
Models of Sexual Selection with

Explicit Genetics

Adarsh Krishnan

A dissertation submitted for the partial fulfilment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2019

Certificate of Examination

This is to certify that the dissertation titled “Models of Sexual Selection with Explicit

Genetics” submitted by Mr. Adarsh Krishnan (Reg. No. MS14177) for the partial

fulfillment of BS-MS dual degree program of the Institute, has been examined by the

thesis committee duly appointed by the Institute. The committee finds the work done

by the candidate satisfactory and recommends that the report be accepted.

Dr. N G Prasad Prof Arvind

(Supervisor) (Co-Supervisor)

Dr. Rhitoban Ray Choudhury Dr. Abhishek Chaudhuri

Dated: April 26, 2019

Declaration

The work in this dissertation has been carried out by me under the guidance of Dr. N

G Prasad and Prof. Arvind at the Indian Institute of Science Education and Research

Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a

fellowship to any other university or institute. Whenever contributions of others are

involved, every effort is made to indicate this clearly, with due acknowledgement of

collaborative research and discussions. This thesis is a bonafide record of original

work done by me and all sources listed within have been detailed in the bibliography.

Adarsh Krishnan

(Candidate)

Dated: April 26, 2019

In my capacity as the supervisor of the candidate’s project work, I certify that the

above statements by the candidate are true to the best of my knowledge.

Dr. N G Prasad Prof Arvind

(Supervisor) (Co-Supervisor)

Acknowledgement

No amount of words can equal the love and support that my friends and family have

provided for me throughout the last year. However, I am so much indebted to some

of these people that its hard not to thank them in writing.

I thank Dr N. G. Prasad and Dr Arvind for the opportunity and mentorship that they

provided. I also thank Dr Rhitoban Ray Choudhury and Dr Abhishek Chaudhuri for

being valuable critics of my work.

I thank Ms Parul Jangal for helping me troubleshoot the program and giving me

suggestions. I also thank Mr Manas Samant for providing me with the necessary help

to get my work started.

Adarsh Krishnan

List of Figures

2.1 Gavrilets model for runaway sexual selection 8

3.1 Genotype frequency from Random Selection 11

3.2 Allelic frequency from Random Selection 12

4.1 Allelic frequency when males are sexually selected. 15

4.2 Genotypic frequency when males are sexually selected. 15

4.3 Allelic frequency when females are sexually selected. 16

4.4 Genotypic frequency when females are sexually selected. 16

4.5 Allelic frequency when both are sexually selected. 17

4.6 Genotypic frequency when both are sexually selected. 17

4.7 Allelic frequency when one parent is selected with switching. 18

4.8 Genotypic frequency when one parent is selected with switching. . . . 19

i

ii

List of Tables

2.1 Parameter values given in (Gavrilets 01) 6

2.2 Initial values used in (Gavrilets 01) 7

3.1 Genotype substitutions . 9

3.2 All possible genotypes for individuals 10

iii

iv

Contents

List of Figures i

List of Tables iii

Abstract vii

1 Introduction 1

1.1 Natural & Sexual Selection . 1

1.2 Why do we need theoretical models? 3

2 Population Genetics Model 5

2.1 Gavrilets’ runaway sexual selection 5

2.1.1 Algorithm . 7

2.1.2 The need for explicit genetic models 8

3 Random Mating Model 9

3.1 Explicit Genetic Model for Random Selection 9

3.1.1 Assumptions . 10

3.1.2 Algorithm . 11

3.1.3 Results . 11

4 Explicit Sexual Selection Model 13

4.1 Coding sexual selection . 13

4.1.1 Assumptions . 13

4.1.2 Algorithm . 14

4.2 One sex is sexually selected . 14

4.2.1 Only males are sexually selected 15

v

4.2.2 Only females are sexually selected 16

4.3 Both sexes are sexually selected . 17

4.4 One sex is sexually selected with switching 18

4.5 Conclusion . 19

5 Annex: Python Codes and Explanations 21

5.1 Fundamental Codes . 21

5.1.1 Libraries Required . 21

5.1.2 To count the frequencies . 22

5.1.3 To plot the frequencies . 23

5.1.4 To create a parent generation 24

5.1.5 To implement sexual selection 24

5.2 Gavrilets’ Model . 27

5.3 Random Selection Model . 28

5.4 One Sex is Sexually Selected . 29

5.5 Both sexes are sexually selected . 30

5.6 One sex is sexually selected with switching 31

Bibliography 33

vi

Abstract

Theoretical modelling provides insights that can be useful in furnishing statistical

tools that would assist empiricists in checking the feasibility of their studies. This

thesis focuses on developing explicit genetics models of sexual selection.

In the first chapter, an introduction to the field is given along with the need for

explicit genetic models. In the second chapter, the results of the mathematical model

for runaway sexual selection developed by Dr Sergey Gavrilets is verified. In the

third chapter, a model based on random mating is developed. In the final chapter,

a modified version of the previous model which includes a sexual selection of parents

is developed, and its various scenarios are studied. In the end, an annex is provided

with all the Python codes and its explanations.

