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Abstract

Molecular dynamics simulations are used to study the dynamics of polymers in an

implicit solvent, imposed by a Brownian thermostat. The dynamics of the system is

reduced to its normal coordinates, and its conformation to the model proposed by

Rouse is confirmed by analysing the scaling of normal coordinate correlation

relaxation times with monomer and mode number. The scaling is analysed for single

Gaussian chains of flexible and semiflexible polymers, with point mass monomers

and harmonic bonds. The semiflexible polymer chain is subjected to a normal

coordinate decomposition identical to that employed in the flexible case, which has

been found to hold in the limit of low bending rigidity. It is also found that the

introduction of explicit solvent particles and implementation of a dissipative particle

dynamics (DPD) thermostat shifts the scaling of normal coordinate relaxation times

towards the theoretical value predicted by the Zimm model, suggesting the

introduction of effective hydrodynamic interactions. The clustering effects induced

by introducing type-dependent deep potential wells(patches) along a heterogeneous

polymer chain is also studied. Attractive patches have also been introduced

randomly along rigid semiflexible polymer chains, which has been found to result in

the decrease of the chain’s persistence length.





Chapter 1

Introduction

From plastics and rubber to DNA and proteins, polymers are ubiquitous. Whether

they are artificially synthesised or naturally occurring, polymers are interesting large,

high molecular weight entities with a connected structure of usually a large number

of monomers, as boldly proposed by Staudinger(Staudinger 20) in 1920. The inter-

and intra- chain interactions of monomers result in properties that may be com-

pletely disconnected from their monomeric units. A tangible example would be the

extent of differences between the sweet smelling quickly evaporating organic molecule

styrene, which when polymerized produces the well known polystyrene, which is val-

ued for its shock resistant properties. Polymers can be of a single monomer type, like

polystyrene, which is made up of styrene monomers, or heterogeneous with respect to

monomer types, like the naturally occurring chitin. They can also show crosslinking,

facilitated by special monomers along the chain, or by accessory molecules such as

Actin-binding proteins(ABPs) which also act as facilitators(Dos Remedios 03). The

structural integrity attributed by crosslinking sees considerable representation of such

crosslinked polymeric networks in cellular settings, such as in the cytoplasm and the

extra-cellular matrix, where structural rigidity is critical for maintaining cell morphol-

ogy. Monomers in principle can contain any number of atoms, and the constituent

atoms and bonds can endow it with effective physical limitations which manifest it-

self as angular, torsional, and charge-based constraints. Abstracting a polymer to a

chain of monomers whose dynamics conform to these constraints allow for a coarse-

grained understanding of its dynamics. The polymer chain’s interactions with itself
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Chapter 1. Introduction

and neighbouring chains result in behaviour that is uncommon in liquids such as

methanol, water, acetone etc. One such characteristic is the glass transition of poly-

mers below a critical temperature to amorphous glasses, and its existence as a liquid

consisting of thermally agitated chains at temperatures above it. Polymeric liquids

however, do not exactly behave like substances such as water even at temperatures

above the glass transition temperature. Natural and artificial polymeric substances

around us such as chewing gum, latex, starch etc. behave like water in that they

fill the volume of a container of any shape, but at the same time, can exhibit prop-

erties such as elasticity when subjected to sudden deformations. Polymeric liquids

are also viscous, and the properties of viscosity and elasticity are termed together as

viscoelasticity. The origin of this viscoelastic nature lies in the constituents of the

liquid, which are the interacting polymer chains. Polymers can also undergo a partial

crystallization as opposed to a pure glass transition. The semicrystalline polymers

are generally more thermally stable and harder than purely glassy polymers, but the

crystalline regions tend to be more brittle(Seymour 03).

The scale of advancement computational techniques have blessed the field of theo-

retical polymer physics with cannot be underestimated. The advent of faster pro-

cessors, powerful graphics processing units(GPU), simulation packages such as the

Large-scale Atomic/Molecular Massively Parallel Simulator(LAMMPS), HOOMD-

Blue, Nanoscale Molecular Dynamics(NAMD) etc. and visualization tools such as

Visual Molecular dynamics(VMD) have revolutionized research capabilities, and have

helped push the limits of modelling towards large systems with particle numbers even

of the order of 1012. Polymers are usually modelled by a coarse grained approach,

where they are reduced to a “bare minimum” of functional entities, required for the

system to behave like the polymer in question. Understanding the dynamics of even

a single polymer chain is a complex problem as it represents a system of interacting

particles. The interactions can be broadly classified into bonded and non-bonded

interactions, where the bonded category contains bonding, bending and torsional po-

tentials, and the non bonded interactions include potentials like Lennard-Jones (LJ),

electrostatic, magnetic etc. A common method of analysing dynamics of single-chain

systems is to decompose it its normal coordinates, so as to obtain independent solu-

2



1.1. Langevin and Brownian Dynamics

tions to the differential equation(DE) that governs its dynamics; a technique which

will extensively be used in the work documented in this thesis.

1.1 Langevin and Brownian Dynamics

A molecular scale model of a system such as that of a polymer in a solvent must

incorporate terms that take collisions of thermally agitated solvent particles with

those of the polymer into account. The Langevin equation, which is a stochastic

DE can be used for modelling such systems(Langevin 08). The stochastic part of

the DE mimics the random collisions of the solvent with the particles of interest. It

must be noted that Langevin dynamics is an implicit solvent approximation. This

equation also takes the viscosity of the solvent into consideration, and implements

it through a drag term. Temperature of the setup is contained as a linear scaling

factor in the stochastic force term, and translates to an increase in the strength of

random collisions as the temperature of the solvent is increased. By acting as a

thermostat, the Langevin dynamics implementation effectively samples a canonical

ensemble. The Langevin equation for a particle at position x, in a solvent of viscosity

η, at temperature T is:

mẍ = −∇U(x)− ηẋ + r(t). (1.1)

Here, η is the product of the mass,m, by γ, which is the inverse of the damping time.

The damping time is effectively the amount of time it takes for the energy of the

particle to be dissipated. r(t) is a delta correlated random vector, which is nowhere

differentiable, whose integral is a Wiener process. U(x) is the potential at the point

x, and contains all bonded and non-bonded potentials, U = Ubonded + Unon−bonded.

