
Study of Magnetic Traps and Radio
Frequency Dressed State Potentials

Swadheen Dubey

A dissertation submitted for the partial fulfilment of
BS-MS dual degree in Science

Supervised by

Dr. Mandip Singh

April 2019





Certificate of Examination

This is to certify that the dissertation titled “Study of Magnetic Traps and Ra-

dio Frequency Dressed State Potentials ” submitted by Swadheen Dubey (Reg.No.

MS14029) for the partial fulfilment of BS-MS dual degree programme of the In-

stitute has been examined by the thesis committee duly appointed by the Institute.

The committee finds the work done by the candidate satisfactory and recommends

that the report be accepted.

Prof. Arvind Dr. Sameer kumar Biswas Dr. Mandip Singh

(Committee member) (Committee member) (Supervisor)

i





Declaration

The work presented in this dissertation has been carried out by me under the guid-

ance of Dr. Mandip Singh at the Indian Institute of Science Education and Re-

search Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or

a fellowship to any other university or institute. Whenever contributions of others

are involved, every effort is made to indicate this clearly, with due acknowledge-

ment of collaborative research and discussions. This thesis is a bonafide record of

original work done by me and all sources listed within have been detailed in the

bibliography.

Swadheen Dubey

(Candidate)

Dated: April 20, 2019

In my capacity as the supervisor of the candidate’s project work, I certify that

the above statements by the candidate are true to the best of my knowledge.

Dr. Mandip Singh

(Supervisor)

iii





Acknowledgements

While writing this thesis I realized that my time at IISER was one of the most

exciting in my life. First I would like to thank Dr. Mandip Singh for providing

me an opportunity to work with him. It was a nice experience to have him as a

supervisor and to learn from him. I want to thank my parents for their love and

constant support. I thank all of my friends (both inside and outside the institute)

for inspiring me in different ways during my stay at IISER. In particular, I want to

thank Shashank Prakash and Gouri Goverdhan very much for his encouragement.

I really enjoyed those endless walks, chats, and coffee. I thank Adarsh, Priyasha,

Navketan, Shruti, Irteza, Tuba, Ramandeep, Rishabh, Misbha, Akansha, Jaideep,

Ritika, etc. for all those discussions. This thesis is dedicated to each and every

one of my friends for making this time a memorable one.

v





LIST OF FIGURES

List of Figures

1.1 With each step length parameter is decreased and cloud density

increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Two current carrying rings in anti- helmoltz configuration. . . . . 11

2.2 From here on we will use this trap only for our static field. . . . . 12

2.3 Variation of magnitude of magnetic field in x-y plane. . . . . . . 12

2.4 Different Parameters for Ioffe-Pritchard Trap . . . . . . . . . . . 14

3.1 Change in potential profile of static field in presence of oscillating

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Variation in E with detuning. . . . . . . . . . . . . . . . . . . . . 17

3.3 Different cases of RF potential for linear polarization . . . . . . . 20

3.4 Linear polarization at different radio frequency. . . . . . . . . . . 20

3.5 Ring Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Ring trap at different radio frequencies. . . . . . . . . . . . . . . 22

3.7 A trap with elliptical polarization. . . . . . . . . . . . . . . . . . 23

3.8 Different cases of elliptical trap for λ = 0.5 here frequency is

ω100Hz and brf in gauss. . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Different cases of elliptical trap for λ = 1.25 here frequency is

ω100Hz and brf in gauss. . . . . . . . . . . . . . . . . . . . . . . 24

3.10 Different cases of elliptical trap for λ = 2 . . . . . . . . . . . . . 25

vii





LIST OF FIGURES

Abstract

In this thesis a theoretical study of Magnetic traps and Radio Frequency dressed

state is presented. RF-Dressed state can produce a double well, a ring trap and in

general polarization dependent potentials. RF- dressed state potentials are con-

trolled by RF amplitudes, RF detuning and Rf polarization state. This thesis

presents detailed calculations of RF dressed state potential for a Bose Einstein

Condensate trapped in a Magnetic trap.

ix





CONTENTS

Contents

Page

1 Introduction 1
1.1 Methods of cooling . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Laser Cooling . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Doppler Cooling . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Sub-Doppler Cooling . . . . . . . . . . . . . . . . . . . . 3

1.2 Magneto Optical Trapping . . . . . . . . . . . . . . . . . . . . . 3
1.3 Evaporative Cooling . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Bose Einstein Condensate (BEC) in a uniform ideal gas . . . . . . 5

2 Magnetic Traps for Neutral Atoms 8
2.1 Principle behind magnetic trapping . . . . . . . . . . . . . . . . . 8

2.1.1 Earnshaw Theorem . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Potential in a Static Magnetic Trap . . . . . . . . . . . . . . . . . 9
2.2.1 The Adiabatic Hamiltonian . . . . . . . . . . . . . . . . . 9