The framework developed can be used for many more scenarios dealing with explicit

genetics and thus serves as a foundation for further explorations.

vii

viii

Chapter 1

Introduction

1.1 Natural & Sexual Selection

Biological reproduction is not a perfect process, and due to this, each progeny is

uniquely flawed. All populations of organisms have entails a certain amount of vari-

ation within. It is caused partly by the random mutations arising in an individual’s

genome and the other variations caused by the individual’s interaction with their en-

vironment throughout its life which would then be inherited by its offsprings. Such

changes often change the individual’s destiny for better or worse depending on how

it manifests. The slight variation that an individual process gives it a differential ad-

vantage or disadvantage in survival and reproductive success. Thus individuals with

good variations survive, and the population grows. This mechanism is called Natural

selection, and it is what drives evolution - the variation in traits that are heritable

over generations. According to Charles Darwin, Natural Selection is in stark contrast

with the artificial or intentional selection that breeders produce.

Natural selection manifests on all heritable phenotypic trait and other environmental

aspects such as sexual selection and competition with members of different as well

as the same species. Sexual selection arises due to the struggle for mating partners

and usually acts even before fecundity selection. Natural selection through any other

means apart from sexual selection, including kin selection, contest, etc., come under

Ecological selection. Some prefer to view selection processes as two distinct wings

1

where one is Sexual selection, and the other is Ecological selection (analogous to

Natural selection). Selection makes many individuals resort to drastic means for sex.

Sexual selection has the potential to produce features that are detrimental to the

individual’s survival. For example, extravagant and colourful tail feathers or fins are

likely to attract predators as well as interested members of the opposite sex.

Sexual selection is said to occur when individuals of particular biological sex prefer

mates of the other sex to mate with (intersexual selection) while at the same time

competing with individuals of the same sex for access to individuals of the opposite

sex (intrasexual selection). Over time, such selections ensure that some individuals

are more successful reproducing among other individuals of the same population due

to he or she being more attractive or favours more attractive partners to mate with

and procreate.

The concept of sexual selection was put forward by Charles Darwin and Alfred Russel

Wallace and since the inception has been a topic of debate. The problem of peacock’s

trunk is such a well-discussed topic. Despite lowering the Darwinian fitness of the

peacock, why does the peacock posses such a long trunk? All these questions were

explained by a new concept called the runaway sexual selection. It attributes a sense

of aesthetics in higher organisms, and an exaggerated trait serves as a stronger signal.

If this signal is strong enough, the female preference for this signal is enough to

undermine natural selection. Therefore, the female preference for a long trunk in

the case of peacocks leads to most males descendants producing long trunk, and

most females having a preference for that trait. Thus male posses these traits that

demonstrate their fitness even in the cost of lowering of their fitness for an advantage

in sexual selection.

Another important concept is that of Sexual dimorphism, which refers to the condi-

tion where both the sexes of a species distinctly differ in their phenotypic manifesta-

tion. The differences can be seen in characteristics including weight, colour and size

or behavioural and cognitive differences which may have a differential advantage or

disadvantage when it comes to sexual selection.

2

1.2 Why do we need theoretical models?

Theoretical modelling and analysis is an integral part of modern biological research.

The insights from dynamic biological models (of selection) can be useful in furnishing

statistical tools that would assist empiricists in checking the feasibility of their stud-

ies. Theory and models can be used to generate immediately testable quantitative

predictions. It can also help to elaborate empirically-derived biological patterns and

so on and to test verbal hypotheses in Evolutionary biology and population genet-

ics. However, any modelling approach has its limitations, and any meaningful insight

will mostly arise from a comparison among different strategies and different mathe-

matical models that reveals deeper generalities. Therefore, more models and more

applications of these models are needed.

3

4

Chapter 2

Population Genetics Model

2.1 Gavrilets’ runaway sexual selection

In his model (Gavrilets 01), S. Gavrilets considered the male stimulus as a quantitative

trait (y) and it has a distribution in the population given by g(y) with an average

value of ȳ; whereas the females are characterised by response curves Ψ(y) and female

resistance is given by x which is defined as the y value at which the probability of

mating is half. The distribution of female resistance in a population is f(x) with a

mean of x̄.

The probability of mating between a male (y) and a female x is described by

Ψ(y − x) (2.1)

The average proportion of males that can stimulate an ‘x’ female

P (x) =

∫
Ψ(y − x)g(y)dy (2.2)

The average proportion of females that would mate a ‘y’ male

Q(x) =

∫
Ψ(y − x)f(x)dx (2.3)

5

The female response curve can be expressed by the following function.

Ψ(z) =
1

2
tanh [ε× z + 1] (2.4)

Constants Values

ε 0.2

Vx 1

Vy 1

a 0.1

b 0.05

Popt 0.2

Table 2.1: Parameter values given in (Gavrilets 01)

The dynamic equations for the changes in traits between two subsequent generations

are

∆x = Vx[aΨ′(Ψ − Popt)] (2.5)

∆y = Vy[bΨ
′] (2.6)

where Vx and Vy are the additive genetic variances. Ψ and Ψ′ are evaluated at z =

ȳ − x̄. After substituting the values of the parameters given in the table 2.1 our

equations simplifies to the following.

Ψ(z) = Ψ(y − x) = 0.5 ∗ tanh [0.2 ∗ z + 1] (2.7)

where z = ȳ − x̄. Also,

∆x = 0.1 ∗ Ψ′(Ψ − 0.2) (2.8)

∆y = 0.05 ∗ Ψ′ (2.9)

During my correspondence with Dr. Gavrilets, he provided me the initial values he

used while running the simulations; they are given in the table below.

6

X 0.0 5.0 10.0 15.0 0.0 5.0 10.0

Y 0.0 0.0 5.0 10.0 5.0 10.0 15.0

Table 2.2: Initial values used in (Gavrilets 01)

Using these initial values and the parameters that are given, I can evaluate all the

functions and calculate the per generation change in the quantitative trait values for

both males and females. Then, I continue to repeat the loop for about 100000 times.

