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Abstract

This thesis deals with one-loop Renormalization Group Equations(RGEs) for the Standard

Model and Beyond the Standard Model. Among the SM couplings, the quartic coupling

goes to negative before the Planck scale which unbound the Higgs potential at higher field

values. This makes the present Higgs vacuum metastable and gives an indication of Physics

beyond the Standard Model.

Thus, we have worked on extending the SM via Clock-Work(CW) fermions and analyzed

their effects on the SM RGEs. We found that adding CW fermions can stabilize the Higgs

potential by breaking the asymptotic freedom of g2 and g3 couplings and contributing more

positively to the g1 coupling, leading to faster decay of Top-Yukawa coupling. Also, we

have shown that one can unify the gauge couplings by CW extension keeping the perturba-

tion theory valid till the Planck Scale.
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Chapter 1

Introduction

This master’s thesis investigates the Renormalization Group Equations, i.e., the evolution

of the couplings with energy scale, of the Standard Model(SM) and Beyond the SM. The

standard model is a gauge quantum field theory containing the internal symmetries of the

unitary product group,

SU(3)c × SU(2)L × U(1)Y

The group SU(3) corresponds to the three colors, i.e., red, green, blue and only quarks fam-

ilies from the SM are found to transform as a triplet under SU(3). In SU(2) transformations,

the particles transform as a doublet under SU(2) generators. Only left-handed particles are

found to transform under this group. Each particle in the SM has its hyper-charge(denoted

by Y), and it transforms under U(1) group. The hypercharge of the particle is related to its

charge and the 3rd component of isospin which is given by Gell-Mann-Nishijima formula

i.e.

Y = 2(Q− I3)

Where I3 is the 3rd component of isospin and Q denotes the charge of the particle.

The particles in the SM interact with each other, and the strength of interaction is measured

by the coupling constants. These coupling constants evolve with the energy scale and how

these couplings evolve termed as the “beta functions” or “Renormalization Group Equa-

tions”. The gauge couplings show the strength of interaction of the scalars and fermions

with the gauge-bosons, and it is of three types corresponding to the three gauge groups of

the SM. Next, Yukawa coupling shows the interaction between the fermionic LH doublet,
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Higgs and RH fermionic singlet. The quartic coupling refers to the interaction among the

Higgs field itself.

In this thesis, the initial chapters are on deriving the RGE’s for the general theory taking the

most general form of Lagrangian. Also, the SM results for the corresponding coupling is

derived from the general results in the same chapter. The plots for the couplings with loga-

rithmic energy scale is also shown for one-loop results and are compared with the two-loop

RGE’s. Then we have extended the SM by adding Clockwork fermions at different scales

and have analyzed their effects on the SM RGEs.

1.1 Gauge Group Generators and Invariants in the

Standard Model

To calculate the beta functions one needs to know the gauge group generators and calculate

the corresponding invariants. We are considering a theory associated with non-commuting

local symmetry, i.e., non-abelian gauge theory where unlike the abelian case the kinetic

term for the fields has a covariant derivative term here which is defined for the fermion and

scalar field as:

Dµψj = (∂µ − igT a
jkA

a
µ)ψk

DµΦc = (∂µ − igΘa
cbA

a
µ)Φb

(1.1)

where g is the gauge coupling, Aµ corresponds to the gauge field and superscript “a” is

summed over all the generators of the gauge-group. The generators T a and Θa corresponds

to gauge group generators for fermions and scalars respectively. The numbers of generators

for a Special Unitary group(SU(N)) are equal to N2 − 1 corresponding to the independent

parameters of the group.

Starting with the color group i.e. SU(3) gauge group, corresponding to eight independent

gluons we have eight Gell-Mann matrices as the generators in the fundamental representa-

tion defined by the relation:

[
λi
2
,
λj
2
] = ifijk

λk
2

2



The structure constants are given as: f 123 = 1 , f 147 = f 165 = f 246 = f 257 = f 345 =

f 376 = 1
2
, f 458 = f 678 =

√
3
2
. The invariants for this group are given as:

C2(F ) = T aT a =
4

3
I

C(F ) = Tr(T aT b) =
1

2
I

C2(G) = facdf bcd = 3

(1.2)

For SU(2) group, we have three weak gauge-bosons and the generators are three Pauli

matrices satisfying the commutation relation:

[
σi
2
,
σj
2
] = iεijk

σk
2

where εijk is an Levi-Civita anti-symmetric tensor. The invariants here will be:

C2(F ) = C2(S) = T aT a = ΘaΘa =
3

4
I

C(F ) = C(S) = Tr(T aT b) = Tr(ΘAΘB) =
1

2
I

C2(G) = facdf bcd = 2

(1.3)

For the hypercharge group, the generator is the hypercharge diagonal matrix, which gives

Θa =
1

2
I =⇒ C(S) =

1

2

C(F ) =
∑
gen

(
Y

2
)2 × color

(1.4)
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1.2 The Standard Model Particles

The table below lists all the Standard Model particles(quarks, leptons, and Higgs) and their

corresponding charge(Q), 3rd isospin component(I3) and hypercharge(Y).

The scalar field in the SM, i.e., Higgs is a SU(2) complex doublet. Higgs is responsible

for generating mass to the particles in the SM by taking a non-zero vacuum expectation

value, and this phenomenon is called Spontaneous Symmetry Breaking(SSB). For exam-

ple, Glashow-Weinberg-Salam model([Xin 07]) explains Higgs Mechanism(when a gauge-

boson acquires mass, and a massless Goldstone-boson is produced) with broken symmetry

SU(2) × U(1)Y → U(1)EM , which predicts the massive vector bosons W+,W−, Z and

mass-less photon. This theory also unifies the weak and electromagnetic interaction be-

tween elementary particles.

Figure 1.1: The Standard Model Particles
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Chapter 2

Gauge Beta Functions

In this chapter, we will be deriving the gauge beta functions taking the most general form

of Lagrangian for both the scalar and fermionic fields. The RGEs for the SM are derived

from the general results.

2.1 Gauge Beta Functions for Fermions - General Back-

ground

We will start with the general bare Lagrangian(subscript ’0’ shows bare fields and cou-

plings) for non-abelian gauge theory with Dirac fermions which can be written as:

L = −1

4
(F a

0µν)
2 − 1

2ζ
(∂µAa

0µ)
2 +Ψ0iγ

µ(∂µ − ig0A
a
0µT

a)Ψ0 − ca0(∂
2δac + g0∂

µfabcAb
µ)c

c
0

(2.1)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

and is the gauge-invariant kinetic term for the gauge field in non-abelian gauge theory.

