. We similarly see that γ = [v u]W−1[v u]−1. Note that if [u v]

has determinant −1, then [v u] will have determinant 1. It follows that γ is conjugate

to W±1 in SL2(Z).

Proof of part 1 follows from doing the same trick with the ring Z[i]. Part 2 follows from

the fact that if γ has order 3, then −γ has order 6. By part 1, −γ is conjugate to W±1

giving us that γ is conjugate to R±1 in SL2(Z).
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It is easy to check the following corollary which explicitly calculates the stabilizers of

the elliptic points i and µ3.

Corollary 2.3.4. The stabilizer of i in SL2(Z)/{±I} is the cyclic subgroup of order 2

generated by the matrix S. The stabilizer of µ3 in SL2(Z)/{±I} is the cyclic subgroup

of order 3 generated by the matrix W.

Proof. The matrix S fixes i and so the subgroup generated by S also lies in the stabilizer

of i. For the other way round inclusion, suppose γ 6= ±I fixes i. Let γ =

(
a b

c d

)
such

that γi = (ai + b)/(ci + d) = i. With a little bit of manipulation, we get a = d and

b = −c. Thus, the stabilizer of i is the set:

{(
a b

−b a

) ∣∣∣∣ a2 + b2 = 1, a and b ∈ Z
}

As a and b ∈ Z, the only possibilities for both are either 0 or ±1. Once we put in possible

values of a and b, we will realize that the stabilizer of i is exactly the subgroup generated

by S.

On similar lines, we perform the calculation to find out the stabilizer of µ3. Let γ =(
a b

c d

)
so that γµ3 = (aµ3 +b)/(cµ3 +d) = µ3. This further implies that (a+c−d)µ3 +

(b+ c) = 0. This helps us to conclude that the stabilizer of µ3 consists of the following

set: {(
a b

−b −b+ a

) ∣∣∣∣ a2 + b2 − ab = 1, a and b ∈ Z
}

Notice that a2 + b2 − ab = 1 if and only if (2a + b)2 + 3b2 = 4. Since a and b are

integers, possible solutions to the equation are: a = 0, b = ±1 or a = ±1, b = 0 or

a = ∓1, b = ±1. When we substitute the possible values we get exactly the matrices in

the subgroup generated the matrix W.

It follows that the stabiliser SL2(Z)τ of any elliptic point τ are conjugates of subgroups

generated by S or W, hence they are cyclic of order 2 or 3.

Suppose Γ is any congruence subgroup of SL2(Z). The elliptic points of Γ are a subset of

the points SL2(Z)i and SL2(Z)µ3. Since Γ has a finite index in SL2(Z), we can conclude

that the number of elliptic points in Y (Γ) is finite. Otherwise they would be in infinitely

many Γ-orbits in SL2(Z) which is not possible. For any elliptic point τ, the stabiliser

Γτ is a subgroup of SL2(Z)τ . Therefore Γτ is finite cyclic. From the above discussion

we arrive at a very important corollary:
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Corollary 2.3.5. Let Γ be a congruence subgroup of SL2(Z). For each elliptic point τ of

Γ, its stabiliser Γτ is finite cyclic.

To each τ, we associate a positive integer eτ such that eτ counts the number of τ fixing

transformations. Keeping in mind that −I acts trivially, eτ = |Γτ | if −I 6∈ Γ. Otherwise,

eτ = |Γτ |/2, that is

eτ = |{±}Γτ/{±I}|

Notice that eτ > 1 if and only if τ is elliptic. The integer eτ is called the period of τ.

Remark 2.3.6. If τ is an elliptic point, the only possibilities for the value of eτ are 2 and

3.

2.4 Coordinate charts for elliptic points

The goal of this section is to define coordinate charts around elliptic points. We gen-

eralize the argument given for the point i after the claim 2.2.1 to define a coordinate

chart around elliptic points. The idea is as follows: Suppose τ is an elliptic point. We

will take a neighborhood U of τ such that it contains no other elliptic points (such a

neighborhood exists, as we will see later). We space out the Γ-equivalent points by a

fixed angle 2π/eτ . We then wrap the sector of angle 2π/eτ of U around a disc V. This

will induce a homeomorphism from Π(U) → V. Figure 2.2 shows the coordinate chart

around the elliptic point i.

Claim 2.4.1. For any τ ∈ H, the period eτ is well defined on the modular curve Y (Γ).

Proof. We need to show that for any τ ∈ H, the period of δτ is same as the period of τ

for all δ ∈ Γ. Suppose γ ∈ Γτ . We then have that γτ = τ if and only if δγδ−1(δτ) = δτ.

Thus δΓτδ
−1 = Γδτ . Notice that |δΓτδ−1| = |Γτ |. Therefore, |Γτ | = |Γδτ | showing that

the periods of τ and δτ are same.

Suppose τ is any elliptic point. Take a neighborhood U of τ given in Corollary 2.0.3.

Consider the transformation δτ =

(
1 −τ
1 −τ̄

)
. This takes τ → 0 and τ̄ → ∞ acting as

the same way as the modular group. Notice that δτ (U) is a neighborhood around the

origin. The stabiliser of δττ is δτΓτδ
−1
τ . We will use the following observation: Γτ acts

on the point z in U in the same way as δτΓτδ
−1
τ acts on δz.

The transformation δτΓτδ
−1
τ fixes δτ = 0 and δτ̄ = ∞. Therefore, δτΓτδ

−1
τ is a trans-

formation of the form z 7→ cz for some complex number c. By Corollary 2.3.5, we know
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U •
i

•
0δi

•
0

V

z 7→ z2ψ

Figure 2.2: Coordinate chart around i

that δτΓτδ
−1
τ is a finite cyclic group of order eτ . It is therefore the group of rotations by

2π/eτ about 0. Thus Γτ corresponds to a rotation of 2π/eτ about τ. When we transform

U via the map δτ , the Γ-equivalent points are separated by a fixed angle. We next wrap

the sector around a disc V via the map z 7→ zeτ . Call this map ρ. Define ψ = ρ ◦ δ.
Since it is clear that δτ is defined for a particular point τ , for simplicity, we drop the

subscript. Note that by the Open mapping theorem ψ is an open map. Our final claim

for this section is the following:

Claim 2.4.2. The projection Π : U → Π(U) and the map ψ : U → V identify the same

points.

Proof. We need to show that for any two points τ1 and τ2 in U, Π(τ1) = Π(τ2) if and

only if ψ(τ1) = ψ(τ2). Notice that Π(τ1) = Π(τ2) if and only if τ1 ∈ Γτ2. Since U is a

neighborhood as in Corollary 2.0.3, we see that τ1 ∈ Γττ2. This happens if and only if

δτ1 ∈ δΓτδ−1(δτ2) if and only if δτ1 = e2πid/eτ δτ2 for some positive integer d. This implies

that Π(τ1) = Π(τ2) if and only if (δτ1)eτ = (δτ2)eτ if and only if ψ(τ1) = ψ(τ2).

The above claim helps us to induce an injection φ : Π(U) → V such that the diagram

below commutes. In fact φ is an open map and a surjection as well since Π and ψ are

so. Therefore, φ is a homeomorphism from Π(U) to V.

U
ψ

��

Π

||
Π(U)

φ
// V
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We need to check that the map defined above agrees on the overlaps. This is seen as

follows: The reader is encouraged to draw a picture to have a better idea of what is

going on. We first need a small result:

Claim 2.4.3. The neighborhood U of the elliptic point τ which satisfies the properties

of Corollary 2.0.3 does not have any other elliptic point.

Proof of claim 2.4.3. Notice that z = (az + b)/cz + d) is a degree two equation cz2 +

(d−a)z−b = 0. This has only two solutions. If any matrix γ fixes a point τ in the upper

half plane, then it also fixes τ . Therefore, γ will have only one fixed point in the upper

half plane. Now suppose U is a neighborhood around the elliptic point τ as in Corollary

2.0.3. Suppose τ ′ is another elliptic point in U such that δτ ′ = τ ′. Then δU ∩ U 6= ϕ.

By Corollary 2.0.3, δ ∈ Γτ that is δ fixes τ. However, δ cannot have two fixed points in

the upper half plane, and so τ ′ = τ.

Next, let U1 and U2 be neighborhoods as above, of elliptic points τ̃1 and τ̃2 with periods

h1 and h2 respectively. We need to check that the restriction of the map φ2 ◦ φ−1
1 on

the overlap φ1(Π1(U1) ∩ Π2(U2)) is holomorphic. Let V1,2 = φ1((Π1(U1) ∩ Π2(U2)) and

V2,1 = φ2((Π1(U1) ∩Π2(U2)). We then have the following commutative diagram:

Π(U1) ∩Π(U2)

φ2

&&
V1,2

φ−1
1

88

φ2◦φ−1
1

// V2,1

For each x ∈ Π(U1) ∩ Π(U2), it is enough to check holomorphy of the transition map

in some neighborhood of φ1(x). Write x = Π(τ1) = Π(τ2) for some τ1 and τ2 in U1 and

U2 respectively, such that and τ1 = γτ2 for some γ ∈ Γ. Let U1,2 = U1 ∩ γ−1(U2). Then

Π(U1,2) is a neighborhood of x in Π(U1) ∩ Π(U2) and so φ1(Π(U1,2)) is a neighborhood

of φ1(x) in V1,2. Keeping in mind the following local chart maps from U1 and U2, we

divide the argument in 3 parts.

Ui
ψi

��

Π

||

Ui
ψi

��

Π

||
Π(U)

φi
// V δi(U)

z 7→zhi
// Vi

Part 1 of the argument: Suppose that φ1(x) = 0. That is φ1(Π(τ1)) = 0. This im-

plies that ψ(τ1) = 0. From the diagram above, we have that δ1(τ1) = 0. Since δ1 is
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a homoemorphism from U1, this implies that τ1 = τ̃1 is the elliptic point in U1. Let

q = φ1(x′) where x′ is any arbitrary point in the neighborhood Π(U1,2) of x. Notice

that q = δ1(τ ′)h1 for some τ ′ ∈ U1,2. Finally the task is to check the holomorphy at

φ2 ◦ φ−1
1 (φ1(x′)) = φ2(x′). Notice that τ ′ ∈ U1,2 and so γτ ′ ∈ U2. Therefore it is well

defined to write φ2(x′) = φ2(Π(γτ ′)) = ψ2(γτ ′). Write

φ2(x′) = ψ2(γτ ′)

= δ2(γ(τ ′))h2

= (δ2γδ
−1
1 )(δ1(τ ′))h2

= (δ2γδ
−1
1 )(q1/h1)h2

If h1 = 1, then we do not have a problem as q 7→ (δ2γδ
−1
1 )(qh2) is a holomorphic map.

The case when h1 > 1 is taken care of as follows: If h1 > 1, then τ1 is elliptic. Since

τ2 = γτ1, we see that τ2 is elliptic with the same period. By construction, U2 is a

neighborhood as in Corollary 2.0.3 around the elliptic point τ̃2. By claim 2.4.3, it has

only one elliptic point. This implies that τ̃2 = τ2 and h2 = h1. Thus δ2γδ
−1
1 is a map

such that:

0
δ−1
17−−→ τ1

γ7−→ τ2
δ27−→ 0.

∞
δ−1
17−−→ τ1

γ7−→ τ2
δ27−→ ∞.

As previously seen this implies that δ2γδ
−1
1 (z) = cz for some complex number c. Finally

we get that φ2 ◦ φ−1
1 is the map: q 7→ (cq1/h1)h1 = ch1q which is clearly holomorphic.

Part 2 of the argument: So far the argument assumes that φ1(x) = 0, But it also covers

the case when, φ2(x) = 0. In this case, the map to consider is φ−1
1 ◦ φ2. However this is

just the inverse of the previous map φ−1
2 ◦ φ1. Since inverse of a holomorphic bijection

is holomorphic, this case follows easily.

Part 3 of the argument: For the general case, take a local chart U3 around x such that

φ3 : Π(U3)→ V3 is the local map and φ3(x) = 0. Write φ2 ◦φ−1
1 = (φ2 ◦φ−1

3 )◦ (φ3 ◦φ−1
1 ).

The map on the right hand side is a composition of holomorphic maps by part 1 and 2

and so the left hand side defines a holomorphic map as well.

2.5 Cusps

In order to make the modular curve compact, we add the points Q ∪ {∞} to the upper

half plane. Call H∪{∞}∪Q the extended upper half plane and denote it by H∗. Action
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of SL2(Z) on rationals is defined as:(
a b

c b

)(
m

n

)
=
am+ bn

cm+ dn

The point ∞ goes to a/c. Also notice that −c/d goes to ∞. The point infinity is only

identified with rationals up to the action of SL2(Z) or any of its subgroups. This justifies

adding rationals to the upper half plane. Notice that the stabiliser of the point∞ is the

subgroup:

SL2(Z)∞ =

{
±

(
1 m

0 1

) ∣∣∣∣ m ∈ Z
}

These are exactly the translations in SL2(Z) as they take τ to τ +m.

Define the compact modular curve X(Γ) to be H∗/Γ. The points {∞} ∪ Q up to Γ-

equivalence are called cusps of X(Γ).

Proposition 2.5.1. The modular curve X(1) has one cusp.

Proof. Let s = a/c be a cusp such that gcd(a, c) = 1. Then there exist integers b, d such

that ad− bc = 1. Consider the matrix:

γs =

(
a b

c d

)

Then γs(∞) = s and γs ∈ SL2(Z). Thus every cusp is SL2(Z)-equivalent to the point

∞ and we have just one cusp in X(1).

Since any congruence subgroup Γ has a finite index in SL2(Z), a similar argument as

done for elliptic points shows that X(Γ) has finite number of cusps.

2.6 Defining a topology on the extended upper half plane

In order to define coordinate charts around the cusps, we first need to define open sets

around them. For any arbitrary M > 0, define NM = {τ ∈ H | Im(τ) > M}. Take

NM ∪ {∞} to be the open sets around the point infinity. For the rationals, we take all

the sets of the form α(NM ∪ {∞}) where α ∈ SL2(Z). The transformation α takes the

upper half plane at Im(τ) = M to a disc tangent at a rational number s where s is such

that α(∞) = s. We next induce quotient topology to the modular curve X(Γ) via the

natural map Π : H∗ → X(Γ).

Proposition 2.6.1. The modular curve X(Γ) is Hausdorff, connected and compact.
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Proof. Hausdorffness: We need to show any two points on the modular curve can be

separated by disjoint open neighborhoods. We will consider 2 cases here.

1. Let x1 = Γs1 where s1 ∈ Q be a cusp and x2 = Γτ2 with τ2 ∈ H be a point of X(Γ).

We know that s1 = α(∞) for some α ∈ SL2(Z). Let U2 be any neighborhood of τ2

with a compact closureK.We first want to show that the set {Im γK | γ ∈ SL2(Z)}
is bounded. In order to show this, we need a small result.

Lemma 2.6.2. Im(γτ) ≤ max{Im(τ), 1/ Im(τ)}.

Proof. To the contrary, suppose otherwise. By the proof of Lemma 1.0.2, we know

that Im(γτ) > Im(τ) implies that |cτ + d| < 1 while Im(γτ) > 1/ Im(τ) implies

that Im(τ) > |cτ + d|. Overall, we get

|cτ + d| = ≥ Im(|cτ + d|)

= |c| Im(τ)

> |c||cτ + d|

giving us that that c = 0. The inequality in the beginning helps us conclude that

d = 0. With c = d = 0, γ /∈ SL2(Z), a contradiction.

Coming back to the proof of the proposition, since K is compact, the set {Im(τ) |
τ ∈ K} ⊆ [c1, c2] with c1 > 0. This gives us that Im(τ) ≤ c2 and 1/ Im(τ) ≤ c1 for

all τ ∈ H. By Lemma 2.6.2 it follows that {Im(γK) | γ ∈ SL2(Z)} is a bounded

set. Therefore, we can find a suitable M such that SL2(Z)K ∩NM = φ. Now take

the neighborhood U1 = α(NM ∪ {∞}) of s1.

Claim 2.6.3. The neighborhoods Π(U1) and Π(U2) of x1 and x2 respectively are

disjoint in X(Γ).

Suppose Π(U1) ∩ Π(U2) 6= φ Then, there exists τ2 ∈ U2 ⊂ K such that Π(τ2) ∈
Π(U1). This implies that there exists γ ∈ Γ and τ1 ∈ NM ∪{∞} with τ2 = γ(ατ1).

But then τ1 = α−1γ−1τ2, a contradiction to the observation that SL2(Z)K∩NM =

φ.

2. Let x1 = Γs1 and x2 = Γs2 both be distinct cusps of X(Γ). There exists α1 and

α2 ∈ SL2(Z) such that s1 = α2(∞) and s2 = α2(∞). Let U1 = α1(N2 ∪ {∞}) and

U2 = α2(N2 ∪ {∞}). We chose the neighborhood N2 because of the following two

observations which will be used in the proof and in the later sections as well.

Lemma 2.6.4. The region N2 in H has no elliptic points.
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Proof. Recall that the elliptic points of SL2(Z) are given by the set {γi, γµ3 |

γ ∈ SL2(Z)}. Suppose γ =

(
a b

c d

)
∈ SL2(Z). Then Im(γi) = Im(i)/|ci + d|2 =

1/(c2 + d2)2 ≤ 1. Similarly we calculate

Im(γµ3) = Im(µ3)/|cµ3 + d|2

= (
√

3/2)/|c(−1/2 +
√

3/2) + d|2

< 1/((d− c/2)2 + 3c2/4)2

≤ 1

Therefore all the elliptic points lie below N2.

Lemma 2.6.5. Suppose τ1 and τ2 ∈ N2 are distinct points such that τ1 = γτ2 for

some γ ∈ SL2(Z). Then γ is a translation.

Proof. Observe that with the given conditions of the lemma, τ1 and τ2 correspond

to the same points in the fundamental domain D. Since τ1 6= τ2, this implies that

they must differ by a translation, otherwise they would correspond to different

points in D.

Coming back to the argument, we next prove that with U1 and U2 as defined

above, the intersection Π(U1) ∩ Π(U2) = φ. Suppose not, then there exists γ ∈ Γ

and τ1, τ2 ∈ N2 such that γ(α1(τ1)) = α2τ2. It follows that α−1
2 γα1(τ1) = τ2.

Notice that if τ1 = τ2, then α−1γα1 fixes τ1 implying that N2 has elliptic points.

This is not possible by Lemma 2.6.4 and so τ1 6= τ2 and they correspond to the

same point in D. By Lemma 2.6.5, α−1
2 γα1 is a translation. Finally this implies

that α−1
2 γα1(∞) = ∞, giving us that γs1 = s2, a contradiction to the fact that

Γs1 and Γs2 are distinct points.

3. The case when both the points are in H∗ has been dealt with in Corollary 2.0.8.

Connectedness: Suppose that H∗ is a disjoint union of open subsets O1 and O2. Consider

(O1 ∪ O2) ∩H. Since H is connected, H ⊂ O1 (say) and O2 ∈ Q ∪ {∞}. But then O2 is

open and so it has to be empty. It follows that H∗ is connected.

Compactness: We first show that D ∪ {∞} = D∗ is compact. Consider an open cover of

D∗ in the subspace topology inherited by H∗. One of the open sets, say U in the cover

must contain the point∞ and therefore, it must contain the neighborhood (NM∪{∞})∩
D∗ for some M. Now D∗\(NM ∪ {∞} ∩ D∗) is closed and bounded, and so compact in
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H. Thus we have a finite sub cover of this space. This sub cover, together with U is a

finite cover of D∗. Next, notice that

H∗ = SL2(Z)D∗ =
⋃
j

Γγj(D∗)

where γj are the coset representatives of Γ in SL2(Z). This gives us that

X(Γ) =
⋃
j

Π(γj(D∗))

Since this is a finite union and Π is a continuous map, we conclude that X(Γ) is compact.

We next define charts around cusps to make X(Γ) into a compact Riemann surface.

2.7 Defining coordinate charts for cusps

At the cusps, infinitely many sectors come together. See figure 2.3. Let s be a cusp. In

order to define a local coordinate at s, we first take the neighborhood N2 ∪ {∞} of ∞.
Let δ be a transformation such that δs =∞. Let Us be the neighborhood δ−1(N2∪{∞}).
In this case δ straightens the neighborhood by making the identified sectors differ by a

“translation” by a positive integer h. We then act the transformation ρ = e2πiτ/h which

“wraps” the neighborhood of infinity into a disc with centre 0. To see this precisely, we

first introduce the notion of the width of a cusp.

Definition 2.7.1 (Width of a cusp). Suppose s is a cusp for the modular curve X(Γ).

Let δ be a transformation taking s to ∞. We define:

hs = |SL2(Z)∞/(δ{±}Γδ−1)∞|.

Proposition 2.7.2. The width hs is characterized by the following properties:

1. It is finite.

2. It is independent of the transformation δ.

3. It is well defined on X(Γ).
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Proof of 1. Since Γ(N) ⊆ Γ, for some N and Γ(N) is a normal subgroup of SL2(Z), we

have that δ−1Γ(N)δ = Γ(N) ⊆ δ−1Γ(N)δ. This implies that

hs = |SL2(Z)∞/({±}δΓδ−1)∞|

≤ |SL2(Z)∞/({±}Γ(N)∞|

Since, ±Γ(N)∞ =

{
±

(
1 mN

0 1

) ∣∣∣∣ m ∈ Z
}
, the quotient has order N, giving us that

hs is finite.

Proof of 2. We will show that hs = |SL2(Z)s/{±}Γs|, where SL2(Z)s denotes the

stabiliser of s with respect to SL2(Z). Observe that if δ(s) = ∞ and γ ∈ Γ, then

δγδ−1(∞) = ∞ if and only if γ(s) = s. Therefore, (δΓδ−1)∞ = δΓsδ
−1. The width is

now expressed as:

hs = |SL2(Z)∞/({±}δΓδ−1)∞|

= |δSL2(Z)sδ
−1/|(δ{±}Γsδ−1|

= |SL2(Z)s/{±}Γs|

This shows that hs is independent of δ.

Proof of 3. We will show that if s ∈ Q ∪ {∞} and γ ∈ SL2(Z), then hs,Γ = hγ(s),γΓγ−1 .

In particular, if γ ∈ Γ, then we get that hs,Γ = hγ(s),Γ. By part 2 above it follows that

hγ(s),γΓγ−1 = |SL2(Z)γ(s)/({±}γΓγ−1)γ(s)|

= |γSL2(Z)sγ
−1/({±}γΓsγ

−1)|

= |SL2(Z)s|/{±}Γs|

= hs

Next, define ψ = ρ ◦ δ where ρ and δ are transformations described in the beginning of

this section. We next claim that:

Claim 2.7.3. The maps ψ and Π carry out the same identification in the neighborhood

Us of s.

The argument given below will also help in realizing the geometric significance of hs.
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•
s

Us •
0 Vψ

τ 7→ e2πiτ/hsδ

hs

Figure 2.3: Coordinate chart around a cusp s.

Proof. Suppose τ1 and τ2 are two points in Us, then Π(τ1) = Π(τ2) if and only of

τ1 = γτ2 for some γ ∈ Γ. This happens if and only if δτ1 = (δγδ−1)(δτ2). Since δτ1 and

δτ2 both lie in N2, the transformation δγδ−1 is a translation. We can now conclude

that δγδ−1 ∈ δΓδ−1 ∩ SL2(Z)∞ = (δΓδ−1)∞. This is exactly the subgroup generated by

±

(
1 hs

0 1

)
by the definition of the width. This implies that Π(τ1) = Π(τ2) if and only

if δ(τ1) = δ(τ2) +mhs for some m ∈ Z, if and only if ψ(τ1) = ψ(τ2).

As discussed at the beginning of the section, it is clear now that δ is spacing out the

Γ-equivalent sectors by a translation by hs. Claim 2.7.3 helps us to induce an injection

ψ as we did in the case of elliptic points, from Π(Us) to V. Arguing similarly as before,

ψ is a local homeomorphism from Π(Us) to V.

In the case of cusps as well, we need to check that the transition maps are holomorphic

on the overlaps. The argument is divided into two cases.

Case 1: Suppose τ̃1 is an elliptic point with period h1 and s2 is a cusp with width h2.

As done previously in case of elliptic points, let U1 be the neighborhood around τ̃1 with

the corresponding map δτ̃ , and U2 = δ−1
2 (N2 ∪ {∞}). Here, δτ̃ =

(
1 −τ̃
1 −τ̃

)
and δ2 is

the transformation, which maps s to ∞. As before, for each x ∈ Π(U1) ∩ Π(U2) write

x = Π(τ1) = Π(τ2) with τ1 ∈ U1, τ2 ∈ U2 and τ2 = γ(τ1) for some γ ∈ Γ. We need to

check the holomorphy of the map φ2 ◦φ−1
1 on the overlaps, but here φ1 and φ2 are maps

corresponding to the coordinate chart of an elliptic point and a cusp respectively. Let
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U1,2 = U1 ∩ γ−1(U2), a neighborhood of τ1 ∈ H. Then φ1(Π(U1,2)) is a neighborhood

of φ1(x) in φ1(Π(U1) ∩ Π(U2). Suppose x′ ∈ Π(U1,2). Let q = φ1(x′) = δτ̃ (τ ′)h1 where

τ ′ ∈ U1,2 such that Π(τ ′) = x′. We compute

φ2 ◦ φ−1
1 (q) = φ2(x′)

= φ2(Π(γτ ′))

= ψ2(γτ ′)

= exp(2πiδ2γ(τ ′)/h2)

= exp(2πiδ2γδ
−1(δ(τ ′))/h2)

= exp(2πiδ2γδ
−1(q1/h1)/h2)

Since the map z 7→ z1/h is analytic at all points except 0, the only case where the map

q 7→ φ2 ◦φ−1
1 (q) might not be holomorphic is when h1 > 1 and 0 ∈ φ1(Π(U1,2)). However

these two cannot happen at the same time. To see this we observe that if h > 1, then

τ̃1 /∈ U1,2. Otherwise, δ2(γτ̃1) is an elliptic point in N2. We conclude that if h > 1, then

0 /∈ (δτ̃ (U1,2))h1 = ψ(U1,2) = φ1(Π(U1,2)).

Case 2: Suppose s1 and s2 are both cusps with width h1 and h2 respectively. Let

U1 = δ−1
1 (N2 ∪ {∞}) and U2 = δ−1

2 (N2 ∪ {∞}). Here δ1(s1) = ∞ and δ1(s2) = ∞.
Suppose Π(U1) ∩ Π(U2) 6= φ. This implies that for some γ ∈ Γ, γ−1δ−1

1 (N2 ∪ {∞}) ∩
δ−1

2 (N2 ∪ {∞}) 6= φ. Thus, δ2γδ
−1
1 (τ1) = τ2 for some τ1 and τ2 ∈ N2 ∪ {∞}. By Lemma

2.6.5, δ2γδ
−1
1 = ±

(
1 m

0 1

)
for some m ∈ Z. We finally get that

γ(s1) = γ(δ−1
1 (∞))

= ±δ−1

(
1 m

0 1

)
(∞)

= s2

since γ(s1) = s2 and h1 = h2 = h. Using the same notation as in case 1, the transition

map φ2 ◦ φ−1 takes a point q = Π(φ1(τ ′)) = ψ(τ ′) = exp(2πiδ1(τ ′)/h), where τ ′ ∈ U1,2
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to φ2 ◦ φ1−1(q) which is computed as follows:

φ2 ◦ φ−1
1 (q) = φ2(q)

= φ2(Π(τ ′))

= φ2(Π(γτ ′)

= ψ2(γτ ′)

= exp(2πiδ2γ(τ ′)/h)

= exp(2πiδ2γδ
−1(δ(τ ′))/h)

= exp(2πi(δ1(τ)±m)/h)

= q exp(2πim/h)

The map q 7→ q exp(2πim/h) is clearly holomorphic.

2.8 Genus

We have finally established a modular curve as a compact Riemann surface. We noted

in section 2.2 that a g holed surface is an example of a Riemann surface. We in fact

have that:

Fact 2.8.1. Every compact Riemann surface looks like a g holed surface for some positive

integer g. The number g is called the genus of the surface.

After doing the identifications on the fundamental domain, we see that the modular

curve Y (1) which is topologically equivalent to a punctured sphere. When we add the

cusp to make it compact, we get a sphere. Therefore X(1) is a surface of genus 0. In

fact the j function defined in section 1.5 is a well defined homeomorphism from X(Γ)

to the complex sphere. In order to prove this we first introduce some notions related to

maps between compact Riemann surfaces. We might need some results from complex

analysis which we will only state and not prove.

Lemma 2.8.2. Any holomorphic map between compact Riemann surfaces is either a

constant or a surjection.

Proof. Let X and Y be compact Riemann surfaces. Let f : X 7→ Y is holomorphic.

Notice that X is compact and connected. Since f is continuous, f(X) is compact, and

hence, closed and connected. By the Open mapping theorem for compact Riemann

surfaces, f(X) is open. Therefore, the image being connected is either a single point or

all of Y.
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We next characterize the non-constant maps. Since a Riemann surface locally “looks

like” the complex plane, we want to visualize how do these maps look locally. This is

given by a result known as the local mapping theorem which we explain below. Let f be

as before and U and V be neighborhoods of points x and f(x) in X and Y respectively.

We have the corresponding local maps between open neighborhoods around 0 in C
as shown in the diagram. The local mapping tells us that diagram below commutes.

In other words, for each x, locally f is the map z 7→ zn for some n, in a suitable

neighborhood of x.

U
f //

φ
��

V

ψ
��

U ′
z 7→zn

// V ′

Definition 2.8.3 (Ramification degree). For each x ∈ X, the ramification degree ex of x

is the multiplicity with which f takes 0 to 0 in the local coordinate charts. That is, f is

an ex to 1 map around x.

We first claim that there are only finitely many points with ramification degree greater

than 1. This can be seen by realizing that the above definition is equivalent to saying

that if ex is the ramification degree then the function, f(z) − f(x) vanishes at x to

the order of ex. Mathematically, this means that f(z) − f(x) = (z − x)exg(z) for some

function g(z). Suppose there are infinitely many points with ramification greater than 1.

Then f ′(z) = 0 at these points. Since X is compact, we can find a converging sequence

of points where the derivative f ′ vanishes, and hence, f ′(z) = 0 for all z ∈ X by the

Identity theorem for Riemann surfaces. So f is constant, which is not the case. Now,

for every y ∈ Y, f−1(y) is discrete. Since X is compact, f−1(y) is finite.

Theorem 2.8.4. There exists a positive integer d such that

d =
∑

x∈f−1(y)

ex

This theorem asserts that |f−1(y)| is constant in the case when all the pre-images x ∈
f−1(y) are unramified. For the points where ramification happens, we have to count the

multiplicity of the ramified points as well. When we do that, we again end up with the

same constant. We will call d, the degree of the map f.

Proof. Let S = {x ∈ X | ex > 1} denote the finite set of ramified points. Let X ′ = X\S
and Y ′ = Y \f(S) be the Riemann surfaces obtained by deleting these finitely many

points. Now, for each x ∈ f−1(y), ex = 1, so there exists a neighborhood Ux where f is

locally bijective. We can shrink these neighborhoods to make them disjoint. This implies
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that for every y, there exists a neighborhood Uy such that f−1(Uy) = ∪x∈f−1(y)Ux,

where each Ux is disjoint from the other and f |Ux : Ux → Uy is a bijection. Therefore,

y 7→ |f−1(y)| defines a continuous function from Y ′ to Z. Since Y ′ is connected, the

function has to be constant. To account for points which are ramified, we yet again look

at the definition of the ramification degree. If y = f(x) is the image of a ramified point

x ∈ X, then definition 2.8.3 implies that every point y′ in a small enough neighborhood

of y is the image of ex many points x′ with ex′ = 1 near x. Therefore in this case as well,

∑
x∈f−1(y)

ex = |f−1(y′)| = d

Having introduced the degree of a map, let us get back to the j function. From the

definition given in (1.5.3), we know that the j function has poles wherever the ∆ function

vanishes. Using the following theorem, we deduce that the j function is holomorphic at

all of H and meromorphic only at the cusp ∞ of X(Γ).

Theorem 2.8.5. The ∆ function does not vanish for any τ ∈ H.

This is a non trivial result and comes from the theory of elliptic curves. One can refer

to the Appendix to see a brief idea of the proof. Since the ∆ function is a cusp form,

it vanishes at the unique cusp ∞ of X(1). So the only pole of the j function is at ∞.
It follows that the j function is a well defined meromorphic map from X(1) to C and

so defines a holomorphic map to the Riemann sphere Ĉ. As a map between Riemann

surfaces, by Lemma 2.8.2, it is a surjection. Its q expansion given in 1.5.4 tells us that

the only pole it has, is simple. Therefore, it is a degree 1 map and hence an injection.

This completes the argument that the simplest modular curve we defined is a complex

sphere.