Then, I repeated the whole steps using the next pair of initial values. The algorithmic

description is given below.

2.1.1 Algorithm

Algorithm 1 To simulate runaway sexual selection using Gavrilets’ model.

1: Initialise x and y with the values given.
2: Define a response curve Ψ(y − x).
3: Initialise empty lists tx and ty
4: for Repeat n times. do
5: z = ȳ − x̄
6: p = 0.5 ∗ np.tanh((0.2 ∗ z) + 1)
7: k = np.cosh(1 + (0.2 ∗ z))
8: p′ = 0.1/(k ∗ k)
9: ∆x = 0.25 ∗ p′ ∗ (p− 0.2)
10: ∆y = 0.05 ∗ p′
11: Append x̄ = x+ ∆x to tx.
12: Append ȳ = y + ∆y to ty.

13: Plot (tx,ty)

Now, using this algorithm, we develop a python code which is described in section

5.2, we simulate the model described in Gavrilets’ paper. The result is shown below.

7

Figure 2.1. Gavrilets model for runaway sexual selection

From the above graph, we understand that in the scenario of runaway sexual selec-

tion, the male trait value increases directly proportional to the female resistance and

continues to grow linearly.

2.1.2 The need for explicit genetic models

Population genetic models such as the one described in (Gavrilets 01) gives us a statis-

tical understanding of the population. However, it fails to supply any further details.

This is where the need for an explicit genetic model comes in. It can provide insights

into the evolution and dynamics of each allele and genotype over the generations. One

can infer which genotype or allele is superior among the rest, easily by looking at the

results of an explicit genetic model.

8

Chapter 3

Random Mating Model

3.1 Explicit Genetic Model for Random Selection

The need for an explicit genetic model has been justified in the previous chapter

2.1.2. However, developing an explicit model has its challenges. How do we define

each allele such that we can implement it in a computational code? How do we code

for reproduction? How do we make an algorithm for sexual selection?

These questions can become intimidating if you try to tackle all of them together. It

is, therefore, essential to break these problems down and solve one at a time. To begin

with, we need a solid foundation which creates a population and evolves randomly.

The model described in this chapter is such a model. It does not provide much

biological insight on its own. However, it serves as a bedrock which we can configure

for sexual selection in the next chapter.

A1B1 P

A2B1 Q

A1B2 R

A2B2 S

Table 3.1: Genotype substitutions

9

For ease of computation, we give a label to each haplotype given in table 3.1. Such

that we can list all the possible individuals as given in table 3.2.

PQ PR PS QR QS

RS PP RR SS QQ

Table 3.2: All possible genotypes for individuals

This model creates an initial parent generation from the list of all possible individuals.

Then, it selects a certain number of males and females to become parents. Note that

all such selection is made randomly with no preference for any genotype. Each couple

will produce ‘x’ number of children. All of these children are denoted by one long list.

Out of all these children, we select a certain number of children to advance to the

next generation. This step acts as a carrying capacity. The model repeats these steps

over ‘n’ generations. Each time after reproduction, all genotype frequencies and allele

frequencies are calculated. Finally, the model gives us a plot with the probability of

finding each type of genotype or allele in the y-axis and the generation number in the

x-axis.

3.1.1 Assumptions

All models work with some level of simplification. In the random mating model, we

make the following assumptions.

1. From each generation, only a certain number of males and females will mate

and are chosen randomly.

2. All parents will have a certain predetermined number of children.

3. Selection is only random and arises:

(a) when choosing eligible mates, and

(b) selecting the genotype of their children.

4. There is no breeding between generations, and the old generation is removed

after the next generation is formed.

10

3.1.2 Algorithm

Algorithm 2 To create a population that mates randomly.

1: Create an initial generation from gene pool using random selection.
2: From the current generation, randomly select a male and female parent.
3: From the list of all possible recombination of parents, randomly select genotypes

for children.
4: Remove parents from the current generation and add the children to a new gen-

eration after counting the frequencies of each genotype.
5: Switch the current generation with the new generation and repeat the process.

3.1.3 Results

Since all the selections featured in this model are based on the pseudo-random choice

from the Numpy package in python, the results that we get vary each time we run it.

(a) Instance 1 (b) Instance 2

Figure 3.1. Genotype frequency from Random Selection

It may be noted that the population reaches fixation rapidly and each genotype settles

to a certain probability. Some may go to negligible values. It is because although the

selection is random, over the generations, the one that received higher probability,

in the beginning, tends to have a bias due to its higher frequency in the subsequent

generations.

11

(a) Instance 1 (b) Instance 2

Figure 3.2. Allelic frequency from Random Selection

Now that we have developed our foundations, we can explore new possibilities that

can provide some valuable biological insights.

12

Chapter 4

Explicit Sexual Selection Model

4.1 Coding sexual selection

To create a model that works via sexual selection, we start with our previous random

mating model and modify the parts of it that selects the parents. It is conceptually

accurate to implement sexual selection while choosing mating partners because of the

exclusive nature of the selection.

4.1.1 Assumptions

Although the assumptions that we make in this model varies only slightly from what

we did in 3.1.1, the change in the output is significant.

1. From each generation, only a certain number of males and females will mate

and are chosen randomly.

