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Abstract

An all-reflective dispersion-free optical delay line was implemented with custom made

mechanical parts. A custom LabVIEW program was written to automate the scanning

of the delay steps with a resolution of 27 as over a range of 533 fs. The delay line

was characterized for collinearity, delay steps, stability, and time zero. The stability

of the delay line was found to be 57 as over a distance of 107 cm for about 40 s.

A motorized high-speed XY microscope stage was automated in LabVIEW to move

on given (x, y) coordinate using both X and Y motors simultaneously. A high-speed

electronic shutter was interfaced with the same LabVIEW program. A GUI Python3

program was written to draw arbitrary patterns on an image of the region of interest.





Chapter 1

Mechanical design and

characterization of automated

optical delay line

1.1 Introduction

Optical delay lines (ODL) are similar to two beam interferometers. These are used to

introduce the desired time delay in one beam by controlling the optical path length.

ODLs of various designs are used in many application and optical devices [1]. ODLs

are used in ultrafast pulse measurements with autocorrelator [2], optical coherence

tomography [3], IR-IR and IR-XUV pump-probe experiments [4].

An all-reflective dispersion free ODL has been already developed and being used in

autocorrelator for ultra-short pulse measurements in femtosecond laser lab at IISER

Mohali. We have implemented the same idea of the ODL for IR-IR pump-probe

experiments with fs pulses. We aimed to develop an ultra stable delay line with high

precision, high repeatability, and with enough scanning range to capture ultra-fast

phenomena. Piezoelectric stack actuator (PZT) for with strain gauge sensor is used

to introduce delay. For quick, precise, and good repeatability of the delay steps we

automated the scanning using LabVIEW.

1
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1.2 Dispersion-free all-reflective optical delay line

design

The main idea is to split the profile of the laser beam with a knife edge prism mirror

shown in the Figure 1.1. The splitted beams travel through two arms implemented by

two mirrors (V-block). Using an another knife edge prism mirror, the splitted beams

are directed in the propagation direction. The spacing between splitted beams can be

adjusted with second knife edge prism mirror. Figure 1.1 shows the design of the delay

line based on knife edge prism mirrors. The idea is to split the laser beam profile with

knife edge into two parts. The splitted beams then travels through two arms , using

another knife edge prism mirror the splitted beams are directed in the propagation

direction and the spacing between splitted beam can adjusted with placement of the

second knife edge prism mirror.

Figure 1.1: All-reflective dispersion-free optical delay line based on knife edge
prism mirrors

V-block on the right side is mounted on manual linear translation stage for coarse

adjustment. V-block on the left side of the knife edge is mounted on PZT which is

used to introduce the optical delay.

If the left arm of the delay line is longer than the right arm by ∆d then corresponding
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time delay ∆τ is given by

∆τ =
2∆d

c
, where c is the speed of light. (1.1)

The factor of 2 in Equation 1.1 is because of the geometry of the delay line. The pulse

traveling though the left arm has to go the twice the extra displacement of the left

V-block. The PZT has a maximum stroke of 80 µm in closed-loop operation. Using

Equation 1.1 the full scanning range of PZT corresponds to a time delay of 533.3 fs.

1.3 Mechanical design of the delay line

The beam height of fs laser from the optical bench is fixed (≈202 mm). So we had to

design our own mechanical parts to meet this constraint. Designed mechanical parts

in Solid Works are shown in Figure 1.2 with their dimensions. Solid Works assembly

of the ODL is shown in Figure 1.3.
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(a) Optical bench 304.8 × 152.4 × 22 mm3 with 12.7 mm M6 grid

(b) Adaptor for
PZT and V-block
(90× 88× 5 mm3)

(c) Adaptor for
ODL bench and
PZT (62×62×4.7

mm3)

(d) Adaptor for
LNR25M/M and
V-block (90×88×

5 mm3)

(e) Adaptor for
LNR25M/M and
Figure 1.2d (60 ×
60× 18.7 mm3)

(f) Pedestal post
∅25.4mm (115.30mm)

(g) Prism mount-
ing plate (60×60×

9 mm3)

(h) Pedestal post
∅25.4mm (45.70

mm)

(i) Acrylic cover
for ODL (333 ×
265× 180 mm3)

Figure 1.2: Custom made mechanical parts of the delay line (Solid Workds design)
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(a) Top view

(b) Isometric view (c) Side view

Figure 1.3: Solid works assembly of the delay line
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1.4 Automatizing the delay line

A custom-designed software based on LabVIEW is made to automate the delay line.

