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Notation

X A topological space

Xn The n-fold product X × . . .×X
I The unit interval [0, 1]

PX or XI The free path space of X

dim(X) The topological dimension of X

idX The identity map on X

idXU The inclusion map from a subset U of X into X

πi The projection map onto the ith factor

∆n The n-fold diagonal map from X into Xn

Hn(X) The nth homology group of X with coefficients in Z
H̃n(X) The nth reduced homology group of X with coefficients in Z
Hn(X) The nth cohomology group of X with coefficients in Z
Hn(X;R) The nth cohomology group of X with coefficients in ring R

H∗(X;R) The cohomology ring of X with coefficients in ring R

H̃∗(X;R) The reduced cohomology ring of X with coefficients in ring R

secat(p) The Schwarz genus of fibration p : E → B

cat(X) The Lusternik-Schnirelmann category of X

TC(X) The topological complexity of X

TCn(X) The higher topological complexity of X
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Abstract

The goal of this project is to study numerical homotopy invariants called the higher

topological complexity TCn(X) of a topological space X for n ≥ 2. We begin by

introducing the notion of Schwarz genus of a surjective fibration which provides us in-

sights for understanding the numerical homotopy invariants - Lusternik-Schnirelmann

(LS) category and higher topological complexity of spaces as both of them are the

Schwarz genus of specific path space fibrations. We further explore the LS category of

a space and study its bounds, since for any fibration p : E → B the Schwarz genus of

p is bounded above by the LS category of the base space B. In particular, TCn(X) is

bounded above by the LS category of the base space of the corresponding path space

fibration. We then implement the results associated with the Schwarz genus and LS

category to study the higher topological complexity comprehensively.
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Chapter 1

Prerequisite Knowledge

In this chapter, we study some basic concepts in topology required for a good under-

standing of the later chapters.

1.1 Path Spaces

In this section, we give a topology on the set of all paths of a topological space and

study its fundamental properties. Some of the text in this section can be found in [3,

Chapter 6].

Definition 1.1.1. Suppose X and Y are topological spaces. Let C(X, Y ) be the set

of all continuous maps f : X → Y . Give a topology on C(X, Y ) generated by sets of

the form,

B(K,U) = {f ∈ C(X, Y ) | f(K) ⊂ U},

where K is compact in X and U is open in Y . The topology obtained on C(X, Y ) is

called compact-open topology.

Clearly the sets B(K,U) forms a subbasis for the compact-open topology on

C(X, Y ).

Definition 1.1.2. Let I be the unit interval [0, 1]. Then C(I,X) is called the free

path space of X and is denoted by PX or XI , i.e.,

PX = {α : I → X | α is continuous}.

Let x0 be a fixed point in the space X. Define

Px0X = {α ∈ PX | α(0) = x0},

and

Ωx0X = {α ∈ PX | α(0) = α(1) = x0}.
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The subspace Ωx0(X) is called the loop space of X at x0.

Proposition 1.1.3. The evaluation map ev : PX × I → X, given by ev(α, t) = α(t),

is continuous.

Proof. Let U be an open subset of X. Then ev−1(U) = {(α, t) ∈ PX× I | α(t) ∈ U}.
Let (α, t) ∈ ev−1(U). Since α is continuous, there exists an open neighborhood of t,

say J , such that α(J) ⊂ U . Take K to be a compact set contained in J such that t

is an interior point of K, then α(K) ⊂ U . Hence (α, t) ∈ B(K,U) × int(K) is open

in PX × I. If (β, t′) ∈ B(K,U)× int(K), then β(K) ⊂ U . Since t′ ∈ int(K), we have

β(t′) ∈ U , i.e., (β, t′) ∈ ev−1(U). Thus B(K,U)× int(K) is an open subset of ev−1(U)

containing (α, t). Therefore the evaluation map ev is continuous. �

Proposition 1.1.4. The map H : Y × I → X is continuous if and only if the map

H ′ : Y → PX, given by H ′(y)(t) = H(y, t), is continuous.

Proof. Suppose the map H ′ : Y → PX is continuous. Consider the homotopy defined

by the composition of the following maps

U × I PX × I X.
H′×id ev

Then

ev((H ′ × id)(y, t)) = ev((H ′(y), t)) = H ′(y)(t) = H(y, t).

Thus H is continuous.

Conversely, if H : Y × I → X is continuous. It is enough to check continuity of H ′

on subbasis of PX. Let B(K,U) be a subbasis element of PX and y ∈ H ′−1(B(K,U)).

Then H ′(y)(K) ⊂ U implying {y} ×K ⊂ H−1(U) . Since H is continuous, for each

(y, ti) ∈ {y} × K there exists an open neighborhood Vi × Wi of (y, ti) such that

H(Vi × Wi) ⊂ U . Using compactness of K, there exist finite number of Wi, say

i = 1, . . . , n, such that ∪ni=1Wi ⊃ K. Suppose V = ∩ni=1Vi and W = ∪ni=1Wi, then

{y} × K ⊂ V ×W ⊂ ∪i∈K(Vi ×Wi) implying H(V ×W ) ⊂ U . Since K ⊂ W , we

have H(V ×K) ⊂ U , i.e. H ′(V ) ⊂ B(K,U). Thus H ′ is continuous. �

The restriction of the evaluation map ev : PX × I → X on PX × {1} gives a

continuous map ev1 : PX → X given by ev1(α) = α(1) for all α ∈ PX. Similarly,

restricting ev on PX ×{0} gives a continuous map ev0 : PX → X given by ev0(α) =

α(0) for all α ∈ PX. Thus we can define a continuous map

ẽ : PX → X ×X

given by ẽ(α) = (α(0), α(1)) for all α ∈ PX. More generally, we can define a contin-

uous map

ẽn : PX → X × . . .×X = Xn
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given by ẽn(α) = (α(0), α(t1), . . . , α(tn−2), α(1)) where ti = i/(n−1) for i ∈ {0, . . . , n−
1} and n ≥ 2. Clearly ẽ2 = ẽ.

Lemma 1.1.5. The free path space PX is homotopy equivalent to X. The map

evj : PX → X, for j = 0, 1, is a homotopy equivalence with the map i : X → PX,

which maps x ∈ X to the constant path cx at x, as the homotopy inverse.

Proof. Let i : X → PX be the map which maps x ∈ X to the constant path cx at

x. Then evj ◦ i = idX and i ◦ evj(α) = cα(j) for j = 0, 1. Thus it is enough to show

i ◦ evj is homotopic to idPX .

Let Fj : PX × I → PX be defined by

Fj(α, s)(t) = α(t+ s(j − t)), for j = 0, 1.

Then Fj(α, 0) = α and Fj(α, 1) = cα(j). Hence, evj and i are homotopy inverses. �

Corollary 1.1.6. The space Px0X is contractible.

Proof. Let F0 : Px0X × I → Px0X be defined by

F0(α, s)(t) = α(t− st).

Then F0(α, 0) = α and F0(α, 1) = cα(0) = cx0 . Thus Px0X is contractible. �

Definition 1.1.7. Let f : X → Y be a continuous map. Then the space Pf =

{(α, x) ∈ PY ×X | α(0) = f(x)} is called the mapping path space of f .

Lemma 1.1.8. Let f : X → Y be a continuous map. Then the space Pf is homotopy

equivalent to X and the projection map π2 : Pf → X, given by π2(α, x) = x, is a

homotopy equivalence.

Proof. Let i : X → Pf be the map which maps x ∈ X to the tuple (cf(x), x) where

cf(x) is the constant path at f(x). Then π2 ◦ i = idX and i◦π2(α, x) = (cf(x), x). Thus

it is enough to show i ◦ π2 is homotopic to idPf .

Let F0 : PY × I → PY be defined by

F0(α, s)(t) = α(t− st).

Then F0(α, 0) = α and F0(α, 1) = cα(0). Now, define F : Pf × I → Pf by

F (α, x, t) = (F0(α, t), x).

Then F (α, x, 0) = (F0(α, 0), x) = (α, x) and F (α, x, 1) = (F0(α, 1), x) = (cα(0), x) =

(cf(x), x). Thus Pf is homotopy equivalent to X. �
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1.2 Fiber Bundles

In this section, we study a nice class of maps called fiber bundles. We refer to [7,

Chapter 4] for details.

Definition 1.2.1. A fiber bundle structure (E,B, p, F ) on space E, with fiber F ,

consists of a continuous map p : E → B such that for each point b ∈ B there exists

an open neighborhood U of b and a homeomorphism φ : p−1(U) → U × F such that

the following diagram commute

p−1(U) U × F

U

φ

p
π1

where π1 is the projection onto the first factor.

The space B is called the base space, E the total space, and F the fiber of

the bundle. The map p is called the projection map and the collection {(Ui, φi)} is

called the local trivialization of the bundle.

A fiber bundle structure (E,B, p, F ) is sometimes denoted as

F E B,
p

a ‘short exact sequence of spaces.’

Since p = π1 ◦ φ on p−1(U) and φ is a homeomorphism, it implies that φ maps

p−1(b) homeomorphically onto {b} × F and the map p is surjective. The preimage

p−1(b) is called the fiber over p and is homeomorphic to the fiber F . Thus the fiber

bundle structure is determined by the projection map p : E → B.

Example 1.2.2. The projection map π1 : B×F → B is a fiber bundle with fiber F .

Here E is not just locally a product B × F but also globally. Such a fiber bundle

is called a trivial bundle.

Example 1.2.3. The Möbius band mapping onto its central circle is fiber bundle

with fiber [0,1]. But it’s not a trivial bundle.

Example 1.2.4. If the fiber F has discrete topology, then the map p : E → B is a

covering map. Conversely, if p : E → B is a covering map such that p−1(b) has the

same cardinality for all b ∈ B, then the map p : E → B is a fiber bundle with discrete

fiber.
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1.3 Fibrations

In this section, we study a class of maps called fibrations, which are very important

from homotopy theory point of view. A fibration in a sense is a generalization of a

fiber bundle, i.e., the fibers p−1(b) need not be homeomorphic as in the case of a fiber

bundle, but they are homotopy equivalent. Most of the text in this section can be

found in [3, Chapter 6].

If H : X×I → Y is a homotopy, let Ht : X → Y denote the map Ht(x) = H(x, t).

Definition 1.3.1. A continuous map p : E → B is said to have homotopy lifting

property with respect to a topological space X if, given a homotopy H : X×I → B,

and a map h : X → E lifting H0, i.e. p◦h = H0, there exists a homotopy H̃ : X×I →
E lifting H, i.e. p ◦ H̃ = H, and satisfying H̃0 = h.

Let i : X ↪−→ X× I be the inclusion map given by i(x) = (x, 0). Then the diagram

given below depicts the homotopy lifting property of the map p : E → B with respect

to the space X.

X E

X × I B

h

i p

H

H̃

The outer diagram commutes if and only if the hypotheses of homotopy lifting prop-

erty are satisfied. A lifting H̃ of H, satisfying H̃0 = h, corresponds to a dotted arrow

making the whole diagram commute.

Definition 1.3.2. A continuous map p : E → B is said to be a Hurewicz fibration

if it has homotopy lifting property with respect to any space X.

Definition 1.3.3. A continuous map p : E → B is said to be a Serre fibration if it

has homotopy lifting property with respect to In for n ≥ 0.

Unless mentioned the word ‘fibration’ will be used for Hurewicz fibration.

Remark 1.3.4. These are some trivial observations:

• A Hurewicz fibration is a Serre fibration.

• A homeomorphism is a fibration.

• Cartesian product and composition of two fibrations is a fibration.

• A covering map is a fibration since covering maps have homotopy lifting property

for all spaces.
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Example 1.3.5. The projection map π1 : B × F → B is a fibration.

Given a homotopy H : X × I → B and a map h : X → B × F lifting H0, then

the map H̃ : X × I → B × F , given by H̃(x, t) = (H(x, t), π2 ◦ h(x)), lifts H and

H̃(x, 0) = (H(x, 0), π2 ◦ h(x)) = (H0(x), π2 ◦ h(x)) = (π1 ◦ h(x), π2 ◦ h(x)) = h(x).

Example 1.3.6. Let π1 : R × I → R be the projection map onto the first factor.

Suppose H : R× I → R is a homotopy between the zero map, i.e., H0(x) = 0 for all

x ∈ R, and the identity map on R, i.e., H1(x) = x for all x ∈ R. Let h : R → R × I
be the zero map, i.e., h(x) = (0, 0) for all x ∈ R. Then h lifts H0 with respect to the

projection map π1.

R R× I

R× I R

h

i π1

H

The maps H̃(x, t) = (H(x, t), t) and G(x, t) = (H(x, t), 0) both lifts H, and satisfies

H̃(x, 0) = G(x, 0) = h(x). Thus the lift of a homotopy may not be unique.

Theorem 1.3.7. Let B be a paracompact space and p : E → B be a continuous

map. Suppose there exists an open cover {Uα}α∈I of B such that p : p−1(Uα) → Uα

is a fibration for each α ∈ I. Then p : E → B is a fibration.

Corollary 1.3.8. Let p : E → B be a fiber bundle and B a paracompact space.

Then p is a fibration.

Proof. Let p : E → B be a fiber bundle, with fiber F . Then for each b ∈ B there exists

an open neighborhood Ub and a homeomorphism φb : p−1(Ub) → Ub × F such that

π1 ◦ φb = p. Since both π1 and φb are fibrations, the map p = π1 ◦ φb : p−1(Ub)→ Ub

is also a fibration for all b ∈ B. Thus p : E → B is a fibration. �

Theorem 1.3.9. Let p : E → B be a fibration. Then the fibers p−1(b) are homotopy

equivalent over each path connected component of B.

Definition 1.3.10. Let p : E → B and f : X → B be continuous maps. Let

E ×B X = {(e, x) ∈ E × X | p(e) = f(x)} be the subspace of E × X. Then the

following diagram commutes

E ×B X E

X B

π1

π2 p

f

where π1 and π2 are the projection maps. The space E ×B X with the maps π1 and

π2, denoted by (E ×B X, π1, π2), is called the pullback or the fibered product of p

and f .

6



Suppose there exists a space Q with continuous maps q1 : Q→ E and q2 : Q→ X

such that p ◦ q1 = f ◦ q2.

Q

E ×B X E

X B

q1

q2

q

π1

π2 p

f

Then we can define a map q : Q → E ×B X by q = (q1, q2) which makes the above

diagram commute, i.e., the pullback (E ×B X, π1, π2) is universal with respect to the

above diagram. Thus the pullback E ×B X is unique up to homeomorphism.

Proposition 1.3.11. Let p : E → B be a fibration and f : X → B be a continuous

map. Then π2 : E ×B X → X is a fibration.

Proof. Let H : Y × I → X be a homotopy and h be a map lifting H0 with respect to

π2, i.e., π2 ◦ h = H0. Then we have a commutative diagram represented below

Y E ×B X E

Y × I X B

h

i

π1

π2 p

H f

Since p is a fibration, there exists a homotopy G : Y × I → E such that G0 =

π1 ◦ h and p ◦G = f ◦H. Define H̃ : Y × I → E ×B X by

H̃(y, t) = (G(y, t), H(y, t)).

Clearly H̃ lifts H with respect to π2 and H̃(y, 0) = (G(y, 0), H(y, 0)) = (π1 ◦h(y), π2 ◦
h(y)) = h(y). Thus π2 : E ×B X → X is a fibration. �

Corollary 1.3.12. Let p1 : E1 → B and p2 : E2 → B be two fibrations with the base

space B. Then the map p : E1 ×B E2 → B, given by p(e1, e2) = p1(e1) = p2(e2), is a

fibration and is called the product of the fibrations p1 and p2.

Proof. Since p1 and p2 are fibrations, it follows from the preceding theorem that π1

and π2 are fibrations. Thus p = p1 ◦ π1 = p2 ◦ π2 is a fibration. �

1.3.1 Path Space Fibrations

In this section, we show that the evaluation maps ev0, ev1 : PX → X, and ẽn : PX →
Xn defined in the Section 1.1 are fibrations. Moreover, the restriction of the map ev1

7



to the subspace Px0X is also a fibration. Some of the text in this section can be found

in [3, Chapter 6].

Theorem 1.3.13. The map ev1 : PX → X, given by ev1(α) = α(1) for all α ∈ PX,

is a fibration.

Proof. Let H : Y × I → X be a homotopy and h : Y → PX be a map lifting H0, i.e.,

ev1(h(y)) = H(y, 0).

Y PX

Y × I X

h

i ev1

H

H̃

For each y ∈ Y , h(y) is a path in X ending at H(y, 0), i.e., h(y)(1) = H(y, 0). Define

a map H̃ : Y × I → PX given by

H̃(y, s)(t) =

h(y)((1 + s)t) if 0 ≤ t ≤ 1/(1 + s),

H(y, (1 + s)t− 1) if 1/(1 + s) ≤ t ≤ 1.

By pasting lemma and Theorem 1.1.4, the map H̃ is continuous. Also, H̃(y, 0) = h(y)

and ev1(H̃(y, s)) = H̃(y, s)(1) = H(y, s). Thus ev1 is a fibration. �

Theorem 1.3.14. The map ev1 : Px0X → X, given by ev1(α) = α(1) for all α ∈
Px0X, is a fibration.

