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Abstract

We believe Quantum mechanics to be the fundamental theory of nature yet the ev-

eryday world of our perception seems very different from what quantum mechanics

suggests.The superposition principle is one of the key principles of quantum theory.

The lack of certain macroscopic superposition appears to defy these notions.

This pseudo contradiction can be solved (at least partially) by realizing the impor-

tance of environmental interactions. The assumption of closed system does not hold

good while applying quantum mechanics to macroscopic systems. Decoherence is one

of the key fruits of this realization.

Decoherence explains why for macroscopic objects we observe only a subset of quan-

tum mechanically allowed states and never their superposition, if the system to began

with is in such a superposition, Such a superposition will decay or so to say decohere

into mixture of microscopically observed states.

In this thesis, we will try to understand the process of decoherence in much more

depth by focusing on a particular model. The model of interest throughout the thesis

will be Quantum Harmonic Oscillator interacting with the spin environment.

First we will discuss the situation in which our environment will be made up of spin-1
2

and have no internal dynamics of its own (self-Hamiltonian is zero). After this, using

Born-Markov master equation formalism we will study the case of environment made

up of spin-1 particles with non-zero self-Hamiltonian.



Chapter 1

Introduction

1.1 Quantum - Classical Divide

Quantum Mechanics (QM) is the crowning jewel of physicists. QM has explained a

large variety of phenomena with incredible success, these include lasers, solid state

devices, superconductivity, quantum cryptography, MRI and many more. QM has

been brought to test many times in a large number of experiments performed since its

inception and no contradiction has ever been found. Most physicists believe QM to be

the fundamental theory that should explain all the underpinnings of our world. But

despite all its successes there are still some important questions regarding QM which

remain unanswered, of utmost importance among them is the question of Quantum

to Classical transition.

The classical world i.e. the world of our experience appears to be in contradiction with

the laws of QM. One of the fundamental principle of QM is Principle of Superposition:

• If |Ψ1〉 and |Ψ2〉 describe two quantum mechanically allowed states of a sys-

tem then their superposition will also describe another quantum mechanically

allowed state of the system.

It is difficult to reconcile the superposition principle with our every day reality, for ex-

ample, let |Ψ1〉 and |Ψ2〉 describe two states of a macroscopic system which is localized

in space at two different positions, then their superposition |Ψ12〉 = α |Ψ1〉 + β |Ψ2〉1

1α, β belong to complex numbers and |α|2 + |β|2 = 1.

1



Chapter 1 Introduction 2

are no longer localized with respect to position. Such delocalized macroscopic states

do not correspond to our perception, so our every day reality seem to be incompatible

with QM.

To state it differently, in words of Zurek2 - “ the Hilbert Space is huge i.e. in the

quantum space of possibilities not just states like |Ψ1〉 and |Ψ2〉 are allowed but their

superpositions are also allowed. Within this huge space, we need to understand the

origin of a small classical corner, the sort of states we perceive.” States such as |Ψ1〉
and |Ψ2〉 which corresponds to our classical reality are called pointer states. We need

to explain why macroscopic objects are almost always found in a pointer states but

never in their superposition and how these pointer states are selected?

1.2 Decoherence

The question of preferred states (pointer states) is answered by the process called

decoherence[1–6]. So what is decoherence?

The whole idea of decoherence is based on a simple realization that quantum system

exists submerged in an environment and in particular for macroscopic systems it is

impossible to isolate them from the environment (Figure 1.1).

So, if you start with a system in state |ΨS(0)〉, which could be written as a super-

position in some basis {|Si〉} and let it interact with the environment with the initial

state |E0〉.

|ΨSE(0)〉 = |ΨS(0)〉 ⊗ |E0〉 =

(∑
i

ai |Si〉
)
⊗ |E0〉 (1.1)

Typically even though the system and environment are initially not entangled, they

will eventually get entangled due to interaction between them. So after some time

you will have one big entangled state describing system and environment.

|ΨSE(t)〉 =
∑
i

(
ai |Si〉 ⊗ |E0〉

)
(1.2)

As we are interested in the system only, so we have to take the trace over the envi-

ronment and this will give us the reduced density matrix (reduced density matrix) of

2Taken from the talk given at Collge de France in March 2015.
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Figure 1.1: Real world systems and not isolated, they interact with there envi-
ronment.

the system.

ρ̂S(t) = TrE

[
|ΨSE(t)〉 〈ΨSE(t)|

]
=
∑
i

ai |Si〉 〈Si| (1.3)

The important fact is that we can start with any initial state of the system and the

environment, at the end the reduced density matrix of the system will always be

diagonal in the same basis {|Si〉}. So there is something very special about these

basis states and if you start your system in one of these states, the state of the system

will not get entangled with the environment.These states are the pointer states. Two

important points to note about the pointer states from above discussion are:

• Pointer states are robust against environmental monitoring.

• Any initial superposition of pointer states is reduced to the classical mixture of

pointer states after the system has interacted with environment.