It can communicate to the PZT controller through its system commands. A scan

with discrete delay steps over a user-defined range can be initiated from this software.

Figure 1.4 shows the overview of the scan tab. For more details of the program see

Appendix C.

Figure 1.4: The scan tab of the LabVIEW program of optical delay line. Delay

Time (as) is optical delay step required in as. Travel Range is the scanning
range in µm. Acquire Time (ms) is the time for which PZT stays at a position
during scan. SCAN button initiates the optical delay scan with steps of Delay Time.

Progress Bar shows the scanning progress.

Figure 1.5 shows the schematic of the automated ODL. The setup consists of ODL,

PZT controller, and a PC with LabVIEW installed.
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Figure 1.5: Schematic of the automated ODL
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1.5 Characterization of the optical delay line

After assembling and automating the delay line, we aligned the setup and character-

ized the ODL for the following parameters:

1. Collinearity: Two emerging beams are parallel to each other and the optical

bench.

2. Calibration of the delay steps.

3. Time zero calibration: To make the two arm lengths equal (within a few mi-

crons).

4. Stability of the system over a long period.

Height alignment, collinearity, strain gauge cross verification, and stability were easily

tested with continuous wave HeNe laser (λ = 632.8 nm) but time zero cannot be found

Figure 1.6: Actual setup of ODL (with HeNe laser).

using HeNe laser because of its long coherence length. To find time zero we used fs

pulses, and estimated how close the arm lengths were.
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1.5.1 Alignment of the delay line

Steps involved in alignment of the ODL

1. Used two irises of the same height (≈ 202 mm) to align the HeNe laser beam.

2. Placed the delay line in between two irises as shown in Figure 1.6.

3. Adjusted the splitting knife edge prism mirror to split the beam into roughly

two equal half, such that both splitted beams hit the mirrors at the center.

4. Fastened the CF-175 clamps on the pedestal posts to lock the delay line on the

optical bench.

5. Placed the second knife edge prism mirror such that two splitted beams are as

close possible.

6. Adjusted the kinematic V-block mirrors to make the beam collinear and pass

through the second iris.

1.5.2 Cross verification of the delay steps

According to the specification of the PZT in closed loop the resolution is 4 nm, see

the Table C.1. The displacement of PZT is internally measured with a strain gauge.

To check the reliability of the strain gauge, we used the HeNe laser and obtained the

interference pattern by deliberately misaligning the setup to get better fringe contrast.

Figure 1.7: Fringes with HeNe laser.

Figure 1.7 shows the interference pattern

with HeNe laser. One fringe shift (from

bright to dark and bright fringe again)

corresponds to λ/2 ≈ 317 nm and by

counting the fringe shifts, the informa-

tion about change in path length can be

obtained. Figure 1.8 is the plot of photo-

diode (PD) signal vs PZT position which

shows periodicity (Λ) of the signal (one

complete fringe shift) agrees with λ/2

within 1 nm.
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Figure 1.9 shows the PD signal for a

Figure 1.8: Cross verification of strain gauge with HeNe laser (λ = 633 nm).

(a) Full scan of the piezo (0 to 80 µm). (b) Inset plot of the full scan.

Figure 1.9: PD signal for full scan.

full scan range (0 – 533 fs or 0 – 80 µm)

with 1 fs delay steps and 10 ms acquire time. Oscillations due to fringe shifts are

clearly visible in Figure 1.9b verifying the working of automated scanning with the

LabV IEW program.
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1.5.2.1 Comparison of set value and strain gauge reading

An offset of about 14.6 nm in the strain gauge reading displayed by the PZT controller

and set value (command through the software) was observed (Figure 1.10).

Figure 1.10: Comparison between set value and strain gauge reading. Blue line is
the y = x line, on which strain gauge readings were expected. Red line is the linear

fit through the strain gauge readings.

This offset is not a problem for delay steps because of its consistency across the

scanning range.
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1.5.3 Stability of the delay line

We have obtained fringes with a HeNe laser and placed the PD in the interference

pattern. Fringe width was made nearly equal to the active area of the PD using a

diverging lens. Scanned few fringes and then fixed the set point in somewhere middle

of the PD voltage and acquire the data for ≈ 50 s with the oscilloscope. Plot of the

PD signal vs time is shown in Figure 1.11 red line in the plot shows the average PD

signal after the set point and light yellow background show the ±σ about the average.