Proof. This theorem has the same proof as the previous theorem. The fact that h(y)

is a path starting at x0 implies H̃(y, s) is also a path starting at x0. �

Theorem 1.3.15. The map ẽ : PX → X × X, given by ẽ(α) = (α(0), α(1)) for all

α ∈ PX, is a fibration.

Proof. Let H : Y × I → X × X be a homotopy and h : Y → PX be a map lifting

H0, i.e., ẽ(h(y)) = H(y, 0).

Y PX

Y × I X ×X

h

i ẽ

H

H̃

For each y ∈ Y , h(y) is a path in X beginning at π1◦H(y, 0) and ending at π2◦H(y, 0),

i.e., h(y)(0) = π1 ◦H(y, 0) and h(y)(1) = π2 ◦H(y, 0). Define a map H̃ : Y × I → PX

given by

H̃(y, s)(t) =


π1 ◦H(y, s− (1 + s)t) if 0 ≤ t ≤ s/(1 + s),

h(y)[{(1 + s)t− s}/(1− s)] if s/(1 + s) ≤ t ≤ 1/(1 + s),

π2 ◦H(y, (1 + s)t− 1) if 1/(1 + s) ≤ t ≤ 1.

8



By pasting lemma and Theorem 1.1.4, the map H̃ is continuous. Also, H̃(y, 0) = h(y)

and ẽ(H̃(y, s)) = (H̃(y, s)(0), H̃(y, s)(1)) = (π1◦H(y, s), π2◦H(y, s)) = H(y, s). Thus

ẽ is a fibration. �

Theorem 1.3.16. The map ẽn : PX → X × . . .×X = Xn, given by

ẽn(α) = (α(0), α(t1), . . . , α(tn−2), α(1))

where ti = i/(n− 1) for i ∈ {0, . . . , n− 1} and n ≥ 2, is a fibration.

Proof. Let H : Y × I → Xn be a homotopy and h : Y → PX be a map lifting H0,

i.e., ẽn(h(y)) = H(y, 0).

Y PX

Y × I Xn

h

ẽn

H

H̃

Let πi : Xn → X be the projection map onto the ith factor. For each i ∈ {1, . . . , n−1}
define maps hi,i+1 : Y → PX and Hi,i+1 : Y × I → X ×X by

hi,i+1(y)(t) = h(y)((1− t)ti−1 + tti)

= h(y)(ti−1 + t/(n− 1)),

and

Hi,i+1(y, t) = (πiH(y, t), πi+1H(y, t))

respectively. Then hi,i+1(y)(0) = h(y)(ti−1) = πiH(y, 0) and hi,i+1(y)(1) = h(y)(ti) =

πi+1H(y, 0), i.e., ẽ(hi,i+1(y)) = (πiH(y, 0), πi+1H(y, 0)) = Hi,i+1(y, 0). Thus for each

i ∈ {1, . . . , n− 1} we have a commutative diagram

Y PX

Y × I X ×X

hi,i+1

ẽ

Hi,i+1

H̃i,i+1

Since ẽ is a fibration, there exists H̃i,i+1, for each i ∈ {1, . . . , n−1}, making the above

diagram commute.

Define a map H̃ : Y × I → PX given by

H̃(y, s)(t) = H̃i,i+1(y, s)((n− 1)(t− ti−1)) if t ∈ [ti−1, ti]

for i ∈ {1, . . . , n− 1}. By pasting lemma and Theorem 1.1.4, H̃ is continuous. Also,
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H̃ satisfies

H̃(y, 0)(t) = H̃i,i+1(y, 0)((n− 1)(t− ti−1)) for some i ∈ {1, . . . , n− 1}

= hi,i+1(y)((n− 1)(t− ti−1))

= h(y)(ti−1 + (n− 1)(t− ti−1)/(n− 1))

= h(y)(t),

and

H̃(y, s)(ti) = H̃i,i+1(y, s)((n− 1)(ti − ti−1)) = H̃i,i+1(y, s)(1) = πi+1H(y, s),

i.e., H̃(y, 0) = h(y) and ẽnH̃ = H. Thus ẽn is a fibration. �

Corollary 1.3.17. The maps ẽn,i : PX → X, given by ẽn,i(α) = α(ti) where ti =

i/(n − 1) for i ∈ {0, . . . , n − 1} and n ≥ 2, is a fibration. In particular, the map

ev0 : PX → X, given by ev0(α) = α(0) for all α ∈ PX, is a fibration.

Proof. The maps ẽn,i−1 = πi ◦ ẽn and ev0 = ẽn,0 where πi denotes the projection map

onto the ith factor. Since the projection maps are fibrations and composition of two

fibrations is a fibration, it follows that ẽn,i and ev0 are fibrations. �

Recall that the mapping path space of a continuous map f : X → Y was defined

to be the space Pf = {(α, x) ∈ PY × X | α(0) = f(x)}. By Lemma 1.1.8, Pf is

homotopy equivalent to X and the projection map π2 onto the second factor X is

a homotopy equivalence. Moreover, the mapping path space of a continuous map

f : X → Y can also be seen as the pullback of the fibration ev0 : PY → Y and

f : X → Y .

Pf PY

X Y

π1

π2 ev0

f

Thus, by Proposition 1.3.11, we have that the projection map π2 is a fibration.

Theorem 1.3.18. Let f : X → Y be a continuous map and Pf be the mapping path

space of f . Then p : Pf → Y , given by p(α, x) = α(1), is a fibration and is called the

mapping fibration of f .

Proof. Let Q be the pullback of ẽ : PY → Y × Y and f × id : X × Y → Y × Y .

Consider the diagram

Pf Q PY

Y X × Y Y × Y

i π1

π2 ẽ

f×id

j

10



where j : Y ×X → X is the projection map onto the second factor Y and i : Pf → Q

is given by i(α, x) = (α, x, α(1)). Clearly i is a homeomorphism with i−1 given

by i−1(α, x, y) = (α, x). By Proposition 1.3.11 and Theorem 1.3.15, π2 is a fibration.

Thus j◦π2◦i : Pf → Y , given by j◦π2◦i(α, x) = j◦π2(α, x, α(1)) = j(x, α(1)) = α(1),

is also a fibration �

Corollary 1.3.19. Any continuous map f : X → Y can be factored in the form

X Pf Y,i p

where i is a homotopy equivalence and p is a fibration. The map p is said to be a

fibrational substitute for the map f .

Proof. Let i : X → Pf be the map which maps x ∈ X to the tuple (cf(x), x) where

cf(x) is the constant path at f(x). Let p : Pf → Y be the map given by p(α, x) = α(1).

Then, by Lemma 1.1.8, i is a homotopy equivalence, and by Theorem above, p is a

fibration. Moreover, p ◦ i(x) = p(cf(x), x) = cf(x)(1) = f(x). �

Example 1.3.20. The n-fold diagonal map ∆n : X → Xn can be factored in the

form

X PX Xn,i ẽn

where the map i takes x ∈ X to the constant path cx at x. The map i is a homotopy

equivalence by Lemma 1.1.5 and the map ẽn is a fibration by Theorem 1.3.16. Thus

the map ẽn is a fibrational substitute for the n-fold diagonal map ∆n for n ≥ 2.

1.3.2 Sum of Fibrations

In this section, we define the sum of n-copies of a fibration p. It will play a key role

in obtaining a lower bound on Schwarz genus of the fibration p. Most of the text in

this section can be found in [3, Chapter 6] and [13, Chapter II].

Definition 1.3.21. The mapping cylinder Mp of a continuous map p : E → B is

the quotient space (E × I) t B with respect to the equivalence relation ∼ generated

by (e, 0) ∼ b if p(e) = b.

Let a : (E× I)tB →Mp be the quotient map. The spaces E and B are naturally

embedded in Mp by the mappings i : E ↪→Mp and j : B ↪→Mp given by i(e) = a(e, 1)

and j(b) = a(b) respectively. The space Mp can also be continuously mapped onto

the space B via the map f : Mp → B, defined by f(a(e, t)) = p(e) and f(a(b)) = b.

Lemma 1.3.22. Let p : E → B be a continuous map. Then the space Mp is

homotopy equivalent to B and the map f : Mp → B, defined by f(a(e, t)) = p(e) and
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f(a(b)) = b, is a homotopy equivalence where a : (E × I) t B → Mp is the quotient

map.

Proof. Let j : B ↪→Mp be the embedding given by j(b) = a(b). Then f ◦ j = idB and

j(f(a(e, t))) = a(p(e)) and j(f(a(b))) = a(b). Let F : Mp × I →Mp be defined by

F (a(e, t), s) = a(e, t− st),

F (a(b), s) = a(b).

Then F (a(e, t), 0) = a(e, t) and F (a(e, t), 1) = a(e, 0) = a(p(e)). Thus Mp is homo-

topy equivalent to B. �

For the rest of this section, we shall assume that p : E → B is a fibration and Z

denotes the mapping cylinder Mp of the fibration p.

Theorem 1.3.23. Let p : E → B be a fibration and Z be the mapping cylinder of p.

Then the map f : Z → B, defined by f(a(e, t)) = p(e) and f(a(b)) = b, is a fibration

where a : (E × I) tB → Z is the quotient map..

Proof. Let H : X × I → B be a homotopy and h : X → Z be a map lifting H0.

X Z

X × I B

h

f

H

H̃

Let A = {x ∈ X | h(x) 6∈ j(B)} be a subset of X. Since the set Z \ j(B) is

homeomorphic to E × (0, 1], the map h when restricted to A will be of the form

h(x) = a(r(x), s(x)), for all x ∈ A where r : A→ E and s : A→ (0, 1] are continuous

maps.

Since h is the lift of H0, we have H(x, 0) = f(h(x)) = f(a(r(x), s(x))) = p(r(x))

for all x ∈ A. Consider the diagram below.

A E

A× I B

r

p

H

G

Since the outer-diagram commutes, we have a map G : A×I → E such that G(x, 0) =

r(x) and p ◦G = H for all x ∈ A.

Define H̃ : X × I → Z by

H̃(x, t) =

a(G(x, t), s(x)) if x ∈ A,

j(H(x, t)) if x ∈ X\A.
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The map H̃ is continuous. Also, H̃(x, 0) = h(x) and f ◦ H̃ = H and for all x ∈ X.

Thus f is a fibration. �

Let fn : Zn → Bn be the product of n-copies of the map f . Let H : X × I → Bn

be a homotopy and h : X → Zn a map lifting H0.

X Zn

X × I Bn

h

fn

H

H̃

It is clear from the definition of fn that the map πi ◦ h lifts πi ◦ H0 with respect

to f where πi is the projection map onto the ith factor. Hence, we can define a lift

H̃ = (H̃1, . . . , H̃n) of H where H̃i : X × I → Z is the lift of πi ◦H. Thus the map fn

is also a fibration.

Let Z
′

= Z\i(E). Observe that if the map h : X → Zn is such that h(X) 6∈ Z ′n,

i.e., h(x) = (a(e1, t1), . . . , a(en, tn)) and max{t1, . . . , tn} < 1 for all x ∈ X, then the

image of the lift H̃, defined using Theorem 1.3.23 and argument in the preceding

paragraph, also doesn’t lie in Z
′n. Thus the restriction of fn on Zn\Z ′n, say f̃n, is

also a fibration.

Let ∆n : B → Bn be the n-fold diagonal map. Define En = {(z1, . . . , zn) ∈
Zn\ Z ′n | f(z1) = . . . = f(zn)} and l : En ↪→ Zn\Z ′n be the inclusion map. Then

pn : En → B, given by

pn(z1, . . . , zn) = f(z1) = . . . = f(zn),

makes the diagram given below commute.

En Zn\Z ′n

B Bn

l

pn f̃n

∆n

Moreover, suppose there exists a space Q with continuous maps q1 : Q→ Zn\Z ′n and

q2 : Q→ B such that f̃n ◦ q1 = ∆n ◦ q2.

Q

En Zn\Z ′n

B Bn

q1

q2

q

l

pn f̃n

∆n
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Since f̃n ◦ q1 = ∆n ◦ q2, we have q1(Q) ⊂ En. Hence, we can define a map q : Q→ En

by q(x) = q1(x) for all x ∈ Q. Clearly q1 = l ◦ q. Moreover, we have

∆nq2 = f̃nq1 = f̃nlq = ∆npnq

implying q2 = pn ◦ q. Thus (En, l, pn) is universal with respect to the above diagram,

i.e., (En, l, pn) is the pullback of the maps f̃n and ∆n. Since the map f̃n is a fibration,

the map pn is a fibration by Proposition 1.3.11 and is called the sum of n-copies of

fibration p.

1.4 Dimension Theory

In this section, we introduce the concept of topological dimension of a space. The

relevant references are [2, Appendix A], [8], and [9, Chapter 8].

Definition 1.4.1. Let A be a collection of subsets of X. The order of A is the

smallest number n, if it exists, such that each point of X lies in at most n elements

of A.

Definition 1.4.2. The topological dimension (or Lebesgue covering dimen-

sion) of X, denoted dim(X), is the minimum number n such that for every open

cover A of X, there is an open refinement of A which has order at most n+ 1. If no

such minimal n exists, the space X is said to be of infinite topological dimension.

Remark 1.4.3. The topological dimension agrees with the “usual” definition of di-

mension for good spaces like manifolds, finite simplicial complexes and finite CW-

complexes.

Lemma 1.4.4. Let U = {Ui}i∈J be an open cover of X of order n with a partition of

unity subordinate to the cover. Then there exists an open cover W = {Wk}nk=1 of X

such that Wk (k = 1, . . . , n) is a disjoint union of open sets each of which contained

in some Ui.

Proof. Let {ρi}i∈J be a partition of unity subordinate to the open cover U . For each

x ∈ X, define

S(x) = {i ∈ J | ρi(x) > 0}.

Since the order of the cover U is n, no x ∈ X can belong to more than n elements of

the U . Thus S(x) is a finite set for each x ∈ X and can have a maximum cardinality

n.

For each finite subset S ⊂ J , define

W (S) = {x ∈ X | ρi(x) > ρj(x) for all i ∈ S and j 6∈ S}.
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If J is finite, then define W (J) = {x ∈ X | ρi(x) > 0 for all i ∈ J}. The space W (S)

can be written as the intersection of

A1 = {x ∈ X | ρi(x) > 0 for all i ∈ S and j ∈ S1},

and

A2 = {x ∈ X | ρi(x) > ρj(x) for all i ∈ S and j ∈ S2},

where S1 = {j 6∈ S : ρj(x) = 0} and S2 = {j 6∈ S : ρj(x) 6= 0}. Moreover,

A1 = {x ∈ X | ρi(x) > 0 for all i ∈ S and j ∈ S1}

= {x ∈ X | ρi(x) > 0 for all i ∈ S}

=
⋂
i∈S

ρ−1
i (0, 1],

and

A2 = {x ∈ X | ρi(x) > ρj(x) for all i ∈ S and j ∈ S2}

=
⋂
i∈S
j∈S2

(ρi − ρj)−1(0, 1].

Since {ρi} is a partition of unity, we have S2 is finite. Therefore W(S) is open.

Let S and S ′ be two finite subsets of J such that W (S) ∩W (S ′) 6= ∅. Suppose

S 6⊂ S ′, then there exists i0 ∈ S\S ′. Let x ∈ W (S) ∩W (S ′). Then ρi0(x) > ρj(x)

for all j 6∈ S and ρi(x) > ρi0(x) for all i ∈ S ′. Thus ρi(x) > ρj(x) for all i ∈ S ′ and

j 6∈ S. This implies S ′ ⊂ S. Therefore if S and S ′ are two distinct finite subsets of I

with same cardinality then W (S) and W (S ′) are disjoint.

If x ∈ W (S), then ρi(x) > 0 for all i ∈ S, i.e. x ∈ support(ρi) for all i ∈ S, thus

x ∈ ∩i∈S support(ρi). Therefore we have

W (S) ⊂ ∩i∈S support(ρi) ⊂ ∩i∈SUi.

Moreover, x ∈ W (S(x)) since ρi(x) > 0 and ρj(x) = 0 for all i ∈ S(x) and j 6∈ S(x).

Therefore {W (S(x))}x∈X forms an open refinement of the cover U .

Define Wk (for k = 1, 2, . . . , n) to be the union of W (S(x)) such that S(x) has k

elements. Thus W = {Wk}nk=1 forms an open cover of X such that Wk (k = 1, . . . , n)

is a disjoint union of open sets each of which contained in some Ui. �

Theorem 1.4.5. Let X be a paracompact Hausdorff space of dimension n and U =

{Ui}i∈J be any open cover of X. Then there exists an open cover W = {Wk}n+1
k=1

of X such that Wk (k = 1, . . . , n + 1) is a disjoint union of open sets each of which

contained in some Ui.
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Proof. Since the dimension of X is n, there exists an open refinement, say B, of U
which has order at most n+1. Since the space X is paracompact Hausdorff, X admits

an partition of unity, say {ρβ}, subordinate to the cover B. Thus, by preceding lemma,

there exists an open cover W = {Wk}n+1
k=1 of X such that Wk (k = 1, . . . , n + 1) is a

disjoint union of open sets each of which contained in some Ui. �
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Chapter 2

Schwarz Genus

In this chapter, we study the Schwarz genus of a fibration which leads to an equiva-

lent approach to defining the numerical homotopy invariants - LS category and higher

topological complexity of spaces. The relevant reference for this chapter is [13, Chap-

ter III and Chapter VI].