The pointer states emerge purely from the interaction between the system and the

environment and in particular the interaction Hamiltonian have a key deciding power

as to which states emerge as pointer state. In simple situation when the interaction

Hamiltonian dominates the dynamics, pointer states are simply selected because the

observable which are diagonal in these pointer sates commute with the interaction

Hamiltonian. In cases which are complicated one can go through a more sophisticated
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process of going through the whole Hilbert space and see for each state how the purity

of system changes after it interacts with the environment for suitable amount of time,

pointer states are the states which remains least entangled with the environment and

hence their purity changes the least. This process is called predictability sieve[3].

Example of Decoherence

Think of a spin-1
2

particle interacting with some environment. Consider that the self-

Hamiltonian of both the bath and the environment are zero, so that the dynamics is

completely governed by the interaction Hamiltonian (Ĥint).

Ĥtotal = Ĥint = σ̂z ⊗ Ê (1.4)

here Ê is the part of Hamiltonian acting on environment.

Even at this stage because of the form of interaction Hamiltonian we can be pretty

sure that the pointer basis is going to be eigenstates of σ̂z ({|0〉 , |1〉}) If we start with

following system-environment initial state:

|Ψ(0)〉 =

(
α |0〉+ β |1〉

)
⊗ |ΨE(0)〉 (1.5)

Then time evolved state is given by:

|Ψ(0)〉 = α |0〉 |E0〉+ β |1〉 |E1〉 (1.6)

given sufficient time 〈E0|E1〉 will approach zero. Let’s try to think of this in terms of

reduced density matrix of the system. The reduced density matrix which corresponds

to initial pure state will evolve to a reduced density matrix which is diagonal in |0〉 , |1〉
basis:

ρ̂S(0) =

(
|α|2 α∗β

αβ∗ |β|2

)
Ĥint−−−→ ρ̂S(t) =

(
|α|2 0

0 |β|2

)
(1.7)

So the central spin has decohered into pointer basis (|0〉 , |1〉).
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1.3 What’s Ahead?

In this thesis, we will try to understand decoherence in much more depth. The

model of interest in the rest of the chapters will be Quantum Harmonic Oscillator

interacting with the spin environment. In Chapter 2, we will take our environment

to be made up of spin-1
2

and we will assume the self-Hamiltonian of our environment

to be zero. In Chapter 3 our environment will be made up of spin-1 particles and

the self-Hamiltonian of environment will not be zero, this chapter will make use of

Born-Markov master equation formalism.



Chapter 2

Quantum Harmonic Oscillator in

Spin-12 Environment (ĤE = 0)

In this chapter we will study a toy model with Quantum Harmonic Oscillator (QHO)

as a central system interacting with spin-1
2

environment having zero self-Hamiltonian.

2.1 Details of Model

Central System

The central system (or simply system), S, is a QHO with mass m and angular fre-

quency Ω. The Hamiltonian of the system (ĤS) is:

ĤS =
p̂2

2m
+
mΩ2

2
x̂2 (2.1)

where p̂ is the momentum operator and x̂ is the position operator.

The Hilbert space of the system is denoted as HS and the set of energy eigenstates

spanning the HS is given by {|φk〉}.

ĤS |φk〉 = (k +
1

2
)Ω |φk〉 1 (2.2)

1in this thesis ~ is always taken as 1 except in section 2.4.

6
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Environment

Environment consists of N spin-1
2

particles. The Hilbert space of environment is the

tensor product of the Hilbert spaces of individual spins and hence is of 2N -dimension

and is denoted by E .

The self Hamiltonian of the environment is assumed to be zero i.e.,

ĤE = 0 (2.3)

The set {|εn〉} spans the Hilbert space HS, {|εn〉} here is the computational basis of

environment i.e.,

|ε0〉 = |0〉1 |0〉2 ... |0〉N−1 |0〉N
|ε1〉 = |0〉1 |0〉2 ... |0〉N−1 |1〉N

:

|ε2N−1〉 = |1〉1 |1〉2 ... |1〉N−1 |1〉N

where |0〉i and |1〉i are the eigenstates of σ̂
(i)
z : the pauli - Z operator of ith spin.

Hamiltonian

Interaction Term

The interaction Hamiltonian (Ĥint) is given by:

Ĥint = x̂⊗
N∑
i=1

(
giσ̂

(i)
z

⊗
i′ 6=i

Îi′

)
(2.4a)

≡ x̂⊗ Ê (2.4b)

here gi is the coupling strength of the ith spin with QHO.

The computational basis of environment {|εn〉} are the eigenstates of operator Ê with
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eigenvalue εn:

Ê |εn〉 = εn |εn〉 (2.5a)

where εn =
N∑
i=1

gini (2.5b)

with ni =

+1 , ith spin is in state |0〉i
−1 , ith spin is in state |1〉i

(2.5c)

Total Hamiltonian

ĤSE =

(
ĤS ⊗ ÎE

)
+

(
ÎS ⊗ ĤE

)
+ Ĥint (2.6a)

= ĤS ⊗ ÎE + x̂⊗ Ê (2.6b)

≡ ĤS + x̂⊗ Ê (2.6c)

eq. (2.6b) follows from eq. (2.4b) and (2.3).