Minimum voltage, Vmin = 0.114 V (1.2)

Maximum voltage, Vmax = 0.574 V (1.3)

∆V = Vmax − Vmin = 0.46V (1.4)

Standard deviation in the data after the set point, σ = 0.05 V (1.5)

∆V corresponds to λ/4 ≈ 158.2 nm (half fringe shift).

Figure 1.11: Stability of the delay line is 57 as or 17 nm fluctuation in path lengh
over a distance of ≈ 107 cm for ≈ 40 s.
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Fluctuation in path length = σ × λ

4∆V
= 17.2 nm (1.6)

Now stability in time is calculated dividing the fluctuation in path length by the speed

of light

Stability = 57.3 as (1.7)

Stability of the delay line is 57 as over a distance of ≈ 107 cm for roughly 40 seconds.
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1.5.4 Collinearity

To check the collinearity, we used a converging lens to focus the splitted beams and

then placed beam profiler at the focus. For different PZT displacements the beam

profile was captured at the focus. Figure 1.12 shows the captured images of the beam

profile at the focus for different displacements of the PZT.

(a) 0 µm displacement. (b) 20 µm displacement.

(c) 40 µm displacement. (d) 80 µm displacement.

Figure 1.12: Beam profile images at focus for different displacements of PZT.

There is no noticeable change in the position of captured profiles indicating very good

collinearity.



Chapter 1 Mechanical design and characterization of automated optical delay line 15

Figure 1.13 shows the profile of the input HeNe laser beam and profile after splitting

with knife edge prism mirror. In Figure 1.13b interference pattern is due to a small

overlap of the splitted beam caused by the divergence of the laser beam.

(a) HeNe laser beam profile at input of
the delay line.

(b) HeNe laser beam profile at output of
the delay line (after splitting with knife

edge prisms).

(c) HeNe line cut (along horizontal) pro-
file.

(d) Line cut (along horizontal) profile of
the splitted beam.

Figure 1.13: HeNe laser beam profile before and after splitting with knife edge
mirror.

There is an unexpected dip in both the splitted parts of the laser beam visible in line

cut profile shown in Figure 1.13d.
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1.5.5 Time zero calibration

Time zero in optical delay line means when both arm lengths are exactly equal i.e.

there is no time delay between the pulses. We have incorporated a linear translation

stage (25 mm travel range) with 12.7 µm resolution.

Time zero cannot be found with HeNe laser because of its high coherence length (>

(a) Interference pattern with fs pulses (b) Close-up of interference pattern
with fs pulses captured by WebCam.

Figure 1.14: Time zero fringes.

20 cm). We used ultrashort (fs) pulses to find the time zero. Figure 1.14a shows the

interference pattern with fs pulses. We recorded a video of the fringes as PZT scanned

for full range (0 to 80 µm). Figure 1.15 shows the contrast of a fixed pixel in the video

as PZT was scanning. Change in the fringe contrast is visible in Figure 1.15 and we

see that primary interference pattern appears in a range of 15 µm which means arm

lengths are same within 15 µm.

1.6 Summary

An all-reflective dispersion-free optical delay line was implemented with custom made

mechanical parts. A custom LabVIEW program was written to automate the scanning
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Figure 1.15: Gray scale value at a fixed point in the video as PZT was scanning.

of the delay steps with a resolution of 27 as over a range of 533 fs. The delay line

was characterized for collinearity, delay steps, stability, and time zero. The stability

of the delay line was found to be 57 as over a distance of 107 cm for about 40 s.



Chapter 2

Automatizing the laser processing

stage

2.1 Introduction

A 2 mJ , 25 fs pulse has peak power of

Ppeak =
2mJ

25fs
= 800GW (2.1)

due to such high peak powers fs laser processing facilitates smooth cutting with min-

imal thermal (or collateral) damage. Here is comparison between holes drilled in a

100 µm thick stainless steel foil using 3.3 ns and 200 fs pulses. In both cases fluences

just above the ablation threshold and 10,000 pulses have been used [5]. Time scale of

Figure 2.1: Comparison between ns and fs laser processing (adapted from [5])

ultra-short laser processing is shown in the Figure 2.2, energy diposition happens on

18
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time scale of pulse duration (fs) while ablation can last upto microsceond regime [5].