2.3 Quadrupole Trap . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Ioffe-Pritchard Trap . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Geometry and Magnetic Field Profile . . . . . . . . . . . 11
2.4.2 Adiabatic potential for atoms in Ioffe-Pritchard trap . . . . 13

3 Radio Frequency Dressed State Potentials 15
3.1 Interaction of a two level atom with a oscillating magnetic field . 15

3.1.1 A semi classical approach . . . . . . . . . . . . . . . . . 16
3.1.2 Rotating wave approximation . . . . . . . . . . . . . . . 17
3.1.3 Contribution of B in E for different polarization . . . . . . 18

3.2 Linear Polarized light . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Circular Polarized Light . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Elliptical Polarized Light . . . . . . . . . . . . . . . . . . . . . . 22

xi



CONTENTS

4 Correction to the above 26
4.1 Contribution along the direction of static field . . . . . . . . . . . 26
4.2 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . 27

xii





1 INTRODUCTION

1 Introduction

Bose Einstein Condensate (BEC) was first predicted in 1925 by Alberst Einstein
on the basis of works of Satyendra Nath Bose. Einstein predicted that when you
cool an ideal bose gas to a point where the de-Broglie wavelength of the atoms
is comparable to the inter-atomic separation a macroscopic occupation of ground
state occurs. First time BEC was experimentlly observed in 1995 by groups at
JILA, RICE and MIT. Eric A. Cornell, Carl E. Wieman from JILA and Wolfgang
Ketterle from MIT awarded Nobel Prize for the achievement of Bose-Einstein
condensation in dilute gases of alkali atoms. It was by combining magnetic trap-
ping techniques with laser cooling and evaporative cooling that lead to achieve-
ment of BEC in dilute gasses of Alkali atoms. The achievement of BEC is itself
was the begining of new research field that has expanded rapidly over the last
decade.

In this chapter we describe some theoretical and experimental techniques used
to produce condensate of 87Rb atoms in the state of |F = 2,mF = 1, 2〉. To reach
BEC atoms are kept in ultra high vacuum while laser and evaporative cooling is
employed to reach ulta cold regime.

1.1 Methods of cooling

1.1.1 Laser Cooling

When an atom interacts with a laser which is on resonance with atom it absorbs a
photon and get excited. This absorption leads to transfer of momentum. Shortly
afterwards, atoms jumps back to the ground state emitting a photon in random di-
rection due to spontaneous emission. This results in zero net change in momentum
of atom due to averaging over many absorption and emission cycles. Therefore,
shinning shinning a laser beam over an atom results in change in momentum of
atom in the direction of laser beam. The maximum force on the atom per photon
can be given by

F =
∆p

∆t
=
h̄k

2τ

where h̄K is the momentum transfer to atom during each absorption-emission
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1 INTRODUCTION

cycle and τ is exited state life time.

1.1.2 Doppler Cooling

For cooling a gas cloud which follows Maxwell Boltzman velocity distribution
one needs to slow down a range of velocities. As explained above lasers are used
to slow down atoms with force which is velocity dependent. Consider an atom
moving in the the presence of light such that the light is slightly red-detuned from
resonance. In atoms frame of reference, it will see light moving towards as closer
to resonance and light which moves away further from resonance. Hence an atom
moving in opposite direction from laser is slowed down because of scattering of
photon. The scattering force explained in previous section becomes dissipative
because of spontaneous emission. This technique is know as Doppler Cooling
and was first suggested in the paper. For simplicity as an example take one di-
mensional case i.e, pair of laser beam along only one of the axes but it can be
easily generalized to three dimensions. Let I be the beam intensity, the the total
force (including the dissipation due to spontaneous emission) is given by

F =
h̄kτ

2

(
I0

1 + 2I0 + 4(∆− kv)2/τ 2
− I0

1 + 2I0 + 4(∆ + kv)2/τ 2

)

where I0 = I/Is, τ is the line width, and ∆ is the detuning from resonance. For
the case of red detuning and in the regime of velocity tends to zero the force can
be written as

F = αv

Where α is

α = −4h̄K2s

(
2∆/τ

(4∆2/τ 2 + 2s+ 1)2

)
Using this cooling technique atoms can be cooled upto

TD =
h̄τ

2kb

Where TD is known as the Doppler temperature.

2



1 INTRODUCTION

1.1.3 Sub-Doppler Cooling

In the previous method we are considering atoms as two level system instead of
multiple level and also we are not considering the effects polarization of light.
These things will be included in this section. When we shine a light of particular
polarisation on multi-level atom (at rest) and if the light field is in resonance with
the sub-levels the population will redistribute between the sub-levels. In other
words atom’s dipole will orient relative to the polarisation of the field which in-
troduces a spatially varying polarisation pattern resulting in redistribution of pop-
ulation such that the atomic dipole follows the light field. The time lag between
the orientation of dipole with the polarisation is finite due to time taken by optical
pumping. This give rise to sub-Doppler Cooling effects.