The fields ca are the Fadeev-Poppov ghosts which appear in the non-abelian gauge theory,

(see Chapter-16[Peskin 95]) and interact with the gauge-fields only. In abelian case, since

fabc = 0, there is only kinetic term for ghost fields and hence contribute nothing to beta

5



functions. In the renormalized theory the above bare Lagrangian is modified to:

L = −1

4
ZA(F

a
µν)

2 + iZΨΨγ
µ∂µΨ+ g0ZΨZ

1/2
A ΨΨAa

µT
a + ... (2.2)

where

ZΨ = 1 + δΨ (2.3)

ZA = 1 + δA (2.4)

g0ZΨZ
1/2
A = gµεZg (2.5)

Zg = 1 + δg (2.6)

Zc = 1 + δc (2.7)

4− d

2
= ε (2.8)

The bare Lagrangian can be written in terms of renormalized plus the counter terms:

L = Lren + Lct

where

Lren =
−1

4
(F a

µν)
2 +Ψiγµ(∂µ − igµεAa

µT
a)Ψ− ca(∂2δac + gµε∂µf

abcAb
µ)c

c (2.9)

Lct =
−1

4
δA(F

0
µν)

2 + δΨΨiγ
µ∂µΨ+ µεgδgγ

µΨAa
µΨT

a + ... (2.10)

From (2.5) we can write,

ln (ZgZ
−1
Ψ Z

−1/2
A ) =

n=∞∑
n=1

Gn(g)

εn
(2.11)

6



which further gives,

ln g0 =
n=∞∑
n=1

Gn(g)

εn
+ ln g + ε lnµ (2.12)

Since the bare parameters don’t depend on µ, we have

0 =
n=∞∑
n=1

(g
∂Gn

∂g

dg

d lnµ
)
1

εn
+

dg

d lnµ
+ gε (2.13)

and in a renormalizable theory the rate of coupling evolution has to be finite for ε → 0

which gives,
dg

d lnµ
= −εg + βg(g) (2.14)

From equations (2.13) and (2.14) matching the term with the coefficient of 1/ε for the one

loop contribution to the beta function we have ,

βg(g) = g2
∂G1

∂g

which after putting value of G1, expanding logarithmic terms using equations (2.3) to (2.8)

we have the gauge beta functions general formula in terms of the counter-terms i.e.,

βg(g) = g2
∂

∂g
(δg − δΨ − δA

2
) (2.15)

2.1.1 Calculating Feynman Rules and Vertex Corrections

The Feynman rules are defined as:

p

=
ipµγµ
p2

(2.16)

µ
= igγµT a (2.17)

7



µ ν =
−igµν
p2

[Feynman− gauge] (2.18)

The Feynman rules above were used to calculate the loop corrections. We have used di-

mensional regularization and MS scheme to solve the loop integrals as is explained in

Appendix A. The diagrams contributing to gauge boson propagator are:

= −i(q2gµν − qµqν)δab(
g2

(4π)2
4

3ε
nfC(F ))

(2.19)

where nf are the number of fermions interacting with gauge field.

8



+ +

= i(q2gµν − qµqν)δab(
g2

(4π)2
5

3ε
C2(G)) (2.20)

And for finite propagator, the counter-term factor δA should cancel out the divergences of

the gauge propagator which gives,

= −iδab(q2gµν − qµqν)δA (2.21)

The counter term for gauge propagator by combining all the above corrections is :

δA =
g2

(4π)2
(
5

3
C2(G)−

4

3
nfC(F )) (2.22)

Similarly, for fermion self energy we have,

→ δΨ = − g2

(4π)2
C2(F ) (2.23)

The diagrams whose divergences are cancelled out by the gauge-fermion vertex counter-

term are:

+

δg = − g2

(4π)2
(C2(G) + C2(F )) (2.24)

Putting all these counter-terms vertices in (2.15), we have the final expression for the gauge

beta functions:

βg(g) = − g3

(4π)2
(
11

3
C2(G)−

4

3
nfC(F )) (2.25)

9



2.2 Gauge Beta Functions for Scalar Field

The renormalized Lagrangian for non-abelian gauge theory with complex scalar field will

be:

Lren =
−1

4
(F a

µν)
2 + (Dµφ)

†(Dµφ)− ca(∂2δac + g∂µf
abcAb

µ)c
c + ... (2.26)

The (2.3) and (2.5) here are:

Zφ = 1 + δφ (2.27)

g0ZφZ
1/2
A = gµεZg (2.28)

which implies that the beta function for gauge-scalar coupling is:

βg(g) = g2
∂

∂g
(δg − δφ −

δA
2
) (2.29)

The new Feynman rules will be:

p

=
i

p2
(2.30)

p p′
i j

µ
= ig(p+ p′)µΘa

ji (2.31)

i

j

µ

ν

= ig2{Θa,Θb}gµν (2.32)

10



The diagrams including contribution of scalar field to gauge self energy are:

+ = −i(q2gµν−qµqν) g2

3ε(4π)2
nsC(S)

(2.33)

where ns is the number of scalar fields. The other diagrams shown in equation (2.20)

contributing to gauge fields will also be there and the contribution will remain same as

earlier. Combining the contribution from scalar field, the counter term for gauge-propagator

becomes,

δA =
g2

16π2
(
5

3
C2(G)−

1

3
nsC(S)) (2.34)

Now the diagrams with One-Particle Irreducible(1PI) correction to scalar propagator are:

+ = −ik2 2g2

ε(4π)2
C2(S)

This gives the scalar propagator correction δφ to be

δφ =
2g2

(4π)2
C2(S) (2.35)

The scalar-gauge vertex correcting diagrams at one-loop contributing to δg are:

+ +

+

1

+ 1

δg =
−g2

16π2
(C2(G)− 2C2(S)) (2.36)

11



Now putting (2.34), (2.35) and (2.36) in eq. (2.29) gives the general expression for scalar -

gauge coupling beta function which is,

βg(g) =
−g3

16π2
(
11

3
C2(G)−

1

3
nsC(S)) (2.37)

Now, for the total general gauge coupling beta functions for complex scalars and fermions

can be calculated by combining results in eq.(2.15) to eq. (2.37) which gives,

βg(g) =
−g3

16π2
(
11

3
C2(G)−

4

3
nfC(F )−

1

3
nsC(S)) (2.38)

2.2.1 From General to the SM Gauge Beta Functions

Now for deriving the SM gauge beta function from general theory, we know that SM is a

semi-simple gauge theory so we will need to do it separately for all 3 gauge groups. For

fermions of definite helicity one needs to take 1/2 factor for fermionic loop(1 for Dirac

fermion).

• SU(3) : We have four SU(3) triplets(Nt) (uL, uR, dL, dR) in each generation. The

invariant C(F ) = 1/2(from Chapter 1). And for total 3 generations it gives nf =

4× 3 = 12.

βg(g3) =
−g33
16π2

(
11

3
× 3− 4

3
× 4× 3× 1

4
) =⇒ − 7

16π2
g33 (2.39)

• SU(2) : We have four SU(2) doublets(Nd) ((qL)r,g,b, lL) in each generation. The

invariant C(F ) = 1/2 here also(from Chapter 1). And for total 3 generations it gives

nf = 4× 3 = 12. And we have one Higgs doublet also.