2.1 Schwarz Genus of a Fibration

Definition 2.1.1. Let p : E → B be a surjective fibration. The Schwarz genus or

sectional category of p, denoted secat(p), is defined to be the smallest number n

such that there exists an open cover {Ui}ni=0 of the base space B such that over each

open set Ui there exists a continuous section si : Ui → E of p, i.e., p ◦ si = idBUi where

idBUi is the inclusion map from Ui into B. If no such n exists, then secat(p) =∞.

It is clear from the definition that the genus of a surjective fibration equals 0 if

and only if it admits a continuous global section. In what follows we shall assume

that all fibrations under consideration are surjective.

Proposition 2.1.2. Let p1 : E1 → B and p2 : E2 → B be fibrations with the common

base space B and f : E1 → E2 be a continuous map satisfying p2 ◦ f = p1. Then

secat(p2) ≤ secat(p1).

Proof. If secat(p1) = n and {Ui}ni=0 is an open cover of B with a continuous section

si : Ui → E1 of p1 over each Ui, then {Ui}ni=0 is an open cover of B with a continuous

section f ◦ si of p2 over each Ui. Thus secat(p2) ≤ n. �

2.2 An Upper Bound for Schwarz Genus

Definition 2.2.1. A subset U of a topological space X is said to be categorical if it

is contractible in X, i.e., the inclusion map idXU : U ↪→ X is null-homotopic. A cover

of X is said be categorical if it consists of categorical sets.
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Proposition 2.2.2. Let X be a path-connected space. Let ev1 : Px0X → X be the

fibration given by ev1(α) = α(1) for all α ∈ Px0X. Then a subset U of X is categorical

if and only if there exists a continuous section s : U → Px0X of ev1, i.e., ev1 ◦s = idXU .

Proof. Let s : U → Px0X be a continuous map such that ev1 ◦ s = idXU . Consider the

homotopy H : U × I → X defined as the composition of the following maps

U × I Px0X × I X,
s×id ev

where ev is the evaluation. Then

H(x, 0) = ev((s× id)(x, 0)) = ev(s(x), 0) = s(x)(0) = x0,

and

H(x, 1) = ev((s× id)(x, 1)) = ev(s(x), 1) = s(x)(1) = ev1(s(x)) = x.

Thus the inclusion map idXU is null-homotopic, i.e., U is categorical.

Conversely, suppose that U is categorical then the inclusion map idXU : U ↪→ X is

null-homotopic, i.e., there exists a homotopy H : U × I → X between a constant map

and the inclusion map. Since X is path connected, we can assume that the constant

map is based at x0. Since H : U × I → X is continuous, by Proposition 1.1.4, it

induces a continuous map s : U → PX given by s(x)(t) = H(x, t) for x ∈ U and

t ∈ I. But,

s(x)(0) = H(x, 0) = x0

implies s(U) ⊂ Px0X, i.e., s : U → Px0X is continuous. Moreover,

ev1(s(x)) = s(x)(1) = H(x, 1) = x

implies ev1 ◦ s = idXU . �

It is straightforward to see that the fibration ev1 : Px0X → X is surjective if and

only if the space X is path-connected. Thus the Schwarz genus of the fibration ev1 :

Px0X → X, given by ev1(α) = α(1), for a path-connected space X can equivalently

be defined as the smallest number n such that there exists an open categorical cover

{Ui}ni=0 of X. The number n is called the Lusternik-Schnirelmann category or

LS category of the topological space X and is denoted by cat(X). We shall discuss

LS category in detail in Chapter 3.

Corollary 2.2.3. Let X be a path-connected space. Let ev1 : Px0X → X be the

fibration given by ev1(α) = α(1) for all α ∈ Px0X. Then secat(ev1) = cat(X).
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Theorem 2.2.4. Let p : E → B be a fibration. Then

secat(p) ≤ cat(B).

Proof. Let U be an open categorical subset of B. Then there exists a homotopy

H : U × I → B such that H(b, 0) = b0 and H(b, 1) = b for all b ∈ U . Let e0 ∈ E be a

point in p−1(b0). Consider the diagram

U E

U × I B

h

i p

H

H̃

where h : U → E is the constant map given by h(b) = e0 and i : U ↪→ U × I is the

inclusion map given by i(b) = (b, 0) for all b ∈ U . Since the outer diagram commutes,

there exists H̃ : U × I → E making the diagram commute. Thus p ◦ H̃ = H implies

that p(H̃(b, 1)) = H(b, 1) = b for all b ∈ U . Hence, H̃ when restricted to U ×{1} is a

section of p on U .

If cat(B) = n and {Uj}nj=0 is an open categorical cover of B, then {Uj}nj=0 is an

open cover of B with a continuous section of p induced by H̃j over each Uj. Thus

secat(p) ≤ n. �

Thus if B is a space such that each point b ∈ B is contained in an open categorical

subset Ub of B (which is a much weaker condition than assuming that the space B

is locally contractible, i.e., for every b ∈ B and every open subset V of B containing

b there exists an open subset U of B containing b such that U ⊂ V and U is con-

tractible), then B has an open cover {Ub}b∈B such that for any fibration p : E → B

there exist continuous sections sb : Ub → E of p for all b ∈ B.

Proposition 2.2.5. Let B be a locally contractible compact space and p : E → B

be a fibration. Then secat(p) is finite.

Proof. Since B is locally contractible, B has an open cover {Ub}b∈B such that there

are sections sb : Ub → E of p. By compactness of B, it is possible to select a finite

subcover of {Ub}b∈B for B. Thus secat(p) is finite. �

For example, if the base space B is a finite CW complex or a compact manifold

and p : E → B is a fibration, then secat(p) is finite.

Theorem 2.2.6. Let p : E → B be a fibration. If E is contractible, then

secat(p) = cat(B).
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Proof. Suppose p : E → B is a fibration and U is an open subset of B with a section

s : U → E of p. Let H : E × I → E be a homotopy such that H(e, 0) = e and

H(e, 1) = e0 for all e ∈ E. Then the homotopy G : U×I → B defined as composition

of the following maps

U × I E × I E B
s×id H p

satisfies

G(b, 0) = p(H((s× id)(b, 0))) = p(H(s(b), 0)) = p(s(b)) = b,

and

G(b, 1) = p(H((s× id)(b, 1))) = p(H(s(b), 1)) = p(e0),

for all b ∈ U . Thus the inclusion map idBU is null-homotopic, i.e., U is categorical.

If secat(p) = n and {Ui}ni=0 is an open cover of B with a continuous section

si : Ui → E of p over each Ui, then {Ui}ni=0 is an open categorical cover of B. Thus

cat(B) ≤ n. Thus, by Theorem 2.2.4, we get secat(p) = cat(B). �

Suppose X is a path-connected space. Then Corollary 1.1.6, which states that the

space Px0X is contractible, and Theorem 2.2.6 provides an alternate proof of Corollary

2.2.3 which states that secat(ev1 : Px0X → X) = cat(X).

2.3 A Lower Bound for Schwarz Genus

Let p : E → B be a fibration and Z be the mapping cylinder of p : E → B, i.e., Z is

the quotient space of (E×I)tB with respect to the equivalence relation ∼ generated

by (e, 0) ∼ b if p(e) = b. Let a : (E× I)tB → Z be the quotient map. The spaces E

and B are naturally embedded in Z by the mappings i : E ↪→ Z and j : B ↪→ Z given

by i(e) = a(e, 1) and j(b) = a(b) respectively. The space Z can also be continuously

mapped into the space B by the map f : Z → B, defined by f(a(e, t)) = p(e) and

f(a(b)) = b.

We denote by Z
′

the space Z\i(E), by fn : Zn → Bn the product of n-copies of

the map f , by f̃n : Zn\Z ′n → Bn the restriction of fn on Zn\Z ′n, by En the space

{(z1, . . . , zn) ∈ Zn \ Z ′n | f(z1) = . . . = f(zn)}, by pn : En → B be the map given by

pn(z1, . . . , zn) = f(z1) = . . . = f(zn), by l : En ↪→ Zn\Z ′n the inclusion map, and by

∆n : B → Bn the n-fold diagonal map.

We showed at the end of the Section 1.3.2 that (En, l, pn) is the pullback of f̃n and

∆n. Since f̃n is a fibration, the map pn : En → B is a fibration called the sum of

n-copies of fibration p.
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Thus we have a commutative diagram

En Zn \ Z ′n Zn

B Bn

l

pn

µ

f̃n fn
∆n

where µ is the inclusion map.

Proposition 2.3.1. Let B be a paracompact Hausdorff space and p : E → B a

fibration. Then pn : En → B has a global section if and only if there is an open cover

{Ui}ni=1 of B such that over each Ui there exists a section of p.

Proof. Let s : B → En be a section of pn. Define si : B → Z, for 1 ≤ i ≤ n,

by composing s with the inclusion map µ ◦ l into Zn followed by the projection

map onto the ith factor. Consider the sets Ui = {b ∈ B | si(b) 6∈ j(B)}, then the

sets Ui are open in B as they are the inverse images of s−1
i (Z \ j(B)). Suppose

there exist b ∈ B such that b 6∈ Ui for all i, i.e., si(b) ∈ j(B) for all i. Then

s(b) = (s1(b), . . . , sn(b)) ∈ j(B)n ⊂ Z
′n which is a contradiction. Thus the set {Ui}ni=1

forms an open cover of B. The map si when restricted to Ui gives a continuous map

si : Ui → Z \ j(B) and this map will be of the form si(b) = a(ρi(b), hi(b)) where

ρi : Ui → E and hi : Ui → (0, 1] are continuous maps. Since pn ◦s(b) = b for all b ∈ B,

it implies p ◦ ρi(b) = b for all b ∈ Ui.
Conversely, suppose {Ui}ni=1 is an open cover of B such that for each i ∈ {1, . . . , n}

there exist a map ρi : Ui → E with p ◦ ρi(b) = b for all b ∈ Ui. By Theorem A.2,

there exist continuous maps hi : Ui → R, for i ∈ {1, . . . , n}, satisfying (a) 0 ≤ hi ≤ 1;

(b) support(hi) ⊂ Ui; (c) at each point b ∈ B there exist i ∈ {1, . . . , n} such that

hi(b) = 1. For each i ∈ {1, . . . , n} define a map si : B → Z by

si(b) =

a(ρi(b), hi(b)) if b ∈ support(hi),

a(b) if b ∈ h−1
i (0).

If b ∈ support(hi) ∩ h−1
i (0), then a(ρi(b), hi(b)) = a(ρi(b), 0) = a(p(ρi(b))) = a(b).

Thus, by pasting lemma, si is continuous. Clearly f ◦ si(b) = b for all b ∈ B. Let

s : B → Zn be the map defined by s(b) = (s1(b), . . . , sn(b)) for all b ∈ B. Since for

each b ∈ B there exist i ∈ {1, . . . , n} such that hi(b) = 1, we have s(b) ∈ Zn\Z ′n.

Since f ◦si(b) = b for all i, we have s(b) ∈ En. Thus s : B → En is a section of pn. �

Corollary 2.3.2. Let B be a paracompact Hausdorff space and p : E → B a fibration.

Then pn : En → B has a global section if and only if secat(p) < n.

Proof. It follows from the fact that secat(p) < n if and only if there is an open cover

{Ui}ni=1 of B such that there exists a section of p over each Ui. �
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In what follows we shall assume that (co)homology for a topological space being

used in this text is the singular homology. Of course for good spaces like CW com-

plexes it agrees with the cellular homology, refer to Hatcher’s book [7]. Thus we can

use them interchangeably whenever necessary.

Let R be a commutative ring with identity. The cohomology H∗(X;R) is a graded

ring with multiplication defined by the cup product homomorphism

∪ : H∗(X;R)⊗R H∗(X;R)→ H∗(X;R)

given by α1 ⊗ α2 7→ α1 ∪ α2. Let ∪n denote the n-fold cup product homomorphism

∪n : H∗(X;R)⊗R . . .⊗R H∗(X;R)→ H∗(X;R)

given by α1 ⊗ . . .⊗ αn 7→ α1 ∪ . . . ∪ αn for n ≥ 2. The n-fold cup product homomor-

phism ∪n can be factored as ∪n = ×n∆∗n where ×n denotes the n-fold cross product

homomorphism and ∆n denotes the n-fold diagonal map of the space X (refer to

Appendix for more details).

Suppose pn : En → B has a global section s. Then p∗n : H∗(B;R)→ H∗(En;R) is

injective since s∗ ◦ p∗n is the identity map.

Proposition 2.3.3. Let B be a paracompact Hausdorff space and p : E → B a

fibration. Suppose secat(p) < n and there are elements ξi ∈ H∗(B, ;R), for i ∈
{1, . . . , n}, such that ξ1∪ . . .∪ξn 6= 0. Then λ∗f ∗n(ξ1× . . .×ξn) 6= 0 where ξ1× . . .×ξn ∈
H∗(Bn;R) and λ = µ ◦ l : En ↪→ Zn is the inclusion map.

Proof. From the commutative diagram we have fnλ = ∆npn which implies λ∗f ∗n =

p∗n∆∗n. Thus

λ∗f ∗n(ξ1 × . . .× ξn) = p∗n∆∗n(ξ1 × . . .× ξn) = p∗n(ξ1 ∪ . . . ∪ ξn).

Since secat(p) < n, we have a global section of pn implying p∗n is injective. Thus

p∗n(ξ1 ∪ . . . ∪ ξn) 6= 0. �

Definition 2.3.4. A pair of topological spaces (X,A) is a space X together with a

subspace A of X.

Definition 2.3.5. The product of the pairs (X,A) and (Y,B), denoted (X,A)×
(Y,B), is defined as (X × Y, (X ×B) ∪ (A× Y )).

It is easy to check that the product of pair of spaces is associative. Moreover,

(X,A)n = (Xn, (A×X× . . .×X)∪ (X×A×X× . . .×X)∪ . . .∪ (X× . . .×X×A))

where (X,A)n denotes the n-fold product of the pair (X,A).
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Lemma 2.3.6. Let p : E → B be a fibration. Let ξi ∈ H∗(B;R) such that p∗(ξi) = 0

for i ∈ {1, . . . , n}. Then µ∗f ∗n(ξ1 × . . .× ξn) = 0 where ξ1 × . . .× ξn ∈ H∗(Bn;R).

Proof. Let σ : Z ↪→ (Z, i(E)) be the inclusion map. Then, from the exact cohomology

sequence of the pair (Z, i(E)) and f ◦ i = p, we have a commutative diagram

. . . Hk(Z, i(E);R) Hk(Z;R) Hk(i(E);R) . . .

Hk(B;R) H∗(E;R)

σ∗

∼

p∗

f∗

Since, by Lemma 1.3.22, f : Z → B is a homotopy equivalence, f ∗ is an isomor-

phism. Thus, by exactness of the sequence and p∗(ξi) = 0, there exist elements

βi ∈ H∗(Z, i(E);R), for i ∈ {1, . . . , n}, such that σ∗(βi) = f ∗(ξi).

Observe first that Z
′n, by definition, is the subset of Zn with no points of the type

(a(e1, 1), . . . , a(en, 1)). Thus

Zn\Z ′n = (i(E)×Z× . . .×Z)∪ (Z× i(E)×Z× . . .×Z)∪ . . .∪ (Z× . . .×Z× i(E)).

Therefore (Z, i(E))n = (Zn, Zn\Z ′n).

Consider the diagrams

Bn Zn (Zn, Zn\Z ′n)

B Z (Z, i(E))

πi

fn

πi

σn

πi

f σ

and

⊗nH∗(B;R) ⊗nH∗(Z;R) ⊗nH∗(Z, i(E);R)

H∗(Bn;R) H∗(Zn;R) H∗(Zn, Zn\Z ′n;R)

⊗nf∗

×n ×n

⊗nσ∗

×n

f∗n σ∗n

where σn is the inclusion map, πi is the projection map onto the ith factor, ×n is the

n-fold cross product homomorphism, and ⊗nf ∗ and ⊗nσ∗ are n-tensor product of the

maps f ∗ and σ∗. Clearly the first diagram commutes. Moreover,

×n ⊗n f ∗(ξ1 ⊗ . . .⊗ ξn) = ×n(f ∗(ξ1)⊗ . . .⊗ f ∗(ξn))

= f ∗(ξ1)× . . .× f ∗(ξn) = π∗1f
∗(ξ1) ∪ . . . ∪ π∗nf

∗(ξn),

and

f ∗n ×n (ξ1 ⊗ . . .⊗ ξn) = f ∗n(ξ1 × . . .× ξn)

= f ∗n(π∗1(ξ1)) ∪ . . . ∪ f ∗n(π∗n(ξn)) = π∗1f
∗(ξ1) ∪ . . . ∪ π∗nf

∗(ξn).

