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Abstract

The dimension of the Hilbert space of many-body quantum system increases expo-

nentially with the number of particles. When there is the possibility of having the

variable number of particles at each position, then the dimension of Hilbert space

increases exponentially with the number of possible position a particle can acquire,

called as the site. Due to this reason, the exact diagonalization simulation of systems

in condensed matter physics is impossible for a large size system. For most of the

system in condensed matter physics, the analytical solution does not exist. Hence, one

must find a way to simulate these many-body interacting system. Here we discuss

a numerical algorithm which is designed to solve the many-body quantum system

with excellent accuracy. In this article, we will discuss the algorithm as well as a

result obtained by the algorithm for one-dimensional Tight-binding model and one

dimensional Heisenberg chain.





Chapter 1

Real-Space Quantum

Renormalization Group

Real Space Renormalization group is a method for the study of low lying states of

one-dimensional single particle Hamiltonian, by an iterative increase of system size to

reach a required system size. This method, like any renormalization method, relies

on physically motivated throwing out some degree of freedom to reduce the degree

of freedom, in a way that the remaining states contain essentially all the information

needed for the calculation of relevant quantities. In this method, the problem of

diagonalizing a bigger matrix reduced to diagonalization of much smaller matrices.

The method constructs the ground state of a larger system with low lying states of

smaller blocks with different boundary conditions.

The concept of renormalization method first introduced by Wilson Wilson [1975]

despite being very successful for the solution of Kondo problem, performed very poorly

for various Hamiltonian (Lee [1979], Bray und Chui [1979]). The reason for the failure

was not very well understood until one of Wilson’s student applied this renormalization

method for the study of a particle on a box and one-dimensional tight binding problem.

He also provided a new renormalization method which was mainly based on the old

one but treated the boundary conditions carefully. The new renormalization method

gives excellent result for the single particle Hamiltonian (White und Noack [1992]).

In this chapter, we will discuss why Wilson’s renormalization method did not work.

We will also discuss the new modified algorithm.

1
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1.1 The model system

The system we are studying is a single spin-less particle in a tight binding Hamiltonian.

The element of the matrix for tight binding Hamiltonian can be managed to be same

as that of the particle in a 1-dimensional box in a continuum limit.

1.1.1 Hamiltonian of the model system

Tight binding Hamiltonian H with nearest neighbour hopping is given by,

H = 2 |0〉 〈0|− |0〉 〈1|+

(
L−1∑
i=1

2 |i〉 〈i| − |i〉 〈i+ 1| − |i〉 〈i− 1|

)
+ 2 |L〉 〈L|− |L〉 〈L− 1|

(1.1)

Hamiltonian for particle in a 1-dimensional box is written in continuous position basis

as,

−~2

2m

∂2ψ(x)

∂x2
= Eψ(x) (1.2)

for solving this Hamiltonian we first assume that the 1-dimensional box of collection

of points very close to each other the distance between two points is h.

∂2ψ(x)

∂x2
= lim

h→0

2ψ(i)− ψ(i− 1)− ψ(i+ 1)

h2
(1.3)

Equation 1.2 can be solved for system of given size and given boundary conditions

using matrix methods for solving differential equation.

For example, if we want to impose free boundary on the first site ψ′(1) = 0 and fixed

ψ(N + 1) = ψ(0) = 0 then,

ψ′(1) =
ψ(1)− ψ(0)

h
= 0 (1.4)

ψ(0) = ψ(1) (1.5)
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also at first site x = 1 (Equation 1.3) reduced to,

−~2

2m

(−ψ(0) + 2ψ(1)− ψ(2))

h2
= Eψ(0) (1.6)

Assuming a unit where,
−~2

2mh2
= 1 (1.7)

Hence, Using Equation 1.5 , Equation 1.6 reduced to,

ψ(1)− ψ(2) = Eψ(1) (1.8)

Hence Schrodinger equation for a particle in 1-dimensional box for free fixed boundary

conditions in the site basis is written as,



1 −1 0 0 . . . . . .

−1 2 −1 0 . . . . . .

0 −1 2 −1 . . . . . .
...

...
...

...
. . .

0 0 0 0 −1 2





ψ(1)

ψ(2)

ψ(3)
...

ψ(N)


= E



ψ(1)

ψ(2)

ψ(3)
...

ψ(N)


(1.9)

Similarly other boundary conditions can be implemented.

1.2 Wilson’s renormalization method

The standard renormalization method for many body systems Wilson [1975] posits

that we can make ground state out of low lying eigenstates of a smaller system. The

algorithm devised by Wilson is following.

1. Start with a system of size L. The size L of the system must be small so that one

can diagonalize it’s Hamiltonian exactly to find it’s eigenvalues and eigenvectors.
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Figure 1.1: Pictorial Description of Wilson’s Algorithm

2. Choose first few (say m) low lying energy eigenstates and form a matrix made

of these low lying states as columns. Do “similarity like transformation” 1 to

change the basis of all relevant operators of this block of L site system from

the original basis to space of these chosen energy eigenstates. We call this

transformation as rotation and truncation of operators.

H̄L = O†LHLOL (1.10)

ĀL = O†LALOL (1.11)

where OL contains the m lowest eigenstates as columns

3. Add one more site to the block and write Hamiltonian and other operator for

the Larger block of size L+1 considering the interaction between block and the

site (see figure 1.1) . Total Hamiltonian of block and site can be devided into

three parts.

HL+1 = HL +Hsite +Hinteraction (1.12)

4. Repeat the procedure form the first step considering L+1 block system as new

block.

5. When you reach the system size of interest then calculate the properties of sys-

tem using the energy eigenstate of approximate Hamiltonian and other approx-

imate operators. Using these approximate operators and approximate energy

eigenstate we can calculate the approximate expectation value of the relevant

operators.

1Not exactly a similarity transformation, because similarity transformation, transforms the oper-
ator written in one complete basis to another complete basis. On the other hand, In this transfor-
mation, the states, in which operators are projected do not form a complete basis
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1.2.1 Wilson’s Renormalization method for the particle in

1-D box and Tight Binding Hamiltonian.

For a single particle in a 1-D box the size of Hilbert space increases linearly with the

number of sites. Hence, The Algorithm for a particle in the 1-D box remains the same,

but instead of adding one site we double the number of sites at each step (White und

Noack [1992]). Hamiltonian for the larger system which is made of two smaller block

of equal size can be written in matrix form as following,

H =

[
HL TRL

TLR HR

]

Where HL and HR are Hamiltonian for the left and right blocks. TLR and TRL are

matrices which include the hopping between two blocks. They are called connection

matrices. Since Hamiltonian is Hermitian TLR = T †RL

Figure 1.2: Pictorial Description of Wilson’s Renormalization Method

For example, Consider a system of four sites. We can write it’s Hamiltonian in position

basis for fixed-fixed boundary condition on each end of the block as,

Hfoursite =


2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2


We can consider it to be made of two, two site blocks Whose Hamiltonian is written

as,

Htwosite =

(
2 −1

−1 2

)
In position basis. The connection matrix is given by given by,
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TLR =

(
0 0

−1 0

)

The nonzero elements in connection Hamiltonian correspond to the hopping of particle

from the last site of the left block to the first site of right block.

To insert the truncation, we much first choose the number of states we want to keep for

the algorithm. Suppose we decided that we want to keep “m” states for the description

of a block. Then we can project all operators based on the most probable states

(least energetic states) of the block using the procedure describe in Equation 1.10 and

Equation 1.11.

Then write the Hamiltonian for the larger block as a matrix of size 2m× 2m,

H =

[
H̄L T̄LR

T̄ †LR H̄R

]

and connection matrix for the larger block as,

TLR =

[
0 0

T̄LR 0

]

We can repeat the same procedure by finding the eigenstates of new Hamiltonian and

using m most probable states, low lying energy eigenstates, to rotated and truncate the

Hamiltonian in the space of “m” most probable states and then to form Hamiltonian

and connection matrix for the new even bigger Block.

