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Abstract

Neutrinos are by far the second most abundant particles in the universe. About 100 trillion

neutrinos pass through our body every second and we don’t even realize it. The reason

behind this ghostly presence is that they are chargeless and their mass is negligible. These

unique features enable them to play an important role in the universe. Physicists believe

that studying neutrinos may give us a better insight to still unanswered questions like the

matter-anitimatter imbalance. But before answering such questions and understanding the

role of neutrinos in the universe, we need to understand how they interact with matters; and

MINERvA is one such attempt. It’s an experiment in Fermilab which is being conducted

to precisely characterize different types of neutrino interactions, and to study the physical

processes that govern these interactions. Studying those interaction directly is not possible

and hence we study the final state particles produced after such interaction instead, and try

to understand the interactions from the information inferred from the particles. The exper-

imental observations only give us information about the energy deposited by the particles

while they travel through the detectors, but we need to know the type of particles in order

to understand the interaction. In our approach, the gap between the two is bridged using

Machine Learning (ML). We try some state of the art ML algorithms which have been

proven to perform well in similar problems from other fields, and see how they perform in

the problem at hand.

vii





Chapter 1

Neutrinos

1.1 Why study neutrinos

The standard model of particle physics was proposed in 1970 which describes the funda-

mental forces and particles that make up all the matter. Despite being considered the most

successful theory of particle physics, there are fundamental natural phenomena that the

standard model fails to explain. This leads us to the physics beyond the standard model and

neutrinos are excellent evidence for it.[SM16] In the standard model neutrinos have zero

mass. But it has been experimentally confirmed that neutrinos oscillate, i.e. they change

flavor while travelling from their sources.[Wil94] [F+98] In order to oscillate, both the fla-

vors involved cannot have same mass which implies that they cannot be both zero. In fact

experiments have proven it that all the three types of neutrinos have mass. This challenges

the completeness of the standard model.

Neutrinos are chargeless and their mass is negligible. These unique and interesting features

enable them to play an important role in the universe. They are produced in the nuclear

fusion process that powers the sun and the stars, in the radioactive decays that provides a

source of heat inside our planet, and also they are produced in the nuclear reactors. They

can emerge from the deep inside of astrophysical objects, thus becoming a very promising

carrier of information. Since they interact only through electroweak interaction, they are

considered to be an excellent tool to study the structure of nucleons. [min]
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1.2 Types of neutrino-nucleus interactions

There are three flavors of neutrinos, namely - electron neutrino (νe), muon neutrino (νµ)

and tau neutrinos (ντ ). The neutrino-nucleus interactions can be of two types -

• Neutral current interactions - Here the mediating particle is a neutral Z0 boson.

νµN −→ νµX

• Charged current interactions - Here the mediating particle is a charged W± boson.

νµN −→ µ−X

Fig 1.1 shows the Feynman diagram for a charged current event.

Figure 1.1: Charged current event

In the MINERvA experiment, the neutrino beam used contains only muon neutrinos/anti

neutrinos (we will discus it later in the second chapter). Since we are only interested in the

charged current events, in the final state particles we will always have a muon

1.2.1 How do we study the interactions

As discussed before neutrinos interact only via weak interactions and hence we cannot

study them directly. So, in experiments like MINERvA, there are nuclear target layers.

The neutrinos used in the experiments will collide with nuclei in various target materi-

als, producing ionizing radiation and secondary particles. These secondary particles leave

measurable energy deposits in the detector. [min]
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Figure 1.2: Event example

Fig 1.2 gives us a schematic of how an event is viewed in a detector array. In the first

image, we can see an event happening where a muon interacts with a nucleus, and we get

a proton and a muon as final state particles. The second image gives us an impression of

what information we get from the detectors. The blue and red dots represent the energy

hitpoints recorded by the detector. These energy deposits are later used for identifying the

secondary particles produced, helping in the study of neutrino nucleus interactions.

1.3 Defining the problem

For our project work, we are interested in classifying the charged current neutrino-nucleus

interaction events based on the final state particles using the data recorded by the detector.

