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Abstract

Markov Chain Monte Carlo (MCMC) Methods are used extensively in various problems
across physics, engineering and applied mathematics. In this thesis, we study the con-
vergence results as well as the two standard but very important Markov Chain Monte
Carlo algorithms, namely, the Gibbs Sampler and the Metropolis algorithm. The theory of
Markov chain convergence is vast and a lot of work has been done recently on mixing times
of Markov chains. A large part of thesis focuses on the conditions required for uniform
as well as geometric ergodicity of Markov chains and thus providing quantitative bounds
to the convergence of the Markov chain to stationarity. A brief idea of how MCMC algo-
rithms work is also presented. Finally, we consider an application of MCMC to covariance
realization problem for a discrete random process.
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Introduction

Markov Chain Monte Carlo methods find applications across applied sciences. It finds use
in optimization, when there are difficult numerical integrals with complicated boundary
conditions, and mostly in places where we need to sample from a probability distribution.
Markov Chain Monte Carlo methods are used to address problems of the following kind:
Consider a density function πu such that 0 <

∫
Ω
πu < ∞ where Ω ⊂ R. We get a probability

measure on Ω from this density:

π(A) =

∫
A πu(x)dx∫
Ω
πu(x)dx

Suppose we have a function f : Ω −→ R and we want to compute its expectation with
respect to π(.). That is, we want to estimate :

π( f ) = Eπ[ f (X)] =

∫
Ω

f (x)πu(x)dx∫
Ω
πu(x)dx

There might be cases where Ω is of very high dimensional and π(.) fairly complicated.
These complications make the estimation of the integral computationally difficult and inef-
ficient. This is where Markov chain Monte Carlo comes into the picture. The Monte Carlo
solution to this problem is to simulate independently identically generated random variables
Y1,Y2, ...YN ∼ π(.) and then, estimate π( f ) as follows :

π̂( f ) =
1
N

N∑
i=1

f (Yi)

The idea behind the Markov Chain Monte Carlo algorithm is to generate a Markov chain
that can be easily simulated and is such that it converges, reasonably fast, to a stationary
distribution that matches the distribution from which we are trying to obtain our samples.
That is, we want theMarkov chain to have transition probabilities P(x, dy) for states x, y ∈ Ω
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satisfying ∫
x∈Ω

π(dx)P(x, dy) = π(dy)

We run the Markov chain long enough so that the distribution of Xn gets very close to the
stationary distribution and then, take Y1 = Xn. Similarly, to obtain Y2,Y3, . . . and so on, we
do multiple runs of the Markov chain. We can then estimate the expectation of the given
function as described above.

It usually takes more than a few runs before the Markov chain gets reasonably close to the
stationary distribution. Hence, the usual practice is to ignore the first few values obtained
via the Markov chain. This is commonly known as the "burning period" of a Markov chain.
Note that for an irreducible, aperiodic Markov chain on a finite state space, there is a unique
stationary distribution and the convergence does not depend on the state we are starting
in. Often, instead of creating or starting a Markov chain afresh, the tail of an already
existing Markov chain is used for estimation purposes. That is, we now have the estimates
as 1

N−B
∑N

i=B+1 f (Xi), where B, large enough, is the burning period.

In applying the Markov chain Monte Carlo algorithms to a covariance realization problem,
we also briefly illustrate the effectiveness (in terms of speed of convergence) of the adaptive
Markov chain Monte Carlo methods. While we do not provide any explicit theoretical
bounds on the convergence rates, it is observed that when the state space is very large, using
adaptive methods are very useful.

The thesis is organized as follows : The first chapter concentrates on the preliminaries
of Markov chain theory that are required in the subsequent chapters. Basic definitions
and concepts are discussed in this chapter. A few examples are also discussed for better
understanding of the concepts. The next chapter gives a brief overview of two most
popular Markov chain Monte Carlo algorithms : the Metropolis-Hastings algorithm and
the Gibbs sampler algorithm. It provides the basic idea and an example to understand the
Metropolis algorithm, which is used in the application part of the thesis, better. Chapter
3 is where we discuss the convergence results for Markov chains. It states the Asymptotic
convergence theorem, an elaborate proof for it and also reproduces the main result of the
paper [GORJSR01]. The main results and proofs are from [GORJSR01] and have been
included for the sake of completeness. Some proofs of results in Chapter 3 are omitted in
the interest of space. These proofs can be found in [GORJSR01]. Finally, in the last chapter,
we talk about an application of the MCMC algorithm. We illustrate how MCMC algorithm
can be used to efficiently obtain a probability distribution of a finite discrete random vector
given its variance-covariance matrix. We also demonstrate the effectiveness of the adaptive
Markov chain Monte Carlo algorithms.
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Chapter 1

Preliminaries

In this chapter, we discuss some basic definitions associated with Markov chains and
properties of transition matrices. We start by defining a Markov chain on a state space Ω.
Definition 1. Markov chain
A discrete time Markov chain (Xi)i≥0 is a sequence of random variables Xi where each Xi

takes its value from the state space Ω associated to the Markov chain, where, given that we
are at time n, the next state Xn+1 depends only on the current state Xn. The memory of how
we got to Xn doesn’t matter.
That is,

P(Xn+1 |X0, X1, ..., Xn) = P(Xn+1 |Xn) where X0, X1, ..., Xn, Xn+1 ∈ Ω

Figure 1.1 is an example of a Markov chain on a state space of cardinality 5. Note that at a
given time, the next move depends only on the present state.

Definition 2. State space
A state space associated to a Markov chain is the set of states that the Markov chain is
allowed to take values from.

In the Markov chain shown below, the associated state space is
Ω = {1, 2, 3, 4, 5}.

Definition 3. Transition probability
Transition probability is the probability that our Markov chain goes from a state i to a state
j where i, j ∈ Ω, is given by

pi j = P(Xt+1 = j |Xt = i); i, j ∈ Ω

3



Figure 1.1: A Markov chain.

Consider the example of the Markov chain (Xi)i≥0 on the state space
Ω = {1, 2, 3, 4, 5} discussed above. Here, Xi ∈ Ω for each i with the transition proba-
bilities is shown in the figure (Figure 1.1).
Each arrow points from one state (say Xi) to the next state (say Xi+1) and has an associated
probability with it, which is the transition probability of going from Xi to Xi+1. that is,
pXi,Xi+1 = P(Xi+1 |Xi).

Definition 4. k-th step Transition probability
k-th step transition probability is the probability that the Markov chain will reach state j

from state i in exactly k steps. The expression for this is given by

p(k)i j = P(Xt+k = j |Xt = i); i, j ∈ Ω

4



Definition 5. Transition probability matrix
The transition probability matrix is essentially the collection of all possible transition
probabilities of the Markov chain.

P = (pi j)

Similarly, the transition probability matrix for the k-step transition is given by Pk = (p(k)i j ).

The following is the transition probability matrix associated to the Markov chain mentioned
in the example shown in Figure 1.1 above.

P =



0 1/3 1/3 0 1/3
0 0 1 0 0
0 0 0 1/2 1/2

1/2 1/2 0 0 0
0 0 0 1 0


The 3-step transition probability of this Markov chain will be given by P3.

Definition 6. Stationary distribution
Stationary distribution of a Markov chain is a probability distribution (π) that remains
constant as the Markov chain runs. Thus, it satisfies the equation

π = πP

Consider the following example.

Figure 1.2: A Markov chain and its corresponding transition probability matrix is shown
above.
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P =



1/2 1/2 0 0 0
0 1/2 0 0 1/2

1/4 0 1/4 0 1/2
0 0 0 1 0

1/4 0 3/4 0 0
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Note that the probability distribution π = [1/5 1/5 1/5 1/5 1/5] is stationary with respect
to this Markov chain as it satisfies the equation π = πP.
However, we can see that the Markov chain does not converge to π. If the Markov chain
has initial distribution X0 ∈ {1, 2, 3, 5}, then, as time progresses, Xn will be restricted to
Xn ∈ {1, 2, 3, 5}. That is, Xn will never visit the state 4 and hence the probability for visiting
that state will be 0.
Hence, we see that the Markov chain will not converge to the given stationary distribution
π. This occurs due to reducible property of the Markov chain. Irreduciblity of a Markov
chain is defined as follows:

Definition 7. Irreducible Markov chain
A Markov chain where there is a positive probability of reaching any state from any other
state is called an irreducible Markov chain. That is, for every i, j ∈ Ω there exists a k such
that

p(k)i j > 0

However, irreducibility is not enough to ensure the convergence to a stationary distribution.
Given below is an example of an irreducible Markov chain which does not converge to any
stationary distribution. This happens due to the periodicity of the chain.

In Figure1.3, we see that the Markov chain is irreducible since one can go from any state
to any other state in finitely many steps. However, starting from a particular state, we can
come back to the exact same state only in steps of multiples of 5. That is, starting from
Xn = i, where i ∈ Ω, we have that for Xm = i, m will be of the form n + 5 j; j ∈ N. In such a
case, we can see that the Markov chain would not converge to any stationary distribution.

Figure 1.3: Figure depicting a Markov chain with period 5. Its corresponding transition
probability matrix is shown below.
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P =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


Definition 8. Periodicity of a Markov chain
An irreducible Markov chain is called periodic if there exists a state in the state space such
that the greatest common divisor of all possible number of steps required to start from that
state and come back to the same state is greater than 1.
A Markov chain is said to have period d where

d = gcd{k > 0 : p(k)i j > 0}

The Markov chain is said to be aperiodic if d = 1.

The above example in Figure1.3 depicts a Markov chain with period 5 and Figure1.4 shows
an aperiodic Markov chain.

Figure 1.4: An aperiodic Markov chain and its corresponding transition probability matrix
is given below.

P =



0 1 0 0 0
1/2 0 1/2 0 0
0 0 1/2 1/2 0
0 0 1/2 0 1/2
0 0 0 0 1


Definition 9. Aperiodicity of a Markov chain [GORJSR01]
A Markov chain with stationary distribution π(.) is aperiodic if there do not exist d ≥ 2 and
disjoint subsets Ω1,Ω2, ...,Ωd ⊆ Ω with P(x,Ωi+1) = 1 for all x ∈ Ωi where 1 ≤ i ≤ d − 1,
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and P(x,Ω1) = 1 for all x ∈ Ωd such that π(Ω1) > 0 for all i.
Otherwise, the chain is periodic with period d, with periodic decompositionΩ1,Ω2, ...,Ωd .

Definition 10. Reversibility of a Markov chain
A Markov chain is called reversible if the following holds

π(i)pi j = π( j)p ji

Consider the following example of a Markov chain.