1.2.2 Failure of Wilson’s renormalization method for particle

in 1-D box and tight binding Hamiltonian

The Reason behind the failure of the renormalization method can be assigned to the

treatment of boundary and heuristic argument can be given for the poor performance

of the algorithm. The justification of this heuristic argument rests on the almost exact

result obtained by a closely related algorithm given by White und Noack [1992] which

handle boundary condition(s) in a slightly different way.
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Energy level Exact diagonalization Wilson’s Renormalization
Ground state 2.3508003329019117× 10−06 1.920736× 10−2

First excited state 9.40319580475781× 10−06 1.920909× 10−2

Second excited state 2.1157169836989935× 10−05 1.921412× 10−2

Table 1.1: Result of Wilson’s renormalization method for energy calculation

Figure 1.3: Pictorial description of mistake in
Wilson’s renormalization method.

For example, If we try to form a ground state for the 16 site system out of states of

smaller 8 site system Figure 1.3, lowest of which is shown in Figure 1.3, has nodes on

the ends. The states form out of these few (but not all) low lying state will necessarily

will have dip in the middle, whereas the ground state of bigger block has maxima in

middle. If one tries to implement other boundary condition then also due to the only

nearest neighbour hopping only fixed boundary can be used to whenever two blocks

are joined together. Hence, the assumption that the ground state of larger system can

be made out of low lying states with a given boundary condition of smaller system is

faulty.

One must note that The procedure is nothing but a change of basis if one takes

into consideration all state of the smaller block, in other word do not perform any

truncation of states. This procedure, of not throwing out any state, also gives the

same result as the exact diagonalization method.
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1.3 White and Noack’s renormalization method

White and Noack posited that the to obtain low lying states of larger block one should

use the low lying states of smaller blocks, but with different boundary conditions.

These states of the smaller blocks must be used to construct energy eigenstates of

larger blocks with various boundary conditions. To be more specific the algorithm

which uses eigenstates with a combination of fixed and free boundary condition is

discussed next.

1.3.1 Real space renormalization method

The Renormalization method algorithm provided by Steven R. White and R. M.

Noack (White und Noack [1992]) is following.

1. Start with a block of smaller size L (a block of a single site is also fine) the

dimension of Hilbert space of this block should be is easily handlable.

2. If started with the single site then form the Hamiltonian for the two site block

with different boundary conditions on each end of the block. If you have started

with more then one site block, then write it’s Hamiltonian for different boundary

conditions on each edge. There are four possibilities fixed-fixed, fixed-free, free-

fixed and free-free boundary condition.

3. Diagonalize the Hamiltonian for all four boundary conditions to find energy

eigenstates with particular boundary condition. Suppose you want to take into

consideration only “m” number of states for the further calculations then choose

“m/4” lowest energy eigenstates from each boundary condition.

4. Perform Gram Schmidt procedure to form an orthonormal set made out of these

states. Form a matrix O whose columns are these orthonormal states. Project

all four Hamiltonian with different boundary conditions and other relevant op-

erators of the block in the space of these states.

H̄L = O†LHLOL (1.13)

ĀL = O†LALOL (1.14)
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T̄LR = O†LTLROL (1.15)

5. Form Hamiltonian for larger 2L site block with different boundary condition at

each edge.

Hb,b′

2L =

[
H̄b,fixed
L T̄L

T̄ †L H̄fixed,b′

L

]
Here b and b’ specify boundary condition on edge. They can take two possible

arguments fixed and free. HL is L site Hamiltonian with specified boundary

condition. Here also there are four different possibilities of boundary conditions.

Note that fixed boundary condition is being used whenever two blocks are joined.

T2L =

[
0 0

T̄L 0

]
Where T2L is connection matrix for the larger block.

6. Now repeat the whole procedure till you reach a desired system size.

7. Then calculate the Energy eigenvalue for the fixed-fixed boundary condition at

the end of step 2.

This algorithm calculated energy for the particle in a box is almost exact. Below we

provide the table for comparison with exact diagonalization.

Energy level Exact diagonalization Real Space renormalization
Ground state 2.3508003329019× 10−06 2.3508003336985× 10−6

First excited state 9.40319580475× 10−06 9.403195807395× 10−6

Second excited state 2.1157169836989× 10−05 2.1157169843449× 10−5

Table 1.2: Result of Real space renormalization method

The fact that the combination of fixed free performed so well is not just an accident.

We can choose other combinations of boundary conditions which rest on the same

physical argument of constructing energy eigenvectors of the larger block from the

eigenvectors of the smaller block with different boundary condition. One possibility

is using the eigenvectors with periodic and anti-periodic boundary condition for the

algorithm. This method also gives the almost exact result (White und Noack [1992]).
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1.3.2 Superblock method

A most general approach is constructed given where we do not need to take care

of boundary condition deliberately, where the algorithm itself takes care of finding

appropriate boundary conditions of energy eigenstates of smaller blocks (cf. White

und Noack [1992]).

Figure 1.4: Pictorial Description of superblock method

The Algorithm can be given as follows,

1. Start with a block of small size, then choose a superblock composed of many

identical blocks with a boundary condition (say p, where p > 2).

2. Solve the Hamiltonian of the superblock to extract first m eigenvectors of the

superblock.

3. Take the projection of these states for the first two blocks.

4. Now consider the new larger block composed of two block as the new block.

Again start with step 1 to construct Hamiltonian of superblock compose of p

(p ≥ 2) number of identical block.

5. Repeat the same procedure till you reach the superblock of appropriate size.

Then calculate the energy and eigenstate of the superblock.

This algorithm has the advantage that we do not need to impose boundary conditions

deliberately. We will see later that the generalization of this algorithm will be useful

for the renormalization methods for the many-body quantum system.
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1.4 Summary and concluding remarks

Real space Renormalization group can be used to calculate the energies and other

properties of 1-dimensional, single particle quantum system with a given Hamiltonian.

We have seen that the first few eigenstates of the smaller block can be used to form

“approximate” operator for the block which can be used to “approximately” construct

the operators of a larger block. The quantities (in our case, energy) calculated with

these operators are almost exact.

However, we are interested in the calculation of quantities that describe the physical

properties of the many-particle interacting system. Although the method provided

here is for the single particle systems, one can develop renormalization algorithm for

the many-particle interacting system on the same spirit of constructing operators and

eigenstate of larger system using operators and eigenstates of the smaller systems

(White [1993]). The many-body algorithm has a close resemblance to the superblock

method discussed in this chapter. In the next chapter we will discuss the underly-

ing theoretical background for a Renormalization Method called as, Density Matrix

renormalization group, for the many-body interacting systems.





Chapter 2

Density Matrix Renormalization

Group: Theory

The motivation behind the Renormalization methods is to circumvent large matrix

diagonalization, to represent operators and calculate the properties of the system in a

given state without diagonalizing an extremely large matrix. We will see in this chap-

ter that the problem of diagonalizing a large matrix can be reduced to diagonalization

and operations on small matrix much time for calculation of a predestined quantity

of interest. This chapter is dedicated to the underlying theory of such an algorithm.

The purpose of the discussion is to provide a theoretical base for the algorithm to be

discussed in later chapters.

2.1 Concept of reduced density matrix

The problem that reduced density matrix deals with is the following: Given a state

of the universe which, contain a system S and an environment E, How to determine

the state of the system?

Case I: When universe is in a pure state

Suppose I have a Universe divided in a system S and environment E. State of the

13
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Universe is in state |ψ〉SE of S and E can be written using Schmidt decomposition as

|ψ〉SE =
∑
k

|φk〉S |k〉E (2.1)

Without loss of generality, the set
{
|k〉
}

can be chosen to be an orthonormal basis

of environment E.

If we can calculate the expectation value of all local operator of S, then I can know

everything that can be known about system S.

Suppose M is an local operator of system S. We want to calculate the expectation

value of M. which is given by 〈ψ|M ⊗ I |ψ〉

〈ψ|M ⊗ I |ψ〉 =

(∑
l

〈l| 〈φl|

)
M ⊗ I

(∑
k

|k〉 |φk〉

)
(2.2)

=
∑
k,l

〈l|k〉 〈ψl|M |φk〉 (2.3)

=
∑
l

〈ψl|M |φl〉 (2.4)

let
{
|α〉
}

and
{
|β〉
}

be complete orthonormal basis of systems Hilbert space of

system. Then above equation can be written as

=
∑
α,β,l

〈φl|α〉 〈α|M |β〉 〈β|φl〉 =
∑
α,β,l

〈β|φl〉 〈φl|α〉 〈α|M |β〉

Since
{
|α〉
}

is complete.