2.9 Order of modular forms on X(Γ)

Definition 2.9.1 (Order of f). Suppose f ∈ Ak(Γ). About any point τ ∈ V ⊂ H, the

function f has a Laurant series expansion

f(z) =

∞∑
n=m

an(z − τ)n (2.9.2)

Define the order of vanishing at the point τ to be m. We denote it by ordτ (f).
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Clearly if f is holomorphic at τ then ordτ (f) ≥ 0, otherwise if τ is a pole then ordτ (f) <

0.

Definition 2.9.3 (Order at the cusps). For a point s ∈ Q∪ {∞}, define the order of f to

be ords(f) = ord∞(f [α]k) where α is such that α(∞) = s and α ∈ SL2(Z).

We need to make sure the order at the cusps is well defined. To see that it is independent

of the transformation α, let δ be another such transformation such that δ(∞) = s. Then

α−1δ fixes ∞. This implies that δ = α

(
1 m

0 1

)
. So, (f [δ]k)(τ) = f [α]k(τ + m) and we

get that ord∞(f [α]k) = ord∞(f [δ]k). To check that the definition of the order is well

defined on the quotient X(Γ), notice that if γ ∈ Γ, then ords(f) = ordγs(f) because

f [α]k = f [γα]k.

Remark 2.9.4. By definition, the order of f at a point τ in H∗ is always integral. However,

when we define it on the modular curve, one sees that this may not hold true.

We know that any meromorphic modular form is not a well defined function on the

modular curve X(Γ). In order to make sense of the order of vanishing of the modular

form at a point on the modular curve, we need to take the local structure into account.

1. Defining the order at a non cusp: Let Π(τ) ∈ X(Γ) be a non cusp. Suppose the

Laurant series expansion of f about τ is as given in (2.9.2) such that ordτ (f) = m.

The local coordinate at Π(τ) is q = (z − τ)e where e is the period of τ. In local

coordinates,

f(z) = amq
m/e + . . .

We naturally define the order of f at Π(τ) to be

ordΠ(τ)(f) = ordτ (f)/e (2.9.5)

where e is the period of τ . Notice that for a non elliptic point, e = 1 and so the or-

der remains the same, in agreement with the fact that Π is a local homeomorphism

in this case.

2. Defining the order at a cusp: We first work out the definition for the cusp Π(∞).

Suppose the q expansion of f about 0 is

∞∑
n=m

anq
n
h1

; where h1 is the period of f

The local coordinates about the cusp are given by qh = e2πiτ/h where h is the

width of the cusp. In order to write f in terms of the local coordinate, we need
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to relate the period h1 of f with the width of Π(∞). Recall that the width is

characterized by the index of the subgroup {±I}Γ∞ = {±}

〈(
1 h

0 1

)〉
;h ∈ Z+.

Depending on whether −I belongs to Γ or not, three cases arise.

(a) The subgroup Γ∞ = {±I}

〈(
1 h

0 1

)〉
; Recall that the period h1 of f is the

smallest positive integer such that the tranformation

(
1 h1

0 1

)
∈ Γ. This,

along with the description of the subgroup Γ∞ above, gives us that h1 = h.

So in terms of the local coordinates as well, we get the same q expansion of

f about 0 and thus the order remains the same on X(Γ).

(b) When Γ∞ =

〈(
1 h

0 1

)〉
; This case is similarly handled as in 1 and we get

the period f to be the same as h.

(c) If Γ∞ =

〈
−

(
1 h

0 1

)〉
; This case arises only when −I /∈ Γ. Denote the

generator as γ. Then notice that,

f(τ + h) = f(γτ) = (−1)kf(τ).

When k is even, we again get that the period is h. However, if k is odd, then

the period is 2h. In this case:

f(q) =

∞∑
n=m

anq
n
2h

and the order of f on the modular curve is m/2.

In general, for any cusp Π(s), we take a transformation α which takes ∞ to s and

run the same argument with f [α]k instead of f and (α−1Γα)∞ in place of Γ∞.

To summarize the above discussion:

ordΠ(s)(f) =


ords(f)/2 if (α−1Γα)∞ =

〈
−

1 h

0 1

〉 and k is odd

ords(f) Otherwise

(2.9.6)

When ordΠ(s)(f) is half integral, we call these cusps as irregular, otherwise they are

called regular cusps.

Having suitably defined the order on X(Γ), we move on to studying a very important

relation between modular forms and differential forms on X(Γ).
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2.10 A formal introduction to differential forms.

Definition 2.10.1 (Meromorphic differential form). A Meromorphic differential form on

an open subset U of C is an expression of the form f(q)dq where f is a meromorphic

function on U.

Suppose φ : U1 → U2 is a mapping between two open sets in C. Let q2 = φ(q1), where

q1 and q2 denote the local coordinates on U1 and U2 respectively. Let ω = f(q2)dq2

be a differential form on U2. We define φ∗(ω) to be a differential form defined as

f(φ(q1))φ′(q1)dq1 on U1. The differential from φ∗(ω) is called the pullback of ω.

Consider a differential form ω = f(z)dz on H where f(z) is a meromorphic function.

Let γ =

(
a b

c d

)
∈ SL2(Z). When we pull back the differential ω via the action of γ, we

get that:

γ∗(ω) = f(γz)d(γz) = f(γz)(cz + d)−2.

It follows that γ∗(ω) = ω if and only if f(γz) = (cz + d)2f(z) i.e., f is a meromorphic

modular form of weight 2. We in fact have a one-one correspondence between mero-

morphic modular forms of weight 2 and meromorphic differential forms on H that are

invariant under the action of SL2(Z). These are precisely the meromorphic differentials

on X(1). We generalize this to weight k modular forms with respect to the subgroup Γ

by formally defining differential forms of degree k.

Definition 2.10.2 (degree k differential forms). Define a differential form of degree k by

the symbol f(q)(dq)k on an open set U ⊂ C where f is a meromorphic function on U.

Denote the space of k-fold meromorphic differential forms on U by Ωk(U). This forms a

vector space over C under the natural definition of addition and scaler multiplication:

f(q)dqk + g(q)dqk = (f + g)(q)(dq)k

c(f(q))(dq)k = cf(q)(dq)k

Since a Riemann surface also involves transition maps, as introduced before, we need to

define the pullback of local differentials from one open set to another. Any holomorphic

map φ1 : V1 → V2, between open sets in C induces the pullback as follows:

φ∗ : Ωk(V1)→ Ωk(V1)

f(q2)(dq2)k 7→ f(φ(q1))(φ′(q1))k(dq1)k
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Properties of the pullback are summarized with proofs in the following lemmas.

Lemma 2.10.3. The pullback is contravariant. This means that (φ1 ◦ φ2)∗ = φ∗2 ◦ φ∗1.

Proof. Let φ1 : V1 → V2 and φ2 : V2 → V3 be maps between open sets such that f(qi)dqi

are differential forms defined on each Vi respectively for i = 1, 2.

The map (φ2 ◦ φ1)∗ : Ωk(V3)→ Ωk(V1) acts as follows:

(φ2 ◦ φ1)∗(f(q3)(dq3)k) = f(φ2 ◦ φ1(q1))((φ2 ◦ φ1)′(q1))k(dq1)k

= f(φ2(φ1(q1)))(φ′2(φ1(q1))k(φ′1(q1))k(dq1)k

= φ∗1(f(φ2(q2)))(φ′2(q2))k(dq2)k

= (φ∗1 ◦ φ∗2)(f(q3)dqk3 )

Therefore, we conclude that (φ2 ◦ φ1)∗ = φ∗1 ◦ φ∗2.

Lemma 2.10.4. If V1 ⊂ V2 and i : V1 → V2 is the inclusion map between open sets, then

its pull back i∗ : Ωk(V2)→ Ωk(V1) is the restriction map, that is, i∗(ω) = ω|V1 .

Proof. Let ω = f(q)(dq)k be a differential form of degree k on V2. When we pullback ω

on V2 we get that:

i∗(f(q)(dq)k = f(i(q))(i′(q))k(dq)k

= (f ◦ i)(q)(dq)k

= (f |V1)(q)(dq)k

= ω|V1

Lemma 2.10.5. If φ is a holomorphic bijection, then (φ∗)−1 = (φ−1)∗.

Proof. Recall that if φ is a holomorphic bijective map, then by the theory of complex

analysis φ−1 is also holomorphic. Let φ1 : V1 → V2 be a holomorphic bijection be-

tween open sets. Then (φ−1)∗ : Ωk(V1) → Ωk(V2) is such that (φ−1)∗(f(q1)(dq1)k) =

f(φ−1(q2))(φ−1)′(q2)k(dq2)k. We will show that the inverse of φ∗ is this map. Indeed, if

we compute:

φ∗((φ−1)∗(f(q1)(dq1)k)) = φ∗(f(φ−1(q2))(φ−1)′(q2)k(dq2)k)

= f(φ−1(φ(q1)))((φ−1)′(φ(q1)))k(φ′(q1))k(dq1)k

= f(q1)((φ ◦ φ−1)′(q1))k(dq1)k

= f(q1)(dq1)k
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Similarly one can easily see that (φ−1)∗ ◦ φ∗ = I|Ωk(V2).

Lemma 2.10.6. If π : V1 → V2 is a surjection of open sets in C, then π∗ is an injection.

Proof. The map π∗ : Ωk(V2)→ Ωk(V1) is given by:

f(q2)(dq2)k 7→ f(π(q1))π′(q1)k(dq1)k

Suppose that f(π(q1))π′(q1)k(dq1)k = g(π(q1))π′(q1)k(dq1)k. This implies that f(π(q1)) =

g(π(q1)). Since π is a surjection, f(q1) = f(q2). It follows that π∗ is an injection.

Suppose X is a Riemann surface. Let (Ui, Vi, φi)i be its coordinate charts with Ui open

in X, the set Vi open in H for each i and φi : Ui → Vi the local homeomorphism. We

define meromorphic differentials on X as follows:

Definition 2.10.7. A meromorphic differential of degree k, denoted by ω on X is a

collection of local meromorphic differentials (ωj)j∈J ∈
∏
j∈J Ωk(Vj) which satisfy the

following compatibility criteria: Let Vj,k = φj(Uj ∩ Uk) and Vk,j = φk(Uj ∩ Uk). Then

the compatibility criteria says that when we consider the pullback of the transition map:

φk,j = φk ◦ φ−1
j : Vj,k → Vk,j

to pull back a differential form ωk restricted to Vk,j , we get exactly the differential form

on Vj restricted to Vj,k. In mathematical terms,

φ∗k,j(ωk|Vk,j ) = ωj |Vj,k

We denote the set of differential forms of degree k on the modular curve X(Γ) by

Ωk(X(Γ)). This clearly forms a complex vector space. We next state a very important

theorem which helps us to associate weight 2k modular forms with k-fold differential

forms.

2.11 Viewing modular forms as differential forms

As seen previously, if f is a modular form of weight 2k with respect to Γ, then formally,

the weight k differential form f(q)(dq)k is Γ invariant. Therefore, it is natural to guess

that modular forms can be viewed as differential forms on the modular curve X(Γ). We

will make this explicit in this section.
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Theorem 2.11.1. Let k ∈ Z. Let Γ be a congruence subgroup of SL2(Z). Let Π : H∗ →
X(Γ) be the projection map. Then the map:

Ωk(X(Γ))→ A2k(Γ)

is an isomorphism of complex vector spaces. Under this isomorphism any meromorphic

modular form f 7→ (ωj)j∈J where (ωj)j∈J pulls back to the differential form f(τ)dτk ∈
Ωk(H∗) via Π∗.

We note that Π∗ : Ωk(X(Γ)) → Ωk(H∗) pulls back a differential form on X(Γ) to a

differential form on H∗.

Proof. We start by mapping each meromorphic differential form ω on X(Γ) to a mero-

morphic differential from f(τ)(dτ)k on H and we will see that the function f is in-

deed a meromorphic modular form. We define such an association as follows: Let

{Π(Uj) | j ∈ J} be a collection of coordinate neighborhoods onX(Γ) where each Uj ⊂ H∗

is a neighborhood of a point τj ∈ H or of a cusp ∈ Q ∪ {∞}. The corresponding maps

are as follows:

Uj
ψj

��

Π

||
Π(Uj)

φj
// Vj

Let ω = (ωj)j∈J be a meromorphic differential on X(Γ). For each j ∈ J, let U ′j = Ui∩H,

V ′j = ψ(U ′j) and ω′j = ωj |V ′j . Observe that for all points except the cusps Uj = U ′j . Since

the above diagram commutes and φj is a homeomorphism from Π(Uj) to Vj , the most

natural way to define Π∗(ω) locally on H is via the map ψ∗. Therefore, for all j ∈ J

define:

Π∗(ω)|U ′j = ψ∗(ω′j)

Our first task is to check that Π∗(ω) gives a well defined global meromorphic differential

from on all of H. Consider the following commutative diagram, depicting the maps on

the overlaps.

Uj ∩ Uk
ψk

%%
Π
��

ψj

yy
Vj,k

φ−1
j

// Π(Uj ∩ Uk)
φk
// Vk,j

Claim 2.11.2. Pulling back the differential form ωk|Vj,k via ψ∗j and pulling back ωj |Vk,j
via ψ∗k gives us the same form on Uj ∩ Uk.
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By the commutativity of the above diagram, the map φk,j = φk ◦ φ−1
j : Vj,k → Vk,j

satisfies φk,j ◦ ψj = ψk on Uj ∩ Uk. Thus by Lemma 2.10.3, ψ∗k = ψ∗j ◦ φ∗k,j . Writing

V ′j,k = ψj(U
′
j ∩ U ′k) and V ′k,j = ψk(U

′
j ∩ U ′k), we have that:

ψ∗k(ωk|V ′k,j ) = ψ∗j (φ
∗
k,j(ωk|V ′k,j ))

= ψ∗j (ωj |V ′j,k)

where the last equality is due to the compatibility criteria satisfied by the differential

forms on X(Γ).

Since the pullback agree on the overlaps, Π∗(ω) defines a global weight k differential

form on H which we denote by f(τ)(dτ)k. Next, we need to check that the function f is

a meromorphic modular form. The function f is clearly meromorphic. We check that it

satisfies the remaining two conditions in the definition of a modular form as well.

1. Modularity condition: For any γ ∈ Γ such that γ : H → H and γ∗ pulls back a

differential form to H. The condition Π∗(ω) = (Π ◦ γ)∗(ω) = γ∗(Π∗(ω)) gives that

f(τ)(dτ)k = γ∗(f(τ)(dτ)k)

= f(γ(τ))(γ′(τ))k(dτ)k

= (γ, τ)−2kf(γ(τ))(dτ)k

= (f [γ]2k)(τ)(dτ)k

It follows that f(τ) = (f [γ]2k)(τ) giving us that f satisfies the modularity condition

with respect to Γ.

2. Holomorphy at cusps: This requires us to show that f [α]2k is meromorphic at∞ for

any α ∈ SL2(Z). Recall that the local structure at a cusp s is given by the composition

of the maps ψ = ρ ◦ δ explained as follows.

τ 7→ z 7→ q = e2πiz/h

s 7→ ∞ 7→ 0

Let δ be the transformation which takes s to ∞. Suppose α = δ−1 such that s = α(∞).

Since ω is a meromorphic at the cusps of X(Γ), locally it is of the form g(q)(dq)k where

g is meromorphic at 0. Let Π(U) denote the local chart around s and V = ψ(U). The

differential form f(τ)(dτ)k|U\{s} we constructed above is the pullback of ω|V \{0} via ψ∗.
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This implies that,

f(τ)(dτ)k = ψ∗(g(q)(dq)k) = g(ψ(τ))(ψ′(τ))k(dτ)k

= g(q)(ρ′(δ(τ))δ′(τ))k(dτ)k

= g(q)qk(2πi/h)k(δ, τ)−2k(dτ)k

= f̃ [δ]2k(τ)(dτ)k

where f̃(z) = g(q)qk(2πi/h)k; q = e2πiz/h. This implies that f = f̃ [δ]2k. Therefore

f [α]2k = f̃ [αδ]2k = f̃ . Since g is meromorphic at 0, thus f̃ , and so f [α]2k is meromorphic

at ∞.

We have established that every meromorphic differential form of degree k on X(Γ) pulls

back to a meromorphic differential form f(τ)(dτ)k where f is a meromorphic modular

form. We now show that the above association is in fact surjective. That is, given an

automorphic form f ∈ A2k(Γ), we construct a meromorphic differential form ω such that

pulling back ω under Π∗ gives the differential form f(τ)(dτ)k. By the following lemma

it is enough to construct local differential forms (ωj)j∈J that pull back to restrictions of

some meromorphic differential from f(τ)(dτ)k on H.

Lemma 2.11.3. Given a collection (ωj)j∈J ∈
∏
j∈J Ωk(Vj) of local meromorphic differen-

tials on X(Γ). As before, let U ′j = Uj ∩H, V ′j = ψ(U ′j) and ω′j = ωj |V ′j . If ωj |V ′j pull back

under ψ∗j to the restriction of some meromorphic differential, say, f(τ)(dτ)k on H, then

(ωj)j∈J satisfy the compatibility criteria. In other words, ω = (ωj)j∈J is a well defined

differential form on X(Γ).

Proof. We will essentially repeat the argument done in the first half of the proof back-

wards. Since ω′j pulls back to a global differential form on H, the pullback under ψ∗

gives the same value on the intersection. This implies that ψ∗k(ωk|V ′k,j ) = ψ∗j (ωj |V ′j,k).

Again, using the commutative diagram above claim 2.11.2, we see that

ψ∗j (ωj |V ′j,k) = ψ∗k(ωk|V ′k,j ) = ψ∗j (φ
∗
k,j(ωk|V ′k,j ))

Since ψ∗j |U ′j∩U ′k is a surjection onto V ′j,k, Lemma 2.10.6 implies that ψ∗j is an injection.

Therefore, ωj |V ′j,k = φ∗k,j(ωk|V ′k,j ). This is exactly the compatibility criteria.

First we extend the weight k operator to matrices in GL+
2 (C) by the following definition.

(f [γ]k)(τ) = (det γ)k/2(γ, τ)−kf(γτ)

for any γ ∈ GL+
2 (C). We will later see that the extra factor of (det γ)k/2 is indeed

useful in this context. However when we introduce Hecke operators, we will redefine the
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operator and work with a different factor. Recall the local structure for elliptic points

and cusps shown in figure 2.2 and 2.3 respectively.

For an elliptic point: τ

δj=

1 −τ̄
1 −τ


7−−−−−−−−−−→ 0

ρj(z)=z
h

7−−−−−−→ 0

For a cusp: s
δj7−→ ∞

ρj(z)=e
2πiz/h

7−−−−−−−−−→ 0

In both cases δj is invertible. So, let U ′j = Uj ∩ H. Then f(τ)(dτ)k|U ′j is the pullback

δ∗j (λj) where λj is the differential form obtained by the pull back of f(τ)(dτ)k by (δ−1
j )∗.

Let α = δ−1
j , then

λj = α∗(f(τ)(dτ)k)

= f(α(z)(d(αz))k

= f(αz)((detα)/(α, z)2)k(dz)k

= f [α]2k(z)(dz)
k

Thus, f [α]2k(z)(dz)
k pulls back to f(τ)(dτ)k under δj . Next, we need to find a differential

form on Vj which in turn pulls back to f [α]2k(z)(dz)
k under ρ∗. Notice that the map

ρ is not invertible so we cannot do the same trick as we did in the case of δj . We

handle this part separately for an elliptic point and a cusp. Observe that the function

f [α]2k satisfies the modularity condition for the subgroup α−1Γα = δjΓδ
−1
j . Thus, the

differential form λj = (f [α]2k)(z)(dz)
k is δjΓδ

−1
j invariant. In the case where τj ∈ Uj is

not a cusp, δj(τj) = 0 and {±I}(δjΓδ−1
j )0/{±I} is cyclic of order h where h is the period

of τj . The group is generated by the map rh : z 7→ µhz where µh = e2πi/h. Because λj is

invariant under δjΓδ
−1
j , we have that r∗h(λj) = λj which gives us that (f [α]2k)(z)(dz)

k =

(f [α]2k)(µhz)µ
k
h(dz)k or equivalently zk(f [α]2k)(z) = (µhz)

k(f [α]2k)(µhz). This implies

that zk(f [α]2k)(z) = gj(z
h) for some meromorphic function gj , using the fact that if

a meromorphic function t satisfies the property that t(z) = t(µhz), then t = g(zh) for

some meromorphic function g. This can be seen by writing the Laurant series expansion

for t and then plugging in the condition. Now define a local meromorphic differential ωj

on Vj in the q coordinate where q = zh in this case.

ωj =
gj(q)

(hq)k
(dq)k (2.11.4)

Claim 2.11.5. The pull back ρ∗(ωj) = λj where ρ is the map z 7→ zh.
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ρ∗(ωj) =
gj(ρ(z))

(hρ(z))k
ρ′(z)k(dz)k

=
gj(q)

hk(zhk)
(hzh−1)k(dq)k

=
gj(q)

zk
(dz)k

= λj

Therefore, δ∗(ρ∗(ωj)) = δ∗(λj) = f(τ)(dτ)k|Uj ′ .

In the case when Uj contains a cusp sj , we know that δj(sj) =∞. Recall that (δjΓδ
−1
j )∞

is the group of translations by mh where m ∈ Z and h is the width of the cusp h.

This group is generated by th =

(
1 h

0 1

)
which maps z to z + h. Arguing on similar

lines as above, we see that λj is th invariant. The equaility t∗h(λ) = λj implies that

f [α]2k(z)(dz)
k = f [α]2k(z + h)(dz)k. Therefore, f [α]2k(z) is of the form gj(e

2πiz/h) for

some meromorphic function gj . Set

ωj =
gj(q)

2πiq/h)k
(dq)k (2.11.6)

where q = e2πiz/h. Our final task is to check that ωj is pulled back via ρ∗ to f [α]2k(z),

where the map ρj in this case is z 7→ e2πiz/h. This is easily computed in the following

calculation.

ρ∗(ωj) =
gj(ρ(z))

(2πiρ(z)/h)k
ρ′(z)k(dz)k

=
gj(q)

(2πiq/h)k
qk(2πi/h)k(dq)k

= gj(q)

= f [α]2k(z)

It is clear that the above map between the space of meromorphic modular forms and

meromorphic differential forms is injective and C linear. It follows that they are isomor-

phic as vector spaces.

In summary, we have established a remarkable correspondence between the set of mero-

morphic modular forms of weight 2k and the set of weight k differential forms on the

modular curve X(Γ). We will use this isomorphism of vector spaces to find the dimension

of the space M2k(Γ).
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Let C(X(Γ)) denote the field of meromorphic functions on X(Γ). For any fixed non zero

element f in Ak(Γ), it is easy to deduce that Ak(Γ) = {f0f | f0 ∈ C(X(Γ))}. This is

because if g ∈ Ak(Γ) is arbitrary, then g/f is a weight 0 meromorphic modular form

and so a well defined function on X(Γ). From the isomorphism in Theorem 2.11.1, we

can conclude that Ωk/2(X(Γ)) = C(X(Γ))ω0 for some non zero differential form ω0.

2.11.1 Order of a modular form and its corresponding differential form

We know that the local homeomorphism around the elliptic points “looks like” z 7→ ze,

similarly for the cusps the local map looks like z 7→ e2πiz/h. Therefore when we look at

the corresponding differential form, the order of the differential form at the cusps and

the elliptic points will not be the same as the order of the modular form at those points.

This can be seen directly from the construction of the corresponding differential form

for a modular form we did in the proof of Theorem 2.11.1.

Let τj be a non cusp and ωj as given in (2.11.4) be the corresponding differential from

on V , then the order of vanishing at 0 of ωj is given by

ord0(ωj) = ord0(gj)− k = ordτj (f)/h+ k(1− 1/h) (2.11.7)

using the fact that gj(z
h) = znf [α]2k to compare orders at the last step. Performing a

sanity check for h = 1 case, we see that for non elliptic points the order of f and its

corresponding differential form match.

On similarly lines, take sj to be a cusp and its corresponding differential form ωj in

(2.11.6). Using that gj(e
2πiz/h) = f [α]2k(z), we get

ord0(ωj) = ord0(gj)− k = ordsj (f)− k (2.11.8)

Remark 2.11.9. Since Π(U) is homeomorphic to V, we can consider the differential form

to be on Π(U) so that ord0(ωj) = ordΠ(τj)(ωj).

For even weights, putting together equations (2.11.7) and (2.11.8), along with the for-

mula in 2.9.6, we arrive at the following theorem:

Theorem 2.11.10. Let f ∈ A2k(Γ) and let ω be the corresponding k-fold differential form

on X(Γ). Let Π be the projection map as defined previously. Suppose τ ∈ H∗.

1. If τ is an elliptic point with period e, then ordΠ(τ)(f) = ordΠ(τ)(ω) + k(1− 1/e)

2. If τ is a cusp point with width h, then ordΠ(τ)(f) = ordΠ(τ)(ω) + k

3. If τ is any other point then ordΠ(τ)(f) = ordΠ(τ)(ω)
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2.12 Divisors and the Riemann Roch Theorem

We next introduce the Riemann Roch Theorem. The aim of this section is to formally

develop the necessary definitions in order to make sense of the Riemann Roch Theorem.

We first state some facts regarding the zeroes and the poles of functions on a compact

Riemann surface X.

Fact 2.12.1. Any holomorphic function on X is constant.

Fact 2.12.2. A meromorphic function f on X has finitely many poles and zeroes.

Fact 2.12.3. Any meromorphic function f on X has the same number of poles as the

zeroes counting with multiplicities.

Definition 2.12.4 (Divisor). Let X be a compact Riemann surface. A divisor D on X is

a finite sum over the points of X formally written as
∑

i ni ·Pi where ni ∈ Z and Pi are

points of X.

The divisor D =
∑
ni · Pi is called positive if ni ≥ 0 for all i. In such a case we write

D ≥ 0.

Definition 2.12.5 (Order of f at a point). Let f be a meromorphic function on X. For

any point P ∈ X, order of f at P is the order of the pole or zero at P. It is denoted by

ordP (f). It is positive if P is a zero of f, negative if P is a pole or zero otherwise.

Definition 2.12.6 (Divisor of f). Let f be a non zero meromorphic function on X. The

divisor of f is the formal sum
∑
P

ordP (f) · P. We denote it by div(f).

We note that the sum makes sense because of fact 2.12.2.

Remark 2.12.7. We will see in section 2.13.5 that the divisor associated to a holomorphic

modular form is not integral i.e., its coefficients are not integral. In such a case we take

the greatest integer of the coefficients. This makes sense because div(f) ≥ 0 if and only

if bdiv(f)c ≥ 0.

Definition 2.12.8 (Degree of a divisor). For any divisor D =
∑

i ni · Pi, the degree of D

is the sum
∑

i ni.

The fact in 2.12.3 implies that the degree of a meromorphic function is 0.

We next associate a divisor to a differential form. Let P ∈ X and U be a coordinate

neighborhood around P. Let z denote the local coordinate on U. The differential form on

U is of the form f(z)dz. Define the order of ω at P by ordP (ω) = ordP (f). It now makes

sense to write div(ω) =
∑

P ordP (ω) ·P. It is easy to see that div(fω) = div(f)+div(ω).
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Let M(X) denote the set of meromorphic functions on X. For any divisor D on X, we

define the set

L(D) = {f ∈M(X) | div(f) +D ≥ 0} ∪ {0}.

It is easy to see that this is a vector space. In fact L(D) is finite dimensional. Its

dimension is denoted by l(D).

Definition 2.12.9 (Canonical divisor). For any compact Riemann surface X, a canonical

divisor is a divisor div(ω) where ω is a one form on X.

The Riemann Roch Theorem helps us to calculate the dimension of the space L(D) for

any divisor D. In this way, given a specific number of zeroes and poles of a function

say f̃ , we can define a divisor D on X with appropriate coefficients so that the space

L(D) contains functions f vanishing with high enough order so as to make the product

ff̃ holomorphic. The Riemann Roch Theorem helps us calculate the dimension of the

space of such functions. The following is the statement of the theorem:

Theorem 2.12.10 (Riemann-Roch). Let X be a compact Riemann surface. Let g denote

the genus of the surface. Then for any divisor D on X and K a canonical divisor on X,

we have that

l(D) = deg(D) + 1− g + l(K −D)

2.13 Consequences of the Riemann Roch Theorem

In this section we prove three immediate corollaries of the Riemann Roch Theorem which

will help us prove the dimension formula.

Corollary 2.13.1. A canonical divisor K has degree 2g − 2 and l(K) = g.

Proof. If we take D = 0, the space L(D) is the space of holomorphic functions. By fact

2.12.1, we have that L(D) consists of constant functions. Thus l(0) = 1. Substituting

everything in Theorem 2.12.10 we get that l(K) = g.

When we put D = K, then l(K) = deg(K) + 1 − g + l(0). Putting l(K) = 1, we have

that deg(K) = 2g − 2.

Corollary 2.13.2. The degree of a k-fold differential form is k(2g − 2).

Proof. Suppose that λ ∈ Ω1(X(Γ)) is a non zero 1-form. We know that its degree is

2g − 2. Notice that λk ∈ Ωk(X(Γ)) and its divisor has degree k(2g − 2). This implies

that Ωk(X(Γ)) = C(X(Γ))λk. Since for all f ∈ C(X(Γ)), deg(div(f)) = 0, it follows

that every non zero differential form ω ∈ Ωk(X(Γ)) has degree k(2g − 2).
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Corollary 2.13.3. If deg(D) > 2g − 2, then l(D) = deg(D) + 1− g

Proof. If deg(D) > 2g − 2, then deg(K − D) < 0. This implies that for any non zero

f ∈ M(X), deg(f + K − D) < 0. Therefore, div(f + K − D) will never be a positive

divisor. Thus, L(K −D) = 0 so that l(K −D) = 0 and the result follows.

Corollary 2.13.4. If deg(D) < 0, then l(D) = 0.

Proof. The proof of this corollary is along similar lines to the proof of Corollary 2.13.3.

Keeping the above corollaries in mind, we finally move on to find out the dimension of

the space M2k(Γ).

2.13.1 The dimension formula for even weights

All throughout this section, f is a modular form of weight 2k. The aim of this section

is to prove the following theorem:

Theorem 2.13.5. Suppose the modular curve X(Γ) has a genus g for some congruence

subgroup Γ. Let ε∞ denote the number of cusps of X(Γ). Let ε2 and ε3 be the number

of elliptic points of period 2 and 3 respectively on X(Γ). Then the dimension ofM2k(Γ)

is given by:

dim(M2k(Γ)) =


0 if k < 0

1 if k = 0

(2k − 1)(g − 1) + ε∞k + bk/2cε2 + b2k/3cε3 if k > 0

Proof. We will first characterize the image of the subspaceM2k(Γ) ⊂ A2k(Γ) under the

isomorphism in Theorem 2.11.1. Suppose f ∈M2k(Γ). Let ω be its corresponding k-fold

differential form on X(Γ). Since f is holomorphic, ordτ (f) ≥ 0 for all τ ∈ H∗. Let ω0

be a nonzero k-fold differential form so that ω = hω0 for some function h ∈ C(X(Γ)).

Thus ordΠ(τ)(ω) = ordΠ(τ)(hω0). From the previous section relating the order of zeroes

and poles of ω with f we get the following inequalities.

When τ is an elliptic point: ordΠ(τ)(h) + ordΠ(τ)(ω0) + k(1− 1/e) ≥ 0

When τ is a cusp: ordΠ(τ)(h) + ordΠ(τ)(ω0) + k ≥ 0

Otherwise: ordΠ(τ)(h) + ordΠ(τ)(ω0) ≥ 0
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The above three equations characterize the subspace M2k(Γ). Combining the three

equations and rewriting them in the language of divisors we arrive at the following

expression.

div(h) + div(ω0) +
∑

τ cusp

k · τ +
∑

τi elliptic

bk(1− 1/ei)c · τi ≥ 0 (2.13.6)

The symbol ei refers to the period of the elliptic point τi. Let D be the divisor given by

D = div(ω0) +
∑

τ cusp

k · τ +
∑

τi elliptic

bk(1− 1/ei)c · τi (2.13.7)

Then the above condition characterizing the space of holomorphic modular forms reduces

to the following:

div(h) +D ≥ 0

In other words, because of the isomorphism in Theorem 2.11.1 we have a one to one

correspondence between the sets given below.

{f | f ∈M2k(Γ)} ↔ {h ∈ C(X(Γ)) | div(h+D) ≥ 0}.

We therefore deduce that L(D) ∼= M2k(Γ). We are now ready to apply the Riemann

Roch Theorem to find the dimension l(D) which will give us the dimension for the space

M2k(Γ). Since ω0 is a k-fold differential form, its degree is k(2g−2) by Corollary 2.13.2.