2. All parents will have a certain predetermined number of children.

3. Parents are selected based on their attractiveness via sexual selection.

4. Selection is random while selecting the genotype of children.

5. There is no breeding between generations, and the old generation is removed

after the next generation is formed.

13

In this model, we use a certain predetermined probability for each possible genotype

while implementing sexual selection. Note that the sum of all these probabilities

should equal one. We define a function to select all male and/or female parents.

This function selects parents from the existing new generation using a certain (pre-

determined) biases. The model lends itself to heavy customisation. One can choose

individual probability for each genotype for both parents separately. In this chapter,

we explore various scenarios that feature mostly the same algorithm but have different

biological meaning.

4.1.2 Algorithm

Algorithm 3 To create a population that mates via sexual selection.

Require: Probability Definition
1: Create an initial generation from gene pool using random selection.
2: From the current generation, select males and female parents using sexual se-

lection.
3: function Sexual selection(parentgeneration)
4: Find frequencies of all genotype.
5: List of genotypes repeated with frequencies.
6: List of probability.
7: Using numpy.random.choice() and the two lists, select parents.

8: From the list of all possible recombination of parents, randomly select genotypes
for children.

9: Remove parents from the current generation and add the children to a new gen-
eration after counting the frequencies of each genotype.

10: Switch the current generation with the new generation and repeat the process.

4.2 One sex is sexually selected

In this scenario, we select one of the parents using our sexual selection algorithm

while the other parent is chosen randomly. We arbitrarily decide that PP is the ideal

male and SS is the ideal female although our model inherently has no male or female

parameter that can make this distinction.

14

4.2.1 Only males are sexually selected

Here, the PP males are the most desirable and all males find their mates randomly.

We can see two cases below, one where the selection for the ideal male is strong and

another where the selection is comparatively weaker.

(a) P(PP) = 0.4 & others 0.04 (b) P(PP) = 0.23 & others 0.07

Figure 4.1. Allelic frequency when males are sexually selected.

We observe that the alleles corresponding to PP, A1B1 reaches fixation fast and has

a higher probability, in both the cases.

(a) P(PP) = 0.4 & others 0.04 (b) P(PP) = 0.23 & all others 0.07

Figure 4.2. Genotypic frequency when males are sexually selected.

We observe that the population swiftly reaches fixation and PP becomes the most

probable genotype. After that comes all genotype that has P in it. All the others

have a negligible probability.

15

4.2.2 Only females are sexually selected

Here, the SS females are the most desirable and all females find their mates randomly.

Similar to males we have two cases, one where the selection for the ideal female is

strong and another where it is comparatively weaker.

(a) P(SS) = 0.4 & others 0.04 (b) P(SS) = 0.23 & others 0.07

Figure 4.3. Allelic frequency when females are sexually selected.

(a) P(SS) = 0.4 & others 0.04 (b) P(SS) = 0.23 & all others 0.07

Figure 4.4. Genotypic frequency when females are sexually selected.

We observe that the population swiftly reaches fixation and SS becomes the most

probable genotype. The results that we got from males and females show us that

any arbitrary distinction between males and females are meaningless in this model.

However, it is not to say that our model lacks sexual selection. Instead, it incorporates

female resistance and male stimulus in terms of the probability distributions.

16

4.3 Both sexes are sexually selected

Here, we have PP as the most desirable male and SS or PS as the most desirable

female. All individuals prefer the best mate possible. We explore two scenarios, one

where the males and females choose conflicting haplotype and one where they share

a preference for a particular haplotype.

(a) P(PP) = P(SS) = 0.4 (b) P(SS) = 0.4 & P(PS) = 0.4

Figure 4.5. Allelic frequency when both are sexually selected.

In figure 4.5a, we observe that when male and female preferences conflict, there is no

clear dominant allele in terms of frequency. However, when they share a preferred

haplotype 4.5, it becomes common in the population.

(a) P(PP) = P(SS) = 0.4 (b) P(SS) = 0.4 & P(PS) = 0.4

Figure 4.6. Genotypic frequency when both are sexually selected.

Figure 4.6a shows us that when the ideal male is PP and the ideal female is SS, it

is their hybrid genotype PS that becomes frequent in the population followed by PP

and SS. However, as shown in figure 4.6b, when the ideal male PP and ideal female

17

PS share a common haplotype P, both of them become the common genotypes in

the population, followed by other genotypes that share P and S haplotypes.

4.4 One sex is sexually selected with switching

Now, that we have covered some common scenarios, we can begin to test the robust-

ness of the model. So, here we see a modified version of the model where one sex is

selected using our sexual selection algorithm and the other is chosen randomly. How-

ever, in this case, we change the ideal genotype from RR to SS and back and forth

and observe how the genotypic and allelic frequencies change. There are two cases,

one where the selection is strong and one where the selection is weak.

(a) P(SS) = P(RR) = 0.4 (b) P(SS) = P(RR) = 0.25

Figure 4.7. Allelic frequency when one parent is selected with switching.

From figures 4.7a and 4.7b, we notice that apart from the alleles that RR and SS

shared, all others oscillated in frequencies with the change in the ideal genotype.

18

(a) P(SS) = P(RR) = 0.4 (b) P(SS) = P(RR) = 0.25

Figure 4.8. Genotypic frequency when one parent is selected with switching.

Here, we notice that whenever the ideal genotype changes, the frequencies reach

fixation fast. Apart from that, the genotype that share haplotypes with the ideal

genotype also changes in frequencies but the change in frequency is smaller.