∑
β,l

〈β|φl〉 〈φl|M |β〉 = tr

((∑
l

|φl〉 〈φl|

)
M

)
(2.5)

The expression
∑

l |φl〉 〈φl| is reduced density matrix for system and is obtained by

taking partial trace of |ψ〉 〈ψ| with respect to environment basis. Hence Density matrix

ρA for system is obtained by

ρs = trE (|ψ〉 〈ψ|) (2.6)
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Case II : When universe is in a mixed state

In this situation, the state of the combined system of S and E can be only written as

a density matrix ρSE.

Suppose as before; we want to calculate properties of system S by calculating the

expectation value of local operators of system S. In another word the problem is

following: Given the density matrix of the Universe composed of S and E. How to

determine the expectation value of operator MS. Operating MS on system S is same

as operating MS ⊗ IE on the combined system AB. Hence, the problem is of finding

a matrix ρS such that,

tr(MSρS) = tr((MS ⊗ IE)ρSE) (2.7)

Suppose
{
|i〉
}

are orthonormal complete basis of system S and
{
|j〉
}

are complete

basis of Environment E. Then
{
|i〉 ⊗ |j〉

}
for all possible combination of i and j is a

basis for the combined system SE. Hence,

tr((MS ⊗ IE)ρSE) (2.8)

=
∑
i,j

〈i| 〈j| ((MS ⊗ IE) ρSE) |i〉 |j〉 (2.9)

=
∑
k,l

∑
i,j

〈ij| (MS ⊗ IE) |kl〉 〈kl| ρSE |ij〉 (2.10)

=
∑
ijkl

(〈i|MS |k〉 〈j|l〉)(〈kl| ρSE |ij〉) (2.11)

=
∑
ijkl

(〈i|MS |k〉 δ(j, l))(〈kl| ρSE |ij〉) since, 〈j|l〉 = δ(j, l) (2.12)

=
∑
ikj

〈i|MS |k〉 〈kj| ρSE |ij〉 (2.13)
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since
{
|k〉
}

is complete or
∑

K |k〉 〈k| = 1. Hence, the above equation can be written

as,

=
∑
i,j

〈i|MA

(∑
k

(|k〉 〈k|

)
〈j| ρAB |ij〉 (2.14)

=
∑
i

〈i|MA

(∑
j

〈j| ρAB |j〉

)
|i〉 (2.15)

The expression
∑

j 〈j| ρAB |j〉 is called reduced density matrix ρA for system A.

〈MA〉 =
∑
i

〈i|MAρA |i〉 (2.16)

For all operator MA.

The reduced density matrix of system S is obtained by taking a partial trace of,

density matrix of the universe, with environment E for both pure and mixed state of

the universe (Preskill [1998] and Nielsen und Chuang [2002]).

2.2 Heuristic theory for the DMRG algorithm

The basic idea of renormalization method is to describe the state of the system in

a small number of states (say, m) which are very small compared to the size of the

Hilbert space of the system. This chapter, we will show how to choose these m states

which contain almost all the information and discuss the possible consequences of

choosing only a few states.

Notation : In condensed matter convention we call universe composed of system S

and Environment E as a superblock (not universe).

Figure 2.1: Pictorial description of a superblock
compose of system and environment block
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Renormalization group method aims to “approximate” all the relevant operators and

states of system, environment, and Superblock in a matrix of the size which is much

smaller than the dimension of original Hilbert space of system, environment, and

superblock respectively. In a way that this smaller degree of freedom contains almost

all the relevant information. What we want is to describe the System with a few

numbers of states compared with the size of Hilbert space. In the next section, we

will discuss how we can achieve this goal, assuming we want to study the physical

properties of a pure state of Hamiltonian.

2.2.1 Expectation Value Optimization

Suppose we are assuming that the superblock is in some state |ψ〉 then we want to

specify the state of system block with only a few numbers of states. If the Schmidt

decomposition of the state is written as,

|ψ〉 =
∑
i,j

ψij |i〉 |j〉 (2.17)

where
{
|i〉
}

and
{
|j〉
}

are orthonormal basis of system and environment respectively.

Then reduced density matrix of system is written as,

ρS = trE |ψ〉 〈ψ| (2.18)

Where the states of environment is traced out.

〈i| ρS |i′〉 =
∑
j

ψijψ
∗
i′j

Suppose the dimension of Hilbert space is NS and we want to keep only MS state.

Since reduced density matrix is Hermitian we can do perform spectral decomposition

of the reduced density matrix of System. After Schmidt decomposition we can write,

ρA =
∑
α

wα |wα〉 〈wα| (2.19)

Since trace of reduced density matrix is 1. Hence,
∑

αwα = 1
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Now the exact expectation value of any operator is written as,

〈A〉 =
NS∑
α=1

wα 〈wα|A |wα〉 (2.20)

Suppose that the wα are shorted in a way that w1 ≥ w2 ≥ w3 . . . then we can approx-

imate the expectation value as follows,

〈A〉 =
MS∑
α=1

wα 〈wα|A |wα〉 (2.21)

Hence the error in expectation value is given by,

〈A〉error =
NS∑

α>MS

wα 〈wα|A |wα〉 (2.22)

If the operator Â is bounded by cA then, the the error in 〈A〉 is also bounded,

| 〈A〉approx − 〈A〉 | ≤

 NS∑
α>Ms

wα

 cA = ερcA (2.23)

Where Â is bounded by cA means,

〈φ| Â |φ〉 ≤ cA (2.24)

for all normal vector |φ〉. We observed from Equation 2.23 that the quantity in bracket

ερ is a measure of error in calculated value. If the quantity ερ is sufficiently small then

the error is marginal.

For example, suppose we want to calculate two-point correlation function
〈
SZi S

Z
j

〉
for

spin chain and ερ turns out to be say, 10−5 (cf.Table 4.1). We know that the two-point

spin correlation operator for spin half is bounded by 0.25 then we know that the error

in any two-point correlation is also bounded by 0.25× 10−5, quite insignificant!

Hence, if we want to represent system in a few number of states then

it’s extremely important that the density matrix eigenvalue wα decay fast

(Schollwöck [2005] and White [1998]).
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2.2.2 Approximate Operator representation in Density Ma-

trix Renormalization Group

Given that the system is in a given density matrix which in terms predict one of the

possible probabilistic decomposition of the system as a mixed state of some states.

Assuming that the eigenvalue of density matrix decreases very fast we can write an

approximate operator ÂApproximate for every operator Â.

This operator are also obtained using the same “similarity like equation” discussed in

chapter 1 Equation 1.13 and Equation 1.14. Suppose a Hermitian operator Â we can

do spectral decomposition of this operator.

Â =
∑
i

ai |ai〉 〈ai| (2.25)

Since
{
|wα〉

}
, α = [1, NS] are complete basis of system’s Hilbert space we can write

the Equation 2.25 as, ∑
α,β,i

ai |wα〉 〈wα|ai〉 〈ai|wβ〉 〈wβ| (2.26)

which can be rearrange as,

∑
α,β

(ai 〈wα|ai〉 〈ai|wα〉) |wα〉 〈wβ| (2.27)

This is the Exact operator in
{
|wα〉

}
, α = [1, NS] basis. However the approximate

operator is written as follows,

MS∑
α=1

MS∑
β=1

(ai 〈wα|ai〉 〈ai|wα〉) |wα〉 〈wβ| (2.28)

It follows from the orthonormalization property and sufficient small ερ that the cal-

culate expectation values are almost exact for this approximate local and bounded

operator.
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2.2.3 Optimization of wave function

Another completely different line of argument justifies the method of choosing the

states with the highest eigenvalue of reduced density operator.

Distance between two states in a vector space is defined as follows, Given two arbitrary

vectors in a vector space V the distance D(x,y) between them is a map V × V → R

such that,

D(x, y) ≥ 0 ∀x, y, 0 only for x=y (2.29)

D(x, y) = D(y, x) (2.30)

D(x, y) ≤ D(x, z) +D(y, z) (2.31)

It turns out that || |x〉 − |y〉 ||2 is a valid map for distance.

Suppose the state of is given as,

|ψ〉 =
NS∑
i=1

NE∑
j=1

ψij |i〉 |j〉 (2.32)

where
{
|i〉
}

and
{
|j〉
}

is complete basis for the system and environment respectively

and N s and NE is dimension of hilbert space of system and environment respectively.