23



Similarly, ×n ⊗n σ∗ = σ∗n×n. Thus the second diagram also commutes and we get

f ∗n(ξ1 × . . .× ξn) = σ∗n(β1 × . . .× βn) since σ∗(βi) = f ∗(ξi).

From the exact sequence of the pair (Zn, Zn\Z ′n)

. . . Hk(Zn, Zn\Z ′n;R) Hk(Zn;R) Hk(Zn\Z ′n;R) . . . ,
σ∗n µ∗

we have µ∗σ∗n = 0. Thus µ∗f ∗n(ξ1 × . . .× ξn) = µ∗σ∗n(β1 × . . .× βn) = 0. �

Theorem 2.3.7. Let B be a paracompact Hausdorff space and p : E → B a fibration.

Suppose there are ξi ∈ H∗(B;R), for i ∈ {1, . . . , n}, such that p∗(ξi) = 0 and ξ1 ∪ . . .∪

ξn 6= 0. Then secat(p) ≥ n.

Proof. By preceding lemma, we have µ∗f ∗n(ξ1 × . . .× ξn) = 0. Then

λ∗f ∗n(ξ1 × . . .× ξn) = l∗µ∗f ∗n(ξ1 × . . .× ξn) = l∗(0) = 0.

If secat(p) < n, by Proposition 2.3.3, then λ∗f ∗n(ξ1 × . . . × ξn) 6= 0 which leads to a

contradiction. �

Definition 2.3.8. The length of a fibration p : E → B is the greatest number n

for which there exist n elements; say ξ1, . . . , ξn, in H∗(B;R) satisfying p∗(ξi) = 0 and

ξ1 ∪ . . . ∪ ξn 6= 0. It is denoted by long(p).

It is equivalent to saying that long(p) is the smallest number n such that all (n+1)-

fold cup product of elements in the kernel of p∗ : H∗(B;R)→ H∗(E;R) vanish in the

cohomology ring H∗(B;R). Moreover, the preceding Definition and Theorem 2.3.7

yields the following lower bound for the Schwarz genus of a fibration.

Theorem 2.3.9. Let p : E → B be a fibration. Suppose B is a paracompact

Hausdorff space. Then

long(p) ≤ secat(p).
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Chapter 3

Lusternik-Schnirelmann Category

In this chapter, we study the numerical homotopy invariant - LS category of a space

which will later help us in providing bounds on the higher topological complexity of

a space. The relevant reference is [2, Chapter 1 and Chapter 8].

3.1 LS Category

Definition 3.1.1. The Lusternik-Schnirelmann category or LS category of a

topological space X is the smallest number n such that there exists an open categorical

cover {Ui}ni=0 of X. The LS category is denoted by cat(X). If no such n exists, we

say cat(X) =∞.

If the space X is path-connected, then a member Ui of the cover may consist

of several components since each component may be contracted separately and then

moved along a path to a fixed point in X. Moreover, it is clear from the definition

that the LS category of a space X equals 0 if and only if X is contractible.

The following result states that LS category is a homotopy invariant. This reduces

the effort in the computation of cat(X) as the space X can now be simplified.

Theorem 3.1.2. The LS category of a topological space X is a homotopy invariant.

Proof. Suppose X dominates Y , i.e., there exist continuous maps f : X → Y and

g : Y → X such that f ◦ g is homotopic to the identity map of Y , say idY .

Let U be an open categorical subset of X, i.e., the inclusion map i : U ↪→ X

is null-homotopic. Then V = g−1(U) is open in Y . Since i is null-homotopic, the

map f ◦ i = f |U is null-homotopic. Thus f ◦ g|V is null-homotopic as g(V ) ⊂ U .

Since f ◦ g is homotopic to idY , it follows that f ◦ g|V is homotopic to the inclusion

map V ↪→ Y . Thus the inclusion map V ↪→ Y is null-homotopic, i.e., V is an open

categorical subset of Y .
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Explicitly, we can define K : V × I → Y by

K(v, t) =

G(v, 2t) if 0 ≤ t ≤ 1/2,

f(H(g(v), 2t− 1)) if 1/2 ≤ t ≤ 1.

where G : Y × I → Y is a homotopy between idY and f ◦ g and H : U × I → X

is a homotopy between the inclusion map i : U ↪→ X and the constant map cx0 . By

pasting lemma, K is continuous with K(v, 0) = v and K(v, 1) = f(x0). Thus the

inclusion map V ↪→ Y is null-homotopic, i.e., V is an open categorical subset of Y .

If cat(X) = n and {Ui}ni=0 is an open categorical cover of X, then {Vi}ni=0 forms

an open categorical cover of Y . Thus cat(Y ) ≤ n. Similarly, if Y dominates X, then

we get cat(X) ≤ cat(Y ). �

Proposition 3.1.3. Let X be a topological space. Suppose X = A∪B where A and

B are open in X. Then cat(X) ≤ cat(A) + cat(B) + 1.

Proof. Let cat(A) = n and cat(B) = m. Let U = {Ui}ni=0 and V = {Vi}mi=0 be open

categorical covers of A and B respectively. Since A and B are open in X, U ∪V forms

an open cover of X. Since Ui and Vi are categorical in A and B respectively, Ui and

Vi are also categorical in X. Thus U ∪ V forms an open categorical cover of X of

cardinality n+m+ 2 and therefore cat(X) ≤ n+m+ 1. �

Definition 3.1.4. Let X be a topological space. A finite sequence V0, V1, . . . , Vn = X

of open subspaces with V0 = ∅ is said to be a categorical sequence of length n if

each of the differences Vi \Vi−1 for i = 1, . . . , n is contained in an open categorical set

Ui of X.

Suppose V0, V1, . . . , Vn = X be a categorical sequence of length n. Define Wi =

∪ij=0Vj. Then Wi+1 \Wi ⊂ Vi+1 \ Vi, i.e., we have a increasing categorical sequence

W0 ⊂ W1 ⊂ . . . ⊂ Wn = X of length n. Thus the above definition is equivalent to

taking the sequence of open subspaces to be increasing as the other way implication

is obvious.

Lemma 3.1.5. A space X has a categorical sequence of length n + 1 if and only if

cat(X) ≤ n.

Proof. Suppose X has a categorical sequence, say V0, V1, . . . , Vn+1 = X, of length

n + 1. Then there exist open categorical sets Ui, for 1 ≤ i ≤ n + 1, of X such that

Vi \ Vi−1 ⊂ Ui. Since the sets Vi \ Vi−1 forms a cover of X, it follows {Ui}n+1
i=1 is an

open categorical cover of X. Thus cat(X) ≤ n.
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Conversely, suppose cat(X) ≤ n. Then there exists an open categorical cover

{Ui}n+1
i=1 of X. Define

V0 = ∅ and Vk =
k⋃
i=1

Ui for k = 1, . . . , n+ 1.

Observe Vn+1 = X and Vk \Vk−1 ⊂ Uk which is open and categorical. Thus V0 ⊂ V1 ⊂
. . . ⊂ Vn = X is a categorical sequence of length n+ 1. �

Theorem 3.1.6. Let E be a path-connected space and p : E → B a covering map.

Then

cat(E) ≤ cat(B).

Proof. Let U be an open categorical subset of B. Then there exists a homotopy

H : U × I → B such that H(b, 0) = b and H(b, 1) = b0 for all b ∈ U . Define

G : p−1(U)× I → B

by G = H(p× id). Then G(e, 0) = p(e) and G(e, 1) = b0 for all e ∈ p−1(U). Observe

that we have the following commutative diagram

p−1(U) E

p−1(U)× I B

i p

G

G̃

where p−1(U) ↪→ E is the inclusion map and i : p−1(U) ↪→ p−1(U) × I is given

by i(e) = (e, 0) for all e ∈ p−1(U). Since covering maps are fibrations, there exists a

homotopy G̃ : p−1(U)×I → E making the above diagram commute. Thus G̃(e, 0) = e

and pG̃ = G for all e ∈ p−1(U). Since pG̃(e, 1) = G(e, 1) = b0 for all e ∈ p−1(U), it

follows that G̃1(p−1(U)) ⊂ p−1(b0). Thus G̃1 can be factored as

p−1(U)→ p−1(b0) ↪→ E

where p−1(b0) ↪→ E is the inclusion map. Since p is covering map, p−1(b0) is discrete

subset of E. Thus it follows that the inclusion map p−1(b0) ↪→ E is null-homotopic as

E is path-connected. If L : p−1(b0) × I → E is the homotopy between the inclusion

map p−1(b0) ↪→ E and a constant map, then

L̃ : p−1(U)× I → E

given by L̃(e, t) = L(G̃1(e), t) is a homotopy between G̃1 and a constant map. Thus G̃1

is null-homotopic. Since G̃1 is homotopic to G̃0 which is the inclusion map p−1(U) ↪→
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E, it follows that p−1(U) ↪→ E is null-homotopic.

If cat(B) = n and {Uj}nj=0 is an open categorical cover of B, then the set

{p−1(Uj)}nj=0 forms an open categorical cover of E. Thus cat(E) ≤ n. �

3.2 An Upper Bound for LS Category

Theorem 3.2.1. Let X be a path-connected locally contractible paracompact Haus-

dorff space. Then

cat(X) ≤ dim(X).

Proof. Suppose dim(X) = n. Since X is locally contractible there exists an open

categorical cover {Ui}i∈J of X. Since dim(X) = n, by Theorem 1.4.5, we have an

open cover W = {Wk}n+1
k=1 of X such that Wk (k = 1, . . . , n + 1) is a disjoint union

of open sets each of which contained in some Ui. Since Ui are categorical and each

open set making Wk lies inside some Ui, we have open sets making Wk are categorical.

Since X is path-connected and open sets making Wk are disjoint and categorical, we

have Wk is categorical for k = 1, . . . , n+ 1. Thus W forms an open categorical cover

of X of cardinality n+ 1 and therefore cat(X) ≤ n. �

3.3 A Lower Bound for LS Category

Definition 3.3.1. Let X be a topological space and R be a commutative ring with

unity. The cup-length of X with coefficients in R is the greatest number n for which

there exist n elements; say ξ1, . . . , ξn; of degree ≥ 1 in the cohomology ring H∗(X;R)

such that ξ1 ∪ . . . ∪ ξn 6= 0. It is denoted by cupR(X).

It is equivalent to saying that cupR(X) is the least integer n such that all (n+ 1)-

fold cup product of elements of degree ≥ 1 vanish in the cohomology ring H∗(X;R).

Theorem 3.3.2. Let X be a topological space and R be a commutative ring with

unity. Then

cupR(X) ≤ cat(X).

Proof. Suppose cat(X) = n. Then there exists an open categorical cover {Ui}ni=0 of

X. Let {xi}ni=0 be arbitrary elements of cohomology ring H∗(X;R) of degree ≥ 1.

Let ji : Ui ↪→ X and ki : X ↪→ (X,Ui) be the inclusion maps. These inclusions induce

a long exact sequence of cohomology groups

. . . −→ Hm(X,Ui;R)
k∗i−→ Hm(X;R)

j∗i−→ Hm(Ui;R) −→ . . . .

Since ji : Ui ↪→ X is null-homotopic, it follows j∗i = 0 for all m ≥ 1. Since the

sequence is exact and degree of each xi is ≥ 1, for each xi ∈ H∗(X;R) there exist a
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element yi ∈ H∗(X,Ui;R) such that k∗i (yi) = xi. Observe that y0 ∪ . . . ∪ yn belongs to

H∗(X,∪ni=0Ui;R) = H∗(X,X;R) = 0. Thus y0 ∪ . . . ∪ yn = 0.

Consider the diagram

X (X,∪ni=0Ui)

X × . . .×X (X,U0)× . . .× (X,Un)

X (X,Ui−1)

k

∆n+1 ∆n+1

k0×...×kn

πi πi

ki−1

where k is the inclusion map, πi is the projection maps onto the ith factor and ∆n+1 is

the (n+1)-fold diagonal map. Since the diagram is commutative, it follows k∗∆∗n+1 =

∆∗n+1(k0 × . . .× kn)∗ and (k0 × . . .× kn)∗π∗i = π∗i k
∗
i−1. Thus

k∗(y0 ∪ . . . ∪ yn) = k∗∆∗n+1(y0 × . . .× yn)

= ∆∗n+1(k0 × . . .× kn)∗(y0 × . . .× yn)

= ∆∗n+1(k0 × . . .× kn)∗(π∗1(y0) ∪ . . . ∪ π∗n+1(yn))

= ∆∗n+1(π∗1k
∗
0(y0) ∪ . . . ∪ π∗n+1k

∗
n(yn))

= k∗0(y0) ∪ . . . ∪ k∗n(yn)

= x0 ∪ . . . ∪ xn.

Since y0 ∪ . . . ∪ yn = 0, it follows x0 ∪ . . . ∪ xn = 0. Thus cupR(X) ≤ n. �

3.4 Product Inequality

In this section, we estimate cat(X×Y ) in terms of cat(X) and cat(Y ). A proof of the

following theorem using categorical sequences introduced in the section 3.1 is given

in [2, Chapter 1]. Here we give a simpler proof which is based on the proof of the

product inequality for the topological complexity in [5].

Let X and Y be topological spaces with cat(X) = n and cat (Y ) = m. Suppose

{Ui}ni=0 and {Vj}mj=0 be open categorical covers of X and Y respectively. Then {Ui ×
Vj} forms an open categorical cover of X×Y . Thus cat(X×Y ) ≤ (n+1)(m+1)−1 =

cat(X)cat(Y )+cat(X)+cat(Y ). But this is not a good upper bound for computation

of LS category for the product of spaces. In the following Theorem, we provide an

improved upper bound for cat(X × Y ) in terms of cat(X) and cat(Y ).

Theorem 3.4.1. Let X and Y be path-connected paracompact Hausdorff spaces.
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Then

cat(X × Y ) ≤ cat(X) + cat(Y ).

Proof. Let cat(X) = n and cat(Y ) = m. Then there exist open categorical covers

{Ui}ni=0 and {Vj}mj=0 of X and Y respectively. Since X and Y are paracompact

Hausdorff spaces, there exist partition of unity {fi}ni=0 and {gj}mj=0 subordinate to the

covers {Ui}ni=0 and {Vj}mj=0 respectively.

For each pair of nonempty subsets S ⊂ {0, 1, . . . , n} and T ⊂ {0, 1, . . . ,m} define

W (S, T ) ⊂ X × Y by (x, y) ∈ W (S, T ) if

fi(x).gj(y) > fi′(x).gj′(y)

for any (i, j) ∈ S × T and for any (i′, j′) 6∈ S × T . If S = {0, 1, . . . , n} and T =

{0, 1, . . . ,m}, then define W (S, T ) ⊂ X × Y by

W (S, T ) = {(x, y) ∈ X × Y | fi(x).gj(y) > 0 for any (i, j) ∈ S × T}.

Define a map fi.gj : X × Y → R by

fi.gj(x, y) = fi(x).gj(y).

The map fi.gj is the composition of the following maps

X × Y R× R R
fi×gj h

where h is the multiplication of real numbers. Thus fi.gj is continuous and (fi.gj −
fi′ .gj′)

−1(0, 1] is open.

Since

W (S, T ) =
⋂

(i,j)∈S×T
(i′,j′) 6∈S×T

(fi.gj − fi′ .gj′)−1(0, 1]

and the intersection is over finitely many elements, it follows that W (S, T ) is open.

Let S ′ ⊂ {0, 1, . . . , n} and T ′ ⊂ {0, 1, . . . ,m} such that W (S, T ) ∩W (S ′, T ′) 6= ∅.
If S × T 6⊂ S ′ × T ′, then there exist (i0, j0) ∈ (S × T ) \ (S ′ × T ′). Let (x, y) ∈
W (S, T ) ∩ W (S ′, T ′). Then fi0(x).gj0(y) > fi(x).gj(y) for any (i, j) 6∈ S × T and

fk(x).gl(y) > fi0(x).gj0(y) for any (k, l) ∈ S ′ × T ′. Thus fk(x).gl(y) > fi(x).gj(y) for

any (k, l) ∈ S ′×T ′ and for any (i, j) 6∈ S×T . This implies S ′×T ′ ⊂ S×T . Therefore

W (S, T ) and W (S ′, T ′) are disjoint if neither S × T ⊂ S ′ × T ′ nor S ′ × T ′ ⊂ S × T .

Suppose (x, y) ∈ X × Y . Let

S = {i ∈ {0, . . . , n} | fi(x) = max{f0(x), . . . , fn(x)}},
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and

T = {j ∈ {0, . . . ,m} | gj(y) = max{g0(y), . . . , gm(y)}}.

Then (x, y) ∈ W (S, T ). Thus the sets W (S, T ) forms an open cover of X × Y .

Let (i, j) ∈ S × T . Since fi(x).gj(y) > 0 for all (x, y) ∈ W (S, T ), it follows that

W (S, T ) ⊂ Ui × Vj. Thus W (S, T ) is categorical since Ui × Vj is categorical.