4.5 Conclusion

In all cases of sexual selection, the best genotype increases in frequency. Therefore, if

we measure the average of a quantitative trait value of males (stimulus) and females

(resistance), it increases over generations. This is similar to runaway selection as the

attractive trait starts to dominate the population. However, we reach fixation due to

our inbuilt carrying capacity inherent in the code.

The framework developed can be used for many more scenarios dealing with explicit

genetics including deletion, mutation and other biological processes. Therefore, these

models serve as a foundation for further explorations.

19

20

Chapter 5

Annex: Python Codes and

Explanations

All the source codes along with detailed explanations are available on Github

https://github.com/kriashks/expgen. If you wish to work with the codes, you

can fork the repository from Git. However, for the sake of completion, I shall venture

to explain the Python codes used in this thesis.

5.1 Fundamental Codes

These codes are used in almost all the following models. Therefore, it pays to learn

what these code snippets do.

5.1.1 Libraries Required

In this snippet, we import all the necessary libraries.

1 import numpy as np # To work with arrays

2 import matplotlib.pyplot as plt # To plot the final results

3 # To use the pseudorandom number generator

4 import random

5 # To create a simulation for mating

6 from itertools import product

21

https://github.com/kriashks/expgen

5.1.2 To count the frequencies

To plot the frequencies of each genotype or allele, we find the number of time each

genotype or allele occurs in a generation and then divide this frequency with the total

number of individuals per generation. To find the frequency, we use the builtin count

function and to find the population size, we use the len function. After finding the

ratio of each genotype or allele, we add them to a list using the append function so

that we can plot this list to see its change over generations.

1 # Define these empty lists outside the main loop

2 nextgen = []; all_children = []

3 fpq=[]; fpr=[]; fps=[]; fqr=[]; fsq=[]

4 frs=[]; fss=[]; frr=[]; fqq=[]; fpp=[]

5 fa1=[]; fa2=[]; fb1=[]; fb2=[]

6

7 # Inside the main loop, add these counters after mating.

8 leng=len(gen0)

9

10 fpq.append(((gen0.count('pq')+gen0.count('qp'))/leng))

11 fpr.append(((gen0.count('pr')+gen0.count('rp'))/leng))

12 fps.append(((gen0.count('ps')+gen0.count('ps'))/leng))

13 frs.append(((gen0.count('rs')+gen0.count('sr'))/leng))

14 fqr.append(((gen0.count('qr')+gen0.count('rq'))/leng))

15 fsq.append(((gen0.count('sq')+gen0.count('qs'))/leng))

16 fss.append(((gen0.count('ss')+gen0.count('ss'))/leng))

17 fqq.append(((gen0.count('qq')+gen0.count('qq'))/leng))

18 frr.append(((gen0.count('rr')+gen0.count('rr'))/leng))

19 fpp.append(((gen0.count('pp')+gen0.count('pp'))/leng))

20

21 A1 = gen0.count('pq') + gen0.count('qp') + gen0.count('rp') +

22 gen0.count('pr') + gen0.count('sp') + gen0.count('sr')+

23 gen0.count('ps') + gen0.count('rs') + gen0.count('qr') +

24 gen0.count('rq') + gen0.count('pp') + gen0.count('rr')

25

26 A2 = gen0.count('pq') + gen0.count('qp') + gen0.count('qr') +

27 gen0.count('rq') + gen0.count('qs') + gen0.count('sq') +

28 gen0.count('rs') + gen0.count('sr') + gen0.count('ps') +

29 gen0.count('sp') + gen0.count('qq') + gen0.count('ss')

30

31 B1 = gen0.count('pq') + gen0.count('qp') + gen0.count('pr') +

32 gen0.count('rp') + gen0.count('ps') + gen0.count('sp') +

33 gen0.count('qr') + gen0.count('rq') + gen0.count('qs') +

34 gen0.count('sq') + gen0.count('pp') + gen0.count('qq')

35

36 B2 = gen0.count('pr') + gen0.count('rp') + gen0.count('qr') +

22

37 gen0.count('rq') + gen0.count('rs') + gen0.count('sr') +

38 gen0.count('ps') + gen0.count('sp') + gen0.count('qs') +

39 gen0.count('sq') + gen0.count('rr') + gen0.count('ss')

40 fa1.append((A1/leng))

41 fa2.append((A2/leng))

42 fb1.append((B1/leng))

43 fb2.append((B2/leng))

5.1.3 To plot the frequencies

After finding the frequencies, we use the plot function from matplotlib to plot these

in a graph.

1 # Plot each genotype

2 plt.plot(fpq, label='pq', linewidth=0.7)

3 plt.plot(fpr, label='pr', linewidth=0.7)

4 plt.plot(fps, label='ps', linewidth=0.7)

5 plt.plot(frs, label='rs', linewidth=0.7)

6 plt.plot(fqr, label='qr', linewidth=0.7)

7 plt.plot(fsq, label='sq', linewidth=0.7)

8 plt.plot(fss, label='ss', linewidth=0.7)

9 plt.plot(fqq, label='qq', linewidth=0.7)

10 plt.plot(frr, label='rr', linewidth=0.7)

11 plt.plot(fpp, label='pp', linewidth=0.7)

12

13 # Plot each allele

14 plt.plot(fa1, label='A1', linewidth=0.7)

15 plt.plot(fa2, label='A2', linewidth=0.7)

16 plt.plot(fb1, label='B1', linewidth=0.7)

17 plt.plot(fb2, label='B2', linewidth=0.7)

18

19 # Output Customisations

20 plt.xlabel('Generations', fontsize=14)

21 plt.ylabel('Probability of each genotype/allele', fontsize=14)

22 #plt.ylabel('Probability of each genotype/allele')

23 plt.title("Title")

24 plt.legend()

25 plt.savefig('title.png',dpi=100)

26 plt.show()

23

5.1.4 To create a parent generation

Each time we use a model, the first thing we do is to create the parent (initial)

generation. From the list of all possible genetics, we chose a certain number of indi-

viduals randomly using random.sample from the random library and add them to

a list using the list extension function extend(). This list becomes the new parent

generation.