〈
r(0) · r(t)

〉
= 2mγkBTδ(t). (1.2)

The Langevin equation can be simplified to a first-order DE, by assuming that the

dynamics is over-damped. In this regime, γ −→∞ since the damping time approaches

zero. Over-damped Langevin dynamics is known as Brownian dynamics, and is used in

all the simulations, unless specified otherwise. The equation for Brownian dynamics,

3



Chapter 1. Introduction

along with those leading up to it are as follows:

mẍ = −∇U(x)− ηẋ + r(t) (1.3)

ẋ = − 1

mγ
∇U(x) +

1

mγ
r(t), since γ −→∞ (1.4)

Acceleration of a particle is not defined in a Brownian regime, and thus the integration

technique used will be different from the standard velocity-Verlet algorithm. This

technique, called the Euler-Maruyama algorithm, will be addressed in the Chapter 5.

1.2 Dissipative Particle Dynamics

As mentioned in the previous section, the Langevin equation assumes an implicit

solvent, and is thus a rather simplified approximation of the solvent. While not

assuming the existence of explicit solvent particles is computationally favourable,

a more realistic representation of the system demands the use of explicit solvent

particles. Moreover, the Langevin equation does not contain a term that accounts

for hydrodynamic interactions, which exist in most dense solvents. Although these

properties can be incorporated by using special potential terms, as will be elaborated

in sect.2.3 on the Zimm model, a Dissipative Particle Dynamics (DPD) thermostat has

been found to result in Zimm like scaling, for simulations of flash nanoprecipitation

of block copolymers(Spaeth 11), which motivated a probing of this shift in scaling for

single flexible polymer chains(sect.2.3). The DPD equation of motion by construction,

contains a dissipative force term, a conservative soft repulsive force, and an impulsive

random force(Groot 97). The DPD equation is:

fi =
∑
j 6=i

(
FC
ij + FR

ij + FD
ij

)
(1.5)

FC
ij = aij

(
1− rij

rc

)
r̂ij (1.6)

FR
ij =

σijθij√
∆tDPD

(
1− rij

rc

)
r̂ij (1.7)

4



1.3. Flexible Polymers

FD
ij = −γij

(
1− rij

rc

)2(
r̂ij · vij

)
r̂ij (1.8)

Here, aij is the maximum repulsion between particles i and j, located at ri and rj

respectively. r̂ij = (ri − rj)/rij, and vij = vi − vj is the relative velocity of particle i

with respect to particle j. θij is a Gaussian random number with unit variance and

zero mean. σij is called a noise parameter, and follows:

σ2
ij = 2mγijkBT.

γij is the friction coefficient, and similar to γ in the Langevin dynamics paradigm.

Comparing the above with eqn.1.2 shows that the random force, r(t) ≡ σθ(t). The

values of γ, σ, and a can be set for different particle types, and thus will effectively

represent interactions between solvent particles and particles of the system.

1.3 Flexible Polymers

A polymer chain is termed flexible, when it has no bond rotational constraints. This

absence of bending or torsional rigidity subsequently implies that the bonded part of

the total potential, Ubonded, consists only of a bond potential(rigid, harmonic, FENE

etc.). A flexible polymer is the simplest case of a connected system of monomers

and has been statistically analysed using rigid-bond models such as the freely jointed

chain and freely rotating chain. The Gaussian chain(GC) model, which assumes

bond lengths to be normally distributed about an equilibrium displacement, can also

be used for modelling flexible polymers. The GC model is similar to one which

assumes harmonic bonds to exist between monomers, and is also called the bead-spring

model. Thus, this model can also be viewed as an N-mass-and-spring system. The

mathematical simplicity of this model allows for a straightforward normal coordinate

formulation of the polymer chain, which will be elaborated on in Chapter 2.
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Chapter 1. Introduction

1.4 Semiflexible Polymers

The introduction of bending rigidity to an otherwise flexible polymer manifests as

properties that can be observed in both single chains, as well as polymer networks.

These polymers are called semiflexible polymers. Semiflexible polymers have an an-

gle dependent term in its Hamiltonian, which imposes an energetic cost on bending.

Thus, these polymers tend to maintain a straight conformation, provided that the

thermal fluctuations are minimal. A model for such polymers is called the Worm-

like chain(WLC) model, which is a continuous form of a model first proposed by

Kratky and Porod(Kratky 49). The Kratky-Porod (WLC) model has also been used

in the analysis of DNA(Marko 95)(Jian 97)(Mazur 07) and charged polyelectrolytes

(Skolnick 77). A variant of the WLC model with a stretched relaxation spectrum,

called the glassy wormlike chain (GWLC), has also been formulated, and has been

found to predict mechanical observables conforming to those observed in cell and re-

constituted cytoskeletal systems(Kroy 07).

The persistence length, which is defined as the distance after which the correlation

between tangent vectors vanishes, is a measure which reflects the stiffness of the poly-

mer. Unlike the case of flexible polymers, the bending rigidity that is introduced

makes normal coordinate decomposition rather difficult, and thus, techniques em-

ployed for the flexible polymer case work only as an approximation in the semiflexible

case. These issues are addressed in detail in Chapter 3. What makes semiflexible

polymers an important research topic is the representation of these polymers in bi-

ological systems, especially at the cellular level. The cytoskeletal protein globular

actin, or G-actin, polymerizes to form filamentous actin, or F-actin, which is a semi-

flexible polymer. Another cell-scale semiflexible polymer is collagen, which is present

in the extra-cellular matrix. The role of F-actin in maintaining the cell’s morphology

could not have been executed effectively had it been a flexible polymer, since flex-

ible polymers cannot form rigid networks because of the absence of chain stiffness.

F-actin has a persistence length which is comparable to its usual contour length,

whereas microtubules, another kind of cytoskeletal proteins, are much more rigid,

with the persistence length about 102 times the contour length(Broedersz 14). The

6



1.5. Rouse and Zimm Models

elastic response of semiflexible polymers is non-trivial and depends strongly on the

ratio between persistence and contour lengths, with the maximum response shown by

polymers with persistence lengths of the order of contour lengths, as is the case with

F-actin. The response also changes from being isotropic(independent of the angle of

force application) when the ratio is less than 1, to being anisotropic(angle dependent

response) as the ratio approaches and goes beyond 1(rigid polymers)(Kroy 96). The

elastic properties of semiflexible polymers have also been found to be ensemble depen-

dent, with constant-extension ensembles showing qualitative differences in properties

when compared to constant-force ensembles(Dhar 02). The viscoelastic properties of

semiflexible biopolymers can also been probed using single-molecule techniques, such

as Fluorescence Resonant Energy Transfer(FRET), through the correlation function

of single molecules(Yang 02). The use of single-polymer measurement techniques of

such properties is termed as microrheology.