Let Wk (k = 2, . . . , n+m+2) denote the union of W (S, T ) such that |S|+ |T | = k.

The set {Wk}n+m+2
k=2 forms an open cover of X×Y . Suppose |S|+ |T | = |S ′|+ |T ′| and

S×T 6= S ′×T ′. Then W (S, T ) and W (S ′, T ′) are disjoint since neither S×T ⊂ S ′×T ′

nor S ′ × T ′ ⊂ S × T . Thus Wk is a disjoint union of open categorical sets. Since

X and Y are path-connected, X × Y is also path-connected, and it follows Wk is

categorical. Hence {Wk}n+m+2
k=2 forms an open categorical cover of X × Y . Thus

cat(X × Y ) ≤ n+m. �

3.5 Category Weight

Definition 3.5.1. The category of a map f : A → X, denoted cat(f), is the

smallest integer n such that there exists an open cover {Ui}ni=0 of A such that f |Ui is

null-homotopic for each i.

Thus the category of a space X, denoted cat(X), can equivalently be defined as

the cat(idX) where idX is the identity map of X.

Proposition 3.5.2. Let f : A→ X be a continuous map. Then

cat(f) ≤ min{cat(A), cat(X)}.

Proof. Let cat(A) = n and {Ui}ni=0 be an open categorical cover of A. Since Ui is a

categorical set of A, the inclusion map idAUi : Ui ↪→ A is null-homotopic. Then the

map f ◦ idAUi = f |Ui is null-homotopic. Since {Ui}ni=0 is an open cover of A, it follows

that cat(f) ≤ n.

Let cat(V ) = m and {Vj}mj=0 be an open categorical cover of X. Let Wj = f−1(Vj).

Then f̃j : Wj → Vj, given by f̃j(a) = f(a), is continuous. Since Vj is a categorical

set of X, i.e., the inclusion map idXVj : Vj ↪→ X is null-homotopic, it follows that

idXVj ◦ f̃j = f |Wj
is null-homotopic. Since {Wj}mj=0 forms an open cover of A, it follows

that cat(f) ≤ m. �

Definition 3.5.3. The category weight of a non-zero cohomology class u ∈ H∗(X;R),

denoted wgt(u), is defined by

wgt(u) ≥ k if and only if f ∗(u) = 0 for any f : A→ X with cat(f) < k.
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Proposition 3.5.4. Category weight satisfies the following properties:

(a) wgt(u) ≤ cat(X) for all u ∈ H∗(X;R).

(b) f : A→ X such that f ∗(u) 6= 0 then wgt(f ∗(u)) ≥ wgt(u).

(c) wgt(u ∪ v) ≥ wgt(u) + wgt(v).

Proof. For (a) and (b), we refer to [2, Chapter 8, Proposition 8.22].

(c) Let wgt(u) = n and wgt(v) = m. Let f : A→ X be any continuous map such

that cat(f) < n+m. Since cat(f) < n+m, there exist open sets U1, . . . , Un, V1, . . . , Vm

such that f |Ui and f |Vj is null-homotopic for i = 1, . . . , n and j = 1, . . . ,m. Let

U = U1 ∪ . . . ∪ Un and V = V1 ∪ . . . ∪ Vm.

Since f |Ui and f |Vj are null-homotopic, it follows that cat(f |U) < n and cat(f |V ) < m.

Since wgt(u) = n and wgt(v) = m, it follows that f |∗U (u) = 0 and f |∗V (v) = 0.

Since the following diagram commutes

X

U A (A,U),

f |U

k1

f

we have the following commutative diagram

H∗(X)

H∗(U) H∗(A) H∗(A,U)

f |∗U
f∗

k∗1

Since f |∗U (u) = 0 and the lower sequence of the preceding commutative diagram is

exact, it follows that there exists ū ∈ H∗(A,U) such that it maps to f ∗(u) by the

homomorphism k∗1 : H∗(A,U)→ H∗(A).

H∗(U) H∗(A) H∗(A,U)

0 f ∗(u) ū

k∗1

Similarly, there exists v̄ ∈ H∗(A, V ) such that it maps to f ∗(v) by the homomorphism

k∗2 : H∗(A, V )→ H∗(A).

H∗(V ) H∗(A) H∗(A, V )

0 f ∗(v) v̄

k∗2

Now, ū ∪ v̄ ∈ H∗(A,U ∪ V ) = H∗(A,A) = 0, thus ū ∪ v̄ = 0.
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Consider the diagrams

A (A,U ∪ V )

A× A (A,U)× (A, V )

A (A,U)

k

∆ ∆

k1×k2

π1 π1

k1

A (A,U ∪ V )

A× A (A,U)× (A, V )

A (A, V )

k

∆ ∆

k1×k2

π2 π2

k2

where k is the inclusion map, πi is the projection map onto the ith factor, ∆ is the

diagonal map and (A,U)× (A, V ) = (A×A, (A× V )∪ (U ×A)). Since the diagrams

are commutative, it follows that k∗∆∗ = ∆∗(k1 × k2)∗ and (k1 × k2)∗π∗i = π∗i k
∗
i . Thus

k∗(ū ∪ v̄) = k∗∆∗(ū× v̄) = ∆∗(k1 × k2)∗(ū× v̄)

= ∆∗(k1 × k2)∗(π∗1(ū) ∪ π∗2(v̄))

= ∆∗(π∗1k
∗
1(ū) ∪ π∗2k

∗
2(v̄))

= k∗1(ū) ∪ k∗2(v̄)

= f ∗(u) ∪ f ∗(v)

= f ∗(u ∪ v).

Since ū ∪ v̄ = 0, it follows that f ∗(u ∪ v) = 0. Thus wgt(u ∪ v) ≥ n+m. �

3.6 Some Examples

Example 3.6.1.

• If X is contractible, then X forms an open categorical cover of itself. Thus

cat(X) = 0. This also implies that cupR(X) = 0 for all R, where R is a

commutative ring with identity. Hence Hp(X;R) = 0 for all p ≥ 1.

• The sphere Sn can be covered by two open hemispherical sets extended slightly

to overlap. Each of these open sets is contractible and hence are open categorical

subsets of Sn. Thus we have cat(Sn) ≤ 1. Since Sn is not contractible, it follows

cat(Sn) > 0. Thus cat(Sn) = 1.

Theorem 3.6.2. Let X = Sm × . . . × Sm be the Cartesian product of n copies of

m-dimensional sphere Sm. Then cat(X) = n.

Proof. Since Sm is a path-connected smooth manifold, by Theorem 3.4.1 and preced-

ing example, we get

cat(X) ≤ n cat(Sm) = n.
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The cohomology groups of Sn are given by

Hp(Sm;k) =

k for p = 0,m;

0 otherwise.

Let a be the fundamental class of Sm, i.e., a is the generator of Hm(Sm; k) as a

k-module. Then the cohomology ring of Sm is given by

H∗(Sm;k) = k[a]/(a2).

Let πi : X → Sm be the projection map onto the ith factor of X. Suppose

ai ∈ Hm(Sm;k) is the fundamental class of the ith factor and let ui = π∗i (ai) for each

i = 1, . . . , n. Since Hj(S
m) is finitely generated for all j, by the Künneth Theorem

[10, Chapter 7, Theorem 61.6], the n-fold cross product homomorphism

H∗(Sm;k)⊗k . . .⊗k H
∗(Sm;k)

×n−→ H∗(X;k)

is an isomorphism of k-algebras. Thus

a1 ⊗ . . .⊗ an 7→ π∗1(a1) ∪ . . . ∪ π∗n(an) = u1 ∪ . . . ∪ un 6= 0.

Under the n-fold cross product isomorphism, each ui is an element of degree m in the

graded ring H∗(X;k) and u1 ∪ . . . ∪ un 6= 0 ∈ H∗(X;k). Thus n ≤ cupk(X). Thus, by

Theorem 3.3.2, we obtain cat(X) = n. �

Theorem 3.6.3. Let Σg be the connected compact orientable surface (without bound-

ary) of genus g. Then

cat(Σg) =

1 if g = 0,

2 if g ≥ 1.

Proof. If g = 0, then Σg is the 2-dimensional sphere S2. It follows from Example

3.6.1 that cat(S2) = 1. If g = 1, then Σg is the 2-dimensional torus T 2. Since T 2 is

homeomorphic to S1 × S1, by preceding Theorem, we obtain cat(T 2) = 2.

Let us consider the case g ≥ 2. Since Σg is a path-connected smooth manifold, by

Theorem 3.2.1, we have

cat(Σg) ≤ dim(Σg) = 2 for all g.
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The cohomology groups of Σg is given by

Hn(Σg;Q) =


Q if n = 0, 2,

Q2g if n = 1,

0 if n ≥ 3.

where H1(Σg;Q) is generated by the equivalence

classes of the cocycles φi and ψi, 1 ≤ i ≤ g, which

takes value 1 on elementary 1-chain ai and bi respec-

tively; and H2(Σg;Q) is generated by the equiva-

lence class of the cocycle ϕ which takes 1 on 2-chain

Σ(−1)ξiσi where ξi = 0 if orientation of σi is anti-

clockwise and ξi = 1 if orientation of σi is clockwise.

v

v

v

v

v

v

v

v

a2b2

a2

b2

a1 b1

a1

b1

σ3

σ2

σ1

σ4
σ5

σ6

c5

c4
c3

c2

c1

Consider the case of g = 2 with the ∆-complex structure drawn above with the

2-cycles σ1, σ4 and σ5 having anticlockwise orientation and the 2-cycles σ2, σ3 and σ6

having clockwise orientation starting from the common vertex v of all σi. We have

1-cocycles φ1, φ2, ψ1 and ψ2. Since δφi = δψi = 0, where δ is coboundary operator,

the cocycle φ1 takes value 1 on a1, c1; the cocycle ψ1 takes value 1 on b1, c1, c2; the

cocycle φ2 takes value 1 on a2, c4, c5; the cocycle ψ2 takes value 1 on b2, c5; and 0

otherwise.

Computing the cup products of 1-cocycles we get

(φ1 ∪ ψ1)(σi) =

1, if i = 1,

0, otherwise.
(φ2 ∪ ψ2)(σi) =

1, if i = 5,

0, otherwise.

and φi ∪ φj = ψi ∪ ψj = 0 for all i, j ∈ {1, 2} and φi ∪ ψj = 0 if i 6= j.

Let c denote the 2-chain Σ(−1)ξiσi where ξi = 0 if orientation of σi is anticlockwise

and ξi = 1 if orientation of σi is clockwise. Thus (φ1 ∪ψ1)(c) = 1 and (φ2 ∪ψ2)(c) = 1,

i.e., φ1 ∪ ψ1 and φ2 ∪ ψ2 takes value 1 on the 2-chain c. This implies that φ1 ∪ ψ1 =

φ2 ∪ ψ2 = ϕ.

Similarly, for all g ≥ 2 we can find non-zero 1-cocycles φ1, φ2, ψ1 and ψ2 and a

non-zero 2-cocycle ϕ such that φ1 ∪ ψ1 = φ2 ∪ ψ2 = ϕ and φi ∪ φj = ψi ∪ ψj = 0 for all

i, j ∈ {1, 2} and φi ∪ ψj = 0 if i 6= j.

Let ui, vi and Λ be the equivalence class of the cocycles φi, ψi and ϕ respectively.

Then ui ∪ vi = Λ 6= 0. Thus 2 ≤ cupQ(Σg). Thus, by Theorem 3.3.2, cat(Σg) = 2 for

g ≥ 2. �
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Chapter 4

Higher Topological Complexity

In this chapter, we study the numerical homotopy invariants - higher topological

complexity TCn(X) of a space X, for n ≥ 2, which measures the discontinuity of

motion planning in X. The topological complexity TC(X) := TC2(X) was introduced

by M. Farber in [5] to study the motion planning problem for the configuration spaces

of mechanical systems. Later Yuli B. Rudyak introduced higher analogs TCn(X) of

topological complexity in [12]. In the sections 4.1 - 4.3 we reproduce the proofs in

[5] for TC(X) to show similar results for TCn(X), and the sections 4.4 - 4.7 are the

expositions of the corresponding sections in [5]. Then in the section 4.8 we classify

spaces with TCn(X) = n − 1 for some n ≥ 2. This is a recent result of M. Grant et

al. (2013) in [6].

4.1 Topological Complexity of Motion Planning

Let ẽn : PX → X × . . . ×X = Xn be the fibration which evaluates a path α ∈ PX
as follows

ẽn(α) = (α(0), α(t1), . . . , α(tn−2), α(1))

where ti = i/(n − 1) for i ∈ {0, . . . , n − 1} and n ≥ 2. In view of Example 1.3.20,

the map ẽn is a fibrational substitute for the n-fold diagonal map ∆n : X → Xn for

n ≥ 2.

It is straightforward to see that the fibration ẽn is surjective if and only if the

space X is path-connected. Since in this chapter we would like to study secat(ẽn) for

which we require the fibration ẽn to be surjective, we shall assume that the space X

under consideration is path-connected.

Definition 4.1.1. The space of all possible configurations of a mechanical system is

called the configuration space of the system.

Let X be the configuration space of a mechanical system. In most of the practical
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applications the configuration space X is equipped with a topological space structure.

We shall assume that the configuration space X is path-connected.

Definition 4.1.2. Let X be a path-connected space and n ≥ 2. A motion planning

is a set map s : Xn → PX such that ẽn ◦ s is the identity map of Xn.

A motion planning s associates to each point (x1, . . . , xn) ∈ Xn a path s(x1, . . . , xn)

which starts at x1 and ends at xn such that it goes from x1 to xn via n − 2 equally

timed intermediate points in X, i.e., it describes the movement of the mechanical

system from the initial configuration x1 to the final configuration xn such that there

are additional n − 2 equally timed intermediate configurations. Even if the points

(x1, . . . , xn) and (x′1, . . . , x
′
n) are arbitrarily close the associated paths may not be.

Thus the continuity of the motion planning is essential.

Theorem 4.1.3. A continuous motion planning s : Xn → PX exists for n ≥ 2 if and

only if the space X is contractible.

Proof. Suppose s : Xn → PX is a continuous motion planning. Fix a point x0 ∈ X.

Consider the homotopy H : X × I → X defined as the composition of the following

maps

X × I (X × {x0}n−1)× I PX × I X,
s×id ev

where {x0}n−1 denotes the Cartesian product of n − 1 copies of {x0}, the first

map is the natural homeomorphism and the map ev is the evaluation map. Then

H(x, t) = s(x, x0, . . . , x0)(t). Thus H(x, 0) = s(x, x0, . . . , x0)(0) = x and H(x, 1) =

s(x, x0, . . . , x0)(1) = x0, i.e., H is a homotopy between the identity map of X and the

constant map at x0. Thus X is contractible.

Conversely, suppose X is contractible, i.e., there exists a homotopy H : X×I → X

such that H(x, 0) = x and H(x, 1) = x0 for all x ∈ X. Let si,i+1 : Xn → PX be

defined as

si,i+1(x1, . . . , xn)(t) =

H(xi, 2t) 0 ≤ t ≤ 1/2,

H(xi+1, 2− 2t) 1/2 ≤ t ≤ 1.

for i ∈ {1, . . . , n − 1}. By pasting lemma and Theorem 1.1.4, si,i+1 is continuous.

Also, si,i+1 satisfies si,i+1(x1, . . . , xn)(0) = H(xi, 0) = xi and si,i+1(x1, . . . , xn)(1) =

H(xi+1, 0) = xi+1.

Let ti = i/(n− 1) for i ∈ {0, . . . , n− 1}. Define s : Xn → PX as

s(x1, . . . , xn)(t) = si,i+1(x1, . . . , xn)((n− 1)(t− ti−1)) if t ∈ [ti−1, ti]

for i ∈ {1, . . . , n− 1}. By pasting lemma and Theorem 1.1.4, s is continuous. Also, s
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satisfies

s(x1, . . . , xn)(ti) = si,i+1(x1, . . . , xn)(1) = xi+1,

i.e.,

ẽn(s(x1, . . . , xn)) = (s(x1, . . . , xn)(t0), . . . , s(x1, . . . , xn)(tn−1)) = (x1, . . . , xn).

Thus s is a continuous motion planning. �

Definition 4.1.4. Let X be a path-connected space and n ≥ 2. The higher topo-

logical complexity of motion planning in X, denoted TCn(X), of a space X is

defined to be the Schwarz genus of the fibration ẽn, i.e., TCn(X) = secat(ẽn).

In other words, the higher topological complexity TCn(X) is the smallest number

m such that there exists an open cover {Ui}mi=0 of Xn such that over each open set Ui

there exists a continuous motion planning si : Ui → PX, i.e., ẽn ◦ si is the inclusion

map from Ui into Xn. If no such m exists, then TCn(X) = ∞. Thus, intuitively,

TCn(X) measures the discontinuity of motion planning in X in which not only the

initial and the final points are inputted but also an additional n − 2 intermediate

points.