Figure 1.5: A reversible Markov chain

The transition probability matrix of the following Markov chain looks like :

P =


1/12 1/2 1/4 1/6
1/2 1/12 1/6 1/4
1/4 1/6 1/12 1/2
1/6 1/4 1/2 1/12


Now, consider the uniform stationary distribution on this chain. That is,
π = [1/4, 1/4, 1/4, 1/4]. Clearly, we can see that the Markov chain is reversible with
respect to this stationary distribution as it satisfies

π(i)pi j = π( j)p ji ∀ 1 ≤ i, j ≤ 4.

Remark 1.0.1. Throughout this thesis, ‖.‖ refers to the standard Euclidean norm.
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Chapter 2

Markov chain Monte Carlo Methods

2.1 Gibbs Sampler

Consider the problem of generating samples from a very large set according to a given
probability distribution. Several sampling techniques are known to be useful. We refer
the interested reader to [NM02]. In this chapter, we focus on Markov chain Monte Carlo
(MCMC) method. The central idea is to construct a reversible Markov chain that converges
to the required distribution. Constructing a suitable Markov chain depends on the problem
at hand. We discuss two important algorithms to sample using MCMC.

We first discuss the Gibbs Sampler method [IY12], [GORJSR01]. Suppose that we have a
d-dimensional density πu(.) on Ω, an open subset of Rd and we write x = (x1, x2, ..., xd).
The Gibbs Sampler works as follows:

• Start with x(0) = x for some x ∈ Rd .

• For the iterations i = 1, 2, ... from now on; a single iteration is as shown below :

• Begin iteration:

– x(i)1 ∼ p(X1 = x1 |X2 = x(i−1)
2 , X3 = x(i−1)

3 , ...Xd = x(i−1)
d )

– x(i)2 ∼ p(X2 = x2 |X1 = x(i)1 , X3 = x(i−1)
3 , ...Xd = x(i−1)

d )

.

.

.

– x(i)d ∼ p(Xd = xd |X1 = x(i)1 , X2 = x(i)2 , ...Xd−1 = x(i)d−1)

• End iteration

11



Pj = p(Xd = xd |X1 = x(i)1 , .., X j−1 = x(i)j−1, .., X j+1 = x(i−1)
j+1 ), .., Xd−1 = x(i−1)

d−1 ), then,

The deterministic scan Gibbs sampler is:

P = P1P2...Pd

The random scan Gibbs sampler is:

P =
1
d

d∑
i=1

Pi

The output of Gibbs sampler will result in a zig-zag pattern because of the construction of
its updation.

2.2 TheMetropolis-Hastings method ofMCMC algorithm

As we saw, the idea behind MCMC algorithm is the construction of a Markov chain with a
given stationary distribution π. The key notion for this construction is, reversibility. That
is, π(i)pi, j = π( j)p j,i.
Proposition 2.2.1. [GORJSR01] If a Markov chain is reversible with respect to π(.), then
π(.) is stationary for the Markov chain.

Proof:A stationary distribution π satisfies the equation π = πP. Thus, we just need to show
that the equation of stationary distribution is satisfied.∑

i∈Ω

π(i)pi j =
∑
i∈Ω

π( j)p ji

= π( j)
∑
i∈Ω

p ji

= π( j) (Since
∑
i∈Ω

p ji = 1).

Hence, from here, we can see that it suffices to create a Markov chain that can be easily run

on a computer and that is reversible.

The Metropolis-Hastings algorithm

Consider a stationary distribution π(.) having a density πu which is possibly unnormal-
ized. Now, consider another Markov chain Q(., .) called the proposal Markov chain whose
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transitions also have some density.

The Metropolis-Hastings algorithm:
First, choose some initial distribution X0. Then, given Xn, we generate a proposal Yn+1 from
the proposal chainQ(Xn, .) having a probability distribution q(., .). We define the acceptance
probability as : α(x, y) = min

[
1, π(y)q(y,x)π(x)q(x,y)

]
(set α(x, y) = 1 when π(x)q(x, y) = 0). Now,

either accept the proposal with probability α(Xn,Yn+1) and set Xn+1 = Yn+1 or reject the
proposal with probability 1 − α(Xn,Yn+1) by setting Xn+1 = Xn.
According to the Metropolis-Hastings algorithm, the The Markov chain thus obtained is
reversible.

Proof. We will show that the Markov chain obtained by the Metropolis-Hastings method is
reversible. For showing this, we need to show that
π(x)P(x, y) = π(y)P(y, x).

π(x)P(x, y) = π(x)q(x, y)α(x, y)

= π(x)q(x, y)min
[
1,
π(y)q(y, x)
π(x)q(x, y)

]
= min [π(x)q(x, y), π(y)q(y, x)]

= π(y)q(y, x)min
[
π(x)q(x, y)
π(y)q(y, x)

, 1
]

= π(y)q(y, x)α(y, x)

= π(y)P(y, x).

�

The following example depicts how theMetropolis algorithmworks. Consider the following
proposal chain on Ω = {1, 2, 3, 4, 5}:

qi,i+1 =
1
2
= qi.i−1 ∀ 2 ≤ i ≤ 4.

q1,2 = 1 q5,4 = 1

Let π(.) be the Poisson distributionwith parameter λ = 7.3. Then, the transition probabilities
of the Metropolis chain derived from the proposal chain is given by

pi j =


qi jmin

{
1, πjπi

}
if j , i,

1 −
∑

k:k,i qikmin
{
1, πkπi

}
if j = i.

An extension of this example is given in [NM02].
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Chapter 3

Convergence of Markov chains

Disclaimer : This chapter heavily relies on [GORJSR01]
The convergence of a Markov refers to the probability distribution of the Markov chain
converging to the desired stationary distribution. That is, we see after how many runs does
the probability distribution converge to the stationary distribution. We want to look at

‖Pn(x, .) − π(.)‖.

Total variation distance is one such way to measure the convergence.

Definition 11. Total variation distance[GORJSR01]
Total variation distance between two probability measures µa, µb is defined as

δ(µa, µb) = ‖µa(.) − µb(.)‖ = supA |µa(A) − µb(A)|.

Now, how fast theMarkov chain will converge will depend on how large n is. As n increases,
we get closer to the stationary distribution. We need to know how large n should be, to get
a fair enough convergence.
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Proposition 3.0.1. [GORJSR01] The following holds true
(a) ‖µ1(.) − µ2(.)‖ = sup f :Ω−→[0,1]

��∫ f dµ1 −
∫

f dµ2
��

(b) ‖µ1(.) − µ2(.)‖ =
1

b−a sup f :Ω−→[a,b]
��∫ f dµ1 −

∫
f dµ2

�� for any a < b.
In particular, ‖µ1(.) − µ2(.)‖ =

1
2 sup f :Ω−→[−1,1]

��∫ f dµ1 −
∫

f dµ2
��

(c) If π(.) is a stationary for a Markov Chain kernel P, then, ‖Pn(x, .) − π(.)‖ is non-
decreasing in n, That is, ‖Pn(x, .) − π(.)‖ ≤ ‖Pn−1(x, .) − π(.)‖ for n ∈ N.
(d)More generally, letting (µiP)(A) =

∫
µi(dx)P(x, A), we always have

‖(µ1P)(.) − (µ2P)(.)‖ ≤ ‖µ1(.) − µ2(.)‖

(e)Let t(n) = 2supx∈Ω‖Pn(x, .)−π(.)‖ where π(.) is stationary. Then t is sub-multiplicative.
That is, t(m + n) ≤ t(m)t(n) for m, n ∈ N.
(f)If µ(.) and ν(.) have densities g and h respectively with respect to some σ-finite measure
ρ(.) and M = max(g, h) and m = min(g, h), then, ‖µ(.) − ν(.)‖ = 1

2

∫
Ω
(M − m)dρ =

1 −
∫
Ω

mdρ.
(g)Given probability measures µ(.) and ν(.), there are jointly defined random variables X

and Y such that X ∼ µ(.) and Y ∼ ν(.), and P[X = Y ] = 1 − ‖µ(.) − ν(.)‖.

Proof. The proof follows majorly from [GORJSR01] with explanations.
(a)Let A = {x ∈ Ω : µ1(x) ≥ µ2(x) and A = Ω\A.
Now, note that, over 0 ≤ f ≤ 1, the expression

��∫ f dµ1 −
∫

f dµ2
�� is maximized when

(i) f = 1 on A and f = 0 on A or it could be maximized when
(ii) f = 1 on A and f = 0 on A

In case (i) we have

sup f :Ω−→[0,1]

����∫
Ω

f dµ1 −

∫
Ω

f dµ2

����
= sup f :Ω−→[0,1]

����∫
A

f dµ1 −

∫
A

f dµ2 +

∫
A

f dµ1 −

∫
A

f dµ2

����
=

����∫
A

dµ1 −

∫
A

dµ2 +

∫
A

0 ∗ dµ1 −

∫
A

0 ∗ dµ2

����
= |µ1(A) − µ2(A)|

Note that ����∫
A

dµ1 −

∫
A

dµ2

���� = ����{1 − ∫
A

dµ1} − {1 −
∫

A
dµ2}

����
=

����−∫
A

dµ1 +

∫
A

dµ2}

����
=

���µ1(A)µ2(A)
���
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Similarly, for case (ii) we have

sup f :Ω−→[0,1]

����∫
Ω

f dµ1 −

∫
Ω

f dµ2

����
= sup f :Ω−→[0,1]

����∫
A

f dµ1 −

∫
A

f dµ2 +

∫
A

f dµ1 −

∫
A

f dµ2

����
=

����∫
A

0 ∗ dµ1 −

∫
A

0 ∗ dµ2 +

∫
A

dµ1 −

∫
A

dµ2

����
=

���µ1(A) − µ2(A)
���

= |µ1(A) − µ2(A)|

Thus, we arrive at the following result.

sup f :Ω−→[0,1]

����∫
Ω

f dµ1 −

∫
Ω

f dµ2

���� = |µ1(A) − µ2(A)| = |µ1(A) − µ2(A)|.