Initial State

We assume initial state of our model to be a pure product state |ΨSE(0)〉 with the

state of the system being |ΨS(0)〉 and that of environment being |ΨE(0)〉.

|ΨSE(0)〉 = |ΨS(0)〉 ⊗ |ΨE(0)〉 (2.7)

Later on we will take |ΨS(0)〉 to be the equal superposition of two symmetrically

opposite (in phase space) coherent states2[7].

|ΨS(0)〉 = A(|α〉+ |−α〉) (2.8)

2Coherent states are the eigenstates of annihilation operator, â |α〉 = α |α〉, where â is the anni-
hilation operator of original harmonic oscillator.
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where |±α〉 are the coherent states and A is the normalization constant.

|±α〉 = e−|α|
2/2

∞∑
k=0

(±α)k

k!
|φk〉 (2.9a)

A =

[
2
(

1 + e−2|α|2/2
)]−1/2

(2.9b)

2.2 Motivations

Decoherence of QHO coupled to a spin environment has not been studied much in

the past.Only one such study of which I am aware of use an approximate method to

find the dynamics of the system [8]. So the natural question to ask is can we find the

exact evolution of QHO coupled to spin-1
2

environment.

In 2005 Cucchietti, Paz and Zurek published a paper[9] in which they studied the

decoherence of spin-1
2

particle in spin-1
2

environment. We realized that if apply the

same method to QHO in spin-1
2

environment we may be able to find exact solution

provided we take self-Hamiltonian of the environment to be zero.

Based upon the past studies of Quantum Brownian Motion (QBM)[10, 11], it’s pretty

clear that for QHO coupled to it’s environment via its position the pointer states will

be localized in phase space. A very nice way to see decoherence of QHO using Wigner

function was used in following paper [11]. They started with the equal superposition

of two symmetrically opposite (in phase space) coherent states. The Wigner function

of such a super position has an interference pattern in between two peaksFigure 3.1a,

this interference signifies the coherence between the two coherent states. As the time

passes system interacts with the environment and get decohered in to the mixture of

two localized states in phase space , In Wigner function plot this is marked by the

decay of interference pattern Figure 3.1b.

Inspired by these we initialized our system in the equal superposition of two symmet-

rically opposite (in phase space) coherent states and we plotted the Wigner function

at different times to see whether the interference pattern decays or not.
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(a) Wigner function for initial state.

(b) Wigner function after decoherence.

Figure 2.1: Wigner function plot of QHO interacting with bath of QHOs.

2.3 Calculating the ρ̂S(t)

The initial state of environment could be expanded in {|εn〉} basis:

|ΨE(0)〉 =
2N−1∑
n=1

cn |εn〉 (2.10)

Using above equation combined initial state system - environment could be written

as:

|ΨSE(0)〉 =
2N−1∑
n=1

cn |ΨS(0)〉 |εn〉 (2.11)

Time Evolution

In this section we will calculate the system - environment state at any time:

|ΨSE(t)〉 = ÛSE(t) |ΨSE(0)〉 (2.12a)

=
2N−1∑
n=1

cne
−iĤSEt |ΨS(0)〉 |εn〉 (2.12b)
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To simplify it further consider the action of ĤSE on |ΨS(0)〉 |εn〉:

ĤSE

(
|ΨS(0)〉 |εn〉

)
=

(
ĤS + εnx̂

)
|ΨS(0)〉 |εn〉 (2.13a)

=⇒
(
ĤSE

)k(
|ΨS(0)〉 |εn〉

)
=

(
ĤS + εnx̂

)k
|ΨS(0)〉 |εn〉 (2.13b)

=⇒ e−iĤSEt/

(
|ΨS(0)〉 |εn〉

)
=

(
e−i(ĤS+εnx̂)t |ΨS(0)〉

)
|εn〉 (2.13c)

let’s define the following terms:

Ĥn
S ≡ ĤS + εnx̂ (2.14a)

Ûn
S (t) ≡ e−iĤ

n
S t (2.14b)

In terms of Ûn
S (t) the |ΨSE(t)〉 could be written as:

|ΨSE(t)〉 =
2N−1∑
n=1

(
Ûn
S (t) |ΨS(0)〉

)
|εn〉 (2.15)

Reduced Density Matrix of system - Part A

From |ΨSE(t)〉 it is straight forward to calculate the combined system-environment

density matrix:

ρ̂SE(t) = |ΨSE(t)〉 〈ΨSE(t)| (2.16a)

=
∑
n1,n2

cnc
∗
n′

(
Ûn
S (t) |ΨS(0)〉 〈ΨS(0)| Ûn′

S
†(t)

)
⊗ |εn〉 〈εn′| (2.16b)

Now to calculate the reduced density matrix of system, we have to take the trace over

environment:

ρ̂S(t) = TrE

[
ρ̂SE(t)

]
(2.17a)

=
2N−1∑
n

|cn|2Ûn
S (t) |ΨS(0)〉 〈ΨS(0)| Ûn

S
†(t) (2.17b)

=
2N−1∑
n

|cn|2Ûn
S (t)ρ̂s(0)Ûn

S
†(t) (2.17c)



Chapter 2 Quantum Harmonic Oscillator in Spin-1
2

Environment (ĤE = 0) 12

So, to calculate ρ̂S(t) we need to find how the initial state of the system evolves under

the unitary Ûn
S (t).