This implies that deg(D) = k(2g − 2) + ε∞k + bk/2cε2 + b2k/3cε3. Notice that when

k > 0,deg(D) > (2g − 2). This implies that l(D) = deg(D)− g + 1 by Corollary 2.13.3.

It follows that for k > 0,

dim(M2k(Γ)) = l(D) = (2k − 1)(g − 1) + ε∞k + bk/2cε2 + b2k/3cε3.

When k < 0,deg(D) < 0. By Corollary 2.13.4 l(D) = 0. In the case when k = 0, modular

forms are well defined holomorphic functions on the modular curve. By fact 2.12.1, they

are constant functions. Therefore dim(M0(Γ)) = 1.

Following a similar argument we compute the dimension of the subspace of cusp forms

Sk(Γ). For any cusp form f ∈ S2k(Γ), ords(f) ≥ 1 where s represents a cusp in X(Γ).

As argued before, suppose ω = hω0 is the corresponding differential form. In this case

div(f)−
∑

xi cusp

xi ≥ 0 so that there exists a one to one correspondence between the sets:

{f | f ∈ S2k(Γ)} ↔
{
h ∈ C(X(Γ))

∣∣∣∣ div

(
h+D −

∑
xi cusp

xi

)
≥ 0

}
.
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where D is the divisor as given (2.13.7). It follows that the dimension of Sk(Γ) =

l

(
D−

∑
xi cusp

xi

)
. Observe that deg

(
D−

∑
xi cusp

xi

)
= deg(D)−ε∞ > 2g−2 when k > 1.

By the Riemann Roch Theorem, dim(S2k(Γ)) = dim(M2k(Γ)) − ε∞. S0(Γ) consists of

constant functions. We handle the case of S2 below separately.

Lemma 2.13.8. The space of cusp forms of weight 2, S2(Γ) is isomorphic to the holo-

morphic differentials of degree 1 on X(Γ), denoted by Ω1
hol(X(Γ)).

Proof. Let f ∈ S2(Γ) and ω be the associated 1 form on X(Γ). Using Theorem 2.11.10

for the k = 1 case, we characterize the image of S2(Γ) under the isomorphism map

between M2(Γ) and Ω1(X(Γ)). Observing the fact that ordτ (f) ≥ 1 at cusps, while it

is greater than or equal to 0 at other points, we see that, ordΠ(τ)(ω) being integral is

greater than or equal to 0 at all points of X(Γ). Thus, ω ∈ Ω1
hol(X(Γ)).

Next, recall that Ω1(X(Γ)) = C(X(Γ))λ where λ is a non zero one form on X(Γ). Define

a map as follows:

Ω1(X(Γ))→ C(X(Γ))

f0λ 7→ f0

This is clearly a well defined, vector space isomorphism. Any divisor f0λ ∈ Ω1
hol(X(Γ))

if and only if div(f0λ) ≥ 0 if and only if div(f0)+div(λ) ≥ 0 if and only if f0 ∈ L(λ).

Thus, under the above isomorphism, Ω1
hol(X(Γ)) is mapped to L(λ). So dimension of

S2(Γ) = l(λ) = g by Corollary 2.13.1.

To summarize the above discussion:

dim(S2k(Γ)) =


1 if k = 0

g if k = 1

(2k − 1)(g − 1) + ε∞(k − 1) + bk/2cε2 + b2k/3cε3 if k > 1

2.14 Dimension formula for odd weights

When −I /∈ Γ, then odd weight modular forms may exist. The isomorphism in Theorem

2.11.1 made sense for even weights and not for odd weight forms. To take this into

account we will slightly modify the argument as done for even weights. Throughout this

section, we assume that f is a modular form of weight k where k is an odd integer. Let

ω ∈ Ωk(X(Γ)) be the differential form which pulls back to the form f(τ)2(dτ)k. Recall
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that Ak(Γ) = {f0f | f0 ∈ C(X(Γ))}. The space Mk(Γ) is identified to L(div(f)) since

Mk(Γ) = {f0 | div(f0f) ≥ 0}

= {f0 | div(f0) + div(f)) ≥ 0}

= L(div(f))

We need to find l(div(f)). Essentially we will follow a similar argument as done for even

weights but with slight modifications. Observe that 2ordτ (f) = ordτ (ω). As before,

Before writing the divisor of f in terms of the divisor of ω, we make the following

observations for the case when −I /∈ Γ.

1. Along with the regular cusps, X(Γ) might have irregular cusps as well.

2. The modular curve does not contain any elliptic points of period 2. This is seen

as follows: Suppose otherwise. Then any elliptic point of period two of the form

γi is fixed by an element γSjγ−1 with j ∈ {1, 3}, γ ∈ SL2(Z) and S as in 1.0.3.

But then either (γSγ−1)2 = −I ∈ Γ or (γS3γ−1)2 = −I ∈ Γ. This is not possible

when −I /∈ Γ.

Keeping in mind Theorem 2.11.10 and writing everything in terms of divisors, we see

that

div(f) = 1/2div(ω) +
∑

reg cusp

k/2 · τ +
∑

irreg cusp

k/2 · τ +
∑

τ elliptic

k/3 · τ (2.14.1)

Since the coefficients of the divisor are not integers, we need to study bdiv(f)c. This is

done case by case depending on whether τ is a cusp, elliptic point or neither of the two.

1. Suppose that Π(τ) is neither a cusp nor an elliptic point. In this case ordΠ(τ)(f)

is integral and so 1/2(ordΠ(τ)(ω)) is integral.

2. When Π(τ) is an elliptic point of order 3 we write ordΠ(τ)(f) = m + j/3 where

m ∈ Z and 0 ≤ j < 3.

1/2(ordΠ(τ)(ω)) = 1/2

(
2(ordΠ(τ)(f))− 2/3k

)
= m+

j − k
3

Since ordΠ(τ)(ω) is integral, j ≡ k mod 3. Therefore 1/2(ordΠ(τ)(ω)) is integral

giving us that

bordΠ(τ)(f)c = 1/2(ordΠ(τ)(ω)) +

⌊
k

3

⌋
.
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3. When Π(τ) is an regular cusp, we see that

1/2(ordΠ(τ)(ω)) = 1/2

(
2(ordΠ(τ)(f))− k

)
= ordΠ(τ)(f)− k/2

Since ordΠ(τ)(f) is integral and k is odd, 1/2(ordΠ(τ)(ω)) is half integral and so

bordΠ(τ)(f)c = 1/2(ordΠ(τ)(ω)) + k/2), a sum of half integers.

4. If Π(τ) is an irregular cusp then we assume ordΠ(τ)(f) = m/2 for some odd integer

m so that

1/2(ordΠ(τ)(ω)) = ordΠ(τ)(f)− k/2

=
m− k

2

Since k andm both are odd, 1/2(ordΠ(τ)(ω)) is integral giving us that bordΠ(τ)(f)c =

1/2ordΠ(τ)(ω) + (k − 1)/2, a sum of half integers.

Let εreg
∞ and εirreg

∞ denote the number of regular and irregular cusps respectively. Putting

together the above discussion, we conclude that

deg(bdiv(f)c) = k(g − 1) + bk/3cε3 + k/2εreg
∞ + (k − 1)/2εirreg

∞

≥ (k − 2)(g − 1 + ε3/3 + ε∞/2) + 2g − 2

> 2g − 2 when k ≥ 3

We use a small observation that bk/3c ≤ (k − 2)/3 in the second inequality. Applying

Corollary 2.13.3 we arrive at the following result.

l(bdiv(f)c) = (k − 1)(g − 1) + bk/3cε3 + k/2εreg
∞ + (k − 1)/2εirreg

∞

To study cusp forms of odd weight, we need to consider the fact that at regular cusps

ordτ (f0f) ≥ 1 and at irregular cusps ordτ (f0f) ≥ 1/2. This amounts to studying the

divisor div

⌊(
f−

∑
reg cusp

τ+
∑

irreg cusp

τ

)⌋
. Let us call this divisor D. Calculations similar

to those done in case of even weight help us conclude the following result.

l(D) = (k − 1)(g − 1) + bk/3cε3 + (k − 2)/2εreg
∞ + (k − 1)/2εirreg

∞ (2.14.2)

We now state the final theorem of this section, summarizing our discussion above.

Theorem 2.14.3. Let k be an odd integer. Suppose Γ is a congruence subgroup of

SL2(Z). Let g be the genus of X(Γ), ε3 be the number of elliptic points of period 3, εreg
∞

and εirreg
∞ be regular and irregular cusps respectively. When k < 0, or if −I ∈ Γ, then
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Mk(Γ) = Sk(Γ) = {0}. If −I /∈ Γ and k > 0, then the dimension of Mk(Γ) and Sk(Γ)

is given by the following expression:

dim(Mk(Γ)) = (k − 1)(g − 1) + (k/2)εreg
∞ + ((k − 1)/2)εirreg

∞ + bk/3cε3 (2.14.4)

dim(Sk(Γ)) = (k − 1)(g − 1) + ((k − 2)/2)εreg
∞ + ((k − 1)/2)εirreg

∞ + bk/3cε3 (2.14.5)

With this result, we end this chapter and conclude the dimension theory. We move on

to studying modular forms via Hecke theory.
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The theory of Hecke operators

3.1 Modular curves and the corresponding Moduli space

We begin the chapter by establishing a very interesting correspondence between the

points of modular curves and the isomorphism classes of complex elliptic curves.

The theory of complex tori deals with viewing an elliptic curve as a complex torus.

In the process of establishing a one-one correspondence between the two mathematical

objects, we work with doubly periodic functions, more specifically, the Weierstrass ℘

function. For a brief introduction, one can refer to the Appendix. In the view of this

bijection, we will essentially consider the isomorphism class of elliptic curves as the class

of complex tori up to isomorphism.

Let Λ and Λ′ be lattices in C. We know that two complex tori C/Λ and C/Λ′ are

holomorphically isomorphic if and only if there exists a complex number m such that

Λ = mΛ′. Let Λτ denote the lattice generated by 1 and τ. We aim to show that if

τ and τ ′ are points in H such that τ = γτ ′ with γ ∈ SL2(Z), then Λτ is isomorphic

to Λτ ′ . More generally, we will show this correspondence for the congruence subgroups

Γ0(N) and Γ1(N). However, to work in a general setting we will need to attach some

additional information with the isomorphism classes of elliptic curves. We begin by

defining relevant torsion data for the congruence subgroups.

Definition 3.1.1 (Enhanced elliptic curves for congruence subgroups). Let E denote an

elliptic curve, C a cyclic subgroup of order N of E and Q a point of order N in E.

1. The pair (E,C) is called an enhanced elliptic curve for the subgroup Γ0(N). Two

pairs (E,C) and (E′, C ′) are equivalent if there exists some isomorphism from E to

E′ that takes C to C ′. Denote the set of equivalence classes by S0(N). An element

of S0(N) is written [E,C].

57
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2. An enhanced elliptic curve for the subgroup Γ1(N) is given by the pair (E,Q). Two

pairs (E,Q) and (E′, Q′) are equivalent if there exists some isomorphism from E

to E′ that takes Q to Q′. The set of equivalence classes is written as S1(N). An

element of S1(N) is denoted by [E,Q].

Each S0(N) and S1(N) is known as the moduli space of isomorphism classes of elliptic

curves with N torsion data.

The theorem below describes the one-to-one correspondence between points of moduli

space and the modular curve mentioned in the beginning. We denote the modular curve

H/Γ1(N) as Y1(N) and H/Γ0(N) as Y0(N).

Theorem 3.1.2. Let N be a positive integer. Suppose Eτ represents an elliptic curve

biholomorphic to the complex torus C/Λτ .

1. The moduli space for Γ1(N) is given by the set

S1(N) = {[Eτ , 1/N + Λτ ] | τ ∈ H}

Two points [Eτ , 1/N + Λτ ] = [Eτ ′ , 1/N + Λτ ′ ] in S1(N) if and only if Γ1(N)τ =

Γ1(N)τ ′ in Y1(N). Thus there is a bijection

ψ1 : S1(N)→ Y1(N) ; [C/Λτ , 1/N + Λτ ] 7→ Γ1(N)τ

2. The moduli space for Γ0(N) is given by the set

S0(N) = {[Eτ , 〈1/N + Λτ 〉] | τ ∈ H}

Two points [Eτ , 〈1/N + Λτ 〉] = [Eτ ′ , 〈1/N + Λτ ′〉] in S0(N) if and only if Γ0(N)τ =

Γ0(N)τ ′ in Y0(N). Thus there is a bijection

ψ1 : S0(N)→ Y0(N) ; [C/Λτ , 〈1/N + Λτ 〉] 7→ Γ0(N)τ

Proof. We will prove the theorem for the subgroup Γ1(N) and second part follows by a

similar idea. We first wish to show that for any class [E,Q], we can in fact specifically

choose the representative and write it as [C/Λτ , 1/N + Λτ ]. Consider E = C/Λτ ′ for

some τ ′ ∈ H and Q = (cτ ′+d)
N + Λτ ′ . We wish to show that there exists some element τ

in H and an isomorphism between the tori C/Λτ and C/Λτ ′ which maps Q to 1/N +Λτ .

Since Q has order N, (c, d,N) = 1 so that ad − bc − kN = 1 for some a, b, k ∈ Z. This

implies that

(
a b

c d

)
∈ SL2(Z/NZ). Take a lift γ of this matrix in SL2(Z). This will
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not change the order N point Q because the entries are changed up to a multiple of N.

Let τ = γτ ′ = aτ ′+b
cτ ′+d . Let m = cτ ′ + d and so mτ = aτ ′ + b. Observe that:

mΛτ = m(τZ⊕ Z) = (aτ ′ + b)Z⊕ (cτ ′ + d)Z = τ ′Z⊕ Z.

It follows that C/Λτ ′ ∼= C/Λτ . Under this isomorphism of complex tori, the point 1
N +Λτ

maps to cτ ′+d
N + Λ′τ = Q. Finally this allows to write [E,Q] = [Eτ , 1/N + Λτ ]. Our next

task is to show that if two points are equivalent in S1(N), then the corresponding points

in the modular curve Y1(N) are equivalent.

First suppose that [Eτ , 1/N + Λτ ] = [Eτ ′ , 1/N + Λτ ′ ] with τ and τ ′ ∈ H. Then C/Λτ ′ ∼=
C/Λτ . This means that for some m ∈ C, mΛτ = Λτ ′ such that, under this map

(z + Λτ ) 7→ mz + Λτ ′ ;
1

N
+ Λτ 7→

1

N
+ Λτ ′

From Lemma A.1.3 we conclude that:(
mτ

m

)
=

(
a b

c d

)(
τ ′

1

)
for some γ =

(
a b

c d

)
∈ SL2(Z) (3.1.3)

This implies that m = cτ ′ + d and so cτ ′+d
N + Λτ ′ = 1

N + Λτ ′ . Therefore, (c, d) ≡ (0, 1)

mod N. It follows that γ ∈ Γ1(N). The expression in 3.1.3 shows that τ = γτ ′.

Conversely, suppose that τ and τ ′ ∈ H such that τ = γτ ′ for some γ =

(
a b

c d

)
∈ Γ1(N).

Assume m = cτ ′ + d. From the calculations done in the first part of the proof, we know

that mΛτ = Λτ ′ and under the “multiplication by m map”, the point 1/N + Λτ maps

to cτ ′+d
N + Λτ ′ . Moreover, (c, d) ≡ (0, 1) mod N implies that cτ ′+d

N + Λτ ′ = 1/N + Λτ ′ .

This helps us conclude that [Eτ , 1/N + Λτ ] = [Eτ ′ , 1/N + Λτ ′ ].

Theorem 3.1.2 helps us to translate maps between modular curves to maps between the

corresponding moduli spaces. For example, since Γ1(N) ⊂ Γ0(N), we have a natural

map from Y1(N) to Y0(N) taking the orbit space Γ1(N)τ to Γ0(N)τ. The corresponding

map on the moduli space takes the point [E,Q] in S1(N) to the point [E, 〈Q〉] in S0(N).

The fact that Γ1(N) is normal in Γ0(N) is also used to define a map from Y1(N) to

Y1(N) which maps the point Γ1(N)τ to Γ1(N)γτ where γ ∈ Γ0(N). The corresponding

map on the moduli space S1(N) turns out to be: [E,Q] 7→ [E, dQ] where d corresponds

to the lower right entry of γ modulo N. This map will reappear as a Hecke operator

which we introduce in section 3.4.
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3.2 Dirichlet characters and the Diamond operator

In this section, we aim to introduce certain functions on the multiplicative group (Z/NZ)∗

called the Dirichlet characters. As we go on, we will see that they play a fundamental role

in our understanding of Hecke operators and L functions. For notational convenience,

we denote (Z/NZ)∗ as GN .

Definition 3.2.1 (Dirichlet Character). A Dirichlet character modulo N is a group ho-

momorphism χ : GN → C∗.

Since GN is a finite group, the values taken by any Dirichlet character are finite order

elements in C∗. These are precisely the roots of unity. The set of Dirichlet characters

mod N is a group under multiplication. To see this, let χ and ψ be two Dirichlet

characters. Then, define the product χψ as the function, χψ(n) = χ(n)ψ(n). Under this

operation, the identity map is the trivial map I that maps every element of GN to 1. The

inverse of any character χ is the map χ which acts by conjugation, that is, χ(n) = χ(n).

We denote this group by ĜN .

If GN is cyclic with a generator s, then any Dirichlet character χ ∈ ĜN is completely

determined by the image of χ(s). Since s has order N, χ(s) represents a N th root of

unity. Therefore, it is easy to verify in this case that χ 7→ ω is an isomorphism of ĜN

and (Z/NZ)∗. In fact, in general we have the following proposition:

Proposition 3.2.2. The group ĜN is isomorphic to GN .

The above proposition helps us conclude that the number of Dirichlet characters mod N

is φ(N). We next prove two very important relations satisfied by the Dirichlet characters.

These are called the orthogonality relations, for reasons coming from representation

theory.

Proposition 3.2.3. The groups GN and ĜN satisfy the orthogonality relations given by

the following equations:

∑
n∈GN

χ(n) =

φ(N) if χ = I

0 if χ 6= I
(3.2.4)

∑
χ∈ĜN

χ(n) =

φ(N) if n = 1

0 if n 6= 1
(3.2.5)
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Proof. Suppose that χ 6= I. To prove (3.2.4), we choose any n0 ∈ GN such that χ(n0) 6= 1.

Now notice that the sum

∑
n∈GN

χ(n0)χ(n) =
∑
n∈GN

χ(nn0)

=
∑
n∈GN

χ(n)

The last equality comes from the observation that for a fixed n0 ∈ GN , as n runs over

GN , nn0 runs over GN as well. This gives us that,(
χ(n0)− 1

) ∑
n∈GN

χ(n) = 0

hence proving the relation (3.2.4) for χ 6= I. When χ = I, then the sum is clearly φ(N).

We proceed on similar lines to prove the next relation. It is clear that when n = 1, the

sum is φ(N). When n 6= 1, let χ0 be a Dirichlet character, not equal to I. Then we have

the following equality of sums:

∑
χ∈ĜN

(χ0χ)(n) =
∑
χ∈ĜN

χ(n)

This implies that, (
χ0 − I

) ∑
χ∈ĜN

χ(n) = 0

giving us (3.2.5) for n 6= 1.

Every character χ mod N extends to a function χ : Z/NZ → C by defining χ(n) = 0

for non invertible elements n ∈ Z/NZ. This further extends to a function from Z to C
if we define χ(n) = χ(n mod N) for all n ∈ Z. This way, χ(n) = 0 for every n such that

(n,N) > 1. Observe that χ is no longer a group homomorphism, but it still satisfies that

χ(m)χ(n) = χ(mn) for m,n ∈ Z/NZ.

3.2.0.1 Lift of a Dirichlet character

Let N and d be positive integers such that d | N. Observe that any Dirichlet character

χ modulo d can be lifted to a Dirichlet character χN modulo N by simply defining

χN (n mod N) = χ(n mod d) for all n ∈ Z such that (n,N) = 1. In other words,

χN = χ ◦ΠN,d where ΠN,d is the is the natural projection GN → Gd.
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Other way round, we define the conductor of χ modulo N to be the smallest possible

integer d such that χ is the lift of some character χd mod d. For example, consider the

character χ modulo 12 taking 1, 5 to 1 and 7, 11 to −1. Then χ has conductor 4 as

χ = χ4 ◦ Π12,4 where χ4 maps 1 to 1 and 3 to −1. However, it is not always necessary

that a character mod N comes from characters of lower levels. This is because χ mod

N will not necessarily give a character mod d by the usual projection where d | N .

Definition 3.2.6 (Primitive characters). A character χ mod N is called primitive if its

conductor is 1. In other words, χ is not the lift of any character.

Primitive characters will be very useful in the coming sections. One of the many inter-

esting properties of primitive characters is that we can extend it from a function on Z
to a smooth function on R. To see how this works, we introduce the Gauss sum.

Definition 3.2.7. Let χ be a primitive Dirichlet character modulo N. The Gauss sum

τ(χ) is defined by the formula

τ(χ) =
∑

n mod N

χ(n)e2πin/N

We will need the following expression for Gauss sum.

∑
n mod N

χ(n)e2πinm/N = χ(m)τ(χ). (3.2.8)

Proof of the expression in equation (3.2.8). First consider the case when (m,N) = 1.

Using the fact that χ(m)χ(m) = 1, we write

∑
n mod N

χ(n)e2πinm/N =
∑

n mod N

χ(n)χ(m)χ(m)e2πinm/N

= χ(m)
∑

n mod N

χ(nm)e2πinm/N

As n runs in Z/NZ, nm mod N runs over the same group as well and so the last

expression in the equality equals χ(m)τ(χ) in this case.

Suppose that (m,N) = d with d > 1. Then χ(m) = 0. It remains to show that the

left hand side of the expression in (3.2.8) vanishes. Let m = dM and N = dN1. We

first show that there exists some integer c such that c ≡ 1 mod (N1) and (c,N) = 1

with the property that χ(c) 6= 1. Suppose otherwise, then χ(c) = 1 for all c such that

c ≡ 1 mod (N1) and (c,N) = 1. This implies that if we have integers n and n′ relatively

prime to N such that n ≡ n′ mod N1, then χ(n) = χ(n′) mod N1. It follows that χ is well

defined modulo N1. That is, χ is a lift of a Dirichlet character modulo N1 contradicting
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the primitivity of χ. Next, write:

∑
n mod N

χ(n)e2πinm/N =
∑

n mod N

χ(n)e2πinM/N1

=

N1−1∑
r=0

( N−1∑
n=0

n≡r mod N1

χ(n)

)
e2πirM/N1

The expression in the last equality is justified because for any integers n1 and n2 between

0 to N − 1, the expression e2πin1M/N1 = e2πin2M/N1 if and only if n1 ≡ n2 mod N1. So

for each r ∈ Z/N1Z, we sum n from 0 to N − 1 with the condition that n ≡ r mod N1

so as to club the coefficients with the same value of e2πinM/N1 . For each r in 0 to N1−1,

consider the sum
N−1∑
n=0

n≡r mod N1

χ(n) (3.2.9)

The existence of an integer c with the desired property allows us to do a change of variable

from n to cn. This just permutes the elements of Z/NZ as (c,N) = 1. Moreover, since

c ≡ 1 mod N1, it preserves the condition that n ≡ r mod N1. This allows us to write:

N−1∑
n=0

n≡r mod N1

χ(n) =
N−1∑
n=0

n≡r mod N1

χ(cn) (3.2.10)

This implies that,
N−1∑
n=0

n≡r mod N1

χ(n)(χ(c)− 1) = 0

Since χ(c) 6= 1, the sum in (3.2.10) must vanish, making the left hand side in (3.2.8)

equal to 0.

We next show that the Gauss sum does not vanish. More explicitly, the following

proposition is true.

Proposition 3.2.11. Suppose χ is a primitive character modulo N and τ(χ) denotes the

Gauss sum defined above. Then |τ(χ)| =
√
N.

Proof. Consider the product:( ∑
n mod N

χ(n)e2πinm/N

)( ∑
n mod N

χ(n)e2πinm/N

)
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We expand it as follows:∣∣∣∣ ∑
n mod N

χ(n)e2πinm/N

∣∣∣∣2 =

( ∑
n mod N

χ(n)e2πinm/N

)( ∑
n mod N

χ(n)e−2πinm/N

)
=

∑
n1,n2 mod N
(n1,n2,N1)=1

χ(n1)χ(n2)e2πi(n1−n2)m/N

= (χ(m)τ(χ))(χ(m)τ(χ))

The last expression equals |τ(χ)2| if (m,N) = 1, otherwise it is 0. Summing over m ∈
Z/NZ we get,

φ(N)|τ(χ)2| =
∑

m mod N

( ∑
n1,n2 mod N
(n1,n2,N1)=1

χ(n1)χ(n2)e2πi(n1−n2)m/N

)
(3.2.12)

Observe that
N−1∑
m=0

e2πiam/N =

0 if N - a

N if N | a

This helps us to conclude that the terms with N | (n1 − n2) will contribute a factor of

χ(n1)χ(n2)N in the right hand side of equation (3.2.12). Since n1 ≡ n2 mod N, and so

χ(n1) = χ(n2), the left hand side of the expression in (3.2.12) simplifies to

∑
n1≡n2 mod N
(n1,n2,N1)=1

N = φ(N)N

On comparing the two sides we get that |τ(χ)2| = N.

We need one more result about the Gauss sum which is easy to see:

τ(χ) = χ(−1)τ(χ) (3.2.13)

Putting every thing together from the results in (3.2.8), (3.2.11) and (3.2.13) and doing

a little bit of algebra we arrive at the following expression:

χ(n) =
χ(−1)τ(χ)

N

∑
m mod N

χ(m)e2πinm/N (3.2.14)

Notice that the right hand side of the equation in (3.2.14) is defined for an arbitrary

real number n ∈ R. Therefore, the expression in (3.2.14) allows us to interpolate the

character to view it as a function on R instead of just Z. We will need these results in

the later sections to come and for now leave the discussion on Dirichlet characters for a

while.
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Returning to modular forms, the results from now on will focus on the spaceMk(Γ1(N)).

The theory we develop in the next few sections will be dedicated to studying linear

operators on this space so as to decompose this space into eigen subspaces and find a

suitable basis of eigen vectors, which we call eigenforms. Once this is achieved, we will

start seeing very interesting properties of L functions associated to these eigenforms. To

that end, we start with defining the χ – eigen space of Mk(Γ1(N)).

Definition 3.2.15. For each Dirichlet character χmodN, the χ-eigen space ofMk(Γ1(N)),

denoted by Mk(N,χ) is the subspace:

{f ∈Mk(Γ1(N)) | f [γ]k = χ(dγ)f for all γ ∈ Γ0(N)} (3.2.16)

In order to motivate this definition, we introduce the diamond operator. The subgroup

Γ0(N) acts on the space Mk(Γ1(N)) via the weight k operator. Clearly Γ1(N) acts

trivially. Proposition 1.4.7 helps us conclude that the action can be considered to be

of (Z/NZ)∗. For any d ∈ (Z/NZ)∗ denote the diamond operator as 〈d〉. Then for any

f ∈ Mk(Γ1(N)), 〈d〉f = f [γ]k where γ ∈ Γ0(N) is such that γ =

(
a b

c d′

)
and d′ ≡

d mod N. This action is independent of the lift γ ∈ Γ0(N) because of Proposition 1.4.7

as remarked earlier.

Now it is clear that the subspace in (3.2.16) is precisely the χ-eigen space of the diamond

operator. We would like to decompose the subspace Mk(Γ1(N)) into these subspaces.

In order to do this, for each Dirichlet character χ mod N , we define an operator πχ on

the space Mk(Γ1(N)) given by the following expression:

πχ =
1

φ(N)

∑
d∈(Z/NZ)∗

χ(d)−1〈d〉

We wish to use the following theorem from linear algebra:

Theorem 3.2.17. Let I denote the identity operator and let E1 . . . Ek be k linear operators

on a vector space V which satisfy the following three conditions.

1. Each Ei is a projection.

2. EiEj = 0 for 1 ≤ i, j ≤ k and i 6= j.

3. E1 + · · ·+ Ek = I

If Wi is the range of Ei for 1 ≤ i ≤ k then, V =
k⊕
i=1

Wi.

We proceed by checking the three conditions in Theorem 3.2.17 for the operator πχ.
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1. In order to check that π2
χ = πχ, expand

π2
χ(f) = πχ

(
1

φ(N)

∑
d∈(Z/NZ)∗

χ(d)−1〈d〉f
)

=
1

φ(N)2

( ∑
d′∈(Z/NZ)∗

χ(d′)−1
∑

d∈(Z/NZ)∗

χ(d)−1〈d′〉(〈d〉f)

)

=
1

φ(N)2

( ∑
d′∈(Z/NZ)∗

∑
d∈(Z/NZ)∗

χ(dd′)−1〈dd′〉f
)

=
1

φ(N)2

( ∑
d′∈(Z/NZ)∗

∑
d∈(Z/NZ)∗

χ(d)−1〈d〉f
)

= πχ

For the second last equality we use the observation that for a fixed d′ ∈ (Z/NZ)∗,

as d runs over (Z/NZ)∗, dd′ runs over (Z/NZ)∗ as well. This proves that the

operator πχ is a projection.

2. We next show that πχ′ ◦ πχ = 0 whenever χ 6= χ′.

(πχ′ ◦ πχ)(f) = πχ′

(
1

φ(N)

∑
d∈(Z/NZ)∗

χ(d)−1〈d〉f
)

=
1

φ(N)2

( ∑
d′∈(Z/NZ)∗

χ′(d′)−1
∑

d∈(Z/NZ)∗

χ(d)−1〈d′〉(〈d〉f)

)

=
1

φ(N)2

( ∑
d′∈(Z/NZ)∗

χ′(d′)−1χ(d′)
∑

d∈(Z/NZ)∗

χ(dd′)−1〈dd′〉f
)

=
1

φ(N)2

( ∑
d∈(Z/NZ)∗

χ(d)−1〈d〉f
)( ∑

d′∈(Z/NZ)∗

χ′(d′)−1χ(d′)

)

Since χ′ 6= χ, we can find some d0 ∈ (Z/NZ)∗ so that χ′(d0)−1χ(d0) 6= 1. Observe

that the sum in the last equality can written as

∑
d′∈(Z/NZ)∗

χ′(d′)−1χ(d′) =
∑

d′∈(Z/NZ)∗

χ′(d0d
′)−1χ(d0d

′)

This implies that( ∑
d′∈(Z/NZ)∗

χ′(d′)−1χ(d′)

)(
χ′(d0)−1χ(d0)− 1

)
= 0

It follows that
∑

d′∈(Z/NZ)∗

χ′(d′)−1χ(d′) = 0 and so (πχ′ ◦ πχ)(f) = 0.
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3. To check that the projections add up to the identity map we take the sum over

the set of Dirichlet characters modulo N.( ∑
χ∈ĜN

πχ

)
(f) =

∑
χ∈ĜN

(
1

φ(N)

∑
d∈(Z/NZ)∗

χ(d)−1〈d〉f
)

=
1

φ(N)

∑
d∈(Z/NZ)∗

( ∑
χ∈ĜN

χ(d)−1〈d〉f
)

Using the orthogonality relation in (3.2.5), we get that the above sum is equal to

f [γ1] where γ1 is the lift in Γ0(N) corresponding to d = 1. We can as well take

this lift to be identity to get that

(∑
χ

πχ

)
(f) = f.

Having proved the three conditions for our operators, our final task is to find the image

of these operators. Observe that if f ∈Mk(N,χ), then πχ(f) = f. We finally make the

following claim:

Claim 3.2.18. The image πχ(Mk(Γ1)) ⊆Mk(N,χ).

Proof of claim. Let f ∈ Mk(Γ1(N)) and γd′ ∈ Γ0(N) with lower right entry congruent

to d′ modulo N. We wish to show that (πχ(f))[γd′ ]k = χ(d′)(πχ)f.

(πχ(f))[γd′ ]k =
1

φ(N)

∑
d∈Z/NZ∗

χ(d)−1〈dd′〉(f)

=
χ(d′)

φ(N)

∑
d∈Z/NZ∗

χ(d′d)−1〈dd′〉(f)

= χ(d′)πχ(f)

This implies that πχ(f) ∈Mk(N,χ).

It follows that the projection is onto the spaceMk(N,χ). Theorem 3.2.17 now helps us

conclude the following theorem.

Theorem 3.2.19. Let N be a positive integer. Then Mk(Γ1(N)) decomposes into χ –

eigen spaces as follows:

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ)

Similarly for the subspace Sk(Γ1(N)), since the projection will be onto cusp forms we

see that Sk(Γ1(N)) =
⊕
χ

Sk(N,χ).
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3.3 Double coset operators

Throughout this section Γ1 and Γ2 denote congruence subgroups of SL2(Z). The group

GL+
2 (Q) denotes invertible 2× 2 matrices in Q with a positive determinant.