To simplify the problem, we decided to divide the data into the following classes -

• Class 1 : (0 proton, 0 pion, 1 muon) events

• Class 2 : (0 proton, 1 pion, 1 muon) events

• Class 3 : (1 proton, 0 pion, 1 muon) events

• Class 4 : (1 proton, 1 pion, 1 muon) events

• Class 5 : everything else

Our goal is to come up with an artificial neural network which, after successful training,

can predict the events into these classes.
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This thesis is divided into the following parts - the first chapter introduces us to the prob-

lem, the second and third chapter give brief introduction to the experiment MINERvA, and

machine learning respectively. Fourth and fifth chapters walk us through the methodology

and results and the sixth chapter summarizes the work. Since we are working in the classifi-

cation domain, though not mentioned explicitly, we look at everything from a classification

point of view for the rest of thesis.
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Chapter 2

The MINERνA Experiment

2.1 Introduction

The field of experimental neutrino physics is comparatively new. The unique properties,

such as taking part only in weak interactions, unique flavor sensitivity make the neutrinos

an ideal probe; but before studying their interaction one needs to tackle issues like small

cross-section and difficulty in producing neutrino beams. In the recent years, a lot of effort

has been made and as a result we currently have quite a few experiments trying to explore

this intensity frontier.

It’s been already proven that neutrinos oscillate, i.e., they change flavor while propagating

from the source. This oscillation comes from the mixing of the mass eigenstate of neutri-

nos. Current state of neutrino physics is mainly centered around neutrino oscillation. In

particular, the near future neutrino experiments like DUNE (Deep Underground Neutrino

Experiment) will focus on determining the mass hierarchy and CP violation by comparing

the oscillation probabilities of neutrinos and anti-neutrinos. [S+16] But measurements with

such high precision demands better understanding of neutrino-nucleus (and antineutrino-

nucleus) interaction at the relevant energy range.

MINERvA aims to address this issue by studying neutrino reactions with five different nu-

clear targets using a very high intensity neutrino beam produced in the Neutrinos at the

Main Injector (NuMI) beamline. It is the first experiment to have a self contained com-

parison of interactions with different elements with very high precision. The data obtained
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from MINERvA significantly improve the models of neutrino-nucleus scattering, thereby

reducing the uncertainty in the results from the oscillation experiments. [A+14]

2.2 The Experimental Arrangement

MINERvA’s compact detector design, use of a very high intensity neutrino beam and the

proximity of the detector to the beam make it unique in its domain.

2.2.1 The NuMI neutrino beam

The source of MINERvA’s neutrino (and anti-neutrino) beam is the the Fermilab NuMI

beamline which produce a very high intensity beam of muon neutrinos and anti-neutrinos.The

NuMI beam is created by firing protons from Fermilab’s Main Injector into a carbon target.

The interaction of protons with the target produces a stream of positively and negatively

charged particles. A pair of magnetic horn is used to focus the particles which can be

pulsed in either polarity. If the horns are focusing positively charged mesons, then resulting

beam is primarily neutrinos, and if it is focusing the negatively charged mesons it would

result in an anti-neutrino beam. Then the focused particles go through a 675 meter long

decay pipe. Inside the pipe, the particles decay to produce muons and muon neutrinos (or

anti-muons and muon anti-neutrinos). Then the beam passes through 240 meters of rock

and muon absorbers where all the particles except the neutrinos are absorbed, creating a

clean beam of neutrinos. [A+14]

2.2.2 NuMI detector hall

The neutrino beam then passes through the NuMI detector hall which is located 105 meters

undergrounds. It contains the MINOS (Main Injector Oscillation Search) near detector,

the MINERvA detector and the NOvA (NuMI Off-axis νe Appearance) near detector. The

propagation axis of the neutrino beam passes through the MINERvA first, then MINOS and

then it just continues its journey through Earth towards the Soudan mine.

6



Figure 2.1: side-view of the MINERvA experimental arrangement. The neutrino beam travels from

left to right. (Credit: Fermilab)

2.2.3 MINERvA

The MINERvA detector starts with a wall of steel, followed by another wall of the solid

scintillator. This so-called “veto wall” is used to identify charged particles that were created

in neutrino interactions with the rock surrounding the detector hall. Next to this veto wall is

an aluminum cryostat containing liquid helium. After passing through the cryostat the neu-

trinos enter the main body of the detector. MINERvA has 200 hexagonal detector panels;

each panel consists of 127 plastic scintillator strips with optical fiber in their centers. When

a charged particle passes through a scintillator, it produces an amount of light which is

proportional to the energy lost by the particle while travelling through the scintillator. The

massive detector array record the energy loss of the particles and this information is used to

create the three dimensional path, or track of the final state particles which ultimately can

lead us to the origin of the neutrino interaction.