Hence, we get that

‖µ1(.) − µ2(.)‖ = supx∈Ω |µ1(.) − µ2(.)|

= sup f :Ω−→[0,1]

����∫ f dµ1 −

∫
f dµ2

���� .
(b)This has a similar proof as that of part (a)
We again have two cases :
(i) f = b on A and f = a on A or it could be maximized when
(ii) f = b on A and f = a on A

Case (i) :

sup f :Ω−→[a,b]

����∫
Ω

f dµ1 −

∫
Ω

f dµ2

����
= sup f :Ω−→[0,1]

����∫
A

f dµ1 −

∫
A

f dµ2 +

∫
A

f dµ1 −

∫
A

f dµ2

����
=

����∫
A

b ∗ dµ1 −

∫
A

b ∗ dµ2 +

∫
A

a ∗ dµ1 −

∫
A

a ∗ dµ2

����
=

���b(µ1(A) − µ2(A)) + a(µ1(A) − µ2(A))
���

= |b(µ1(A) − µ2(A)) + a(1 − µ1(A)) − a(1 − µ2(A))|

= |(b − a)| |(µ1(A) − µ2(A))|

= |(b − a)| |(µ1(A) − µ2(A))|

The last equality comes from a similar calculation as to that done in part (a).
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Case (ii) :

sup f :Ω−→[a,b]

����∫
Ω

f dµ1 −

∫
Ω

f dµ2

����
= sup f :Ω−→[0,1]

����∫
A

f dµ1 −

∫
A

f dµ2 +

∫
A

f dµ1 −

∫
A

f dµ2

����
=

����∫
A

a ∗ dµ1 −

∫
A

a ∗ dµ2 +

∫
A

b ∗ dµ1 −

∫
A

b ∗ dµ2

����
=

���a(µ1(A) − µ2(A)) + b(µ1(A) − µ2(A))
���

=

���a(1 − µ1(A)) − (1 − µ2(A)) + b(µ1(A) − µ2(A))
���

= |(a − b)| |(µ1(A) − µ2(A))|

= |(b − a)| |(µ1(A) − µ2(A))|

Hence we have ‖µ1(.) − µ2(.)‖ =
1
(b−a) sup f :Ω−→[a,b]

��∫ f dµ1 −
∫

f dµ2
��.

(c)We need to prove : ‖Pn(x, .) − π(.)‖ ≤ ‖Pn−1(x, .) − π(.)‖ for n ∈ N.

|Pn(x, A) − π(A)| =
����∫

z∈Ω
Pn−1(x, dy)P(y, A) −

∫
z∈Ω

π(dy)P(y, A)
����

=

����∫
z∈Ω

Pn−1(x, dy) f (y) −
∫

z∈Ω
π(dy) f (y)

����
≤ ‖Pn−1(x, .) − π(.)‖

f (y) = P(y, A) and hence f : Ω −→ [0, 1] and the last inequality follows from (a) as :����∫
z∈Ω

Pn−1(x, dy) f (y) −
∫

z∈Ω
π(dy) f (y)

����
≤ sup f :Ω−→[0,1]

����∫
z∈Ω

Pn−1(x, dy) f (y) −
∫

z∈Ω
π(dy) f (y)

����
= ‖Pn−1(x, .) − π(.)‖ ( f rom(a)).

Hence we have that |Pn(x, A) − π(A)| ≤ ‖Pn−1(x, .) − π(.)‖ for all A, which implies,

‖Pn(x, .) − π(.)‖ = supA |Pn(x, A) − π(A)|

≤ ‖Pn−1(x, .) − π(.)‖.
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(d)Given that (µiP)(A) =
∫
µi(dx)P(x, A). Then, by definition,

‖(µ1P)(A) − (µ2P)(A)‖ =
����∫

x∈Ω
µ1(dx)P(x, A) −

∫
x∈Ω

µ2(dx)P(x, A)
����

=

����∫
x∈Ω

µ1(dx) f (x) −
∫

x∈Ω
µ2(dx) f (x)

����
≤ sup f :Ω−→[0,1]

����∫
x∈Ω

µ1(dx) f (x) −
∫

x∈Ω
µ2(dx) f (x)

����
= ‖µ1(A) − µ2(A)‖

The last equality comes from part (a). We can also get the result by directly applying part
(c) to the LHS.

(e)Given t(n) = 2supx∈Ω‖Pn(x, .) − π(.)‖. We need to show that
t(m + n) ≤ t(m)t(n) where t(m + n) = 2supx∈Ω‖Pm+n(x, .) − π(.)‖.
Let P̂(x, .) = Pn(x, .) − π(.) and Q̂(x, .) = Pm(x, .) − π(.). Also, let f be a function such that
f : Ω −→ [0, 1]. Then,

(P̂Q̂ f )(x)

=

∫
z∈Ω

f (z)
∫
y∈Ω

[Pn(x, dy) − π(dy)][Pm(y, dz) − π(dz)]

=

∫
z∈Ω

f (z)
∫
y∈Ω

[Pn(x, dy)Pm(y, dz) − π(dy)Pm(y, dz)

− Pn(x, dy)π(dz) + π(dy)π(dz)]

=

∫
z∈Ω

f (z)[Pn+m(x, dz) − π(dz) − π(dz) + π(dz)]

=

∫
z∈Ω

f (z)[Pn+m(x, dz) − π(dz)]

Since
∫
y∈Ω

π(dy)Pm(y, dz) = π(dz) by the property of stationary distribution. Also,∫
y∈Ω

π(dy) = 1 and
∫
y∈Ω

Pn(x, dy) = 1.
Now, let g(x) = (Q̂ f )(x) =

∫
y∈Ω

Q̂(x, dy) f (y). Then,

g∗ = supx∈Ω |g(x)| = supx∈Ω

����∫
y∈Ω

Q̂(x, dy) f (y)
����

≤ supx∈Ωsup f :Ω−→[0,1]

����∫
y∈Ω

(Pm(x, dy) − π(dy) f (y)
����

= supx∈Ω‖Pm(x, .) − π(.)‖ =
1
2

t(m)

The last equality comes from the definition of t(m).
Now, if g∗ = 0, then by definition, supx∈Ω |g(x)| = 0 which in turn implies supx∈Ω(Q̂ f )(x) =
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0. Thus we have, (P̂Q̂ f )(x) = 0. So, taking g∗ , 0, we have that

2supx∈Ω |(P̂Q̂ f )(x)| = 2supx∈Ω |P̂(g)(x)|

= 2g∗supx∈Ω |P̂(g/g∗)(x)|

≤ t(m)supx∈Ω |P̂(g/g∗)(x)|.

Since g∗ ≤ 1
2 t(m).

Now, note that since −1 ≤ Q̂(x, .) ≤ 1 and 0 ≤ f ≤ 1
we have −1 ≤ g(x) ≤ 1 as g(x) = (Q̂ f )(x). Also, since g∗ = supx∈Ω |g(x)|,

−1 ≤
g(x)
g∗(x)

≤ 1.

It follows from part (b) that,

P̂(g/g∗)(x) ≤ sup g
g∗ :Ω−→[−1,1] |(P

n(x, .) − π(.))(
g

g∗
)|

= 2‖Pn(x, .) − π(.)‖

Thus, the above equation becomes,

supx∈Ω |P̂(g/g∗)(x)| ≤ 2supx∈Ω‖Pn(x, .) − π(.)‖ = t(n).

Recall that we got

(P̂Q̂ f )(x) =
∫

z∈Ω
f (z)[Pn+m(x, dz) − π(dz)].

Taking the supremum of this over x will give us the same result as taking the supremum
over f . Hence, taking supremum of the above equation and applying (b) to this, we get that

supx∈Ω |(P̂Q̂ f )(x)| = sup f :Ω−→[0,1] |(P̂Q̂ f )(x)| = ‖Pm+n(x, .) − π(.)‖

Similarly,

supx∈Ω |P̂(g/g∗)(x)| = sup g
g∗

:Ω−→[−1,1] |P̂(g/g∗)(x)|

= 2‖Pn(x, .) − π(.)‖
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Hence,

2supx∈Ω‖Pm+n(x, .) − π(.)‖ = 2supx∈Ωsupx∈Ω |(P̂Q̂ f )(x)|

= 2supx∈Ωg
∗supx∈Ω |P̂(g/g∗)(x)|

≤ 2supx∈Ω
1
2

t(m){supx∈Ω |P̂(g/g∗)(x)|}

= t(m)supx∈Ω2‖Pn(x, .) − π(.)‖

= t(m)t(n).

(f)Given that µ(.) has density g and ν(.) has density h. That is, we have g = dµ
dρ h = dν

dρ and
also, M = max(g, h) and m = min(g, h). Consider a function f : Ω −→ [−1, 1]. Let A be
the subset of Ω in which µ(.) ≥ ν(.) Now, applying (b), we get

‖µ(.) − ν(.)‖ =
1
2

sup f :Ω−→[−1,1]

����∫
Ω

f dµ −
∫
Ω

f dν
����

=
1
2

sup f :Ω−→[−1,1]

����∫
Ω

f gdρ −
∫
Ω

f hdρ
����

=
1
2

sup f :Ω−→[−1,1]

����∫
A

f gdρ −
∫

A
f hdρ +

∫
A

f gdρ −
∫

A
f hdρ

����
=

1
2

����∫
A
(g − h)dρ +

∫
A
(h − g)dρ

����
=

1
2

����∫
A
(M − m)dρ +

∫
A
(M − m)dρ

����
=

1
2

∫
Ω

(M − m)dρ

For the next inequality, note that M + m = g + h. Hence,∫
Ω

(M + m)dρ =
∫
Ω

(g + h)dρ = 2

Therefore, we can write

1
2

∫
Ω

(M − m)dρ = 1 −
1
2

(
2 −

∫
Ω

(M − m)dρ
)

= 1 −
1
2

(∫
Ω

(M + m)dρ −
∫
Ω

(M − m)dρ
)

= 1 −
1
2

∫
Ω

2mdρ = 1 −
∫
Ω

mdρ

(g)For proving this part, let us first look at the following lemma.(Lemma 2 from [CD11]).
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Lemma 3.0.2. (Coupling Lemma) Let µ and ν be two probability measures over a finite set
Ω. Then, for any coupling ω of (µ, ν), if the random variable (X,Y ) is distributed according
to ω, then P(X , Y ) ≥ ‖µ − ν‖.

Proof. Fix any coupling ω of µ and ν and let X and Y be distributed with respect to this
coupling. Then, for any z ∈ Ω,

µ(z) = P(X = z) = P(X = z,Y = X) + P(X = z,Y , X)

≤ P(Y = z) + P(X = z,Y , X)

= ν(z) + P(X = z,Y , X).

Hence, µ(z)−ν(z) ≤ P(X = z,Y , X). Similarly, we have that ν(z)−µ(z) ≤ P(Y = z, X , Y )

ν(z) = P(Y = z) = P(Y = z, X = Y ) + P(Y = z, X , Y )

≤ P(X = z) + P(Y = z, X , Y )

= µ(z) + P(Y = z, X , Y ).

