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Notation

|Ψ⟩ → Wavefunction

⊗ → Tensor product

ρ → Density matrix

ρx → Reduced Density matrix

S = −Tr(ρxlogρx) → Entanglement entropy

|α⟩ → Coherent state

D±(α±) → Displacement operator

Gqx → Propagator(To describe dynamics)

P (Q1, t) → Probability distribution function

⟨Q1⟩ → Expectation value
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Abstract

In this thesis a study of quantum entanglement in coupled LC-oscillators is presented.

Two inductively coupled LC-oscillators are quantized. Ground and excited states

of this system are quantum entangled. Entropy of quantum states is calculated.

Oscillators in two different states, one is in unperturbed ground state and the second

is in coherent state, are also studied. The evolution with one oscillator initially in its

ground state, the other in a coherent state is done. Harmonic oscillator propagator is

also used to study the dynamics of the system.
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Chapter 1

Introduction

1.1 Quantum Entanglement

Why Quantum Entanglement? Why do we need to study quantum entanglement?

We live in a world where objects can at will be separated and be treated individually.

However, this mindset cannot be kept if we are dealing with world in terms of quantum

physics. Entanglement is one of the most fascinating features of quantum physics,

and it is at the heart of applications such as quantum computation, teleportation,

quantum cryptography etc. It certainly is the key element to the mysteries contained

in quantum mechanics and after over seventy years of struggle to understand and

interpret this peculiar feature of quantum physics, the term “entanglement” itself hints

at an intimate relationship between physical systems, an inseparability of objects, and

properties thereof, that in a classical world of everyday life seems inconceivable.

Quantum entanglement of two particles in a quantum state in which measurements

made on the quantum state of one particle instantaneously influence measurement
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outcomes on the other particle.

Figure 1.1: Quantum Entanglement

|Ψ⟩ = 1√
2
(|↑⟩A ⊗ |↓⟩B − |↓⟩A ⊗ |↑⟩B) (1.1)

In other words, it is entangled and cannot be written as the product of two individual

states i.e. |Ψ⟩ ̸= |Ψ⟩A ⊗ |Ψ⟩B.

According to Quantum Mechanics, if one performs a measurement of the spin of par-

ticle one and obtain the result |↑⟩A, the spin of the second particle is projected onto

the state |↓⟩B. A measurement of quantum state of a particle therefore changes the

state of other particle, even though the particles are separated very far from each

other. This was a paradox for Einstein, Podolsky and Rosen, since they assumed

that the reality should be described by a local theory. They therefore concluded that

Quantum Mechanics is an incomplete theory. One can think of alternative hidden

variables theories which can be used to explain entanglement. The predictions of lo-

cal hidden variable theories and Quantum Mechanics differs, and the theories can be

tested using Bell inequalities [9]. Now we of course believe that Quantum Mechanics

is the correct description of the reality, and we use entanglement to describe non-local

and non-classical correlations.
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Originally, the notion of entanglement came up in the context of nonclassical corre-

lations between the results of measurements on two distinct parts of a multipartite

system. For example, it is possible to prepare two particles in a single quantum state

such that when one is observed to be spin-up, the other one will always be observed

to be spin-down and vice versa, this despite the fact that it is impossible to predict,

according to quantum mechanics, which set of measurements will be observed. As a

result, measurements performed on one system seem to be instantaneously influencing

other systems entangled with it.

1.1.1 Entanglement of pure states

A pure quantum state can be represented by a vector in a complex Hilbert space with

unit length. Thus for each pure state |Ψ⟩ and any basis |ϕ1⟩, ..., |ϕn⟩ the state |Ψ⟩

can be extended to

|Ψ⟩ = α1 |ϕ1⟩+ α2 |ϕ2⟩+ ...+ αn |ϕn⟩

where
∑n

i=1 |αi|2 = 1. Now we consider the entanglement of pure states. Let {|ϕi⟩, i

= 1, 2, ..., n} and {|χj⟩ , j = 1, 2, ..., m} be orthonormal bases of n-dimensional Hilbert

space Hn and m-dimensional Hilbert space Hm respectively. Denote by Hmn a Kronecker

product of spaces Hn and Hm. Thus Hmn = Hn ⊗Hm is a nm-dimensional Hilbert space

with orthonormal basis {|ϕi⟩ ⊗ |χj⟩ i, i = 1, 2, ..., n, j = 1, 2, ..., m}, where |ϕi⟩ ⊗ |χj⟩ =

|ϕi⟩ |χj⟩ =
∑n

i=1

∑m
j=1 δij |ϕi⟩ |χj⟩ and

∑m
j=1 |δij |2 = 1.