βg(g2) =
−g32
16π2

(
11

3
× 2− 4

3
× 4× 3× 1

4
− 1

3
× 1

2
) =⇒ −−19

6

g32
16π2

(2.40)

• U(1) : The table corresponding to hypercharge is shown in chapter 1. The sum of

(Y/2)2 for one generation of fermions is 10
3

. Also transforming gY −→
√

3
5
g1, and

12



summing over all generations and scalar fields, we get

βg(g1) =
g31

16π2
(
4

3
× 10

3
× 3× 1

2
+

1

3
× 2× 1

4
)× 3

5
=⇒ 41

10

g31
16π2

(2.41)

In the Figure 2.1, α = g2

4π
and the initial values for the couplings are taken from PDG

webpage where at Top Quark mass scale i.e. Mt = 173.1 GeV we have g1(Mt) = 0.4630,

g2(Mt) = 0.6538, g3(Mt) = 1.1628.

Figure 2.1: α−1 vs Log(t(GeV )) for the SM.

One can see from the figure that g2 and g3 couplings in the Standard Model behave asymp-

totically free(decreases with energy scale) unlike g1.

2.3 Qualitative Picture of Asymptotic Freedom

One can understand the sign of beta function of g1 coupling as due to charge screening effect

by the vacuum, where electron-positron pairs fluctuate into existence and thus respond to

the presence of a source in such a way as to decrease its field at a long distance. And this

leads to coupling grow at larger energy scales and vice-versa.

For g2 and g3 beta functions the sign is opposite for finite number ofNd andNt as in the SM

case. So, how are they can produce anti-screening? Since the gauge bosons and fermions

both are charged so must lead to screening as in the abelian case, but the opposite sign

shows that the anti-screening effect due to gauge fields must be a dominating factor here.

13



From [Peskin 95] sec:16.7, considering Coulomb gauge i.e. diAai = 0 in non-abelian case

the Gauss’ law takes the gauge-invariant form as :

DiE
ai = gρa = ∂iE

ia + gfabcAb
iE

ic

where Eai = F a0i and ρa is the charge density of the global symmetry current of the

fermions. For SU(2) gauge group we have fabc = εabc and a = 1, 2, 3. Considering a static

charge particle we write ρa(x) = δ(3)(~x)δa1 where a = 1 gives a source at the origin. From

the covariant derivative equation we can write the equation that we want to solve is

∂i ~E
ia = gδ(3)(~~x)δa1 + gεabc ~Aib ~Eic (2.42)

1. At leading order, the source produces a Coulomb field: ~Ea(x) = g δ1a(~x)
x2

2. Now considering a fluctuation of the vector potential with a = 2 direction at ~x0 away

from origin and is aligned at angle to the source field as in Figure 2.2.

3. The second term in RHS in (2.42) is gεabc ~Ab ~Ec. This fluctuation with E1 creates a

sink for the electric field ~E3 is created at ~x0 as we see in Figure 2.3.

4. Now again looking at the second term in (2.42):

∇. ~E1 = ...+ gε123 ~A2 ~E3

This a = 2 potential creates a source(sink) for the field in 1 direction where ~A2

and ~E3 are parallel(anti-parallel) as can also be seen in the figure. Thus, the dipole

formed by this way points towards the original fields and anti-screens it.

Figure 2.2: Vacuum fluctuation at a distance from source.

It has been shown in [T. Appelquist 77] that quantitatively anti-screening effect is 12 times

higher than screening effect. Due to this domination of anti-screening effect the gauge fields

14



Figure 2.3: A sink of ~E3 is created at ~x0.

have opposite sign from fermions in gauge beta functions and when this anti-screening

dominates the screening of fermions it causes the asymptotic free behaviour for non-abelian

gauge theories.

Figure 2.4: Figure showing a dipole formation due to vacuum fluctuation.
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Chapter 3

Yukawa Coupling Beta Functions

For the derivation of general Yukawa beta functions, we have used the Lagrangian men-

tioned in [M. Luo 03]. The general results were derived for two-component chiral fermions

and then were used to find the SM RGEs for Yukawa.

3.1 General Yukawa Beta Functions

The general Lagrangian with gauge fields Aa
µ, scalar fields Φa and 2-component fermion

fields ψj given in [M. Luo 03] is

L = L0 + L1 + (gauge− fixing + ghost− terms)

L0 =
−1

4
F µν
a F a

µν+
1

2
DµΦaDµΦ

a+iψ†
jσµDµψj−

1

2
(Y a

jkψjζψkΦa+h.c.)−
1

4!
λabcdΦaΦbΦcΦd

(3.1)

where σµ = (1, ~σ), σµ = (1,−~σ) and ζ = iσ2, and it ensures the Lorentz-invariance

of Yukawa term The wave function renormalization constant Zi is given as: Zi = 1 +∑∞
n=1 δ

n
i

1
εn

.

The corresponding anomalous dimension is γi = −1
2

∑
i ρixi

∂δ
(1)
i

∂xi
where ρi = 1(2) for

gauge and Yukawa(scalar quartic) couplings.
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Beta function for Yuakwa coupling is given in terms of anomalous dimensions is given as:

β(Y a) = γa + Y aγF + γF †Y a + γSabY
b (3.2)

where γa are the anomalous dimensions of the operators ψjζψkΦa, γF and γS for scalar

and fermion fields respectively. Further, the constraint on Yukawa coupling matrices by

gauge-invariance for complex fermions here is given by the equation

Y a
jkΘ

A
ab + Y b

jlT
A
lk + TA∗

jl Y
b
lk = 0 (3.3)

Since the fermions are considered to be complex, T aT is replaced by T a∗in the above equa-

tion.

Now for calculating the anomalous dimensions the Feynman rules for the above Lagrangian

were defined first. Then we found the divergences in the vertex correcting loop diagrams as

did earlier. The Feynman rules for 2-component fermions are derived here using [Martin 12].

Here, α and β̇ refers to the chiral components showing LH incoming and RH outgoing par-

ticle respectively. The rest rules remains the same as earlier.

p

β̇ α
=
ipµ.σµαβ̇

p2
or − ipµ.σµβ̇α

p2
(3.4)

j i

µ
= igσµβ̇αT a

ij or − igσµαβ̇T a
ij (3.5)

j i = −iYij
2
δαβ (3.6)
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At one-loop level the Yukawa interaction has no contribution to the gauge coupling so the

results for gauge-beta functions calculated in previous chapter remains the same. One can

check the below diagrams cancels out each other divergences at one-loop level.