1.5 Rouse and Zimm Models

The dynamics of polymers in a solution by studying the Brownian motion of the

monomers was first proposed by Rouse(Rouse Jr 53). Rouse employed the bead-spring

model, where the equations of motion of the monomers was given by the Langevin

equation, in the over-damped Brownian limit. The Rouse model is a physically simple

model, which, in theta conditions, does not take into consideration excluded volume

interactions. Most importantly, it also disregards the hydrodynamic interaction. The

latter results in certain discrepancies in the light of empirical data, which will be

addressed in Chapter 2. The shortcomings of the Rouse model were overcome by

Zimm’s model, which made the important change to the mobility tensor to account

for hydrodynamic interactions, which plays a considerable role in polymer dynam-

ics in dense solutions(Zimm 56). The introduction of explicit solvent particles in

a Langevin thermostat has also been found to result in conformation to the Zimm

model’s predictions(Dünweg 93), similar to the DPD approach studied in this work.
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1.6 Many chain systems and polymer networks

The interesting dynamical properties of single polymer chains lead to a variety of novel

phenomena when the concentration of such entities increase, or the polymer chains are

fixed by crosslinking to form networks. The single-chain case can be assumed to be the

vanishingly dilute limit of the polymer solution. With the increase in concentration,

many-chain effects manifest as changes in the dependence of macroscopic quantities

(such as the osmotic pressure(Noda 81)) on the chain concentration(Doi 88). Semi-

flexible polymers, whose dynamics depend strongly on its stiffness, can form rigid

crosslinked networks, especially in biological systems, with network properties such as

elastic moduli which depend on crosslinking density, mesh size, and persistence length

of the constituent polymer chains. The stress-response of the network and the spatial

distribution of microscopic deformations have also been found to be dependent on the

relative magnitudes of the bending force and bond force constants(Head 03), thereby

linking the microscopic properties of the individual polymer chains with macroscopic

phenomena. The difficulty in the analytical treatment of semiflexible polymer chains

is experienced not only in the single-chain, but also in many-chain systems. In the

highly concentrated (tightly entangled) regime (i.e. mesh size smaller than persis-

tence length), experimental observations were found to directly contradict with prior

theories pertaining to the dependence of the plateau modulus to chain and solution

parameters(Schuldt 16). This was further corroborated by Tassieri(Tassieri 17) in

the light of previous findings(Tassieri 08a)(Tassieri 08b). A comprehensive theory of

many-chain semiflexible polymer systems is yet to be formulated.

8



Chapter 2

Flexible Polymers

2.1 The Rouse model

Let a flexible polymer consist of N monomers, whose position vectors are given as

Rn (n ∈ {1, 2, ..., N}), and be subjected to a Brownian thermostat. The Brownian

equation can be written in the form of the Smoluchowski equation (given that the

diffusion constant is position independent)(Lax 60) as,

∂Rn(t)

∂t
=
∑
m

Hnm ·
(
−∂U
∂Rm

+ fm(t)

)
+

1

2
kBT

∑
m

∂

∂Rm

·Hnm (2.1)

The mobility tensor defines the relationship between the velocity of a particle n and

the force applied on it by all other particles.

vn =
∑
m

Hnm · Fm (2.2)

For the Rouse model, hydrodynamic interactions and excluded volume interactions

are not considered. The latter can be justified by assuming Θ condition. The absence

of hydrodynamic interactions is encoded in the mobility tensor, which, for the Rouse

model, has the form:

Hnm =
I

ζ
δnm

9



Chapter 2. Flexible Polymers

where ζ is the drag coefficient, mγ. Using the Rouse approximation of the mobility

tensor, the Brownian equation takes the simple continuous form:

ζ
∂Rn(t)

∂t
=
−∂U
∂Rn

+ fn(t), (2.3)

similar to eqn.1.3. In the under-damped regime, the Rouse model equation takes the

form:

m
∂2Rn(t)

∂t2
=
−∂U
∂Rn

−mγ∂Rn(t)

∂t
+ fn(t) (2.4)

where m is the mass of the monomer, γ is the kinematic viscosity of the solvent, in

units of time−1, which is equivalent to the inverse of damping time as mentioned in

sect.1.1, and mγ is the drag coefficient ζ. In eqn.2.3 and eqn.2.4, fn(t) is a random

Gaussian force(fn ≡ r(t) in sect.1.1) with the properties:

〈
fn(t)

〉
= 0

〈
fn(0) · fm(t)

〉
= 2mγkBTδnmδ(t). (2.5)

The bond potential used is a harmonic potential of the form:

U bond
i = k

(
|Ri+1 −Ri| − b

)2
(2.6)

where b is the equilibrium bond length, and k is the force constant. If we assume each

bonded segment to be of a vanishingly small length, the polymer can be approximated

to a space curve parameterised by n. In the continuous limit, the Brownian equation

for the bead spring model takes the form:

ζ
∂Rn(t)

∂t
= k

∂2Rn(t)

∂n2
+ fn(t) (2.7)

The harmonic term is a second derivative with respect to the parameter n, and will

clearly reflect the nearest bonded neighbour interaction, as mentioned above, when

discretised. In order to overcome this interaction terms, normal coordinates are em-

ployed, as will be shown in the next section.

10



2.2. Normal coordinates

2.2 Normal coordinates

Since the flexible polymer represents an N-interacting system, whereby the force on

a particle i depends on the positions of the i− 1 and i+ 1 particles, solutions to the

DE capable of independent motion are the normal coordinates of the system. The

normal coordinates of the polymer is given by(Doi 88):

Xp ≡
1

N

∫ N

0

dn cos

(
pπn

N

)
Rn(t) with p = 0, 1, 2, ... (2.8)

This can be discretized to give:

Xp(t) =
1

N

N−1∑
n=0

Rn(t) cos

(
pπ

N

(
n+

1

2

))
(2.9)

The normal coordinates, when applied to the continuous form of the Brownian equa-

tion reduces it to a first order DE, of the simple form:

ζp
∂Xp(t)

∂t
= kpXp(t) + fp(t) (2.10)

Where ζp and kp are the effective drag coefficient and force constant respectively.

The exact form of these quantities are dependent on whether the polymer is observed

from its center of mass frame or not (Refer Chapter 5). However, the scaling of these

quantities with N and p holds true for both frames of reference, and for the Rouse

model, kp ∝ p2, kp ∝ 1/N , and ζp ∝ N . Using Xp, the positions of the monomers are

given as:

Rn = X0 + 2
∞∑
p=1

Xp cos

(
pπn

N

)
(2.11)

All quantities depending on the positions of the monomers can be converted into the

normal coordinate form and the correlation of these functions can give an insight into

the normal mode timescales that are contained in it. From eqn.2.10, eqn.2.5, and

remembering that the Xps are capable of independent motion, we get the general

normal coordinate correlation:

〈Xpα(0) ·Xqβ(t)〉 = δpqδαβ
kBT

kp
e
−t
τp , (2.12)

11
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Figure 2.1: ln(1/τp) as a function of ln(p) for the first 20 modes, for flexible polymers
of different lengths. They all follow the Rouse scaling given by τp ∼ p−2 (see eqn.2.13),
irrespective of monomer number.