The front of the detector is called the nuclear target region as it contains the detector panels

made of varying configurations of solid carbon, iron, and lead. These nuclear target panel

separated by eight scintillator panels. It also has a liquid water target which sits between

the 4th and the 5th nuclear targets. Thus, it enables researchers to have a self complete

comparative study of neutrinos interaction with nuclei of different mass.
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The next section of the detector is called the active tracker region. It consists solely of

scintillator panels for tracking the final state particles. Both the nuclear target and active

tracker regions are surrounded by electromagnetic and hadronic calorimeters which have

alternating strips of scintillator and lead or steel sheets. The sheets help in slowing down

and stopping the final state charged particles, allowing MINERvA to fully measure the

energy of these particles. [A+14]

MINERvA Coordinate System

The MINERvA coordinate system is defined such that the z-axis is horizontal and points

downward along the central axis of the detector. The y-axis points upward and the x-axis

is horizontal, pointing towards beam left, with x-y origin at the center of the inner detector.

The z-axis is defined to place the front face of MINOS at z=1,200 cm. In this system, the

neutrino beam central axis is in the y-z plane and points downward at 3.34 degree.

Module Assembly

The MINERvA detector is comprised of 120 modules suspended vertically and stacked

along the beam line. There are four types of modules - tracking modules, electromagnetic

calorimeter modules, hadronic calorimeter modules and passive nuclear targets. Tracking

module is our main interest, since the data we use as input for our network is obtained from

this module.

Tracking modules consist of two scintillator planes each composed of 127 triangular scin-

tillator strips. A plane can have one of three different orientations, referred to as X-planes,

U-planes or V-planes according to the coordinate in the MINERvA system in which each

plane measures particle hit positions. X-planes have scintillator strips aligned vertically,

hence hits in this view give position information in the horizontal or x-direction. The U-

and V-planes are rotated 60 degrees clockwise and counterclockwise from the X-planes in

the x-y plane, respectively. [A+14]

Three different views are used in order to avoid ambiguities with reconstructed hit asso-

ciations that can occur when multiple tracks traverse two orthogonal planes. Each track-

ing and electromagnetic calorimeter module has one X-plane, and either a U or V-plane,

8



Figure 2.2: side-view of the arrangement of MINERvA’s nuclear target and detector modules

(Credit: Fermilab)

with modules alternating between a UX or VX structure with the X-planes always located

downstream of the U or V-planes. Thus the number of X-planes is twice the number of

U or V-planes, which is reflected in the data we use (the data for X-plane is of dimension

127x94 and the data for U or V-planes are of dimension 127x47).
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Chapter 3

Machine Learning: An Introduction

Human brain excels in many things and its working has been a wonder for scientists for

many years. One major difficulty in understanding how brain works is that it doesn’t follow

any predefined rule. We feel the world around us using the senses and using that infor-

mation, the brain guides us in this world. But there are tasks in the world which are far

complicated for human brains and are more suited for computers and sometimes it is diffi-

cult to define rules for such tasks. This let to the idea that it would be really helpful if we

somehow can reflect the brains learning process in computers and implementation of such

ideas is machine learning.

3.1 Machine Learning as a function approximator

As defined by Arthur Samuel, Machine Learning is a type of algorithm where a system

can automatically learn to perform specific tasks without any explicit instructions. We can

think of it as a search for a function f : X −→ Y, which maps a high dimensional space of

observational data or features X to a low dimensional space of target labels Y of interest

while optimizing some metric, called the loss function L(y, f(x)) [GCW18]

Ideally, we would like to optimize the loss over all the possible values of (x,y) from the

underlying distribution p(x,y), but this is not practically possible. So we usually stick to

a dataset {xi,yi}Ni=1, called the training set and a model. In this case, the algorithm will

try to optimize the loss over the parameters of the defined model through training. The

main objective we want to achieve through this process is generalization, i.e., we want our
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algorithm to perform well on data that it hasn’t already seen during training. Based on the

problem, the data at hand and available computational resources, different types of models

are used. Some commonly used examples are - Support Vector Machines (SVM), Deci-

sion Trees (DT) and Artificial Neural Network (ANN). ANNs are generally more complex

models which require large dataset but they perform really well when the problem involves

non-linear decision boundaries or absence of well-defined features. Since the classification

problem we are working on involves detector data as features, we decided to use a specific

type of ANN, called Convolutional Neural Network which we will talk about later.

3.2 Artificial Neural Network

Though Artificial Neural Networks have gained popularity in the recent years, the idea of

using algorithms, inspired by the biological neural networks, to solve complicated problem

can be traced back to the early twentieth century. Unfortunately, implementing those ideas

into practice was not possible at that time and hence this field had to wait for quite a few

decades to gain an interest among the researchers. But the recent advancement made in

the filed of computational architectures has made it possible to try out these network and

since then it hasn’t looked back. The community started growing rapidly when graphical

processing units (GPUs) became affordable for everyone and implementing those networks

and training them didn’t require any more access to special computational resources.