Evolution of a coherent state under Ûn
S (t)

Ûn
S (t) is the time evolution operator generated by Ĥn

S .

Ĥn
S = ĤS + εnx̂ (2.18a)

=
p̂2

2m
+
mΩ2

2
x̂2 + εnx̂ (2.18b)

=
p̂2

2m
+
mΩ2

2

(
x̂+

εn
mΩ2

ÎS

)2

−
(

ε2n
2mΩ2

ÎS

)
(2.18c)

Now let’s define few terms:

xn ≡
εn
mΩ2

(2.19a)

λn ≡
ε2n

2mΩ2
(2.19b)

ŷn ≡ x̂+ xnÎS (2.19c)

=⇒ Ĥn
S =

p̂2

2m
+
mΩ2

2
ŷ2
n − λnÎS (2.20)

So, Ĥn
S is the Hamiltonian representing an harmonic oscillator with the potential

shifted by xn and energy spectrum shifted by λn. Let {|χ〉k} be the energy eigenstates

of this shifted harmonic oscillator.

The coherent state of the original harmonic oscillator |α〉 is also the coherent state of

shifted harmonic oscillator.

ân |α〉 = (α + xn

√
mΩ

2
) |α〉 ≡ (α + γn) |α〉 (2.21)

where ân is the annihilation operator for shifted harmonic oscillator.

So α could be written in the {|χ〉k} basis as:

|α〉 = e−|α+γn|2/2
∞∑
k=0

(α + γn)k

k!
|χk〉 (2.22)
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The time of the coherent state could be easily solved [7]:

Ûn
S (t) |α〉 = e−it(

Ω
2
−λn)e−|α

′
n(t)+γn|2/2

∞∑
k=0

(α′n(t) + γn)k

k!
|χk〉 (2.23)

where α′n(t) = (α + γn)e−iΩt − γn.

â

(
Ûn
S (t) |α〉

)
= α′n(t)

(
Ûn
S (t) |α〉

)
(2.24)

So Ûn
S (t) |α〉 is the eigenstate of annihilation operator of original harmonic oscillator

with eigenvalue α′n(t) so in standard notation:

Ûn
S (t) |α〉 = |α′n(t)〉 (2.25)

Evolution of a initial state of system under Ûn
S (t)

Remember the initial state of the system was:

|ΨS(0)〉 = A

[
|α〉+ |−α〉

]
Time evolved state:

Ûn
S (t) |ΨS(0)〉 = A

[
|α′n(t)〉+ |−α′n(t)〉

]
(2.26a)

≡ |Ψn
S(t)〉 (2.26b)

Reduced Density Matrix of system - Part B

The reduced density matrix at any time t (using eq. 2.17c):

ρ̂S(t) =
2N−1∑
n

|cn|2 |Ψn
S(t)〉 〈Ψn

S(t)| (2.27)

Now this could very well be written as:

ρ̂S(t) =

∫
ε

J(ε) |Ψε
S(t)〉 〈Ψε

S(t)| (2.28)
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where J(ε) is given by:

J(ε) =
2N−1∑
n

|cn|2δ(ε− εn) (2.29)

In [9] authors have shown that in the limit of large N , J(ε)3 will approach Gaussian

behaviour:

J(ε) ≈ 1√
2πs2

N

exp−(ε2 − ε̄N)2s2
N (2.30)

where ε̄N and sN are the average value and standard deviation of J(ε).for fixed environ-

ment size and fixed initial environmental state sN and ε̄N depend on the distribution

of gi, the coupling strength of the ith spin in the environment.

If the environment is initially in the product state:

|ΨE(0)〉 =
N⊗
i=1

(
ai |0〉i + bi |1〉i

)
(2.31)

Then:

ε̄N =
N∑
i

(
|ai|2i − |bi|2

)
gi (2.32a)

s2
N =

∑
iN

4|ai|2i |bi|2gi2 (2.32b)

2.4 Wigner Function Plots

Now since we have calculated the reduced density matrix of our system at any arbi-

trary time t, we are ready to plot the Wigner function WS(x, p, t)[5] of our system for

different scenarios.

WS(x, p, t) =
1

2π

∫ ∞
−∞

eipy 〈x− y

2
| ρ̂S(t) |x+

y

2
〉 dy (2.33)

For simplicity we have made following assumptions:

• m = 1

• Ω = 1

3J(ε) describes the distribution of the environment energies.
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• ~ = 1
2
.4

• All the spins be in same state 1√
2
[|0〉+ |1〉].