Where τp is the relaxation time of the pth normal mode, and is related to the first

normal mode, which is also the longest mode, by:

τp =
τ1
p2

(2.13)

τ1 =
ζ1
k1
. (2.14)

This scaling of τp with p−2 can be clearly seen for polymers of various lengths in

Fig.2.1. The inverse quadratic scaling gets altered with the introduction of even a

slight bending rigidity, and can thus be means of distinguishing flexible polymers from

semiflexible ones. This will be addressed in Chapter 3. Another clear-cut distinction

between flexible and semiflexible polymers can be obtained by looking at the mean-

square mode amplitude 〈X2
p(0)〉, which for flexible polymers is given as:

〈X2
p(0)〉 =

kBT

kp
=⇒ 〈X2

p〉 ∝ p−2 (2.15)

The p−2 dependence is shown in Fig.2.2, for various monomer numbers. However,

when a bending rigidity is introduced, the p dependence of the mean-square mode

amplitude changes drastically (Refer eqn.3.10 and Fig.3.3). Plotting the ratio of the

log of the correlation given by eqn.2.12 to time, ln〈Xp(t) · Xp(0)〉/t, as a function

of time, reflects the relaxation time of the normal coordinate correlation, when it

assumes a constant value. This can be seen in Fig.2.3, where the inverse of correlation

12



2.2. Normal coordinates

●

●

●

●
●

●
●
●
●●●●●●●●●●●●

■

■

■
■

■
■

■
■
■■■■■■■■■■■■

▲

▲

▲
▲

▲
▲

▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲

1 2 5 10 20

0.1

1

10

100

p

<
X
p
2
>

● 75 monomers

■ 150 monomers

▲ 250 monomers

p
-2 scaling

Figure 2.2: 〈X2
p(0)〉 as function of p, for polymers of various lengths. The p−2 scaling

is as predicted by the Rouse model of a flexible polymer chain (see eqn.2.15).
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Figure 2.3: Plot of Z(t) = ln〈Xp(t) · Xp(0)〉/t as a function of t, for a 75 monomer
long flexible polymer and p=1,3,5. The value of Z(t) at the plateaus is equal to 1/τp.

relaxation times(1/τp) of the normal coordinates 1, 3, and 5 are the Z(t) values at the

plateau-like regions in the plot. The breaks in the plot correspond to the correlation

assuming negative values, for which the logarithm is not defined.

The correlation time of the end-to-end vector can be derived by writing it in terms

of normal coordinates, and using eqn.2.12:

P(t) = RN(t)−R0(t)

P(t) = −4
∑
p:odd

Xp(t)
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Figure 2.4: ln(1/τ1) as a function of ln(N). This reveals the scaling of 1/τ1 with N ,
which follows well with the Rouse model prediction.

〈P(t) ·P(0)〉 = −16
∑
p:odd

〈Xp(t) ·Xp(0)〉

〈P(t) ·P(0)〉 = −16
∑
p:odd

3kBT

kp
e
−t
τp (2.16)

From the eqn.2.16, the maximum contribution to the end-to-end vector correlation

relaxation time comes from the first normal mode, and the successive modes have con-

tributions which decrease rapidly, which follows from eqn.2.13 . The longest relaxation

time of 〈P(t) · P(0)〉 is called the rotational relaxation time τr of the polymer. This

relaxation time is equal to τ1, and from eqn.2.14, it is predicted that τr ≡ τ1 ∝ N2,

for the Rouse model. This trend can be clearly observed in Fig.2.4. This scaling

however, is not experimentally observed for dilute solutions in Θ conditions, since the

assumption of absence of hydrodynamic interactions is erroneous. This discrepancy

was theoretically tackled by Zimm, whose model will be discussed in the next section.

2.3 The Zimm model

The purpose of this Brownian dynamics theoretical elaboration of this model is purely

to round off the discussion on the Rouse model by introducing the hydrodynamic in-

teraction term in the mobility tensor. This approach is not implemented in this work,

but the results are rather arrived at using an explicit solvent and a DPD thermostat.
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to Rouse(N−2) and Zimm(N−1.5) scaling. The Rouse model conforming data is for
the implicit solvent devoid of hydrodynamic interactions, and the data for the Zimm
model is for explicit solvent case, with the DPD thermostat.

As mentioned in the previous section, the Rouse model does not take into consid-

eration hydrodynamic interactions, which are capable of affecting the dynamics of

polymer chains, especially in dense media. The hydrodynamic interaction is, sim-

ply put, a “push” experienced by particles around a particle that experiences some

force which causes its motion. This interaction depicts a dispersion of energy among

neighbours, centered along the line of contact. The mobility tensor defines a veloc-

ity field, in response to a force, as given in eqn.2.2. The difference to the Rouse

model introduced by Zimm was in the mobility tensor term, which was changed from

Hnm = Iδnm/ζ to:

Hnn =
I

ζ

Hnm =
1

8πηs|rnm|
[

ˆrnm ˆrnm + I
]
for n 6= m

Here, ηs is the viscosity of the solvent, and rnm = Rn − Rm. For this term of the

mobility tensor,
∂

∂Rm

·Hnm = 0

Thus, from eqn.2.1, we get the Brownian equation for a general mobility tensor,

∂Rn(t)

∂t
=
∑
m

Hnm ·
(
−∂U
∂Rm

+ fm(t)

)
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Chapter 2. Flexible Polymers

For the Θ condition, in the continuous limit, we obtain the Zimm model equation(Zimm 56),

∂Rn(t)

∂t
=
∑
m

Hnm ·
(
k
∂2Rn(t)

∂n2
+ fm(t)

)
(2.17)

We can see that the major difference between the mathematical forms of the Rouse

and Zimm model lies in the summation over the product with the elements of the

mobility tensor. The same normal coordinates used in the Rouse model are used in

this model and predicts a rotational relaxation time τr ∝ N3/2.