The limit on the lowest temperature can be achieved is set by the single photon
recoil velocity. Therefore, we can define recoil temperature

TR =
(h̄k)2

2mkB

1.2 Magneto Optical Trapping

To understand how MOT is used to trap particles consider a simple example of
two level atom with ground state angular momentum J = 0 and excited state
J = 1. In presence of magnetic field upper level splits into three sub levels with
mj = −1, 0, 1. For trapping we use a quadrapole field created by two coils in
anti helmoltz configuration as explained in next chapter. Near the trap center the
energies of these states varies linearly. Now, circular polarized light is applied
to these atoms such they will produce non diagonal terms in hamiltonian causing
spin flips. Atoms which are away from center are pushed towards the trap cen-
ter. The magnetic fields used in magneto-optical trapping are much weaker than
those required to confine the atoms in a purely magnetic potential and without the
scattering forces of the laser beams the atoms would not be trapped.

3



1 INTRODUCTION

1.3 Evaporative Cooling

Based on the same principle by which a hot drink cools down as vapor rises its
surface the whole system rethermalizes. In this method a laser-cooled cloud in
trapped in a magnetic trap. Consider its temperature to be T1. It is evaporatively
cooled in steps. In the first step, atoms with energy greater then a threshold are
removed from the trap. the cloud rethermalizes to a new temperature say T2 via
elastic collisions and so on. For maximum cooling efficiency, the evaporation
should be fast enough to overtake the effects of inelastic cooling and must be
slow enough for the cloud to rethermalize as a net result number of low energy
atoms increases. Higher density clouds permit faster evaporation. In harmonic
potential as the cloud cools down the density of atoms increases allowing the
speed of evaporation to further increase. One of the methods used for evaporation
in magnetic traps is by applying a radio frequency to drive spin-flip changing
trapped states to untrapped states. It is a highly controlled method by tuning the
RF radiation to correspondingly larger frequencies relatively higher energy atoms
can selectively be removed from the trap.

Harmonic Potential Trap

Evaporative Cooling

T1 T3T2

T1 T2 T3> >

Time

Figure 1.1: With each step length parameter is decreased and cloud density in-
creases
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1 INTRODUCTION

1.4 Bose Einstein Condensate (BEC) in a uniform ideal gas

BEC is used to study a variety of research areas. After the first BEC was ex-
perimentally observed in 1995, BEC has been used for fundamental experiments,
atom precision measumrment, atom interferometry and simulation of condensed
matter system. This section provides a short introduction of the theory behind
BEC.In this section the phase transition properties of a uniform ideal Bose gas is
derived.

The cloud of N noninteracting Bosons in the trap after going transition to
BEC behaves like a giant matter wave. Because of properties of Bosons, there is
a macroscopic occupation of a single particle quantum state, i.e ground state. An
atom’s spatial occupation can be described by its de-Broglie wavelength λDB, for
the uniform bose gas of atoms with the number density n, temperature T, it’s given
by

λDB =
h̄

2πmkBT

The de-Broglie wavelength of an atom at room temperature is much shorter than
the interparticle separation between the atoms of a cloud with density n which is
proportional to n1/3. But as the temperature is decreased, the wavelength increases
and at the point where n1/3 = λdB, the wavelength of the atoms start to overlap
and the system undergoes a phase transition to a Bose-Einstein Condensation.
A single wavefunction of the system is created by the overlap of all atoms. In
terms of phase space density of the gas, this transition is attained at ρ = 1 where
ρ = nλ3

DB The potential for trapped atoms in a 3-D harmonic oscillator potential
is given as

Vad =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

The energy associated with this potential

E(nx, ny, nz) = h̄
(
nx +

1

2

)
ωx + h̄

(
ny +

1

2

)
ωy + h̄

(
nz +

1

2

)
ωz

In BEC all particles occupy the ground state so

Φ(~r1, ~r2, ...., ~rN) =
N∏
i=1

Φ0(~ri)
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where
Φ0(~ri) =

(mω′
πh̄

)
exp

(−m
2h̄

(ω2
x + ω2

y + ω2
z)
)

where ω′ is the relevant geometric mean of the trap frequencie, i.e

ω′ = (ωxωyωz)
1
3

Most of the properties of the BEC phase transition can be calculated from the
partition function of the grand canonical ensemble. This function is given by

Zgc = Tr(exp (−β(Ĥ − µN̂)))