+ +

+ + +

The diagrams and their contribution to Yukawa vertex calculated via d-dimensional regu-

larization(putting d=4 later) are given as:

= i
Y aY b†Y a

2(4π)2
1

ε
(3.7)

= i4g2
TA∗Y bTA

2(4π)2
1

ε
(3.8)

+

= ig2
(TA∗Y bΘA

ba + Y bTAΘA
ba)

2(4π)2
1

ε
(3.9)
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Using all these calculations, the counter-term and hence the anomalous dimension(γb) is

1

16π2
[2(Y aY b+Y a) + g2(TA∗Y bTA + (TA∗Y bΘba + Y bTAΘba))]

which is further simplified using (3.3) to

γb =
1

16π2
[2(Y aY b†Y a) + 2g2(2TA∗Y bTA − C2(F )Y

b − Y bC2(F ))] (3.10)

The diagrams contributing to fermion propagator at one-loop is:

= −ig2(σ.k)T
ATA

(4π)2ε
(3.11)

= −i(σ.k) Y
aY a†

(4π)22ε
(3.12)

These two combined gives

γF = (g2C2(F ) +
Y aY a†

2
)

1

16π2
(3.13)

The quartic coupling doesn’t contribute to any divergence at one-loop order for scalar prop-

agator. We have the diagrams for scalar-self energy divergences are:

+ = ik2
Tr(Y a†Y b + Y b†Y a)

(4π)22ε
(3.14)

+ = −ik2g2Θ
AΘA

ε

2

(4π)2
(3.15)

And this gives,

γSab = (
Tr(Y a†Y b + Y b†Y a)

2
− 2g2ΘAΘA)

1

16π2
(3.16)
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Putting equations (3.10), (3.13) and (3.16) in (3.2) and using

Y bΘA
bcΘ

A
ca = 2(TA∗Y aTA) + C2(F )Y

a + Y aC2(F )

gives the expression for general beta function i.e:

β(Y b) =
1

16π2
[(2Y aY b†Y a)− 3{C2(F ), Y

b}+ 1

2
(Y bY b†Y b + Y bY bY b†)+

Y aTr(Y
a†Y b + Y b†Y a)

2
]

(3.17)

which is the general result given in [M. Luo 03].

3.1.1 From General to the SM Yukawa Coupling

For the Standard Model Yukawa coupling, the top-quark coupling is the strongest. Hence,

we will be calculating beta function for only this. For SM the top-quark Yukawa term can

be written as:

Lyuk,SM = −ytQLΦ̃tR (3.18)

where tR is the right-handed top quark andQL

T
=

t∗L
b∗L

 and Φ̃ = iσ2Φ
∗ = 1√

2

 Φ3 − iΦ4

−Φ1 + iΦ2


Now defining top-Yukawa coupling yt and expanding the SM Yukawa coupling form ,

Lyuk,SM = − yt√
2
(t∗LtRΦ3 − it∗LtRΦ4 − b∗LtRΦ1 + ib∗LtRΦ2)

To derive from general to the SM we define ψ =


t∗L

b∗L

tR

bR

 and for each scalar field we define

a Yukawa matrix, where each matrix will be symmetric in this basis i.e.

YΦ1 = − yt√
2


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 , YΦ2 =
yt√
2


0 0 0 0

0 0 i 0

0 i 0 0

0 0 0 0

 , YΦ3 =
yt√
2


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 ,
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YΦ4 = − yt√
2


0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0


Now all the invariants in the general Yukawa beta function (3.17) can be calculated

• Y aY a† = y2tDiag.(1, 1, 2, 0)

• 1
2
Tr(Y a†Y b + Y b†Y a) = 3δab

• For YΦ, 1
2
(Y bY b†Y b + Y bY bY b†) = 3

2
y2t [YΦ]

• Y aY b†Y a = 0, where a is summed over all Yukawa matrices

Also, since the SM is semi-simple , implies g2C2(R) →
∑

k g
2
kC

k
2 (R) where R is sum over

all the gauge-groups in the theory and gk is the corresponding gauge coupling. Using this

we calculated the gauge factors,

• U(1) =⇒ C2(F ) =
1
2
((1

6
)2 + (2

3
)2)× 6× 3

5
g21 = 17

20
g21

• SU(2) =⇒ Only L-H forms the doublet so, C2(F ) =
1
2
(3
4
+ 0)× 6g22 = 9

4
g22

• SU(3) =⇒Both LH and RH quarks are triplets under SU(3), C2(F ) =
1
2
(4
3
+ 4

3
) ×

6g23 = 8g23

Since Y b = yt√
2

implies, β(yt) =
√
2β(Y ). Putting all the above calculations in the general

beta form (3.2), we get the expression for the SM top-Yukawa coupling

β(yt) =
9

2
y3t − (

9

4
g22 + 8g23 +

17

20
g21)yt (3.19)

which is in agreement with the SM top-Yukawa beta function given in [Machacek 84].

One can also calculate the beta functions for yb i.e. bottom-Yukawa and yτ tau-Yukawa in

the SM by defining matrices as we did above. In the SM we have,

Lyuk = −ybQLΦbR − yτ lLΦτR

For contribution of yb in Top-Yukawa, there will be mixing of couplings and in the above

defined invariants in (3.17) we have
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• 2Y aY b†Y a = −2yty
2
b

• Y bY b†Y b+Y bY bY b†

2
= 1

2
yty

2
b

• Y a Tr(Y a†+Y b†)
2

= 3yty
2
b

which gives 3
2
yty

2
b for the contribution of yb in the Top-Yukawa coupling. The contribution

of yτ to yt beta function will be only through the fermionic loop in scalar propagator which

gives yty2τ as the factor in beta function. The couplings yb and yτ are very small and both

remains negligible till the Planck scale as shown in Figure 3.1, and so, we will not be

considering them in our calculations.

Figure 3.1: yb and yτ couplings in the SM

The SM couplings(top-Yukawa and gauge) beta functions are plotted below with Mt =

173.1GeV, and Higgs mass Mh(Mt) = 125GeV . The vacuum expectation value of Higgs

is v = 246GeV which gives, yt(Mt) =
√
2Mt/v = 0.99497.

One can see in the Figure 3.2 that the Yukawa coupling yt decays with the energy scale.

This is due to negative contribution from the gauge couplings as can be seen by (3.19),

where g3 being the strongest coupling accounts more for this decay. The first plot is for one

loop RGE’s and the second is for two-loop. In two loop plot the gauge coupling appears

more closer than one-loop plot. Well, the behaviour of the couplings with energy scale

remains the same in both.
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Figure 3.2: SM couplings vs Log(t(GeV )) for one-loop(above) and two-loop(below).
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Chapter 4

Quartic Coupling Beta Functions

In this chapter we have derived the results for General Quartic beta functions using the

same Lagrangian as previous chapter. The SM RGE for quartic coupling is derived using

general results and the Yukawa matrices defined in previous chapter.

4.1 General Quartic Beta Functions

The general Lagrangian with gauge fields Aa
µ, scalar fields Φa and 2-component fermion

fields ψj is

L = L0 + L1 + (gauge− fixing + ghostterms)

L0 =
−1

4
F µν
a F a

µν+
1

2
DµΦaDµΦ

a+iψ†
jσµDµψj−

1

2
(Y a

jkψjζψkΦa+h.c.)−
1

4!
λabcdΦaΦbΦcΦd

(4.1)

where ζ = iσ2.