Figure 2.2: Schematic of time scale for ultra short pulse ablation (adapted from
[5])

In this project we aimed at automating the fs processing setup in the Femtosecond

Laser Lab at IISER Mohali.
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2.2 Automated femtosecond laser processing setup

Femtosecond laser processing setup is shown in Figure 2.3. The setup consists of

1. Ti:Sapphire laser which generate 2 mJ , 25 fs pulses with centeral wavelengh

about 800 nm at repetition rate of 1 kHz.

2. High speed electronic shutter with 6 mm aperture.

3. Neutral density filter (NDF).

4. Microscope with 4x, 10x, 20x, 40x, and 100x objectives; integrated with CCD

camera (5 MP ), and motorized x-y-stage.

5. Stage controller

6. Shutter controller

7. Computer with LabVIEW and Python3 installed.

The duration of laser illumination was controlled by controlling the open duration of

the shutter. The microscope stage, camera, shutter were controlled by custom-made

LabVIEW based software which is described in Appendix B. The computer that we

used had Intel core i5, 8 GB RAM and on-board integrated video card.

Figure 2.3: Schematic of the automated femtosecond laser processing setup

The software is written in two separate programming languages. LabVIEW based cus-

tom program FSLProcessor.vi controls several hardwares components and FSLPencil.py
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determine the laser illumination locations through the graphical software made in

Python3.

2.3 Flow diagram of the software

The software consists of two separate programs written in Python3 (FSLPencil.py)

and LabVIEW (FSLProcessor.vi) given in Appendix A, Appendix B respectively.

FSLPencil.py is GUI based on Tkinter [6] for Python3. With this program one can

draw arbitrary patterns on an image of the ROI and writes the coordinates of drawn

pattern into a text file. Figure 2.4 shows the flow diagram diagram of the combined

software.

Figure 2.4: Flow diagram of the software

FSLProcessor.vi take the text file as input which has three columns (x, y, shutter

state) and moves the stage to (x, y) position with the shutter stage (on/off).
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2.4 Results

fs laser drawn pattern on glass slide using 20x objective.

(a) A pattern on ROI drawn in FSLPencil.py

(b) fs laser drawn pattern on glass slide (Objective: 20x, Spot
size: 4.4µm, Average power: 3mW, Processing time: 19min

20sec)

Figure 2.5: (A) Pattern drawn in computer and (B) fs laser drawn pattern on
glass slide.
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2.5 Summary

A motorized high-speed XY microscope stage was automated in LabVIEW to move

on given (x, y) coordinate using both X and Y motors simultaneously. A high-speed

electronic shutter was interfaced with the same LabVIEW program. A GUI Python3

program was written to draw arbitrary patterns on an image of the region of interest.



Appendix A

Python program to draw arbitrary

patterns on the ROI

This is the python3 [7] code FSLPencil.py to draw arbitary pattern on the ROI image

taken by the camera in the setup. The program is graphical user interface based on

Tkinter [6] and Turtle graphics [8].

A.1 FSLPencil.py

1 from t u r t l e impor t ∗
2 from t k i n t e r impor t ∗
3 from t k i n t e r impor t messagebox

4 from t k i n t e r impor t s im p l e d i a l o g

5 from t k i n t e r impor t f i l e d i a l o g

6 from t k i n t e r . c o l o r c h o o s e r impor t ∗
7 from PIL impor t Image

8

9 r o o t = Tk ( )

10 r o o t . t i t l e ( ” 0.000000000000001 Second La s e r Labo r a to r y ” )

11 r o o t . r e s i z a b l e ( w idth=True , h e i g h t=True )

12

13 MainFrame = Frame ( root , bo r d e rw i d th =1, padx=5, pady=5)

24
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14 MainFrame . pack ( )

15

16 canvas = Canvas ( master = root , w idth=1366 , h e i g h t =670)

17 canvas . pack ( )

18

19 va r = S t r i n gVa r ( )

20 xyco r = Labe l ( root , t e x t v a r i a b l e=var , bg=”wh i t e ” , f g=” b l a c k ” )

21 xyco r . p l a c e ( x=1245 , y=2)

22

23 t = RawTurt le ( canvas )

24 t . speed (0 )

25 s c r e e n = t . g e t s c r e e n ( )

26 t . penup ( )

27 c a t F i l e = open ( ” t a r g e t . t x t ” , ”w” )

28 t c l i c k = ” r i g h t ”