A pure state |Ψ⟩ ∈ Hmn is called separable if and only if it can be written as Kronecker

product of states |ϕi⟩ =
∑n

i=1 αi |ui⟩ ∈ Hn and |χi⟩ =
∑m

j=1 βj |vj⟩ ∈ Hm

|Ψ⟩ = |ϕi⟩ ⊗ |χj⟩

3



otherwise the given state |Ψ⟩ is entangled.

1.1.2 Entanglement of mixed states

Any pure state |Ψ⟩ can be identified with the density operator expressed as ρ = |Ψ⟩ ⟨Ψ|.

Each density operator for pure state � is a projection operator into one-dimensional space

thus satisfies the property ρ2 = ρ. Consider statistical mixture of pure states {ρi = |Ψi⟩ ⟨Ψi|,

i = 1, 2, ..., n} with probabilities {pi, i = 1, 2, ..., n}. Then the density operator for the

system is expressed as

ρ =
n∑

i=1

piρi

.

Let Hn and Hm be Hilbert spaces. Denote by ρ a density operator of state from Hn ⊗Hm.

Operator ρ is called separable if there exist a sequence {pi}ni=1 of positive real numbers

summing to 1, a sequence density operators {ρni }ni=1 corresponding with states from Hn and

a sequence density operators {ρmj }mj=1 corresponding with states from Hm such that

ρ =
n∑

i=1

piρ
n
i ⊗ ρmj

We can also say that, if the mixed state can be written as a convex combination of kronecker

product of density operators then the state is separable.

1.2 Quantization of LC circuit

A well-known LC circuit consists of an inductor and a capacitor cause oscilla�ons in the flux

of the inductor and the charge of the capacitor. An LC circuit can be quantized using the

same methods as for the quantum harmonic oscillator.
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Figure 1.2: LC Circuit

Consider an inductor L and a capacitor C connected in parallel. The Hamiltonian for this

circuit is

H =
Q2

2C
+

Cω2Φ2

2
(1.2)

where Φ is the flux passing through the inductor and Q is the charge across the capacitor.

Take the flux Φ as the variable and write the Hamiltonian in the form

H =
P 2
Φ

2MΦ
+

MΦω
2Φ2

2
(1.3)

where ω =
√

1
LC is the resonant frequency of the circuit.

Similar to one-dimensional harmonic oscillator problem, an LC circuit can be quantized

by either solving the Schrödinger equation or using creation and annihilation operators.

The energy stored in the inductor can be looked at as a ”kinetic energy term” and the

energy stored in the capacitor can be looked at as a ”potential energy term”. The first

term represents the energy stored in a capacitor, and the second term represents the energy

stored in an inductor. By analogy with the Simple Harmonic Oscillator, define the creation

and annihilation operators such that

Q̂k = i

√
2Cωkℏ

2
(â†k − âk) Φ̂k =

√
Cωkℏ
2

(â†k + âk)

5



Identifying Φ̇C as the canonical momentum π and the coordinate as the flux Φ, we are in a

position to write the quantum mechanical commutation relation:

[Q̂, Φ̂] = −iℏ (1.4)

The coordinate representation of π is -ιℏ d
dϕ . Hence the Hamiltonian operator will read:

Ĥ = ℏω
(
â†â+

1

2

)
(1.5)

The eigen-solutions and energy eigenvalues for the above operator are given by

Ψn(Φ) =
1√
2nn!

(
Cω

πℏ

) 1
4

e−
CωΦ2

2ℏ Hn

(√
Cω

ℏ
Φ

)
E = ℏω

(
n+

1

2

)
(1.6)
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1.3 Quantization of Two Inductively Coupled LC

Circuits

Two inductively coupled LC circuits have a non-zero mutual inductance. This is equivalent

to a pair of harmonic oscillators with a kinetic coupling term. These two inductively coupled

LC circuits are shown in Figure 1.3, having 2 circuits gives 2 resonant frequencies whose

separation depends on the value of the mutual inductance M.

Figure 1.3: Coupled LC Circuits

The Lagrangian for an inductively coupled pair of LC circuits is as follows:

L =
Q2

1

2C1
+

Q2
2

2C2
+

MΦ1Φ2

L1L2
− Φ2

1

2L1
− Φ2

2

2L2
(1.7)

As usual, the Hamiltonian is obtained by a Legendre transform of the Lagrangian.