The Feynman rules mentioned earlier remains the same and for quartic coupling it is:

= −iλabcd (4.2)
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Here, the constraint on quartic coupling by gauge-invariance is given as:

ΘA
ii′λi′jkl +ΘA

jj′λij′kl +ΘA
kk′λijk′l +ΘA

ll′λijkl′ = 0 (4.3)

The beta function for quartic coupling is given by

β(λabcd) = γabcd +
∑
i

γs(i)λabcd (4.4)

where γabcd are the anomalous dimensions of the quartic operator and γs of scalars. The

diagrams contributing to the correction of quartic coupling at one-loop are:

+ 2 others = i
1

2
(λiji′j′λi′j′kl+λiki′j′λi′j′jl+λkji′j′λi′j′jl)

1

16π2ε
(4.5)

+ 5 others = i(ΘA
ii′Θ

A
jj′λi′j′kl +ΘA

ii′Θ
A
kk′λi′jk′l +ΘA

ii′Θ
A
ll′λi′jkl′+

ΘA
jj′Θ

A
kk′λij′k′l +ΘA

jj′Θ
A
ll′λij′kl′ +ΘA

kk′Θ
A
ll′λijk′l′)

1

16π2ε

(4.6)

The terms in bracket can be simplified using eq. 4.3 as:

=
1

2
(ΘA

ii′Θ
A
jj′λi′j′kl +ΘA

ii′Θ
A
kk′λi′jk′l +ΘA

ii′Θ
A
ll′λi′jkl′ +ΘA

jj′Θ
A
kk′λij′k′l +ΘA

jj′Θ
A
ll′λij′kl′+

ΘA
jj′Θ

A
kk′λij′k′l +ΘA

ll′Θ
A
ii′λi′jkl′ +ΘA

ll′Θ
A
jj′λij′kl′ +ΘA

ll′Θ
A
kk′λijk′l′ +ΘA

kk′Θ
A
ll′λijk′l′+

ΘA
kk′Θ

A
ii′λi′jk′l +ΘA

kk′Θ
A
jj′λij′k′l)

=
1

2
(ΘA

ii′(Θ
A
jj′λi′j′kl +ΘA

kk′λi′jk′l +ΘA
ll′λi′jkl′) + ΘA

jj′(Θ
A
kk′λij′k′l +ΘA

ll′λij′kl′ +ΘA
kk′λij′k′l)+

ΘA
ll′(Θ

A
kk′λij′k′l +ΘA

jj′λij′kl′ +ΘA
kk′λijk′l′) + ΘA

kk′(Θ
A
ll′λijk′l′ +ΘA

ii′λi′jk′l +ΘA
jj′λij′k′l)

= −1

2
(ΘA

ii′Θ
A
i′i”λi”jkl +ΘA

jj′Θ
A
j′j”λij”kl +ΘA

kk′Θ
A
k′k”λijk”l +ΘA

ll′Θ
A
l′l”λijkl′)

= −1

2
4C2(S)λijkl = −2C2(S)λijkl

(4.7)
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and this gives the final expression for the diagrams which is:

= −i 2

16π2ε
g2C2(S)λijkl (4.8)

+ 5 others = −i 2

ε16π2
(
∑

permut

Tr(Y a†Y bY c†Y d)) (4.9)

+ 2 others

= i
2

16π2ε
({ΘA,ΘB}ij{ΘA,ΘB}kl+

{ΘA,ΘB}ik{ΘA,ΘB}jl + ({ΘA,ΘB}il{ΘA,ΘB}jk)g4

= i
2

16π2ε
g4Aijkl

(4.10)

+ 5 others =
i

2

1

16π2ε
g4Aijkl (4.11)

+ 5 others = −i 1

16π2ε
g4Aijkl (4.12)

Now using the results we can determine the anomalous dimension of quartic term which
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gives:

16π2γabcd =
1

8

∑
permut

λabefλefcd − 4g2C2(S)λabcd+

3g4
1

8

∑
permut

{ΘA,ΘB}ab{ΘA,ΘB}cd− 4Tr(Y a†Y bY c†Y d)
(4.13)

The anomalous dimension for a scalar propagator is(as calculated in previous chapter):

16π2γS(i) = Tr(
Y aY b† + Y a†Y b

2
)− 2g2ΘAΘA = Y2(i)− 2g2C2(S) (4.14)

Now putting the above equations in (4.4) gives the final expression for general beta func-

tions for quartic coupling i.e.

βλabcd
= Λ2

abcd − 4Habcd + ΛY
abcd − 3g2ΛS

abcd (4.15)

where the newly introduced expressions above are:

Λ2
abcd =

1

8

∑
permut

λabefλefcd

Habcd =
1

4

∑
permut

Tr(Y a†Y bY c†Y d)

ΛY
abcd =

∑
i

Y2(i)λabcd

ΛS
abcd =

∑
i

C2(i)λabcd

Aabcd =
1

8

∑
permut

{ΘA,ΘB}ab{ΘA,ΘB}cd

4.1.1 From General to the SM Couplings

In SM the Higgs coupling looks like,

LHiggs = −λ(H†H)2 = −λ(φ
2
1 + φ2

2 + φ2
3 + φ2

4)

4

whereas in general theory it was

Lφ4 = −λ′abcdφaφbφcφd
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Figure 4.1: λ vs Log(t(GeV )) for One-loop(above) and Two-Loop(below) for 3 different
masses of Higgs.

This implies λ′

4!
→ λ

4
=⇒ β(λ′)

6
= β(λ). Also since SM is semi-simple, g4Aabcd =∑

n,m g
2
ng

2
mÃ

mn
abcd where m and n are the gauge-group indices. Using Yukawa matrices

defined in Chapter 3 and substituting λ as above one can find all the invariants defined

above. For corrections to quartic operator (4.5), now we have charged fields in the SM so

one needs to count for 2 permutations of inner legs, and also the 1/2 factor taken for real

scalar has to be ignored, which gives contribution after doing substitution in β(λ) as 24λ2.

The final result for the SM quartic coupling beta function is:

(4π)2β(λ) = 24λ2 + 12λy2t − 6y4t − λ(9g22 +
9

5
g21) +

9

8
g22 +

27

200
g41 +

9

20
g21g

2
2 (4.16)

which takes the same form as given in [Machacek 85] after making transformation as

λ = λ′/2 implies β(λ) = β(λ′)/2 and gives 12 as the coefficient for λ2 and vice-versa for

other terms. Figure 4.1 shows the RGE of quartic coupling at one-loop(above) and two-

loop(below) level plotted for 3 different masses of Higgs. The value of λ at Mt is given as
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Figure 4.2: Higgs potential at 173.1 GeV.

λ =
M2

h

2v2
.

It can be observed from the plots that the λ becomes negative after a certain scale. The

scale is pushed forward for two-loop calculations and for lighter Higgs mass also. For one-

loop(left) the scale of vacuum stability is at ≈ 108 GeV whereas for two-loop(right) it is

shifted to ≈ 1010 GeV.

The Higgs potential is given as :

V = m2φ†φ+ λ(φ†φ)2

where m2 < 0 and the vacuum expectation value is v =
√

−m2/λ.

The Higgs potential at Mt where λ > 0 is plotted in the figure 4.2. One can see that the

potential at Mt is bounded and has a minimum of ≈ 246 GeV. At higher field values this

potential behaves as V ≈ λ
4
φ4. The coupling λ going to negative causes a problem with the

vacuum stability of the Higgs field. At higher scales where λ < 0 before the Planck scale,

Higgs can take high expectation values making the potential < 0 and hence unbounded

from below. This makes the present Higgs vacuum metastable. For Higgs to be stable

at every scale till MP , it gives an indication of the Physics beyond the SM. Some new

phenomena or particles are needed to stabilize Higgs potential through their interactions.