Figure 3.1: ANNs are inspired by biological neural networks

We can think of ANNs as function approximators with a very high number of parameters.

[LS16] The network tries to learn these parameters via training. The function space of these

12



network is determined by the architecture which can be understand in terms of transforma-

tions. [GCW18] The input to a network is transformed into outputs through some hidden

states. The transformations are defined as

hi+1 = gi(Wihi + bi) (3.1)

where, hi and hi+1 are the ith and i+1st transformations, the elements of matrix W are the

weights, b is the bias vector, and gi the activation function

The idea becomes more clear when we start talking in terms of the neurons. [neu] [Hay06]

These neurons or perceptrons are computational units that make up the network. Again,

the idea of neuron is inspired by the biological neurons which we still haven’t been able to

understand completely. Fig 3.1 shows an artificial neuron

Figure 3.2: An artificial neuron

Here, hji are the inputs to the (i+ 1)th transformation. These inputs then get multiplied by

the elements of the weight matrix. These weights determine how important the information

from the previous neuron is. The higher the weight value, the more important that informa-

tion is for the neuron. After multiplying the inputs with the weights, they get summed up;

in addition we add a bias value to the sum.

These neurons are then stacked to form a neural network which can tackle complicated

problems. [fun] But as complexity of problem increases, we can’t rely on linear solutions

anymore. And even though adding more neurons increases the size of the parameter space,
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it is still a linear function (with a very large number of parameters). To address this issue, we

introduce a non-linearity into the system and the output of a neuron is first passed through

an activation function, [RZL17] [NIGM18] before it becomes an input for the next neuron.

Some of the commonly used activation functions are - binary steps, sigmoid, hyperbolic

tangent, rectified linear units or ReLU and leaky ReLU.

Figure 3.3: Some commonly used activation functions

After adding the activation functions, we stack the neurons again. But because of non-

linearity, now the function space is much larger with the same number of parameters. While

making a network, we stack neurons along both the axis. The number of neurons stacked in

a layer is called the width of the network, and the no of layer stacked in a network is called

the network depth.
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Figure 3.4: A complete network

3.2.1 Learning from flaws

When a network is created, the weights and the biases are initialized randomly. Through

an iterative training process, the network learns these weights and biases. In theory, this

training process involves all the training examples and the network calculates the gradient

of the loss function with respect to each of the model parameter. [Rud16] Based on the

gradients, the loss and bias values are updated. This process is repeated until the loss value

saturates and the network can’t learn anymore from training. In practice, the calculation is

done based on a method called backpropagation and the weights and the biases are updated

after each small batches of training sample. [GBC16] [LZCS14]

3.2.2 Evaluating the network performance

The goal of training a network is to make it understand the underlying distribution based

on the training data so that it can predict on the data it has never seen during training. Thus,

generalization is a key concept here, and in order to keep track of it, we usually divide the

data available into a training set, a validation set and a test set. As discussed before, the

training set is used for training and updating the model parameters based on the gradient of

the loss. In order to inspect how well the network is generalizing, we use another dataset,

and this dataset is the validation set. The model parameters are never updated based on how

it performs on the validation set. And to compare how different networks are performing,

we use the third dataset, the test set.
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In order to keep track of the network performance, mainly the following metrics are moni-

tored -

• the training and the validation loss profiles

• the validation accuracy profile

• the confusion matrix

After training every batch, the training loss is calculated since it’s needed for updating the

parameters. These values give rise to the training loss profile. Along with this training

loss, the loss with the validation set is also calculated after a definite interval and this gives

rise to the validation loss profile. The training loss profile tells us how well the network is

learning, and the validation loss profile tells us how well the network is able to generalize.

The validation accuracy profile is another way of monitoring performance. It tells us what

fraction of time the network is predicting the correct output. Mathematically,

accuracy =
no of correct predictions

total no of predictions
(3.2)

The same can be calculated for training as well, but in general, training is done in small

batches and accuracy is a statistical quantity. Hence it requires a large sample and a com-

mon practice is to avoid calculating it during training.

The Confusion matrix, also called the error matrix, is a tabular way of describing the per-

formance of a network used for classification. For a binary classifier, we can define it as the

following -

For a well-performing network, we would expect the matrix to be diagonal. It is considered

as a powerful tool, as it not only gives us an insight into the errors, but also tells us what

type of errors are being made. We can also normalize this matrix along the rows and the

columns. The row normalized matrices, also called the precision, can be interpreted as

efficiency which gives us what fraction of examples from a class is predicted correctly.