If one tries to approximate the total wavefunction of superblock by an approximate

representation of system such that the approximate state of the superblock is written

as, ∣∣∣ψ̃〉 =
MS∑
α=1

∑
j = 1N

E

aα,j |α〉 |j〉 (2.33)

The problem is this: Given MS how to choose aα,j such that distance is minimum.

The problem can be solved using singular value decomposition. I have provided a more

pedestrian solution to the problem. Distance between |ψ〉 and
∣∣∣ψ̃〉 can be written as,

(∑
i′,j

ψ∗i′,j 〈i′| 〈j| −
∑
α′,j

a∗α′,j 〈α′| 〈j|

)(∑
ii,j

ψi,j |i〉 |j〉 −
∑
α,j

aα,j |α〉 |j〉

)
(2.34)

∑
ij

|ψij|2 −
∑
i′,j,α

ψ∗i′jaα,j 〈i′|α〉 −
∑
i,j,α′

a∗α′,jψi,j 〈α′|i〉 −
∑
α,j

|aα,j|2 (2.35)
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Since |ψ〉 is normal. Hence,
∑

ij |ψij|2 = 1 Hence, the problem reduces to minimization

of

1−
∑
i′,j,α

ψ∗i′jaα,j 〈i′|α〉 −
∑
i,j,α′

a∗α′,jψi,j 〈α′|i〉 −
∑
α,j

|aα,j|2 (2.36)

with respect to aα,j and 〈α|i〉 Taking partial derivative with aαj for minimization

condition gives,

−
∑
i

ψ∗i,j + a∗αj = 0 for all α, j (2.37)

Inserting the minimization condition in Equation 2.36 gives,

1−
∑
j,α

|aαj|2 −
∑
j,α

|aαj|2 +
∑
α,j

|aα,j|2 (2.38)

1−
∑
α,j

|aαj|2 (2.39)

From Equation 2.37 and Equation 2.39 we can write the Equation 2.39 as follows,

1−
∑
α,j

(∑
i

ψij 〈α|i〉

)(∑
i′

ψ∗i′,j 〈i′|α〉

)
(2.40)

1−
∑
i,i′,α,j

ψi,jψ
∗
i′,j 〈α|i〉 〈i′|α〉 (2.41)

Since,

〈i′| ρS |i〉 =
∑
j

ψi, jψ∗i′,j (2.42)

Hence, from Equation 2.41 and Equation 2.42 the Equation 2.41 can be written as,

1−
∑
i,i′,α

〈i| ρS |i′〉 〈α|i〉 〈i′|α〉 (2.43)

If the specral decompositon if ρs is written as
∑

wβ
wβ |wβ〉 〈wβ| then the above equa-

tion can be written as,

1−
∑
i,i′,α,β

wβ 〈i|wβ〉 〈wβ|i〉 〈α|i〉 〈i|α〉 (2.44)
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Due to completeness of
{
|i〉
}

above equation reduces to,

1−
∑
β,α

wβ 〈α|wβ〉 〈wβ|α〉 (2.45)

Now since 〈α|wβ〉 ≤ 1. Hence, it seems obvious that if we choose the |α〉 eigenvectors

with the highest MS eigenvalue of the reduced density matrix, then the distance is

minimum. In this case, the distance is given by,

1−
Ns∑

β>MS

wβ (2.46)

Which is the same as the quantity ερ; defined in Equation 2.23. Hence, we see that

the ερ is a measure of the error in eigenstate approximation.

We observed that choosing the states with the highest eigenvalue of the reduced

density matrix of system is the best way to approximate the state of system and

superblock. Also, we have proved that the quantity ερ defined in Equation 2.23 is a

measure of the error in algorithm.

2.2.4 Optimization of entropy

For a bipartite Universe composed of a system s and environment E, a pure state of

system is called entangled if the state can not written as a product state of system

S and environment E. In other words the Schmidt number of the state is more than

one.

|ψ〉SE cannot not be written as |φ〉S ⊗ |ξ〉E (2.47)

For more general discussion (Nielsen und Chuang [2002] and Preskill [1998]). There is

an important measure of the entanglement between system and environment, called as

Von Neumann Entropy Which is given by following expressionHorodecki u. a. [2009].

S =
∑
α

wα log2wα (2.48)

Where the wα are the eigenstate of reduced density matrix both system and envi-

ronment.Hence, we see that by choosing the states with highest eigenvalue we are
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retaining the entanglement entropy system and system. Many author has proved that

the success of DMRG algorithm rests on this entropy preservation technique.(Osborne

und Nielsen [2002])

2.3 Summary and concluding remarks

We have observed in the previous sections that the optimal approximation for the

system states is eigenvectors with the highest eigenvalues. Also, we have seen that

the quantity ερ, called as truncation error, in Equation 2.23 is a valid measure for

the error in calculated values using the renormalization method. Hence, the decay

of eigenvalue of the reduced density matrix of the system is essential for the method

to work. This result remains a fact to be proved by empirical observations in later

chapters (cf. Figure 4.1).

We will see in the next chapter that the Density matrix renormalization method is a

iterative method. The process of estimating keeping track of this error as we move

along the algorithm becomes a convoluted task. In general, the error observed is

an order of magnitude larger than the calculated truncation error because trunca-

tion error culminates after each iteration. In the next chapter, we will discuss the

renormalization algorithm which we were set out for.





Chapter 3

Density Matrix Renormalization

Group: Algorithms

In this chapter we will discuss the Density Matrix Renormalization Group (DMRG)

algorithm for the many body interacting system. We will discuss the empirical ob-

servation associated with the DMRG algorithm. The empirical observation will be

drawn from a particular model but the trend remain similar for any many body system

where DMRG works fine.

Density matrix renormalization group algorithms can be divided into two categories

depending upon the how system and environment behave to form the superblock.

The first is called as, Infinite System Method where system and environment increase

in size after every step and we are often interested in local properties far from the

boundary, where boundary effect is insignificant. Hence, In this method, the calcu-

lated quantities turn out to be very close to the value we obtain for the infinitely long

system.

The second is called a finite system method, where system and environment are in

such a way that the superblock is of finite size. Hence, we deliberately impose the

boundary effect. The quantity calculated in this method can be local as well as global,

for the full superblock. This method is used to calculate the finite system properties.

The Density matrix renormalization method we discuss here is for the one-dimensional

many-body system. The states of superblock used to form the reduced density matrix

25
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of the system are called target states. For calculation of ground state properties of a

non-degenerate ground state, it is sufficient to choose target state as the ground state

of the superblock. For degenerate ground state case, we need to have to uniquely pick

the state with energy and an additional quantum number for some other conserved

operator. We will discuss the algorithm for the non-degenerate ground state.

3.1 Infinite System Algorithm

We will first explain the algorithm concisely here. For convenience, we have divided

the whole algorithm into various parts. While writing computer programs for the

method, one can make divide the computer program into modules where each module

perform one part of the algorithm Garrison und Mishmash [2013] 1.

Figure 3.1: Superblock composed of system and environemt

Initiation

• Start with a system and environment of small size such that the dimension of

Hilbert space is for the superblock operator is small and Hamiltonian of the

superblock is easily diagonalizable. Write the relevant operators for the system,

environment, and Superblock. Using these operators write the Hamiltonian of

the superblock. (Cf. figure 3.1)

Diagonalization and expectation value calculation

• Diagonalize the Hamiltonian of the superblock to find the target states (for

the study of ground state properties only ground state of Hamiltonian of the

superblock is sufficient) for the superblock.

1This method of programming is considered good habit by programming community(cf. Guttag
[2016])
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• After diagonalization, we will have Target states and operators for the superblock.

Hence, We calculate the expectation value of relevant superblock operators for

the target states here.

Rotation and truncation

• Find the reduced density matrix of the system and environment for the chosen

target state. Diagonalize the reduced density matrix to find a few (Always a

chooses number, much smaller than the size of Hilbert space of system) most

probable (states with the highest eigenvalues) of the reduced density matrix.

• Project all operator of system and environment on the subspace of these most

probable states for system and environment. For system block, This is done by

constructing a matrix (T) whose column is the “m” (the number of states we

choose to keep) most probable states of the system. Then performing “similarity

like transformation2” for all operator as below,

Ā = T †AT (3.1)

For all system operator Â, We call Ā as the rotated truncated operator. Do

Similarly for the environment.