• All coupling constant are taken to be equal to same constant g.

For above assumptions ε̄N = 0 and s2
N = g2N2.

On next four pages you will find the Wigner function plots pertaining to four different

situations, in first three situation the initial state will be the superposition of two

coherent states separated in x by 6 units (α = 3) and in the last one the initial state

is the superposition of two coherent states separated in p by 6 units (α = 3i). These

cases also differ from each other in the sN value, larger sN value implies stronger

system-environment coupling. Details of all the four cases are below:

• Case 1: sN = 0.01, α = 3 (Figure 2.2).

• Case 2: sN = 0.5, α = 3 (Figure 2.3).

• Case 3: sN = 10, α = 3 (Figure 2.4).

• Case 4: sN = 0.5, α = 3i (Figure 2.5).

The last figure of the chapter (Figure 2.6) shows the behaviour of the x = 0 and p = 0

point (peak of interference pattern) in Wigner function plot for different situations.

4only in this section we have assumed ~ to be 1/2 in rest of the thesis it is taken to be 1.
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(a) t = 0 (b) t = 1

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

Figure 2.2: Case 1: sN = 0.01 α = 3
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3.

(e) t = 4 (f) t = 5

Figure 2.3: Case 2: sN = 0.5 α = 3
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

(e) t = 5 (f) t = 6

Figure 2.4: Case 3: sN = 0.10 α = 3
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

(e) t = 4 (f) t = 5

Figure 2.5: Case 4: sN = 0.5 α = 3i



Chapter 2 Quantum Harmonic Oscillator in Spin-1
2

Environment (ĤE = 0) 20

(a) sN = 0.01, α = 3 (b) sN = 0.5, α = 3

(c) sN = 1, α = 3 (d) sN = 2, α = 3

(e) sN = 0.5, α = 3i

Figure 2.6: Wigner function at x = 0 and p = 0 from t = 0 to t = 10.
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2.5 Results and Summary

• For Case 1: (sN = 0.01 and α = 3) the coupling is so weak that there is almost no

effect of environment is seen, the interference pattern does not decay.(Figure 2.2)

• For Case 2: (sN = 0.5 and α = 3) interference pattern decays at first but then

reappears after some time.(Figure 2.3)

• For Case 3: (sN = 10 and α = 3) interference pattern decays at first but then

reappears after some time and the localization seems to be strong only in one

direction.(Figure 2.4)

• For Case 4: (sN = 0.5 and α = 3i) interference pattern decays but the decay is

slower than cases with initial separation in x. Interference reappears after some

time.(Figure 2.5)

• All cases show the cyclic decay and birth of interference, with a period of t = 2π,

since interference pattern does not decay permanently our model does not show

decoherence.

• The cyclic behaviour comes because ρ̂S(t) itself is cyclic.



Chapter 3

Quantum Harmonic Oscillator in

Spin-1 Environment

In this chapter we will focus on QHO in spin-1 environment using the Born-Markov

(B-M) Master equation formalism. This chapter will closely follow the approach used

by Schlosshauer, Hines, and Milburn[8, 12, 13] to study QHO in spin-1
2

environment.

3.1 Details of Model

As in the last chapter the central system is still the same, but instead of spin-1
2

environment we have spin-1 environment and this time the self Hamiltonian of the

environment is not taken to be zero. All the symbols in this chapter will have the

same meaning as in previous chapter unless otherwise stated with just one caveat that

the symbols pertaining to environment have to be understood in the context of spin-1

rather than spin-1
2
.

22
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Hamiltonian

Self-Hamiltonian of Environment

The self-Hamiltonian of environment is given by:

ĤE = −
N∑
i=1

(
ωi
2
σ̂(i)
x

⊗
i′ 6=i

Îi′

)
(3.1a)

≡
N∑
i=1

Ĥ
(i)
E (3.1b)

where σ̂
(i)
x is a spin-1 Pauli matrix (in σ̂

(i)
z basis):

σ̂(i)
x =

1√
2


0 1 0

1 0 1

0 1 0

 (3.2)

Interaction Hamiltonian

The interaction Hamiltonian is of same form as in the preceding chapter, just σ̂
(i)
z here

refers to spin-1 Z-Pauli matrix.

Ĥint = x̂⊗
N∑
i=1

(
giσ̂

(i)
z

⊗
i′ 6=i

Îi′

)
(3.3a)

≡ x̂⊗ Ê (3.3b)

Total Hamiltonian

ĤSE =

(
ĤS ⊗ ÎE

)
+

(
ÎS ⊗ ĤE

)
+ Ĥint (3.4a)

≡ ĤS + ÎE + x̂⊗ Ê (3.4b)
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3.2 Motivation

In [8] authors have studied the B-M Master Equation for an QHO in spin-1
2

environ-

ment and they found striking difference from the previously studied QBM (QHO in

QHO bath)[10, 11].