Where β = 1
kbT

, Ĥ is hamilotian, N̂ is number operator and µ is chemical poten-
tial which amounts to number fluctuation. we can see from that Zgc is not defined
for the ground state for µ = 0 The most probable N which we were initially re-
ferring to the total number of atoms can be calculated using the grand canonical
function

N =
∑
i

Ni =

(∑( 1

exp(β(Ei − µ))− 1

))
(T,V )

If V is large the spacing between the energy levels will be much less than kbT
and this discrete sum can be converted to an integral to give

N = N0 +Nex = N0 +

∫
dE
( ρ(E)

exp(β(E − µ))− 1

)
where ρ(E) is the density of states with energy E and the number of particles

in the ground state has been separated out since it is not accounted by the integral.
The density of states for a harmonic potential of volume V is given by

ρ(E) =
V (2m)

3
2

√
E

h̄3(2π)2

From the integral number of excited states are

6
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Nex =
V

(2π)2

(2mKT

h̄2

) 3
2
Γ
(3

2

)
ζ
(3

2

)
Where Γ and ζ are gamma and Riemann zeta function respectively. The criti-

cal temperature at which particles can accommodate in the excited states with no
particles in the ground state can be calculated using

Tc =
2πh̄2

mK

(
n

ζ
(

3
2

))

where n = N
V

and ζ
(

3
2

)
= 2.612

At temperature T, the total number of particles in the ground state in terms of
Tc will be

N0

N
= 1−

( T
Tc

) 2
3

Now, to achieve BEC all we need to do is to devise a method to trap a finite
number of particles and cool them below Tc. Particles are cooled using meth-
ods which are mentioned above and the structure of different traps and trapping
methods are explained in the next chapter.
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2 MAGNETIC TRAPS FOR NEUTRAL ATOMS

2 Magnetic Traps for Neutral Atoms

2.1 Principle behind magnetic trapping

Magnetic traps are based on two principles

2.1.1 Earnshaw Theorem

Eanshaw theorem tells us that using any configuration of sources which produce
static fields we can not achieve a local maxima.

2.1.2 Zeeman effect

According to classical electromagnetism the energy of magnetic dipole moment
acted by external magnetic field B is

V = −µ.B

Quantum mechanically this interaction produces splitting of particles energy lev-
els. Total angular momentum is specified by spin and obital angular momentum.
The quantity reads as

V (r) = −gsµBS − glµbL

For atoms in magnetic traps potential will be

V (r) = gFµBF.B(r)

where

gF = gj
F (F + 1) + J(J + 1)I(I + 1)

2F (F + 1)
− µN
µB

gI
F (F + 1)J(J + 1) + I(I + 1)

2F (F + 1)

The second term is neglected because it is of the order of 10−3. For 87Rb the
hyperfine levels that are used throughout the thesis will be |F = 2〉 and |F = 1〉
which have gF = 1/2 and gF = −1/2, respectively.

8



2 MAGNETIC TRAPS FOR NEUTRAL ATOMS

2.2 Potential in a Static Magnetic Trap

The potential of an atom with hyperfine spin F in a magnetic field B(r) is given by

V (r) = gFµBF.B(r)

2.2.1 The Adiabatic Hamiltonian

The Hamiltonian for the atom in the trap

H =
P 2

2m
− µ.B(r) = T + h(r)

The first term T is kinetic energy of the center of mass of the atom and the second
term is the the interaction of magnetic moment with magnetic field. The eigenstate
of h(r) will be |m(r)〉 and its eigenvalues will be

h(r) |m(r)〉 = em(r) |m(r)〉

It is useful to introduce a r independent unitary operator U(r) which rotates B(r)

parallel to z axis and acts on states such that

|m(r)〉 = U(r) |mz〉

We define the transformed Hamiltonian to be

H ′ = U(r)HU †(r) = U(r)TU †(r) + U(r)h(r)U †(r)

H ′ = T ′ + h′(r) = T + h′(r) + ∆T = Had + ∆T

hereHad is the adiabatic hamiltonian and the adiabatic approximation corresponds
to neglecting ∆T = T ′ − T . In this picture the adiabatic potential will be simply

Vad = gFµBmF | B(r) |

em(r) are diagonal elements of h′(r) in a r independent basis |m〉. A simplified
example of magnitude of magnetic field is | B(r) |=

√
B2

0 + α2(x2 + y2) = B.

9



2 MAGNETIC TRAPS FOR NEUTRAL ATOMS

For such a case U(r) will be

U(r) = βxσx − βyσy + γσz

where γ2 = B0+B
2B

and β2 = α2

2B(B0+B)
. From above we can see there will exist

only types of state

• Strong-field seeking state: If the direction of the magnetic moment and
magnetic field are parallel for gF > 0 then an atom will seek for the higher
magnitude of the magnetic field as Minima of the potential are found at
the maxima of the field and vice versa. As the maximum of B corresponds
to a minimum of potential energy. But according to Earnshaw theorem
maximum of the magnetic field is forbidden in free space. So using static
magnetic field one can not trap positive spin particle.