This is the motivation for our further work where we have extended the SM by CW fermions

as described in the next chapters.
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Chapter 5

Applications: Study of RGE in the

Context of Fermionic Clockwork Theory

This chapter explains the clockwork mechanism and its implications to the fundamental

theory. We start by writing the Lagrangian for CW taken from [Patel 17] and then explain

how it affects the couplings in the effective theory. Later, we have extended the Standard

Model by adding Clockwork fermions taking different cases. The effects of this extension

on all the SM couplings is analyzed.

5.1 Clockwork Theory

An underlying theory in Clockwork(CW) phenomena includes multiple fields, namely the

clockwork gears, and a potential containing interactions between only the adjacent CW

gears. When an interaction is introduced between an external sector and the field at one of

the end sites of the CW chain, the arrangement generates interaction between the external

sector and the field at the other end with exponentially enhanced or suppressed coupling.

This mechanism has been studied for various phenomenological applications to Higgs sec-

tor, dark matter, neutrino masses, inter-generational mass hierarchy and other sectors.

So as to write the Lagrangian of this theory we consider N+1 2-component left-handed

fermionic fields f c
a(a = 0, 1, 2..., N) and N other such right-handed fields fb(b = 1, 2, ..., N)

with same Quantum numbers for gauge groups but opposite hypercharge from f c fields.

31



Figure 5.1: A representation of Clockwork mechanism resulting in enhanced or suppressed
coupling.[Giudice 17]

Also considering a global symmetry which is a product of several U(1) factors: G =

Πa,bU(1)L,a ×U(1)R,b. Under the G, the fields fa and f c
b have charges (1, 0) and (0, 1), re-

spectively. The symmetry G is then broken by N mass terms giving rise to N massive Dirac

fermions and leaving one linear combination of f c
b as a massless fermion. The Lagrangian

for the CW is given as

LCW = if c
0γ

µ∂µf
c
0 +

N∑
a=1

(ifaγ
µ∂µfa + if c

aγ
µ∂µf

c
a −Mfaf

c
a +mfaf

c
a−1 + h.c.) (5.1)

where m and M are the mass parameters. Using Euler-Lagrange equation one can integrate

out the fields at bth site for small momentum to find out that,

f c
b =

m

M
f c
b−1 = qf c

b−1 (5.2)

The above equation implies that the field at bth site is suppressed by a factor q from its

precedent field. One can write the effective Lagrangian as

Leff = if c
0zγ

µ∂µf
c
0 = if czγµ∂µf

c

where z = 1 + q2 + q4 + ...+ q2N = 1−q2(N+1)

1−q2
and

√
zq−NfN

c =
√
zf c

0 = f c

If the Yukawa interaction between f c
b and an another field ψ is introduced at the Nth site in

the fundamental theory with a coupling of natural size then

LY = −yψφf c
N = −yqNψφf c

0 = −yqN
√
z−1ψφf c (5.3)

This implies that the Yukawa coupling in effective theory is suppressed by qN .
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5.1.1 Flavored Clockworks

The CW theory can be applied simultaneously to different generations, called as Flavored

CWs where the CW gears of different generations are allowed to interact with each other,

maintaining the nearest neighbour interaction structure of the CW mechanism. Say for

nf generations of a given type of fermion, the FCW gears consist of the fields: f (i)
a (a =

1, 2, ..., N ; i = 1, 2, ..., nf ) and f c(i)
b (b = 0, 1, 2, ..., N ; i = 1, 2, ..., nf ). The Lagrangian in

equation will now be modified as :

L =

nf∑
i,j=1

(if
c(i)

0 γµ∂µf
c(i)
0 +

N∑
a=1

(if
c(i)

a γµ∂µf
c(i)
a +if

(i)

a γ
µ∂µf

(i)
a −(Mijf

(i)
a f c(j)

a −mijf
(i)
a f

c(j)
a−1+h.c.))

(5.4)

where M and m are now nf × nf matrices in generation space. Integrating out f c(i)
b and

f
(i)
b as earlier gives us

f
(i)
b = 0, f

c(i)
b =

nf∑
k=1

(mM−1)ikf
c(k)
b−1 =

nf∑
k=1

(Q)ikf
c(k)
b−1

The effective here Lagrangian here takes the form

Leff = if c
0Zγ

µ∂µf
c
0

where f c
0 = (f

c(1)
0 , f

c(2)
0 , ..., , f

c(nf )
0 )T for nf generations and

Z = 1 +Q†Q+Q†2Q2 + ...++Q†NQN . The matrices Z and Q can be diagonalised as

VQQU
†
Q = Diag(q1, q2, ..., qnf

) = Q̃

UQZU
†
Q = Diag(z1, z2, ..., znf

) = Z̃
(5.5)

The Yukawa interaction defined at Nth site here is

LY = −ψY φf c
N = −ψ(Y V †

QQ̃
N
√
Z̃−1)φf c

whereψ = (ψ(1), ψ(2), .., ψ(nf ))
T and f c =

√
Z̃UQf c

0 . Here too it can be seen that there is a

suppression to Yukawa coupling matrix Y from the diagonal matrix Q̃N
√
Z̃−1.

In our work we have extended the SM with clockwork fermions as done in [Patel 17]. It
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has been shown in [Patel 17] through the simulations that the hierarchies in the masses and

mixing of different SM fermions generated by N = 4 for f = q, uc, ecand N = 2 for

f = l, dc produces the same Froggatt-Nielsen(FN) charge as produced by FN mechanism

and so are in good agreement with the current observations. In our work we have used the

same number of gears for the generations and analyzed the RGEs for SM correspondingly.

5.2 Extending The Standard Model via Clockwork Fermions

In our extension of the SM, we assume that only the Nth gear interact with the SM LH

doublets through Yukawa interaction, the SM Yukawa terms is qN order suppressed i.e.

yu,d,l = yqN where y is the Yukawa coupling of O(1) in the fundamental theory. The

Lagrangian of the modified theory can be written for one generation as:

LSM+CW = −1

4
(F aµν)2 +DµΦ(D

µφ)† + if c
0γ

µDµf
c
0+

N∑
a=1

(ifaγ
µDµfa + if c

aγ
µDµf

c
a −Mfaf

c
a +mfaf

c
a−1 + h.c.)

+(yqNdc

d qc0Φd
c
0 + yqNuc

u qc0Φ̃u
c
0 + yqNec

e lc0Φe
c
0 + h.c.) + λ(ΦΦ†)2

(5.6)

where N is added over the number of gears for each flavor as mentioned in Table 5.1,

f c
0 is the SM fermion, Ndc , Nuc and Nec are the number of gears for corresponding flavor

shown by the subscript. The Yukawa couplings in the SM, suppressed from the fundamental

couplings, are given as yf = yq
Nf

f . Among the SM Yukawa couplings, the top-Yukawa

coupling is O(1), and all others Yukawa couplings are less than 1, so for third generation

there are no CW Gears for q, uc and ec because if they are, then yt is not expected to have

such a higher value.