Therefore, we can write

2‖µ − ν‖ =
∑
z∈Ω

|µ(z) − ν(z)|

=
∑
z∈Ω;

µ(z)≥ν(z)

µ(z) − ν(z) +
∑
z∈Ω;

µ(z)<ν(z)

ν(z) − µ(z)

≤
∑
z∈Ω;

µ(z)≥ν(z)

P(X = z,Y , X) +
∑
z∈Ω;

µ(z)<ν(z)

P(Y = z, X , Y )

≤ P(Y , X) + P(Y , X)

Thus, we get P(X , Y ) ≥ ‖µ − ν‖. �

Now, note that part (g) of our proposition now follows directly from the above lemma.

P(X = Y ) = 1 − P(X , Y )

≤ 1 − ‖µ − ν‖

�

Lemma 3.0.3. For two probability measures µ and ν,when µ and ν are two distribution
functions corresponding to two probability mass functions p = {px}x∈Ω and q = {qx}x∈Ω,
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so that for every measurable A such that A ⊆ Ω, the total variation distance is given by
dTV (µ, ν) = maxA |µ(A) − ν(A)| and we have

µ(A) =
∑
x∈A

px ν(A) =
∑
x∈A

qx,

Then,
dTV (µ, ν) =

1
2

∑
x∈Ω

|px − qx |.

Proof. We know

dTV (µ, ν) = ‖µ(.) − ν(.)‖ = maxA |µ(A) − ν(A)|.

Let A = {x ∈ Ω : p(x) ≥ q(x)}. Then,

dTV (µ, ν) = maxA |µ(A) − ν(A)| = maxA

�����∑
x∈A

px −
∑
x∈A

qx

�����
= maxA

�����∑
x∈A

px − qx

�����
= maxA

∑
x∈A

|px − qx | (Since p(x) ≥ q(x) ∀ x ∈ A) (�)

Similarly, note that

dTV (µ, ν) = maxA |µ(A) − ν(A)|

= maxA |(1 − µ(AC)) − (1 − ν(AC))| = maxA |µ(AC) − ν(AC)|

= maxA

����� ∑
x∈AC

px −
∑

x∈AC

qx

�����
= maxA

����� ∑
x∈AC

px − qx

�����
= maxA

∑
x∈AC

|px − qx | (Since p(x) ≤ q(x) ∀ x ∈ AC) (♦)

Summing (�) and (♦), we get,

2dTV (µ, ν) = maxA

∑
x∈A

|px − qx | + maxA

∑
x∈AC

|px − qx |

=
∑
x∈Ω

|px − qx |

�

23



A similar Lemma to this is :
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Lemma3.0.4. When F andG are the distribution functions corresponding to two continuous
densities f = { f (x)}x∈R and g = {g(x)}x∈R, so that for every measurable A ⊆ R,

µ(A) =
∫

x∈A
f (x)dx ν(A) =

∫
x∈A

g(x)dx,

Then,
dTV (µ, ν) =

1
2

∫ ∞

−∞

| f (x) − g(x)|dx.

Proof. The proof follows along the lines of Lemma 3.0.3. stated above. �

Theorem 3.0.5. Asymptotic Convergence Theorem [GORJSR01]
If a Markov Chain on a state space with countably generated σ-algebra is φ-irreducible
and aperiodic and has a stationary distribution π(.), then for π-a.e. x ∈ Ω,

limn−→∞‖Pn(x, .) − π(.)‖ = 0

In particular, limn−→∞Pn(x, A) = π(A) for all measurable A ⊆ Ω

Corollary 3.0.5.1. [GORJSR01] If a Markov chain is φ-irreducible with period d ≥ 2, and
has a stationary distribution π(.), then for π-a.e. x ∈ Ω

limn−→∞‖
1
d

n+d−1∑
i=n

Pi(x, .) − π(.)‖ = 0

Proof. Note that the chain is φ- irreducible. Let the chain have the periodic decomposition
Ω1,Ω2, ...,Ωd ⊆ Ω and let P′ be the d-step chain Pd with its state space restricted to the set
Ω1.
Then, P′ is φ- irreducible and aperiodic onΩ1, with stationary distribution π′which satisfies

π(.) =
1
d

d−1∑
j=0
(π′P j)(.)

From Proposition 3.0.1(c), it is enough to prove the corollary taking n = md with m −→ ∞

and, without loss of generality, we assume that x ∈ Ω1.
Note that using Proposition 3.0.1(d), we can write

‖Pmd+ j(x, .) − π′P j(.)‖ ≤ ‖Pmd(x, .) − π′(.)‖ for j ∈ N
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Then, 1
d

md+d−1∑
i=md

Pi(x, .) − π(.)


=

1
d

d−1∑
j=0

Pmd+ j(x, .) − π(.)

 (take i = md + j)

≤

1
d

d−1∑
j=0

Pmd+ j(x, .) −
1
d

d−1∑
j=0
(π′P j)(.)


≤

1
d

d−1∑
j=0

[
Pmd+ j(x, .) − (π′P j)(.)

] (Triangle Inequality)

≤
1
d

d−1∑
j=0

[
Pmd(x, .) − π′(.)

] (using Proposition 3.0.1(d) )

Now, applying Theorem 3.0.5 to P′ will give us

lim
m−→∞

‖Pmd(x, .) − π′(.)‖ = 0 for π − a.e. x ∈ Ω1

Thus, giving us the desired result :

lim
m−→∞

‖Pn(x, .) − π(.)‖ = 0

�

3.1 Rate of Convergence

We have so far looked at the convergence of the Markov chain to stationary. Uniform
ergodicity is a way to qualitatively measure the rate of convergence.

3.1.1 Uniform Ergodicity

Definition 12. [GORJSR01] A Markov chain with stationary distrbution π(.) is uniformly
ergodic if

‖Pn(x, .) − π(.)‖ ≤ Mρn n = 1, 2, 3, ...

for some ρ < 1and M < ∞

An equivalent form of uniform ergodicity is discussed below in the proposition.
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Proposition 3.1.1. [GORJSR01] A Markov chain with stationary distribution π(.) is uni-
formly ergodic if and only if

supx∈Ω‖Pn(x, .) − π(.)‖ <
1
2

for some n ∈ N

Proof. According to the definition of uniform ergodicity, if the chain is uniformly ergodic,
then,

limn−→∞supx∈Ω‖Pn(x, .) − π(.)‖ ≤ limn−→∞Mρn

= 0 (since ρ < 1)

Thus, we will directly get that

supx∈Ω‖Pn(x, .) − π(.)‖ <
1
2

Now, to prove the converse, consider

supx∈Ω‖Pn(x, .) − π(.)‖ <
1
2

for some n ∈ N

Let d(n) = 2supx∈Ω‖Pn(x, .) − π(.)‖. Then,

1
2

d(n) = supx∈Ω‖Pn(x, .) − π(.)‖ <
1
2

(Initial assumption)

⇒ d(n) <
1
4

Thus, d(n) ≡ β < 1.
Then, using Proposition 3.0.1 (e), we have that d(n) is submultiplicative such that for all
j ∈ N,

d( jn) ≤ (d(n)) j = β j

Hence, using Proposition 3.0.1(c),

‖Pm(x, .) − π(.)‖ ≤ ‖Pb
m
n c(x, .) − π(.)‖

≤
1
2

d(bm/ncn)

≤ βb
m
n c

≤
1
β
(β

1
n )

m

Hence, the chain is uniformly ergodic with M = 1
β and ρ = β

1
n . �
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Remark 3.1.2. [GORJSR01] The above proposition will still continue to hold even if we
replace the 1

2 in the equation with any 0 < δ < 1
2 . However, it will cease to hold once δ >

1
2 .

To understand this, consider the following example

Example: [GORJSR01] Note that if δ > 1
2 , say δ =

2
3 then we will have supx∈Ω‖Pn(x, .) −

π(.)‖ < 2
3 then, we have

d(n) = 2supx∈Ω‖Pn(x, .) − π(.)‖

< 2 ∗
2
3
=

4
3
≮ 1

Thus, we cannot use Proposition 3.0.1 (e) to prove that the minorisation condition holds.
For further conditions that ensures uniform ergodicity, we shall first look at a new definition

Definition 13. [GORJSR01] A subset C ⊆ Ω is small (or (n0, ε, ν)- small) if ∃ a positive
integer n0, ε > 0, and a probability measure ν(.) onΩ such that the following minoristation
condition holds.

Pno(x, .) ≥ εν(.) x ∈ C

That is; Pno(x, A) ≥ εν(A) ∀ x ∈ C and all measurable A ⊆ Ω. The minorisation condition
essentially points out that there is always an ε-sized component in common between all of
the no-step transitions.
Consider Ω to be countable and take

εno ≡
∑
y∈Ω

in fx∈CPno(x, {y}) > 0

then, C is (no, εno, ν)- small where

ν({y}) =
1
(εno)

in fx∈CPno(x, {y})

=
in fx∈CPno(x, {y})∑

y∈Ω in fx∈CPno(x, {y}) > 0

Now, suppose the transition probabilities have probability densities with respect to some
measure, say η(.), that is,

Pno(x, dy) = pno(x, y)η(dy)

then, we can write our εno as

εno =

∫
y∈Ω

η(dy)in fx∈Ωpno(x, y)

Theorem 3.1.3. [GORJSR01] Consider a Markov chain with invariant probability distri-
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bution π(.). Suppose the minorisation condition is satisfied for some n0 ∈ N and ε > 0 and
the probability measure ν(.), in the special case C = Ω (i.e., the entire state space is small).
Then the chain is uniform ergodic, and in fact | |Pn(x, .) − π(.)| | ≤ (1− ε)bn/n0c for all x ∈ Ω,
where brc is the greatest integer not exceeding r .

In case of a discrete subspace, we will have

‖Pn(x, .) − π(.)‖ ≤ (1 − εno)
bn/noc

where
εno ≡

∑
y∈Ω

in fx∈CPno(x, {y})

Observe that we get a qualitative bound for the convergence to stationary from Theorem
3.1.3. That is;

‖Pn(x, .) − π(.)‖ ≤ (1 − ε)bn/noc

Thus, once we are able to lay our hands on an no such that the above holds, then we can
further, find an n∗ such that

‖Pn∗(x, .) − π(.)‖ ≤ 0.01

Then, we can say that n∗ iterations of the Markov chain is sufficient for convergence.