In addition to the diamond operator, we wish to introduce a special kind of operator

which we call as the Tn operator. It turns out that these two operators come under a

much generalized class of operators known as the Hecke operators. We will study these

via the theory of double coset operators.

Definition 3.3.1. (Double Coset) Let α ∈ GL+
2 (Q). The set Γ1αΓ2 = {γ1αγ2 | γ1 ∈

Γ1, γ2 ∈ Γ2} is called a double coset.

The subgroup Γ1 acts naturally on the double coset Γ1αΓ2 by left multiplication. Let

Γ1\Γ1αΓ2 denote the orbit space under this action such that Γ1αΓ2 = ∪jΓ1βj . Here, βj

denote the orbit representatives of the double coset.

Our first task is to show that this union is finite. This requires a series of small results,

which we prove below.

Lemma 3.3.2. Let Γ be a congruence subgroup and let α ∈ GL+
2 (Q). Then α−1Γα ∩

SL2(Z) is a congruence subgroup of SL2(Z).

Proof. We need to show that for some positive integer N > 1, the subgroup Γ(N) ⊆
αΓα−1 ∩ SL2(Z). Since Γ is a congruence subgroup, Γ(M) ⊆ Γ for some M > 1. Let

l denote the least common multiple of the denominators of the entries in the matrix

α and α−1. Take Ñ = Ml. Then Ñα and Ñα−1 both belong to M2(Z). Observe that

Γ(Ñ) ⊆ Γ.

Claim 3.3.3. Let Ñ3 = N. Then Γ(N) ⊆ αΓα−1 ∩ SL2(Z).

Consider the subgroup αΓ(N)α−1 ⊆ (SL2(Z). We also have that:

αΓ(N)α−1 = αΓ(Ñ3)α−1 ⊆ α(I + Ñ3M2(Z))α−1. The last term further simplifies to:

I + αÑ · Ñ ·M2(Z) · Ñα−1 = I + Ñ ·M2(Z) ⊆ Γ(Ñ). We finally have that αΓ(N)α−1 ⊆
Γ(Ñ). Therefore Γ(N) ⊆ αΓ(Ñ)α−1 ⊆ αΓα−1. This proves the claim.

Lemma 3.3.4. Let α ∈ GL+
2 (Q) as above. Set Γ3 = α−1Γ1α ∩ Γ2. Let ϕ be the map

defined as follows:

ϕ : Γ2 → Γ1\Γ1αΓ2

γ2 7→ Γ1αγ2

The above map induces a bijection from Γ3\Γ2 → Γ1\Γ1αΓ2. In other words, the set

{γ2,j} are the orbit representatives of Γ3\Γ2 if and only if {αγ2,j} represent the orbit

space Γ1\Γ1αΓ2.
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Proof. The map is clearly surjective. To see that the map induces an injection from

the orbit space Γ3\Γ observe the following. φ(γ′2) = φ(γ2) if and only if γ′2γ
−1
2 ∈

α−1Γ1α ∩ Γ2 = Γ3 if and only if Γ3γ
′
2 = Γ3γ2.

Lemma 3.3.5. Let Γ1 and Γ2 be any two congruence subgroups. Then the index [Γ1 :

Γ1 ∩ Γ2] and [Γ2 : Γ1 ∩ Γ2] is finite.

Proof. First, notice that if Γ(N1) ⊆ Γ1 and Γ(N2) ⊆ Γ2 for some positive integers N1

and N2 > 1, then Γ(N1N2) ⊆ Γ1 ∩ Γ2. We also have that,

[Γ1 : Γ1 ∩ Γ2] ≤ [Γ1 : Γ(N1N2)]

≤ [SL2(Z) : Γ(N1N2)]

which is finite. Arguing the same for Γ2 instead helps us conclude that [Γ2 : Γ1 ∩ Γ2] is

finite as well.

Let Γ3 be as defined above. By Lemma 3.3.2, α−1Γα∩SL2(Z) is a congruence subgroup.

Applying Lemma 3.3.5 to the subgroups α−1Γα ∩ SL2(Z) and Γ2, we get that Γ3\Γ2 is

finite. Because of the bijection in 3.3.4, it follows that Γ1\Γ1αΓ2 is finite.

Having established the finiteness of the orbit space of the double coset under the actin

of Γ1, we can finally move on to introducing the double coset operator acting on the

space Mk(Γ1).

So far we have defined the weight k operator for matrices in SL2(Z). However in order

to work with double coset operator we need to define the weight k operator for any

arbitrary matrix in GL+
2 (Q).

Definition 3.3.6. Let β ∈ GL+
2 (Q) and k ∈ Z. The weight k operator on a function

f : H→ C is given by:

(f [β]k)(τ) = (detβ)k−1(β, τ)−kf(βτ)

Definition 3.3.7. (Double coset operator) Let Γ1,Γ2 and α be as defined as above. Let

βj be the coset representatives of Γ1\Γ1αΓ2 such that Γ1αΓ2 = ∪jΓ1βj . Define the

double coset operator [Γ1αΓ2]k on Mk(Γ1) as follows:

f [Γ1αΓ2]k =
∑
j

f [βj ]k

In order to justify the definition, we must prove that it is independent of the choice of

representatives βj . To see this, let γj be another set of representatives. Then γj = αjβj
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for some αj ∈ Γ1. This implies that,

∑
j

f [γj ]k =
∑
j

(f [αj ])[βj ]k =
∑
j

f [βj ]k

Lemma 3.3.8. The map [Γ1αΓ2]k maps Mk(Γ1) to Mk(Γ2).

Proof. We first show that (f [Γ1αΓ2]k)[γ2]k = f [Γ1αΓ2]k for any matrix γ2 ∈ Γ2. Notice

that for each γ2 ∈ Γ2, the “multiplication by γ2” map

γ2 : Γ1\Γ1αΓ2 → Γ1\Γ1αΓ2

Γ1β 7→ Γ1βγ2

is well defined and bijective. Therefore, if the set {βj} represents the orbit space

Γ1\Γ1αΓ2, then the set {βjγ2} represents it as well. Now, for any γ2 ∈ Γ2,

(f [Γ1αΓ2]k)[γ2]k =
∑
j

f [βjγ2]k = f [Γ1αΓ2]k

We also need to make sure that the function f [Γ1αΓ2]k is holomorphic at cusps. This

requires a small result which will help in proving holomorphy at cusps:

Claim 3.3.9. If γ ∈ GL+
2 (Q), then γ = αγ′ where α ∈ SL2(Z) and γ′ = r

(
a b

0 d

)
for

some r ∈ Q.

Suppose γ = q

(
a′ b′

c′ d′

)
where a′, b′, c′, d′ ∈ Z and q ∈ Q. Now let g and h be such

that a′/c′ = h/g such that (h, g) = 1. This implies that a′g − c′h = 0. Also, there exists

integers h′ and g′ such that hh′− gg′ = 1. This helps us to find a matrix in SL2(Z) with

the desired property.

q

(
h h′

g g′

)(
a′ b′

c′ d′

)
=

(
∗ ∗
0 ∗

)
.

Coming back to the proof, consider the function f [βj ]k. Using the above result we write

it as (f [αj ]k)[δj ]k for some αj ∈ SL2(Z) by the previous calculation. The modular form

f is holomorphic at cusps. By definition this means that f [γ]k is holomorphic at ∞ for

all γ ∈ SL2(Z). Therefore, we get a Fourier series expansion:

f [αj ]k =

∞∑
n=1

ane
2πinτ/h
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If δj = r

(
a b

0 d

)
for some a, b, d ∈ Z and r ∈ Q, we have:

(f [αj ]k)[δj ]k =

( ∞∑
n=1

ane
2πinτ/h

)
[δj ]k =

(
d−k(det δj)

k−1
∞∑
n=1

ane
2πin(aτ+b)/dh

)

This is further equal to
∞∑
n=1

a′ne
2πinaτ/dh where a′n = d−k(det δj)

k−1ane
2πibn/hd. This

shows that f [βj ]k is holomorphic at ∞ with period hd. Holomorphy of the function

f [Γ1αΓ2] =
∑

j f [βj ]k now follows from the following observation: If g1, . . . gd are holo-

morphic functions on H, then their sum is holomorphic on ∞ as well. To see this,

assume that for every j, gj has a period hj so that gj =
∑

n bne
2πiτ/hj . Let h be the least

common multiple of {hj}j and for every j, write lj = h/hj . This way, we can rewrite

each gj =
∑

n bne
2πiljnτ/h. Now taking the usual term wise sum of the powers series of

gj , we get a power series expansion of the sum
∑

j gj , with period h.

Lemma 3.3.10. The map [Γ1αΓ2]k maps Sk(Γ1) to Sk(Γ2).

Proof. If f ∈ Sk(Γ1), then the a0 term in the Fourier series expansion of f [α]k is 0 for

all α ∈ SL2(Z). From the calculation done at the end of Lemma 3.3.8, we get that the

a0 term of the Fourier expansion of f [βj ], and hence that of f [Γ1αΓ2] is 0.

3.3.1 Special cases

In this section, we will see three special cases of double coset operators and prove that

any operator is a composition of these. The Hecke operators, which we introduce in

the coming section, are examples of these special cases. Throughout this section f ∈
Mk(Γ1).

1. Γ2 ⊆ Γ1 and α = I: In this case Γ1αΓ2 = Γ2. Therefore f [Γ1αΓ2]k = f [I]k = f so

that [Γ1αΓ2]k :Mk(Γ1) ↪−→Mk(Γ2) is the usual inclusion map.

2. α−1Γ1α = Γ2 ; α ∈ GL2(Q): Here, Γ1αΓ2 = Γ1α so that f [Γ1αΓ2]k = f [α]k

gives us a map: Mk(Γ1)→Mk(Γ2). Notice that since Γ1 = αΓ2α
−1, the operator

[Γ2αΓ1]k = f [α−1]k is a map from Mk(Γ2) to Mk(Γ1). These two are inverses of

each other and so Mk(Γ1) is isomorphic to Mk(Γ2).

3. Γ1 ⊆ Γ2 and α = I: In this case we have Γ1αΓ2 = ∪jΓ1βj where βj are the coset

representatives of the orbit space Γ1\Γ2. Thus, [Γ1αΓ2] is the map
∑

j f [βj ]k.
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This is called the Trace operator. This map is a surjection onto Mk(Γ2). To see

this, notice that Mk(Γ2) ⊆ Mk(Γ1). If f ∈ Mk(Γ2) then f [Γ1αΓ2] = [Γ2 : Γ1]f.

Therefore, (1/[Γ2 : Γ1])f 7→ f via the trace operator.

Proposition 3.3.11. Any double coset operator is a combination of the operators de-

scribed in 1, 2, and 3.

Proof. Let Γ1,Γ2,Γ3 and α be as described in Lemma 3.3.4. Suppose [Γ1αΓ2]k is any

arbitrary double coset operator. Let Γ′3 = αΓ3α
−1 = Γ1 ∩ αΓ2α

−1. Now, Γ3 ⊆ Γ2,

Γ′3 ⊆ Γ1 and α−1Γ′3α = Γ3. If f ∈Mk(Γ1), then via the operators described in 1, 2, and

3, f is mapped as follows:

Mk(Γ1) ↪→Mk(Γ
′
3)
∼−→Mk(Γ3) �Mk(Γ2)

f 7→ f 7→ f [α]k 7→
∑
j

f [αγ2,j ]k

where γ2,j represent orbits of Γ3\Γ2. By Lemma 3.3.4, {αγ2,j} represent orbits of Γ1\Γ1αΓ2.

Therefore, f finally gets mapped to
∑

j f [βj ]k = f [Γ1αΓ2]k.

3.3.2 Maps at the level of modular curves

As seen in section 2, to every space of modular forms, we can associate a modular curve

which is in fact a Riemann surface. We would like to geometrically translate the maps of

double coset operators from the space of modular forms to the corresponding modular

curves. This will help us to geometrically interpret the operators in terms of points on

the Riemann surface.

Let Γ1,Γ2,Γ3 and Γ′3 be as described in the proof of Proposition 3.3.11. The following

diagram shows the composition of maps between groups as in Proposition 3.3.11.

Γ3 Γ′3

Γ2 Γ1

∼

The isomorphism between Γ3 and Γ′3 is the map given by γ 7→ αγα−1. The corresponding

map on the modular curves is:

X3 X ′3

X2 X1

∼

π1 π2
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Inclusions of congruence subgroups induce surjections π1 and π2 between the corre-

sponding modular curves. The isomorphism between the modular curve Γ3 and Γ′3 is

the map:

α : X3 → X ′3

Γ3τ 7→ Γ′3α(τ)

We check that this map is well defined: If Γ3τ = Γ3τ
′, then there exists some γ ∈ Γ3

such that γτ = τ ′. This implies that Γ′3ατ
′ = Γ′3αγ(τ). Recall that Γ3 = α−1Γ1α∩Γ2 so

that γ ∈ Γ3 is of the form α−1δα where δ ∈ Γ1. This gives us that Γ′3αγ(τ) = Γ′3δα(τ).

Notice that δ ∈ Γ1 ∩ αΓ2α
−1 = Γ′3 and so Γ′3ατ

′ = Γ′3ατ . More explicitly, the map

on the points of the modular curve is described as follows: Let Γ3\Γ2 = ∪jΓ3γ2,j and

βj = αγ2,j such that Γ1αΓ2 = ∪jΓ3βj . Each point of X2 is taken to a set of points of

X1 via π1απ
−1
2 to a set of points described in the following diagram:

{Γ3γ2,j(τ)} {Γ′3βj(τ)}

Γ2(τ) {Γ1βj(τ)}

α

π2π−1
1

We can see that the operator [Γ1αΓ2]k does not induce a well defined map from X2 to

X1. However, when we view the operator at the level of divisor groups of the modular

curves, it is a well defined divisor group homomorphism from Div(X2) to Div(X1).

In the special cases of section 3.3.1, the corresponding map on the divisor groups are

described explicitly as follows.

1. When Γ2 ⊆ Γ1 and α = I, then Γ3 = Γ2 = Γ′3. In this case γ2,j = βj = I and

j = 1. The diagram above specializes to:

{Γ2τ} {Γ2τ}

Γ2τ {Γ1τ}

I

π2π−1
1

This is the natural map Γ2τ 7→ Γ1τ which induces a surjection between the modular

curves and thus between the corresponding divisor groups.

2. If α−1Γ1α = Γ2, then Γ3 = Γ2 and Γ′3 = Γ1. In this case we have the following

diagram:

{Γ2τ} {Γ1ατ}

Γ2τ {Γ1ατ}

∼

π2π−1
1
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On the Divisor groups this is the map:

ϕ : Div(X2)→ Div(X1)

Γ2τ 7→ Γ1ατ

There exists a well defined inverse from Div(X1) to Div(X2) given by,

Γ1τ 7→ Γ2α
−1τ

The composition of the two maps give us the identity map and so at the level of

divisor groups we get an isomorphism.

3. When Γ1 ⊆ Γ2 and α = I, then Γ3 = Γ1 = Γ′3. In this case γ2,j represent the cosets

of Γ1/Γ2 and j = [Γ2 : Γ1]. On the divisor group we have the map:

ϕ : Div(X2)→ Div(X1)

Γ2τ 7→
∑
j

Γ1γ2,jτ

We claim that this is an injection of divisor groups. Suppose τ and τ ′ map to the

same set of points in X1, then for some j and k, Γ1γ2,jτ = Γ1γ2,kτ
′. So there exists

some δ ∈ Γ1 such that γ2,jτ = δγ2,kτ
′. Since Γ1 ⊆ Γ2 and γ2,j ∈ Γ2, we see that

Γ2τ = Γ2τ
′.

3.4 The Tp and 〈d〉 Operators.

This section will be dedicated to defining the Tp operator and then studying its various

properties. Parallely, we will also study the diamond operator which we defined in

section 3.2.

Redefining the diamond operator in terms of double coset operators, we will see that we

get back same definition. Taking Γ1 = Γ2 = Γ1(N) and α ∈ Γ0(N) in definition 3.3.7, we

see that if f ∈ Mk(Γ1(N)), then, f [Γ1(N)αΓ1(N)]k = f [α]k using the fact that Γ0(N)

is normal in Γ1(N). Since Γ1(N) acts trivially, as discussed before the quotient acts on

Mk(Γ1(N)). The action of α is therefore determined by its right entry d mod N.
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Next, to define the Tp operator, let Γ1 = Γ2 = Γ1(N) and α =

(
1 0

0 p

)
where p is a

prime. Define the Tp operator by the following double coset operator:

Tp(f) = f

[
Γ1(N)

(
1 0

0 p

)
Γ1(N)

]
k

Our task is to study this operator. We will make use of the following fact:

Fact 3.4.1. Γ1(N)αΓ1(N) =

{
γ ∈M2(Z)

∣∣∣∣ γ ≡
(

1 ∗
0 p

)
mod N ; det γ = p

}

In order to give an explicit representation of Tp we need to first find out Γ3 = α−1Γ1(N)α∩
Γ1(N). Once we have Γ3, we will find its coset representatives {γ2,j}j in Γ1(N). By

Lemma 3.3.4, the set {αγ2,j}j will represent the cosets of Γ1(N) in Γ1(N)αΓ1(N). To

that end, let Γ0(p) be the following set.

Γ0(p) =

{(
a b

c d

)
= SL2(Z)

∣∣∣∣
(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
mod p

}
Claim 3.4.2. Let Γ0

1(p) denote the subgroup Γ0(p) ∩ Γ1(N). Then Γ3 = Γ0
1(p).

Proof of claim. Let γ =

(
aN + 1 bp

cN dN + 1

)
∈ Γ0

1(N). We wish to show that γ =

α−1γ′α for some matrix γ′ ∈ Γ1(N). Take γ′ to be as follows.

γ′ =

(
aN + 1 bp

cNp dN + 1

)

Clearly γ′ belongs to ∈ Γ1(N) and γ = α−1γ′α. Γ0
1(p). Conversely, it is easy to check

that if δ is a matrix in Γ1(N), then α−1δα ∈ Γ0
1(N). This establishes the claim.

Next, we find the coset representatives of Γ0
1(p) in Γ1(N). Since the upper right entry

b is congruent to 0 mod p in Γ0
1(p), our first guess for the representatives should be

γ2,j =

(
1 j

0 1

)
for 0 ≤ j < p. With these, we check that for any arbitrary element

γ =

(
a b

c b

)
∈ Γ1(N), the matrix γγ−1

2,j ∈ Γ0
1(p) for some 0 ≤ j < p. If this is true, then

{γ2,j}j is a complete set of representatives. If not, we would have to find more. Observe

that, (
a b

c d

)(
1 −j
0 1

)
=

(
a b− aj
c d− cj

)
.
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This clearly belongs to Γ1(N). For this matrix to belong in Γ0
1(p), we need to find some

0 ≤ j < p such that b − aj ≡ 0 mod p. When p | N then, p - a. In that case j = ba−1

works. However when p | a, then b − aj 6≡ 0 mod p for any j. Otherwise, p | (b − aj)
implies that p | b, and so p | (ad − bc) = 1, which is not possible. Cases of p dividing

a might occur when p divides N. Therefore, in this case, {γ2,j}j fail to be the complete

set of coset representatives. However to this set, add γ2,∞ =

(
mp n

N 1

)
where m and n

are chosen such that mp − nN = 1. It is easily seen that if p | a, then γγ−1
2,∞ ∈ Γ0

1(p).

Thus in this case {γ2,j}j ∪ {γ2,∞} are the set of coset representatives of Γ0
1(p) in Γ1(N).

By Lemma 3.3.4, we multiply in each case, every element in the set by α to get the

representatives of Γ1(N) in Γ1(N)αΓ1(N). By the definition of a double coset operator,

we arrive at the following representation of Tp :

Theorem 3.4.3. Let N be a positive integer. Let Γ1 = Γ2 = Γ1(N) and let α =

(
1 0

0 p

)
where p is a prime. Then the operator Tp = [Γ1αΓ2]k on Mk(Γ1(N)) is given by:

Tp(f) =



p−1∑
j=0

f

[1 j

0 p

]
k

if p | N
p−1∑
j=0

f

[1 j

0 p

]
k

+ f

[m n

N p

]
k

;mp− nN = 1 if p - N

Proposition 3.4.4. The two Hecke operators 〈d〉 and Tp commute.

Proof. Suppose f ∈Mk(Γ1(N)) and γ ∈ Γ0(N) with the lower right entry congruent to

d mod N. Then we want to show that,

(Tp(f))[γ]k = Tp(f [γ]k). (3.4.5)

Let βj denote the coset representatives of Γ1 in Γ1(N)αΓ1(N) such that Tp acts as∑
j [βj ]k. Then the equation in (3.4.5) amounts to showing that,

∑
j

f [βjγ]k =
∑
j

f [γβj ]k (3.4.6)

This means we have to prove the following lemma:

Lemma 3.4.7. Suppose α =

(
1 0

0 p

)
such that the double coset Γ1(N)αΓ1(N) =

⋃
j Γ1(N)βj .

Then for any matrix γ ∈ Γ0(N),
⋃
j Γ1(N)βjγ =

⋃
j Γ1(N)γβj .
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Proof of Lemma 3.4.7. By the representation of the double coset Γ1(N)αΓ1(N) in fact

3.4.1, it is easy to see that replacing α with any matrix in the given set does not change

the double coset. For any matrix γ ∈ Γ0(N), one can check that,

γαγ−1 ≡

(
1 ∗
0 p

)
mod p

so that γ−1αγ ∈ Γ1(N)αΓ1(N). Therefore replacing α with γαγ−1 in the double coset

and using the fact that Γ0(N) is normal in Γ1(N), we get that,

Γ1(N)αΓ1(N) = Γ1(N)γ−1αγΓ1(N)

= γΓ1(N)αΓ1(N)γ−1

= γ
⋃
j

Γ1(N)βjγ
−1

=
⋃
j

Γ1(N)γβjγ
−1

On comparing the decomposition of the double coset, it follows that,
⋃
j Γ1(N)βjγ =⋃

j Γ1(N)γβj .

This completes the proof of Proposition 3.4.5.

We next determine the action of the Tp operator on the Fourier coefficients of a modular

form. This is a direct calculation using Theorem 3.4.3. Observe that

(
1 1

0 1

)
∈ Γ1(N)

and so any f ∈Mk(Γ1(N)) has period 1.

Proposition 3.4.8. Let f ∈Mk(Γ1(N)) such that the Fourier expansion of f is given by

the following expression:

f(τ) =
∞∑
n=0

an(f)qn ; q = e2πiτ .

Let IN be the trivial character mod N. Then the Fourier expansion of Tp(f) is given by

the expression below:

Tpf(τ) =
∞∑
n=0

anp(f)qn + IN (p)pk−1
∞∑
n=0

an(〈p〉f)qnp

Proof. We set some notation first. Let β2,j with 0 ≤ j < p and β2,∞ be matrices given

below.

β2,j =

(
1 j

0 p

)
; β2,∞ =

(
m n

N p

)
(3.4.9)
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The calculation splits into two parts, depending on whether p divides N or not. In the

former case,

Tp(f) =

p−1∑
j=0

f [β2,j ]k (3.4.10)

In terms of the Fourier coefficients of f, the Fourier series of f [β2,j ]k for every j is given

by the expression:

f [β2,j ]k =
1

p

∞∑
n=0

an(f)e2πin(τ/p)e2πin(j/p) (3.4.11)

Write qp = e2πin(τ/p) and µp = e2πi/p. Summing over j in the expression (4.4.10) we get,

p−1∑
j=0

f [β2,j ]k =

(
1

p

∞∑
n=0

an(f)qnp

) p−1∑
j=0

µnjp (3.4.12)

Notice that, the geometric series
∑

j µ
nj
p evaluates to 0 when p - n while when p | n,

then it is equal to p. This gives us that the expression in (4.3.18) equals
∑∞

n=0 anp(f)qn.

In the case p - N, we need to also consider the term f [β2,∞]k.

f [β2,∞]k = f

[(
m n

N p

)(
p 0

0 1

)]
k

= pk−1
∞∑
n=0

an(〈p〉f)qnp

Clubbing the two, we get the required expression.

Next, suppose that f ∈Mk(N,χ). Using Proposition 3.4.5, we see that,

〈d〉(Tpf) = Tp(〈d〉f)

= χ(d)(Tpf)

This implies that Tpf ∈ Mk(N,χ). Proposition 3.4.8 can therefore be specialized for f

in Mk(N,χ) to give the following corollary:

Corollary 3.4.13. Let χ : (Z/NZ)∗ be Dirichlet character modulo N. Let f ∈Mk(N,χ)

such that the Fourier expansion of f is given by the following expression:

f(τ) =
∞∑
n=0

an(f)qn ; q = e2πiτ .
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Then Tp(f) ∈ Mk(N,χ) and the Fourier expansion of Tp(f) is given by the expression

below:

Tpf(τ) =

∞∑
n=0

anp(f)qn + χ(p)pk−1
∞∑
n=0

an(f)qnp

A very useful property of the the Hecke operators is that they commute. We already

showed that 〈d〉 and Tp commute with each other. We further prove the following

proposition:

Proposition 3.4.14. Let d and e belong to (Z/NZ)∗ and p and q be primes. Then the

operators 〈d〉 and 〈e〉 commute. That is, 〈d〉〈e〉 = 〈e〉〈d〉 Similarly, TpTq = TqTp.

Proof. Because of Theorem 3.2.19, it suffices to check commutativity of the operators

for any f ∈ Mk(N,χ) where χ is a Dirichlet character modulo N. This way the first

part is clear.

For the Tp operator, using the calculations done in Theorem 3.4.8, we can write an(Tpf) =

anp(f) + χ(p)pk−1an/p(f) where an/p is 0 whenever n/p is not an integer. Therefore,

an(Tp(Tqf)) = anp(Tpf) + χ(p)pk−1an/p(Tqf) =

anpq(f) + χ(q)qk−1anp/q(f) + χ(p)pk−1anq/p(f) + χ(p)χ(q)(pq)k−1an/qp(f)

Since the last expression is symmetric in p and q, we would have landed up with the

same coefficient if we had computed instead Tq(Tpf).

3.4.1 Interpretation of Tp and 〈d〉 in terms of in terms of Divisor groups

of Moduli spaces.

Via the one one correspondence between the points on the modular curve and its cor-

responding moduli space observed in section 3.1, we can interpret Tp as an operator

between the moduli spaces as well.

Let Div(S1(N)) denote the divisor group of S1(N). Let β2,j and β2,∞ be matrices which

appear in the definition Tp given in (3.4.9). The modular curve interpretation of Tp is:

Tp : Div(X1(N))→ Div(X1(N))

Γ1(N)τ 7→
∑
j

Γ1(N)β2,j(τ)
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We include β2,∞ when p - N. The corresponding map on the moduli space is:

[C/Λτ , 1/N + Λτ ] 7→
∑
j

[C/Λβ2,j(τ), 1/N + Λβ2,j(τ)]

Writing C/Λτ as E and the order N point Q, we show that this map is equivalent to

the following map:

ψ : Div(S1(N))→ Div(S1(N))

[E,Q] 7→
∑
C

[E/C,Q+ C]

where the sum is taken over all the order p subgroups C ⊂ E such that C ∩ 〈Q〉 =

{0E}. In order to show this, to each β2,j , we associate a subgroup to Cj such that

C/Λβ2,j(τ)
∼= E/Cj . We then show that these are all the subgroups of order p in E

satisfying C ∩ 〈Q〉 = {0E}. As a start, consider the lattice Λβ2,j
= τ+j

p Z ⊕ Z. We next

establish the following claim:

Claim 3.4.15. Let 0 ≤ j < (p− 1). Then τ+j
p Z⊕ Z = τ+j

p Z + τZ⊕ Z.

Proof of the claim. One way containment is clear. To show that τ+j
p Z + τZ ⊕ Z ⊂

τ+j
p Z⊕ Z, write τ = p(τ+j)

p − j. Therefore,

τ + j

p
Z + τZ⊕ Z =

τ + j

p

(
Z + pZ

)
− jZ⊕ Z.

=
τ + j

p

(
Z + pZ

)
⊕ Z− jZ

⊆ τ + j

p
Z⊕ Z

In the second last equality the jZ term gets absorbed in the right hand side, because, the

direct sum of two disjoint sets here is essentially the same as their complex addition.

It follows that Λβ2,j
corresponds to the set

〈 τ+j
p

〉
+ Λτ in C. This set contains Λτ

and hence, is a superlattice of Λτ . To see that it corresponds to the unique subgroup

Cj =
〈 τ+j

p + λτ
〉

in C/Λτ , we may define a map,

ψ : C/Λτ → C/Λβ2,j(τ)

z + Λτ 7→ z + Λβ2,j(τ)

The map is clearly surjective and the kernel is the cyclic group Cj . When p - N, we need

to consider the lattice Λβ2,∞ as well in the sum.

Let y = Npτ + p. Then, yΛβ2,∞ = (Npτ + p)Z ⊕ (mpτ + n)Z = Z ⊕ (pτ)Z. This gives

us that y/p(Λβ2,∞) = (1/p)Z⊕ τZ. Clearly, this is equal to the set 〈1/p〉+ Λτ in C. Let
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C∞ = 〈1/p+ Λτ 〉 in C/Λτ . Using the same argument done in the case of Λβ2,j
, we see

that E/C∞ isomorphic to C/Λβ2,∞ .

By noticing the non-trivial term of τ/p in every element of Cj , it is easy to see that

Cj ∩ 〈1/N + Λτ 〉 = {0} for 0 ≤ j < p. When p - N, we further show that C∞ ∩
〈1/N + Λτ 〉 = 0. Suppose that n/p+ Λτ = m/N + Λτ for some integers n and m. Then

(nN −mp)/pN ∈ Λτ . Thus, pN | (nN −mp) giving us that pNx = nN −mp for some

integer x. Since p - N, p must divide n and so n/p+ Λτ = m/N + Λτ = 0 in C/Λτ .

One can easily check that the p-cyclic subgroup Cj for each 0 ≤ j < p is disjoint from

C∞ because of the non zero term of some multiple of τ/p in each element of Cj . To check

that Cj ∩ Ci = 0 for 0 ≤ i, j < p, and i 6= j, write m(τ + j)/p + Λτ = n(τ + i)/p + Λτ

for some integers m and n. This gives us that p | (m − n) and p | (jm − in). Write

m−n = pt and px = jm−ni for some integers t and x. Substituting the first expression

in the second, it follows that either p | n or p | (j − i). Since 0 < i − j < p, the latter

case is not possible. Therefore, p | n and p | m giving us that Cj ∩ Ci = 0 in C/Λτ .

Finally we wish to show that if C is any subgroup of E such that C ∼= Z/pZ satisfying

that C ∩ Q = 0E , then C has to be one Cj ; 0 ≤ j < p or C∞. This follows from the

following claim:

Claim 3.4.16. Let Eτ [p] denote p torsion points of of E, a subgroup isomorphic to

Z/pZ× Z/pZ. Then Eτ [p] = C1 ⊕ · · · ⊕ C∞.

Proof of the claim. The number of elements in Eτ [p] is p2. Since the p cyclic subgroups

we discovered are pairwise disjoint with the only common element to be 0, counting

the number of elements in all of them comes out to be 1 + (p − 1)(p + 1) = p2. This

establishes that Eτ [p] = C1 +C2 · · ·+C∞. Now, suppose that x ∈ Ci∩ (C1 + · · ·+Ci−1 +

Ci+1 + · · · + C∞). This implies that 〈x〉 = Ci ⊆ (C1 + · · · + Ci−1 + Ci+1 + · · · + C∞),

which gives us that |Eτ [p]| = |C1 + · · ·+Ci−1 +Ci+1 + · · ·+C∞| = p2 − (p− 1). This is

a contradiction to the counting argument done at the beginning of the proof.

From the discussion above, it now follows that Tp as a map on the divisor group of

moduli spaces maps [E,C] to
∑

C [E/C,Q+ C] where C are all the cyclic subgroups of

order p not intersecting 〈Q〉.

It is easier to view the map 〈d〉 on the divisor group of the corresponding moduli space.

Suppose γ ∈ Γ0(N) with lower right entry as d mod N. As seen before, the diamond

operator is the isomorphism:

X(Γ1(N))→ X(Γ1(N))
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Γ1(N)τ 7→ Γ1(N)γτ

The corresponding map on the moduli space S1(N) is:

[C/Λτ , 1/N + Λτ ] 7→ [C/Λγτ , 1/N + Λγτ ]

We show that this map is equivalent to the mapping: [E,Q] 7→ [E, dQ]. Using the

methods outlined in section 3.1, we proceed in the same manner. Suppose that γ =(
a b

cN d+Nk

)
∈ Γ0(N) be the representative of 〈d〉. Let m = Ncτ + (d+Nk). Then

mΛγτ = NcτZ ⊕ (aτ + (d + Nk))Z = Z ⊕ τZ. This implies that Λγτ ∼= Λτ under the

“multiplication by m” map. Under this map 1/N + Λτ 7→ (cNτ + d + Nk)/N + Λτ .