System and environment enlargement

Figure 3.2: System and environment enlargement

2not precisely similarity transformation
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• Add one site to both system and environment block. This system and site block

combine to form a new enlarged system. Similarly, the environment and a site

combine to form a new enlarged environment (cf. figure 3.2).

• Write the relevant operator for the new enlarged block and enlarged environment

using the rotated and truncated system and environment block operators. Form

the relevant operator including the Hamiltonian of new superblock composed of

new enlarged system and environment.

Iretation

• Repeat the whole procedure beginning form the diagonalization and expectation

value calculation part.

One must iterate the whole procedure many time to reach a Larger system and en-

vironment size. Then calculate the properties like per site energy, and correlation〈
SZi S

Z
j

〉
between two sites i and j from the middle of chain where the boundary effect

is minimum and negligible (cf figure3.3).

Figure 3.3: Choosing site for correlation calculation
Using Infinite algorithm

If Hamiltonian has reflection symmetry than it can be proved that the basis vectors of

the environment can be chosen in a way that all operators of environment can we taken

to be identical to the system block (White und Noack [1992],Schollwöck [2005]). This

property holds for both exact and truncated rotated operators. Using this property

reduces the time taken by the algorithm by almost half (Schollwöck [2005]).

The Infinite System Algorithm does not always give a satisfactory result, and there

is a system where this algorithm failed is failed to be implemented (cf. section II.D

Schollwöck [2005]). In such a case, there-there is another method which is slightly

more computational resource demanding but significantly more useful.
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3.2 Finite System Algorithm

As we have already mentioned earlier in this chapter that the finite system method

is used for the calculation of finite system properties. We will see in this section that

this algorithm inevitably imposes the finite system constraints. We will again divide

the whole algorithm into parts for convenience. Suppose we want to calculate the

properties of L site long system. Here also we divide the algorithm into many parts;

each part can be implemented as a module in a computer program.

Part I: Warm-up

This part of the algorithm is nothing but the Infinite system algorithm, but here we

have to store the operator after every step for all the system and environment size.

• Start with a system of system and environment of equal and small size. Perform

the infinite system algorithm until you reach a superblock of size L. At every

stem store in the hard-disk of the computer the all relevant rotated truncated

operator3 for system and environment of all possible size.

Part II: Sweep System size enlargement on the cast of environment size

shrink

• Now increase the system size by one site by decreasing the size of the environ-

ment block by one site.

• Write operators for the new enlarged system block and shrunk environment

block. For obtaining an operator for the shrunken environment block of a par-

ticular size use the stored, rotated truncated operator of the same sized environ-

ment from the warm-up part. In order to calculate an operator in the enlarged

system block, use the stored operator of system block from the warmup part

and tensor product structure of the operators.

Rotation and Truncation

3Defined earlier in Infinite System Algorithm section
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• Write the Hamiltonian for the superblock using the rotated truncated operator

of system and environment block. Diagonalise the Hamiltonian of superblock to

obtain the target states. Then find the reduced density matrix of system and

environment.

• Diagonalize the Reduced density matrix to obtain the most probable state of the

system. Form the transformation matrix as we did in Infinite system method.

Perform the “similarity like transformation.” Equation 3.1 to obtain the rotated

truncated operator for the system. Similarly for the environment. Store the new

rotated truncated operator for the enlarged system and shrunken environment.

Each block is labeled by two things first whether it is system block or environment

block. Second by its size. For each system and environment block of various length,

we have some operator which are being replaced by the new operators calculated in

the step above.

• Perform the step above until the environment shrinks to the single site.

• Then enlarge the environment on the cast of shrinkage of the system till the

system is reduced to a single size, as depicted in Figure 3.4.

• Again Increase the system size till you reach to the superblock where system

and environment have the same size.

The whole procedure explained in the “sweep” part is illustrated in figure 3.4.

The whole procedure described in part II is called as “a single sweep” At this step one

Have the superblock operator for various relevant quantities including Hamiltonian

and target states. One can calculate various properties. it is not expected that the

calculated properties will be correct just after one sweep. One must perform additional

(typically 3-4) sweep. Sometime even when the results are converging it is considered

good practice to do few more sweeps. It is also advised to check the result for various

m, number of states considered. (cf. section II.D Schollwöck [2005]).

For calculation of properties of infinite systems where infinite system method does

not work or impossible to implement (cf. Schollwöck [2005]) then we can calculate

properties of finite system and then do extrapolate the result for infinite length. In
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Figure 3.4: Pictorial Disciption of Half sweep

such situation it become important to calculate the properties of finite system with

excellent accuracy. To obtain better accuracy it is advised that we should calculate

the result for different possible m (number of state kept for calculation) then calculate

the truncation error for all m. Finally interpolate the result for zero truncation error.

It is found that the error in obtain result varies linearly with truncation error ( cf.

White und Huse [1993] , Liang [1990] and Section II.F Schollwöck [2005])

3.3 Good Quantum Numbers in Density Matrix

Renormalization Group

For some system, it’s impossible to uniquely pick a single state for the study. Then

we must look for another quantum label other than energy to uniquely pick the state.
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For Ferromagnetic Heisenberg chain the Ground state is a degenerate state. But for

the Heisenberg chain the total spin operator
∑

i S
z
i is a conserved quantity. It turns

out that we can uniquely pick the state using energy and total spin operator value.

In Density matrix renormalization group it’s possible to pick the states labeled by a

given set of quantum numbers. Using this we can further decrease the considerable

degree of freedom which makes the algorithm much more faster. We will discuss the

consequence of using this property in Section 4.6.

3.4 Targeting more then one states

When calculating properties like excitation spectra or energy gap between states. If

we are unable to use the good quantum number properties of states. Then we must

target more than one state. In such a situation one must use the density matrix of

superblock as an equally weighted sum of all the states we need to consider. In other

words, we need to construct the density matrix of superblock a density matrix with

equal probability density of targeted pure states,

ρsuperblock =
1

N

∑
i

|ψi〉 〈ψi| (3.2)

Where N is the total number of pure states targeted. In such cases, the algorithm con-

verses much slowly. The reason is that in such situation the probability (eigenvalue)

of the states is distributed and do not decay very fast.

3.5 Summary and concluding remarks

We have discussed, in detail, the Density Matrix Renormalization Group Algorithm

for the study of Infinite and finite size systems. A more detailed discussion can be

found Feiguin [2011],Peschel u. a. [1999]. Next chapter we will move on to the imple-

mentation of these algorithms for the study of a model system called as 1-dimensional

Heisenberg chain. We will learn about some empirical observation characterizing the

DMRG methods as well as we will try to calculate physical quantities related to the

Heisenberg chain.



Chapter 4

Result and Conclusion

In this chapter, we will discuss various results; some of them are about the empirical

observation for the characterization of the DMRG algorithm other results are related

to the physical properties of the model system. All of this result is acquired for a

particular model system called 1-dimensional Heisenberg Chain. We will discuss the

result obtained from the DMRG algorithm for the model system. I would like to

intimate that all the results we mention here is just a reproduction of results from

various research papers (White [1992], White [1993],White und Huse [1993]) with the

purpose of learning the algorithms.

4.1 Heisenberg Hamiltonian

Hamiltonian for Heisenberg chain is given by

H = J
∑
i

~Si · ~Si+1 (4.1)

Where i is the site index. We would like to determine the properties of this system

using the DMRG algorithm. For J ≥ 0 the system is called anti-ferromagnetic and

for J ≤ 0 the system is ferromagnetic. We have studied the system with J=1 with

open boundary condition.

33
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4.2 Result obtained for the system

Fast decay of Probability of states of reduced density matrix of system

We have seen in earlier chapter 2 ( Equation 2.23) that the very fast decay of prob-

ability of states is essential for the DMRG algorithm to work properly. Here we will

plot the result for 32 site spin half with m=50. Note the logarithmic scale.

Figure 4.1: Probabilities of different states for spin half chain are plotted.
Fast Decay of probability is conspicuous

In figure 4.2 we have plotted the sum of probability in the states vs the number of

most probable states in the x-axis. It is visible in figure 4.2 that the first few states

contain almost all the probability. A similar result is obtained for 32 sites spin-one

chain with m=50.

We have seen from the Results in this subsection that the probability distribution is

decaying fast, which was necessary for the DMRG algorithm to work properly. So we

can now move on to study other results related to the study of our model system.