Definition 4.1.5. Let X be a path-connected space. The topological complexity

of motion planning in X, denoted TC(X), of a space X is defined as TC(X) =

TC2(X).

The Definition 4.1.4 and Theorem 4.1.3 yields the following result.

Theorem 4.1.6. Let X be a path-connected space. The higher topological complex-

ity TCn(X) = 0 for n ≥ 2 if and only if X is contractible.

Example 4.1.7. Let X be a convex subset of the Euclidean space Rn. Since X is

contractible, we have TCn(X) = 0. We can also directly define a continuous motion

planning in X by s : Xn → PX defined as

s(x1, . . . , xn)(t) = xi + (n− 1)(t− ti−1)(xi+1 − xi) if t ∈ [ti−1, ti]

where ti = i/(n− 1) for i ∈ {0, . . . , n− 1}.

The following result states that TCn is a homotopy invariant. This reduces the

effort in computation of TCn(X) as the space X can now be simplified.

Theorem 4.1.8. Let X and Y be path-connected topological spaces. Suppose X

and Y are homotopy equivalent. Then TCn(X) = TCn(Y ) for n ≥ 2.
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Proof. Suppose there exist continuous maps f : X → Y and g : Y → X such that

f ◦ g is homotopic to the identity map of Y , say idY .

Let U be an open subset of Xn with a continuous section s : U → PX of ẽn.

Let gn : Y n → Xn denote the n-fold Cartesian product of the map g. Then V =

(gn)−1(U) ⊂ Y n is open. Let ti = i/(n − 1) for i ∈ {0, . . . , n − 1}. For each i ∈
{1, . . . , n− 1} define a homotopy Gi,i+1 : V × I → Y as composition of the following

maps

V × I U × I PX × I PX × [ti−1, ti] X Y
(gn)×id s×id id×φi ev f

where φi is the linear homeomorphism which maps 0 to ti−1 and 1 to ti, and ev is the

evaluation map. Then

Gi,i+1(y1, . . . , yn, 0) = f(s(g(y1), . . . , g(yn))(ti−1)) = f(g(yi))

and

Gi,i+1(y1, . . . , yn, 1) = f(s(g(y1), . . . , g(yn))(ti)) = f(g(yi+1)).

Let H : Y × I → Y be a homotopy between idY and f ◦ g. For each i ∈ {1, . . . , n− 1}
define a map ri,i+1 : V → PY by

ri,i+1(y1, . . . , yn)(t) =


H(yi, 3t) 0 ≤ t ≤ 1/3,

Gi,i+1(y1, . . . , yn, 3t− 1) 1/3 ≤ t ≤ 2/3,

H(yi+1, 3− 3t) 2/3 ≤ t ≤ 1.

By pasting lemma and Theorem 1.1.4, the map ri,i+1 is continuous Also ri,i+1 satisfies

ri,i+1(y1, . . . , yn, 0) = H(yi, 0) = yi and ri,i+1(y1, . . . , yn, 1) = H(yi+1, 0) = yi+1. Define

a map r : V → PY as

r(y1, . . . , yn)(t) = ri,i+1(y1, . . . , yn)((n− 1)(t− ti−1)) if t ∈ [ti−1, ti]

for i ∈ {1, . . . , n − 1}. By pasting lemma and Theorem 1.1.4, r is continuous. Also,

r satisfies

r(y1, . . . , yn)(ti) = ri,i+1(y1, . . . , yn)(1) = yi+1,

i.e., ẽn(r(y1, . . . , yn)) = (r(y1, . . . , yn)(t0), . . . , r(y1, . . . , yn)(tn−1)) = (y1, . . . , yn).

Thus r is a section of ẽn.

If TCn(X) = k and {Uj}kj=0 is an open cover of Xn with a continuous motion

planning sj : Uj → PX over each Uj, then {Vj}kj=0 forms an open cover of Y n with a

continuous motion planning rj : Vj → PY over each Vj. Thus TCn(Y ) ≤ k. Similarly,

if g ◦ f is homotopic to the identity map of X, then we get TCn(X) ≤ TCn(Y ). �
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4.2 An Upper Bound for TCn(X)

Proposition 4.2.1. Let X be a path-connected space. Then

cat(Xn−1) ≤ TCn(X) ≤ cat(Xn).

for n ≥ 2.

Proof. Suppose s : U → PX is a section of ẽn where U is a open subset of Xn. Let

x0 ∈ X be a fixed point. Define

V = {x̄ ∈ Xn−1 | (x0, x̄) ∈ U} where x̄ = (x1, . . . , xn−1).

Then V is open in Xn−1 since it is the inverse image of U ∩ ({x0} ×Xn−1) under the

natural homeomorphism between Xn−1 and {x0} ×Xn−1.

Since s is a section of ẽn, s satisfies the following property that s(x0, x̄)(ti) = xi

for i = 0, . . . , n− 1 where x̄ = (x1, . . . , xn−1) and ti = i/(n− 1).

For each i ∈ {1, . . . , n− 1} define a homotopy si : V × I → X as the composition

of the following maps

({x0} × V )× I PX × I PX × [0, ti] X
s×id id×fi ev

where fi : I → [0, ti] is the linear homeomorphism which takes 0 to 0 and 1 to

ti = i/(n − 1); and ev is the evaluation map. Then si((x0, x̄), 0) = s(x0, x̄)(0) = x0

and si((x0, x̄), 1) = s(x0, x̄)(ti) = xi where x̄ = (x1, . . . , xn−1).

Define a homotopy H : V × I → Xn−1 as

H(x̄, t) = (s1((x0, x̄), t), . . . , sn−1((x0, x̄), t))

where x̄ = (x1, . . . , xn−1). Then

H(x̄, 0) = (s1((x0, x̄), 0), . . . , sn−1((x0, x̄), 0)) = (x0, . . . , x0)

and

H(x̄, 1) = (s1((x0, x̄), 1), . . . , sn−1((x0, x̄), 1)) = (x1, . . . , xn−1) = x̄.

Thus the inclusion map V ↪→ Xn−1 is null-homotopic, i.e., V is categorical.

If TCn(X) = k and {Uj}kj=0 is an open cover of Xn with a continuous motion

planning sj : Uj → PX over each Uj, then {Vj}kj=0 forms an open categorical cover of

Xn−1 since {x0} × Vj = Uj ∩ ({x0} ×Xn−1). Thus cat(Xn−1) ≤ k. Since TCn(X) is

the Schwarz genus of ẽn, by Theorem 2.2.4, it follows that TCn(X) ≤ cat(Xn). �
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Proposition 4.2.2. Let X be path-connected paracompact Hausdorff space. Then

TCn(X) ≤ n cat(X)

for n ≥ 2.

Proof. It follows from Theorem 3.4.1 and Proposition 4.2.1. �

Theorem 4.2.3. Let X be a path-connected locally contractible paracompact Haus-

dorff space. Then

TCn(X) ≤ n dim(X)

for n ≥ 2.

Proof. It follows from Theorem 3.2.1 and Proposition 4.2.2 . �

If X is a path-connected smooth manifold, then X locally contractible para-

compact Hausdorff space. Thus the bounds TCn(X) ≤ n cat(X) and TCn(X) ≤
n dim(X) are valid for all path-connected smooth manifolds.

4.3 A Lower Bound for TCn(X)

Let X be a path-connected space and R be a commutative ring with unity. Then, by

Theorem 3.3.2 and Proposition 4.2.1, we get a lower bound on TCn(X), i.e.,

cupR(Xn−1) ≤ TCn(X).

But this is not a good lower bound for the computation of TCn(X). In this section,

we provide an improved lower bound for TCn(X).

Let k be a field. Let ∪n denote the n-fold cup product homomorphism

∪n : H∗(X;k)⊗k . . .⊗k H
∗(X;k)→ H∗(X;k) (4.1)

given by α1⊗. . .⊗αn 7→ α1∪. . .∪αn for n ≥ 2. The n-fold cross product homomorphism

becomes a k-algebra homomorphism if we define multiplication in H∗(X;k)⊗k . . .⊗k

H∗(X; k) by

(α1 ⊗ . . .⊗ αn).(β1 ⊗ . . .⊗ βn) = (−1)ξ((α1 ∪ β1)⊗ . . .⊗ (αn ∪ βn)),

ξ = |β1|(|α2|+ . . .+ |αn|) + |β2|(|α3|+ . . .+ |αn|) + . . .+ |βn−1||αn|,

where |αi| and |βi| denotes the degree of the cohomology class αi and βi in H∗(X;k)

respectively. The n-fold cup product homomorphism ∪n can be factored as ∪n = ×n∆∗n
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where ×n denotes the n-fold cross product homomorphism and ∆n denotes the n-fold

diagonal map of the space X (refer to Appendix for more details).

Definition 4.3.1. The kernel of the n-fold cup product homomorphism (4.1), for

n ≥ 2, is called the ideal of n-fold zero divisors of H∗(X;k). It is denoted by

ker(∪n(X)). The length of the longest non-trivial product in the ker(∪n(X)) is called

the n-fold zero divisors cup-length of H∗(X;k). It is denoted by nil(ker(∪n(X))).

Theorem 4.3.2. Let X be a path-connected topological space and k be any field.

Let Hi(X) denote the ith homology group with coefficients in Z. Suppose that the

space Xn is paracompact Hausdorff and Hi(X) is finitely generated for all i. Then

nil(ker(∪n(X))) ≤ TCn(X)

for n ≥ 2.

Proof. Let i : X → PX be the map which maps x ∈ X to the constant path cx at x.

By Lemma 1.1.5, i is a homotopy equivalence, thus i∗ is an isomorphism. Since Hi(X)

finitely generated for all i, by the Künneth Theorem [10, Chapter 7, Theorem 61.6],

the n-fold cross product homomorphism is an k-algebra isomorphism. Furthermore,

ẽn ◦ i = ∆n. Now consider the diagram

H∗(X;k)⊗k . . .⊗k H
∗(X;k) H∗(Xn;k) H∗(X;k)

H∗(PX; k)

×n ∆∗n

ẽ∗n
i∗

Then ker(∪n(X)) = ker(∆∗n) = ker(ẽ∗n). Thus nil(ker(∪n(X))) = long(ẽn). By Theo-

rem 2.3.9, we have nil(ker(∪n(X))) ≤ secat(ẽn) = TCn(X). �

4.4 Product Inequality

Theorem 4.4.1. Let X and Y be path-connected topological spaces. Suppose that

the spaces X ×X and Y × Y are paracompact Hausdorff. Then

TC(X × Y ) ≤ TC(X) + TC(Y ).

Proof. Let TC(X) = n and TC(Y ) = m. Then there exists an open cover {Ui}ni=0 of

X×X with a continuous motion planning ri : Ui → PX for each i ∈ {1, . . . , n}. Sim-

ilarly, there exists an open cover {Vj}mj=0 of Y ×Y with a continuous motion planning

sj : Vj → PY for each j ∈ {1, . . . ,m}. Since X × X and Y × Y are paracompact
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Hausdorff spaces, there exist partition of unity {fi}ni=0 and {gj}mj=0 subordinate to the

covers {Ui}ni=0 and {Vj}mj=0 respectively.

For each pair of nonempty subsets S ⊂ {0, 1, . . . , n} and T ⊂ {0, 1, . . . ,m} define

W (S, T ) ⊂ (X × Y )× (X × Y ) by (A,B,C,D) ∈ W (S, T ) if

fi(A,C).gj(B,D) > fi′(A,C).gj′(B,D)

for any (i, j) ∈ S × T and for any (i′, j′) 6∈ S × T . If S = {0, 1, . . . , n} and T =

{0, 1, . . . ,m}, then define W (S, T ) ⊂ (X × Y )× (X × Y ) by

W (S, T ) = {(A,B,C,D) | fi(A,C).gj(B,D) > 0 for any (i, j) ∈ S × T}.

Define a map fi.gj : (X × Y )× (X × Y )→ R by

fi.gj(A,B,C,D) = fi(A,C).gj(B,D).

The map fi.gj is the composition of the following maps

(X × Y )× (X × Y ) (X ×X)× (Y × Y ) R× R RL fi×gj h

where L is the natural homeomorphism given by L(A,B,C,D) = (A,C,B,D) and h is

the multiplication of real numbers. Thus fi.gj is continuous and (fi.gj−fi′ .gj′)−1(0, 1]

is open.

Since

W (S, T ) =
⋂

(i,j)∈S×T
(i′,j′) 6∈S×T

(fi.gj − fi′ .gj′)−1(0, 1]

and the intersection is over finitely many elements, it follows that W (S, T ) is open.

Let S ′ ⊂ {0, 1, . . . , n} and T ′ ⊂ {0, 1, . . . ,m} such that W (S, T ) ∩W (S ′, T ′) 6= ∅.
If S × T 6⊂ S ′× T ′, then there exists (i0, j0) ∈ (S × T ) \ (S ′× T ′). Let (A,B,C,D) ∈
W (S, T ) ∩W (S ′, T ′). Then fi0(A,C).gj0(B,D) > fi(A,C).gj(B,D) for any (i, j) 6∈
S × T and fk(A,C).gl(B,D) > fi0(A,C).gj0(B,D) for any (k, l) ∈ S ′ × T ′. Thus

fk(A,C).gl(B,D) > fi(A,C).gj(B,D) for any (k, l) ∈ S ′×T ′ and for any (i, j) 6∈ S×T .

This implies S ′×T ′ ⊂ S×T . Therefore W (S, T ) and W (S ′, T ′) are disjoint if neither

S × T ⊂ S ′ × T ′ nor S ′ × T ′ ⊂ S × T .

Suppose (A,B,C,D) ∈ (X × Y )× (X × Y ). Let

S = {i ∈ {0, . . . , n} | fi(A,C) = max{f0(A,C), . . . , fn(A,C)}},

and

T = {j ∈ {0, . . . ,m} | gj(B,D) = max{g0(B,D), . . . , gm(B,D)}}.
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Then (A,B,C,D) ∈ W (S, T ). Thus the sets W (S, T ) forms an open cover of (X ×
Y )× (X × Y ).

Let (i, j) ∈ S × T . Since fi(A,C).gj(B,D) > 0 for all (A,B,C,D) ∈ W (S, T ),

it follows that W (S, T ) ⊂ L−1(Ui × Vj). Thus there exist a continuous motion

planning over W (S, T ) given by the map σi,j : W (S, T ) → P (X × Y ) defined as

σi,j(A,B,C,D) = (ri(A,C), sj(B,D)) for all (A,B,C,D) ∈ W (S, T ).

Let Wk (k = 2, . . . , n+m+2) denote the union of W (S, T ) such that |S|+ |T | = k.

The set {Wk}n+m+2
k=2 forms an open cover of (X × Y )× (X × Y ). Suppose |S|+ |T | =

|S ′| + |T ′| and S × T 6= S ′ × T ′. Then W (S, T ) and W (S ′, T ′) are disjoint since

neither S × T ⊂ S ′ × T ′ nor S ′ × T ′ ⊂ S × T . Thus Wk is disjoint union of open sets

each having a continuous motion planning. Hence there exist a continuous motion

planning over Wk. Thus TC(X × Y ) ≤ n+m. �

4.5 Topological Complexity of Spheres

In this section, we compute the topological complexity of a n-dimensional sphere Sn

which will later help us in calculating the topological complexity of motion planning

for a robot arm in Section 4.7. The text in this section can be found in [5].

Theorem 4.5.1. The topological complexity of a n-dimensional sphere Sn is given

by

TC(Sn) =

1 for n odd,

2 for n even.

Proof. Let u ∈ Hn(Sn;k) be the fundamental class and 1 ∈ H0(Sn;k) be the identity

element of H∗(Sn; k). The elements u ⊗ u and 1 ⊗ u − u ⊗ 1 belongs to the kernel

of the cup product homomorphism (4.1), since their images are u2 ∈ H2n(Sn;k) = 0

and 1.u− u.1 = 0 respectively. Then

(1⊗ u− u⊗ 1)2 =(1⊗ u− u⊗ 1).(1⊗ u− u⊗ 1)

=(1⊗ u)2 − (1⊗ u).(u⊗ 1)− (u⊗ 1).(1⊗ u) + (u⊗ 1)2

=(−1)n
2+1(u⊗ u)− (u⊗ u).

If n is odd, then (1⊗u−u⊗1)2 = 0 and if n is even then (1⊗u−u⊗1)2 = −2(u⊗u).

Thus if k is not a field of characteristic 2, by Theorem 4.3.2, we get

TC(Sn) ≥ nil(ker(∪2(Sn))) ≥

1 for n odd,

2 for n even.
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Since Sn is a path-connected smooth manifold, it follows from Theorem 4.2.1 that

TC(Sn) ≤ 2 cat(Sn) = 2.

This shows that TC(Sn) = 2 if n is even. If n is odd, we are going to construct a

motion planning on a cover of Sn×Sn containing two open sets implying TC(Sn) ≤ 1.