29 Prev i ou sEven t = ”jump”

30 width , h e i g h t = 640 , 480 #Dimens ions o f the image

31 o r i g i n = (55 , 37 . 5 ) #Or i g i n o f the r e g i o n o f i n t e r e s t

32 P i x e l L e n = 0.15 #Length o f a p i x e l i n mm ( depends

o f the o b j e c t i v e )

33 de f q u i t ( ) :

34 r o o t . d e s t r o y ( )

35 de f o p e n f i l e ( ) :

36 f i l e n ame = f i l e d i a l o g . a s kopen f i l e n ame ( )

37 Image . open ( s t r ( f i l e n ame ) ) . c on v e r t ( ”RGB” ) . save ( s t r (

f i l e n ame ) [:−4]+” . g i f ” )

38 s c r e e n . bgp i c ( s t r ( f i l e n ame ) [:−4]+” . g i f ” )

39 de f l a b e l s c a l e ( ) :

40 t . c l e a r ( )

41 t . goto (0 , −265)
42 t . pendown ( )

43 t . w r i t e ( ”%.1 f m x %.1 f m ”%(640∗ P i x e l L e n ∗1000 , 480∗
P i x e l L e n ∗1000) , a l i g n=” c e n t e r ” , f o n t=(” A r i a l ” , 14 , ” normal

” ) )

44 t . penup ( )
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45 t . goto (0 , 0)

46 de f t r an s f o rm ( coord ) :

47 g l o b a l P i x e lLen , o r i g i n

48 x , y = o r i g i n [0]− coord [ 0 ] ∗ Pixe lLen , o r i g i n [1]− coord [ 1 ] ∗
P i x e l L e n

49 r e t u r n ( x , y )

50 de f f o r x ( ) :

51 g l o b a l P i x e l L e n

52 P i x e l L e n = 0.00176

53 l a b e l s c a l e ( )

54 de f t enx ( ) :

55 g l o b a l P i x e l L e n

56 P i x e l L e n = 0.000705

57 l a b e l s c a l e ( )

58 de f twentyx ( ) :

59 g l o b a l P i x e l L e n

60 P i x e l L e n = 0.00035

61 l a b e l s c a l e ( )

62 de f f o r t y x ( ) :

63 g l o b a l P i x e l L e n

64 P i x e l L e n = 0.000177

65 l a b e l s c a l e ( )

66 de f hundredx ( ) :

67 g l o b a l P i x e l L e n

68 P i x e l L e n = 7 .6 e−5
69 l a b e l s c a l e ( )

70 de f s e t o r i g i n ( ) :

71 g l o b a l o r i g i n

72 ox = s im p l e d i a l o g . a s k f l o a t ( ” Set o r i g i n ” , ” Ente r x

c o o r d i n a t e ” )

73 oy = s im p l e d i a l o g . a s k f l o a t ( ” Set o r i g i n ” , ” Ente r y

c o o r d i n a t e ” )

74 i f ox == None or oy == None or ox == 0.0 or oy == 0 . 0 :

75 pas s

76 e l s e :
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77 o r i g i n = ( ox , oy )

78 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t0 \n”%(ox , oy ) )

79 de f c l e a r ( ) :

80 t . c l e a r ( )

81 de f d r aw c i r c l e ( ) :

82 r a d i u s = s im p l e d i a l o g . a s k s t r i n g ( ” C i r c l e ” , ” Ente r r a d i u s

o f the c i r c l e (mm)” )

83 i f r a d i u s == None or r a d i u s == ’ ’ :

84 pas s

85 e l s e :

86 i = ( t . x co r ( ) , t . y co r ( ) )

87 i = t r an s f o rm ( i )

88 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( i [ 0 ] , i [ 1 ] ) )

89 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t1 \n”%( i [ 0 ] , i [ 1 ] ) )

90 t . b e g i n p o l y ( )

91 t . pendown ( )

92 r a d i u s = f l o a t ( r a d i u s ) / P i x e l L e n

93 t . c i r c l e ( r a d i u s )

94 t . penup ( )

95 t . e nd po l y ( )

96 coo rd s = t . g e t p o l y ( )

97 f o r i i n coo rd s :

98 i = t r an s f o rm ( i )

99 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( i [ 0 ] , i [ 1 ] ) )

100 i = ( t . x co r ( ) , t . y co r ( ) )

101 i = t r an s f o rm ( i )

102 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t0 \n”%( i [ 0 ] , i [ 1 ] ) )

103 de f d rawpo ly ( ) :