• Weak-field seeking state: If the direction of the magnetic moment and mag-
netic field are anti-parallel for gF < 0 then an atom will seek for the lower
magnitude of the magnetic field as minima of the potential energy corre-
spond to minima of a magnetic field and vice versa. The minima of the
magnetic field are allowed by Earnshaw theorem. These types of traps are
most common for neutral atoms and will trap only negative spin particles.
Although an important point to note is that these states are not the state of
lowest energy as positive spin can energies are negative in signature for any
|B| > 0.

2.3 Quadrupole Trap

Quadrupole trap is obtained by positioning two parallel coils in anti- helmoltz
configuration, i.e, with their currents flowing in opposite direction. The magnetic
field because in cartesian co-ordinates reads as

B =
3µBIca

2b

2
(a2 + b2)2.5(xex + yey − 2zez)

Magnitude of magnetic field at the trap center

10



2 MAGNETIC TRAPS FOR NEUTRAL ATOMS

|B| = 3µBIca
2b

2
(a2 + b2)2.5(

√
x2 + y2 + 4z2)

Here, we can see at the trap center magnetic field is zero. Hence, if the
trapped particles reached the minimum the energy spacing between the zeeman
level rather reduce increasing the probability of non adiabatic transitions among
these energy levels, leading to loss of particles because of spin-flip.

z

y

x

d

Figure 2.1: Two current carrying rings in anti- helmoltz configuration.

2.4 Ioffe-Pritchard Trap

2.4.1 Geometry and Magnetic Field Profile

Ioffe-Pritchard trap contains four parallel wires and two coils. The configuration
of wires is such that they produce a quadrapole field (there is a azimuthal symme-
try). The coils are in Helmholtz configuration around the wires as shown in figure
2.2

11



2 MAGNETIC TRAPS FOR NEUTRAL ATOMS

Ioffe-Pritchard Trap

a

b

Iw

2d

Ic

Figure 2.2: From here on we will use this trap only for our static field.

Figure 2.3: Variation of magnitude of magnetic field in x-y plane.

The magnetic field due to the four wires under the assumption d << x, y in
x-y plane

Bw =
µ0I1

d2π
(yj − xi)

12



2 MAGNETIC TRAPS FOR NEUTRAL ATOMS

And because of the coils assuming a, b >> x, y, z in x-y plane

Bc = 3C3z(xi+ yj) + (C1 + 1.5C3(x2 + y2 − 2z2))k

where
C1 =

µ0I2a
2

(a2 + b2)3/2
, C3 =

µ0I2a
2(a2 − 4b2)

2(a2 + b2)7/2
, α =

µ0I1

d2π

Magnitude of magnetic field for our trap in x-y plane

|B| =
√

(α2 + 3C1C3)(x2 + y2) + C2
1

Near the trap center C2
1 >>> (α2 + 3C1C3)

|B| = C1 +
1

2

(α2 + 3C1C3)

C1

(x2 + y2)

2.4.2 Adiabatic potential for atoms in Ioffe-Pritchard trap

In trap potential for atoms in x-y plane

Vad = µ|B| = µ
√

(α2 + 3C1C3)(x2 + y2) + C2
1

Vad = µC1 +
1

2

µ(α2 + 3C1C3)

C1

(x2 + y2)

Near the trap center first term is causing Zeeman splitting and the second term
behaves like a 2-D harmonic oscillator potential.

Vad = h̄ω0 +
Mω2

xx
2

2
+
Mω2

yy
2

2

where energy splitting and trap frequencies in x and y direction is given by

ω0 =
µC1

h̄
, ωx = ωy =

√
µ(α2 + 3C1C3)

MC1

respectively. The adiabatic condition is given by

X0 =
ωx
ω0

<<<< 1

13



2 MAGNETIC TRAPS FOR NEUTRAL ATOMS

Trap frequency along the z-axis is given by

Vad = µC1 − 3µC3Z
2

ωz =

√
6µC3

M

. The distance between the coils and the current in the wire and the coils are
decided such that we get the maximum trap frequency and Bmin.

10 12 14 16 18 20

800.

900.

1000.

4.4

5.7

6.9

0 1 2 3 4 5 6 7

0.