On the other hand, the probability decays much slower for more than one target state.

In Figure 4.5 we plot the probability distribution for 32 site spin 1 chain. The much

slower decay concerning a single target state is evident in Figure 4.5.
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Figure 4.2: Probability contain in states is plotted

Figure 4.3: Probability of states is plotted
Fast decay of probability is again conspicuous

4.3 Energy calculation for Infinite and finite Sys-

tems

In this section, we discuss the energy calculated using the finite and infinite system

DMRG.
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.

Figure 4.4: Probability contained in the states is plotted

Figure 4.5: Probability Distribution when targeting first four state
of the spin one chain

4.3.1 Ground energy for the infinite Spin half and Spin 1

Heisenberg chain

The energy calculated here is for j=1 in Equation 4.1. We have calculated per site

energy for Spin half and Spin one Heisenberg chain. The energy calculated was ob-

tained by the change in energy from one iteration to next till the energy obtained was
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converged to eight decimal point. The target state used for the calculation was only

the ground state of the superblock.

For infinite long spin half chain the calculated per site energy is given in Table 4.1 for

various values of number of states kept (m).

m Energy Truncation error
16 −0.44307726 4.4812× 10−6

24 −0.4431308 2.6820× 10−6

32 −0.44313896 1.8903× 10−6

48 −0.4431442 3.7802× 10−7

Table 4.1: Per site Energy for infinitely long spin Half chain

For spin one chain the persite energy calculated is given below.

m Energy Truncation error
16 −1.40141925 1.0665× 10−5

24 −1.40148143 3.9377× 10−7

Table 4.2: Per site Energy for infinitely long spin 1 chain

For Spin half chain the exact energy is calculated using the Bathe-ansatz the exact per

site energy for the spin half chain is − ln 2 + 1
4

= −0.443147.... The Result calculated

using DMRG is correct to the fifth decimal point. Energy calculated using Infinite

DMRG for Spin 1 chain is also matching with the energy calculate with monte-carlo

method (Nightingale und Blöte [1986], Liang [1990],White [1992]).

4.3.2 Low lying energy calculated for the finite system

We can calculate ground state and first excited energy for the finite Spin half and spin

chain using finite DMRG algorithm. We have compared the outcome with the exact

diagonalization. In Table 4.4 we show the calculated relative error |EDMRG−Eexact
Eexact

| in

energy. From Table 4.4 it is obvious that the energy calculated using DMRG is almost

exact.

We have already seen that the energy calculated using the DMRG algorithm is excep-

tionally accurate. Also we have observed that the accuracy of result increases with

increasing m. We would like to see the effect of keeping more number of state (m) for

the calculation of energy. The Figure 4.6 provides the relative error in ground state
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L ∆Egs ∆E1stES

12 3.49× 10−15 2.19× 10−15

14 6.28× 10−14 3.19× 10−12

16 1.89× 10−12 3.51× 10−11

18 1.11× 10−11 6.52× 10−11

20 3.61× 10−11 3.06× 10−10

Table 4.3: Relative error in energy of spin half chain of length L

energy of a 32 site Spin half and Spin one chain. Exact energy is calculated using the

DMRG itself. The exact result is obtained for very large m.

Figure 4.6: Relative Error in energy
calculated by keeping different degree of freedom

In Figure 4.6 the red triangles are for spin 1, and blue stars are for spin half. We

see that the decrease in relative error in energy is approximately exponential with an

increase in m (note the “almost” linear curve and logarithmic y-axis).

4.4 Gap calculation

In the study of the quantum spin chain the gap calculation if considered as an im-

portant phenomenon. We have calculated the gap for the spin half and spin one

chain. According to Haldane prediction, we found a finite gap for the infinitely long

spin chain. We also found that the gap for the spin half chain is zero, predicted by

Bathe-ansatz.

We have seen that the gap for the infinitely long spin chain is going to zero for the

spin half chain, on the other hand, the gap for the spin one chain is approximately

0.41 for spin one chain.
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Figure 4.7: Finite gap of spin one Heisenberg chain

4.5 correlation

We have reproduced the
〈
Szi S

z
j

〉
correlation for spin one chain mentioned in White und

Huse [1993]. The correlation was calculated using the method described in Figure 3.3.

The correlation is expected to behave as,

c(l) ∝ (−1)l
(
πξ

2l

)
exp

(
− l
ξ

)
(4.2)

In Figure 4.8, we can see the exponential decrease of the correlation with length (note

the logarithmic y-axis).

4.6 Gap calculation using conserved Quantum num-

ber

We have discussed earlier 3.3 that we can use the conservation properties of Hamil-

tonian to pick states with a given sector. Since we are aware that the ground state

of spin one anti-ferromagnetic Heisenberg chain has total Spin Szi = 0 and Next state

has total spin Szi = 1. These four states are degenerate for the infinitely long chain.
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Figure 4.8:
〈
Szi S

z
j

〉
correlation using infinite system method,

l is distance between the sites i and j.

But the energy of next states lies in spin sector Szi = 2 . We can use this property to

pick ground energy with Szi = 1 and excited state with Szi = 2 and do the gap calcu-

lation once more with this method. The result obtained with this method converses

very quickly compared to another method of calculating excitation energy. Here we

provide the result obtained using the conserved quantum number method.

L GroundState ExcitedState
10 −1.275622917649155 −1.1990726099217743
12 −1.2980723851656533 −1.2404285104896537
16 −1.3250375315880778 −1.2875725273575762
20 −1.3407105424292758 −1.3134250848153275
26 −1.3549130157090992 −1.3357166808762275
40 −1.3712699301414524 −1.3599679321793097
50 −1.3773166398625138 −1.3685573347150555
150 −1.3934285790225758 −1.3906704451115068
200 −1.3954424420369702 −1.39338057146293

Table 4.4: Excitation energy calculation for the Spin one Heisenberg chain.

The time taken by the program for calculation of excitation energy using conserved

quantum number is significantly less than the time taken by the program to calcu-

late the excitation energy by targeting many states. The time taken by many state

algorithm is about a few hours, whereas the time taken by the conserved quantum

number algorithm is just a few minutes.
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Figure 4.9: Gap Plot for spin one Using Conserved Quantum Number

4.7 Summary

In this chapter we verified the fact that the almost all of the probability of the states

of system and environment is exhausted by very few states. This property make sure

that the error in calculated value is negligible.

we calculated the ground state energy of finite and infinite, spin half and spin one

Heisenberg chain. The result turns out be almost exact.

we calculated the gap for the spin half and spin one chain using two different methods.

We found the well known result of finite gap for the infinite spin one chain and zero

gap for the infinite spin half chain.

We also calculated the
〈
Szi S

Z
j

〉
correlation for spin one chain for particle and confirm

the fact that the
〈
Szi S

Z
j

〉
correlation decay exponentially with distance between sites

for site far from each other.





Appendix A

Program for the Wilson’s

Renormalization

1 import numpy as np

2 from numpy import l i n a l g as LA

3

4 m=1

5 A=np . array ( [ [ 2 , −1 ] , [ −1 , 2 ] ] )

6 c=np . array ( [ [ 0 , 0 ] , [ − 1 , 0 ] ] )

7 #de f i n i n g t ruca t i on

8 de f t r un c d i a g ona l i z e (x , y ) :

9 e , v = LA. e igh (x ) #f i nd i ng e i genva lue an e i g enve to r o f a hermit ian matrix { in
i n c e r a s i n g order o f e i g enva lue s }

10 pr in t ( ’ e ’+s t r (k )+’=’ , e ) #pr i n t i ng to know how many s i t e s we are con s i d e r i ng in each step

11 V=v . copy ( )

12 np . t ranspose (V)

13 V=V. t o l i s t ( )

14

15 i f 2∗m > 8 :

16 w=np . z e ro s ((2∗m,8 ) )

17 w=v [ 0 : 2∗m, 0 : 8 ] #f i l l i n g f i r s t 8 column ( f i s r 8 e i g enve c t o r s ) in blank matrix w

18 v=w

19 b=np . matmul (x , v ) #H{bar}=A{dagger}∗H∗A
20 B=np . matmul (v . conj ( ) .T, b) #above

21 x=np . matmul (y , v ) #T{BAR}=A{DAGGER}∗T∗A
22 C=np . matmul (v . conj ( ) .T, x ) #above