1 gen0=[]

2 #A1B1=p, A2B1=q, A1B2=r, A2B2=s

3

4 # All possible genetics

5 l=['pq','pr','ps','qr','qs','rs','pp','rr','ss','qq']

6

7 #p = int(input('print parent generation size: '))

8 for k in range(0,200):

9 a = random.sample(l, 1)

10 gen0.extend([''.join(c) for c in a])

11 # join selections as ['','','','']

12 #print ('gen0 = ',gen0)

5.1.5 To implement sexual selection

Given below are the functions used to select both male and female parents using

sexual selection. To select the parents using sexual preference, we define a certain

probability for each genotype. Whenever we choose parents for the next generation,

these functions are called as you can see in the next sections. These functions find

the frequency of each genotype and create two lists in such a way that there is a

one to one map between the probability of a certain genotype being selected to that

genotype.

1 def zero(n, d):

2 return n / d if d else 0

3

4 def finddad(gen0,n):

5

6 count_pq = gen0.count('pq')

7 count_qp = gen0.count('qp')

8 count_pr = gen0.count('pr')

24

9 count_rp = gen0.count('rp')

10 count_ps = gen0.count('ps')

11 count_sp = gen0.count('sp')

12 count_qs = gen0.count('qs')

13 count_rq = gen0.count('rq')

14 count_qr = gen0.count('qr')

15 count_sq = gen0.count('sq')

16 count_sr = gen0.count('sr')

17 count_rs = gen0.count('rs')

18 count_pp = gen0.count('pp')

19 count_qq = gen0.count('qq')

20 count_rr = gen0.count('rr')

21 count_ss = gen0.count('ss')

22 gen0.sort()

23 probdad_pq = 0.04

24 probdad_qp = 0.04

25 probdad_pr = 0.04

26 probdad_rp = 0.04

27 probdad_ps = 0.04

28 probdad_sp = 0.04

29 probdad_qr = 0.04

30 probdad_rq = 0.04

31 probdad_qs = 0.04

32 probdad_sq = 0.04

33 probdad_rs = 0.04

34 probdad_sr = 0.04

35 probdad_pp = 0.4

36 probdad_qq = 0.04

37 probdad_rr = 0.04

38 probdad_ss = 0.04

39 probdad = [zero(probdad_pp,count_pp)]*count_pp +

40 [zero(probdad_pq,count_pq)]*count_pq +

41 [zero(probdad_pr,count_pr)]*count_pr +

42 [zero(probdad_ps,count_ps)]*count_ps +

43 [zero(probdad_qp,count_qp)]*count_qp +

44 [zero(probdad_qq,count_qq)]*count_qq +

45 [zero(probdad_qr,count_qr)]*count_qr +

46 [zero(probdad_qs,count_qs)]*count_qs +

47 [zero(probdad_rp,count_rp)]*count_rp +

48 [zero(probdad_rq,count_rq)]*count_rq +

49 [zero(probdad_rr,count_rr)]*count_rr +

50 [zero(probdad_rs,count_rs)]*count_rs +

51 [zero(probdad_sp,count_sp)]*count_sp +

52 [zero(probdad_sq,count_sq)]*count_sq +

53 [zero(probdad_sr,count_sr)]*count_sr +

54 [zero(probdad_ss,count_ss)]*count_ss

55 #pdad = ['%.3f' % elem for elem in probdad]

56 probdad = np.array(probdad)

25

57 probdad /= probdad.sum()

58 p = list(np.random.choice(gen0,n,p=probdad,replace=False))

59

60 return p

61

62 def findmum(gen0,n):

63

64 count_pq = gen0.count('pq')

65 count_qp = gen0.count('qp')

66 count_pr = gen0.count('pr')

67 count_rp = gen0.count('rp')

68 count_ps = gen0.count('ps')

69 count_sp = gen0.count('sp')

70 count_qs = gen0.count('qs')

71 count_rq = gen0.count('rq')

72 count_qr = gen0.count('qr')

73 count_sq = gen0.count('sq')

74 count_sr = gen0.count('sr')

75 count_rs = gen0.count('rs')

76 count_pp = gen0.count('pp')

77 count_qq = gen0.count('qq')

78 count_rr = gen0.count('rr')

79 count_ss = gen0.count('ss')

80 gen0.sort()