In the case of harmonic oscillator environment the noise kernel which is responsible

for decoherence has a temperature dependence of form coth(1/T ) and hence decoher-

ence is also temperature dependent (increases with T), whereas the dissipation kernel

responsible for dissipation is temperature independent.1

Schlosshauer and his coauthors have shown that if you replace the harmonic oscillator

environment with spin-1
2

the noise kernel will become temperature independent and

dissipation kernel will decrease with temperature as tanh(1/T ), so in this case deco-

herence will not be affected by temperature change but dissipation will decrease with

increase in temperature.

So we wanted to see how will the temperature dependence of these kernels will change

if instead of spin-1
2

or QHO the environment is composed of spin-1 particles.

3.3 Born-Markov Master Equation for QHO in Spin

Environment

In this section we will state few important results of B-M master equation formalism[5,

14] relevant to our work. B-M formalism relies on following two assumption:

• Born Approximation: ρ̂SE(t) ≈ ρ̂S(t)⊗ ρ̂E(0)

• Markov Approximation: ”Memory effect” of environment can be neglected.

Using these two assumption one can derive the B-M master equation for the evolution

of our system, if the central system is harmonic and interaction Hamiltonian is of the

form:

Ĥint = x̂⊗ Ê (3.5)

1for defination of noise and dissipation kernal see next section.
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and the self-correlation function of environment C(t′) 2 is of following form:

C(t′) = ν(t′)− iη(t′) (3.6)

then B-M equation is of following form:

d

dt
ρ̂S(t) = −i

[
ĤS+

1

2
mΩ̄2x̂2, ρ̂S(t)

]
−iγ

[
x̂, {p̂, ρ̂S(t)}

]
−D

[
x, [x̂, ρ̂S(t)]

]
−f
[
x, [p̂, ρ̂S(t)]

]
Ĥint = x̂⊗Ê

(3.7)

here,

Ω̄2 ≡ − 2

m

∫ ∞
0

dt′η(t′)cos(Ωt′) (3.8a)

γ ≡ 1

mΩ

∫ ∞
0

dt′η(t′)sin(Ωt′) (3.8b)

D ≡
∫ ∞

0

dt′ν(t′)cos(Ωt′) (3.8c)

f ≡ − 1

mΩ

∫ ∞
0

dt′ν(t′)sin(Ωt′) (3.8d)

3.4 Calculating Self-Correlation function for

Spin-1 Environment

The self-correlation function of the environment (C(t′)) is given by:

C(t′) = 〈ÊI(t′)Ê〉ρ̂E (3.9)

where ÊI(t′) is operator Ê in interaction picture and hence is given by:

ÊI(t′) = eiĤEt
′
Êe−iĤEt

′
(3.10)

As the the spins in environment do not interact with each other therefore there oper-

ators will commute with each other, we can write:

eiĤEt
′
=

N∏
i=1

eiĤ
(i)
E t′ (3.11)

2C(t′) is defined as 〈ÊI(t′)Ê〉ρ̂E where ÊI(t′) is operator Ê in interaction picture
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Using eq. (3.11) we can simplify the expression of ÊI(t′):

ÊI(t′) = eiĤEt
′
( N∑

i=1

giσ̂
(i)
z

)
e−iĤEt

′
(3.12a)

=
N∑
i=1

eiĤEt
′
giσ̂

(i)
z e
−iĤEt

′
(3.12b)

=
N∑
i=1

gie
iĤ

(i)
E t′σ̂(i)

z e
−iĤ(i)

E t′ (3.12c)

=
N∑
i=1

giσ̂
(i)
z (t′) (3.12d)

where σ̂
(i)
z (t′) is the σ̂

(i)
z in the interaction picture.

C(t′) =
∑
i,k

gigk〈σ̂(i)
z (t′)σ̂(k)

z 〉ρ̂E (3.13)

because spins do not interact with each other and are not correlated, for i 6= k :

〈σ̂(i)
z (t′)σ̂(k)

z 〉ρ̂E = 〈σ̂(i)
z (t′)〉ρ̂E〈σ̂(k)

z 〉ρ̂E (3.14)

=⇒ C(t′) =
∑
i

(
gi〈σ̂(i)

z (t′)〉ρ̂E
∑
k 6=i

gk〈σ̂(k)
z 〉ρ̂E

)
+
∑
i

g2
i 〈σ̂(i)

z (t′)σ̂(i)
z 〉ρ̂E (3.15)

we can always assume the following:

∑
i

gi〈σ̂(i)
z 〉ρ̂E = 0 (3.16)

this implies
∑

k 6=i gk〈σ̂
(k)
z 〉ρ̂E will also tend to 0. This simplifies the expression of C(t′)

to a great extent,

C(t′) =
∑
i

g2
i 〈σ̂(i)

z (t′)σ̂(i)
z 〉ρ̂E (3.17a)

=
∑
i

g2
i

1

zi
TrEi

[e−Ĥ
(i)
E /kBT σ̂(i)

z (t′)σ̂(i)
z ] (3.17b)
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zi is the partition function of ith spin.