23 d=C. copy ( ) #T{dagger}
24 D=d . conj ( ) .T #above

25 return B,C,D # return H{BAR} ,T{BAR} ,T{BAR}{DAGGER}
26 k=1

27 B,C,D=t runc d i a g ona l i z e (A, c )

28 p r in t ( ’B=’ ,B, ’\n ’ , ’C=’ ,C, ’\n ’ , ’D=’ ,D)

29 m=2

30 k=2

31 whi le k<12:

32

33 pr in t ( ’ e i g enva lue ’+s t r ( k ) )

34 i f m >8:

35 m=8

36 A = np . z e ro s ((2∗m,2∗m) )

37 A[ 0 :m, 0 :m]=B

38 A[m:2∗m,m:2∗m]=B

39 A[ 0 :m,m:2∗m]=C

40 A[m:2∗m, 0 :m]=D

41

42 c=np . z e ro s ((2∗m,2∗m) )

43
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43 c [m:2∗m, 0 :m]=C

44 C=c

45

46 B,C,D=t runc d i a g ona l i z e (A, c )

47

48 m=2∗m
49 k=k+1



Appendix B

Program for the White’s Real

Space Renormalization Method

1 #!/ usr /bin /env python3

2 # −∗− coding : utf−8 −∗−
3 ”””

4 Created on Wed Apr 4 01 : 53 : 53 2018

5 @author : Visha l

6 ”””

7

8 import numpy as np

9

10 from numpy import l i n a l g as l a

11

12 H1=np . z e ro s ( ( 8 , 8 ) ) #f i x ed f i x ed

13 f o r i in range (8) :

14 f o r j in range (8) :

15 i f i==j :

16 H1 [ i ] [ i ]=2

17 i f i==j+1 or i==j −1:

18 H1 [ i ] [ j ]=−1

19 H1 [ 0 ] [ 0 ]=2

20 H1 [ 7 ] [ 7 ]=2

21 H2=np . z e ro s ( ( 8 , 8 ) ) #f i x ed f r e e e

22 f o r i in range (8) :

23 f o r j in range (8) :

24 i f i==j :

25 H2 [ i ] [ i ]=2

26 i f i==j+1 or i==j −1:

27 H2 [ i ] [ j ]=−1

28 H2 [ 0 ] [ 0 ]=2

29 H2 [ 7 ] [ 7 ]=1

30 H3=np . z e ro s ( ( 8 , 8 ) ) #f r e e f i x ed

31 f o r i in range (8) :

32 f o r j in range (8) :

33 i f i==j :

34 H3 [ i ] [ i ]=2

35 i f i==j+1 or i==j −1:

36 H3 [ i ] [ j ]=−1

37 H3 [ 0 ] [ 0 ]=1

38 H3 [ 7 ] [ 7 ]=2

39 H4=np . z e ro s ( ( 8 , 8 ) ) #f r e e f r e e

40 f o r i in range (8) :

41 f o r j in range (8) :

42 i f i==j :

45
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43 H4 [ i ] [ i ]=2

44 i f i==j+1 or i==j −1:

45 H4 [ i ] [ j ]=−1

46 H4 [ 0 ] [ 0 ]=1

47 H4 [ 7 ] [ 7 ]=1

48

49

50

51

52 U=np . z e ro s ( ( 8 , 8 ) )

53 U[7] [0 ]=−1

54

55

56 #de f i n i n g scmidt decmposit ion w i l l be used l a t e r

57 de f Gram schmidt (x ) :

58 l=len (x [ : , 0 ] )

59 f o r i in range (8) :

60 y=np . z e ro s ( ( l , 1 ) )

61 y=x [ : , i ] . copy ( )

62 i f i ==0:

63 x [ : , 0 ]= np . mult ip ly (1/( np . l i n a l g . norm(y ) ) , y )

64 i f i >0:

65 f o r j in range ( i ) :

66 y=np . subt rac t (y , np . mult ip ly (np . matmul (x [ : , j ] . conj ( ) .T, x [ : , i ] ) , x [ : , j ] ) )

67 x [ : , i ]=np . mult ip ly (1/( np . l i n a l g . norm(y ) ) , y )

68

69 return (x )

70

71 k=8

72 i=3

73 m=8

74 whi le k<=2048:

75

76 w=np . z e ro s ( (m, 8 ) )

77 e , v1=la . e igh (H1) #f o r 2048 block p r i n t i ng energy ca l cu l a t ed by f r e e f i x ed t runcat ion

78 i f k==2048:

79 pr in t ( ” energy=” , e )

80 w[ 0 :m,0 : 2 ]= v1 [ 0 :m, 0 : 2 ] #de f ing blank matrix w and then f i l i n g i t s column by e i g envec to r

obtained from var ious hamiltonian obtained by var ions boundary cond i t i on

81 e , v2=la . e igh (H2)

82 w[ 0 :m,2 : 4 ]= v2 [ 0 :m, 0 : 2 ]

83 e , v3=la . e igh (H3)

84 w[ 0 :m,4 : 6 ]= v3 [ 0 :m, 0 : 2 ]

85 e , v4=la . e igh (H4)

86 w[ 0 :m,6 : 8 ]= v4 [ 0 :m, 0 : 2 ]

87

88 y=w. copy ( )

89 q=Gram schmidt (y ) #gram scmidt proce s s f o r o r thogona l i z a t i on o f columns o f matr ice

90

91 s=q . copy ( )

92 t=q . copy ( )

93 u=q . copy ( )

94 v=q . copy ( )

95

96

97 #changing the ba s i s to colums o f q

98 a1=np . matmul (H1 , s )

99 A1=np . matmul ( s . conj ( ) .T, a1 )

100 a2=np . matmul (H2 , t )

101 A2=np . matmul ( t . conj ( ) .T, a2 )

102 a3=np . matmul (H3 , u)

103 A3=np . matmul (u . conj ( ) .T, a3 )

104 a4=np . matmul (H4 , v )

105 A4=np . matmul (v . conj ( ) .T, a4 )

106

107

108 t=np . matmul (U, q )

109 T=np . matmul (q . conj ( ) .T, t )

110 Copy=T. copy ( )

111 Y=Copy . conj ( ) .T

112
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113 #de f i n i n g hamiltonian f o r b igge r block c on s i s t i n g o f two s im i l e r block

114

115 B1=np . z e ro s ( (16 , 16 ) )

116 B1 [ 0 : 8 , 0 : 8 ]=A1 [ 0 : 8 , 0 : 8 ]

117 B1 [ 8 : 1 6 , 8 : 1 6 ]=A1 [ 0 : 8 , 0 : 8 ]

118 B1 [ 0 : 8 , 8 : 1 6 ]=T[ 0 : 8 , 0 : 8 ]

119 B1 [ 8 : 1 6 , 0 : 8 ]=Y[ 0 : 8 , 0 : 8 ]

120

121 B2=np . z e ro s ( (16 , 16 ) )

122 B2 [ 0 : 8 , 0 : 8 ]=A1 [ 0 : 8 , 0 : 8 ]

123 B2 [ 8 : 1 6 , 8 : 1 6 ]=A2 [ 0 : 8 , 0 : 8 ]

124 B2 [ 0 : 8 , 8 : 1 6 ]=T[ 0 : 8 , 0 : 8 ]

125 B2 [ 8 : 1 6 , 0 : 8 ]=Y[ 0 : 8 , 0 : 8 ]

126

127 B3=np . z e ro s ( (16 , 16 ) )

128 B3 [ 0 : 8 , 0 : 8 ]=A3 [ 0 : 8 , 0 : 8 ]

129 B3 [ 8 : 1 6 , 8 : 1 6 ]=A1 [ 0 : 8 , 0 : 8 ]

130 B3 [ 0 : 8 , 8 : 1 6 ]=T[ 0 : 8 , 0 : 8 ]

131 B3 [ 8 : 1 6 , 0 : 8 ]=Y[ 0 : 8 , 0 : 8 ]

132

133 B4=np . z e ro s ( (16 , 16 ) )

134 B4 [ 0 : 8 , 0 : 8 ]=A3 [ 0 : 8 , 0 : 8 ]

135 B4 [ 8 : 1 6 , 8 : 1 6 ]=A2 [ 0 : 8 , 0 : 8 ]

136 B4 [ 0 : 8 , 8 : 1 6 ]=T[ 0 : 8 , 0 : 8 ]

137 B4 [ 8 : 1 6 , 0 : 8 ]=Y[ 0 : 8 , 0 : 8 ]

138

139 H1=B1

140 H2=B2

141 H3=B3

142 H4=B4

143

144 #de f i n i n g connect ing term of hami l to ian f o r b igge r block

145 t=np . z e ro s ( (16 , 16 ) )