3.1.2 Geometric Ergodicity

Definition 14. [GORJSR01] A Markov chain with stationary distribution π(.) is geometri-
cally ergodic if

‖Pn(x, .) − π(.)‖ ≤ M(x)ρn, n = 1, 2, 3, ..

for some ρ < 1 and M(x) < ∞ for π-a.e.x ∈ χ

Remark 3.1.4. [GORJSR01] Note that if Ω is finite, then all irreducible and aperiodic
Markov chains are geometrically as well as uniformly ergodic.
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Definition 15. [GORJSR01] GivenMarkov chain transition probabilities P on a state space
Ω, and a measurable function f :−→ R, define the function P f :−→ R such that (P f )(x) is
the conditional expected value of f (Ωn+1), given that Ωn = x. That is,

(P f )(x) =
∫
y∈Ω

f (y)P(x, dy)

Definition 16. [GORJSR01] A Markov chain satisfies a drift condition if ∃ a small set C of
invariant measure, constants 0 < λ < 1 and b < ∞, and a function V : Ω −→ [1,∞] such
that

PV ≤ λV + b1c.

That is, such that ∫
Ω

P(x, dy)V(y) ≤ λV(x) + b1c(x) ∀x ∈ Ω

Theorem 3.1.5. [GORJSR01] Consider a φ− irreducible, aperiodic Markov chain with
stationary distribution π(.). Suppose the minorisation condition is satisfied for some C ⊂ Ω

and ε > 0 and probability measure ν(.). Suppose further that the drift condition is satisfied
for some constants 0 < λ < 1 and b < ∞, and a function V : Ω → [0,∞] with V(x) < ∞

for at least one (and hence for π − a.e.) x ∈ Ω. Then the chain is geometrically ergodic.

Example [GORJSR01] Is Metropolis algorithm on R geometrically ergodic?.
Consider Ω = R+ and πu(x) = e−x . Take the proposal distribution to be the symmetric
distribution about x. That is, q(x, y) = q(|y − x |) with y ∈ [x − a, x + a] as the support.
Now, taking the drift function as V(x) = er x for some r > 0. For x ≥ a, we get PV(x) as

PV(x) =
∫ x

x−a
V(y)q(x, y)dy +

∫ x+a

x
V(y)q(x, y)dy

πu(y)

πu(x)

+ V(x)
∫ x+a

x
q(x, y)dy

{
1 −

πu(y)

πu(x)

}
(∗)

Proof : Let α = min
{
1, πu(y)πu(x)

}
. We can then write

PV(x) =
∫ x+a

x−a
V(y)q(x, y)αdy + V(x)

∫ x+a

x−a
q(x, y)(1 − α)dy (**)

Note that:

(a) for y ∈ [x − a, x], πu(y)πu(x)
= e−y

e−x = ex−y where x ≥ y. This implies that ex−y ≥ 1.

Hence, α = min
{
1, πu(y)πu(x)

}
= 1 and 1 − α = 0
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(b) for y ∈ [x, x + a], πu(y)πu(x)
= e−y

e−x = ex−y where x ≤ y. This implies that ex−y ≤ 1.

Hence, α = min
{
1, πu(y)πu(x)

}
=

πu(y)
πu(x)

and 1 − α = 1 − πu(y)
πu(x)

Putting in the respective values of α and (1 − α) for the intervals y ∈ [x − a, x] and
y ∈ [x, x + a] in (**), we get the desired result.
Note that q is symmetric. We have q(x, y) = q(|y − x |). Then, observe that q(x, x + a) =

q(|x + a − x |) = q(x − a − x) = q(x, x − a). Also, consider ε < a. Then, x − ε > x − a and
x + ε < x + a and we get q(x, x + ε) = q(|x + ε − x |) = q(x − ε − x) = q(x, x − ε) hence
verifying that q is symmetric.
Now, consider

∫ x
x−a V(t)q(x, t)dt and here, do variable substitution by putting t = 2x − y.

Then, we get that dt = −dy, the lower limit as x + a, the upper limit as x, and now, looking
at q(x, t), we see that

q(x, t) = q(x, 2x − y) = q(|x − (2x − y)|)

= q(|y − x |) = q(x, y)

Thus, we can write equation (*) as follows

PV(x) =
∫ x+a

x

[
V(2x − z) + V(z)

πu(z)
πu(x)

+ V(x)
(
1 −

πu(z)
πu(x)

)]
q(x, z)dz

Let I(x, z) = V(2x − z) + V(z) πu(z)πu(x)
+ V(x)

(
1 − πu(z)

πu(x)

)
. Putting in values V(x) = er x and

πu(x) = e−x in I(x, z) and simplifying, we get

I(x, z) = er(2x−z) +
e−zerz

e−x + er x
(
1 −

e−z

e−x

)
= exe(r−1)z + e2r xe−rz + er x (1 − ex−z)

=
er x

er x eryex−z + ecxer(x−z) + er x(1 − ex−z)

= er x (erue−u + e−ru + 1 − e−u) (take u = z − x)

= er x
(
e(r−1)u + e−ru + 1 − e−u

)
= er x

(
2 −

(
1 + e(r−1)u

)
(1 − e−ru)

)
For r < 1, note that 0 < 1−r < 1. Hence, for any k > 0, we will have e−(1−r)k < 1, e−ru < 1
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and hence 1 − e−ru > 0. Thus, we can write I(x, y) as

I(x, y) = er x
(
2 −

(
1 + e(r−1)u

)
(1 − e−ru)

)
= 2V(x)

(
1 −

1
2

(
1 + e−(1−r)u

)
(1 − e−ru)

)
≤ 2V(x)(1 − ε) (for some positive constant ε)

Thus, ∀x > a,

PV(x) ≤
∫ x+a

x
2V(x)(1 − ε)q(x, y)dy = (1 − ε)V(x)

since q(x, .) is a probability measure and also, q is symmetric about x.
Thus, we have PV(x) ≤ (1− ε)V(x). Then, for x ∈ [0, a]; V(0) = 1 and V(a) = eca. Clearly,
V(a) > V(0) and so, PV(x) ≤ (1 − ε)V(a). Hence, PV(x) is bounded on [0, a].
Now, to show that [0, a] is small.

P(x, dy) ≥ q(x, y) dy min
{
1,
πu(y)

πu(x)

}
≥ ε dy min

{
1,
πu(y)

K

}
where ε = in fx∈C,y∈Ωq(x, y) > 0 ∀ y ∈ Ω and K =

∫
y∈Ω

πu(y)dy

Hence we get that C = [0, a] is small.
This shows that the drift condition holds and thus, the algorithm is geometrically ergodic
by Theorem 3.1.5.

3.2 Quantitative Convergence Rates

We are looking for a quantitative ways to bound the convergence rates of the Markov chains
to the stationary distribution. That is we need something like

‖Pn(x, .) − π(.)‖ ≤ g(x, n)

We will prove a result for the bound of convergence rates and we require the bivariate drift
condition in order to prove it
Definition 17. [GORJSR01] The Bivariate drift condition that we require is of the form

P̄h(x, y) ≤
h(x, y)
α

(x, y) < C × C
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for some funtion h : Ω ×Ω −→ [1,∞) and some α > 1, where

P̄h(x, y) ≡
∫
Ω

∫
Ω

h(z,w)P(x, dz)P(y, dw)

P̄ is essentially running two independent copies of the chain.

Proposition 3.2.1. [GORJSR01] Suppose the univariate drift condition is satisfied for some
V : Ω→ [1,∞],C ⊆ Ω, λ < 1, and b < ∞. Let d = infx∈Cc V(x). Then if d > [b/(1−λ)]−1,
then the bivariate drift condition is satisfied for the same C, with h(x, y) = 1

2 [V(x) + V(y)]

and α−1 = λ + b/(d + 1) < 1.

Proof. Refer to [GORJSR01]. �

Now, we state a few assumptions to state the main result. Let

Bn0 = max
{
1, αn0(1 − ε)supC×C R̄h

}
where, for (x, y) < C × C

R̄h(x, y) =
∫
Ω

∫
Ω

(1 − ε)−2 (Pn0(x, dz) − εν(dz)) (Pn0(y, dw) − εν(dw))

We now state the main result:
Theorem 3.2.2. [GORJSR01] Consider a Markov chain on a state space Ω, having transi-
tion kernel P. Suppose ther is C ⊆ Ω, h : Ω × Ω → [1,∞), a probability distribution ν(.)
on Ω, α > 1, n0 ∈ N, and ε > 0, such that the minorisation condition

Pn0(x, .) ≥ εν(.) x ∈ C

and the bivariate drift condition

P̄h(x, y) ≤ h(x, y)/α (x, y) < C × C

hold. Define Bn0 as
Bn0 = max

{
1, αn0(1 − ε)supC×C R̄h

}
where, for (x, y) < C ×C . Then for any joint initial distribution L(X0, X′0), and any integer
1 ≤ j ≤ k if {Xn} and {X′n} are two copies of the Markov chain started in the joint initial
distribution L(X0, X′0), then

‖L(Xk) − L(X′k)‖TV ≤ (1 − ε) j + α−k(Bn0)
j−1E[h(X0, X′0)]

33



In particular, by choosing j = brkc for sufficiently small r > 0, we obtain an explicit,
quantitative convergence bound which goes to 0 exponentially quickly as k −→ ∞

3.3 Coupling Construction for proving Quantitative Con-
vergence Rates and Proofs

The Coupling Inequality[GORJSR01] The main idea of coupling is: consider two random
variables, say Y and Z , who has joint distribution on some space Ω. Then, we can write the
laws for these variables L(Y ) and L(Z) for their respective probability distributions and we
can calculate the total variation distance between them as :

‖L(Y ) − L(Z)‖ = supA⊆Ω |P(Y ∈ A) − P(Z ∈ A)|

= supA⊆Ω |P(Y ∈ A,Y = Z) + P(Y ∈ A,Y , Z)

− P(Z ∈ A, Z = Y ) − P(Z ∈ A, Z , Y )|

= supA⊆Ω |P(Y ∈ A,Y , Z) − P(Z ∈ A, Z , Y )|

≤ P(Y , Z)

Coupling construction: [GORJSR01] Assume that C is a small set. The following cou-
pling construction is called the "splitting technique" by [EN78] and [KBAPN78]; see also
[EN84] and [SPMRLT93]. The basic idea is to generate two copies of the Markov chain,
sampling both from the same probability distribution such that the construction of their joint
distribution gives a high probability for them to be close to each other.

Start with the initial distribution X0 = x and X′0 ∼ π(.), and n = 0. Now, the following loop
is repeated for long in order to generate the Markov chains.

• If Xn = X′n, choose Xn = X′n ∼ P(Xn, .) and update n to n + 1.