As mentioned in sect.1.2, a DPD thermostat can be employed to mimic a realistic

system with explicit solvent particles, which can interact purely by a soft repulsion,

along with separate stochastic and dissipative terms. Employing a DPD thermostat

for the single flexible chain case, along with explicit solvent particles, shifts the scaling

of the correlation relaxation times of the end-to-end vector from a Rouse scaling, as

N2, towards a less steep Zimm scaling of N3/2. This shift in scaling, although subtle,

can be seen in Fig.2.5. A possibly better shift to Zimm scaling might be observed

at higher solvent particle densities, ρ, which is 1 in this case. The dynamics of the

system should also depend on the parameters of the DPD thermostat used, such as

the maximum repulsive force, aij, and the cutoff, rc.
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Chapter 3

Semiflexible Polymers

3.1 The Semiflexible Hamiltonian

Semiflexible polymers are different from their flexible counterparts, in that a bending

rigidity is introduced in its Hamiltonian, which imposes an energetic cost to bend-

ing, thus rendering these polymers approximately straight up to a certain persistence

length, at non zero temperatures. The model for semiflexible polymers was published

in 1949 by Kratky and Porod(Kratky 49), which has since been mathematically ide-

alised to a continuous model called the wormlike chain (WLC) model. Unlike purely

flexible polymers, which try to maximize conformational entropy, there is an opti-

mization between entropic and energetic costs in the case of semiflexible polymers.

3.2 Kratky-Porod Model

The Kratky-Porod model assumes a polymer chain with bonds of a fixed length l,

and a bending rigidity that favours a straight conformation. The bending potential

is given as:

Ubend = κ
N−1∑
i=2

(1 + cosϑi) (3.1)

Where ϑi is the bond angle between the two bonds that meet at monomer iThe

Kratky-Porod equation, which gives 〈R2〉 as a function of the separation between

17



Chapter 3. Semiflexible Polymers

monomers and is also one of the few analytical relations pertaining to this model, is

arrived at from the freely rotating chain model. As a measure of stiffness, we look at

how a bond vector(say the first), l1 is oriented with respect to the end to end vector,

R:
〈R · l1〉

l
=
∞∑
j>1

〈cos(θ1,j)〉.

For a stiff polymer the angle of deviation would be close to zero. In the long chain

limit (L,N −→∞) the above reduces to the definition of the persistence length:

lp =
l

1− cos(θ)
≈ −l

ln
[

cos(θ)
] (3.2)

The mean square end-to-end vector of this model is:

〈R2〉
Nl2

=
1 + cos(θ)

1− cos(θ)
− 2 cos(θ) + cosN+1(θ)

N [1− cos(θ)]2

substituting the expression for the persistence length into the above, we get,

〈R2〉 = Nllp[1 + cos(θ)]− l2p2 cos(θ)[1− cosN(θ)]

For small angles, we can use the Taylor series expansion of cos(θ) and truncate it after

the quadratic terms. Thus,

cosN(θ) ≈
(

1− θ2

2

)N
≈ e

−Nθ2
2 = e−L/lp

Assuming a vanishingly small bond length converts the discrete polymer model to

an inextensible space curve, parametrised by the arc length. In this limit, N −→

∞, l −→ 0 and L = Nl. Using this and the cosN(θ) approximation in the expression

for 〈R2〉, we get the Kratky-Porod equation:

〈R2〉 = 2Llp − 2l2p[1− e−L/lp ] (3.3)

The equation above can be used to determine the persistence length of a polymer

chain from experimental data, among other techniques(Zhang 19). This technique

has been employed in finding the persistence lengths of DNA(Beuwer 16)(Kang 17).
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3.2. Kratky-Porod Model
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Figure 3.1: Mean square bond length distribution, 〈R2〉, as a function of monomer
index separation, b = |n −m|. Each curve corresponds to an average over the poly-
mer chain, and over 5 × 106 timesteps, at three different intervals. The distribution
progressively conforms to the Kratky-Porod prediction, with later intervals.

It can also be clearly seen from the equation above, how the semiflexible polymer case

can give the rigid rod and flexible polymer as limiting cases:

〈R2〉 = L2 for L/lp −→ 0 (Rigid rod)

〈R2〉 = 2Llp for L/lp −→∞ (Flexible chain)

The ratio of contour length to the persistence length is used as a measure of polymer

stiffness. For a general b = |n−m| where n and m are monomer indices, we get the

more general equation:

〈R2〉(b) = 2bllp − 2l2p[1− e−bl/lp ] (3.4)

In (Auhl 03), the Kratky-Porod equation is used as an equilibration criterion. This

conformation to eqn.3.4 is clearly seen in Fig.3.1, where the time averages over later

intervals coincide with the Kratky-Porod prediction, suggesting the equilibration of

the polymer chain. In the continuous analogue of the Kratky-Porod model, the WLC

model, the bond vectors are equivalent to the tangent vectors located at each point

on the curve. The energy functional, which is quadratic in the local curvature is given

as:

H = κ

∫ L

0

dn(
∂t

∂n
)2 (3.5)
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Figure 3.2: Probability distribution of lp of a 75 monomer long polymer chain, with
κ = 7.5, at kBT = 1. The mean value of the persistence length is, lp = 7.516, which
is close to the theoretical lp, which is 7.5.

where t(s) = ∂r
∂n

is the tangent vector at s. The persistence length is also defined as

the distance over which the correlations between tangent vectors vanishes. This is

given by: 〈
t(n) · t(n′)

〉
= e−|n−n

′|/lp .

Fig.3.2 shows the distribution of persistence lengths, computed based on eqn.3.2. The

theoretical value of persistence length for a polymer chain with bending rigidity κ at

a temperature T , is given by lp = κ/kBT . The persistence length distribution in

Fig.3.2 is centered close to 7.5, which also is the value of κ/kBT . However, it is found

that the simulation based value of persistence length does not conform to κ/kBT for

higher values of κ. The causes and dependencies of the same are yet to be probed. A

recent publication by Zhang and colleagues(Zhang 19), which lists various methods

of extracting information about persistence length from simulation data, also report

a deviation of simulation data, from theoretical predictions.

3.3 Normal mode analysis

The analytically exact results pertaining to the WLC model are only in the limits of

rigid rods or flexible polymers. Steinhauser proposed a normal coordinate decompo-
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3.3. Normal mode analysis

sition of the semiflexible polymers(Steinhauser 08), similar to that used in the case of

flexible polymers(Doi 88), in the limit of small lp/L. The application of Hamilton’s

principle to eqn.3.5, to get the bending force(Harnau 96), is given as,

FB(n, t) = −lpkBT
∂4

∂n4
r(n, t)

and will give a 3 particle bond dependent term when discretized (Doi 88). Although

the WLC model assumes an inextensible chain, which can be imposed by the con-

dition |t(s)| = 1, Steinhauser uses the bend-resisting force as an extension to the

Rouse model for a bead-spring model, and thus, in the continuous limit, results in an

equation similar to eqn.2.7 with the added term for the bending force. This method is

derived from Harnau, who arrives at this form by applying Hamilton’s principle to the

Lagrangian of the polymer, which, after substituting for the Lagrangian multipliers,

results in the equation of motion at point r(n, t),

ζ
∂R(n, t)