In σ̂
(i)
x basis3 :

Ĥ
(i)
E =

ωi
2
|−1〉 〈−1| − ωi

2
|1〉 〈1| (3.18a)

σ̂(i)
z =

1√
2

(
|−1〉 〈0|+ |0〉 〈−1|+ |0〉 〈|+ |1〉 〈0|

)
(3.18b)

σ̂(i)
z (t′) =

eiωit
′/2

√
2

(
|−1〉 〈0|+ |0〉 〈1|

)
+
e−iωit

′/2

√
2

(
|1〉 〈0|+ |0〉 〈−1|

)
(3.18c)

Using the above expression we calculated zi,

zi = TrEi

[
e−Ĥ

(i)
E /kBT

]
(3.19a)

= 1 + eωi/2kBT + e−ωi/2kBT (3.19b)

Now we can calculate C(t′):

C(t′) =
∑
i

g2
i

(
2 + eωi/2kBT + e−ωi/2kBT

2(1 + eωi/2kBT + e−ωi/2kBT )
cos(

ωit
′

2
)−i eωi/2kBT − e−ωi/2kBT

2(1 + eωi/2kBT e−ωi/2kBT )
sin(

ωit
′

2
)

)
(3.20)

Let’s introduce J(ω)

J(ω) =
∑
i

g2
i δ(ω − ωi) (3.21)

C(t′) in terms of J(ω):

C(t′) =

∫ ∞
0

dωJ(ω)

(
2 + eω/2kBT + e−ω/2kBT

2(1 + eω/2kBT + e−ω/2kBT )
cos(

ωt′

2
)− i eω/2kBT − e−ω/2kBT

2(1 + eω/2kBT e−ω/2kBT )
sin(

ωt′

2
)

)
(3.22a)

≡ ν(t′)− iη(t′) (3.22b)

3to make things less messy we will omit the index i and x from our ket and bras
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ν(t′) and η(t′) are called the noise kernel and dissipation kernel respectively,

ν(t′) =

∫ ∞
0

dωJ(ω)
2 + eω/2kBT + e−ω/2kBT

2(1 + eω/2kBT + e−ω/2kBT )
cos(

ωt′

2
) (3.23a)

η(t′) =

∫ ∞
0

dωJ(ω)
eω/2kBT − e−ω/2kBT

2(1 + eω/2kBT e−ω/2kBT )
sin(

ωt′

2
) (3.23b)

compare these with spin-1
2

case [8]:

ν(t′) =

∫ ∞
0

dωJ(ω)cos(
ωt′

2
) (3.24a)

η(t′) =

∫ ∞
0

dωJ(ω)tanh(
ω

2kBT
)sin(

ωt′

2
) (3.24b)

and Harmonic oscillator case[5]:

ν(t′) =

∫ ∞
0

dωJ(ω)coth(
ω

2kBT
)cos(

ωt′

2
) (3.25a)

η(t′) =

∫ ∞
0

dωJ(ω)sin(
ωt′

2
) (3.25b)
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3.5 Results and Summary

We have plotted the temperature dependent part of the of ν(t′) and η(t′) for harmonic

oscillator environment, spin-1
2

environment and spin-1 environment with respect to

temperature (measured in the units of ω
2kB

), we have kept the ω constant.

(a) η(t′)

(b) ν(t′)

Figure 3.1: Temperature dependence of ν(t′) and η(t′)

The temperature dependence of ν(t′) and η(t′) is almost of same form for spin-1 and

spin-1
2

environment.



Bibliography

[1] W. H. Zurek. Pointer basis of quantum apparatus: Into what mixture does the

wave packet collapse? Phys. Rev. D, 24:1516–1525, Sep 1981. doi: 10.1103/

PhysRevD.24.1516. URL https://link.aps.org/doi/10.1103/PhysRevD.24.

1516.

[2] W. H. Zurek. Environment-induced superselection rules. Phys. Rev. D, 26:1862–

1880, Oct 1982. doi: 10.1103/PhysRevD.26.1862. URL https://link.aps.org/

doi/10.1103/PhysRevD.26.1862.

[3] Wojciech Hubert Zurek. Decoherence, einselection, and the quantum origins

of the classical. Rev. Mod. Phys., 75:715–775, May 2003. doi: 10.1103/

RevModPhys.75.715. URL https://link.aps.org/doi/10.1103/RevModPhys.

75.715.

[4] Wojciech H Zurek. Decoherence and the transition from quantum to classical–

revisited. arXiv preprint quant-ph/0306072, 2003.

[5] M.A. Schlosshauer. Decoherence: And the Quantum-To-Classical Transition.

The Frontiers Collection. Springer, 2007. ISBN 9783540357735. URL https:

//books.google.co.in/books?id=1qrJUS5zNbEC.

[6] Maximilian Schlosshauer. Decoherence, the measurement problem, and in-

terpretations of quantum mechanics. Rev. Mod. Phys., 76:1267–1305, Feb

2005. doi: 10.1103/RevModPhys.76.1267. URL https://link.aps.org/doi/

10.1103/RevModPhys.76.1267.