This is exactly the point d/N +Λτ . It follows that the diamond operator maps the point

[E,Q] to the point [E, dQ] in S1(N).

Therefore., there is more than one way to interpret the Tp and the diamond operator.

In addition to viewing them as operators on the space of modular forms, we can also

view them as maps between the corresponding moduli spaces. For the topics covered

ahead, we will however adopt the former interpretation of the operators.

3.5 The Tn and 〈n〉 operator for n ∈ Z+.

We aim to extend the definition of Tp and 〈d〉 to all the positive integers. In case of the

diamond operator, this is easily extended to any n ∈ Z+ with (n,N) = 1 by defining

〈n〉 = 〈n mod N〉. For n such that (n,N) > 1, we define 〈n〉 to be just the 0 operator

on Mk(Γ1(N)).

We extend the Tp operator inductively for prime powers, by defining the relation:

T1 = I ; Tpr = TpTpr−1 − pk−1〈p〉Tpr−1 for r ≥ 2 (3.5.1)

By induction on r and s, Proposition 3.4.14 helps us conclude that TprTqs = TqsTpr . For

all n ∈ Z+, we extend the definition multiplicatively to all positive integers as follows:

Suppose n =
∏
i p
ei
i where pi denote the distinct primes dividing n. Then define

Tn =
∏
i

Tpiei (3.5.2)

It follows that if n and m are positive integers with (n,m) = 1, then,

Tnm = TmTn. (3.5.3)
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We will need the relation between Fourier coefficients of Tn(f) and that of f which we

compute below.

Proposition 3.5.4. Let f ∈Mk(Γ1(N)) with the Fourier expansion given by the following

expression:

f(τ) =

∞∑
n=0

an(f)qn ; q = e2πiτ .

Then for all n ∈ Z+, the coefficients of the Fourier expansion of Tn(f) is given by the

expression below:

am(Tnf) =
∑

d|(m,n)

dk−1amn/d2(〈d〉f) (3.5.5)

In particular, if χ is a Dirichlet character modulo N and f ∈Mk(N,χ), then,

am(Tnf) =
∑

d|(m,n)

χ(d)dk−1amn/d2(f) (3.5.6)

Proof. Because of the decomposition in Theorem 3.2.19, we just show the particular

case in (3.5.6). We first prove it for prime powers and then generalize the result for any

positive integer n. The result is trivially true when n = 1. When n = p, the right hand

side is given by the expression:
∑

d|(m,p) χ(d)dk−1amp/d2(f). This equals amp(f) when

p - m. While, when p | m, we get that am(Tpf) = amp(f) + χ(p)pk−1an/p(f). Putting

together the two cases we exactly the expression of am(Tpf) as calculated in Corollary

3.4.13.

To see the result for prime powers, we use induction. Assume that the result holds

for n = 1, p, . . . , pr−1. For r ≥ 2, we use the recursion formula in (3.5.1) to expand

am(Tprf) = am(TpTpr−1f) − pk−1am(〈p〉Tpr−1f). Using the formula for Tp we further

write this as:

amp(Tpr−1f) + χ(p)pk−1am/p(Tpr−1f)− χ(p)pk−1am(Tpr−2f). (3.5.7)

At this stage we use the induction hypothesis to expand (3.5.7) to get three summands:

∑
d|(mp,pr−1)

χ(d)dk−1ampr/d2(f) + χ(p)pk−1
∑

d|(m/p,pr−1)

χ(d)dk−1ampr−2/d2(f)

− χ(p)pk−1
∑

d|(m,pr−2)

χ(d)dk−1ampr−2/d2(f)

We look at these three summands separately. Write the first summand as:

∑
d|(mp,pr−1)

χ(d)dk−1ampr/d2(f) = ampr +
∑

d|(mp,pr−1)
d>1

χ(d)dk−1ampr−2/d2(f) (3.5.8)
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Compute the last sum as:

χ(p)pk−1
∑

d|(m,pr−2)

χ(d)dk−1ampr−2

d2

(f) =
∑

d|(m,pr−2)

χ(pd)(pd)k−1ampr−2

d2

(f)

Changing the variable shows that this is equal to the sum as in (3.5.8):

∑
h|(m,pr−1)

h>1

χ(h)(h)k−1ampr−1

d2

(f)

and so it gets cancelled in the overall sum. Combining the calculations done so far we

get,

am(Tpr) = ampr + χ(p)pk−1
∑

d|(m/p,pr−1)

χ(d)dk−1ampr−2/d2(f)

= ampr +
∑

d|(m/p,pr−1)

χ(pd)(pd)k−1ampr−2/d2(f)

= ampr +
∑

h|(m/p,pr−1)
h>1

χ(h)hk−1ampr−2/d2(f)

The last expression is exactly the result we want. To generalize to arbitrary n, take

(n1, n2) ∈ Z+ such that (n1, n2) > 1. Compute,

am(Tn1n2f) =
∑

d|(m,n1)

χ(d)dk−1amn1/d2(Tn2f)

=
∑

de|(m,n1)

∑
e|(m,n1/d2)

χ(de)(de)k−1amn1n2/(de)2(f)

=
∑

de|(m,n1n2)

χ(de)(de)k−1amn1n2/(de)2(f)

=
∑

h|(m,n1n2)

χ(h)hk−1amn1n2/h2(f)

The formula for am(Tn) for any arbitrary n ∈ Z+ now follows clearly.

3.6 A word on Eisenstein series of level N

The theory developed in the next few sections will focus more on the space of cusp

forms. This section provides some justification for this so that the reader does not

lose any continuity of thought. To that end, we digress a bit to make some remarks

on Eisenstein series discussed in section 1.3. These are modular forms with respect

to the whole group SL2(Z) and therefore we call them Eisenstein series of level 1. We
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explicitly calculate the Fourier series of Gk(τ). In addition to giving some intuition about

Eisenstein series of level N, it will also be useful in chapter 4. Write,

Gk(τ) =
∑
m,n∈Z

(m,n) 6=(0,0)

1

(mτ + n)k

= 2

(∑
n≥1

1

nk
+
∑
m≥1

(∑
n∈Z

1

(mτ + n)k

))

From the above expression, we see that as τ → i∞, Gk takes the value 2ζ(k), where

the symbol ζ denotes the zeta function
∑

n≥0
1
nk
. This is the first term a0 of the Fourier

expansion of Gk for k ≥ 3. To find out the other terms, we need the following formula

from complex analysis for τ ∈ H and k ≥ 3:

∑
n∈Z

1

(τ + n)
=

(−2πi)k

(k − 1)!

∞∑
m=1

mk−1qm ; q = e2πiτ . (3.6.1)

Using the formula in 3.6.1, we see that Gk(τ) can be written as:

Gk(τ) = 2ζk +

(
2(−2πi)k

(k − 1)!

∑
m≥1

∑
n≥1

nk−1e2πin(mτ)

)

= 2ζ(k) +
2(−2πi)k

(k − 1)!

∑
r≥1

(∑
d|n

dk−1

)
e2πirτ

= 2ζ(k) + Ck
∑
n≥1

σk−1(n)qn

In the last expression Ck = 2(−2πi)k

(k−1)! and σk−1(n) =
∑

d|n d
k−1.

For any integer k < 4, from the dimension formula, we know that the spaceMk(SL2(Z)) =

{0}. In the case when k ≥ 4, for any modular form f ∈Mk(SL2(Z)), we can find some

complex number c such that f − cGk ∈ Sk(SL2(Z)). This implies that Mk(SL2(Z)) =

Sk(SL2(Z))
⊕

CGk. In the case of level one modular forms, this decomposition is fairly

easy to see.

However, for subgroup Γ(N), the space Mk(Γ(N)) splits as a direct sum of the space

Sk(Γ(N)) and its complement which we call the Eisenstein space and denote by Ek(Γ(N)).

We can explicitly find out a basis for this space. One can do the same for the subgroup

Γ1(N) as well. The basis elements are variants of the Eisenstein series of level 1. We

state this below without any proof. To see the construction of Eisenstein series for Γ(N)

and Γ1(N), one can refer to chapter 4 of Diamond and Shurman [2].
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Theorem 3.6.2. Let k ≥ 3 and v ∈ (Z/NZ)2 be a point of order N, then the Eisenstein

series for Γ(N) are defined by the following:

Gvk(τ) =
∑

(c,d)≡v(N)
(c,d)6=(0,0)

1

(cτ + d)k

If v = (cv, dv), where (cv, dv) is a lift of v in Z2, then the Fourier expansion of Gvk(τ) is

computed as:

Gvk(τ) = δ(cv)ζ
dv(k) +

Ck
Nk

∞∑
n=1

σvk−1(n)qnN ; qnN = e2πiτ/N ,

where,

δ(cv) =

1 if cv = 0

0 otherwise
; ζdv(k) =

∑
d≡dv(N)
d 6=0

1

dk

and

Ck =
2(−2πi)k

(k − 1)!
; σk−1(n) =

∑
m|N

n/m≡cv(N)

sgn(m)mk−1e2πidvm/N .

The bases of the Eisenstein space Ek(Γ(N)) are constructed from the elements described

in Theorem 3.6.2.

We know that the spaceMk(Γ1(N)) is decomposed into χ-eigen spaces given in Theorem

3.2.19. The following theorem describes the Fourier expansion of Eisenstein series in the

space Mk(N,χ).

Theorem 3.6.3. Let k ≥ 3. Let ϕ modulo u and ψ modulo v be any two Dirichlet

characters such that uv = N and ϕ is primitive, then the Eisenstein series for the

subgroup Γ1(N), denoted by Eψ,ϕk (τ) is given by the following Fourier expansion:

Eψ,ϕk (τ) = δ(ψ)L(1− k, ϕ) + 2

∞∑
n=1

σψ,ϕk−1(n)qnN ; qn = e2πiτ/N ,

where,

σψ,ϕk−1(n) =
∑
m|n
m>0

ψ(n/m)ϕ(m)mk−1 ; L(1− k, ϕ) =
∞∑
n=0

ϕ(n)

n1−k

The bases of Ek(Γ1(N)) for k ≥ 3 are constructed from the elements mentioned in the

above theorem. For cases k = 1 and k = 2, a different process is followed to construct

Eisenstein series which is outlined in chapter 4 of [2].
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We conclude by remarking that the bases for the space of cusp forms are not so easy

write down explicitly, as in the case of the Eisenstein space. Therefore, we develop some

sophisticated machinery in order to study cusp forms in the next few sections.

3.7 Petersson inner product

The space of cusp forms can be equipped with an inner product, which will be defined

as an integral. In order for the integral to make sense, we work with a measure which is

invariant under the action of SL2(Z). Let V ∈ C be an open set. Consider the two form

on V : ω = (dz ∧ dz̄)/ Im(z)2. Writing z = x+ iy, we get ω = −2i(dx∧ dy)/y2. We show

that ω is invariant under the action of SL2(Z). More generally, for any α ∈ GL+
2 (R), we

compute

d(αz) ∧ d(αz) =
(detα)2

|cz + d|4
dz ∧ dz̄

=

(
Im(αz)

Im(z)

)2

dz ∧ dz̄

We work with a suitable multiple of ω given by the following expression:

dµ(z) =
−(dz ∧ dz̄)
2i Im(z)2

=
dxdy

y2
; z = x+ iy (3.7.1)

The measure dµ(z) is called the hyperbolic measure on the upper half plane. We first

study some properties of integrating functions on the upper half plane with respect to

this measure.

Remark 3.7.2. Since the set Q ∪ {∞} is a countable set of measure 0, we can as well

integrate over the extended upper plane H∗.

Lemma 3.7.3. Suppose ϕ : H → C is a continuous and bounded function and α ∈
SL2(Z). Then the integral

∫
D∗ ϕ(α(τ))dµ(τ) converges.

Proof. Let |ϕ(τ)| ≤M for all τ ∈ H. Then,∣∣∣∣ ∫
D∗
ϕ(α(τ))dµ(τ)

∣∣∣∣ ≤ ∫
D∗

∣∣ϕ(α(τ))dµ(τ)
∣∣

≤ M

∫
D∗
dµ(τ)

= M

∫ 1/2

−1/2

∫ ∞
√

1−x2

dxdy/y2

Using elementary methods from calculus, one sees that the integral in the last equation

is equal to π
3 .
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Let Γ ⊆ SL2(Z) be a congruence subgroup and let {αj}j be the coset representatives of

the space {±I}Γ\SL2(Z). We can write SL2(Z) =
⋃
j{±I}Γαj . Because of Proposition

2.1.4, it makes sense to define the integral of a function over X(Γ) in the following way.

Definition 3.7.4. Let ϕ be a continuous and bounded function on H. Suppose ϕ is Γ

invariant. Define the integral of ϕ in the modular curve X(Γ) by the following expression:∫
X(Γ)

ϕ(τ)dµ(τ) =

∫
⋃
αj(D∗)

ϕ(τ)dµ(τ) =
∑
j

∫
D∗
ϕ(αjτ)dµ(τ) (3.7.5)

Since ϕ is Γ invariant, the integral is independent of the coset representatives we choose.

Putting ϕ = 1 in definition 3.7.4, call VΓ =
∫
X(Γ) dµ(τ), the volume of X(Γ). Clearly,

VΓ = [SL2(Z) : Γ]VSL2(Z), where VSL2(Z) =
∫
D∗ dµ(τ).

Take f and g ∈ Sk(Γ). In order to construct the Petersson inner product, we need to

cook up a continuous, bounded, and Γ-invariant function with f and g. Consider the

following function:

ϕ(τ) = f(τ)g(τ)(Im(τ))k

The function ϕ is clearly continuous. It is also Γ invariant because for any γ ∈ Γ,

ϕ(γτ) = f(γτ)g(γτ) Im(γτ)k

= (cτ + d)kf(τ)(cτ + d)
k
g(τ) Im(τ)|cτ + d|−k

= ϕ(τ)

We would finally like to establish that ϕ is bounded on H. Since ϕ is Γ invariant, it is

enough to show that ϕ is bounded on
⋃
i αiD.

Lemma 3.7.6. For any α ∈ SL2(Z), the function ϕ ◦ α is bounded on D.

Proof. Since ϕ ◦ α is a continuous function, it is bounded on any compact subset of D.
We only need to check that as ϕ is bounded as Im(τ)→ 0. This is seen as follows: For

any α ∈ SL2(Z),

ϕ(α(τ)) = (f [α]kg[α]k)(τ) Im(τ)k.

By definition, f [α]k and g[α]k have power series expansions in qh = e2πiτ/h with their a0

term equal to 0. Therefore, ϕ(α(τ)) = O(qh)O(qh)yk. Since |qh| → 0 when Im(τ) → ∞
and the exponential decay dominates polynomial growth, it follows that, as Im(τ) →
∞, ϕ ◦ α→ 0. This proves that ϕ ◦ α is bounded on D.

In view of the above discussion, we are ready to define the inner product on cusp forms.
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Definition 3.7.7 (Petersson Inner Product). Let Γ ⊆ SL2(Z) be a congruence subgroup.

The Petersson inner product on Sk(Γ) is given by:

〈,〉 : Sk(Γ)× Sk(Γ)→ C

〈f, g〉Γ =
1

VΓ

∫
X(Γ)

f(τ)g(τ)(Im(τ))kdµ(τ)

From the definition it is easy to see that the inner product is linear in f, conjugate linear

in g and Hermitian symmetric. To see that it is positive we definite compute

〈f, f〉 =
1

VΓ

∫
X(Γ)
|f(τ)|2 Im(τ)kdµ(τ)

=
1

VΓ

∑
j

∫
D∗
|f(αjτ)|2 Im(αjτ)kdµ(τ)

Since D∗ is compact, |f(αj(τ)| and Im(αj)(τ) has a minimum value, making the integral

above greater than or equal to 0.

Lastly, we need to make sure that the Peterson inner product with respect to a subgroup

gives us the same value when we take it with respect to the smaller group. Indeed this

is true. In fact the normalizing factor 1
VΓ

precisely helps in ensuring that.

Lemma 3.7.8. Let Γ′ ⊆ Γ ⊆ SL2(Z). Suppose f and g ∈ Sk(Γ). Then 〈f, g〉Γ′ = 〈f, g〉Γ.

Proof. Write SL2(Z) =
⋃
i({±I}Γ)αi and Γ =

⋃
j({±I}Γ′)βj with αi ∈ SL2(Z); 1 ≤ i ≤

[SL2(Z) : Γ] and βj ∈ Γ; 1 ≤ j ≤ [Γ : Γ′]. This gives us that SL2(Z) =
⋃
i,j({±I}Γ′)βjαi.

Computing the inner product of f and g with respect to Γ′ we get:

〈f, g〉Γ′ =
1

VΓ′

∫
X(Γ′)

f(τ)g(τ) Im(τ)kdµ(τ)

=
1

VΓ′

(∑
i

∑
j

∫
D∗
f(βjαiτ)g(βjαiτ) Im(βjαiτ)kdµ(τ)

)

=
1

VΓ′

(
[Γ : Γ′]

∑
i

∫
D∗
f(αiτ)g(αiτ) Im(αiτ)kdµ(τ)

)
=

1

VΓ

(∑
i

∫
D∗
f(αiτ)g(αiτ) Im(αiτ)kdµ(τ)

)
= 〈f, g〉Γ

In the third equality we use the fact that f(τ)g(τ) Im(τ) is Γ-invariant while in next one

we write 1/(V ′Γ) = 1/(VΓ[Γ : Γ′]).
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3.8 Adjoints of the Hecke operators

In the next few sections, we restrict our attention to Sk(Γ1(N)). We will show that the

Hecke operators Tn and 〈n〉 commute with their adjoints when (n,N) = 1. In order to

show this, we will compute the adjoints of these operators with respect to the Petersson

inner product. By the Spectral Theorem from linear algebra, the space Sk(Γ1(N)) will

have an orthogonal basis of simultaneous eigenvectors for these operators. We will call

these eigen-vectors as eigenforms. We aim to establish the following theorem:

Theorem 3.8.1. The space Sk(Γ1(N)) has an orthogonal basis of simultaneous eigenforms

for the Hecke operators {〈n〉 | (n,N) = 1}.

Remark 3.8.2. From now on we will use the term “operators away from the level” to

refer to operators Tn or 〈n〉 with (n,N) = 1.

To begin with, we need some technical lemmas and definitions.

Definition 3.8.3. Suppose Γ ⊆ SL2(Z) such that SL2(Z) =
⋃
j{±I}Γαj and α ∈

GL+
2 (Q). Then for any continuous, bounded and α−1Γα – invariant function ϕ : H→ H

define,

∫
α−1Γα

ϕ(τ)dµ(τ) =
∑
j

∫
D∗
ϕ(α−1αj(τ))dµ(τ).

To see where this definition is coming from, consider the map α : H→ H such that τ 7→
ατ for α ∈ GL+

2 (Q). It is easy to check that this induces a bijection from H∗/α−1Γα→
X(Γ) where the map is given by [τ ] 7→ [ατ ]. It is one to one and well defined because

[τ1] = [τ2] in H∗/α−1Γα if and only if τ1 = α−1γατ2 for some γ ∈ Γ if and only if

[ατ1] = [ατ2] in X(Γ). It is clearly surjective as [α−1τ ] maps to [τ ] in X(Γ). If SL2(Z) =⋃
j{±I}Γαj , then Proposition 2.1.4 and the above bijection imply that H∗/α−1Γα =⋃
j α
−1αj(D∗) up to some boundary identifications. Therefore, definition 3.8.3 makes

sense.

We will use the following three results in this section:

Lemma 3.8.4. Let Γ ⊆ SL2(Z) be a congruence subgroup and let α ∈ GL+
2 (Q).

1. Suppose ϕ : H→ C is continuous, bounded and Γ-invariant. Then,∫
α−1Γα

ϕ(ατ)dµ(τ) =

∫
X(Γ)

ϕ(τ)dµ(τ).

2. If α−1Γα ⊆ SL2(Z), then Vα−1Γα = VΓ and [SL2(Z) : α−1Γα] = [SL2(Z) : Γ]
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3. There exists β1 . . . βn ∈ GL+
2 (Q), where n = [Γ : α−1Γα ∩ Γ] = [Γ : αΓα−1 ∩ Γ],

such that the double coset ΓαΓ is expressed as a disjoint union as follows:

ΓαΓ =
⋃

Γβj =
⋃
βjΓ

Proof. Part 1 comes directly from definition 3.8.3 and 3.7.4.

To see Part 2, let ϕ = 1 in part 1 to get the equality of the volumes of the two subgroups.

Writing [SL2(Z) : α−1Γα]VSL2(Z) = Vα−1Γα = VΓ = [SL2(Z) : Γ]VSL2(Z) we get the other

equality.

Part 3 requires some work. By replacing Γ with the subgroup Γ ∩ α−1Γα, part 2 helps

us to conclude that the index of Γ∩α−1Γα is same as the index of αΓα−1∩Γ in SL2(Z).

Using the fact that [SL2(Z) : Γ][Γ : Γ ∩ α−1Γα] = [SL2(Z) : Γ ∩ α−1Γα] and similarly

writing the relation for αΓα−1 ∩ Γ, we see that the index of the two subgroups in Γ is

equal as well. This allows us to find γ1, . . . γn, and δ1 . . . δn such that,

Γ =
⋃
j

(α−1Γα ∩ Γ)γj =
⋃
j

(αΓα−1 ∩ Γ)δ−1
j

Setting Γ1 = Γ2 = Γ in Lemma 3.3.4, we see that ΓαΓ =
⋃
j Γαγj and Γα−1Γ =⋃

j Γα−1δ−1
j . Taking the inverse in the second relation we conclude that ΓαΓ =

⋃
j δjαΓ.

We are almost done since we have obtained two disjoint unions of one right and one left

coset space, representing the double coset,

ΓαΓ =
⋃
j

Γαγj =
⋃
j

δjαΓ. (3.8.5)

In order to locate suitable representatives βj , 1 ≤ j ≤ n, we prove that for every

j, Γαγj ∩ δjαΓ 6= φ. Suppose otherwise. Then for some j, the intersection Γαγj ∩
δjαΓ = φ. It follows that Γαγj ⊂

⋃
i 6=j δiαΓ and so ΓαΓ ⊂

⋃
i 6=j δiαΓ, a contradiction to

the decomposition of the double coset into n orbits. From the non-empty intersection

Γαγj ∩ δjαΓ, for each j we can choose βj so that the relation (3.8.8) reduces to:

ΓαΓ =
⋃
j

Γβj =
⋃
j

βjΓ.

We now come to an important proposition which will help us to compute adjoint of the

double coset operator [ΓαΓ]k. Specializing the proposition for Γ = Γ1(N) and taking a

suitable α will help us to compute the adjoints of the Hecke operators.
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Proposition 3.8.6. Suppose Γ ⊆ SL2(Z) be a congruence subgroup and α ∈ GL+
2 (Q).

Let α′ = det(α)α−1. Then

1. If α−1Γα ⊂ SL2(Z), then for all f ∈ Sk(Γ) and g ∈ Sk(α−1Γα), we obtain the

following:

〈f [α]k, g〉α−1Γα = 〈f, g[α′]k〉Γ

In particular, if α−1Γα = Γ, then the adjoint of the operator [α]k denoted by [α]∗k,

is equal to [α′]k.

2. For all f and g ∈ Sk(Γ),

〈f [ΓαΓ]k, g〉Γ = 〈f, g[Γα′Γ]k〉Γ

Consequently, [ΓαΓ]∗k = [Γα′Γ]k.

Proof of 1. To prove the first part, evaluate the left hand side to get,

〈f [α]k, g〉α−1Γα = 1/Vα−1Γα

∫
H∗/α−1Γα

(f [α]k(τ)g(τ)(Im(τ))kdµ(τ)

Using part 1 and 2 of Lemma 3.8.4 the above equation equals:

1/VΓ

∫
X(Γ)

det(α)k−1f(τ)(α, α−1(τ))−kg(α−1(τ))(Im(α−1(τ))kdµ(τ)

Observe that the action of α′ is same as that of α−1. Replacing α−1 with α′ and noting

that det(α) = det(α′), expanding the above expression we get,

1/VΓ

∫
X(Γ)

det(α)k−1f(τ)

(
(αα′), τ

(α′, τ)

)−k
g(α′(τ))

(
det(α′)

Im(α−1(τ))

|(α′, τ)|

)k
dµ(τ)

Observing that (αα′), τ) = det(α) and writing |(α′, τ)| = (α′, τ)(α′, τ), cancelling

terms in the last expression gives us:

1/VΓ

∫
X(Γ)

det(α)k−1f(τ)g[α′]k(τ) Im(α−1(τ))kdµ(τ) = 〈f, g[α′]k〉Γ.
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Proof of 2. The second part requires us to compute 〈f [ΓαΓ]k, g〉. Taking βj given in

part 3 of Lemma 3.8.4, and keeping in mind Lemma 3.7.8 we compute:

〈f [ΓαΓ]k, g〉 =
∑
j

〈f [βj ]k, g〉Γ

=
∑
j

〈f [βj ]k, g〉Γ∩β−1
j Γβj

=
∑
j

〈f, g[β′j ]k〉Γ∩βjΓβ−1
j

=
∑
j

〈f, g[β′j ]k〉Γ

The second last equality comes from part 1 of Lemma 3.8.4. We wish to conclude that

the expression in the last equality
∑

j〈f, g[β′j ]k〉Γ equals 〈f, g[Γα′Γ]k〉. If we show that

Γα′Γ =
⋃
j Γβ′j , then we are done. This is seen as follows. Since ΓαΓ also equals the

union of left cosets βjΓ, taking inverse and multiplying by det(α) in the expression

ΓαΓ =
⋃
j βjΓ, it follows that Γα′Γ =

⋃
j Γ(det(α)β−1

j ). Noting that det(α) = det(βj)

for all j, we see that β′j are coset representatives of Γα′Γ in Γ.

With this we move on to computing the adjoints of the Hecke operators Tp and 〈d〉 away

from the level.

Theorem 3.8.7. In the inner product space Sk(Γ1(N)), the Hecke operators 〈d〉 and Tp

for p - N and (d,N) = 1 have adjoints given by the following operators.

〈d〉∗ = 〈d〉−1 ; T ∗p = 〈p〉−1Tp

Proof. Let f, g ∈ Sk(Γ). Suppose α ∈ Γ0(N) is the corresponding matrix for the operator

〈d〉. Since Γ1(N) is normal in Γ0(N), it follows from the first part of Proposition 3.8.6

that 〈d〉∗ = [α]∗k = [α′]k = 〈d〉−1. To compute the T ∗p operator, we need to look at the

operator [Γ1(N)αΓ1(N)]∗k where α =

(
1 0

0 p

)
. By the second part of Proposition 3.8.6,

this amounts to finding the representation of the operator [Γ1(N)α′Γ1(N)]k. Since p - N,
we can find integers m and n such that mp− nN = 1. Now express α′ in terms of α as

follows: (
p 0

0 1

)
=

(
1 n

N mp

)−1(
1 0

0 p

)(
p n

N m

)
(3.8.8)

This helps us to find the decomposition of Γ1(N)α′Γ1(N) in terms of the decomposition

of Γ1(N)αΓ1(N) into orbits of Γ1(N). Let Γ1(N)αΓ1(N) =
⋃
j Γ1(N)βj . Denote γ =(

1 n

N mp

)
and δ =

(
p n

N m

)
. Then γ ∈ Γ1(N) and δ ∈ Γ0(N). The relation in (3.8.8)
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and the fact that Γ1(N) is normal in Γ0(N) allows us to write,

Γ1(N)α′Γ1(N) = Γ1(N)αΓ1(N)δ (3.8.9)

Using the decomposition of Γ1(N)αΓ1(N), we see that βjδ represent the coset space

Γ1(N)/Γ1(N)α′Γ1(N). Finally note that m ≡ p−1 mod N and so we get,

T ∗p (f) =
∑
j

f

[
βj

(
p n

N m

)]
k

= 〈p〉−1Tp(f)

Therefore the Hecke operators away from the level commute with their adjoints. This

completes the proof of Theorem 3.8.1. The above computation of the adjoint of the Tp

operator works only when (p,N) = 1. In general, if we wish to find a uniform expression

for the adjoint operator which works for all Hecke operators, we will have to introduce

a new operator given by wN =

[(
0 −1

N 0

)]
k

.

Theorem 3.8.10. For any Hecke operator T = Tn or T = 〈n〉, where n ∈ Z+, acting on

the space Sk(Γ1(N)), the adjoint of T is the operator T ∗ = wNTw
−1
N .

Before beginning the proof we note that the matrix δ =

(
0 −1

N 0

)
normalizes the

subgroup Γ1(N). That is, δ−1Γ1(N)δ = Γ1(N). This allows us to view wN as the double

coset operator [Γ1(N)δΓ1(N)]k.

Proof. First consider the operator 〈n〉. When (n,N) > 1, then 〈n〉 = 0 and so its adjoint

is the 0 operator as well. In the case when (n,N) = 1, we take the corresponding matrix γ

in Γ0(N) with the right most entry n mod N. Observe that the matrix wNγw
−1
N ∈ Γ0(N)

and has rightmost entry congruent to n−1 modulo N. We conclude that wNγw
−1
N =

〈n〉−1 = 〈n〉∗ by Theorem 3.8.6.

For the other type of Hecke operator we first establish the result for Tp, where p is now

any prime. As before, we need to characterize the double coset Γ1(N)α′Γ1(N). We follow

a similar approach in finding the decomposition of this double coset into orbits of Γ1(N),

but this time we use a small observation that α′ = δ−1αδ. Since δ normalizes Γ1(N)

and so does δ−1, we have the equality Γ1(N)δ = δΓ1(N) and Γ1(N)δ−1 = δ−1Γ1(N).
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Therefore, if Γ1(N)αΓ1(N) =
⋃
j βj , then,

Γ1(N)α′Γ1(N) = Γ1(N)δ−1αδΓ1(N)

= δ−1Γ1(N)αΓ1(N)δ

= δ−1
⋃
j

Γ1(N)βjδ

=
⋃
j

Γ1(N)δ−1βjδ

From the above calculation of the coset representatives we conclude that T ∗p (f) =∑
j f [δ−1βjδ]k = wNTpw

−1
N (f). The proof works for all prime p, regardless of the fact

that it divides N or not. By the definition of the Tn operator, the result extends to all

n ∈ Z+.

We will need the adjoint of the operator wN later.

Lemma 3.8.11. Let wN be the operator as given above acting on the space Sk(Γ1(N)).

Its adjoint is given by the operator w∗N = (−1)kwN .

Proof. Using Lemma 3.8.6, we see that w∗N = [δ′]k where δ′ = det(δ)δ. More precisely,

δ′ =

(
0 1

−N 0

)
and so we compute:

w∗Nf = f [δ′]k(τ) = (−Nτ)−kf(δ′τ)

= (−1)k(Nτ)−kf(−1/Nτ)

= (−1)kf [δ]k(τ)

= (−1)kwNf

3.9 Old forms and new forms

Till now we were working with modular forms of a particular level N. In this section we

would like to characterize the forms coming from lower levels. For example, if M | N, we

know that Sk(Γ1(M)) is sitting inside Sk(Γ1(N)). There is yet one more way to embed

Sk(Γ1(M)) in Sk(Γ1(N)). Suppose d = N/M. Consider the transformation:

αd =

(
d 0

0 1

)
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Claim 3.9.1. The weight k operator [αd]k is an injective linear map from Sk(Γ1(M)) to

Sk(Γ1(N)).

Proof of claim. Since f [α]k(τ) = dk−1f(dτ), it is clear that the map is injective and

linear. To see that the operator lifts the level, we wish to show that f [αd]k ∈ Sk(Γ1(N)).

Suppose γ =

(
a b

cN d′

)
∈ Γ1(N). Write,

f [αdγ]k(τ) = (cNτ + d′)−kdk−1f(d(γτ)).

= (cM(dτ) + d′)−kdk−1f

(
a(dτ) + bd

cM(dτ) + d′

)
= f [γ′αd]k(τ) ; γ′ =

(
a bd

cM d′

)
∈ Γ1(M).

= f [αd]k(τ).

This takes care of the modularity condition. Moreover, the above calculation along with

holomorphy of f gives us that f [αd]k is holomorphic at the cusps. It follows that f [αd]k

is a modular form with respect to Γ1(N).

Given these two maps, in order to identify modular forms coming from lower levels, it

makes sense to take the sum of their images at every level M | N. This will give us the

following subspace of Sk(Γ1(N)).{∑
d|N

(fN/d + gN/d[αd]k)

∣∣∣∣ fN/d, gN/d ∈ Sk(Γ1(N/d))

}

Combining the observations so far and writing everything in a fancy notation, we put

together the following definition:

Definition 3.9.2 (Oldforms). For each divisor d > 1 of N, let id be the map,

id : Sk(Γ1(N))× Sk(Γ1(N))→ Sk(Γ1(N))

(f, g) 7→ f + g[αd]k.