Let U1 = {(x, y) ∈ Sn × Sn | x 6= −y} and U2 = {(x, y) ∈ Sn × Sn | x 6= y} be

open sets covering Sn × Sn. Define s1 : U1 → PSn by

s1(x, y)(t) =
(1− t)x+ ty

||(1− t)x+ ty||2

where ||z||2 =
√
z2

1 + . . .+ z2
n+1 for z = (z1, . . . , zn+1). It can be seen that ||(1− t)x+

ty||2 =
√

1− 2t(1− t)(1− Σxiyi) and for t ∈ (0, 1) we have

||(1− t)x+ ty||2 = 0 ⇐⇒ Σxiyi = 1− 1

2t(1− t)
⇐⇒ Σxiyi = −1 ⇐⇒ x = −y.

Thus, by and Theorem 1.1.4, s1 is continuous with s1(x, y)(0) = x and s1(x, y)(1) = y.

Hence s1 is a continuous motion planning on U1.

Since n is odd there exist a continuous non-vanishing tangent vector field v on Sn,

for example (x1, . . . , xn+1) 7→ (−x2, x1,−x4, x3, . . . ,−xn+1, xn). We can assume that

||v(x)||2 = 1 for all x ∈ Sn, since v is non-vanishing. Thus v : Sn → Sn is a continuous

map such that v(x) ⊥ x. Define ṽ : Sn×I → Sn by ṽ(x, t) = − cos(πt)x+sin(πt)v(x).

Define s2 : U2 → PSn by

s2(x, y)(t) =

s1(x,−y)(2t) if 0 ≤ t ≤ 1/2,

ṽ(y, 2t− 1) if 1/2 ≤ t ≤ 1.

By pasting lemma and Theorem 1.1.4, s2 is continuous with s2(x, y)(0) = x and

s2(x, y)(1) = y. Hence s2 is a continuous motion planning on U2. �

4.6 Topological Complexity of Compact Orientable

Surfaces

Theorem 4.6.1. The topological complexity of a connected compact orientable sur-

face (without boundary) Σg of genus g is given by

TC(Σg) =

2 if g ≤ 1,

4 if g ≥ 2.
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Proof. If g = 0, then Σg is the 2-dimensional sphere S2. It follows from Theorem

4.5.1 that TC(S2) = 2. If g = 1, then Σg is the 2-dimensional torus T 2. Since T 2 is

homeomorphic to S1×S1, by Theorem 4.1.8 and Theorem 4.4.1, we obtain TC(T 2) =

TC(S1 × S1) ≤ 2 TC(S1) = 2. Moreover, by Proposition 4.2.1 and Theorem 3.6.2,

we obtain 2 = cat(T 2) ≤ TC(T 2). Thus TC(T 2) = 2.

Let us consider the case g ≥ 2. Since Σg is a path-connected smooth manifold, by

Theorem 4.2.3, we have

TC(Σg) ≤ 2 dim(Σg) = 4 for all g.

For all g ≥ 2 we can find non-zero cohomology classes u1, u2, v1 and v2 ∈ H1(Σg;Q)

and a non-zero cohomology class Λ ∈ H2(Σg;Q) such that u1 ∪ v1 = u2 ∪ v2 = Λ and

ui ∪ uj = vi ∪ vj = 0 for all i, j ∈ {1, 2} and ui ∪ vj = 0 if i 6= j (refer to Theorem 3.6.3

for more details).

The elements 1⊗ ui − ui ⊗ 1 and 1⊗ vi − vi ⊗ 1 belongs to the kernel of the cup

product homomorphism (4.1), since their images are 1.ui−ui.1 = 0 and 1.vi−vi.1 = 0

respectively.

Consider the product

2∏
i=1

(1⊗ ui − ui ⊗ 1)(1⊗ vi − vi ⊗ 1) =
2∏
i=1

(1⊗ Λ + vi ⊗ ui − ui ⊗ vi + Λ⊗ 1)

= 2(Λ⊗ Λ) 6= 0.

Then, by Theorem 4.3.2, TC(Σg) ≥ nil(ker(∪2(Σg))) ≥ 4 for g ≥ 2. Thus TC(Σg) = 4

for g ≥ 2. �

4.7 Motion Planning for a Robot Arm

Consider a robot arm consisting of n bars l1, l2, . . . , ln such that:

(a) the initial point of l1 is fixed,

(b) li and li+1 are connected by a flexible joint for i ∈ {1, 2, . . . , n− 1}, and

(c) no obstacles are present, i.e., the bars don’t interact with each other.

If the bars are allowed to move in a plane satisfying (a), (b) and (c), then a

configuration of the robot arm is determined by n angles α1, α2, . . . , αn, where αi is

the angle that the bar li makes with the x-axis. Thus the configuration space of the

robot arm with n bars in the planar case is the n-dimensional torus T n = S1×. . .×S1.

Similarly, if the bars are allowed to move in the 3-dimensional space R3 satisfying

(a), (b) and (c), then the configuration space of the robot arm with n bars in the

3-space R3 is the Cartesian product of n copies of 2-dimensional spheres S2.
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Figure 4.1: A planar robot arm with 4 bars

Theorem 4.7.1. Let X = Sm × . . . × Sm be the Cartesian product of n copies of

m-dimensional sphere Sm. Then

TC(X) =

n if m is odd,

2n if m is even.

Proof. Since Sm is a path-connected smooth manifold, by Theorem 4.4.1 and Theorem

4.5.1, we get

TC(X) ≤ n TC(Sm) =

n if m is odd,

2n if m is even.

Let πi : X → Sm be the projection map onto the ith factor of X. Suppose

ai ∈ Hm(Sm;Q) is the fundamental class of the ith factor and let ui = π∗i (ai) for

each i. Since a2
i = 0, we have u2

i = 0. Since Hj(S
m) is finitely generated for all j,

by the Künneth Theorem [10, Chapter 7, Theorem 61.6], the n-fold cross product

homomorphism

H∗(Sm;Q)⊗Q . . .⊗Q H
∗(Sm;Q)

×n−→ H∗(X;Q)

is an isomorphism of algebras. Thus

a1 ⊗ . . .⊗ an 7→ π∗1(a1) ∪ . . . ∪ π∗n(an) = u1 ∪ . . . ∪ un 6= 0

The elements ui ⊗ ui and 1⊗ ui − ui ⊗ 1 belongs to the kernel of the cup product

homomorphism (4.1), since their images are u2
i = 0 and 1.ui − ui.1 = 0 respectively.
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Moreover,

(1⊗ ui − ui ⊗ 1)2 =(1⊗ ui − ui ⊗ 1).(1⊗ ui − ui ⊗ 1)

=(1⊗ ui)2 − (1⊗ ui).(ui ⊗ 1)− (ui ⊗ 1).(1⊗ ui) + (ui ⊗ 1)2

=(−1)m
2+1(ui ⊗ ui)− (ui ⊗ ui).

Thus (1 ⊗ ui − ui ⊗ 1)2 = 0 if m is odd and (1 ⊗ ui − ui ⊗ 1)2 = −2(ui ⊗ ui) if m is

even. The product

n∏
i=1

(1⊗ ui − ui ⊗ 1) 6= 0 ∈ H∗(X;Q)⊗Q H
∗(X;Q),

since there is a non-zero term 1⊗u1 . . . un left in the product obtained by multiplying

the first term of (1⊗ ui − ui ⊗ 1) for each i. Thus TC(X) ≥ n, implying TC(X) = n

if m is odd.

If m is even, then the product

n∏
i=1

(1⊗ ui − ui ⊗ 1)2 =
n∏
i=1

(−2)(ui ⊗ ui) = (−2)n(u1 . . . un)⊗ (u1 . . . un) 6= 0.

Thus TC(X) ≥ 2n, implying TC(X) = 2n if m is even. �

Corollary 4.7.2. Consider a robot arm consisting of n bars l1, l2, . . . , ln such that

the initial point of l1 is fixed, and li and li+1 are connected by a flexible joint for

i ∈ {1, 2, . . . , n− 1}. Then the topological complexity of motion planning of a n bar

robot arm in a plane equals n. The topological complexity of motion planning of

n-bar robot arm in 3-space R3 equals 2n.

4.8 Spaces with TCn(X) = n − 1

Theorem 4.1.6 classifies spaces with TCn(X) = 0, i.e., TCn(X) = 0 if and only if

X is contractible. Suppose X is not contractible, then we can readily show that

TCn(X) ≥ n − 1 using Proposition 4.2.1 and Theorem 3.3.2. In this section, we

classify spaces with TCn(X) = n− 1 for some n ≥ 2. The relevant reference is [6].

Let Hi(X) denote the ith homology group with coefficients in Z and H̃i(X) denote

the ith reduced homology group with coefficients in Z. Let dimk(H̃
∗(X;k)) denote

the dimension of H̃∗(X;k) as a graded k-vector space.

Definition 4.8.1. A CW complex is said to be of finite type if it has finitely many

cells of each dimension.
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Proposition 4.8.2. Suppose X is a CW complex of finite type. Then Hi(X) is

finitely generated abelian group for all i.

Proof. It is a well known result that if X is a CW complex with k i-cells, then Hi(X)

is generated by at most k elements (refer to the consequence (ii) of [7, Chapter 2,

Theorem 2.35]). Since X has finitely many cells of each dimension, it follows that

Hi(X) is finitely generated abelian group for all i. �

Definition 4.8.3. A space X is said to be an integral homology sphere if X has

integral homology groups isomorphic to that of an n-sphere Sn for some n ≥ 1, i.e.,

Hi(X) =

Z if i = 0, n,

0 else.

Definition 4.8.4. A space X is said to be acyclic if the reduced integral homology

groups of X vanishes in all dimensions, i.e., H̃i(X) = 0 for all i ≥ 0.

Proposition 4.8.5. Let X be a path-connected CW complex of finite type. Suppose

dimk(H̃
∗(X;k)) ≤ 1 for any field k. Then either X is acyclic or X is an integral

homology sphere.

Proof. If X is acyclic, then H̃i(X) = 0 for all i ≥ 0. For all i ≥ 1, by the Universal

Coefficient Theorem C.7, we have a split exact sequence

0 Ext(Hi−1(X),k) H i(X; k) Hom(Hi(X), k) 0

for any field k. Moreover, Ext(H0(X),k) ∼= Ext(Z,k) = 0 and Ext(Hi(X),k) =

Ext(0,k) = 0 for all i ≥ 1. Thus Ext(Hi(X),k) = 0 for all i ≥ 0. Therefore, by

exactness of the sequence, we get H i(X;k) ∼= Hom(Hi(X),k) = Hom(0, k) = 0 for all

i ≥ 1. Thus H̃∗(X;k) = 0 for any field k.

Now suppose that X is not acyclic. Let Hr(X) be the first non-trivial integral

homology group of X, r ≥ 1. If r = 1, then Ext(Hr−1(X),k) = Ext(H0(X),k) ∼=
Ext(Z, k) = 0. If r > 1, then Ext(Hr−1(X),k) = Ext(0,k) = 0. Thus we have

Ext(Hr−1(X), k) = 0 for any field k. Since X is of finite type, by Proposition 4.8.2,

either

Hr(X) ∼= Zn or Hr(X) ∼= Zn ⊕ Z/pk ⊕ Z/pk11 ⊕ Z/pk22 ⊕ . . .⊕ Z/pkll

for some n ≥ 0, primes p ≤ p1 ≤ p2 ≤ . . . ≤ pl and natural numbers k, k1, k2, . . . , kl.

Let us suppose that the torsion part of Hr(X) is non-trivial. Then there is atleast

one summand, say Zpk , in the decomposition of Hr(X). Since Ext(Hr−1(X),Zp) = 0,
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we have

Hr(X;Zp) ∼= Hom(Hr(X),Zp)
∼= Hom(Zpk ,Zp)⊕ S

∼= ker(Zp
pk−→ Zp)⊕ S by Proposition C.6

∼= Zp ⊕ S

where S is a Zp vector space. Moreover,

Hr+1(X;Zp) ⊇ Ext(Hr(X),Zp)
∼= Ext(Zpk ,Zp)⊕ T
∼= (Zp)/(pkZp)⊕ T by Proposition C.5

∼= Zp ⊕ T

where T is a Zp vector space. Then it follows that dimZp(H̃
∗(X;Zp)) ≥ 2 which leads

to a contradiction. Thus Hr(X) is torsion-free.

Let us suppose that Hr(X) ∼= Zn for some n ≥ 2. Since Ext(Hr−1(X),Q) = 0, we

have

Hr(X;Q) ∼= Hom(Hr(X),Q) ∼= Hom(Zn,Q) ∼= Qn.

Then it follows that dimQ(H̃∗(X;Q)) ≥ 2 which leads to a contradiction. Thus

Hr(X) ∼= Z.

Since Hr(X) ∼= Z, we have Ext(Hr(X),k) ∼= Ext(Z,k) = 0 for all field k. Thus the

same argument as before shows that Hr+1(X) is torsion-free. Moreover, if Hr+1(X) ∼=
Zn for some n ≥ 1, then usingHr+1(X;Q) ∼= Hom(Hr+1(X),Q), we getHr+1(X;Q) ∼=
Qn for some n ≥ 1. This implies H̃∗(X;Q) has dimension atleast 2 over Q since

Hr(X;Q) ∼= Q. Thus Hr+1(X) is trivial.

Thus we get Ext(Hr+1(X),k) ∼= Ext(0,k) = 0 for all field k. Then, by inductive

argument, we get that Hi(X) = 0 for all i > r. Thus X is an integral homology

r-sphere. �

Proposition 4.8.6. Let X be path-connected CW complex. Suppose the fundamen-

tal group of X has a non-trivial element of finite order. Then cat(Xn) ≥ 2n for each

n ≥ 1.

Proof. Since the fundamental group of X has a non-trivial element of finite order,

the fundamental group of X has an element of prime order. Thus Zp is a subgroup

of the fundamental group of X for some prime p. Since CW complexes are locally

path-connected and semi-locally path-connected, by [7, Chapter 1, Proposition 1.36],

there exists a path-connected covering space Y of X whose fundamental group is
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isomorphic to Zp. Thus H1(Y ) ∼= Zp. Moreover, by [7, Exercise 1, p. 529], Y is also

a CW complex.

Consider the long exact sequence of cohomology groups of Y associated to the

short exact sequence of coefficients 0 → Zp
p−→ Zp2

rp−→ Zp → 0 (refer to Appendix:

Bockstein Homomorphisms for more details)

. . . Hn(Y ;Zp) Hn(Y ;Zp2) Hn(Y ;Zp) Hn+1(Y ;Zp) . . .
β

Since Ext(H0(Y ),Zp2) = Ext(Z,Zp2) = 0, by the Universal Coefficient Theorem C.7,

we obtain H1(Y ;Zp2) ∼= Hom(H1(Y ),Zp2) ∼= Hom(Zp,Zp2) ∼= ker(Zp2
p−→ Zp2) ∼= Zp.

Similarly, we obtain H1(Y ;Zp) ∼= Zp. Thus

. . . H1(Y ;Zp) H1(Y ;Zp2) H1(Y ;Zp) H2(Y ;Zp) . . .

. . . Zp Zp Zp H2(Y ;Zp) . . .

∼ ∼ ∼

β

β

Since the map H1(Y ;Zp) → H1(Y ;Zp2) is non-zero, it is an isomorphism. Thus the

map induced by rp is zero. Thus the Bockstein homomorphism β : H1(Y ;Zp) →
H2(Y ;Zp) is injective.

Let y = β(x) ∈ H2(Y ;Z), where x ∈ H1(Y ;Zp) is a generator. Thus, by [11,

Corollary 4.7] and [6, Proposition 2.2], the class y has category weight (refer to Defi-

nition 3.5.3) at least 2.

Since Zp is a field, by [4, Chapter VII, Exercise 7.15, p. 218], it follows that the

cross product homomorphism is injective. Thus y× . . .× y ∈ H∗(Y n;Zp) is non-zero.

Thus, by Proposition 3.5.4, we have

cat(Y n) ≥ wgt(y × . . .× y)

= wgt(π∗1(y) ∪ . . . ∪ π∗n(y))

≥ wgt(π∗1(y)) + . . .+ wgt(π∗n(y))

≥ wgt(y) + . . .+ wgt(y)

= 2n.

Since Y n is a path-connected covering space of Xn, by Theorem 3.1.6, we have

cat(Y n) ≤ cat(Xn). Thus cat(Xn) ≥ 2n. �

Let X be a topological space and k be a field. Let H∗(X; k)⊗n denote the n-fold

tensor product H∗(X;k) over k. Suppose a ∈ H∗(X;k). Let ai denote the element

1⊗ . . .⊗1⊗a⊗1⊗ . . .⊗1 in H∗(X;k)⊗n where a is at the ith position and |a| denote

the degree of the cohomology class a in H∗(X;k).
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Suppose a, b ∈ H∗(X;k). Due to the graded product on H∗(X;k)⊗n, we have

aibj =

1⊗ . . .⊗ 1⊗ a⊗ 1⊗ . . .⊗ 1⊗ b⊗ 1⊗ . . .⊗ 1 if i ≤ j

(−1)|a||b|(1⊗ . . .⊗ 1⊗ b⊗ 1⊗ . . .⊗ 1⊗ a⊗ 1⊗ . . .⊗ 1) if i > j.

where a and b are at the ith and jth position respectively. Moreover, we have

aibj = (−1)|a||b|bjai.