The table below shows the number and the gauge quantum factors for the CW fermions

added to each generation:

CW fermions I II III

q(4) (3,2,-1/3) (3,2,-1/3)

qc(4) (3, 2, 1/3) (3, 2, 1/3)

u(4) (3,1,-4/3) (3,1,-4/3)
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uc(4) (3, 1, 4/3) (3, 1, 4/3)

e(4) (1,1,2) (1,1,2)

ec(4) (1,1,-2) (1,1,-2)

l(2) (1,2,1) (1,2,1) (1,2,1)

lc(2) (1,2,-1) (1,2,-1) (1,2,-1)

d(2) (3,1,2/3) (3,1,2/3) (3,1,2/3)

dc(2) (3, 1,−2/3) (3, 1,−2/3) (3, 1,−2/3)

Table 5.1: Table shows the gauge quantum factors and the number of CW gears(shown in
bracket) added to the SM in each generation.

From the gauge beta functions in Chapter 1, one can see that each new particle added to SM

contributes more positively to the g1 coupling beta functions. The asymptotic behaviour

of g2 and g3 is dependent on the number of doublets and triplets in the theory. One can

calculate that in extending the SM with new particles, say for adding doublets(Nd) > 9,

and triplets(Nt) > 20 the asymptotic freedom of g2 and g3 is broken respectively. We have

extended the SM by taking three cases as:

• First we have added the CW gears at 1 TeV and have analyzed how the gauge beta

functions behave. In the picture below the corresponding gauge coupling beta func-

tions are plotted. The Landau pole for g3 can be derived using g3 beta function in

Chapter 2, which gives:

Λ = exp(− 2π

α3(M)(7− Nt

3
)
)M (5.7)

where M is the scale at which the CW gears are introduced. From (5.9) one can calculate

that the Λ(g3) occurs at 2.28 × 105 GeV which can also be seen in the Figure 5.2. Since

gauge couplings are real and α2 < 0 implies them to be imaginary, so the perturbation

theory becomes non-valid after Λ(g3).

• Next, we tried to find the minimum scale at which the CW gears can be added to

avoid the Landau poles in the theory till Planck Scale. Figure 5.3 shows that at a

scale of 2.8 × 1014 GeV, the first Landau pole occurs in g1 at 1.0024 × 1019 GeV.

This gives the maximum limit at which all the CW gears can be added such that the

perturbation theory remains valid till MP .
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Figure 5.2: Gauge beta functions for M = 103 GeV.(Color code:Black-g1, Green-g2 and
Red - g3)

• Then, we tried to split the scales till Planck scale keeping two motives in mind. One,

the theory should remain perturbative upto MP and second was to unify the gauge

couplings. The total number of gears for f, uc and ec are 16 and for l and dc are 12.

For this we did the following splittings and extensions of CW gears at energy scales

as,

scale(GeV) q uc ec l dc

4 ×104 6 0 4 2 4

1010 0 6 0 2 2

4 ×1014 0 2 0 0 2

3 ×1018 10 8 12 8 4

Table 5.2: CW fermions added at different scales. The number shown is for the pair added
i.e. (f, f c) .

36



Figure 5.3: Gauge beta functions for M = 2.8 × 1014 GeV. The plot below shows the
Landau pole for g1.(Color code:Black-g1, Green-g2 and Red - g3)

The gauge couplings changes with the above CW extension as:

βg1 =
41

10
g31 → 211

30
g31 → 109

10
g31 → 367

30
g31 → 241

10
g31 (5.8)

βg2 = −19

6
g32 → 7

2
g32 → 25

6
g32 → 25

6
g32 → 101

6
g32 (5.9)

βg3 = −7g33 → −5

3
g33 → g33 → 7

3
g33 → 13g33 (5.10)

The sign of beta functions for g2 and g3 depicts the scale at which they started behaving

non-asymptotic free. The U(1)Y gauge factor
∑

(Y/2)2 for this new theory is 241
10

, and

α(3× 1018)
−1

= 5.3611 which gives the first landau pole Λ(g1) after MP at 1.213 × 1019

for g1 gauge coupling and this can also be seen from the Figure 5.4. Also, the gauge
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couplings appears to unify at a scale of ≈ 1016 GeV and it lies within the 3σ error range.

Figure 5.4: Gauge couplings for splitting case. The plot below shows the 3σ error bars i.e.
for ∆α1

−1 = 0.00912,∆α2
−1 = 0.01524,∆α3

−1 = 0.25954

We analyzed the affects of the new gauge-beta functions on all other SM couplings also. We

have only the Nth fermion interacts with the SM doublet to give Yukawa coupling, which

can be reduced to give the effective SM Yukawa i.e. suppressed by order(qN ) from the

fundamental couplings. The plots further will be showing how the new CW gears added

as shown in Table 5.2 affects the SM Yukawa, gauge and Quartic couplings with energy

scale. The orange colored line is for the SM case and the colored ones correspond to the

SM couplings after extending the SM at different scales.

The Figure 5.5 shows how the CW affects the g1 beta functions changes. As expected the
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new fermions add more contribution to the g1 coupling increasing it further more than the

SM case as can be seen in eq. (5.8).

For g2 beta function as can be seen in the Figure 5.5 and also from eq. (5.9), the asymptotic

freedom is broken as the number of doublets added exceeds 9 in our theory. This makes the

g2 coupling to start increasing unlike the SM case.

Figure 5.5: g1(left) and g2(right) coupling with with CW extension of the SM plotted vs
logarithmic energy scale.

Similarly here for g3 beta function, the asymptotic freedom is broken as the number of

triplets exceeds 20 as shown in eq. (5.10). The decay of g3 is gradual as compared to SM

case at earlier scale. The coupling g3 ≈ O(1) is a strong coupling in the SM and one can

see from Figure 5.6 that it remains at higher values till large scale. Later it starts rising up

as the asymptotic freedom breaks.

Figure 5.6: g3 coupling with CW extension of the SM.

Figure 5.7 shows the top-Yukawa coupling in SM and after adding CW fermions. Since all

the gauge couplings have a negative effect on the beta function of top-Yukawa as can be

seen from SM beta functions in Chapter 2. And as the above plots depicts that the gauge
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couplings are now at higher values than the SM so leading to faster decay of top-Yukawa

coupling.

Figure 5.7: yt coupling with CW extension of the SM.

The top-Yukawa and gauge couplings affects the quartic coupling behaviour along the en-

ergy scales. In the SM case, at one-loop level, the negative contribution from the top-

Yukawa loops dominates which leads to the decay of the quartic coupling and hence cre-

ates the problem of vacuum stability as seen in Chapter 4. The top-Yukawa dominates

dominates at lower scales and leads to decay of the quartic coupling, but sooner the new

fermions start contributing to the gauge couplings positively as we saw above and leads to

faster decay in top-Yukawa and this slows down the declination of quartic coupling. The g1

and g2 couplings also starts rising faster and their contribution leads to a direct positive rise

in the quartic coupling.