Then the subspace of oldforms at level N is:

Sk(Γ1(N))old =
∑
p|N

prime

ip(Sk(Γ1(N))× Sk(Γ1(N)))

For level N = 1, define the space of old forms Sk(SL2(Z))old = {0}.
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In the above definition it is enough to sum over primes because of the following ob-

servation: Suppose that p and h are divisors of n, where p is a prime. Notice that if

f, g ∈ Sk(Γ1(N/ph)), then iph(f, g) ⊆ ip(f, g[αh]). It follows that if d is any divisor of N

such that d = ph, then the image of id ⊆ image of ip. Therefore, it is enough to consider

the prime divisors of N .

Definition 3.9.3. The orthogonal component of the space of old forms is known as the

space of new forms with respect to the petersson inner product. That is, Sk(Γ1(N))new =

(Sk(Γ1(N))old)⊥.

We aim to show that the Hecke operators respect this decomposition of Sk(Γ1(N)) into

old and new subspaces.

Theorem 3.9.4. The subspaces of Sk(Γ1(N))old and Sk(Γ1(N))new are stable under the

Hecke operators Tn and 〈n〉 for all n ∈ Z+.

Proof. We prove this case by case. Let p | N. Using the decomposition of Theorem

3.2.19, it is enough to take f and g ∈ Sk(N/p, χ). Let χN modulo N denote the lift of

the Dirichlet character χ modulo N/p.

1. Consider the diamond operator 〈d〉. In order to show that the operator 〈d〉 com-

mutes with the ip map, we show that:

〈d〉N/pf = 〈d〉Nf ; (〈d〉N/pg)[αp]k = 〈d〉N (g[αp]k). (3.9.5)

Here, the subscript under the operator symbol denotes the level at which it is

acting. Suppose f ∈ Sk(N/p, χ). Then 〈d〉Nf = f [δ]k where δ ∈ Γ0(N) with

rightmost entry equal to d mod N. Observe that δ ∈ Γ0(N) implies that δ ∈
Γ0(N/d). It follows that f [δ]k = χ(d)f = χN (d)f. We conclude that f ∈ Sk(N,χN )

and so 〈d〉Nf = 〈d〉N/pf.

Performing a similar calculation done in the proof of claim 3.9.1, it is easy to see

that if g ∈ Sk(N/p, χ), then, g[αp]k ∈ Sk(N,χN ). This proves the second equality.

Since 〈n〉 = 0, when (n,N) > 1, the Hecke operator 〈n〉 stabilizes the space of old

forms for all n ∈ Z+.

2. Next, we show the same equalities in 3.9.5 for the operator Tp′ where p′ is a

prime different from p. Let Tp′,N/p denote the operator acting at level N/p. Using

the Fourier expansion of Tp′,N/p(f) from Corollary 3.4.13 and noting that f ∈
Sk(N,χN ), we see that Tp′,N/p(f) = Tp′,N (f). Further, we compute the Fourier
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expansion of (Tp′,N/p(g))[αp]k:

(Tp′,N/p(g))[αp]k = pk−1
∞∑
n=0

anp′(g)qnp + χ(p′)p′
k−1

∞∑
n=0

an(g)qnp
′p

= Tp,N (g[α]k)

The last equality comes from the fact that p′ | N/p if and only if p′ | N and so

χ(p′) = χN (p′).

3. In this case we will deal with the operator Tp. The proof is slightly different as

Tp individually does not commute with the natural inclusion map and the [αp]k

operator. However, for f, g ∈ Sk(Γ1(N/p)), we have that:

Tp,N (ip(f, g)) = ip(Tp,N/pf + pk−1g,−〈p〉N/pf). (3.9.6)

Indeed, if we expand the left hand side, we get, Tp,N (f + g[α]k) = Tp,N (f) +

Tp,N (g[αp]k). Looking at the two terms separately, we see Tp,Nf = Tp,N/pf −
(〈p〉N/pf)[αp]k. This follows from the explicit representation of Tp in Theorem

3.4.3 and is true regardless of whether p | N/p or not. In the latter case we just

take 〈p〉N/p = 0. The expression for Tp,N (g[αp]k) is computed as:

Tp,N (g[αp]k) =
∑
j

g

[(
p 0

0 1

)(
1 j

0 p

)]
k

=
∑
j

g

[(
p 0

0 p

)(
1 j

0 1

)]
k

= pk−1g

Combining the above calculations, we get (3.9.6). Points 2 and 3 together show

that the Hecke operator Tn stabilize the space of oldforms for all n ∈ Z+.

To show that the Hecke operators stabilize Sk(Γ1(N))new it is enough to show

that their adjoints stabilize Sk(Γ1(N))old. This is because 〈f, Tg〉 = 0 if and only

if 〈T ∗f, g〉 = 0 for all f ∈ Sk(Γ1(N))old and g ∈ Sk(Γ1(N))new. By Theorem 3.8.7,

when (n,N) = 1, 〈n〉∗ = 〈n〉−1. The discussion in 1 shows that the adjoint operator

stabilizes the space of oldforms. In the case when (n,N) > 1, there is nothing to

check.

4. To see the result for T ∗n , we use the formula for the adjoint calculated in Theorem

3.8.10. Therefore, it is enough to check that the space of oldforms is stabilized by
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the operator wN given in Theorem 3.8.10. Compute,

wN ip(f, g) = wN (f + g[αp]k)

= f

[(
0 1

−N 0

)]
k

+ g

[(
p 0

0 1

)(
0 1

−N 0

)]
k

= f

[(
0 1

−N 0

)]
k

+ g

[(
p 0

0 p

)(
0 1

−N/p 0

)]
k

= f

[(
0 1

−N/p 0

)(
p 0

0 1

)]
k

+ pk−2g

[(
0 1

−N/p 0

)]
k

= ip(p
k−2wN/p(g), wN (f))

It follows that wN ip(f, g) ∈ Sk(Γ1(N))old.

From the discussion in Points 1− 4 we arrive at the following corollary:

Corollary 3.9.7. The spaces Sk(Γ1(N))old and Sk(Γ1(N))new have orthogonal bases of

eigenforms for the Hecke operators away from the level, {Tn, 〈n〉 | (n,N) = 1}

3.10 The Main Lemma

The theory in the next few sections is dedicated to eliminating the condition of (n,N) = 1

to have an orthogonal bases for the space of newforms. To that end, in this section we

prove a very important lemma which helps us to see whether a modular form is an old

form, just by looking at its Fourier coefficients.

Define the map ıd to be a sort of normalization of the αd operator.

ıd = d1−k[αd]k : Sk(Γ1(M))→ Sk(Γ1(N)) ; (ıdf)(τ) 7→ f(dτ)

The map ı acts on the Fourier expansion as:

∞∑
n=1

anq
n 7→

∞∑
n=1

anq
dn

It follows that if f ∈ Sk(Γ1(N)) is of the form f =
∑

p|N ıpfp with fp ∈ Sk(Γ1(N/p)),

then, an = 0 for all n such that (n,N) = 1. The Main Lemma gives us the converse of

this statement.
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Theorem 3.10.1 (Main Lemma). If f ∈ Sk(Γ1(N)) has Fourier expression f(τ) =
∑
an(f)qn

such that (n,N) = 1, then f is of the form f = ıpfp with fp ∈ Sk(Γ1(N/p)).

Using tools from previous theory and linear algebra, we will keep restating the Main

Lemma into different versions, finally reducing it to a known result in representation

theory.

Proof. (Sketch) As a first step, we change the subgroup we are working with. Let

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣
(
a b

c d

)
≡

(
1 0

∗ 1

)
mod N

}

It is easy check that αMΓ1(M)α−1
M = Γ1(N). By the special case in point 2, it fol-

lows that the double coset operator [Γ1(M)α−1
M Γ1(M)]k = [α−1

M ]k which takes f(τ) to

Mk−1f(τ/M) is in fact an isomorphism of Sk(Γ1(M)) and Sk(Γ1(M)). After removing

the constant Mk−1, we have the following isomorphism explicitly in terms of the Fourier

series of f.

M1−k[αM ]k : Sk(Γ1(M))→ Sk(Γ1(M))

∞∑
n=0

anq
n 7→

∞∑
n=0

anq
n
M

The above discussion leads to the following diagram:

Sk(Γ1(M)) Sk(Γ1(N))

Sk(Γ1(M)) Sk(Γ1(N))

∼

ıd

∼

In terms of the Fourier expansion, if we draw the diagram, we see that it commutes if

M = dN. ∑∞
n=0 anq

n
∑∞

n=0 anq
dn

∑∞
n=0 anq

n
M

∑∞
n=0 anq

dn
M

ıd

This helps us to view the map ıd as an inclusion map and makes our life easier. More

precisely, since the diagram commutes, we reformulate the Main Lemma in terms of the

new subgroup as follows:

Theorem 3.10.2 (Main Lemma version 2). If f ∈ Sk(Γ1(N)) has Fourier expansion

f(τ) =
∑∞

n=0 anq
n with an(f) = 0 when (n,N) = 1, then fp =

∑
p|N fp ; fp ∈

Sk(Γ1(N/p)).
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Next step is to translate the Main Lemma in the language of linear algebra. Recall the

subgroup

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣
(
a b

c d

)
≡

(
∗ 0

∗ ∗

)
mod N

}

For any divisor d of N, let Γd = Γ1(N) ∩ Γ0(N/d), a congruence subgroup of level N.

Lemma 3.10.3. The set of coset representatives for the quotient Γ(N)\Γd is

S =

{(
1 bN/d

0 1

) ∣∣∣∣ 0 ≤ b < d

}

Proof of Lemma 3.10.3. Let Γ =

(
a β

c δ

)
∈ Γd. This means that a and δ are congruent

to 1 modulo N ; aδ − βc = 1. Moreover, β = kN/d for some k ∈ Z. Write k = qd + b

with 0 ≤ r < d so that β ≡ rN/d mod N. We claim that γγ′
−1 ∈ Γ(N) where γ′ =(

1 rN/d

0 1

)
∈ S. Indeed, if we compute γγ′

−1
, we get:

(
a β

c δ

)(
1 −rN/d
0 1

)
=

(
a β − arN/d
c δ − crN/d

)

Call this matrix γ1. Observe the following about the entries of γ1. Since N | (a− 1), we

have that β − (arN/d) ≡ (1 − a)N/d ≡ 0 mod N. Similarly, δ − crN/d ≡ 1 mod N.

Hence, γ1 ∈ Γ(N). It follows that for any arbitrary matrix in γ ∈ Γd, we can find a

matrix γ′ ∈ S, such that γ ∈ Γ(N)γ′. It remains to show that the each coset space

Γ(N)γ′ with γ′ in S is distinct. This can be seen by realizing that every matrix in the

set Γ(N)γ′ has the top right entry congruent to bN/d determined 0 ≤ b < d. Therefore

as coset spaces they are different.

We next introduce a suitable operator defined by averaging over the weight k operators

corresponding to the representatives in S.

πd : Sk(Γ(N))→ Sk(Γ(N))

f 7→
d−1∑
b=0

f

[(
1 bN/d

0 1

)]
k
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To find out the properties of the operator, first note that the operator acts as identity

on the subspace Sk(Γd). Compute the following inclusion of subgroups:

(
1 bN/d

0 1

)−1

Γ(N)

(
1 bN/d

0 1

)
⊆ Γd (3.10.4)

This, and the fact that f

[(
1 bN/d

0 1

)]
k

is a modular form with respect to the subgroup

given on the left hand side of the relation in 3.10.4, helps us conclude that the image of

πd lands inside the subspace Sk(Γd). This shows us two things. One, the map πd is a

surjection onto Sk(Γd). Two, it is a projection, for, πd(f) ∈ Sk(Γd) and so πd(πd(f)) =

πd(f) from our first observation.

The map πd is special to us because of the way it acts on f. More explicitly, we see its

action on the Fourier series of f. Let f =
∑∞

n=0 anq
n
N .

πd(f) = 1/d

( ∞∑
n=0

anq
n
N +

∞∑
n=0

anq
n
Ne

2πin/d + · · ·+
∞∑
n=0

anq
n
Ne

2πi(d−1)n/d

)

Collecting together the terms corresponding to n = 0 first, then n = 1 and carrying on,

we get an infinite sum given by the following expression:

da0 + a1qN (1 + e2πi/d + · · ·+ e2πi(d−1)/d + · · ·+ adq
d
N (1 + e2πi + · · ·+ e2πi(d−1)) + . . .

Observe that the geometric sum corresponding to an with n - d, sums up to 0, while an

for n | d, is multiplied with the sum (1 + e2πi + · · ·+ e2πi(d−1)) that adds up to d. Noting

that the whole expression is multiplied by the constant 1/d, what we finally get is the

following sum:

πd(f) =
∑
{n: d|n}

anq
n
N (3.10.5)

This shows that πd preserves coefficients which are multiples of d and kills everything

else. One more property of πd is immediate. For d1 and d2 positive integers,

πd1(πd2(f)) =
∑

{n: d1d2|n}

anq
n
N = πd1d2(f) = πd2(πd1(f)). (3.10.6)

Next, define π : Sk(Γ(N)) → Sk(Γ(N)) given by π =
∏
p|N (1 − πp) where p denotes a

prime diving N. Using the property mentioned in (3.10.6), the operator expands as:

π = I−
∑
p|N

πp +
∑

p1|N,p2|N
p2<p1

πp1p2 − . . .
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Using the expression in (3.10.5) for πp and the principle of exclusion and inclusion we

see that, (∑
p|N

πp +
∑

p1|N,p2|N
p2<p1

πp1p2 − . . .
)

(f) =
∑

{n: (nN)>1}

anq
n
N

Therefore, when π acts on f, it only keeps the coefficients an away from the level.

π(f) =
∑

{n: (nN)=1}

anq
n
N

Looking back at version 2 of the Main Lemma given in 3.10.2, the hypothesis of the

theorem is equivalent to assuming that f ∈ Sk(Γ1(N)) ∩ ker(π).

Our next task is to find ker(π) = ker
(∏

p|N (1− πp)
)
. We use the following result:

Lemma 3.10.7. Let πp be the map defined above. Then,

ker

(∏
p|N

(1− πp)
)

=
∑
p|N

(
ker(1− πp)

)
=
∑
p|N

im(πp) (3.10.8)

In general, the above result is true for any set of commuting projections and not neces-

sarily πp.

Proof. We prove the first equality first. Observe that if π is a projection, then (1 − π)

is a projection. Therefore, it is enough to show that given two commuting projections

π1 and π2, ker(π1π2) = ker(π1) + ker(π2). One way containment is easy to see. Suppose

x = z + y with z ∈ ker(π1) and y ∈ ker(π2). Then, π1(π2(x)) = π1(π2(z + y)) = 0 since

π1 and π2 commute. This implies that ker(π1) + ker(π2) ⊆ ker(π1π2). For the other way

containment, let π1(π2(x)) = π2(π1(x)) = 0. Write π2(x) = y and x− π2(x) = z so that

x = z + y. Clearly, y ∈ ker(π1). Compute π2(z) = π2(x) − π2
2(x) = 0. This shows that

x ∈ ker(π1) + ker(π2) as required.

To establish the second equality in (3.10.8), we show that im(π) = ker(1 − π). Indeed,

x ∈ im(π) if and only if x = π(y) for some y if and only if π(y) = π(x) = x if and only

if x ∈ ker(1− π).

The above lemma reduces the problem of finding the kernel of the map π to finding the

image of πp for each prime p. But we already know that πp is a projection of Sk(Γ(N))

onto Sk(Γp) = Sk(Γ1(N) ∩ Γ0(N/p)).

The Main Lemma is now reduced to the following: If f ∈ Sk(Γ1(N))∩
∑

p|N Sk(Γ1(N)∩
Γ0(N/p)), then f ∈

∑
p|N Sk(Γ1(N/p)). We in fact have that the two spaces mentioned

in the above version are equal. That is,
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Theorem 3.10.9 (Main Lemma version 3).

Sk(Γ1(N)) ∩
∑
p|N

Sk(Γ1(N) ∩ Γ0(N/p)) =
∑
p|N

Sk(Γ1(N/p)).

We now simplify the above expression to finally give a final version of the Main Lemma

reducing it to representation theory.

Let G = SL2(Z/NZ). We know that the group SL2(Z) acts on Sk(Γ(N)) from the

right, via the weight k operator. Clearly the group Γ(N) acts trivially on this space and

therefore by Proposition 1.4.2, the action can be considered of the group SL2(Z/NZ).

Write N =
∏n
i=1 p

ei
i as product of powers of distinct primes. By the Chinese Remainder

Theorem, we can identify the group G with
∏n
i=1Gi where Gi = SL2(Z/peii Z) for each

1 ≤ i ≤ n. The explicit map from G to
∏n
i=1Gi is given by the following assignment:(

a b

c d

)
7→
((

a b

c d

)
mod pe11 , . . . ,

(
a b

c d

)
mod penn

)
(3.10.10)

Further, for each 1 ≤ i ≤ n, Proposition 1.4.2 again helps us write Gi ' SL2(Z)/Γ(peii )

so that,

G '
n∏
i=1

SL2(Z/peii Z) '
n∏
i=1

SL2(Z)/Γ(peii ) (3.10.11)

We now introduce two subgroups Gi for each i given by:

Hi = Γ1(peii )/Γ(peii ) ; Ki = (Γ1(peii ) ∩ Γ0(pei−1
i ))/Γ(peii )

Let H =
∏n
i=1Hi. Denote by Sk(Γ(N))H , the subspace of Sk(Γ(N)) fixed by H and

similarly for any other subgroup of G. We then claim that the version 3 of the Main

Lemma reduces to the following statement:

Sk(Γ(N))H ∩
n∑
i=1

Sk(Γ(N))Ki =
n∑
i=1

Sk(Γ(N))〈H,Ki〉 (3.10.12)

Before moving on to prove the claim, we need a small technical lemma.

Lemma 3.10.13. For any prime p and e ≥ 1, we have,

〈Γ1(pe),Γ1(pe) ∩ Γ0(pp
e−1

)〉 = Γ1(pe−1) (3.10.14)

Proof. It is fairly easy to show that 〈Γ1(pe),Γ1(pe) ∩ Γ0(pp
e−1

)〉 ⊆ Γ1(pe−1). We show

the other way containment which is not so direct. Let Γ denote the group on the left

hand side of the equality in (3.10.14). Let γ =

(
a b

c d

)
∈ Γ1(pe−1). We will show that



Chapter 3 105

for some matrices δ and δ′ ∈ Γ, δγδ′ ∈ Γ. Keep in mind that a and d are congruent

to 1 mod pe−1 while b is congruent to 0 mod pe−1. The proof now goes by constantly

replacing γ by matrices of the form γ1γγ2 with γ1, γ2 ∈ Γ. We start by observing that if

p | a, then p - b. Otherwise, p | (ad− bc) = 1 which is not possible. Therefore, γ

(
1 0

1 1

)
satisfies that p - (a + b) and so we can as well take γ such that p - a. Similarly, we can

take p - d by arguing the same with the product

(
1 0

1 1

)
γ.

Next, we reduce the entries of γ to have the property of pe dividing b and c. Since p - d,
it is invertible mod p. Let β ≡ −bd−1 mod pe. Notice the following:

β ≡ 0 mod pe−1 ; b+ βd ≡ 0 mod pe ;

(
1 β

0 1

)
∈ Γ1(pe).

This gives us that

(
1 β

0 1

)
γ ∈ Γ1(pe) ⊂ Γ and has the upper right entry equal to

b + dβ ≡ 0 mod pe. It is therefore enough to take b ≡ 0 mod pe in γ. Similarly take

w = cd−1 mod pe and argue with γ

(
1 0

w 1

)
as above to conclude that we can take the

c entry in γ to be congruent to 0 mod pe. Finally, we are reduced to the case where γ

has entries with the following properties.

ad− bc = 1 ; a ≡ d ≡ 1 mod pe−1 ; b ≡ c ≡ 0 mod pe (3.10.15)

Consider the matrix:

M =

(
1 1− a
0 1

)(
1 0

−1 1

)(
1 1− d
0 1

)(
1 0

a 1

)

Using properties mentioned in (3.10.15), it is easy to see that the matrices in the product

individually belong to Γ. Moreover, the matrix M is given as:

M =

(
a+ a(1− ad) 1− ad

ad− 1 d

)

Observing that ad ≡ mod pe, we see that M ≡ γ mod pe. This implies that Mγ−1 ∈
Γ1(pe) ⊆ Γ and so γ ∈ Γ.

Coming back to the proof of the Main Lemma, we need to prove the claim that Theorem

3.10.9 is equivalent to the statement in (3.10.12). This is seen as follows: We look at

the three terms given in 3.10.9 separately.
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1. First, consider the subspace Sk(Γ1(N)). This is equal to the subspace of Sk(Γ(N))

fixed by the subgroup Γ1(N)/Γ(N).We wish to show that the subgroup Γ1(N)/Γ(N)

is identified to H under the mapping in (3.10.10). This is easily seen by noting

that any matrix in Γ1(N)/Γ(N) is of the form

(
a b

c d

)
with entries satisfying the

following properties that a ≡ d ≡ 1 mod N and b ≡ 0 mod N. Under the iso-

morphism map in (3.10.10), this is equivalent to saying that a ≡ d ≡ 1 mod peii

and b ≡ 0 mod peii for all 1 ≤ i ≤ n. This is equivalent to saying that the matrix(
a b

c d

)
mod peii ∈ Γ1(pi)

ei/Γ(pi)
ei for all 1 ≤ i ≤ n. This argument essen-

tially shows that Γ1(N)/Γ(N) '
∏n
i=1 Γ1(pi)

ei/Γ(pi)
ei = H and so Sk(Γ1(N)) =

Sk(Γ(N))H .

2. Next, we wish to show that:

∑
p|N

Sk(Γ1(N) ∩ Γ0(N/pi)) =

n∑
i=1

Sk(Γ(N))Ki . (3.10.16)

For each i, write Sk(Γ1(N) ∩ Γ0(N/pi)) = Sk(Γ(N))(Γ1(N)∩Γ0(N/pi))/Γ(N). We fol-

low a similar argument as in 1. Any matrix

(
a b

c d

)
belongs to the subgroup

(Γ1(N) ∩ Γ0(N/pi))/Γ(N) if and only if a ≡ d ≡ 1 mod N, c ≡ 0 mod N

and b ≡ 0 mod (N/pi). This is equivalent to the fact that

(
a b

c d

)
mod peii ∈

(Γ1(peii ) ∩ Γ0(pei−1
i ))/Γ(peii ) = Ki and

(
a b

c d

)
mod p

ej
j is the identity matrix for

j 6= i. This shows that (Γ1(N) ∩ Γ0(N/pi))/Γ(N) ' Ki. This proves the relation

in (3.10.16)

3. Finally, we move on to the term on the right hand side of the equality in (3.10.9)

given by
∑

p|N Sk(Γ1(N/p)). For a fixed prime pi, consider the term Sk(Γ1(N/pi)) =

Sk(Γ(N))Γ1(N/pi)/Γ(N). Using the same argument as above, we identify the image of

Γ1(N/pi)/Γ(N) under the map in (3.10.10). The matrix

(
a b

c d

)
∈ Γ1(N/pi)/Γ(N)

if and only if a ≡ d ≡ 1 mod (N/pi) and b ≡ 0 mod (N/pi). This happens if and only

if

(
a b

c d

)
mod peii ∈ Γ1(pei−1

i )/Γ(peii ) and

(
a b

c d

)
mod p

ej
j ∈ Γ1(p

ej
i )/Γ(p

ej
i ) for

all j 6= i This implies that, the Γ1(N/pi)/Γ(N) equals Γ1(pei−1
i )/Γ(peii )×

∏
j 6=iHj

Using Lemma 3.10.13 we see that:

Γ1(pei−1
i )/Γ(peii ) = 〈Γ1(peii )/Γ(peii ), (Γ1(peii )/ ∩ Γ0(pi

ei−1))/Γ(peii )〉
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This is exactly the subgroup 〈Hi,Ki〉.What we finally have is that Γ1(N/pi)/Γ(N) =

〈H,Ki〉. This completes the argument that:

∑
p|N

Sk(Γ1(N/p)) =
∑
p|N

Sk(Γ(N))〈H,Ki〉

The discussion in points 1, 2 and 3 shows that it is enough to establish statement in

(3.10.12). The proof of (3.10.12) now follows from a completely group theoretic result

stated below.

Theorem 3.10.17. Let V be an irreducible representation of the group G =
∏n
i=1Gi. Let

H = Hi and K = Ki be subgroups be subgroups. Then,

V H ∩
n∑
i=1

V Ki =

n∑
i

V 〈H,Ki〉 (3.10.18)

In order to apply the above theorem to S(Γ1(N)), we use yet another result from rep-

resentation theory: The vector space Sk(Γ(N)) is a direct sum of subspaces irreducible

under the G-action.

Noting that if Sk(Γ(N)) =
⊕

iWi is the decomposition of the vector space into irre-

ducible representations, then Sk(Γ1(N))H =
⊕

iW
H
i , the result in 3.10.17 can now be

applied to each individual irreducible component Wi of Sk(Γ1(N)). This finally finishes

the proof of the Main Lemma.

3.11 Bases of newforms

Let f ∈ Sk(Γ1(N))new be an eigenform for Hecke operators away from the level. We

show that f is in fact an eigenform for operators Tn and 〈n〉 for all n ∈ Z+. When

(n,N) > 1, 〈n〉 = 0. Therefore, in this case f is an eigenform for these operators with

eigen value 0. Now we only have to deal with the Tn operator. From now on, we use the

terms “eigenform” and “newform” in a much general sense.

Definition 3.11.1 (Eigenform). A non-zero modular form f ∈ Mk(Γ1(N)) that is an

eigenform for the Hecke operators Tn and 〈n〉 for all n ∈ Z+ is called a Hecke eigenform

or simply an eigenform.

An eigenform f =
∑

n anq
n is normalised if a1 = 1.

Definition 3.11.2 (Newform). A normalized eigenform in Sk(Γ1(N))new is called a new-

form.
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In the discussion to follow, we aim to prove the following theorem.

Theorem 3.11.3. Let f ∈ Sk(Γ1(N))new be a non zero eigenforms for the operators Tn

and 〈n〉 with (n,N) = 1. Then

1. The function f is a Hecke eigenform. Moreover, a suitable multiple of f is a

newform. Each such newform lies in an eigenspace Sk(N,χ) for some Dirichlet

character χ modulo N and satisfies Tn(f) = an(f)f for all n ∈ Z+.

2. The set of newforms in the space Sk(Γ1(N))new is an orthogonal bases of the space.

3. (Multiplicity One property) If f̃ satisfies the same conditions as f, and has the

same Tn eigen values, then f̃ = cf for some constant c.

Proof of 1. Let f ∈ Sk(Γ1(N)) be an eigenform for the the Hecke operators away from

the level. This implies that for n such that (n,N) = 1, there exists eigenvalues cn and dn

such that Tn(f) = cnf and 〈n〉f = dnf. Define a map χ : (Z/NZ)∗ → C∗;n 7→ dn. This

clearly defines a Dirichlet character modulo N and f ∈ Sk(N,χ). Using the formula for

the Fourier coefficients of Tn(f) in Proposition 3.5.4, we see that,

a1(Tnf) = an(f) for all n ∈ Z+ (3.11.4)

Furthermore, f being an eigenform away from its level implies that,

a1(Tn(f)) = cna1(f) (n,N) = 1 (3.11.5)

The relation in (3.11.4) and (3.11.5) give us that for n with (n,N) = 1, an(f) = cna1(f).

Therefore if a1(f) = 0, then an(f) = 0 away form the level. By the Main Lemma, f

is an oldform. It follows that if f ∈ Sk(Γ1(N))new, then a1(f) 6= 0. Therefore, we can

normalize f and take a1(f) = 1. It remains to show that f is a Hecke eigenform. To

see this, take gm = Tm(f) − am(f)f for any m ∈ Z+. The function gm is clearly in

Sk(Γ1(N))new and gm is an eigenform away from the level. Compute:

a1(gm) = a1(Tm(f))− am(f)a1(f)

= am(f)− am(f)

= 0

By the discussion above an(gm) = 0 when (n,N) = 1. By the Main Lemma, gm ∈
Sk(Γ1(N))old ∩ Sk(Γ1(N))new = 0. This shows that Tm(f) = am(f)f for all m ∈ Z+.

Proof of 2. We already have an orthogonal basis of eigenforms which can be normalized

to give newforms. If we show that the set of all newforms are linearly independent,
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then by the above observation they form an orthogonal basis. Suppose there exists a

non-trivial relation, ∑
i

cifi = 0 ; ci ∈ C (3.11.6)

with all the ci non zero and as many few terms as possible, necessarily at least two. For

any m ∈ Z+ applying the operator Tm − am(f1) to the relation in (3.11.7), we get the

following relation: ∑
i>1

ci(am(fi)− am(f1))fi = 0 ; ci ∈ C (3.11.7)

This has fewer terms than (3.11.7) and so it must be trivial. Since m was arbitrary, It

follows that am(fi) = am(f) for all m ∈ Z+. Therefore fi = f1 for all i. This gives a

contradiction to our assumption of at least two terms being in the relation in 3.11.7.

Proof of 3. From the proof of 1 we see that, Tn(f̃) = (an(f̃)/a1(f̃))f̃ and Tn(f̃) =

(an(f)/a1(f))f. Since f and f̃ have the same Tn eigenvalues, we see that an(f̃)/a1(f̃) =

an(f)/a1(f) for all n. This shows that an(f̃) = can(f) for all n ∈ Z+ with c =

a1(f̃)/a1(f).

We do not have a basis of eigenforms for the whole space Sk(Γ1(N)), however what we

do have is a bases of new forms f and functions of the form f(nτ). More precisely, we

have the following theorem.

Theorem 3.11.8. The set:

Bk(N) = {f(nτ) | f is a newform of level M and nM |N}

is a basis of Sk(Γ1(N)).

Proof. (Sketch.) We first show that elements in Bk(N) span Sk(Γ1(N)). We will use

decomposition of Sk(Γ1(N)) into old and new subspaces inductively.

Sk(Γ1(N)) = Sk(Γ1(N))new
⊕∑

p|N

ip(Sk(Γ1(N))× Sk(Γ1(N)))

In Theorem 3.11.3 we showed that that Sk(Γ1(N))new has a bases of newforms. So,

elements in Bk(N) with n = 1 and M = N span this space.

Next, Observe that the image ip(Sk(Γ1(N/p)))2 have elements of the form f + g(pτ)

with f, g ∈ Sk(Γ1(N/p)). If we show that Sk(Γ1(N/p)) is spanned by elements from

Bk(N/p), then we are done. Further decomposing it into old and new subspaces, we

see that Sk(Γ1(N/p))new is spanned by newforms of level N/p. For Sk(Γ1(N/p))old, by

the argument above, it is enough to show that Sk(Γ1(N/pp′) is spanned by the elements
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of Bk(N/pp′) for a prime p′ dividing N/p. Running the same argument downwards we

will eventually be left with the base case Sk(SL2(Z)). The subspace of old forms in

Sk(SL2(Z)) is precisely {0} since nothing is coming from lower levels here. This leaves

us with Sk(SL2(Z)) = {0}⊥ = Sk(SL2(Z))new, which is spanned by newforms that

correspond to elements with M = 1 and n = 1 in Bk(1).

It remains to show that the elements of the set are linearly independent. Assume that

there is non-trivial relation amongst the elements in the set Bk(N).

∑
i,j

ci,jfi(ni,jτ) = 0 ; ci,j ∈ C (3.11.9)

Here every fi lies in a space Sk(Mi, χi) with Mi|N and χi a Dirichlet character modulo

Mi. Assume that each ci,j in (3.11.9) is nonzero and the relation has as many few terms

as possible. We make some observations first.

1. The functions fi in the relation (3.11.9) cannot all be equal because for a given

i, each function fi(ni,jτ) starts with a different power of q in its power series

expansion. With only one function in the summand, the relation will never be

equal to 0.

2. Each Dirichlet character χi lifts to a Dirichlet character χ̃i modulo N so that

f ∈ Sk(N, χ̃i). In fact, every χi lifts to the same Dirichlet character. To see this,

assume to the contrary that at least two Dirichlet characters (say), χ1 and χ2 lift

to different Dirichlet characters χ̃1 and χ̃2. Then there exists some d ∈ (Z/NZ)∗

such that χ̃1(d) 6= χ̃2(d). Using the same calculation as in (3.9.5) it is easy to see

〈d〉N (fi(ni,jτ)) = (〈d〉Mifi)(ni,jτ). Applying 〈d〉N − χ̃1(d) to relation (3.11.9) and

using the observation above we get,

0 =
∑
i,j

ci,j(〈d〉N − χ̃1(d))fi(ni,jτ)

=
∑
i,j

ci,j((〈d〉Mifi)(ni,jτ)− χ̃1(d)fi(ni,jτ))

=
∑
i>1,j

ci,j(χi(d)− χ̃1(d))fi(ni,jτ)

This yields a non trivial result with fewer terms than (3.11.9), a contradiction.