• Else, if (Xn, X′n) ∈ C × C, then:

– with probability ε choose Xn+n0 = X′n+n0 ∼ ν(.);

– or, with probability 1 − ε , conditionally, independently choose

Xn+n0 ∼
1

1 − ε
[Pn0(Xn, .) − εν(.)],

X′n+n0 ∼
1

1 − ε
[Pn0(X′n, .) − εν(.)],

For the case when n0 > 1, in order to complete the sequence, we can return to construct
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Xn+1Xn+2, ..., Xn+n0−1 from their corresponding conditional probability distributions given
Xn and Xn+n0 . Similarly, we can also construct X′n+1X′n+2, ..., X′n+n0−1 from their correspond-
ing conditional probability distributions given X′n and X′n+n0 .

PROOFS OF QUANTITATIVE CONVERGENCE RATES
Here, we give the proofs of a few theorems that were stated above.

Proof of Theorem 3.1.3 [GORJSR01]

Proof. We have C = Ω. So, according to the coupling construction, in every n0 iterations
we have a probability of ε for making the Markov chains equal. Therefore, if n = n0m, then
we have

P(Xn , X′n) ≤ (1 − ε)m = (1 − ε)n/n0

By Proposition 3.0.1 (c), since the probability distribution π(.) is stationary for the kernel
P, then, ‖Pn(x, .) − π(.)‖ is non increasing. That is,

‖Pn(x, .) − π(.)‖ ≤ ‖Pn−1(x, .) − π(.)‖for n ∈ N.

�

Proof of Theorem 3.2.2 [GORJSR01]

Proof. In the minorisation condition, assume n0 = 1 for the small set C. Then, let Bn0 = B.
Consider

Nk = #{m : 0 ≤ m ≤ k, (Xk, X′k) ∈ C × C}.

Also, let the time corresponding to the consecutive visits of (Xk, X′k) to C × C be τ1, τ2, ....
Then, for j ∈ N such that 1 ≤ j ≤ k,

P(Xk , X′k) = P(Xk , X′k, Nk−1 ≥ j) + P(Xk , X′k, Nk−1 < j) (1)

Observe that the first event on the right side of equation (1) :
{Xk , X′k, Nk−1 ≥ j} is contained in : first j consecutive coin flips came up tails. That is,
the event of getting more that j tails is contained in the event of getting j tails. Hence,

P(Xk , X′k, Nk−1 ≥ j) ≤ (1 − ε) j (2)
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Now, to find a bound for the second term in equation (1), let

Mk = α
k B−Nk−1 h(Xk, X′k)1(Xk , X′k) k = 0, 1, 2.. where N−1 = 0

Let us look at a lemma now.

Lemma 3.3.1. [GORJSR01] We have

E[Mk+1 |X0, ..., Xk, X′0, ..., X′k] ≤ Mk

That is, Mk is a supermartingale.

Proof: Let us proceed by looking at the two cases : (Xk, X′k) < C ×C and (Xk, X′k) ∈ C ×C.
Case 1 : (Xk, X′k) < C × C : Refer to [GORJSR01]
Case 2 : (Xk, X′k) ∈ C × C : There are two sub cases here. That is :
i. Xk = X′k and ii. Xk , X′k
Case i: Trivial.
Now, suppose Xk , X′k . Then, we get

E[Mk+1 |X0, ...Xk, X′0, ...X
′
k]

= αk+1B−Nk−1−1E[h(Xk+1, X′k+1)1(Xk+1 , X′k+1)|Xk, X′k]

= αk+1B−Nk−1−1(1 − ε)R̄h(Xk, X′k) (?)

= αk+1B−Nk−1−1(1 − ε)R̄h(Xk, X′k)
Mk

αk B−Nk−1 h(Xk, X′k)1(Xk , X′k)

= Mk

[
α(1 − ε)R̄h(Xk, X′k)

B

]
1

h(Xk, X′k)
(Since 1(Xk , X′k) = 1)

≤
Mk

h(Xk, X′k)
(??)

≤ Mk

(
Since h is defined as h : Ω ×Ω→ [1,∞). Hence

1
h
≤ 1

)
(??) : To prove the second inequality
We know that B = max

{
1, α(1 − ε)supC×C R̄h

}
. If B = 1 =⇒ 1

B = 1 and
α(1 − ε)supC×C R̄h < 1. Thus, [

α(1 − ε)R̄h(Xk, X′k)

B

]
≤ 1

and, if B = α(1 − ε)supC×C R̄h; then again, we have that the above inequality is satisfied.
(?) : To prove : E[h(Xk+1, X′k+1)1(Xk+1 , X′k+1)|Xk, X′k] = (1 − ε)R̄h(Xk, X′k) We have
Xk , X′k and, (Xk, X′k) ∈ C × C. Thus, we have two possibilities :
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(i)We can either choose both Xk and X′k to be equal

Xk+1 = X′k+1 ∼ P(Xk, .) =⇒ 1(Xk+1 , X′k+1) = 0

(ii)Or we can choose Xk and X′k from their respective distributions (note that n0 = 1).

Xk+1 ∼
1

(1 − ε)
[P(Xk, .) − εν(.)] and

X′k+1 ∼
1

(1 − ε)
[P(X′k, .) − εν(.)]

=⇒ 1(Xk+1 , X′k+1) = 1

Thus,we will get

E[h(Xk+1, X′k+1)1(Xk+1 , X′k+1)|Xk, X′k] =∫
Ω

∫
Ω

h(Xk+1, X′k+1)
[P(Xk, dXk+1) − εν(.)]

(1 − ε)
[P(X′k, dX′k+1) − εν(.)]

(1 − ε)
· P(1(Xk+1 , X′k+1))

= R̄h(Xk, X′k) · (1 − ε)

(Since P(1(Xk+1 , X′k+1)) = P(Xk+1 , X′k+1) = (1 − ε).)

Hence, we have proved that {Mk} is a Martingale.
Back to proof of Theorem 3.2.2 :
Note that B ≥ 1. Then, we get that

P(Xk , X′k, Nk−1 < j)

≤ α−k B( j−1)E
[
h(X0, X′0)

]
(3)

See [GORJSR01] for the details of the proof. Combining (1), (2) and (3), we get :

‖L(Xk) − L(X′k)‖ ≤ P(Xk , X′k)

≤ (1 − ε) j + α−k B( j−1)E
[
h(X0, X′0)

]
Hence proved.
Now, this proof was for the case when n0 = 1. For n0 > 1, we do not want to consider
completing the chain. That is, we skip constructing Xn+1, ..., Xn+n0 as well as X′n+1, ..., X′n+n0 .
Thus, in the proof replace Nk−1 by Nk−n0 and prove that Mt(k) is a supermartingale where
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t(k) is the largest time ≤ k and such that it is not a time of ‘stay’. We have that

Nk = #{m : 0 ≤ m ≤ k, (Xm, X′m) ∈ C × C}.

Also, we have :

P(Xk , X′k) = P(Xk , X′k, Nk−n0 ≥ j) + P(Xk , X′k, Nk−n0 < j).

Just like before, since the event that {Xk , X′k, Nk−n0 ≥ j} is contained : first j coin flips
gave tails, we get

P(Xk , X′k, Nk−n0 ≥ j) ≤ (1 − ε) j .

Now, let
Mt(k) = α

(k)B
−Nk−n0
n0 h(Xk, X′k)1(Xk , X′k)

Going along the lines of the lemma before, we will get that Mt(k) is a supermartingale.
Now, proceeding like before, we get that, since Bn0 ≥ 1,

P(Xk , X′k, Nk−n0 < j)

= P(Xk , X′k, Nk−n0 ≤ j − 1)

≤ P(Xk , X′k, B
−Nk−n0
n0 ≥ B−( j−1)

n0 )

= P(1(Xk , X′k)B
−Nk−n0
n0 ≥ B−( j−1)

n0 )

≤ B−( j−1)
n0 E[1(Xk , X′k)B

−Nk−n0
n0 ] (Markov’s Inequality)

≤ B−( j−1)
n0 E[1(Xk , X′k)B

−Nk−n0
n0 h(Xk, X′k)] (Sinceh ≥ 1).

= α−k B−( j−1)
n0 E[Mt(k)]

≤ α−k B−( j−1)
n0 E[Mt(0)]

= α−k B−( j−1)
n0 E[h(X0, X′0)] (Since N−n0 = 0)

Hence proved. �

Proof of Theorem 3.1.5 [GORJSR01]

Proof. Set h(x, y) = 1
2 [V(x)+V(y)]. We use the following lemma for proving this theorem.

Lemma 3.3.2. [GORJSR01] We may assume without loss of generality that

supx∈CV(x) < ∞ (F)

Specifically, given a small set C and a drift function V satisfying the minorisation condition
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and the univariate geometric drift condition, we can find a small set C0 ⊆ C such that the
minorisation condition and the univariate geometric drift condition hold (with the same n0)
and ε and b, but with λ replaced by some λ0 < 1), and such thatF also holds.

Proof. Interested readers are requested to refer [GORJSR01] for proof. �

Now, assume that supx∈CV(x) < ∞. Let supx∈CV(x) = m. Then, from drift condition,
PV ≤ λV + b1C . We have that

sup(x,y)∈C×C R̄h(x, y)

= sup(x,y)∈C×C

∫
Ω

∫
Ω

(Pn0(x, dz) − εν(dz))(Pn0(y, dw) − εν(dw))h(z,w)(1 − ε)−2

= sup(x,y)∈C×C

∫
Ω

∫
Ω

(Pn0(x, dz) − εν(dz))(Pn0(y, dw) − εν(dw))
[V(z) + V(w)]

2(1 − ε)2

≤ sup(x,y)∈C×C

∫
Ω

∫
Ω

(Pn0(x, dz) − εν(dz))(Pn0(y, dw) − εν(dw))
m

(1 − ε)2

< ∞ (Since supx∈CV(x) < ∞.i.e.; m < ∞ and minorisation condition holds.)

Therefore, we have sup(x,y)∈C×C R̄h(x, y) < ∞. Thus, we get that

Bn0 = max{1, αn0(1 − ε)supC×C R̄h(x, y)} < ∞.

Now, let d = in fCCV . Then, from Proposition 3.2.1, we have that if univariate drift
condition is satisfied and for d as above, then, the bivariate drift condition is satisfied for
h(x, y) = 1

2 [V(x) + V(y)] and α−1 = λ + b
(d+1) < 1 if d > b

(1−λ) − 1. Then, we have that by
Theorem 3.2.2, if the minorisation condition and bivariate drift condition is satisfied, then,

‖L(Xk) − L(X′k)‖ ≤ (1 − ε)
j + α−k B( j−1)

n0 E
[
h(X0, X′0)

]
.

Then Theorem 3.1.5 is proved in this case. That is, if we take ρ = 1
α and M(., .) =

B( j−1)n0E
[
h(X0, X′0)

]
‖Pk(., .) − π(.)‖ ≤ ρk M(., .).