0.1

0.2

0.3

-0.0064

-0.0011

0.0043

0.0097

O.2

0.3

0.0011

0.0043

0.0097

0.1

0 0.0006

0 1 643 52

C3 C1

1000

800

900

4.4

5.7

6.9

10 1412 2016 18

Trap  
Frequency 

(Hz)

Bmin 
(Gauss)

(a) for Ic=14.36 A  both Radio Frequency and Bmin are maximum

(b) for b=1 cm both C3 and C1 are maximum
b(cm)

Ic(A)

Figure 2.4: Different Parameters for Ioffe-Pritchard Trap
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3 RADIO FREQUENCY DRESSED STATE POTENTIALS

3 Radio Frequency Dressed State Potentials

In this chapter for simplicity, we will consider atom to be two levels. The same
procedure can be extended for atoms with three level and higher. The two levels
are labeled as |1〉 and |2〉 with energy difference h̄ω0. In presence of oscillating
magnetic field the Hamiltonian changes to H = H0 + H ′ where H ′ and H0 are
the Hamiltonian due to interaction and atom respectively. We will first introduce
a semiclassical approach to find new states. Later on, we will devise a method to
understand the effects of different polarization on the dressed state.

3.1 Interaction of a two level atom with a oscillating magnetic
field

In this section, we are using a semi-classical approach where the atomic levels are
quantized while the field is classical. Because of our static trap, there is Zeeman
splitting in the direction along the static magnetic field. Now, if we apply an oscil-
lating magnetic field orthogonal to the direction of static traps field the potential
for two states changes as shown below

— —

— —

+

—

+

Harmonic 
Potential 

Trap

Strong Field Seeking 
State

++ +

Week Field Seeking 
 State

In presence of 
an oscillating 

field

——

++

RF 
Dressed 

State 
Potential

Week Field Seeking 
 State

Strong Field Seeking 
State

Harmonic 
 potential

Radio frequency  
dressed state potential

Figure 3.1: Change in potential profile of static field in presence of oscillating
field.
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3 RADIO FREQUENCY DRESSED STATE POTENTIALS

3.1.1 A semi classical approach

The radio frequency magnetic field is taken to be of the form

Brf = B0
rf

 cos (ωt)

λ cos (ωt− γ)

0


The two level atom state for this system will be

|ψ〉 = c1(t) |1〉+ c2(t) |2〉

And in the presence of only static magnetic field in the z direction the hamil-
tonian for the atom was

H =
h̄

2

[
−ω0 0

0 ω0

]
Where ω0 = gFµBmzBs and Bs is static magnetic field because of Ioffe-pritchard
trap.

The z-direction here is pointing towards the direction of the static field be-
cause of the unitary transformation that we made in the previous section. Assum-
ing that the contribution of the two orthogonal components of Brf from Bs be
x1 cos (ωt− φ1) and x2 cos (ωt− φ2). Then the hamiltonian will become

H = gFµBF.(Bsez + x1 cos (ωt− φ1)ex + x2 cos (ωt− φ1)ey)

H = gFµB(FzBs + Fxx1 cos (ωt− φ1) + Fyx2 cos (ωt− φ1))

replacing Fx and Fy by F++F−
2

and F+−F−
2i

respectively. Where F+ and F− are
ladder operators. The final hamiltonian in (|1〉 , |2〉) basis will look like

H =
h̄

2

[
−ω0 Ω+(x1 cos (ωt− φ1) + ix2 cos (ωt− φ2))

Ω−(x1 cos (ωt− φ1)− ix2 cos (ωt− φ2)) ω0

]

where Ω± = gFµBF±
2

. How to find x1, φ1 and x2, φ2 is given in section 3.1.3.
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3 RADIO FREQUENCY DRESSED STATE POTENTIALS

3.1.2 Rotating wave approximation

To make calculations easy we will make a unitary transformation to go to the
rotating frame of Brf .

U =

[
exp (− iωt

2h̄
) 0

0 exp ( iωt
2h̄

)

]

Such that U † |ψ〉 = |ψ′〉. For this new state the schrodingers equation will trans-
form as

ih̄
d |ψ′〉
dt

= (U †HU + ih̄
d(U †)

dt
U) |ψ′〉

Making the rotating wave approximation and ignoring the terms of the form of
exp(±2ω). The new hamiltonian for |ψ′〉 state will look like

H ′′ =
h̄

2

[
ω − ω0 Ω+(x1 exp (−φ1) + ix2 exp (−φ2))

Ω−(x1 exp (φ1)− ix2 exp (φ2)) ω0 − ω

]

The energies of these new states are the eigenvalues of the above hamiltonian

E = ± h̄
2

√
(ω − ω0)2 + Ω2(x2

1 + x2
2 + 2x1x2 sin (φ1 − φ2))

0

E

—Ve +ve δ

⎟1’〉

⎟2〉

⎟1〉

⎟2’〉

⎟1〉
⎟2〉
⎟1’〉
⎟2’〉

In a static trap

In presence of an  
oscillating field

2ω0 2E

Figure 3.2: Variation in E with detuning.
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3 RADIO FREQUENCY DRESSED STATE POTENTIALS

Now all we have to do is to find x1 and x2.