Similarly the column normalized matrices, called recall, can be interpreted as purity which

gives us what fraction of time an example actually belongs to a class the network predicts.
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Figure 3.5: Confusion matrix

These two types metrics become really useful when the class distributions are not well

balanced, i.e., number of examples in each class differs greatly in numbers. They also come

handy in problems where tolerance against false positive and false negative are different.

3.3 Convolutional Neural Networks

As mentioned before, convolutional neural networks (CNNs) are a special variant of deep

ANN. These networks vaguely resembles the organization of animal’s visual cortex and

are used for probelms involving visual image analysis. It was first proposed by Yan Le-

Cun in 1989 and with the advent of modern computational architectures, it started gaining

popularity. [LBBH01]

Like any other ANN, a CNN also have an input layer, an output layer and multiple hidden

layers. The hidden layers consist of mainly convolutional layers, pooling layers and fully

connected layers, and these convolutional and fully connected layers are what make them

unique in the domain of images.

3.3.1 Convolutional layers

Convolutional layers are the core building blocks of a CNN. The layers parameters consist

of a set of learnable filters or kernels which have a small receptive field, but extends through

the full depth of the input volume. Each filter is convolved across the width and height of

the input volume, computing the dot products between the filter and the part of the input in

the receptive field. It produces a two dimensional feature map (also called activation map)
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of the filter. Through training the network learns the weights in the kernels so that it can

extract the features important for that particular problem.

Figure 3.6: convolution in action

3.3.2 Pooling layers

Pooling is way of downsampling. If the feature map is large along the spatial axes, the

number of parameters become really large as well which may lead to issues like overfitting.

As a solution, based on the filter size, the input volume is divided into smaller volumes

along desired axis; and from these smaller volumes a new value is obtained through some

predefined operations like. Average pooling and max pooling are the most common pooling

layers. Along dimension reduction, these layers also introduce non-linearity while keeping

the number of parameters same. This also impacts the network performance.

Figure 3.7: pooling in action
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3.3.3 Fully connected layers

Fully connected layers or the dense layers consist of neuron stacked in layers. The output of

multiple convolution and pooling is reshaped into one dimension and it becomes the input

for the fully connected layers. These fully connected layers are repeated a few times and

finally they get connected to output layer.

Figure 3.8: Complete CNN architecture. Credits: EBLearn Tutorial

3.4 Why CNNs work so well

There is no clear explanation of why CNNs excel in image analysis. A lot of researchers

consider ANNs in general to be a black box. But CNNs are different; they are far more

intuitive. The main principle CNN is based on is that the locality of the information doesn’t

matter. As long as the features of interest are present, we can detect them and use them for

further recognition. By stacking convolutional and pooling layers, more and more abstract

features can be extracted from an image as we move away from the input layer. These

more abstract features can finally be mapped into the output layer and thereby enabling the

network to have correct prediction. [QYLC18] [CW17]

Modern network architectures, like ResNets, do not completely follow the trend we just

discussed. The new architectures exploits the convolutional feature extraction more and

tend to avoid less intuitive approaches like use of pooling or fully connected layers. But

the main idea still remain the same - extract the features from images and map them to the

desired classes through subsequent more abstract feature extractions.
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Chapter 4

The Multiclass approach

4.1 Getting back to our problem

As described before, we are interested in classifying the charged current neutrino-nucleus

interaction events based on the final state particles using the data recorded by the detector.

To simplify the problem, we decided to divide the data into the following classes -

• Class 1 : (0 proton, 0 pion, 1 muon) events

• Class 2 : (0 proton, 1 pion, 1 muon) events

• Class 3 : (1 proton, 0 pion, 1 muon) events

• Class 4 : (1 proton, 1 pion, 1 muon) events

• Class 5 : everything else

Our goal is to come with a network and train it with the labeled data of the pixel information

recorded by the detectors. Before starting with all this, it is really important to understand

the class balance of the data set as any imbalance may lead to bias in the network predic-

tions.

4.1.1 Class balance

The data we used here are the processed subruns from MINERvA Medium Energy run NX

ME1A MC, represented as images that do not contain target padding. Fig 4.1 shows the

class balance for the dataset, and we can clearly see the class imbalance that is present.
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Figure 4.1: Class balance

Training with this dataset will allow the network to encounter more number of examples

from class 5 and this may make the network prediction biased towards class 5. There are

various methods of dealing such imbalance issues, but our first attempt would be to make a

network, train it and see how it performs.