3. Using a similar trick, we show that ap(fi) = ap(fj) for all i, j and p, a prime

not dividing N. Suppose not, then we can find a prime p - N and functions in

the summand (3.11.9), (say) f1 and f2 such that ap(f1) 6= ap(f2). The idea is to

apply Tp,N −ap(f1) to (3.11.9) and get a nontrivial relation with fewer terms than
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(3.11.9), exactly as above. This will lead to a contradiction. We will need the

following observation in the calculation below:

Tp,N (fi(ni,jτ)) = (Tp,Mifi)(ni,jτ)

This can be seen by performing exactly the same calculation as done in point 2 of

the proof of Theorem 3.9.4 for any p - N. Now,

0 =
∑
i,j

ci,j(Tp,N − ap(f1))fi(ni,jτ)

=
∑
i,j

ci,j((Tp,Mi(fi))(ni,jτ)− ap(f1)fi(ni,jτ))

=
∑
i>1,j

ci,j(ap(fi)− ap(f1))fi(ni,jτ)

a contradiction as explained before.

By a result known as Strong Multiplicity One, points 2 and 3 imply that the functions

fi are all equal, contradicting point 1.

We will not state or prove Strong Multiplicity One. Apart from that, the proof is

complete. However to give some idea, the Strong Multiplicity Theorem for new forms is

a deep result which helps us to characterize new forms completely just by knowing its

Fourier coefficients ap for all but finitely many primes p.
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The theory of L-functions

4.1 Some basic tools from Complex analysis

We begin the chapter by introducing some tools from complex analysis which will be

useful in subsequent sections. A lot of things are stated without proof. The reader is

encouraged to see parts of [2] and [4] for a rigorous analysis of the topics mentioned

below.

4.1.1 Gamma, zeta and L-functions

We briefly introduce the gamma function which will appear frequently in the text to

follow. For any complex number s such that Re(s) > 0, the gamma function is defined

by the following integral.

Γ(s) =

∫ ∞
0

e−tts
dt

t

Notice that as t → 0, the integrand e−tts−1 is comparable to ts−1 and clearly
∫ 1

0 t
s−1

converges absolutely for Re(s) > 1. To see that the integral converges at its upper end

as well, observe that as t → ∞, the integrand e−tts−1 is comparable to e−t/2 which

makes the integral converge absolutely from 1 to ∞ as well.

We in fact have that the Gamma function defines a holomorphic function in the region

where Re(s) > 1. Moreover, it satisfies the functional equation Γ(s + 1) = sΓ(s). This

helps in extending the domain of the function to the whole complex plane with poles

at s = 0,−1,−2, and so on at all negative integers. See [4] for the proof of the above

statements. We will also need the Stirling approximation for the Gamma function which

helps us conclude that the Gamma function decays rapidly along vertical lines. More

112
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precisely, for a fixed real number σ, as t→ ±∞

|Γ(σ + it)| ∼
√

2π|t|σ−1/2e−π|t|/2 (4.1.1)

The central object of study in this chapter is the L-function. An L-function is a Dirichlet

series of the form
∑∞

n=1 c(n)n−s such that c(n) ∈ C for all n. The prototype example of

an L-function is the Riemann zeta function ζ(s) given by

ζ(s) =

∞∑
n=1

n−s

The ζ function is a very deep object and interesting in its own right. We state some

properties of the function below and finally explain the goal of this chapter.

Proposition 4.1.2. The series defining ζ(s) converges for Re(s) > 1 and the function ζ

is holomorphic in this half plane.

Proof. First observe that |n−s| = n−Re(s). For any compact subset K of the half plane

Re(s) > 1, if Re(s) is bounded below by σ0 for all s ∈ K, then we get that

∣∣∣∣ ∞∑
n=1

n−s −
k∑

n=1

n−s
∣∣∣∣ ≤ ∞∑

n=k

n−Re(s)

≤
∞∑
n=k

n−σ0

The series in the last expression clearly converges. Since the partial sums converge

uniformly to the zeta function on any compact subset of the half plane, it defines a

holomorphic function in the plane Re(s) > 1.

Furthermore, one can show that the function given by the relation ξ(s) = π−s/2Γ(s/2)ζ(s)

satisfies the functional equation ξ(s) = ξ(1 − s) and helps to give a meromorphic con-

tinuation of the zeta function with simple poles at 0 and 1. This is non-trivial to show

and the reader can refer to [4] for the precise proof.

Another interesting property of the zeta function is that it has an Euler product repre-

sentation. An Euler product is an expansion of the Dirichlet series into a product over

all the primes. It is easy to check that:

ζ(s) =
∏
p

(1− p−s)−1
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The properties of the zeta function mentioned above give us some motivation to study

L-functions and find out whether similar kind of results hold. In the sections to come,

we associate an L-function to a modular form and study these similar properties of

convergence, analytic continuation, and Euler product expansion.

4.1.2 The Mellin tranform and Mellin inversion

We will need some preliminary ideas in order to look at L-functions which we mention

below. The Mellin transform of a function f : R+ → C is the integral given by the

following expression.

g(s) =

∫ ∞
0

f(t)ts
dt

t
(4.1.3)

for the values of s such that the integral is absolutely convergent. Consider the integral

in two parts: First from 0 to 1, that is the integral:
∫∞

0 f(t)ts dtt . If the integral absolutely

converges for a particular value of s, say, s1, then it converges absolutely for all complex

values s such that Re(s) ≥ Re(s1). This is because for 0 ≤ y ≤ 1,∣∣∣∣ ∫ ∞
0

f(t)ts
dt

t

∣∣∣∣ ≤ ∫ ∞
0
|f(t)t(Re(s)−1)|dt

≤
∫ ∞

0
|f(t)t(Re(s1)−1)|dt

Similarly, if the integral from 1 to∞ absolutely converges for some s2, then it converges

for all values of s with a smaller real part than that of s2. In sum, what we get is that

the integral g(s) is absolutely convergent for Re(s) lying in some interval (σ1, σ2). It may

also be a half plane or all of C.

If g is a holomorphic function of the complex variable s in some right half plane, then

for σ ∈ (σ1, σ2), its inverse Mellin transform is given by the integral:

f(t) =
1

2πi

∫ σ+i∞

s=σ−i∞
g(t)t−s

dt

t
(4.1.4)

for positive t values such that the integral converges absolutely. In addition, g is required

to uniformly converge to 0 as Im(s) → ∞. Using Cauchy’s formula we can then show

that the Mellin inversion is independent of the real number σ. One in fact has that,

the integrals given in (4.1.3) and (4.1.4) are equivalent. This is known as the Mellin

inversion formula.
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We will also need a very helpful result from complex analysis called the Phragmén-

Lindelöf principle. This is an extension of the maximum modulus principle for holomor-

phic functions to unbounded regions provided we assume moderate growth conditions

for the function.

Proposition 4.1.5 (Phragmén-Lindelöf principle). Write s = σ+it. Let f(s) be a function

that is holomorphic in the the strip

σ1 ≤ Re(s) ≤ σ2

such that f(σ + it) = O(e|s|
α

) for some real number α > 0 when σ1 ≤ σ ≤ σ2. Suppose

that f(σ + it) = O(|t|M ) for σ = σ1 and σ = σ2 and some integer M. Then f(σ + it) =

O(|s|M ) uniformly in σ for all σ ∈ [σ1, σ2].

See Lang, Complex Analysis [5] for the proof of the theorem.

4.2 Associating L-functions to modular forms

To every modular form f ∈ Mk(Γ1(N)), we associate a Dirichlet series known as its

L-function. Let f =
∑

n anq
n be the fourier expansion of f. Let s ∈ C be a complex

variable, then the associated L-function is given by the expression:

L(s, f) =

∞∑
n=1

ann
−s (4.2.1)

It is natural to ask the about the properties of convergence of the L-function.

Proposition 4.2.2. Let f ∈ Mk(Γ1(N)). If f is a cusp form, then L(s, f) converges

absolutely for all s with Re(s) > k/2 + 1. Otherwise, L(s, f) converges absolutely for all

s with Re(s) > k.

Proof. We begin by assuming that f is a cusp form. Suppose the f̃(q) =
∑∞

n=0 anq
n is

the Fourier expansion of f about 0. We find out the region of convergence by estimating

the Fourier coefficients. Since f̃ represents a holomorphic function in the unit disc

around 0, we use Cauchy’s Theorem to find out the coefficients as follows.

an = 1/2πi

∫
Cy

f̃(q)q−n−1dq (4.2.3)
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where Cy denotes the counter clockwise circle e2πi(x+iy) for a fixed y > 0, as x varies

from 0 to 1. Changing the variable to x we see that for a fixed y,

an =

∫ 1

x=0
f(x+ iy)e2πin(x+iy)dx (4.2.4)

We wish to find a bound for the function f(τ). Consider the function ϕ(τ) = f(τ)yk/2.

It is easy to check that ϕ(γτ) = ϕ(τ) for all γ ∈ Γ1(N). By running the same argument

as done in Lemma 3.7.6, we see that ϕ is bounded on H. Hence |φ(τ)| = |f(τ)yk/2| ≤M
for some positive integer M. This gives a bound for the function f(τ) dependent on the

imaginary part of τ. What we finally have is,

|an| ≤
∫ 1

x=0
My−k/2|e−2πin(x+iy)|dx

= My−k/2e2πyn

This expression is valid for all y > 0. In particular when we put y = 1/n, we see that

|an| ≤ Me2πnk/2 for all n ∈ Z+. This implies that |ann−s| = O(nk/2 − Re(s)). The

function L(s, f) converges in the region k/2− Re(s) < −1, that is, k/2 + 1 < Re(s).

When f is not a cusp form, we write it as a sum of an Eisenstein series in Mk(Γ1(N))

and a cusp form as discussed in section 3.6. We estimate the Fourier coefficients of

the Eisenstein series first. From the discussion in section 3.6, we know that |an(Ek)| ≤
|Ck|σk(n) = |Ck|

∑
d|N d

k−1. Furthermore,

nk−1 ≤
∑
d|n

dk−1 =
∑
d|n

(n/d)k−1 < (nk−1)ζ(k − 1) (4.2.5)

This shows that |an| = O(nk−1). Since nk−1 grows faster than nk/2, the growth of the

Fourier coefficients of f is of order nk−1. It follows that when f is not a cusp form, then

|an(f)n−s| = O(nk−1−Re(s)). This gives us that L(s, f) converges for k−1−Re(s) > −1,

that is, Re(s) > k.

A similar argument as done for the ζ function shows that the L-function defines an

analytic function in the region where it converges. In the next section, we will show that

for a cusp form f, there exists an analytic continuation of L(s, f) to the whole complex

plane. A standard tool to analytically continue functions is to derive a functional equa-

tion. As we will see in the coming sections, the Mellin transform of the cusp form will

be used to find a suitable functional equation of its L-function.

Proposition 4.2.6. The Mellin transform of f(it) is the function:

g(s) = (2π)−sΓ(s)L(s, f) ; Re(s) > k/2 + 1
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Proof. From the formula of the Mellin transform of f, write,

g(s) =

∫ ∞
t=0

∞∑
n=1

ane
2πin(it)ts

dt

t
(4.2.7)

We need to make sure that this integral is absolutely convergent at both the ends. We

split the integral into two parts. First consider the integral from 1 to∞. Notice that for

t ≥ 1, the sum
∑∞

n=1 ane
−2πnt = O(e−2πt). This implies that for some C ∈ C,

∣∣∣∣ ∫ ∞
t=1

∞∑
n=1

ane
−2πntts−1dt

∣∣∣∣ ≤ ∫ ∞
t=1
|Ce−2πttRe(s)−1dt|

and the last integral clearly converges for all s. To analyze the the integral from 0 to 1,

notice that, as t→ 0, ∣∣∣∣ ∞∑
n=1

ane
−2πnt

∣∣∣∣ ≤ ∞∑
n=1

|ane−2πnt|

≤
∞∑
n=1

e−2πnt

=
1

e2πt − 1
≤ C ′1/t

for some constant C ′ ∈ C. This allows us to write∣∣∣∣ ∫ 1

t=0

∞∑
n=1

ane
−2πntts−1dt

∣∣∣∣ ≤ ∫ 1

t=0
|C ′tRe(s)−2dt|

=
tRe(s)−1

Re(s)− 1

∣∣∣∣1
t=0

This clearly gives a finite value for Re(s) > 1, in particular for Re(s) > k/2 + 1.

Therefore it makes sense to interchange the sum and the integral. Changing the variable

by substituting 2πnt = x, we get

g(s) =
∞∑
n=1

∫ ∞
t=0

ane
−2πntts

dt

t

=

∞∑
n=1

∫ ∞
t=0

an
(2πn)s

e−xxs
dx

x

= (2π)−sL(s, f)Γ(s)

We digress a bit to normalized eigenforms and derive a property of the L-function that
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characterizes them completely. To that end, we first prove a nice result which helps us

identify (normalised) eigenforms, based on some properties of its Fourier coefficients.

Proposition 4.2.8. Let f ∈ Mk(N,χ). Then f is a normalized eigenform if and only if

its Fourier coefficients satisfy the following conditions:

1. a1(f) = 1

2. apr(f) = ap(f)apr−1(f)− χ(p)pk−1apr−2(f)

3. amn(f) = am(f)an(f) when (m,n) = 1.

Proof. Suppose f is a normalized eigenform. Then a1 = 1 by definition. Using the

definition in (3.5.1) and the fact that f is an eigenform, we see that,

apr(f)f = Tpr(f) = TpTpr−1(f)− χ(p)pk−1Tpr−2(f) (4.2.9)

= (ap(f)apr−1(f)− χ(p)pk−1apr−2(f))f (4.2.10)

This gives us 2. The property in 3 similarly follows because of (3.5.3). Conversely,

suppose the Fourier coefficients of f satisfies the three conditions. First condition implies

that f is normalized. It is enough to prove that f is an eigenform for the Tp operator.

For if we assume that f is an eigenform for the operator Tpn for all n ≤ r then, running

same calculation in (4.2.9) backwards with condition 2, we see that f is an eigenform

for the operator Tpr . This helps us to conclude that f is in fact an eigenform for Tn for

all n ∈ Z+. Indeed, if n = pr11 . . . prmm is the prime factorization of n, then,

Tn(f) = Tpr11
. . . Tpmrm (f)

= (apr11
(f) . . . apmrm (f))f

= apr11 ...pmrm
(f)f

= an(f)f

To get the second last equality, we have used the third condition. Therefore, what

remains to prove is the base case of Tp and then by induction, the argument is complete.

We proceed by computing the mth Fourier coefficient of Tp(f). When p - N, it is easy to

see from the formula in (3.4.13) that am(Tp(f)) = amp(f) which is same as ap(f)am(f)
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since (p,m) = 1. When p | m with m = prm′ and (m′, p) = 1, we compute:

am(Tp(f)) =
∑
d|p

χ(d)dk−1amp/d2(f)

= χ(p)pk−1am/p(f) + amp(f)

= χ(p)pk−1apr−1m′(f) + am′pr+1(f)

= χ(p)pk−1apr−1(f)am′(f) + am′(f)apr+1(f) by condition 3

= am′(f)(χ(p)pk−1apr−1(f) + apr+1(f))

= am′(f)ap(f)apr by condition 2

Condition 3 again gives us that the last expression equals ap(f)am(f) in this case as

well. Finally, this shows that Tp(f) = ap(f)f for any prime p.

Theorem 4.2.11. Let f ∈ Mk(N,χ) such that f(τ) =
∑∞

n=0 anq
n. Then the following

are equivalent:

1. f is a normalised eigenform.

2. The associated L-function of f has an Euler Product expansion:

L(s, f) =
∏
p

(1− app−s + χ(p)pk−1−2s) (4.2.12)

The proof of the theorem requires a small useful result to be proven.

Lemma 4.2.13. Given the Fourier expansion of f as above with a1 = 1, we have the

following equality of sums:

∞∑
n=1

∏
p||n

aprp
−r =

∏
p

∞∑
r=0

aprp
−r (4.2.14)

where the product is taken over all primes and the symbol pr||n signifies that pr is the

highest power of prime dividing n.

More generally, if g is a function on prime powers such that g(1) = 1, one has,

∞∑
n=1

∏
p||n

g(pr) =
∏
p

∞∑
r=0

g(pr)

provided that the sum in above expression makes sense.

To stay with the main theorem, we assume this result for now and prove it at the end.
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Proof. We will show that the three conditions given in Proposition 4.2.8 for the coef-

ficients of f are necessary and sufficient to ensure that L(s, f) has an Euler product

expansion. First, suppose that f ∈Mk(N,χ) and satisfies the three conditions in 4.2.8.

Let p denote an arbitrary prime number. Multiplying condition 3 with p−rs we get

aprp
−rs = p−rsapapr−1 − p−rsχ(p)pk−1apr−2 (4.2.15)

Summing over r ≥ 2 in (4.2.15) we see that

∞∑
r=2

aprp
−rs =

∞∑
r=2

p−rsapapr−1 −
∞∑
r=2

p−rsχ(p)pk−1apr−2

= app
−s
∞∑
r=1

p−rsapr − p−2sχ(p)pk−1
∞∑
r=0

p−rsapr

This gives us the equality:

∞∑
r=0

aprp
−rs(1− app−s + p−2sχ(p)pk−1) = a1 + app

−s(1− a1) (4.2.16)

Putting the value of a1 = 1 in (4.2.16), we get:

∞∑
r=0

aprp
−rs =

1

1− app−s + p−2sχ(p)pk−1
(4.2.17)

Now calculating the expression of the L-function gives that,

L(s, f) =
∞∑
n=1

ann
−s =

∞∑
n=1

(∏
p||n

apr

)
n−s

=

∞∑
n=1

∏
p||n

aprp
−rs ; by condition 3

=
∏
p

∞∑
r=0

aprp
−rs ; by Lemma 4.2.13

Finally, (4.2.17) helps us arrive at the Euler expansion of the L-function Conversely,

given the Euler product expansion in (4.2.12), expanding it in the form of a geometric
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series and using Lemma 4.2.13 we compute:

L(s, f) =
∏
p

(1− app−s + p−2sχ(p)pk−1)

=
∏
p

∞∑
r=0

bp,rp
−rs ; for some {bp,r}

=
∞∑
n=1

∏
pr||n

bp,rp
−rs

=
∞∑
n=1

( ∏
pr||n

bp,r

)
n−s

We would like to conclude that an =
∏
p||n bp,r. However there is no uniqueness theorem

for L-functions. What we do is the following. Since both the series define the same

L-function, they will give the same Mellin transform. From the Mellin inversion formula

we will get back the Fourier series with coefficients an which will be equal to the Fourier

series with coefficients
∏
pr||n bp,r. By the uniqueness theorem of the Fourier series, for

each n, the coefficient an will be equal to
∏
pr||n bp,r. More precisely, from the discussion

in section 4.2.6 and Proposition 4.2.6 we can write

∞∑
n=1

ane
−2πnt =

∞∑
n=1

(∏
p||n

bp,r

)
e−2πnt =

∫ σ+i∞

σ−i∞
(2π)−sL(s, f)Γ(s)ds

for sufficiently large σ in the right half plane where the Mellin transform exists. We just

have to make sure that the integral mentioned in the right hand side converges. Here

we will use two results two approximate the integral. First is the Stirling approximation

for the Gamma function in (4.1.1) and second is the fact that the L function is bounded

for sufficiently large σ. This helps us to analyze the growth of the integral as follows:

lim
t→∞

∣∣∣∣ ∫ σ+it

σ−it
(2π)−sL(s, f)Γ(s)ds

∣∣∣∣ ≤ lim
t→∞

∫ t

−t
|(2π)−σ−iyL(σ + iy, f)Γ(σ + iy)|dy

≤ lim
t→∞

∫ t

−t
M(2π)−σ

√
2π|y|σ−1/2e−π|y|/2dy

≤ lim
t→∞

∫ t

0
M ′|y|σ−1/2e−π|y|/2dy

where M and M ′ define suitable constants. The integral in the last expression clearly

converges and so our claim follows. Furthermore, for n = pr, we see that apr = bp,r.

Therefore, the calculation done above for the L-function helps us conclude the result

in (4.2.17). Taking Re(s) → ∞ in (4.2.17) we get a1 = 1. Now that the first condition

holds, we do the calculation leading to (4.2.16) backwards to get (4.2.15). This gives us

condition 2. To realize condition 3, notice that for positive integers m and n such that
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(m,n) = 1,

anam =
∏
p||n

bp,r
∏
p||m

bp,r

=
∏
p||nm

bp,r

= amn

This completes the proof of the theorem. It only remains to show Lemma 4.2.13.

Proof of Lemma 4.2.13. Instead of the infinite product of primes in (4.2.14), we first

consider the product over a finite number of primes(say) p1, . . . pn. Then,

n∏
i=1

∞∑
r=0

apri p
−r
i =

∞∑
ei=0

1≤i≤n

n∏
i=1

apeii
p−eii (4.2.18)

As ei runs from 0 to infinity for each 1 ≤ i ≤ n, corresponding to a unique tuple of

powers (e1, . . . , en) we get a unique product term
∏n
i=1 apeii

p−eii in the summand. By

the Fundamental theorem of arithmetic, the above expression reduces to summing over

all the positive integers m which are only divisible by pi for any 1 ≤ i ≤ n and for a

such fixed m, taking the product over the highest power of prime dividing it. That is,

writing the set S = {m ∈ Z+ : pi | m for 1 ≤ i ≤ n ; p - m if p 6= p1, . . . pn}, we get the

following expression:
n∏
i=1

∞∑
r=0

apri p
−r
i =

∑
m∈S

∏
pr||m

aprp
−r (4.2.19)

Therefore, taking the product over all primes in the left hand side of the expression in

(4.2.19), instead of summing over the elements in S, we will have to sum over all the

positive integers on the right hand side. The proof for any function g of prime powers

with g(1) = 1 is the same.

4.3 Analytic continuation of the L-function of a cusp form

Let f be a cusp form of weight k and L(s, f) =
∑

n ann
−s be its associated L-function.

Via the means of the machinery developed in the previous section, we show that L(s, f)

has an analytic continuation to the whole complex plane.

Recall the Mellin transform g(s) of a cusp form f calculated in Proposition 4.2.6. In

order to show that L(s, f) has an analytical continuation to the whole s plane, we will

derive a functional equation for the function ΛN (s) = N s/2g(s). We will use the following
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operator on the space of cusp forms.

WN : Sk(Γ1(N))→ Sk(Γ1(N))

f 7→ ikN1−k/2f

[(
0 −1

N 0

)]
k

(4.3.1)

Observe that WN is a suitable multiple of the operator wN introduced in section 3.8.

We calculated the adjoint of wN in Lemma 3.8.11, which helps us conclude the following

result about the above operator.

Lemma 4.3.2. The operator WN is self adjoint.

Writing WN = ikN1−k/2wN and using Lemma 3.8.11, we see that

W ∗N = ikN1−k/2w∗N

= ik(−1)kN1−k/2(−1)kwN

= WN

The operator WN is special in the sense that it is a unitary operator. Indeed, if we

calculate

W 2
n(f) = WN (ikN−k/2τ−kf(−1/Nτ))

= i2kN−kτ−k(−1/Nτ)−kf

(
−1

N(−1/Nτ)

)
= f(τ)

The calculation above and Lemma 4.3.2 show that WNW
∗
N = W ∗NWN = I. From the

Spectral Theorem in linear algebra we have an orthogonal decomposition of Sk(Γ1(N))

into the eigenspaces of WN . Since the only possible eigenvalues for a unitary operator

is ±1, let Sk(Γ1(N))+ denote the eigenspace corresponding to the eigenvalue 1, and

similarly for the eigenvalue −1, we get:

Sk(Γ1(N)) = Sk(Γ1(N))+
⊕
Sk(Γ1(N))−.

With the help of the orthogonal decomposition and the WN operator we will now prove

the analytic continuation of the L function associated to any cusp form.

Theorem 4.3.3. Suppose f ∈ Sk(Γ1(N))±1. Then the function ΛN (s) = N s/2g(s) where

g(s) is the Mellin transform of f extends to an entire function satisfying the functional

equation:

ΛN (s) = ±ΛN (k − s).

Consequently, L(s, f) extends to an analytic function to the full s plane.
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Proof. Take f ∈ Sk(Γ1(N))±1. Then

ΓN (s) = N s/2

∫ ∞
t=0

f(it)ts
dt

t
(4.3.4)

Changing the variables from t to t/
√
N in (4.3.4) we get,

ΓN (s) =

∫ ∞
t=0

f(it/
√
N)ts

dt

t

=

∫ ∞
t=1

f(it/
√
N)ts

dt

t
+

∫ 1

t=0
f(it/

√
N)ts

dt

t

We will deal with these two integrals separately and show that they converge to an

entire function. Consider the first summand,
∫∞
t=1 f(it/

√
N)ts dtt . Observe that as t→∞,

f(it/
√
N) is of order e−2πt/

√
N . To show that the integral from 1 to ∞ converges to an

entire function we will use the following theorem from complex analysis.

Theorem 4.3.5. Let F (s, z) be defined for (s, z) ∈ Ω× [0, 1] where Ω is an open set in C.
Suppose F satisfies the following properties.

1. It is holomorphic in s for each z ∈ [0, 1].

2. It is continuous on Ω× [0, 1].

Then the function f on Ω given by the following integral is holomorphic.

f(s) =

∫ 1

0
F (s, z)ds

Coming back to our integral, we take fn(s) =
∫ n

1 f(it/
√
N)ts dtt . This clearly satisfies the

properties in the Theorem 4.3.5 and so for each n ∈ Z+, the function fn is holomorphic.

It remains to show that the sequence {fn}n converge uniformly on compact subsets of

Ω. Let K be a compact subset of Ω such that the Re(s) is bounded above by some

positive constant σ0. Then∣∣∣∣ ∫ ∞
1

f(it/
√
N)ts

dt

t
−
∫ ∞

1
f(it/

√
N)ts

dt

t

∣∣∣∣ ≤ ∫ ∞
n
|f(it/

√
N)ts|dt

t

≤
∫ ∞
n

Ce−2πt/
√
N tσ0

dt

t

The last expression is independent of s and is finite. It follows that the integral∫∞
1 f(it/

√
N)ts dtt defines a holomorphic function.

For the second integral, first observe that

WNf(i/
√
Nt) = tkf

(
it√
N

)
(4.3.6)
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Now write
∫ 1
t=0 f(it/

√
N)ts dtt =

∫ 1
t=0(WNf)(i/

√
Nt)ts−k dtt . Changing the variable by

substituting t = 1/x, we see that,∫ 1

t=0
f(it/

√
N)ts

dt

t
= −

∫ 1

t=∞
(WNf)(ix/

√
N)xk−s

dx

x

=

∫ ∞
t=1
±f(ix/

√
N)xk−s

dx

x

By the same argument as done for the first integral we see that this also defines an

analytic function on the whole s-plane. This shows that ΛN (s) extends to an entire

function to the s-plane. Combining the two integrals, what we have is the following:

ΛN (s) =

∫ ∞
t=1

(
f(it/

√
N)ts ± f(it/

√
N)tk−s

)
dt

t
= ±ΛN (k − s).

Observe that the crucial step in the proof was to use the result in (4.3.6) which allowed us

to show that the integral from 0 to 1 from converges. For this purpose it was important to

work with the WN operator. In particular, if we were to work with level 1 modular forms,

things would have been much simpler as the WN operator reduces to just one of the

generators of SL2(Z). That is, if f is a cusp form of level 1 then, f(z) = (−1)kz−kf(1/z).

For z = iy with y > 0, the equation is equivalent to saying that,

f(iy) = iky−kf(i/y) (4.3.7)

The same argument as done in the previous proof would result in the following functional

equation for L-function associated to cusp forms of level 1:

Λ(s, f) = ikΛ(k − s, f) (4.3.8)

Assume f ∈ Sk(N,ψ) where ψ is a Dirichlet character mod N. We work in a much

more general setting now to find out the functional equation for L-functions “twisted”

by a primitive Dirichlet character. Let f ∈ Sk(N,ψ). Consider the function, g = wNf.

We know that if wN = [δ]k, then the matrix δ normalizes Γ1(N). Moreover, if γ =(
a b

cN d

)
∈ Γ0(N) then, δγδ−1 ∈ Γ0(N) with lower right entry a. Also, observe that

since ad− bNc = 1, we have ψ(a) = ψ(d). This helps us conclude that g[γ]k = f [δγ]k =

f [δγδ−1]k[δ]k = ψ(a)f [δ] = ψ(d)g. This implies that g ∈ Sk(N,ψ).
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Definition 4.3.9. (Dirichlet L-function) Suppose χ is a Dirichlet character mod N. Then

the expression for Dirichlet L-functions is given by:

L(s, χ) =
∞∑
n=1

χ(n)n−s

Remark 4.3.10. For notational convenience, we drop the notation wN = [δ]k, and refer

to the weight k operator as simply [wN ]k.

Theorem 4.3.11. Suppose f ∈ Sk(N,ψ). and g = f [wN ]k ∈ Sk(N,ψ). Let χ be a primitive

character modulo D. Assume D and N are co-prime. Let A(n) and B(n) be the Fourier

coefficients of f and g. Suppose the “twisted” L-functions for the primitive character χ

associated to f and g and their respective Mellin transforms are given as follows.

L(s, f, χ) =

∞∑
n=1

χ(n)A(n)n−s ; L(s, g, χ) =

∞∑
n=1

χ(n)B(n)n−s

Λ(s, f, χ) = (2π)−sΓ(s)L(s, f, χ) ; Λ(s, g, χ) = (2π)−sΓ(s)L(s, g, χ)

Then,

Λ(s, f, χ) = ikχ(N)ψ(D)
τ(χ)2

D
(D2N)−s+k/2Λ(k − s, g, χ) (4.3.12)

Proof. We set the following notations first:

fχ(τ) =
∞∑
n=1

χ(n)A(n)qn ; gχ(τ) =

∞∑
n=1

χ(n)B(n)qn.

We use the formula in (3.2.14) to write:

χ(n)qn =
χ(−1)(τ(χ)

D

∑
m mod D
(m,D)=1

χ(m)e2πi(m/D+z) (4.3.13)

Multiplying (4.3.13) by A(n) and taking the sum over n from one to infinity we get,

fχ(τ) =
χ(−1)(τ(χ)

D

∑
m mod D
(m,D)=1

χ(m)

∞∑
n=1

A(n)e2πi( zD+m
D

)

=
χ(−1)τ(χ)

D

∑
m mod D
(m,D)=1

χ(m)f

[(
D m

0 D

)]
k
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This, and Lemma 3.3.2 helps us to conclude that fχ is a cusp form as well with respect

to some congruence subgroup. Keeping in mind that f = g[wN ]k Compute that,

fχ

[(
0 −1

D2N 0

)]
k

= fχ

[(
0 −1/ND

D 0

)]
k

=
χ(−1)τ(χ)

D

∑
m mod D
(m,D)=1

χ(m)g

[(
0 −1

D2N 0

)(
D m

0 D

)(
0 −1/ND

D 0

)]
k

=
χ(−1)τ(χ)

D

∑
m mod D
(m,D)=1

χ(m)g

[(
D2 0

−NmD 1

)]
k

=
χ(−1)τ(χ)

D

∑
m mod D
(m,D)=1

χ(m)g

[(
D −r
−Nm s

)(
D r

0 D

)]
k

In the last equality, for each m, the integers r and s chosen such that Ds − rNm = 1.