3.1.3 Contribution of B in E for different polarization

From the previous section

Bs =

 −αxαy

B0


A unit vector in direction of Bs

ez =
1√

x2 + y2 + z2

 x

y

z


We will replace x by −αx, y by αy and z by B0 when needed. This basis in polar
co-ordinates along with the other two orthogonal basis will be

ez =

 cosφ sin θ

sinφ sin θ

cos θ

 , ex =

 sinφ

− cosφ

0

 , ey =

 − cosφ cos θ

− sinφ cos θ

sin θ


The inverse of corresponding rotation matrices

R−1 =

 − cosφ cos θ − sinφ cos θ sin θ

sinφ − cosφ 0

cosφ sin θ sinφ sin θ cos θ


Contribution of Brf in this rotated frame

 x1 cos (ωt− φ1)

x2 cos (ωt− φ2)

x3 cos (ωt− φ3)

 = B0
rf

 − cosφ cos θ − sinφ cos θ sin θ

sinφ − cosφ 0

cosφ sin θ sinφ sin θ cos θ


 cos (ωt)

λ cos (ωt− γ)

0


From above
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3 RADIO FREQUENCY DRESSED STATE POTENTIALS

x1 cosφ1 = B0
rf (− cos θ cosφ− λ cos θ sinφ cos γ)

x1 sinφ1 = B0
rf (−λ cos θ sinφ sin γ)

x2 cosφ2 = B0
rf (sinφ− λ cosφ cos γ)

x2 sinφ2 = B0
rf (−λ cosφ sin γ)

x2
1 + x2

2 + 2x1x2 sin (φ1 − φ2) = (B0
rf )

2h(θ, φ, γ, λ)

h(x, y, γ, λ) =
B2

0

α2(x2 + y2) +B2
0

x2 + λ2y2

x2 + y2
+
y2 + λ2x2

x2 + y2
+

2λα2xy cos γ

α2(x2 + y2) +B2
0

− 2λB0 sin γ√
α2(x2 + y2) +B2

0

So the Rf dressed state potential will be

E = ± h̄
2

√
(ω − ω0)2 + (ΩB0

rf )
2h(x, y, λ, γ)

3.2 Linear Polarized light

For linearly polarized light λ = 0. Energy for the particles in this trap will be

E = ± h̄
2

√
(ω − ω0)2 + (ΩB0

rf )
2

B2
0 + α2y2

α2(x2 + y2) +B2
0

In figure 3.1 (b), with an increase in detuning above a critical value the center
of trap minima splits into two minima symmetric along the y-axis. With further
increase in detuning distance between two minima increases. In figure 3.1 (a), for
the case of maximum detuning, as we increase the B0

rf the sharpness of minima
decreases and Bmin increases. Contour plots for the linearly polarized trap of
different frequencies are given below. Color distribution for all the contour plots
follows VIBGYOR from minima to maxima.
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Figure 3.3: Different cases of RF potential for linear polarization
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Figure 3.4: Linear polarization at different radio frequency.
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Therefore, depending on the polarization either the potential remains at the
same position with a slight change in shape or it can shift the minimum position
and convert into a double well potential.

3.3 Circular Polarized Light

For circular polarized light λ = 1 and γ = ±π
2

E = ± h̄
2

√√√√(ω − ω0)2 + (ΩB0
rf )

2

(
B2

0

α2(x2 + y2) +B2
0

+ 1± 2B0√
α2(x2 + y2) +B2

0

)

Figure 3.5: Ring Trap

Here again, there are two possible scenarios: Left circular polarization and
right circular polarisation. In the case when Brf = 0 which is independent of γ,
we get the same plot for left circular polarisation and right circular polarisation,
the plot obtained is shown in figure 3.6a. The rf potential for the case in which
sin = 1 is shown in figure 3.6, with increase in detuning we get a ring trap while
in the case of sin γ = −1 we get the same plot.
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Figure 3.6: Ring trap at different radio frequencies.

3.4 Elliptical Polarized Light

In the second case when detuning is negative there is always a minima at non-zero
x(similar to the case of linear polarization) and is independent of γ. In this case
the rf potential is ring shaped for any value of rf field strength.

For elliptical polarized light γ = π
2

E = ± h̄
2

√√√√(ω − ω0)2 + (ΩB0
rf )

2

(
(1 + λ2)B2

0 + α2(x2 + λ2y2)

α2(x2 + y2) +B2
0

− 2λB0√
α2(x2 + y2) +B2

0

)
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Figure 3.7: A trap with elliptical polarization.
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Figure 3.8: Different cases of elliptical trap for λ = 0.5 here frequency is ω100Hz
and brf in gauss.