4.2 Choosing the network architecture

Choosing the right network architecture is always a crucial part of solving any problem and

is mainly guided by the data and the information we want to extract from it. The data we are

using are time and energy tensors recorded by the X, U and V detector arrays. The tensors

have shape 2x127x47 for U and V views and 2x127x94 for the X view. Fig 4.2 shows the

energy tensors for an event

As discussed in chapter 3, convolutional neural network is an excellent approach to our

problem since the data we have can easily be interpreted as images. To be specific, we de-

cided to try a VGGNet architecture. VGGNet was invented by the Visual Geometry Group

(VGG) from oxford [SZ15] which is known for its performance in the ImageNet classifi-

22



cation competition. There are other modern architectures which outperform VGGNet, but

because of its simplicity we considered it to be good starting point for our problem.

Figure 4.2: An event example (as recorded by the U, V and X planes of the detector respectively)

Fig 4.3 shows the network architecture we used. Like VGGNet it has two convolutional

layers followed by a maxpooling layer. This process is repeated a few times and then the
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output is flattened. We apply these layers independently on all the views and after flattening

we concatenate all of them. Then a few fully connected layers are added and finally it gives

the output vector.

Figure 4.3: the network used (inspired by VGGNet)
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The kernels used for convolution were all 3x3 and for pooling it were 2x2. The ReLU acti-

vation function was used with all the hidden layers, and output layer has softmax activation

function which is defined as

σ(ai) =
eai∑k
j=1 e

aj
(4.1)

where, ai is the output of the ith neuron and k is the number of classes. We used corss-

entropy as the loss function which is again defined as

H(p, q) = −σki=1pilogqi (4.2)

Here, pi is the known probability of the ith class and qi is the predicted probability of the

same. Batchnormalization and dropout layers were also added to the network for regular-

ization and preventing overfitting. [SHK+14] [IS15]

4.3 Framework for implementing the network

There are quite a few good frameworks available for building and training ANNs. Ten-

sorflow, pytorch, cafe are some of the most commonly used frameworks for this purpose.

For our project, We decided to use tensorflow mainly because of its popularity and rapidly

growing community. Despite not being as user friendly as some other machine learning

frameworks like pytorch, the vibrant community and having the option of choosing one

from the large number of high level APIs make working with tensorflow easier. The net-

work was mainly written in the keras API, and the estimator API was used for training and

evaluation. The data was converted to the tfrecords, a binary format native to the tensorflow

framework which boosts up the training time by a significant amount.

4.4 Network performance

The network was trained for 5 epochs using the data and then the loss and accuracy profiles

were plotted. (Here, an epoch is a measure of the number of times all of the training

examples are used once to update the weights).
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Figure 4.4: Loss profiles for training and validation

The fig 4.4 shows both the training and validation loss profile. As expected the losses

decrease with training and get saturated eventually. The training loss curve and validation

loss curve almost overlap, indicating no overfitting.

Figure 4.5: Accuracy profile

Fig 4.5 shows the accuracy profile. With training, accuracy also shows a steady increase
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and it gets saturated eventually. The maximum accuracy obtained here is 0.63 which is a

good score compared to 0.20 accuracy (since there are 4 classes) from random guessing.

Figure 4.6: Confusion matrix, row-normalized and column normalized confusion matrices

Looking at the confusion matrices gives us a better understanding of network performance.

The confusion matrix clearly states that the network is biased towards class 5 as speculated

before. But other than that, it is fairly diagonal. The row normalized and column normal-

ized confusion matrices also describe the same picture. In this sort of experiment, we are

more concerned about purity and hence the column normalized matrix carries more signif-

icance. From the fig 4.6, we can see that the column normalized matrix is fairly diagonal

as well. If we look at the efficiency, we see a similar story but this time the effect of class

imbalance becomes prominent.
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4.5 Can we improve the network performance

From the confusion matrices, it is clear that in order to improve the network performance

we need to address the class imbalance issue. The most common solution to such class

imbalance issue is trying oversampling or undersampling. In over sampling, one populates

the training sample with repeated examples from the classes with low count while in un-

dersampling, one populates the training sample with a subset of the examples with high

count. Both of these two methods have its pros and cons and hence can be chose over one

another based on the situation. But in our case, there is another way of establishing the

class balance which is to use a particle canon sample.