104 n = s im p l e d i a l o g . a s k s t r i n g ( ” Regu l a r Polygon ” , ” Ente r the

number o f s i d e s ” )

105 l = s im p l e d i a l o g . a s k s t r i n g ( ” Regu l a r Polygon ” , ” Ente r the

l e n g t h o f s i d e (mm)” )

106 i f n == None or l == None or n == ’ ’ o r l == ’ ’ :

107 pas s

108 e l s e :
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109 i = ( t . x co r ( ) , t . y co r ( ) )

110 i = t r an s f o rm ( i )

111 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( i [ 0 ] , i [ 1 ] ) )

112 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t1 \n”%( i [ 0 ] , i [ 1 ] ) )

113 t . b e g i n p o l y ( )

114 t . pendown ( )

115 l = f l o a t ( l ) / P i x e l L en

116 f o r i i n range ( i n t ( n ) ) :

117 t . f o rwa rd ( l )

118 t . l e f t (360/ i n t ( n ) )

119 t . penup ( )

120 t . e nd po l y ( )

121 coo rd s = t . g e t p o l y ( )

122 f o r i i n coo rd s :

123 i = t r an s f o rm ( i )

124 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( i [ 0 ] , i [ 1 ] ) )

125 i = ( t . x co r ( ) , t . y co r ( ) )

126 i = t r an s f o rm ( i )

127 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t0 \n”%( i [ 0 ] , i [ 1 ] ) )

128 de f h e l p i n d e x ( ) :

129 messagebox . show in fo ( ”Help I ndex ” , ” So r r y ! No con t en t

found . ” )

130 de f about ( ) :

131 messagebox . show in fo ( ”About . . . ” , ”Author : San jay Kapoor\
nema i l : s an j a ykapoo r@p ro tonma i l . com” )

132 de f h e l p ( ) :

133 messagebox . show in fo ( ”Help ?” , ” So r r y ! No con t en t found . ” )

134 de f p e n s i z e 1 ( ) :

135 t . p e n s i z e (1 )

136 de f p e n s i z e 2 ( ) :

137 t . p e n s i z e (2 )

138 de f p e n s i z e 3 ( ) :

139 t . p e n s i z e (3 )

140 de f p e n s i z e 4 ( ) :

141 t . p e n s i z e (4 )
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142 de f p e n s i z e 5 ( ) :

143 t . p e n s i z e (5 )

144 de f g e t c o l o r ( ) :

145 c o l o r = a s k c o l o r ( )

146 i f c o l o r [ 1 ] == None :

147 pas s

148 e l s e :

149 t . c o l o r ( c o l o r [ 1 ] , c o l o r [ 1 ] )

150 de f c o o r d i n a t e s ( even t ) :

151 g l o b a l va r

152 i = (683− even t . x , e ven t . y−335)
153 i = t r an s f o rm ( i )

154 xycoo r = ”%.4 f , %.4 f ”%( i [ 0 ] , i [ 1 ] )

155 va r . s e t ( xycoo r )

156 de f l i n e ( x , y ) :

157 g l o b a l t c l i c k

158 c l i c k = ” l e f t ”

159 i = t r an s f o rm ( t . p o s i t i o n ( ) )

160 t . pendown ( )

161 t . goto ( x , y )

162 j = t r an s f o rm ( t . p o s i t i o n ( ) )

163 i f t c l i c k == c l i c k :

164 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( j [ 0 ] , j [ 1 ] ) )

165 e l s e :

166 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( i [ 0 ] , i [ 1 ] ) )

167 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t1 \n”%( i [ 0 ] , i [ 1 ] ) )

168 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( j [ 0 ] , j [ 1 ] ) )

169 t c l i c k = c l i c k

170 de f f r e ehand ( x , y ) :

171 g l o b a l P r e v i ou sEven t

172 t . pendown ( )

173 t . goto ( x , y )

174 i = t r an s f o rm ( t . p o s i t i o n ( ) )

175 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( i [ 0 ] , i [ 1 ] ) )

176 Prev i ou sEven t = ” f r e ehand ”
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177 de f jump ( x , y ) :

178 g l o b a l t c l i c k , P r e v i ou sEven t

179 c l i c k = ” r i g h t ”

180 i = t r an s f o rm ( t . p o s i t i o n ( ) )

181 t . penup ( )

182 t . goto ( x , y )

183 j = t r an s f o rm ( t . p o s i t i o n ( ) )