146 t [ 8 : 1 6 , 0 : 8 ]=T[ 0 : 8 , 0 : 8 ]

147 U=t

148

149 m=16

150 k=2∗k
151 i=i+1





Appendix C

Program for the Infinite system

Algorithm for spin Half Heisenberg

Chain

1

2 import numpy as np

3 from numpy import l i n a l g as l a

4 from sc ipy . spar se import kron , i d e n t i t y

5 from sc ipy . spar se . l i n a l g import e i g sh

6 #from sc ipy . spar s e import c s r mat r i x

7

8 sp1=np . z e ro s ( ( 2 , 2 ) )

9 sp1 [ 0 , 1 ]=1 .0

10 sm1=sp1 . t ranspose ( ) . conjugate ( )

11

12 sz1=np . z e ro s ( ( 2 , 2 ) )

13 sz1 [ 0 , 0 ]=0 .5

14 sz1 [1 ,1]=−0.5

15 H1=np . z e ro s ( ( 2 , 2 ) )

16 I=i d en t i t y (2)

17 m=50

18

19

20 twositeH=np . kron ( sz1 , sz1 )+(np . kron ( sp1 , sm1)+np . kron (sm1 , sp1 ) ) ∗(1/2)
21 f ou r s i t eH=kron ( kron ( twositeH , I ) , I )+kron ( I , kron ( I , twositeH ) )+kron ( I , kron ( twositeH , I ) )

22

23 e , v=e ig sh ( fours i t eH , k=1)

24

25 p s i g s=v [ : , 0 ]

26

27 de f reduceddens i tymatr ix ( ps i , dimns ) :

28 reduceddens i tymatr ix=np . z e ro s ( ( dimns , dimns ) )

29 f o r i in range ( dimns ) :

30 f o r j in range ( dimns ) :

31 a=0

32 f o r k in range ( dimns ) :

33 b=np . conjugate ( p s i [ dimns∗ j+k ] ) ∗ ps i [ dimns∗ i+k ]

34 a=a+b

35 reduceddens i tymatr ix [ i , j ]=a

36 return reduceddens i tymatr ix

37

38

49
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39 dim=4

40 rho=reduceddens i tymatr ix ( p s i g s , dim)

41 k , v=la . e igh ( rho )

42 #pr in t ( ’ e= ’ , ’\n ’ , k )

43 #pr in t ( ’ v= ’ , ’\n ’ , v )

44 t rans fo rmat ion matr ix=v

45 #pr in t ( kron ( I , sm1) . shape )

46 #pr in t ( e , ’\n ’ , v )

47

48 H rot t run=trans fo rmat ion matr ix . conjugate ( ) . t ranspose ( ) . dot ( twositeH . dot ( t rans fo rmat ion matr ix ) )

49 s z r o t t r u n=trans fo rmat ion matr ix . conjugate ( ) . t ranspose ( ) . dot ( kron ( I , sz1 ) . dot (

t rans fo rmat ion matr ix ) )

50 sp r o t t r un=trans fo rmat ion matr ix . conjugate ( ) . t ranspose ( ) . dot ( kron ( I , sp1 ) . dot (

t rans fo rmat ion matr ix ) )

51 sm rot t run=trans fo rmat ion matr ix . conjugate ( ) . t ranspose ( ) . dot ( kron ( I , sm1) . dot (

t rans fo rmat ion matr ix ) )

52

53 b a s i s s i z e=4

54

55 de f H2( s z r o t t run , sp ro t t run , sm rot trun , sz1 , sp1 , sm1) :

56 return kron ( s z r o t t run , sz1 ) +(1/2) ∗( kron ( sp ro t t run , sm1)+kron ( sm rot trun , sp1 ) )

57

58 de f en l a r g e b l o ck ( b a s i s s i z e , H rot trun , s z r o t t run , sp ro t t run , sm rot trun , sz1 , sp1 , sm1) :

59 sz=kron ( i d en t i t y (min (m, b a s i s s i z e ) ) , sz1 )

60 sp=kron ( i d en t i t y (min (m, b a s i s s i z e ) ) , sp1 )

61 sm=kron ( i d e n t i t y (min (m, b a s i s s i z e ) ) , sm1)

62 H l e f t e n l a r g e=kron ( H rot trun , I )+H2( s z r o t t run , sp ro t t run , sm rot trun , sz1 , sp1 , sm1)

63 return sz , sp , sm , H l e f t e n l a r g e

64 en l a r g e b l o ck ( b a s i s s i z e , H rot trun , s z r o t t run , sp ro t t run , sm rot trun , sz1 , sp1 , sm1)

65

66 #def superb lock Hami l ton ian ( sz , sp , sm , H l e f t e n l a r g e , b a s i s s i z e ) :

67 # superb lock Hami l ton ian=kron ( H l e f t e n l a r g e , i d e n t i t y (2∗ b a s i s s i z e ) )+kron ( i d en t i t y (2∗ b a s i s s i z e )

, H l e f t e n l a r g e )+H2( sz , sp , sm , sz , sp , sm)

68 # return superb lock Hami l ton ian

69

70 de f r o t a t e and t runca t e ( sz , sp , sm , H l e f t e n l a r g e , t rans fo rmat ion matr ix ) :

71 s z r o t t r u n=trans fo rmat ion matr ix . conjugate ( ) . t ranspose ( ) . dot ( sz . dot ( t rans fo rmat ion matr ix ) )

72 sp r o t t r un=trans fo rmat ion matr ix . conjugate ( ) . t ranspose ( ) . dot ( sp . dot ( t rans fo rmat ion matr ix ) )

73 sm rot t run=trans fo rmat ion matr ix . conjugate ( ) . t ranspose ( ) . dot (sm . dot ( t rans fo rmat ion matr ix ) )

74 H rot t run=trans fo rmat ion matr ix . conjugate ( ) . t ranspose ( ) . dot ( H l e f t e n l a r g e . dot (

t rans fo rmat ion matr ix ) )

75 return s z r o t t run , sp ro t t run , sm rot trun , H rot t run

76 L=2

77

78 whi le L<=32:

79 energy =[0 ,0 ]

80 energy [0 ]= e

81 sz , sp , sm , H l e f t e n l a r g e=en l a r g e b l o ck ( b a s i s s i z e , H rot trun , s z r o t t run , sp ro t t run ,

sm rot trun , sz1 , sp1 , sm1)

82 superb lock Hami l ton ian=kron ( H l e f t e n l a r g e , i d e n t i t y (min(2∗m,2∗ b a s i s s i z e ) ) )+\
83 kron ( i d en t i t y (min(2∗m,2∗ b a s i s s i z e ) ) , H l e f t e n l a r g e )+H2( sz , sp , sm , sz , sp , sm)

84

85

86

87 e , v=e ig sh ( superblock Hamiltonian , k=1)

88 q=2∗L+2

89 energy [1 ]= e

90

91 p s i g s=v

92 rho=reduceddens i tymatr ix ( p s i g s , min(2∗m, b a s i s s i z e ∗2) )
93

94

95 g , v=la . e igh ( rho )

96 pr in t ( g )

97 i f 2∗ b a s i s s i z e<=m:

98 w=v

99 e l s e :

100

101 w=v [ : , 2 ∗min(m, b a s i s s i z e )−m:2∗min(m, b a s i s s i z e ) ]

102 pr in t ( ( energy [1]− energy [ 0 ] ) /2 , 1−sum(g [2∗min(m, b a s i s s i z e )−m:2∗min(m, b a s i s s i z e ) ] ) ,m)

103 t rans fo rmat ion matr ix=w



Appendix C Program for the Infinite system Algorithm for spin Half Heisenberg
Chain 51

104

105 s z r o t t run , sp ro t t run , sm rot trun , H rot t run=ro ta t e and t runca t e ( sz , sp , sm , H l e f t e n l a r g e ,

t rans fo rmat ion matr ix )

106 b a s i s s i z e=2∗ b a s i s s i z e

107 L=L+1
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