In figure 3.8, we can see that above a threshold value of B0
rf we get two sepa-

rate regions of minima and with increase in B0
rf they become more isolated or the
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well becomes more stepper. On the other hand one can achieve the same effects
with just increasing the detuning.
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Figure 3.9: Different cases of elliptical trap for λ = 1.25 here frequency is
ω100Hz and brf in gauss.

Now, if we change the polarization of light to λ = 1.25 as in figure 3.9. the
orientation of minima changes. In case of λ = 0.5 center of minima’s was situated
along with y = 0 while in this case these are situated along the x-axis. For circular
polarization, we get a ring trap which is symmetrical in the x-y plane and has
λ = 1. For linear polarization that is λ = 0, we have a center of minima’s along
the x-axis. For λ = 2 (Figure 3.10) center of minimas are along the y-axis. So
one can state that center of minima’s will be along the x-axis for 0 < λ < 1 and
will be along the y-axis for λ > 1. The most efficient elliptical trap we get is at
ω = 20 and B0

rf = 6, if we are talking in terms of the spatial extent of minima.
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Figure 3.10: Different cases of elliptical trap for λ = 2
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4 CORRECTION TO THE ABOVE

4 Correction to the above

4.1 Contribution along the direction of static field

The above calculation is first done in [13] and was experimentally realized in [8].
The problem with the calculation in [13] is that they have not included a time-
dependent contribution of x3 in E i.e, the effect of radio frequency in the direction
of the static field. From the rotation matrix mentioned in section 3.1.3 in chapter
we can see that

x3 cos (φ3) = cos (φ) sin (θ) + sin (φ) sin (θ)λ cos (γ)

x3 sin (φ3) = sin (φ) sin (θ)λ sin (γ)

In cartesian co-ordinates

x2
3 =

α2(x2 + y2λ2 − 2xyλ cos γ)

α2(x2 + y2) +B2
0

In other words in case of linear polarization only along x = 0 the contribution of
x3 is zero. For the case of circular polarization x3 becomes

x2
3 =

α2(x2 + y2)

α2(x2 + y2) +B2
0

and for elliptical polarization x3 becomes

x2
3 =

α2(x2 + y2λ2)

α2(x2 + y2) +B2
0

For both the cases the contribution of x3 is zero only along z axis. So instead of
equation..... the general equation for the energy should be

E = ± h̄
2

√
(ω − (ω0 + x3 cos (ωt− φ3)))2 + (ΩB0

rf )
2h(x, y, λ, γ)

For λ = 1 and γ = 0, x3 will be zero along x=y.
We can find a general 3D polarization for which x3 will be zero.
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4 CORRECTION TO THE ABOVE

 x1 cos (ωt− φ1)

x2 cos (ωt− φ2)

x3 cos (ωt− φ3)

 = B0
rf

 − cosφ cos θ − sinφ cos θ sin θ

sinφ − cosφ 0

cosφ sin θ sinφ sin θ cos θ


 cos (ωt)

λ cos (ωt− γ1)

k cos (ωt− γ2)


x1 cosφ1 = B0

rf (− cos θ cosφ− λ cos θ sinφ cos γ + k sin θ cos γ2)

x1 sinφ1 = B0
rf (−λ cos θ sinφ sin γ + k sin θ sin γ2)

x2 cosφ2 = B0
rf (sinφ− λ cosφ cos γ1)

x2 sinφ2 = B0
rf (−λ cosφ sin γ1)

x2
1 + x2

2 + 2x1x2 sin (φ1 − φ2) = (B0
rf )

2h(θ, φ, γ, λ)

But, E will be true only along

cotφ sin γ2 = λ sin (γ1 − γ2)

and function h for this polarization along the line....will be

h(x, y, λ, k, γ1, γ2) = 1−sin2 θ cos2 φ+k2 sin2 θ cos2 γ2+λ2 cos2 γ1(1+sin2 φ sin2 θ)

+2λ(cos θ sin 1−cosφ sinφ cos γ1 sin2 θ)+2k sin (sinφ sin γ2−cos θ cosφ cos γ2)+

2kλ sin θ(cosφ sin (γ1 − γ2)− sinφ cos θ cos γ1 cos γ2)

4.2 Summary and Conclusion

Different cooling and trapping methods are discussed to achieve BEC. Ioffe Pritchard
Trap was studied in detail. Different parameters are calculated to make Ioffe
pritchard trap most efficient. Further, Rf dressed state theory is used to study
different traps with complex potentials in detail for linear, circular and elliptical
polarization. Found that in [9] experimental realization of ring trap is claimed
without including the time-dependent term x3 which is mentioned above.
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