184 i f t c l i c k != c l i c k or P r e v i ou sEven t == ” f r e ehand ” :

185 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t0 \n”%( i [ 0 ] , i [ 1 ] ) )

186 t c l i c k = c l i c k

187 Prev i ou sEven t = ”jump”

188 s c r e e n . o n c l i c k ( l i n e )

189 s c r e e n . o n c l i c k ( jump , btn=3)

190 t . ondrag ( f r e ehand )

191

192 menubar = Menu( r oo t )

193 Fi leMenu = Menu(menubar , t e a r o f f =0)

194 Fi leMenu . add command ( l a b e l=”Open” , command=o p e n f i l e )

195 Fi leMenu . a d d s e p a r a t o r ( )

196 Fi leMenu . add command ( l a b e l=” Ex i t ” , command=qu i t )

197 menubar . add ca scade ( l a b e l=” F i l e ” , menu=Fi leMenu )

198 Ob j e c t i v e L en s = Menu(menubar , t e a r o f f =0)

199 Ob j e c t i v e L en s . a dd r a d i o bu t t o n ( l a b e l=”4x” , command=f o r x )

200 Ob j e c t i v e L en s . a dd r a d i o bu t t o n ( l a b e l=”10x” , command=tenx )

201 Ob j e c t i v e L en s . a dd r a d i o bu t t o n ( l a b e l=”20x” , command=twentyx )

202 Ob j e c t i v e L en s . a dd r a d i o bu t t o n ( l a b e l=”40x” , command=f o r t y x )

203 Ob j e c t i v e L en s . a dd r a d i o bu t t o n ( l a b e l=”100 x” , command=hundredx )

204 menubar . add ca scade ( l a b e l=” Ob j e c t i v e ” , menu=Ob j e c t i v e L en s )

205 Se tO r i g i n = Menu(menubar , t e a r o f f =0)

206 Se tO r i g i n . add command ( l a b e l=” Se tO r i g i n ” , command=s e t o r i g i n )

207 menubar . add ca scade ( l a b e l=” Se tO r i g i n ” , menu=Se tO r i g i n )

208 PenS ize = Menu(menubar , t e a r o f f =0)

209 PenS ize . a dd r a d i o bu t t o n ( l a b e l=”1” , command=pen s i z e 1 )

210 PenS ize . a dd r a d i o bu t t o n ( l a b e l=”2” , command=pen s i z e 2 )

211 PenS ize . a dd r a d i o bu t t o n ( l a b e l=”3” , command=pen s i z e 3 )
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212 PenS ize . a dd r a d i o bu t t o n ( l a b e l=”4” , command=pen s i z e 4 )

213 PenS ize . a dd r a d i o bu t t o n ( l a b e l=”5” , command=pen s i z e 5 )

214 menubar . add ca scade ( l a b e l=”PenS ize ” , menu=PenS ize )

215 PenColor = Menu(menubar , t e a r o f f =0)

216 PenColor . add command ( l a b e l=”Choose Co l o r ” , command=g e t c o l o r )

217 menubar . add ca scade ( l a b e l=”PenColor ” , menu=PenColor )

218 Shapes = Menu(menubar , t e a r o f f =0)

219 Shapes . add command ( l a b e l=” C i r c l e ” , command=d r aw c i r c l e )

220 Shapes . add command ( l a b e l=”Polygon ” , command=drawpo ly )

221 menubar . add ca scade ( l a b e l=”Shapes ” , menu=Shapes )

222 C l e a r = Menu(menubar , t e a r o f f =0)

223 C l e a r . add command ( l a b e l=” C l e a r ” , command=c l e a r )

224 menubar . add ca scade ( l a b e l=” C l e a r ” , menu=C l e a r )

225 Help = Menu(menubar , t e a r o f f =0)

226 Help . add command ( l a b e l=”Help I ndex ” , command=he l p i n d e x )

227 Help . add command ( l a b e l=”About . . . ” , command=about )

228 Help . add command ( l a b e l=”Help ?” , command=he l p )

229 menubar . add ca scade ( l a b e l=”Help ” , menu=Help )

230

231 r o o t . c o n f i g (menu=menubar )

232

233 de f r e f r e s h ( ) :

234 s c r e e n . t r a c e r (100000)

235 canvas . a f t e r (1 , r e f r e s h )

236 r e f r e s h ( )

237 canvas . b ind ( ’<Motion> ’ , c o o r d i n a t e s )