Now, for d ≤ b
(1−λ) − 1, we cannot use this argument because d > b

(1−λ) − 1 ensures
aperiodicity of the chain and without this condition, we will have to assume the aperiodicity
of the chain in the proof. So, we try to make C large so that we improve the chance of
d = in fCCV > b

(1−λ) − 1. That is, we enlarge C so that d satisfies this condition and we
then use aperiodicity to show that C remains a small set which means that the minorisation
condition holds, perhaps for very large n0 and smaller ε > 0. Then, we will have that
Theorem 3.1.5 follows from Proposition 3.2.1 and Theorem 3.2.2 like before.
Now, choose some d′ > b

1−λ − 1. Let S = {x ∈ Ω : V(x) ≤ d′} and we also consider the set
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C′ = C ∪ S. This will give us :

in f(C ′)CV(x) > d′ >
b

(1 − λ)
− 1.

We also have that V is bounded on S by definition. Thus, supx∈C ′V(x) < ∞. Thus, we get
sup(x,y)∈C ′×C ′ R̄h(x, y) < ∞ and hence also, Bn0 < ∞.
So, we have that Theorem 3.1.5 follows from Proposition 3.2.1 and Theorem 3.2.2 if we can
prove that C′ is small.

Lemma 3.3.3. [GORJSR01] C′ is a small set.

In order to prove this lemma, we look at the following definition.

Definition 18. [GORJSR01] A subset C ⊆ Ω is petite (or, (n0, ε, ν)- petite), relative to a
small set C, if there exists a positive integer n0, ε > 0, and a probability measure ν(.) on Ω
such that

n0∑
i=1

Pi(x, .) ≥ εν(.) x ∈ C

The petite set is similar to the small set except that here, the different states in C are allowed
to cover the minorisation measure εν(.) at different times i.
Any small set is a petite set. However, the converse is not true for all cases. This is because
the condition for being petite does not rule out the periodicity of the chain.
For an aperiodic, φ-irreducible Markov chain, we have the following lemma.

Lemma 3.3.4. [GORJSR01] For an aperiodic, φ- irreducible Markov chain, all petite sets
are small sets.

We need the following lemma in order to use Lemma 3.3.4

Lemma 3.3.5. [GORJSR01] Let C′ = C ∪ S where S = {x ∈ Ω; V(x) ≤ d} for some
d < ∞, as above. Then, C′ is petite.

Proof. Refer [GORJSR01] for proof. �

Now, we have that C′ is petite and since the chain is aperiodic and φ-irreducible, by Lemma
3.3.4, we have that C′ is small. Hence proving Theorem 3.1.5. �

Proof of Theorem 3.0.5Asymptotic Convergence Theorem [GORJSR01]
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Proof. In order to prove this, assume the following theorem :

Theorem 3.3.6. [GORJSR01] Every φ-irreducible Markov chain, on a state space with
countably generated σ-algebra, contains a small set C ⊆ Ω with φ(C) > 0. (In fact, each
B ⊆ Ω with φ(B) > 0 in turn contains a small set C ⊆ B with φ(C) > 0.) Furthermore, the
minorisation measure ν(.) may be taken to satisfy ν(C) > 0.

Proof. See [EN84],p. 16. �

Lemma 3.3.7. [GORJSR01] Consider aMarkov chain on a state spaceΩ, having stationary
distribution π(.). Suppose that for some A ⊆ Ω, we have Px(τA < ∞) > 0 for all x ∈ Ω.
Then, for π-almost-every x ∈ Ω, Px(τA < ∞) = 1.

Proof. Refer [GORJSR01]. �

The rest of the proof follows as in [GORJSR01] �

Lemma 3.3.8.
π(Ḡ) = 1.

Proof. Refer [GORJSR01]. �
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Chapter 4

Applications

4.1 Introduction

In this chapter, we illustrate an application ofMarkov chainMonte Carlomethod by applying
it to a covariance realisation problem for a discrete random process.

Consider a randomvectorσ ∈ Rnwhere each entry takes values in {−k,−k+1, ..., 1, 0,−1, ..., k−

1, k}. There are (2k + 1)n such vectors. By σ we denote a generic n-tuple of this type. Let
C denote the variance-covariance matrix of this random vector. It is not clear whether any
symmetric positive semi-definite matrix C, can manifest as a variance-covariance matrix
for such discrete random vector. This problem has been studied in detail for spin random
variables. We do not ponder on this question and throughout this chapter, we assume that
we are given a matrix C which can be realized as a variance covariance matrix of the given
random vector by some probability distribution. In other words, we assume that there exists
a probability distribution on the space {−k,−k + 1, ..., 1, 0,−1, ..., k − 1, k}n such that the
given matrix C is its covariance matrix.
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Note that a probability distribution realizing C as the covariance matrix need not be unique.
The idea is to find one such probability distribution, namely, the one that maximizes the
entropy. Given a matrix C, assuming that it is realizable, we first obtain the explicit form of
the maximum entropy probability distribution and then use MCMC to explicitly find it.

4.2 Maximum entropy problem for discrete random vari-
ables on a general state space

Let Ω = {σ = (σi) : σi ∈ {−k,−k + 1, ..., 1, 0,−1, ..., k − 1, k}} for some fixed k ∈ N. The
length of each σ in Ω is fixed to be n.
The entropy of the system described above is given by

S(P) = −
∑
σ

P(σ)logP(σ)

Consider the following problem: Find a probability distribution P∗ on Ω such that P∗ =

argminS(P) subject to the following constraints.

ch,k =
∑
σ

σhσkP(σ)

1 =
∑
σ

P(σ)

ei =
∑
σ

σiP(σ)

where ch,k denotes the (h, k)th entry of the variance-covariance matrix.
The problem at hand is to find the right probability distribution such that the entropy of the
system is maximized. We refer to this problem as P0. This has been done previously in the
paper [PDPMPNS13], for spin systems using the Lagrange multiplier method.

4.3 Lagrange Multiplier Method

Here, we briefly discuss the Lagrange Multiplier method. Suppose we have to maximize or
minimize a function f (x, y, z) subject to the constraint g(x, y, z) = k for some constant k.
Then, we write an equation of the form :

L(x, y, z, λ) = f (x, y, z) − λ(g(x, y, z) − k)
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where L is called the Lagrangian and λ is a new variable called the Lagrange multiplier.

The solution :
Take the partial derivatives of the Lagrangian with respect to the variables x, y, z and λ,
equate all of it to zero and the put the values obtained back into the original function in
order to get the desired answer.
That is, solve for Lx = 0; Ly = 0; Lz = 0; Lλ = 0 and substitute the solutions back into
f (x, y, z).

Now, we try to solve P0. Observe that according to the Lagrangian Multiplier method stated
earlier in first chapter, we get that the Lagrangian function is given by

L(P(σ)) = Λ(P(σ)) + S(P(σ))

where the Lagrangian functional Λ(P(σ)) is

Λ(P) =
∑
h,k

λhk

(
chk −

∑
σ

σhσkP(σ)

)
+ µ

(
1 −

∑
σ

P(σ)

)
+

∑
i

ηi

(
ei −

∑
σ

σiP(σ)

)
where λhk, µ, ηi are Lagrange Multipliers for all h, k, i. Thus, now we have

L(P) =
∑
h,k

λhk

(
chk −

∑
σ

σhσkP(σ)

)
+ µ

(
1 −

∑
σ

P(σ)

)
+

∑
i

ηi

(
ei −

∑
σ

σiP(σ)

)
−

∑
σ

P(σ)logP(σ)

Note that we can avoid all the constant terms from L(P) and write

I(P) = −
∑
σ

P(σ)logP(σ) −
∑
h,k

λhk

∑
σ

σhσkP(σ)

− µ
∑
σ

P(σ) −
∑

i

ηi

∑
σ

σiP(σ)
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Taking the partial derivative of I with respect to P(σ), we get

∂PI(P(σ)) = − (1 + logP(σ)) −
∑
h,k

λhkσhσk − µ −
∑

i

ηiσi

= −logP(σ) −
∑
h,k

λhkσhσk −
∑

i

ηiσi − (µ + 1)

Solving for P(σ) we get that the gradient of I is 0 at

P∗(σ) = exp

{
−

∑
h,k

λhkσhσk −
∑

i

ηiσi

}
e−(µ+1)

Thus, we arrive at

P∗(σ) =
1
Z
exp

{
−

∑
h,k

λhkσhσk −
∑

i

ηiσi

}
(A)

where Z = e−(µ+1). (B)

Now, note that

P∗(−σ) =
1
Z
exp

{
−

∑
h,k

λhk(−σh)(−σk) −
∑

i

ηi(−σi)

}
=

1
Z
exp

{
−

∑
h,k

λhkσhσk +
∑

i

ηiσi

}
, P∗(σ)

Hence, we have that the mean is not 0 with respect to P∗. Note that the probability
distribution depends on the Lagrange Multipliers. Thus, the problem boils down to finding
the right λ, where λ is the vector of all Lagrange Multipliers.
Now, we move on to the dual problem.
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4.4 Dual Problem

We have
∑
σ P(σ) = 1. Also, taking P(σ) = 1

Z exp
{
−

∑
h,k λhkσhσk −

∑
i ηiσi

}
, we get that

Λ(P) = µ

(
1 −

∑
σ

P(σ)

)
+

∑
i

ηi

(
ei −

∑
σ

σiP(σ)

)
+

∑
h,k

λhk

(
chk −

∑
σ

σhσkP(σ)

)
=

∑
i

ηiei −
∑

i

∑
σ

ηiσiP(σ) +
∑
h,k

λhkchk −
∑
h,k

λhk

∑
σ

σhσkP(σ) (C)(
Since

∑
σ

P(σ) = 1

)
Similarly,

S(P) = −
∑
σ

P(σ)logP(σ)

= −
∑
σ

1
Z
exp

{
−

∑
h,k

λhkσhσk −
∑

i

ηiσi

}
−

{
−

∑
h,k

λhkσhσk −
∑

i

ηiσi − (µ + 1)

}
=

∑
σ

P(σ)

{∑
h,k

λhkσhσk +
∑

i

ηiσi

}
+

∑
σ

logZ P(σ)

=
∑
σ

∑
h,k

λhkP(σ)σhσk +
∑
σ

∑
i

P(σ)ηiσi + log Z (D)(
Since

∑
σ

P(σ) = 1

)
Adding the two, we get L(P) as

L(P) =
∑

i

ηiei −
∑

i

∑
σ

ηiσiP(σ) +
∑
h,k

λhkchk −
∑
h,k

λhk

∑
σ

σhσkP(σ)+∑
σ

∑
h,k

λhkP(σ)σhσk +
∑
σ

∑
i

P(σ)ηiσi + log Z

= log Z +
∑

i

ηiei +
∑
h,k

λhkchk (E)
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Observe that

1 =
∑
σ

P(σ) =
∑
σ

1
Z
exp

{
−

∑
h,k

λhkσhσk −
∑

i

ηiσi

}
=⇒ Z =

∑
σ

exp

{
−

∑
h,k

λhkσhσk −
∑

i

ηiσi

}
(F)

Thus, we have that

P(σ) =
exp

{
−

∑
h,k λhkσhσk −

∑
i ηiσi

}∑
σ exp

{
−

∑
h,k λhkσhσk −

∑
i ηiσi

} (G)

Writing (E) as a function of the Lagrange Multipliers,

J(λ) =
∑
h,k

λhkchk +
∑

i

ηiei + log

{∑
σ

exp

{
−

∑
h,k

λhkσhσk −
∑

i

ηiσi

}}
(H)
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Next, we take the gradient of this function with respect to each of the Lagrange Multipliers.
The i j th row here represents ∂J(λ)

∂λi j
and the lth row represents ∂J(λ)

∂ηl

∇J(λ) =



.