81 probmum_pq = 0.04

82 probmum_qp = 0.04

83 probmum_pr = 0.04

84 probmum_rp = 0.04

85 probmum_ps = 0.2

86 probmum_sp = 0.2

87 probmum_qr = 0.04

88 probmum_rq = 0.04

89 probmum_qs = 0.04

90 probmum_sq = 0.04

91 probmum_rs = 0.04

92 probmum_sr = 0.04

93 probmum_pp = 0.04

94 probmum_qq = 0.04

95 probmum_rr = 0.04

96 probmum_ss = 0.04

97 probmum = [zero(probmum_pp,count_pp)]*count_pp +

98 [zero(probmum_pq,count_pq)]*count_pq +

99 [zero(probmum_pr,count_pr)]*count_pr +

100 [zero(probmum_ps,count_ps)]*count_ps +

101 [zero(probmum_qp,count_qp)]*count_qp +

102 [zero(probmum_qq,count_qq)]*count_qq +

103 [zero(probmum_qr,count_qr)]*count_qr +

104 [zero(probmum_qs,count_qs)]*count_qs +

26

105 [zero(probmum_rp,count_rp)]*count_rp +

106 [zero(probmum_rq,count_rq)]*count_rq +

107 [zero(probmum_rr,count_rr)]*count_rr +

108 [zero(probmum_rs,count_rs)]*count_rs +

109 [zero(probmum_sp,count_sp)]*count_sp +

110 [zero(probmum_sq,count_sq)]*count_sq +

111 [zero(probmum_sr,count_sr)]*count_sr +

112 [zero(probmum_ss,count_ss)]*count_ss

113 #pmum = ['%.3f' % elem for elem in pmum]

114 probmum = np.array(probmum)

115 probmum /= probmum.sum()

116 p = list(np.random.choice(gen0,n,p=probmum,replace=False))

117

118 return p

5.2 Gavrilets’ Model

Given below is the code used to simulate S. Gavrilets’ model given in his paper. We

follow the algorithm given the chapter 2; using his equations with different initial

values.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 xx = [0.0, 5.0, 10.0, 15.0, 0.0, 5.0, 10.0]

5 yy = [0.0, 0.0, 5.0, 10.0, 5.0, 10.0, 15.0]

6 k = 0.0

7 i=0

8 while (i<7):

9 x=xx[i]

10 y=yy[i]

11

12 xdash = x

13 ydash = y

14

15 tx = []

16 ty = []

17

18 n = 0

19 while (n<100000):

20

21 tx.append(xdash)

22 ty.append(ydash)

27

23 #avgx = np.mean(tx)

24 #avgy = np.mean(ty)

25 z = ydash - xdash

26 p = 0.5*np.tanh((0.2*z) + 1)

27 k = np.cosh(1+(0.2*z))

28 pdash = 0.1/(k*k)

29 dx = 0.25*pdash*(p - 0.2)

30 dy = 0.05*pdash

31 xdash = x + dx

32 ydash = y + dy

33 x = xdash; y = ydash

34 n = n + 0.5

35

36 i=i+1

37 plt.plot(tx,ty)

38 plt.xlim((0,25))

39 plt.ylim((0,25))

40 plt.xlabel('female resistance x', fontsize=14)

41 plt.ylabel('male stimulus y', fontsize=14)

42 #plt.ylabel('Probability of each genotype')

43 plt.title("Gavrilets Runaway Sexual Selection")

44 plt.savefig('gavri.png',dpi=150)

45 plt.show()

5.3 Random Selection Model

Given below is the Python code for generating a random selection model as discussed

in Chapter 3. Note that this code only has the main loop. One must add all the

other fundamental elements for the complete output. For more information, kindly

visit https://github.com/kriashks/expgen.

1 for j in range(0,40):

2 # overall loop/ The number of generations.

3 for i in range(0,20):

4 #This loop randomly chooses pairs from the existing

5 #generation and creates a list of possible progenies.

6 #It then creates a certain number of children.

7

8 # randomly choosing partners from gen0

9 p1,p2 = np.random.choice(gen0,2,replace=False)

10 #print (p1,p2)

11

12 # crossing to get first filial generation #

28

https://github.com/kriashks/expgen

13 # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy #

14 children = product(p1, p2)

15 # joining the array as ['','','',''] #

16 all_children.extend([''.join(c) for c in children])

17

18 # append nextgen for the next generation to cross and

19 # choose a certain number of children from every cross

20 nextgen.extend(np.random.choice(all_children,10))

21 #print 'all_children=', all_children

22 #print 'next generation=', nextgen

23 all_children=[]

24 gen0.pop(gen0.index(p1))

25 gen0.pop(gen0.index(p2))

26 #print 'gen0 after pop=', gen0

27 if len(gen0) == 0:

28 break

29 # replace parent generation with filial generation

30 gen0 = nextgen

31 #print(gen0)

5.4 One Sex is Sexually Selected

Given below is the Python code for generating a sexual selection model where only

one of the parents are selected via sexual selection and the other parent is chosen

randomly, as discussed in Chapter 4. Note that this code only has the main loop.

One must add all the other fundamental elements for the complete output. For more

information, kindly visit https://github.com/kriashks/expgen.

1 for j in range(1,500):

2 # overall loop/ The number of generations.

3 #print ('Generation number: ',j)

4 p1 = list(np.random.choice(gen0,100,replace=False))

5 p2 = findmum(gen0,100)

6

7 for i in range(50):

8 #This loop randomly chooses pairs from the existing

9 #generation and creates a list of possible progenies.

10 #It then creates a certain number of children.