The particle canon is a detector based simulation, i.e., we don’t really simulate the collisions

here. Instead we directly inserts the particles inside the detector arrays with the desired

momentum, energy and initial positions and the tracks are recorded. This gives us the

freedom to set the distribution of particles beforehand and thus achieving class balance

becomes possible.
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Chapter 5

Multilabel Approach

In the previous chapter, we saw that CNNs can be used to classify the charged current events

and with proper implementation on a well balanced dataset, the network performance can

be really promising. The main hurdle here was the imbalance in the dataset and particle

canon was the solution to it. But due to technical issues, getting a sample from the particle

canon was delayed and hence, in the mean time, we decided to investigate a multilabel

approach since it gives us more information about the final state particle numbers. We also

tried out a comparative study between two CNN architectures in order to come up with a

better strategy.

5.1 Defining the multilabel problem

So far we have been dealing with a multiclass problem. In multiclass classification, we

assume that each example is assigned to one and only one label which will belong to one

of the predefined, mutually exclusive classes. But in a multilabel approach, every example

has a set of target labels, and each label will have its own classes. The labels are usually

more or less related and hence a shared network becomes more appropriate to tackle them,

rather than tackling each of the label separately with separate networks.
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We considered four labels mainly based on their relevance in the physical picture. The

labels are -

• number of charged kaons

• number of charged pions

• number of protons

• number of other particles (all the hadrons other than the above three)

Each of the labels had four classes, namely -

• class 1: 0 particle events

• class 2: 1 particle events

• class 3: 2 particles events

• class 4: 3 or more particles events

5.2 Class balance

Fig 5.1 shows the class balance for each of the labels. Here we used the same data set as

before and the class imbalance issue is quite evident from the plots. For charged kaons,

almost 95% of the examples belong to class 1, and training a network with this data will

surely lead to bias towards class 1. Similarly, for the last label we don’t have any example

belonging to class 1. For charged pions and protons, the situation is slightly better but they

still suffer from class imbalance. Proceeding to training with this dataset will not clearly

lead to good prediction model. Moreover, oversampling or undersampling is not an option

anymore to fix the class balance. Since it is a multilabel problem, restoring the class balance

for one label using any of the two methods will disturb the class balance for the other labels.

Even though it was not the most ideal step, we decided to proceed with this dataset. The

plan was to get the frameworks ready and we can start training as soon as the particle canon
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Figure 5.1: Class balance

sample is ready. But unfortunately it was not possible to get the sample in time and using a

well balanced dataset for training the network remained as a future work.

5.3 The network architectures

We trained two different network architectures for this problem. The first one is an ex-

tension of the network used in the multiclass problem. In order to accommodate multiple

labels, the dense section of the network was split into four part. The last layer of each of

the section had softmax activation as used before. The loss was defined as the sum of all

the individual losses, and the optimizer tried to minimize this total loss. Fig 5.2 shows the

complete network.
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Figure 5.2: the multilabel network (VGGNet)
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5.3.1 The ResNet architecture

Along with the previous network, we also trained a ResNet architecture for a comparative

study. ResNets refers to residual networks. It was first published in 2016 by Kaiming He,

Xiangyu Zhang, Shaoqing Ren and Jian Sun as an attempt to address the difficulties in

training deeper networks by introducing residual connections or shortcuts. [HZRS15]

Deeper networks usually perform better as they can grasp higher level of abstraction and

generalize richer structures in the underlying distribution. So, in theory, adding more and

more layer should improve network performance. Even if it suffers from overfitting, we

would expect the training loss to reduce as new layers are added. But in practice, the loss

seems to saturate or increase once the network depth exceeds some limit. This decline in

performance is due to the vanishing/exploding gradient problem. In deeper networks, as

the gradient is backpropagated, the repeated multiplications make it really small (or large)

and hence weight updates in the earlier layers are either almost negligible or really large

leading to saturation or degradation in performance.

Figure 5.3: Residual block

ResNet tries to solve this problem using the ’identity shortcut connections’. This shortcut

connects the input to the output of a few layers. Thus changing the output of the layers from

F(x) to H(x) where H(x) can be written as H(x) = F(x) + x. Fig 5.3 shows a residual

block, here x is the input. The residual blocks solve the gradient issue. Even if the weight
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layers have vanishing gradient, the identity connections help the flow of the gradient to the

earlier layers.

Another way of looking at it is that the residues make the identity mapping easier to learn.

When the network encounters an extra layer which may lead to problems described above

we would expect the network to set it to identity, i.e. F(x) = x. But adding the residue

changes the identity map to H(x) = F(x) + x = x or F(x) = 0. It turns out that the sec-

ond identity map is much easier for the network to learn than the first one.