Now, observe that, χ(m) = χ(−N)χ(r). This helps us to write the last expression as:

fχ

[(
0 −1

D2N 0

)]
k

=
χ(N)τ(χ)

D

∑
r mod D
(r,D)=1

χ(r)g

[(
D −r
−Nm s

)(
D r

0 D

)]
k

(4.3.14)

Since g ∈ Sk(N,ψ), we have,

g

[(
D −r
−Nm s

)]
k

= ψ(s)g = ψ(D)g (4.3.15)

By following a similar argument with gχ instead of fχ we land up with the expression:

gχ =
χ(−1)τ(χ)

D

∑
m mod D
(r,D)=1

χ(r)g

[(
D r

0 D

)]
k

(4.3.16)

Combining the observations in (4.4.13) and (4.4.12), with the results in equation (3.2.13)

and Proposition 3.2.11, we further write the expression in (4.4.11) as

χ(N)τ(χ)

D

∑
r mod D
(r,D)=1

χ(r)g

[(
D −r
−Nm s

)(
D r

0 D

)]
k

=
χ(N)τ(χ)

D

∑
r mod D
(r,D)=1

χ(r)ψ(D)g

[(
D r

0 D

)]
k

=
χ(N)ψ(D)τ(χ)2

D
gχ
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This helps us to write,

fχ =
χ(N)ψ(D)τ(χ)2

D
gχ

[(
0 −1

D2N 0

)−1 ]
k

(4.3.17)

Evaluating both the sides at τ = iy, we get,

fχ(iy) =
χ(N)ψ(D)τ(χ)2

D
iky−kN−k/2D−kgχ

(
i

D2Ny

)
(4.3.18)

Now running the same argument as in the proof of 4.3.3, we get the relations between

the functional equations:

Λ(s, f, χ) = ikχ(N)ψ(D)
τ(χ)2

D
(D2N)−s+k/2Λ(k − s, g, χ) (4.3.19)

4.4 Converse Theorem of Weil

In this section, we aim to establish the converse of the theorems we proved in the

previous section regarding the analytic continuation of the L-function associated to cusp

forms. More precisely, we answer the following question: Given a sequence of Fourier

coefficients such that the L-function associated to the coefficients can be extended to

the whole complex plane and satisfies the desired functional equation, can we say that

the Fourier coefficients are coming from a modular form?

It turns out that this is indeed true with some additional assumptions. The converse

theorem for level 1 cusp forms is pretty straightforward and we prove it so as to lay out

the essential idea. We will go backwards in the proof of Theorem 4.3.3 to arrive at the

equation (4.3.7) using the Mellin inversion formula.

Theorem 4.4.1. Let A(n) > 0 be a sequence of complex numbers such that |A(n)| =

O(nK) for some sufficiently large real number K. Let L(s) be defined by the series∑∞
n=1A(n)n−s convergent for sufficiently large s. Assume that Λ(s) has analytic con-

tinuation for all s, is bounded in every vertical strip strip σ1 ≤ Re(s) ≤ σ2, and satisfies

the functional equation given in 4.3.3. Then the function f(τ) =
∑∞

n=1A(n)qn is an

element of Sk(Γ(1)).

.
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Proof. Observe that since |A(n)| are of polynomial orders for all n ≥ 1, the Fourier

series defining the function f(τ) converges. Also, this implies that for sufficiently large

s, the L series converges. Clearly the function f(z) is periodic and therefore it satisfies

the modularity condition for the matrix T =

(
1 0

1 1

)
. We next show that f satisfies

the modularity condition for the matrix S =

(
0 −1

1 0

)
. Consequently, by Proposition

1.1, it will be cusp form of level 1. In order to establish the above statement, we need

to check that for all τ ∈ H,

f(τ)− τ−kf(−1/τ) = 0. (4.4.2)

It is enough to show that f(iy) = iky−kf(i/y) for positive real values of y, because the

function on the left hand side of the equation (4.4.2) will then be a holomorphic function

vanishing on the positive imaginary axis. By the Identity Theorem in complex analysis,

the zeroes of any non-zero function cannot have an accumulation point in the interior

of the domain and so the function f(τ) − τ−kf(−1/τ) must vanish at all of the upper

half plane. We will obtain the desired result using the Mellin inversion formula. From

Theorem 4.2.6, we know that, ∫ ∞
0

f(iy)ys
dy

y
= Λ(s, f)

For sufficiently large σ where the above equation holds, we can use the Mellin inversion

formula as discussed in section 4.1.3 to write,

f(iy) =
1

2πi

∫ σ+i∞

σ−i∞
Λ(s, f)y−sds =

ik

2πi

∫ σ+i∞

σ−i∞
Λ(k − s, f)y−sds (4.4.3)

To the get the last equality, we have used the functional equation. We make a change

of variable from k − s to s to get that:

f(iy) =
iky−k

2πi

∫ k−σ+i∞

k−σ−i∞
Λ(s, f)y−sds (4.4.4)

We would like to shift the line of integral back to the original line. In order to apply

Cauchy’s Theorem, we first estimate the integrand. Notice that for a sufficiently large

σ1 > 0 where the L-function is bounded, using the Stirling approximation in (4.1.1),

we get a constant C such that |Λ(s, f)y−s| ≤ C|t|σ−1/2e−|t|/2. This goes to 0 rapidly

as t goes to infinity at both ends. In order to use the Phragmén Lindelöf principle,

we further compare e|t|/2 ≥ C1t
M for some positive constants C1 and M such that

M > σ1 − 1/2. This implies that |Λ(s, f)y−s| ≤ C2|t|σ1−1/2−M . Similarly for sufficiently

negative σ2 < 0, we use the functional equation to relate Λ(σ2 + it, f) to Λ(k−σ2− it, f)
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so that the L function makes sense for Re(s) = k − σ2. Running the same argument as

above, we see that |Λ(σ2 + it)y−s| = O|t|k−σ2−1/2−M ′ for some constant M ′ such that

k−σ2−1/2−M ′ < 0. So, even at the other end for sufficiently negative σ, the Λ function

decays to 0 as t goes to infinity. By assumption Λ(s, f) is bounded in all vertical strips

and so Λ(s, f) is trivially of order e|s|. By the Phragmén-Lindelöf principal stated in

4.1.5, the function Λ(s, f) is of order |s|A uniformly in the strip σ ∈ [σ1, σ2] for some

constant A < 0. This allows us to conclude that Λ(s, f) decays uniformly to 0 as t goes

to infinity for σ in any arbitrary compact set.

Now we integrate the function |Λ(s, f)|y−k over any rectangular contour where the

vertical lines of the contour are the lines (say) σ+ it and k−σ+ it. Uniform convergence

of the integrand to 0 as t → ∞ will make the integral along the horizontal lines go to

zero. By Cauchy’s Theorem we can shift the line of integral in (4.4.5) to conclude that,

f(iy) =
iky−k

2πi

∫ σ+i∞

σ−i∞
Λ(s, f)y−sds = iky−kf(i/y) (4.4.5)

Since we explicitly knew the generators of SL2(Z), it made our task easier to go back-

wards. However, while working with modular forms of level N, the fact that we don’t

know the generators of the subgroup has to accounted for by assuming sufficiently many

functional equations for L-functions twisted by a primitive character.

Theorem 4.4.6. (Weil) Suppose N is a positive integer and ψ is a Dirichlet character

modulo N, not assumed to be primitive. Suppose that A(n) and B(n) are sequences of

complex numbers such that |A(n)| and |B(n)| are of order nK for some sufficiently large

real number K. Let D be relatively prime to N and χ be a primitive Dirichlet character

modulo D. Let L1(s, χ) =
∑

n>0 χ(n)A(n)n−s and let L2(s, χ) =
∑

n>0 χ(n)B(n)n−s.

Write Λ1(s, χ) = (2π)−sΓ(s)L1(s, χ) and Λ2(s, χ) = (2π)−sΓ(s)L2(s, χ). Let S be the set

of finitely primes including those dividing N. Assume that whenever the conductor D

of χ is either 1 or a prime, then D /∈ S. Furthermore, assume that Λ1(s, χ) and Λ1(s, χ)

have analytic continuation to all of s, are bounded in every vertical strip σ1 ≤ Re(s) ≤ σ2

and satisfy the functional equation:

Λ1(s, χ) = ikχ(N)ψ(D)
τ(χ)2

D
(D2N)−s+k/2Λ2(k − s, χ) (4.4.7)

Then f(τ) =
∑

nA(n)qn is a modular form in Sk(N,ψ).

Remark 4.4.8. Observe that the matrix

(
1 1

0 1

)
lies in the group Γ1(N). This implies

that modular forms with respect to Γ1(N) have period 1 and so it makes sense to define

the Fourier series of f in Theorem 4.4.6 with q = e2πit.
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We begin by remarking that the since f and g are defined as Fourier series, they are

clearly holomorphic. The growth conditions on the coefficients also ensures that the

series converges. Moreover, by the result mentioned in Proposition 1.4.10, it also takes

care of the fact that f is holomorphic at the cusps. It only remains to show that f

satisfies the modularity condition and lies in the ψ-space ofMk(Γ1(N)). Before moving

on to proving this, we need a small result. Suppose γ =

(
a b

c d

)
. Then γ has two fixed

points if and only if |tr(γ)| = |a + d| < 2. This can be shown along similar lines as in

the beginning of section 2.3.0.1. We call such matrices as elliptic.

Lemma 4.4.9. Let f be a holomorphic function on H and let M ∈ SL2(R) be elliptic of

infinite order such that f [M ]k = f. Then f = 0.

Proof. Let a ∈ H be the fixed point of the elliptic element M. Consider the transfor-

mation C =

(
1 −a
1 −a

)
. As seen in section 2.4, this takes a to 0 and a to ∞ so that

CMC−1 fixes 0 and ∞. This implies that CMC−1 =

(
α 0

0 α−1

)
. Since M is of infinite

order, α is not a root of unity. Let g = f [C]k. Observe that g[CMC−1]k = g and so

g(z) = αkg(α2z). Since f is holomorphic on H, it has a power series expansion about

a. The transformation C takes a to 0 and consequently g has a power series expansion

about 0. It follows that:

g(z) =

∞∑
n=0

bnz
n =

∞∑
n=0

α2n+kbnz
n.

This implies that bn = α2nkbn. Now, α2n+k 6= 1 for any n, k. It follows that bn = 0 for

all n ∈ Z+. Finally, we get g = 0 and hence f = g[C−1]k = 0.

Proof of the Theorem 4.4.6. We set some notation first. Let

fχ(τ) =
∞∑
n=1

A(n)χ(n)qn ; gχ(τ) =
∞∑
n=1

B(n)χ(n)qn

where χ is a primitive Dirichlet character mod D and D 6= 1 or D /∈ S. The growth

conditions on A(n) and and B(n) ensure that the series converge. Our first task is go

backwards in the proof of Theorem 4.3.11 from (4.3.19) to (4.4.10) using the Mellin

inversion formula. Again, by the Identity Theorem from complex analysis, it is enough

to show that the equation in (4.3.18) holds for fχ and gχ given above.

Assume that either D = 1 or D is a prime not in S. For sufficiently large σ, we use

the Mellin inversion formula as follows. Since Λ1(s, χ) has analytic continuation to the



Chapter 4 132

whole s plane and is given by the expression∫ ∞
0

fχ(iy)ys
dy

y
= Λ1(s, χ)

we can use the Mellin inversion formula and write:

fχ(iy) =
1

2πi

∫ σ+i∞

σ−i∞
Λ1(s, χ)y−sds

The functional equation in (4.4.7) holds for prime D /∈ S or when D = 1. We use it to

to write the above expression as:

fχ(iy) =
ikχ(N)ψ(D)τ(χ)2

2πiD

∫ σ+i∞

σ−i∞
(D2N)−s+k/2Λ2(k − s, χ)y−sds

Arguing the same way to estimate the integrand as done in the previous proof, the

Phragmén-Lindelöf principal helps us to shift the line of integral as follows:

fχ(iy) =
ikχ(N)ψ(D)τ(χ)2

2πiD

∫ (k−σ)+i∞

(k−σ)−i∞
(D2N)s−k/2Λ2(s, χ)ys−kds

=
ikχ(N)ψ(D)τ(χ)2

2πiD

∫ σ+i∞

σ−i∞
(D2N)s−k/2Λ2(s, χ)ys−kds

This implies that,

fχ(iy) =
χ(N)ψ(D)τ(χ)2

D
ik(D2N)−k/2y−kgχ

(
i

D2Ny

)
This establishes (4.4.10). Recall that in the proof of Theorem 4.3.11, in order to establish

the expression in (4.4.11), we only require the fact that f [wN ]k = g and the rest is all

manipulative computation. But this is achieved exactly when we put D = 1 in (4.4.10).

Even the relation in (4.3.19) is true regardless of the fact that f and g are modular

forms. In summary, what we have in hand are the following three expressions.

fχ

[(
0 −1

D2N 0

)]
k

=
χ(N)ψ(D)τ(χ)2

D
gχ (4.4.10)

fχ

[(
0 −1

D2N 0

)]
k

=
χ(N)τ(χ)

D

∑
r mod D
(r,D)=1

χ(r)g

[(
D −r
−Nm s

)(
D r

0 D

)]
k

(4.4.11)

gχ =
χ(−1)τ(χ)

D

∑
m mod D
(r,D)=1

χ(r)g

[(
D r

0 D

)]
k

(4.4.12)
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From these three equations, we would now like to establish the expression in (4.4.13),

that is,

g

[(
D −r
−Nm s

)]
k

= ψ(s)g = ψ(D)g (4.4.13)

where Ds− rNm = 1. This is a non-trivial task. Let D /∈ S be a prime.

Claim 4.4.14. If c(r) is any function on Z/DZ such that
∑

r mod D

c(r) = 0, then,

∑
r mod D
(r,D)=1

c(r)g

[(
D −r
−Nm s

)(
1 r/D

0 1

)]
k

=
∑

r mod D
(r,D)=1

c(r)ψ(D)g

[(
1 r/D

0 1

)]
k

(4.4.15)

Here, for a given r we choose m and s, both dependent on r, so that Ds−Nmr = 1.

Proof of claim 4.4.14. Plugging the expression in (4.4.12) for gχ in (4.4.10), we get

fχ

[(
0 −1

D2N 0

)]
k

=
χ(N)ψ(D)τ(χ)2χ(−1)τ(χ)

D2

∑
m mod D
(r,D)=1

χ(r)g

[(
D r

0 D

)]
k

Equating the above expression on the right with the expression in (4.4.13) and simpli-

fying using the result in 3.2.13, we arrive at the following equality:

∑
r mod D
(r,D)=1

χ(r)g

[(
D −r
−Nm s

)(
1 r/D

0 1

)]
k

=
∑

r mod D
(r,D)=1

χ(r)ψ(D)g

[(
1 r/D

0 1

)]
k

We note that the Dirichlet characters mod D form a D − 1 dimensional space. When

we exclude the identity operator, the rest span a D− 2 dimensional space such that the

functions in the space satisfy the property that sum of the evaluation on residue classes

mod D is zero. To conclude the above result for any function c(r) in claim 4.4.14, we

use the fact that space of such functions form a D− 2 dimensional vector space as well.

Therefore, the space is spanned by the Dirichlet characters modulo D and the result

now follows for any arbitrary function with the desired properties.

Now that (4.4.15) is true, we express it in a slightly different way. We first extend the

right action of GL2(Q)+ on holomorphic functions on H via the weight k operator to a

right action of the group algebra C[GL2(Q)+]. More precisely, if α ∈ C[GL2(Q)+] is an

element such that α = α1γ1 + · · ·+ αnγn, with γi ∈ GL2(Q)+, then define the action of

α on f naturally as

f [α]k =
∑
i

αif [γi]k
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Let Ω denote the annihilator of the element g =
∑

n≥1B(n)qn in C[GL2(Q)+]. This

whole set up allows us to express the equation in (4.4.15) as:

∑
r mod D
(r,D)=1

c(r)

(
D −r
−Nm s

)(
1 r/D

0 1

)
≡

∑
r mod D
(r,D)=1

c(r)ψ(D)

(
1 r/D

0 1

)
mod Ω

In particular, when D is an odd prime, then for a fixed r, we take c to be the function

that is 1 on the residue classes r and −1 on the residue classes −r and zero elsewhere.

Rewriting the expression with the particular c(r) as described above we get,

((
D −r
−Nm s

)
− ψ(D)

)(
1 r/D

0 1

)
≡
((

D r

Nm s

)
− ψ(D)

)(
1 −r/D
0 1

)
mod Ω

(4.4.16)

Let D and s be distinct odd primes not in S such that Ds ≡ 1 mod N.

Choose r and m such that Ds − Nmr = 1. Then replacing s with D and D with s in

(4.4.16), we land up with the expression:

((
s −r

−Nm D

)
− ψ(s)

)(
1 r/s

0 1

)
≡
((

s r

Nm D

)
− ψ(s)

)(
1 −r/s
0 1

)
mod Ω

(4.4.17)

Multiplying (4.4.16) with the matrix

(
1 r/s

0 1

)
we get:

((
D −r
−Nm s

)
− ψ(D)

)(
1 2r/D

0 1

)
≡
((

D r

Nm s

)
− ψ(D)

)
mod Ω (4.4.18)

Further, we multiply the expression in (4.4.17) with

−ψ(D)

(
1 r/D

0 1

)(
D −r
−Nm s

)(
1 2r/D

0 1

)

Regroup the matrices using the fact that ψ(sD) = 1 to finally get that

((
D r

Nm s

)
− ψ(D)

)(
s −r

−Nm D

)(
1 2r/s

0 1

)(
D −r
−Nm s

)(
1 2r/s

0 1

)

≡
((

D −r
−Nm s

)
− ψ(D)

)(
1 2r/D

0 1

)
mod Ω

(4.4.19)
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We write the big factor in the left hand side of the expression (4.4.16):(
s −r

−Nm D

)(
1 2r/s

0 1

)(
D −r −Nm s

)(1 2r/s

0 1

)
= M

Then equations in (4.4.18) and (4.4.19) combine to show that,

((
D r

Nm s

)
− ψ(D)

)
(1−M) ∈ Ω (4.4.20)

Multiplying the matrices which define M we compute that,

M =

(
1 2r/D

−2Nm/s −3 + 4
DS

)

Let g1 =

(
g

[(
D r

Nm s

)]
k

− ψ(D)g

)
Since g is a holomorphic function on H, g1 is

holomorphic on H. Because of (4.4.20), we have that g1 − g1[M ]k = 0. This implies

that g1 = g1[M ]k. Now notice that |tr(M)| equals |1 − 3 + 4
Ds | < 2 since D and s are

odd primes. This gives us that the matrix M is elliptic. Also, notice that the trace

of M is a rational number which is not an integer and so not an algebraic integer. It

follows that the eigenvalues are not roots of unity and so M has infinite order. We can

now use Lemma 4.4.9 proved in the beginning to conclude that g1 = 0. So far whatever

computation we did proves that, for D and s odd primes not in S,

g

[(
D r

Nm s

)]
k

= ψ(D)g ; Ds− rNm = 1. (4.4.21)

In general, let

(
a b

cN d

)
be any matrix in Γ0(N). Then ad − bcN = 1 mod N and

so (a, cN) = (d, cN) = 1. We now use Dirichlet’s Theorem on primes in an arithmetic

progression which states that for any integer a′ such that (a′, N ′) = 1, there exists

infinitely many primes p such that p ≡ a′ mod N ′. Dirichlet’s Theorem allows us to find

primes D and s and integers u and v such that D = a− uNc and s = d− vNc. Observe

that sD ≡ 1 mod N and so the result in (4.4.21) holds. Now compute that,

g

[(
1 u

0 1

)(
D r

Nc s

)(
1 v

0 1

)]
k

=

(
a av + ud− uvNc+ r

Nc d

)

We would like to put r = b+ uvNc− av − ud such that the upper right entry equals b.

One can also easily check that with det

(
D r

Nc s

)
= 1.
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Using the fact that f and g are periodic since they are defined by a Fourier series and

the result in (4.4.21) for D and s odd primes, we finally conclude that

g

[(
1 u

0 1

)(
D r

Nc s

)(
1 v

0 1

)]
k

= ψ(D) = ψ(a)g = ψ(d)g = g

[(
a b

cN d

)]
k

In particular when a ≡ d ≡ 1 mod N, we see that g ∈ Sk(Γ1(N)) and in fact the above

result helps us conclude that g ∈ Sk(N,ψ). Moreover the relation g[w−1
N ]k = f helps

us conclude that f ∈ Sk(N,ψ). This completes the proof of the Converse Theorem of

Weil.



Appendix A

A quick introduction to the

analytic theory of elliptic curves

A.1 Lattices and the complex torus

In this Appendix we give a brief introduction to complex torus, Weierstrass ℘ function

and elliptic curves. For most of the proofs, a brief sketch is provided. For a detailed

study, one can refer to [3].

Definition A.1.1 (Lattice). A lattice in C is the set Λ = ω1Z
⊕
ω2Z, where ω1 and ω2

belong to C and are linearly independent over R.

The complex numbers ω1 and ω2 form a “basis” of the lattice Λ. Since we are concerned

with the upper half plane, by convention we set ω1/ω2 ∈ H.

Definition A.1.2 (Complex torus). Let Λ be the lattice generated by ω1 and ω2. The

complex torus is the set C/Λ = {z + Λ | z ∈ C}.

When we visualize this set in C, we get a parallelogram with opposite sides identified

and hence the name. The next lemma helps us to characterize the basis of a lattice.

Lemma A.1.3. Let Λ = ω1Z⊕ω2Z and Λ′ = ω′1Z⊕ω′2Z be two lattices such that ω1/ω2

and ω′1/ω
′
2 belong to H. Then Λ′ = Λ if and only if(

ω′1

ω′2

)
= γ

(
ω1

ω2

)
for some γ =

(
a b

c d

)
∈ SL2(Z).

137
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Proof. Suppose that

(
ω′1

ω′2

)
= γ

(
ω1

ω2

)
for some γ =

(
a b

c d

)
∈ SL2(Z). Then clearly

Λ′ ⊆ Λ. For the other way round containment we multiply the equality with the matrix

γ−1.

Conversely, suppose Λ = Λ′, then

(
ω′1

ω′2

)
= A

(
ω1

ω2

)
and

(
ω1

ω2

)
= B

(
ω′1

ω′2

)
. This implies

that AB = I. Moreover, since ω1/ω2 and ω′1/ω
′
2 belong to H, the determinant of A is 1

and so A ∈ SL2(Z).

We know that any map between compact Riemann surfaces is either constant or a

surjection. We next classify all non-constant maps between the complex tori.

Proposition A.1.4. Suppose ϕ : C/Λ→ C/Λ′ is a holomorphic map between the complex

tori. Then there exists complex numbers a and b with aΛ ⊆ Λ′ such that ϕ(z + Λ) =

az + b+ Λ′. The map is invertible if and only if aΛ = Λ′.

Proof. (Sketch) We recall that C is the universal covering for the tori C/Λ and C/Λ′.
Suppose that p and p′ are the corresponding covering maps. We can lift the map ϕ to

a map ϕ̃ between the coverings such that ϕ ◦ p = p′ ◦ ϕ̃. This implies that for a fixed

ω ∈ Λ, ϕ̃(z + ω) = ϕ̃(z) + ω′z with ω′z ∈ Λ′. Consider the function z 7→ ϕ̃(z + ω)− ϕ̃(z).

This is a continuous map from C to a discrete subgroup Λ of C. This implies that the

map is constant and so ω′z does not depend on z. This gives us that for all z ∈ C,
ϕ̃(z + ω) = ϕ̃(z) + ω′ for some ω′ in Λ′. Differentiating with respect to z we arrive at

the following result:

ϕ̃′(z + ω) = ϕ̃′(z)

This shows that ϕ̃′ is doubly periodic with respect to Λ and hence a well defined function

from C/Λ to C. It follows that ϕ̃′ is an entire and a bounded function and so constant.

This characterizes ϕ̃ showing that there exists constants a and b such that ϕ̃(z) = az+ b

which helps us conclude the result for ϕ as well. From this it is easy to check that

aΛ ⊆ Λ′. If aΛ 6= Λ′ such that aΛ ( Λ′, then there exists some z ∈ Λ′ such that z/a /∈ Λ.

Consequently the map ϕ will not be an injection. Other way round, one can check that

if aΛ = Λ′ then the map z + Λ′ 7→ (z − b)/a+ Λ inverts ϕ.

Corollary A.1.5. Suppose ϕ : C/Λ→ C/Λ′ is a holomorphic map between the complex

tori such that ϕ(z + Λ) = az + b + Λ′ with aΛ ⊆ Λ′. Then the map ϕ is a group

homomorphism if and only if b ∈ Λ′ and so ϕ(z + Ω) = az + Λ′.
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In particular, the above corollary implies that there exists a non zero holomorphic group

isomorphism between the complex tori C/Λ and C/Λ′ if and only if there exists m ∈ C
such that mΛ = Λ′.

Lemma A.1.6. Every complex torus is isomorphic to a complex torus whose lattice is

generated by 1 and a complex number τ ∈ H.

Proof. Let Λ = ω1Z + ω2Z be an arbitrary lattice with ω1/ω2 ∈ H. Let τ = ω1/ω2 and

Λτ = τZ + Z. We have that (1/ω2)Λ = Λτ . By Corollary A.1.5, the map ϕτ : C/Λ →
C/Λτ where z + Λ maps to (1/ω2)z + Λτ is an isomorphism.

Remark A.1.7. The complex number τ is not unique! If τ ′ is another such complex

number, then τ ′ = γτ for some γ ∈ SL2(Z) by Lemma A.1.3.

A.2 The Weierstrass ℘ function

We know that doubly periodic functions with respect to a lattice can be considered to be

functions on the torus C/Λ. Since the image of such functions is bounded, all holomorphic

double periodic functions are constant. The first simple example of a doubly periodic

function is given by the following expression:

∑
ω∈Λ

(z − ω)−N ; N ≥ 3

For N = 2, the above series does not converge absolutely. The most famous example is

obtained by adding a few “error terms” to the series.

℘(z) =
1

z2
+
∑
ω∈Λ
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
for z ∈ C, z 6= ω.

One can check that the series converges absolutely and uniformly on compact subsets

of C/Λ. This is the Weierstrass ℘ function which will help us relate the complex tori to

elliptic curves.

Replacing z with −z, it is easy to see that ℘(z) is an even function.

Proposition A.2.1. The Wierstrass ℘ function is periodic.

Proof. We differentiate term by term to see that ℘′ is periodic with respect to Λ.

℘′(z) =
∑
ω∈Λ
ω 6=0

2

(z − ω)3
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This implies that for each z ∈ ω, the funtion ℘′(z + ω) − ℘′(z) = 0 for all z ∈ C. It

follows that ℘(ω + z)− ℘(z) is a constant function, say cω. Substituting z = −ω/2 and

using the fact that ℘ is an even function, the result follows.

Remark A.2.2. By construction the Weierstrass ℘ function and its derivative have poles

of order 2 and 3 respectively precisely at the points of the lattice.

A.2.1 Eisenstein series for a lattice

Let Λ be a lattice. The Eisenstein series for Λ denoted as Gk(Λ) is given by the following

expression:

Gk(Λ) =
∑
ω∈Λ
ω 6=0

1

ωk

By Lemma A.1.6, the Eisenstein series for any lattice reduces to the first examples of

modular forms we saw.

Gk(Λτ ) =
∑
m,n∈Z

(m,n)6=(0,0)

1

(mτ + n)k

Very surprisingly, they come up as coefficients in the Laurant series expansion of the ℘

function.

Proposition A.2.3. The Laurant series expansion of the Weierstrass ℘ function is given

by the series

℘(z) =
1

z2
+
∞∑
n=2

(n+ 1)Gn+1(Λ)zn

in the neighborhood 0 < |z| < {inf |ω| | ω ∈ Λ}.

Proof. This is a direct calculation. We write

1

(z − ω)2
− 1

ω2
=

1

ω2

( ∞∑
n=1

(n+ 1)(z/ω)n
)

This allows us to express the Weierstrass ℘ function as:

℘(z) =
1

z2
+
∑
ω∈Λ
ω 6=0

1

ω2

( ∞∑
n=1

(n+ 1)(z/ω)n
)

The series is absolutely convergent and so can change the sums to get the desired ex-

pression.
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Proposition A.2.4. The functions ℘ and ℘′ satisfy the differential equation

(℘′(z))2 = 4(℘(z))3 − g2(Λ)℘(z)− g3(Λ)

where g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

Proof. From Proposition A.2.3, we conclude that

(℘′(z))2 − 4(℘(z))3 − g2(Λ)℘(z)− g3(Λ) = z2ϕ(z)

where ϕ(z) defines an analytic function. Write z2ϕ(z) = f(z). Now the left hand side is

Λ – periodic and therefore, so is f(z). This implies that f(z) is bounded and so constant.

Observing the fact that f(0) = 0, the result now follows.

The differential equation in Proposition A.2.4 gives us first hints of the Weierstrass ℘

function being associated to a cubic equation.

Definition A.2.5 (Elliptic curves). Equations of the form y2 = 4x3−a2x−a3 ; a3
2−27a2

3 6=
0 are called elliptic curves.

The Weierstrass ℘ function satisfies the elliptic curve with coefficients as the Eisenstein

series.

Proposition A.2.6. Let Λ = ω1Z + ω2Z and ω3 = ω1 + ω2. Then the cubic equation

satisfied by ℘ and ℘′ is factorized as:

y2 = 4(x− e1)(x− e2)(x− e3) ; ei = ℘(ωi/2) for i = 1, 2, 3.

Moreover, the right hand side has distinct roots.

Proof. (Sketch) Since ℘′ is an odd function and ωi/2 + Λ = −ωi/2 + Λ, we see that ℘′

takes zero at these points. For a doubly periodic function, the number of zeroes equals

the number of poles counting multiplicity and so these are precisely the zeroes of ℘′.

From the relation satisfied by ℘ and ℘′ in Proposition A.2.4, we see that the equation

factors as mentioned above. Moreover the three roots are distinct since ℘ has degree 2

and takes each value twice counting multiplicity.

Corollary A.2.7. The ∆ function given by the expression

∆(τ) = (g2(τ))3 − 27(g3(τ))2

is non vanishing at all values of H.
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Proof. Change the basis of the lattice Λ in Proposition A.2.6 and write it as Λτ for

any τ ∈ H. Observe that the ∆ function is in fact the discriminant of the polynomial

pτ (x) = 4x3 − g2(τ)x − g3(τ). By Proposition A.2.6, this has distinct roots and so the

discriminant is non zero. This is true for any τ ∈ H.

Remark A.2.8. Observe that the delta function being non zero for all τ ∈ H for the

particular case of the elliptic curve with Eisenstein series as its coefficients, is exactly

the condition on the coefficients in definition A.2.5.

A.3 Elliptic curves as complex tori

Let Λ be a lattice and ℘Λ be the corresponding Weierstrass function. Consider the map

z 7→ (℘Λ(z), ℘′Λ(z)). Via this map, Proposition A.2.4 helps us conclude that every point

z ∈ C/Λ determines a point on the graph of the curve p(x) = 4x3 − g2(Λ)x − g3(Λ)

representing an elliptic curve E. The function ℘(z) takes any value twice (counting

multiplicity) and so the equation ℘(z) = x has two solutions, (say) ±z0. Since ℘′ is odd,

the point (℘Λ(z0), ℘′Λ(z0)) 6= (℘Λ(−z0), ℘′Λ(−z0)) in E whenever z0 is not a zero of ℘′Λ.

To take care of the values for which ℘′Λ(z) is zero, observe that ei = ℘(wi/2 + Λ) for

i = 1, 2, 3 is a double value for ℘Λ, that is, it is of multiplicity 2. We can further extend

the map to all of C by mapping the lattice points to a suitable point “infinity” of E. In

sum, we arrive the following result:

Proposition A.3.1. For any lattice Λ, the Weierstrass ℘ function and its derivative give

a bijection

(℘(z), ℘′(z)) : C/Λ→ E

where E is the elliptic curve y2 = 4x3 − g2(Λ)x− g3(Λ).

Not only does every complex number C/Λ via the Weierstrass ℘ function lead to an

elliptic curve, but even the converse holds.

Proposition A.3.2. Suppose E is an elliptic given in definition A.2.5, there exists a lattice

Λ such that a2 = g2(Λ) and a3 = g3(Λ).

We give a brief sketch of the proof. We use the following fact about the j function

defined in section 1.5: the j given by j(τ) = 1728 (g2(τ))3

∆(τ) surjects from H onto C.

Proof. (Sketch) We handle the case when a2 and a3 are not equal to zero first. There

exists some τ ∈ H such that j(τ) = 1728a3
2/(a

3
2 − 27a2

3). This implies that

(g2(τ))3

g3
2(τ)− 27g2

3(τ)
=

a3
2

a3
2 − 27a2

3
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After taking reciprocals and cancelling terms we see that,

a3
2

g2(τ)3
=

a2
3

g3(τ)2
(A.3.3)

Let Λ = ω1Z⊕ω2Z such that ω1/ω2 = τ. Then g2(Λ) = ω−4
2 g2(τ) and g3(Λ) = ω−6

2 g3(τ).

We want a2 = g2(Λ) and a3 = g3(Λ). Therefore, if we choose ω2 such that ω−4
2 =

a2/g2(τ), then the condition for g2 is straightaway satisfied. Moreover the equality in

A.3.3 helps us conclude the condition for g3 as well. The case when a2 or a3 is zero is

dealt with separately. For that we specifically consider the lattices Λµ3 where µ3 = e2πi/3

and Λi respectively. We use the fact that g2(µ3) = 0, while in the other case g3(i) = 0.

Once we have this, the proof is quite similar to the above case.

This gives us a one to one correspondence between the complex tori and elliptic curves.

Furthermore, one in fact has a bijection up to isomorphism as well. Thus complex tori

and elliptic curves are interchangeable objects.
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