Figure 5.8: λ coupling with CW extension of the SM.
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Chapter 6

Summary and Conclusion

In our work, we first derived the general Renormalization Group Equations for gauge,

Yukawa and quartic coupling. The general results were then used to derive the SM beta

functions for the corresponding coupling in Chapter 2, 3 and 4 respectively for gauge,

Yukawa and quartic coupling. The quartic coupling in the SM goes to negative before the

Planck scale which creates the issue of the instability of the Higgs vacuum at higher field

values. This implies that the Higgs boson is trapped in a false vacuum and thus indicates

Physics beyond the SM to stabilize Higgs vacuum. This was our motivation, and we worked

on extending the SM via clockwork fermions as done in [Patel 17].

We observed that adding CW fermions to theory can break the asymptotic freedom of the

g3 and g2 gauge couplings for added triplets, Nt > 20 and doublets, (Nd) > 9 respectively

which leads to major effects on the behavior of Yukawa and quartic coupling. Fermionic

contribution can also lead to produce Landau poles beforeMP making the perturbation the-

ory valid afterward. We found that for CW fermions added at splitting scales, the Landau

poles can be avoided. Also, we have shown that one can unify the gauge couplings in 3−σ

error-bar and along with this can get rid of the vacuum stability issue also by start adding

CW fermions at lower scales ≈ 104 GeV.

Our work on CW extension of the SM is one application of using the general RGEs to solve

for Beyond the SM case. One can work on any other model of BSM, and the general results

can be used conveniently for that. We did the calculations for the one-loop case, extending

for two or higher loop calculations can give more insight into the behavior of SM couplings

for BSM.
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There are many other remarkable problems like Higgs Mass anomaly, Dark Matter prob-

lem, etc., that the SM fails to elucidate and motivates contemporary physicists to explore

beyond the SM theories. What model describes the Universe as a whole, i.e., unify all the

fundamental interactions, is still an unplumbed sector that needs closer attention. There

is a need to garner substantial information about the Universe to provide answers to deep-

rooted problems such as, what caused the Big Bang? Source of Dark Energy? What is

Dark Matter? etc., that still appears aloof and under continuous scrutiny from present-day

physicists.
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Appendix A

A.1 Feynman Parameters

To combine the propagator denominators, we used Feynman parameters as:

1

A1A2...An

=

∫ 1

0

dx1dx2...dxnδ(
∑

xi − 1)
(n− 1)!

[x1A1 + x2A2 + ...]n
(A.1)

For one-loop calculations we dealt with only with two propagators in the denominator i.e.

,
1

AB
=

∫ 1

0

dx
1

[xA+ (1− x)B]2
(A.2)

Since A and B in above equations are quadratic in momenta pµ so the term inside the bracket

is also quadratic. Next, complete the squares and shifting the variables to absorb the terms

linear in momentum pµ, which is now defined as a new variable of integration , lµ.

For example,

I(q,m) =

∫
d4p

(2π)4
1

(p2 −m2)((p+ q)2 −m2)
(A.3)

Here we have A = (p+ q)2 −m2, and B = p2 −m2.

Using Feynman parameters we can write,

I(q,m) =

∫ 1

0

dx

∫
d4p

(2π)4
1

(p2 + 2x.p.q + xq2 −m2)2
(A.4)

Now substituting lµ = pµ + xqµ, we have

I(q,m) =

∫ 1

0

∫
d4l

(2π)4
1

(l2 −∆(x))2
(A.5)

where ∆(x) = m2 − x(1 − x). The terms in numerator with odd momenta vanishes by

symmetric integration. By symmetry we can write, lµlν = gµν l2

d
. After transforming the
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integral into this form, we can use the Minkowski table integrals to solve it in d-dimensions.

A.2 Loop Integrals and Dimensional Regularization

For our calculations we used the following integrals in Minkowski table for d-dimensional

integration given as:

∫
ddl

(2π)d
1

(l2 −∆)n
=
i(−1)n

(4π)d/2
Γ(n− d

2
)

Γ(n)
(
1

∆
)n−

d
2 (A.6)

∫
ddl

(2π)d
l2

(l2 −∆)n
=
i(−1)n−1

(4π)d/2
d

2

Γ(n− d
2
− 1)

Γ(n)
(
1

∆
)n−

d
2
−1 (A.7)

∫
ddl

(2π)d
lµlν

(l2 −∆)n
=
i(−1)n−1

(4π)d/2
gµν

2

Γ(n− d
2
− 1)

Γ(n)
(
1

∆
)n−

d
2
−1 (A.8)

For d = 4, the diverging integral can be expanded as,

(
1

∆
)2−

d
2 = 1− (2− d

2
)log∆+ ... (A.9)

Also expanding Γ(x) near its poles:

Γ(x) =
1

x
− γ +O(x) (A.10)

near x = 0, and

Γ(x) =
(−1)n

n!(x+ n)
− γ + 1...+

1

n
+O(x+ n) (A.11)

near x = −n. Here γ is the Euler- Mascheroni Constant, γ ≈ 0.5772. The following

combination of terms often appearing in calculations is simplified as:

Γ(2− d
2
)

(4π)d/2
(
1

∆
)2−

d
2 =

1

ε
− (log∆+ γ − log(4π)) +O(ε)

with ε = 4−d
2

.

InMS Scheme the coefficient of 1/ε term gives the counter-term factor δ in the Lagrangian.
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Appendix B

Two Loop SM RGEs

For completeness we give the two-loop SM RGEs taken from [Buttazzo 13].

Here β(X) = β1(X) + β2(X) + ..

β2(g1) =
g31

(4π)4
[
44g23
5

+
27g22
10

+
199g21
50

− 17y2t
10

] (B.1)

β2(g2) =
g32

(4π)4
[12g23 +

35g22
6

+
9g21
10

− 3y2t
2

] (B.2)

β2(g3) =
g32

(4π)4
[−26g23 +

9g22
2

+
11g21
10

− 2y2t ] (B.3)

β2(λ) =
1

(4π)4
(−312λ3 − 144λ2y2t + 36λ2[3g22 +

3

5
g21]− 3λy4t + λy2t [80g

2
3 +

45

2
g22 +

17

2
g21]

−73

8
λg22 +

117

20
λg22g

2
1 +

1887

200
λg41 + 30y6t − 32y4t g

2
3 −

8

5
y4t g

2
1 −

9

4
y2t g

2
2 +

63

10
y2t g

2
2g

2
1

−171

100
ytg

4
1 +

305

16
g62 −

289

80
g42g

2
1 −

1677

400
g22g

4
1 −

3411

2000
g61)

(B.4)

β2(yt) =
yt

(4π)4
(−12y4t + y2t [

393

80
g21 +

225

16
g22 + 36g23 − 12λ] +

1187

600
g41 −

9

20
g22g

2
1

+
19

15
g21g

2
3 −

23

4
g42 + 9g22g

2
3 − 108g43 + 6λ2)

(B.5)
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