238 r o o t . ma in loop ( )

239 i = t . p o s i t i o n ( )

240 i = t r an s f o rm ( i )

241 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t0 \n”%( i [ 0 ] , i [ 1 ] ) ) #

c l o s e the s h u t t e r a t l a s t p o i n t

242 c a t F i l e . w r i t e ( ”%.4 f \ t%.4 f \ t2 \n”%( o r i g i n [ 0 ] , o r i g i n [ 1 ] ) ) #go

back to the o r i g i n

243 c a t F i l e . c l o s e ( )

244 #Sanjay Kapoor ; ms14099 ; 16 . 07 . 2018



Appendix B

Custom LabVIEW program to

automate fs processing

B.1 Thorlabs MLS203-1 high speed motorized stage

The motorized stage is driven by a brush-less motor DC servo controller BBD202. The

Parameter Value

Travel 110mm× 75mm
Max speed 250mm/s
Acceleration 2000mm/s2

Min incremental movement 0.1µm
Home location accuracy 0.25µm
Max load 1kg
Setting time within 1µm 0.1s
Setting time within 0.1µm 0.6sec

Table B.1: Stage specifications

motorized stage (MLS203-1) specifications are given in the Table B.1. The stage can

be controlled by a joystick from thorlabs MJC001, computer program from thorlabs

APT User which controls one motor at a time or custom program made in LabVIEW.

LabVIEW is intrument interfacing software [9]. Following are the commands of

BBD202 used to made the part of LabVIEW program FSLProcessor.vi

1. HWSerialNum

32
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2. StartCtrl

3. SetJogStepSize

4. SetVelParams

5. SetAbsMovePos

6. MoveAbsoluteEx

7. GetPosition

8. StopCtrl

The LabVIEW program take absolute x-y coordinates (mm) and moves the stage to

the specified coordinates.

B.2 Uniblitz shutter driver VMMD-3

VMMD-3 is a three channel shutter driver it can control three LS6S2ZM1-100 shutters

simultaneously. But we need only one shutter to stop the laser beam. The shutter

is integrated with the setup through RS232 communication within same program

FSLProcessor.vi, following are the serial port settings and RS232 and see Table B.2

for commands of shutter controller.

• Baud rate 9600

• 8 data bits

• 1 stop bit

• No parity

• No flow control

• 8 commands are available

• 1 global address location for commands

• 8 local address location for commands



Channel# Event Decimal Hex Octal Binary ASCII

1 Open 64 40 100 01000000 @
1 Close 65 41 101 01000001 A
2 Open 66 42 102 01000010 B
2 Close 67 43 103 01000011 C
3 Open 68 44 104 01000100 D
3 Close 69 45 105 01000101 E

All Open 70 46 106 01000110 F
All Close 80 47 107 01000111 G

Table B.2: Shutter commands

Figure B.1: Overview of LabVIEW program for automated fs processing.
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Figure B.2: Block diagram of the LabVIEW program.



Appendix C

Optical delay line software

C.1 Peizo electric stack actuator

Peizo electric stack actuators with strain gauge is used in the delay line to introduce

time delay. Table C.1 shows the specifications of the PZT used.

Parameter Value

Motorized axes X, Y, Z
Travel range (open loop) 100 µm
Axial load capacity 40/40/32 N
Axial stiffness 1 N/µm
Vertical load capacity 30 N
Capacitance 1.8 µF
Close loop repeatability 30 nm
Closed loop resolution 4 nm
Closed loop travel 80 µm
Open loop resolution 0.4 nm
Resonant frequency at 105 g load 190/180/250 Hz
Resonant frequency at 300 g load 110/110/150 Hz
Resonant frequency at 80 g load 210/200/300 Hz
Resonant frequency unloaded 500/550/480 Hz
Weight 160 g

Table C.1: NPXYZ100SG specifications

36



Figure C.1: Configure tab of the program
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Figure C.2: Communication tab of the program
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Figure C.3: The scan tab of the LabVIEW program of optical delay line. Delay

Time (as) is optical delay step required in as. Travel Range is the scanning range
in µm. Acquire Time (ms) is the time for which PZT stays at a position dur-
ing scan. SCAN button initiates the optical delay scan with steps of Delay Time.
INTERRUPT button to interrupt/stop scan the scan. Progress Bar shows the scan-

ning progress.
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Figure C.4: Block diagram of the ODL LabVIEW program.
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