∂t
=

3kBT

2lp

∂2R(n, t)

∂n2
− 3kBT lp

2

∂4R(n, t)

∂n4
+ f(n, t). (3.6)

In the limit of small lp/L, normal coordinates of the form used in the Rouse model

(eqn.2.8) can be used as good approximations of semiflexible polymers(Paul 97) (Krushev 02)

(Guenza 03) (Bulacu 05). Thus, substituting eqn.2.11 in eqn.3.6, and multiplying by

2 cos
(
pπs
L

)
and integrating over n gives:

2Lζ
∂

∂t
X̃p(t) =

−6kBTπ
2p2

2Llp
X̃p(t)−

6lpπ
4p4

2L3
X̃p(t) + f(t). (3.7)

This leads to the effective equation,

ζp
∂

∂t
X̃p(t) = −ksemip X̃p(t) + f(t) (3.8)

where the force constant is:

ksemip =
(
3kBT lpπ

4p4
)
/L3 +

(
3kBTπ

2p2
)
/(Llp)

Since eqn.3.8 is decoupled for each p, the correlation of the normal coordinates gives,
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Figure 3.3: 〈X̃2
p(0)〉 as a function of p, for a 75 monomer long polymer, with increasing

stiffness(lp/L). The dashed lines correspond to the ideal Rouse and p−4 scaling, which
respresent the two terms in eqn.3.10. The flexible case, lp/L = 0 conforms to the p−2

scaling, whereas the stiffer chains have a p−4 dependence.

〈
X̃p(t) · X̃p(0)

〉
=
〈
X̃2
p(0)

〉
e−t/τ̃p ,

where the correlation relaxation time is given by,

τ̃p =
ζp

ksemip

=

[
3kBTπ

2

2L2ζlp
p2 +

3kBT lpπ
4

2NL3ζ
p4

]−1
, (3.9)

and the mean-square mode amplitude, 〈X̃2
p(0)〉 is

〈X̃2
p(0)〉 =

kBT

ksemip

=

[
3π2

Llp
p2 +

3lpπ
4

L3
p4

]−1
. (3.10)

The scaling of the mean-square mode amplitude with p is shown in Fig.3.3, for different

lp/L values. An increase in this ratio is a consequence of increasing the bending

rigidity. The dependence for a purely flexible polymer of 75 monomers is also plotted

along with that of semiflexible polymers, along with lines corresponding to pure p−2

and p−4 dependence. The flexible polymer follows the Rouse prediction of p−2, as was

previously shown in Fig.2.2. However, as bending rigidity is introduced, there is a

clear shift towards the p−4 scaling. This difference in scaling can be seen to become

more pronounced as the lp/L increases. However the p−2 dependence can be seen in

the polymer chain with lp/L as 0.1 for the first few modes, which then transitions to
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represents an N−3 scaling, followed by all the chains, as predicted by eqn.3.11.

a p−4 scaling as the mode number increases. This shift in scaling suggests that the

normal mode treatment for small lp/L with simultaneous quadratic and biquadratic

p dependence is justified, a posteriori.

Using a fixed ratio of lp/L in eqn.3.9 and assuming that the contour length L ∝ N

gives,

τ̃p =
ζp

ksemip

=

[
3kBTπ

2

2L3ζ

(
L

lp

)
p2 +

3kBTπ
4

2NL2ζ

(
lp
L

)
p4

]−1

τ̃p =
ζp

ksemip

=

[
3kBTπ

2

2N3l3ζ

(
L

lp

)
p2 +

3kBTπ
4

2N3l3ζ

(
lp
L

)
p4

]−1
=⇒ τ̃p ∝ N3. (3.11)

This scaling can be seen in Fig.3.4, where ln(1/τ̃1) is plotted as a function of ln(N)

for different lp/L. The N3 scaling is pronounced even for polymers with persistence

lengths of the order of the order of the contour length, which is much greater than

the low bending rigidity regime where the treatment by Steinhauser is believed to

hold. However, the scaling of τ̃p with p, is sensitive to the rigidity of the polymer

chain, as can be seen in Fig.3.5. There is a clear deviation from the theoretical

prediction(eqn.3.9) for higher modes in the larger lp/L case, suggesting the limitation

of the normal coordinate treatment to low values of lp/L. An additional factor of 0.25

to the term biquadratic in p is required to make the theoretical value of τ̃p conform

with the simulation data. The origin of this factor is yet to be determined. τp as a

function of p for a 75 monomer long flexible polymer has also been plotted along with
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Figure 3.5: τ̃p as a function of mode number p for a 75 monomer polymer, for different
values of lp/L. The solid lines correspond to the theoretical prediction of eqn.3.9, with
a factor of 0.25 in the term biquadratic in p. Although the p dependence predicted by
eqn.3.9 holds for lower mode numbers, there is a clear deviation in the stiffer chains,
as mode number increases.

the increasingly rigid polymers, to illustrate the change in behaviour with introduction

of bending rigidity. It has already been shown in Fig.2.1 that the flexible polymer

follows a pure p−2 scaling.
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Patchy Polymers

The adsorption of polymer chains on heterogeneous surfaces is a long studied problem,

using theoretical techniques such as variational procedures(Huber 98), computational

modelling(Balazs 91) and experimental methods(Rockford 99)(Elbert 98). However,

an equally interesting problem that is inspired from cellular settings is that of a poly-

mer with differential type-dependent attractive wells along the polymer chain. Such

a model is based off biopolymers like Actin with Actin binding proteins(ABPs) like

fascin, filamin, spectrin, transgelin etc. at specific sites, that facilitate bundling and

crosslinking onto other polymer chains(Dos Remedios 03)(Winder 05). It is presumed

that this attractive patchiness, if distributed in adequate numbers randomly on a suf-

ficiently long semiflexible polymer, can lead to its dynamics shifting towards that of

a flexible polymer. The attractive wells add to the interplay between entropic and

energetic costs of semiflexible polymers, and can possibly result in the collapse of

the straight polymer into a globule or a knotted configuration, locked in place by the

attractive patches.