5.3.2 Getting rid of the FC layers

Along with introducing the residual blocks, we also got rid of the fully connected layers in

our network. The motivation here is that convolutional layers give us an intuitive picture

where it extracts a feature map from the input. Thus stacking up the convolutional layers

helps us extracting more and more abstract feature maps which are important for the clas-

sification. But the fully connected layers are still some sort of black boxes to us. We have

some idea about how they work but it is not as clear as the convolutional layers. So, we

got rid of the FC layers and made the network in such a way that the feature maps can

directly be connected to the output classes. In order to achieve that we used global average

pooling. [LCY14] For that we changed the number of channels in the second last layer to

number of classes, then we take the average of the feature maps and after passing through

a softmax activation it becomes the output probability. Fig 5.4 shows the modified ResNet

architecture that we used.
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Figure 5.4: multilabel network (ResNet)
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5.4 Network performance

Figure 5.5: Loss profiles for VGGNet (in blue) and ResNet (in red)

Fig 5.5 shows the loss profile for both the networks. We can see the that the total loss

decreases in both cases, but ResNet seems to achieve better loss value than the VGGNet.

Though the profiles seem fine, the networks didn’t really learn much and we can see it from

the loss values.

It becomes clear when we look at the confusion matrices. Fig 5.6 shows the column nor-

malized confusion matrices for both the VGGNet and ResNet. (We are considering only

the column normalized confusion matrices since we are more interested in the purity of the

predictions.) For number of charged kaon label, both the network predict class 1 100% of

the time. We could expect such bias since 96% of the examples belong to class 1 as we

have seen before. The other labels, though not as severe, show similar trend as well. Thus,

it is fair to conclude that both the networks failed to generalize the problem. But if we

compare the matrices we got from VGGNet and ResNet, we see that diagonal dominance is

more prominent in the ResNet confusion matrices. This seems to be in accordance with the

trend in the loss profile leading to the conclusion that, though not significantly, the ResNet

outperformed the VGGNet.
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Figure 5.6: Column normalized confusion matrices for chagrd kaons, charged pions, protons and

others respectively. The left column is for prediction with VGGNet and the right one is with ResNet
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Chapter 6

Conclusion

The goal of the project was to use artificial neural networks to classify the charged current

events. We took two approaches in order to achieve that goal - the multiclass approach and

the multilabel approach. In this chapter, we summarize the findings and also discuss what

measures can be taken in order to address the problems that we faced.

6.1 Multiclass approach

In the multiclass approach, we considered the following classes -

• Class 1 : (0 proton, 0 pion, 1 muon) events

• Class 2 : (0 proton, 1 pion, 1 muon) events

• Class 3 : (1 proton, 0 pion, 1 muon) events

• Class 4 : (1 proton, 1 pion, 1 muon) events

• Class 5 : everything else

Training a VGGNet gave us almost 63% accuracy. The confusion matrices were fairly

diagonal. training dataset contained more number of class 5 examples and it made the

network somewhat biased.
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6.2 Multilabel approach

Here we considered four labels -

• number of charged kaons

• number of charged pions

• number of protons

• number of other particles (all the hadrons other than the above three)

and each of the labels had four classes, namely -

• class 1: 0 particle events

• class 2: 1 particle events

• class 3: 2 particles events

• class 4: 3 or more particles events

We trained two networks for the multilabel predictions - a VGGNet and a ResNet. In both

the cases the network failed to understand the underlying distribution and showed poor

performance. The obvious reason behind this is again the extreme class imbalance. Even

though both the network showed poor performance, the more intuitive network, ResNet

seem to reach a lower loss value. The evidences are not strong enough to support any claim

that ResNet will perform better than VGGNet in our problem, but it’s definitely worth

investing.

6.3 Future perspective

In future our main focus will be on improving the multilabel approach, since it encom-

passes the multiclass approach as well. We can summarize the future aspects of the work

as following-

• In the multiclass problem, the class balance issue can be fixed with oversampling or

undersampling.
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• The class balance issue is more serious in the multilabel approach, and oversampling

or undersampling won’t help. We clearly need a new dataset for it to work properly.

A particle canon sample will definitely help in both the cases.

• Other than fixing the imbalance, we can also try to come up with new loss function

where we punish the mispredictions more in case of the imbalanced classes. This

will prevent the network from predicting the same wrong class again and again.

• Once the data balance issue is taken care of, exploring the hyper parameter space will

help in improving the performance further.
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