11 # randomly choosing partners from gen0

12 dad = p1[i]

13 mom = p2[i]

14

29

https://github.com/kriashks/expgen

15 # crossing to get first filial generation

16 children = product(dad, mom)

17 # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy

18

19 all_children.extend([''.join(c) for c in children])

20 # joining the array as ['','','',''] #

21

22 # append nextgen for the next generation to cross and

23 # choose a certain number of children from every cross

24 nextgen.extend(np.random.choice(all_children,10))

25 all_children=[]

26 p1.pop(p1.index(dad))

27 p2.pop(p2.index(mom))

28 if len(p1) == 0:

29 break

30 if len(p2) == 0:

31 break

32 # replace parent generation with filial generation

33 if len(nextgen) > 1000:

34 # limited the sample size of the generation by 1000

35 nextgen = list(np.random.choice(gen0,1000))

36

37 gen0 = nextgen

5.5 Both sexes are sexually selected

Given below is the Python code for generating a sexual selection model where both

the parents are selected via sexual selection, as discussed in Chapter 4. Note that

this code only has the main loop. One must add all the other fundamental elements

for the complete output. For more information, kindly visit https://github.com/

kriashks/expgen.

1 for j in range(1,500):

2 # overall loop/ The number of generations.

3 #print ('Generation number: ',j)

4 p1 = finddad(gen0,100)

5 p2 = findmum(gen0,100)

6

7 for i in range(50):

8 #This loop randomly chooses pairs from the existing

9 #generation and creates a list of possible progenies.

10 #It then creates a certain number of children.

30

https://github.com/kriashks/expgen
https://github.com/kriashks/expgen

11 # randomly choosing partners from gen0

12 dad = p1[i]

13 mom = p2[i]

14

15 # crossing to get first filial generation #

16 children = product(dad, mom)

17 # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy #

18

19 all_children.extend([''.join(c) for c in children])

20 # joining the array as ['','','',''] #

21

22 # append nextgen for the next generation to cross and

23 # choose a certain number of children from every cross

24 nextgen.extend(np.random.choice(all_children,10))

25 all_children=[]

26 p1.pop(p1.index(dad))

27 p2.pop(p2.index(mom))

28 if len(p1) == 0:

29 break

30 if len(p2) == 0:

31 break

32 # replace parent generation with filial generation

33 if len(nextgen) > 1000:

34 # limited the sample size of the generation by 1000

35 nextgen = list(np.random.choice(gen0,1000))

36

37 gen0 = nextgen

38 leng=len(gen0)

5.6 One sex is sexually selected with switching

Given below is the Python code for generating a sexual selection model where only one

of the parents are selected via sexual selection and the other parent is chosen randomly,

as discussed in Chapter 4. In addition, in this model, the preferred genotype changes

over a certain period. Note that this code only has the main loop. One must add

all the other fundamental elements for the complete output. For more information,

kindly visit https://github.com/kriashks/expgen.

1 for j in range(1,500):

2 # overall loop/ The number of generations.

3 #print ('Generation number: ',j)

4 p1 = list(np.random.choice(gen0,100,replace=False))

31

https://github.com/kriashks/expgen

5

6 if (counter<100):

7 p2 = findmum1(gen0,100)

8 if (99<counter<200):

9 p2 = findmum2(gen0,100)

10 counter=counter+1

11 if (counter==200):

12 counter=0

13

14 for i in range(50):

15 #This loop randomly chooses pairs from the existing

16 #generation and creates a list of possible progenies.

17 #It then creates a certain number of children.

18 # randomly choosing partners from gen0

19 dad = p1[i]

20 mom = p2[i]

21

22 # crossing to get first filial generation #

23 children = product(dad, mom)

24 # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy #

25

26 all_children.extend([''.join(c) for c in children])

27 # joining the array as ['','','',''] #

28

29 # append nextgen for the next generation to cross and

30 # choose a certain number of children from every cross

31 nextgen.extend(np.random.choice(all_children,10))

32 all_children=[]

33 p1.pop(p1.index(dad))

34 p2.pop(p2.index(mom))

35 if len(p1) == 0:

36 break

37 if len(p2) == 0:

38 break

39 # replace parent generation with filial generation

40 if len(nextgen) > 1000:

41 # limited the sample size of the generation by 1000

42 nextgen = list(np.random.choice(gen0,1000))

43

44 gen0 = nextgen

32

Bibliography

[Gavrilets 01] S. Gavrilets, G. Arnqvist & U. Friberg. The evolution of female mate

choice by sexual conflict. Proceedings of the Royal Society B: Biolog-

ical Sciences, 2001.

[Gavrilets 03] Sergey Gavrilets. Perspective: Models of speciation - What have we

learned in 40 years?, 2003.

[Gavrilets 14a] Sergey Gavrilets. Is sexual conflict an “Engine of speciation”? Cold

Spring Harbor Perspectives in Biology, 2014.

[Gavrilets 14b] Sergey Gavrilets. Models of speciation: Where are we now?, 2014.

33

	List of Figures
	List of Tables
	Contents
	Abstract
	Introduction
	Natural & Sexual Selection
	Why do we need theoretical models?

	Population Genetics Model
	Gavrilets' runaway sexual selection
	Algorithm
	The need for explicit genetic models

	Random Mating Model
	Explicit Genetic Model for Random Selection
	Assumptions
	Algorithm
	Results

	Explicit Sexual Selection Model
	Coding sexual selection
	Assumptions
	Algorithm

	One sex is sexually selected
	Only males are sexually selected
	Only females are sexually selected

	Both sexes are sexually selected
	One sex is sexually selected with switching
	Conclusion

	Annex: Python Codes and Explanations
	Fundamental Codes
	Libraries Required
	To count the frequencies
	To plot the frequencies
	To create a parent generation
	To implement sexual selection

	Gavrilets' Model
	Random Selection Model
	One Sex is Sexually Selected
	Both sexes are sexually selected
	One sex is sexually selected with switching

	Bibliography