.

.

ci j + 0 +
∑
σ

{
exp{−

∑
h,k λhkσhσk−

∑
i ηiσi}∑

σ exp{−
∑

h,k λhkσhσk−
∑

i ηiσi}
∗ (−σiσj)

}
.

.

0 + el +
∑
σ

{
exp{−

∑
h,k λhkσhσk−

∑
i ηiσi}∑

σ exp{−
∑

h,k λhkσhσk−
∑

i ηiσi}
∗ (−σl)

}
.

.

.



=



.

.

.

ci j −
∑
σ σiσjP(σ)
.

.

el −
∑
σ σlP(σ)
.

.

.


Thus, ∇J(λ) = 0 gives us that P(σ) satisfies the constraints. This λ∗, for which the above
result holds, will be the critical point of J(.).
Hence, the critical point of ∇J(λ), i.e. λ∗, if it exists, will give us the desired probability
distribution P∗(.) on the system such that the constraints are satisfied and such that the
entropy of the system is maximized.
The discrete time dynamical system is given by

λn+1 = λn −
∇J

K

and for K > N , this converges to the right λ∗.
The proof of this convergence is beyond the scope of this thesis.

The next section discusses some simulations that were run based on the theory discussed
above. We look at spin system as well as an extended state space for which we try to
approach the Entropy Maximisation problem.
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Simulations

The transition probability was taken to be

P(Xn+1 |Xn) =
e−<G(Xn+1),λ>

e−<G(Xn),λ>

4.5 Discrete Random variables on a given state space

Given C = ((ci j)), a realizable covariance matrix for the process described earlier in the
chapter. Wewant to explicitly determine themaximum entropy probability distribution. The
form of that is given in equation (G). Note that the maximum entropy probability distribution
is parametrized by the matrix λ.S0, the problem boils down to explicitly determining the
corresponding λ∗. The following algorithm converges to the correct λ∗. The proof of which
is out of the scope of this thesis.
We now look at the state space Ω = {σ = (σ1, ..., σn) : σi ∈ {−k,−k + 1, ...,−1, 0, 1, ....k −
1, k}}. G(σ) is calculated as :

G(σ) = (1, σ1σ2, σ1σ3, .., , σn−1σn)

and, λ, a vector of length = |G |, is the set of all lagrangian multipliers.
R is defined as the covariance vectorwhere it contains the elements of the variance covariance
matrix.

R = [1, c12, c13, ..., cn−1,n].

u(λ) gives an estimate of R for a given λ.
Deterministic Algorithm

• Start with an initial λ1

• Start with r=1

• u(λr) =
∑
σ

1
Z Ge−GTλr

• λr+1 = λr −
R−u(λr )

K
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• Put r = r + 1 and repeat till r = H for some H large enough

The output of this deterministic algorithm will give us the optimum λ∗ which would in turn
give us the probability distribution P∗ that maximizes the entropy of the system.
This involves a lot of time and as much as (2k + 1)n calculations in each loop (for u(λr) and
Z). To tackle this issue, we give a Markov chain Monte Carlo algorithm. The Markov chain
for a fixed λ is described below:

The Markov chain
The state space is Ω = {σ = (σ1, ..., σn) : σi ∈ {−k,−k + 1, ...,−1, 0, 1, ....k − 1, k}}. and
G(σ) is defined as above.

• Start with an initial X0 = σ
′ for some σ′ ∈ Ω.

• Generate a proposal Xn+1 = σ̃ for a given Xn = σ with transition probability as :

P(σ, σ̃) =
e−<G(σ̃),λ>

e−<G(σ),λ>

The stationary distribution of this Markov chain is exactly of the form of the probability
distribution that satisfies the Maximum Entropy problem. This Markov chain is

• Reversible : We saw earlier in Chapter 2 that Metropolis algorithms are reversible.

• Irreducible : Clearly, by construction of the Markov chain, one can see that we can
go from any state to any other state.

• Recurrent

• Ergodic. The chain is both uniformly as well as geometrically ergodic. This can be
proved using the theory discussed in Chapter3

MCMC algorithm

• Start with an initial λ1

• Put r = 1

• Put u = 0

• Set an initial value σ(0)for the Markov Chain (Y )

• Run the Markov chain for about 100 runs to get a Yt = σ(t) in each run, take the
transition probability to be P̃(λr) =

eG(σ
(t))T λr−1

eG(σ̃(t))T λr−1

• After each run of the MC, compute u(λr) =
∑
σ(t)

1
Z Ge−G(σ(t))Tλr

with Z =
∑
σ(t) e

(−G(σ(t))T )λ
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• λr+1 = λr −
R−u(λr )

K

• Put r = r + 1 and repeat till r = H for some H large enough

We simulate the above algorithm for n = 5, 6, 7 are given belowwith the following parameters
fixed: R, λ. The state space is Ω = {σ = (σ1, ..., σn) : σi ∈ {−k,−k + 1, ...,−1, 0, 1, ....k −
1, k}}.
The number of iterations for deterministic algorithm is (d) : 5000
The number of iterations for the Markov chain (MC) : we have considered two cases :
10000; 100000
The number of iterations for the convergence of λ (outer loop) in MCMC (l) : 1000
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Table showing the final u value for different algorithms forn = 5

R [1, 0.10,0.20,0.20,0.30,0.25, Error = Timelapsed
0.40,0.20,0.30,0.40,0.20] ‖R − u‖

Deterministic [1,0.10,0.20,0.20,0.30,0.25, 1.11E-15 248.6124
0.40,0.20,0.30,0.40,0.20]

MC : 10000; [1,0.07,0.15,0.21,0.31,0.29, 0.2365 59.1452
l : 1000 0.44,0.17,0.30,0.40,0.26]

MC : 100000; [1,0.07,0.19,0.22,0.31,0.23, 0.0574 599.3587
l : 1000 0.39,0.18,0.31,0.41,0.20]

Table showing the final u value for different algorithms forn = 7

R [1,0.10,0.20,0.20,0.30,0.25,0.15,0.25,0.40,0.20,0.30, Error = Timelapsed
0.10,0.30,0.40,0.20,0.25,0.20,0.35,0.10,0.15,0.35,0.20] ‖R − u‖

Deterministic [1,0.10,0.20,0.20,0.30,0.25,0.15,0.25,0.40,0.20,0.30, 7.70E-16 1224.1
0.10,0.30,0.40,0.20,0.25,0.20,0.35,0.10,0.15,0.35,0.20]

MC : 10000 [1,0.05,0.20,0.18,0.28,0.28,0.17,0.27,0.48,0.13,0.24, 0.2013 61.8768
l : 1000 0.11,0.34,0.30,0.17,0.21,0.17,0.37,0.11,0.13,0.30,0.26]

MC : 100000; [1,0.13,0.20,0.21,0.30,0.25,0.14,0.21,0.42,0.21,0.29, 0.0903 619.6289
l : 1000 0.10,0.30,0.41,0.18,0.26,0.23,0.31,0.12,0.11,0.32,0.20]
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Figure 4.1: Convergence of u, n=7,{-2,-1,0,1,2} d:5000 deterministic

Figure 4.2: Convergence of λ, n=7, {-2,-1,0,1,2} d:5000 deterministic
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Figure 4.3: Graph of u(3) - R(3), n=7, {-2,-1,0,1,2} d:5000 deterministic

Figure 4.4: Convergence of u (MCMC), n=7,{-2,-1,0,1,2} MC:10000 l:1000
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Figure 4.5: Convergence of λ (MCMC), n=7, {-2,-1,0,1,2} MC:10000 l:1000

Figure 4.6: Graph of u(3) - R(3) n=7 MC:10000 l:1000

56



Figure 4.7: Convergence of u (MCMC), n=7,{-2,-1,0,1,2} MC:100000 l:1000

Figure 4.8: Convergence of λ (MCMC), n=7, {-2,-1,0,1,2} MC:100000 l:1000
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Figure 4.9: Graph of u(3) - R(3) n=7 MC:100000 l:1000
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We also looked at an adaptiveMarkov chainMonte Carlo algorithmwhere theMarkov chain
Monte Carlo loop is allowed to run only for 1000 iterations. Clearly, for a state space so
large, this does not give enough time for the convergence of the Markov chain. We run the
λ-convergence (outer loop) for 10000 iterations.
Since the Markov chain is not allowed to converge, the errors are larger. However, the
convergence is much faster. This is illustrated below for n=7.

Figure 4.10: Comparing Timelapsed and error for different n (n = 5,6,7) for same runs
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Figure 4.11: Convergence of u (Adaptive), n=7,{-2,-1,0,1,2} MC:1000 l:10000

Figure 4.12: Convergence of λ (Adaptive), n=7, {-2,-1,0,1,2} MC:1000 l:10000
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Figure 4.13: Graph of u(3) - R(3) (Adaptive), n=7, {-2,-1,0,1,2} MC:1000 l:10000

Clearly, from the above graphs, we can see that we do not get good enough convergence but
looking at the table, Figure 4.10 we can see that the time taken has considerably reduced.

Note that while we assume that the covariance matrix is realizable, the lagrange multiplier
method works even if we are not given all the entries of the matrix. The simulations done
here assume that we have ci j’s for all i, j’s. In other words, the interaction graphs of this
n-random variables σi’s is assumed to be complete.

Similar simulations can be carried out for the casewhen the underlying graph is not complete.
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