The original statement (partially) and proof of the following lemma (Lemma 3.3

in [6]) is incorrect. This was discovered while reviewing the paper [6] during this

thesis. In [1], we have done an exposition of the problem in the proof, given a simple

modification to the original statement and then given a direct proof of the Lemma

3.3 in [6].

Lemma 4.8.7. Suppose a, b ∈ H∗(X;k). For n ≥ 2 we have

(b1− b2)(a1− a2)(a1− a3) . . . (a1− an) ≡ (−1)n+1(b⊗ a+ (−1)|a||b|a⊗ b)⊗ a⊗ . . .⊗ a

modulo terms in the ideal of H∗(X;k)⊗n generated by the elements a2 ⊗ 1⊗ . . .⊗ 1,

ba⊗ 1⊗ . . .⊗ 1, and 1⊗ ba⊗ 1⊗ . . .⊗ 1.

Proof. A term in the expression (b1 − b2)(a1 − a2)(a1 − a3) . . . (a1 − an) will be of the

form

(−1)ε bjai1 . . . ain−1 (4.2)

where j ∈ {1, 2}, ik ∈ {1, k + 1} for k ∈ {1, . . . , n− 1} and ε ∈ Z.

If a1 occurs twice in the expression (4.2), then the term itself is a multiple of

a2 ⊗ 1⊗ . . .⊗ 1. Thus, we can assume a1 occurs atmost once.

Let us assume bi = b1. If a1 comes in the expression (4.2), then the term itself is a

multiple of ba⊗ 1⊗ . . .⊗ 1. Thus, we can assume a1 doesn’t occur in the expression

and hence the only expression possible is (−1)n−1b1a2a3 . . . an. Similarly, if we assume

bi = b2 then the only expression possible is (−1)n−1b2a1a3 . . . an since a1 can occur

atmost once.

Therefore, we get

(b1 − b2)(a1 − a2)(a1 − a3) . . . (a1 − an) ≡ (−1)n−1(b1a2a3 . . . an + b2a1a3 . . . an)

modulo terms in the ideal of H∗(X; k)⊗n generated by the elements a2 ⊗ 1⊗ . . .⊗ 1,

ba⊗ 1⊗ . . .⊗ 1, and 1⊗ ba⊗ 1⊗ . . .⊗ 1. �

Theorem 4.8.8. Let X be a path-connected CW complex of finite type. Suppose
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TCn(X) = n − 1 for some n ≥ 2. Then the fundamental group of X is torsion-free,

and either X is acyclic or is an odd-dimensional integral homology sphere.

Proof. Suppose that the torsion part of the fundamental group of X in non-trivial.

Then the fundamental group of X has a non-trivial element of finite order. Thus, by

Proposition 4.8.6, we have cat(Xn−1) ≥ 2(n − 1). Since cat(Xn−1) ≤ TCn(X) and

n ≥ 2, we get a contradiction. Thus the fundamental group of X is torsion-free.

Suppose that a, b ∈ H̃∗(X;k) such that they are linearly independent over k, i.e.,

dimk(H̃
∗(X;k)) ≥ 2. By Lemma 4.8.7,

(b1− b2)(a1− a2)(a1− a3) . . . (a1− an) ≡ (−1)n+1(b⊗ a+ (−1)|a||b|a⊗ b)⊗ a⊗ . . .⊗ a

modulo terms in the ideal of H∗(X;k)⊗n generated by the elements a2 ⊗ 1⊗ . . .⊗ 1,

ba⊗ 1⊗ . . .⊗ 1, and 1⊗ ba⊗ 1⊗ . . .⊗ 1. We claim that the term

(−1)n+1(b⊗ a+ (−1)|a||b|a⊗ b)⊗ a⊗ . . .⊗ a

is non-zero since a and b are linearly independent. Suppose {αi}i∈J be a basis of

H̃∗(X;k) over k. Let a = ΣAiαi and b = ΣBjαj where Ai, Bj ∈ k. Then

b⊗ a+ (−1)|a||b|a⊗ b =
∑

BjAi(αj ⊗ αi) + (−1)|a||b|
∑

AiBj(αi ⊗ αj)

=
∑

(AjBi + (−1)|a||b|AiBj)αi ⊗ αj.

Since a and b are non-zero, there exists a k ∈ J such that at least one of Ak or Bk is

non-zero. If b⊗ a+ (−1)|a||b|a⊗ b = 0, then

AkBi + (−1)|a||b|AiBk = 0

for all i ∈ J . Moreover,∑
(AkBi + (−1)|a||b|AiBk)αi = Ak

∑
Biαi + (−1)|a||b|Bk

∑
Aiαi

= Akb+ (−1)|a||b|Bka.

This implies a and b are linearly dependent, which is a contradiction. Thus b ⊗ a +

(−1)|a||b|a⊗ b 6= 0. Extend this argument to show that

(−1)n+1(b⊗ a+ (−1)|a||b|a⊗ b)⊗ a⊗ . . .⊗ a

is non-zero if a and b are linearly independent. Moreover, a1 − ai belongs to the

kernel of the n-fold cup product homomorphism (4.1), since its image is a − a = 0.

Thus the n-fold product (b1 − b2)(a1 − a2)(a1 − a3) . . . (a1 − an) also belongs to the
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kernel of the n-fold cup product homomorphism (4.1). Since it is non-zero, it follows

n ≤ nil(ker(∪n(X))). Thus, by Theorem 4.3.2, TCn(X) ≥ n, which is a contradiction.

Thus dimk(H̃
∗(X; k)) ≤ 1. Then, by Proposition 4.8.5, either X is acyclic or X is an

integral homology sphere.

Suppose X is an integral homology sphere of even dimension. Then, by Lemma

4.8.7, for any cohomology class a ∈ H∗(X;k) the n-fold product (a1−a2)(a1−a2)(a1−
a3) . . . (a1 − an) is congruent to

(−1)n+1(a⊗ a+ (−1)|a||a|a⊗ a)⊗ a⊗ . . .⊗ a = (−1)n+12(a⊗ . . .⊗ a)

modulo terms in the ideal of H∗(X;k)⊗n generated by the elements a2⊗1⊗. . .⊗1 and

1⊗ a2 ⊗ 1⊗ . . .⊗ 1. Thus if k if field of characteristic not equal to 2, say Q, and a is

fundamental class of X, then the n-fold product (a1−a2)(a1−a2)(a1−a3) . . . (a1−an)

is non-zero. Since the n-fold product (a1 − a2)(a1 − a2)(a1 − a3) . . . (a1 − an) belongs

to the kernel of the n-fold cup product homomorphism (4.1), it follows that n ≤
nil(ker(∪n(X))). Thus, by Theorem 4.3.2, TCn(X) ≥ n, which is a contradiction.

Thus either X is acyclic or X is an odd-dimensional integral homology sphere. �
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Appendix

A Variant of Partition of Unity

Theorem A.1. Let {Ui}i∈J be an open cover of a paracompact Hausdorff space X.

Then there exists a locally finite open cover {Vi}i∈J of X such that V̄i ⊂ Ui for each

i ∈ J where V̄i denotes the closure of Vi in X.

Proof. Refer to [9, Chapter 6, Lemma 41.6]. �

Theorem A.2. Let {Ui}i∈J be an open cover of a paracompact Hausdorff space

X. Then there exist a system of continuous real-valued functions {fi}i∈J from X

satisfying the conditions: (a) 0 ≤ fi ≤ 1; (b) support(fi) ⊂ Ui; (c) at each point

x ∈ X there exists i ∈ J such that fi(x) = 1.

Proof. Suppose {Ui}i∈J is an open cover of a normal space X. Then there exists an

locally finite open cover {Vi}i∈J of X such that V̄i ⊂ Ui for each i. Moreover, there

exists an locally finite open cover {Wi}i∈J of X such that W̄i ⊂ Vi for each i. Since

W̄i and X \Vi are closed disjoint subsets of X, by Urysohn’s lemma, there exists a

continuous function fi : X → [0, 1] such that

fi(X\Vi) = 0 and fi(W̄i) = 1.

Therefore we have f−1
i (0, 1] ⊂ Vi. This implies

W̄i ⊂ support(fi) ⊂ V̄i ⊂ Ui.

Moreover, for each x ∈ X there exists i ∈ J such that x ∈ Wi, since {Wi}i∈J is a

cover, and hence fi(x) = 1 for some i ∈ J .

Thus any open cover {Ui}i∈J of a paracompact Hausdorff space X has a system

of continuous real-valued functions {fi}i∈J from X satisfying the conditions: (a) 0 ≤
fi ≤ 1; (b) support(fi) ⊂ Ui; (c) at each point x ∈ X there exists i ∈ J such that

fi(x) = 1. �
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Cup Product

Let R be a commutative ring with identity. The cohomology H∗(X;R) is a graded

ring with multiplication defined by the cup product homomorphism

∪ : H∗(X;R)⊗R H∗(X;R)→ H∗(X;R)

given by α1 ⊗ α2 7→ α1 ∪ α2. The cup product has the following property

a ∪ b = (−1)|a|.|b|(b ∪ a)

where |a| and |b| denotes the degree of cohomology classes a and b in H∗(X;R)

respectively. Let ∪n denote the n-fold cup product homomorphism

∪n : H∗(X;R)⊗R . . .⊗R H∗(X;R)→ H∗(X;R)

given by α1⊗. . .⊗αn 7→ α1∪. . .∪αn. The n-fold cross product homomorphism becomes

a ring homomorphism if we define multiplication in H∗(X;R)⊗R . . .⊗RH∗(X;R) by

(α1 ⊗ . . .⊗ αn).(β1 ⊗ . . .⊗ βn) = (−1)ξ((α1 ∪ β1)⊗ . . .⊗ (αn ∪ βn)),

ξ = |β1|(|α2|+ . . .+ |αn|) + |β2|(|α3|+ . . .+ |αn|) + . . .+ |βn−1||αn|,

where |αi| and |βi| denotes the degree of the cohomology class αi and βi in H∗(X;R)

respectively.

Let πi : Xn → X be the projection map onto the ith factor. Then the map

×n : H∗(X;R)× . . .×H∗(X;R)→ H∗(Xn;R)

given by (α1, . . . , αn) 7→ α1 × . . . × αn := π∗1(α1) ∪ . . . ∪ π∗n(αn) is called the n-fold

cross product map. Since the cup product is distributive, the n-fold cross product

map is multilinear. Thus the n-fold cross product map induces a ring homomorphism

×n : H∗(X;R)⊗R . . .⊗R H∗(X;R)→ H∗(Xn;R)

given by α1⊗ . . .⊗αn 7→ α1× . . .×αn := π∗1(α1)∪ . . .∪π∗n(αn). This map is called the

n-fold cross product homomorphism. Let ∆n : X → Xn be the n-fold diagonal

map. Then

∆∗n(×n(α1 ⊗ . . .⊗ αn)) = ∆∗n(α1 × . . .× αn) = ∆∗n(π∗1(α1) ∪ . . . ∪ π∗n(αn))

= ∆∗n(π∗1(α1)) ∪ . . . ∪∆∗n(π∗n(αn))

= (π1∆n)∗(α1) ∪ . . . ∪ (πn∆n)∗(αn)
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= (idX)∗(α1) ∪ . . . ∪ (idX)∗(αn)

= α1 ∪ . . . ∪ αn.

Thus the n-fold cup product homomorphism ∪n can be factored as ∪n = ∆∗n×n.

Universal Coefficient Theorem

Definition C.1. Let H be an abelian group. Then a free resolution of H is an

exact sequence

. . . F2 F1 F0 H 0
f2 f1 f0

where each Fn is a free abelian group.

Lemma C.2. Let F and F ′ be any two free resolutions of an abelian group H.

Suppose G is an abelian group. Then Hn(F ;G) is isomorphic to Hn(F ′;G) for all n.

Proof. Refer to [7, Chapter 3, Lemma 3.1]. �

Lemma C.3. Let H be an abelian group. Then H has a free resolution of the form

0 F1 F0 H 0,
f1 f0

with Fi = 0 for i ≥ 2.

Proof. Let S be a set of generators for H and F0 be a free abelian group with basis

in one-to-one correspondence with S. Then we have a surjective homomorphism

f0 : F0 → H mapping the basis elements to the corresponding generators in S.

Moreover, the kernel, say F1, of the homomorphism f0 is a free abelian group since

the subgroups of free abelian group are free abelian. Thus we have have an exact

sequence of the form 0 → F1

f1
↪−→ F0

f0−→ H → 0 where f1 : F1 ↪→ F0 is the inclusion

map. �

Corollary C.4. Let F be any free resolution of an abelian group H. Suppose G is

an abelian group. Then Hn(F ;G) = 0 for all n ≥ 2.

Proof. It follows from Lemma C.2 and Lemma C.3. �

Thus the only interesting group left is H1(F ;G). Since it is independent of F and

depends only on H and G, let us denote this group by Ext(H,G).

Proposition C.5. The functor Ext satisfies the following properties:

(a) Ext(H ⊕H ′, G) ∼= Ext(H,G)⊕ Ext(H ′, G).
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(b) Ext(H,G) = 0 if H is free.

(c) Ext(Zn, G) ∼= G/nG.

where H,H ′ and G are abelian groups.

Proof. (a) If F and F ′ are free resolutions of H and H ′ respectively, then it follows that

F⊕F ′ is a free resolution ofH⊕H ′. Since Hom(F⊕F ′, G) ∼= Hom(F,G)⊕Hom(F ′, G),

it follows that Ext(H ⊕H ′, G) ∼= Ext(H,G)⊕ Ext(H ′, G).

(b) If H is free, then 0 → H → H → 0 is a free resolution of H. Thus it follows

that Ext(H,G) = 0.

(c) Consider the free resolution

0 Z Z Zn 0n

of Zn. Since the Hom(−, G) functor is left exact, we get an exact sequence

0 Hom(Zn, G) Hom(Z, G) Hom(Z, G).n

Thus, by definition of Ext(Zn, G),

0 Hom(Zn, G) Hom(Z, G) Hom(Z, G) Ext(Zn, G) 0

G G Ext(Zn, G) 0

∼

n

∼

n

is exact. Therefore Ext(Zn, G) ∼= G/nG. �

Proposition C.6. Let G be an abelian group. Then Hom(Zn, G) ∼= ker(G
n−→ G).

Proof. Consider the exact sequence

0 Z Z Zn 0n

Since the Hom(−, G) functor is left exact, we get an exact sequence

0 Hom(Zn, G) Hom(Z, G) Hom(Z, G)

0 Hom(Zn, G) G G

∼

n

∼

n

Thus Hom(Zn, G) ∼= ker(G
n−→ G). �

Proposition C.5 helps to us compute the Ext(H,G) when H is a finitely generated

abelian group. Moreover, if H is a finitely generated abelian group, then Ext(H,Z)

is torsion part of H whereas Hom(H,Z) is the free part of H.
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Theorem C.7. (Universal Coefficient Theorem for Cohomology) Let C be a

chain complex of free abelian groups with integral homology groups Hn(C). Suppose

G is an abelian group. Then the cohomology groups Hn(C;G) of the cochain complex

Hom(C,G) are determined by the split exact sequences

0 Ext(Hn−1(C), G) Hn(C;G) Hom(Hn(C), G) 0

for all n ≥ 1.

Proof. Refer to [7, Chapter 3, Theorem 3.2]. �

Bockstein Homomorphisms

Let Cn(X) denote the free abelian group with basis elements as the set of singular

n-simplices in X. Suppose

0 G H K 0

is an exact sequence of abelian groups. Applying the covariant functor Hom(Cn(X),−),

we get

0 Hom(Cn(X), G) Hom(Cn(X), H) Hom(Cn(X), K) 0.

Since Cn(X) is free, the sequence above is exact. Thus, by zig-zag lemma, we have a

long exact sequence

. . . Hn(X;G) Hn(X;H) Hn(X;K) Hn+1(X;G) . . .
β

of cohomology groups whose boundary maps Hn(X;K)
β−→ Hn+1(X;G) are called the

Bockstein homomorphisms.

We are mainly interested in the Bockstein homomorphism associated to the short

exact sequence of coefficients

0→ Zm
m−→ Zm2

rm−→ Zm → 0.

where rm denotes the reduction mod m.

Consider the exact sequences 0 → Z m−→ Z ρ−→ Zm → 0 and 0 → Zm
m−→ Zm2

rm−→
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Zm → 0. We have a chain map between them

0 Z Z Zm 0

0 Zm Zm2 Zm 0

m

ρ

ρ

ϕ idZm

m rm

where ρ and ϕ are the natural quotient maps. This induces a commutative diagram

. . . Hn(X;Z) Hn(X;Z) Hn(X;Zm) Hn+1(X;Z) . . .

. . . Hn(X;Zm) Hn(X;Zm2) Hn(X;Zm) Hn+1(X;Zm) . . .

id∗Zm

β

ρ∗

β̃

Thus we have ρ∗ ◦ β = β̃ ◦ id∗Zm , i.e., ρ∗ ◦ β = β̃.
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