4.1 Patchy flexible chains

The patchy attractive wells are applied to a flexible polymer as well, after which its

force extension characteristic is analysed. The force extension of this patchy flexible

polymer(Fig.4.1) that has been allowed to reach equilibrium reveals clear plateau-
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Figure 4.1: Force extension of a heterogeneous flexible polymer with varying B-B
attraction strengths. NA/NB = 0.5. In all these cases, εAA and εAB is 1. The plateau-
like regions correspond to the clusters preventing the extension of the polymer chain.
The clustering is further visualised using the contact number plot(Fig.4.2)
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Figure 4.2: The number of contact-pairs, plotted along with the force extension plot
of a collapsed heterogeneous flexible polymer chain, with εBB = 20. The drops in
contact number is indicative of the breaking of a cluster. A contact number of zero
corresponds to a chain with no clusters.

like regions, which are most likely to arise from the strongly bound knots. Plotting

the number of monomers of the same type within a cutoff of 1.1 shows the number

of unique non-bonded pairs of particles within the cutoff distance in the polymer

chain(Fig.4.2). When the contact number goes to zero, we can safely assume that the

polymer chain is free of clusters, and should then behave like a Hookean spring, since

the bonds are simply harmonic in nature. Fig.4.3 is a graphical representation of

a 150 monomer long heterogeneous chain, as visualised by VMD. The figure clearly

shows a cluster of type B monomers (red) that has formed in the center, with the

type A monomers (black) located at the periphery of the globule.
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4.1. Patchy flexible chains

Figure 4.3: Progressive extension of a collapsed patchy 150 monomer long polymer
with a pulling force applied to one end and the other end fixed. The black monomers
are type B, and the red monomers are type A. NB/NA = 0.5
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Figure 4.4: Distributions of persistence lengths of a 75 monomer semiflexible chain,
with varying levels of patchiness. The bending rigidity of the chain is 75, and thus
theoretical lp/L = 1. There is a marked decrease in the persistence length of the
chain, when random attractive patches are introduced.

4.2 Effects on semiflexible chains

Incorporating patchiness on semiflexible polymers leads to interesting observations. It

is seen in Fig.4.5b that introduction of patchiness by even a small amount, NB/NA =

0.0667, leads to the chain folding up, and bound by the type B monomers. This

folding-up effect increases with the increase in NB/NA, as can be seen in Fig.4.5c,

where 20 type B monomers are incorporated into a 75 monomer chain. A clear dif-

ference however, visually, between the flexible and semiflexible patchy polymers, is

that even though the flexible polymer forms a rather dense globule, facilitated by

the absence of any bending constraints, the strong bending rigidity in the case of the

semiflexible polymers renders the collapsed chain more rounded. An easily measur-

able quantity which can show the effects of introducing patchiness is the empirical

persistence length, which can be calculated by eqn.3.2. The shift in persistence length

with the introduction of patchiness can be seen in Fig.4.4, with a clear decrease in

the value as patchiness is increased. A decrease in persistence length alone however,

might not indicate a semiflexible to flexible shift in dynamics, and other analyses

such as the normal coordinate scaling with mode number and monomer number, as

employed in the previous cases, must also be used here, to arrive at a more definitive

conclusion.
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4.2. Effects on semiflexible chains

(a) NB/NA = 0 (b) NB/NA = 0.0667

(c) NB/NA = 0.2667

Figure 4.5: 75 monomer long semiflexible polymer with varying levels of patchiness.
Theoretical lp/L = 1.
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Chapter 5

Methodology

All the MD simulations were carried out by executing C scripts, as well as input

scripts of the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

(Plimpton 95), and HOOMD-Blue(Anderson 08)(Glaser 15). The primary visualiza-

tion tool used was Visual Molecular Dynamics(VMD)(Humphrey 96), which was also

used to carry out post processing of MD trajectories such as unwrapping over periodic

boundaries and measurement of quantities such as the radius of gyration, center of

mass deviation etc. The polymer chains are all bead spring systems, with point mass

monomers, joined by harmonic bonds(values of parameters will be given in subse-

quent sections). Dimensionless units were employed, where kB = 1. The timestep

for all simulations was set to 0.001. The values were all dumped in a LAMMPS

trajectory(C-scripts) or GSD(HOOMD-Blue) format every hundred timesteps. Thus,

the data values are all 0.1 time units apart. The first twenty normal modes were

computed for each timestep using eqn.2.9, after which the autocorrelation of normal

modes was computed using the algorithm proposed by Likhtman, Sukumaran and

Ramirez(Ramı́rez 07). Python3, R(R Core Team 18) and Mathematica(Inc. 18) were

used at various stages of data processing, and Mathematica was used for creating all

the plots.
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5.1 Integrator

The Euler-Maruyama algorithm(Maruyama 55) was used to carry out simulations in

the over-damped Brownian regime. Discretising eqn.2.10 using a forward difference

scheme, we get:

Rn(t+ ∆t) = Rn(t)− ∆t

ζ
∇U +

√
2kBT∆t

ζ
ω(t), (5.1)

where ω(t) is a Gaussian random number with zero mean and unit variance, and is

also an example of a Wiener process.

The Gaussian random variable was obtained using the polar method described by

Marsaglia and Bray(Marsaglia 64). In the three dimensional case, three such random

numbers were generated for each of the three Cartesian coordinates.

U contains all the bonded and non-bonded potential terms, and the forces were cal-

culated in the lab frame.

5.2 Flexible polymers

The flexible polymer was initiated as a straight configuration of monomers, with the

equilibrium separation l = 1. The bonds were set to be harmonic in nature, and of

the form of eqn.2.6. The force constant of the bond, k = 3kBT , and T = 1. The

Euler-Maruyama integrator(eqn.5.1) was employed as the Brownian thermostat. All

non-bonded interactions such as inter-particle, excluded volume, and hydrodynamic

interactions were disregarded, thus representing a polymer in an implicit solvent in

Θ conditions. The absence of non-bonded interactions deemed the use of periodic

boundary conditions unnecessary. The system was constructed through a C-script

and executed with MPI, and no GPU support. All correlations were computed after

discarding the first 25× 105 timesteps, by which the system is found to reach equilib-

rium, indicated by a minimization of total energy of the system.

Even though a center-of-mass based harmonic potential is employed by Doi and

Edwards(Doi 88), a potential where the harmonic potential is minimum at an equilib-

32



5.3. Dissipative Particle Dynamics

▲

▲

▲

▲

▲

▲

■

■

■

■

■

■

3.5 4.0 4.5 5.0 5.5 6.0
-9

-8

-7

-6

-5

-4

ln(N )

ln
(1
/τ
e
n
d
-
e
n
d
)

▲ Doi and Edwards

■ LAMMPS

N
-2scaling

Figure 5.1: ln(1/τend−end) plotted as a function of ln(N). The dashed line shows the
Rouse scaling ∝ N−2. This scaling is followed irrespective of the form of the potential
(Ubend) used.

rium displacement equivalent to l, and is obtained from the LAMMPS(Plimpton 95)

source code was used in this case, due to its ease of implementation to a variety of

problems. The form of the potential affects the force that is computed as can be

clearly seen in Fig.5.1. However, although there is a numerical difference between the

values observed in the case of the relaxation time of the end-to-end vector correlation,

its scaling with monomer number is preserved.