[7] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics, 2 Volume Set.

Wiley, 1992. ISBN 9780471569527. URL https://books.google.co.in/books?

id=pWVVAQAACAAJ.

30

https://link.aps.org/doi/10.1103/PhysRevD.24.1516
https://link.aps.org/doi/10.1103/PhysRevD.24.1516
https://link.aps.org/doi/10.1103/PhysRevD.26.1862
https://link.aps.org/doi/10.1103/PhysRevD.26.1862
https://link.aps.org/doi/10.1103/RevModPhys.75.715
https://link.aps.org/doi/10.1103/RevModPhys.75.715
https://books.google.co.in/books?id=1qrJUS5zNbEC
https://books.google.co.in/books?id=1qrJUS5zNbEC
https://link.aps.org/doi/10.1103/RevModPhys.76.1267
https://link.aps.org/doi/10.1103/RevModPhys.76.1267
https://books.google.co.in/books?id=pWVVAQAACAAJ
https://books.google.co.in/books?id=pWVVAQAACAAJ


Bibliography 31

[8] Maximilian Schlosshauer, A. P. Hines, and G. J. Milburn. Decoherence and

dissipation of a quantum harmonic oscillator coupled to two-level systems. Phys.

Rev. A, 77:022111, Feb 2008. doi: 10.1103/PhysRevA.77.022111. URL https:

//link.aps.org/doi/10.1103/PhysRevA.77.022111.

[9] F. M. Cucchietti, J. P. Paz, and W. H. Zurek. Decoherence from spin environ-

ments. Phys. Rev. A, 72:052113, Nov 2005. doi: 10.1103/PhysRevA.72.052113.

URL https://link.aps.org/doi/10.1103/PhysRevA.72.052113.

[10] W. G. Unruh and W. H. Zurek. Reduction of a wave packet in quantum brownian

motion. Phys. Rev. D, 40:1071–1094, Aug 1989. doi: 10.1103/PhysRevD.40.1071.

URL https://link.aps.org/doi/10.1103/PhysRevD.40.1071.

[11] Juan Pablo Paz, Salman Habib, and Wojciech H. Zurek. Reduction of the wave

packet: Preferred observable and decoherence time scale. Phys. Rev. D, 47:488–

501, Jan 1993. doi: 10.1103/PhysRevD.47.488. URL https://link.aps.org/

doi/10.1103/PhysRevD.47.488.

[12] D. Mogilevtsev and V. Shatokhin. Comment on “decoherence and dissipation of

a quantum harmonic oscillator coupled to two-level systems”. Phys. Rev. A, 78:

016101, Jul 2008. doi: 10.1103/PhysRevA.78.016101. URL https://link.aps.

org/doi/10.1103/PhysRevA.78.016101.

[13] Maximilian Schlosshauer, A. P. Hines, and G. J. Milburn. Reply to “comment on

‘decoherence and dissipation of a quantum harmonic oscillator coupled to two-

level systems’ ”. Phys. Rev. A, 78:016102, Jul 2008. doi: 10.1103/PhysRevA.78.

016102. URL https://link.aps.org/doi/10.1103/PhysRevA.78.016102.

[14] H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. OUP

Oxford, 2007. ISBN 9780199213900. URL https://books.google.co.in/

books?id=DkcJPwAACAAJ.

https://link.aps.org/doi/10.1103/PhysRevA.77.022111
https://link.aps.org/doi/10.1103/PhysRevA.77.022111
https://link.aps.org/doi/10.1103/PhysRevA.72.052113
https://link.aps.org/doi/10.1103/PhysRevD.40.1071
https://link.aps.org/doi/10.1103/PhysRevD.47.488
https://link.aps.org/doi/10.1103/PhysRevD.47.488
https://link.aps.org/doi/10.1103/PhysRevA.78.016101
https://link.aps.org/doi/10.1103/PhysRevA.78.016101
https://link.aps.org/doi/10.1103/PhysRevA.78.016102
https://books.google.co.in/books?id=DkcJPwAACAAJ
https://books.google.co.in/books?id=DkcJPwAACAAJ

	Certificate of Examination
	Declaration
	Acknowledgements
	List of Figures
	Abstract
	1 Introduction
	1.1 Quantum - Classical Divide
	1.2 Decoherence
	1.3 What's Ahead?

	2 Quantum Harmonic Oscillator in Spin-12 Environment (E=0)
	2.1 Details of Model
	2.2 Motivations
	2.3 Calculating the S(t)
	2.4 Wigner Function Plots
	2.5 Results and Summary

	3 Quantum Harmonic Oscillator in Spin-1 Environment
	3.1 Details of Model
	3.2 Motivation
	3.3 Born-Markov Master Equation for QHO in Spin Environment
	3.4 Calculating Self-Correlation function for  Spin-1 Environment
	3.5 Results and Summary

	Bibliography