5.3 Dissipative Particle Dynamics

A DPD thermostat was used in order to observe Zimm scaling of the end-to-end

vector correlation relaxation time. A periodic boundary simulation box large enough

to prevent the interaction of the polymer chain with its instances in adjacent boxes

was created, and a polymer similar to the one used in the sect.5.2 was created near the

center. The simulation box was populated with individual solvent particles, located

unit distance apart from each other, such that the number density of particles in the

simulation box, ρ = 1. In order to distinguish between the monomers and the solvent

particles, they were created as different types, such that the polymer was made up of

type A monomers and solvent particles were type B entities. The advantage of the

attribution of types to constituents of the system is the possibility of introducing type

based interactions, which will play a critical role in the setting up of systems such

33



Chapter 5. Methodology

as that of the patchy polymer. The thermostat employed in this case was the DPD

thermostat, which had the parameters aij and γij, that had to be defined for each pair

of particles i, j. Since only the effects of introducing explicit solvent particles that

mimic hydrodynamic interactions through repulsive interactions with monomers and

themselves were being probed, the parameters were set to, aAA = 0, aBB = aAB = 1.0,

γAA = γAB = γBB = 1.0, and rc = 1.0. A HOOMD-Blue input script was written, in

which the DPD interaction was invoked(Phillips 11) with the parameters as mentioned

above, and run for 3 × 107 timesteps with GPU support, using a Tesla K20c card.

The MD trajectory was in a GSD format, which was accessed using VMD, and was

then unwrapped using built-in functions. Separate TCL scripts were sourced through

VMD’s Tk Console, to obtain end-to-end vectors in every frame. The normalized

correlation of the end-to-end vector was fitted to the exponential series in eqn.2.16

truncated after the first five terms, in order to obtain the correlation relaxation time.

5.4 Semiflexible polymers

Semiflexible polymers were modelled as a simple extension to flexible polymers, by

introducing an additional cosine potential term, which depends on the angle between

two bonds. This potential is of the form of eqn.3.1, and the equilibrium bond angle

was set to be π. The angular potential term was also incorporated from the LAMMPS

source into a custom C-script. The bending rigidity κ was set such that the theoret-

ical persistence length, which in equilibrium has the value κ/kBT , took up a value

so that the theoretical lp/L was as required. For example, for a 150 monomer long

chain(L = 150) to have a theoretical lp/L value of 0.1, κ is set to 15. Determining

the average persistence length from the trajectory, using Eqn.3.2, resulted in a distri-

bution, (Fig.3.2), centered around the empirical persistence length of the chain. This

value does not necessarily conform to theoretical values for the cosine angle potential

(eqn.3.5) given in (Zhang 19). Although the WLC model demands for an inextensible

polymer chain, which is mathematically equivalent to maintaining unit magnitude of

the tangent vector, implementation of rigid bonds is a computationally heavy task.

Moreover, absolute rigidity of bonds is rather unrealistic, and so a stiff harmonic bond

was instead employed. The force constant of this bond was set to 300kBT , with T = 1.
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5.5. Patchy polymers

This ensured that bond length fluctuations were of the order of ∼ 1/100. It is recom-

mended that the ratio of the force constant to the bending rigidity is maintained at a

constant value, so as to keep any effects on dynamics arising from relative strengths

of bending and stretching constant throughout various simulations.

5.5 Patchy polymers

Patchiness was introduced by invoking a random number generator in the HOOMD-

Blue input script to pick out particle IDs randomly, and then setting those particles

as a type(type B) different from that of the rest of the monomers(type A). Parti-

cles were allowed to interact via a Lennard-Jones(LJ) potential, with the parameters

εAA = εAB = 1, εBB = 10, 20, 30, and σAA = σAB = σBB = 1.0, where the types

mentioned in the subscript indicate that the parameters apply to all particles of each

type. The LJ potential was cut off at distance rc = 2.5σ, thus ensuring that the par-

ticles experienced both the attractive well as well as the repulsive close range parts

of the potential. The polymer chain was tethered to a point in the simulation box

by one of the terminal monomers. The force constant of the bond, was set to 300.

A periodic boundary simulation box large enough to prevent the chain interacting

with its instance across the periodic boundary was used, so as to mimic an isolated

chain. The polymer was then subjected to a Langevin thermostat, which is the un-

derdamped version of the Brownian thermostat, for 2×107 timesteps, by which it was

found to equilibriate, forming a globule, with most of the type B monomers located

in the center, and locked in because of the strong B-B interactions. A force was then

applied to the free terminal end of the chain, which increased with each timestep. The

maximum force was set to 300, and was attained at the end of 106 timesteps. Thus,

each timestep i corresponded to a pulling force of 300i/10000. The contact number

plot of Fig.4.2 was obtained after unwrapping the trajectories in VMD, and using

the built-in measure contacts function to determine the non-bonded pairs of particles

satisfying a particular condition(“type B” in this case), within a cutoff of a particle

of interest(a “type B” monomer in this case). The cutoff was set to 1.1.

Simulation of a patchy semiflexible polymer chain was achieved by introducing an
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additional cosine bending potential by invoking the same in the HOOMD-Blue input

script. The number of monomers was set to 75, and the bending rigidity, κ was set

to 75, thus making the theoretical lp/L = 1. The number of type B monomers were

varied, to change the level of patchiness, as 5, 10, and 20. An LJ potential was allowed

to act between particles, with εAA = εAB = 1, εBB = 10, and σAA = σAB = σBB = 1.0.

The simulation was run for 2 × 107 timesteps, after which the trajectories were un-

wrapped in VMD, and a TCL script which measures the persistence length, averaged

over the chain for each timestep using eqn.3.2, was executed through the Tk console.

The persistence lengths were then binned to give Fig.4.4.
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moleküle. Recueil des Travaux Chimiques des Pays-Bas, vol. 68,

no. 12, pages 1106–1122, 1949.

[Kroy 96] Klaus Kroy & Erwin Frey. Force-extension relation and plateau

modulus for wormlike chains. Physical review letters, vol. 77, no. 2,

page 306, 1996.

[Kroy 07] Klaus Kroy & Jens Glaser. The glassy wormlike chain. New Jour-

nal of Physics, vol. 9, no. 11, page 416, 2007.

[Krushev 02] S Krushev, W Paul & GD Smith. The role of internal rotational

barriers in polymer melt chain dynamics. Macromolecules, vol. 35,

no. 10, pages 4198–4203, 2002.

[Langevin 08] Paul Langevin. Sur la théorie du mouvement brownien. Comptes
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