Ĥ =
Q̂2

1

2C1
+

Q̂2
2

2C2
+

Φ̂2
1

2L1
+

Φ̂2
2

2L2
+

M Φ̂1Φ̂2

L1L2
(1.8)

It is very cumbersome to solve the Schrödinger equation directly so the best way to solve it

by decoupling of Hamiltonian by following Transforma�ons:
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 Q̂X

Q̂Y

 =


(

C2
C1

) 1
4

cosβ
(

C1
C2

) 1
4

sinβ

−
(

C2
C1

) 1
4

sinβ

(
C1
C2

) 1
4

cosβ


 Q̂1

Q̂2

 (1.9)

 Φ̂X

Φ̂Y

 =


(

C1
C2

) 1
4

cosβ
(

C2
C1

) 1
4

sinβ

−
(

C1
C2

) 1
4

sinβ

(
C2
C1

) 1
4

cosβ


 Φ̂1

Φ̂2

 (1.10)

After diagonalisation the hamiltonian will read:

Ĥ =
Q̂2

X

2C
+

CωXΦ̂2
X

2
+

Q̂2
Y

2C
+

CωY Φ̂
2
Y

2
(1.11)

where:

C =
√
C1C2, ωX =

[
ω2
1 cos2 β + ω2

2 sin2 β + 2M sinβ cosβ
CL1L2

] 1
2

ωY =

[
ω2
1 sin2 β + ω2

2 cos2 β − 2M sinβ cosβ
CL1L2

] 1
2

β = 1
2 tan−1

[
2M

CL1L2(ω2
1−ω2

2)

]

Schrödinger Equation is given by:

ĤΨ̂(ΦX ,ΦY ) = EΨ̂(ΦX ,ΦY )

−ℏ2
2C

[
d2

dΦ2
X

+ d2

dΦ2
Y

]
Ψ(ΦX ,ΦY )+

[
Cω2

XΦ2
X

2
+

Cω2
XΦ2

X
2

]
Ψ(ΦX ,ΦY )=EΨ(ΦX ,ΦY )

Ground state and first excited wave function are as follows:

Ψ00(ΦX ,ΦY ) =

√
C

πℏ
(ωXωY )

1
4 e−

C
2ℏ [ωXΦ2

X+ωY Φ2
Y ]

Ψ00(Φ1,Φ2) =

√
C

πℏ
(ωXωY )

1
4 e

− C
2ℏ

[
ωX

{(
C1
C2

) 1
4 cosβ Φ1+

(
C2
C1

) 1
4 sinβ Φ2

}2
+ωY

{
−
(

C1
C2

) 1
4 sinβ Φ1+

(
C2
C1

) 1
4 cosβ Φ2

}2]
8



Similarly,

Ψ10(Φ1,Φ2) =

√
2ωXC

ℏ

(
K1Φ1 +K2Φ2

)√
C

πℏ
(ωXωY )

1
4 e−

C
2ℏ

[
χ1+χ2

]

where K1 =

(
C1
C2

) 1
4

cosβ, K2 =

(
C2
C1

) 1
4

sinβ, χ1 = ωX

{(
C1
C2

) 1
4 cosβ Φ1+

(
C2
C1

) 1
4 sinβ Φ2

}2

and χ2 = ωY

{
−
(
C1
C2

) 1
4 sinβ Φ1 +

(
C2
C1

) 1
4 cosβ Φ2

}2

The wave function is separable in terms of ΦX and ΦY variables. However, for the variables

Φ1 and Φ2, the story is quite different, and can be extended to the issue of entanglement.

1.4 Entanglement Measurement

In this section, I am going to give a description of quantum entanglement within the math-

ematical framework of quantum mechanics and show how the notion of entropy is extended

to entanglement entropy, which can be interpreted as a measure of quantum entanglement.

Before defining entanglement entropy, recall that the density matrix corresponding to a

composite system consisting of subsystems A and B, can be traced over with respect to one

of the subsystems, resulting in the reduced density matrix of the other subsystem, whereas

the total density matrix describes a pure state, the reduced density matrix of either subsys-

tem will, in the case that the two subsystems are entangled, be equivalent to the density

matrix of a mixed state.

Consider an entangled state which is described by two particles with spin1
2 , let’s say spinA

and spinB, living in subspaces HA and HB of the complete hilbert space. The state reads

9



|Ψ⟩ = 1√
2
(|↑⟩A ⊗ |↓⟩B − |↓⟩A ⊗ |↑⟩B) (1.12)

Now by comparing this equation to the wavefunction of section 1.1.1 we can define a matrix

M as

M =

 0 1√
2

−1√
2

0

 (1.13)

By forming the density matrix ρ = |Ψ⟩ ⟨Ψ| and then and tracing out pinB , we find the

reduced density matrix ρA of spinA , the elements of which are, in the basis of eigenstates

corresponding to spinA , given by the elements of the matrix MM † . This gives

ρA = MM † =

1
2 0

0 1
2

 (1.14)

or it can be written in the form

ρA =
1

2
(|↑⟩A ⟨↑|+ |↓⟩B ⟨↓|) (1.15)

A density matrix of this form could never correspond to a pure quantum state, however it

could definitely describe a mixture of two pure states, both with probability 1
2 . Here part of

the information about subsystem A resides in the degrees of freedom of subsystem B which

were traced out and are, therefore, no longer accessible.

Now define an entropy related to the mixed form of the reduced density matrix resulting

from the quantum entanglement between different subsystems. It is defined in the same way

as the von-Neumann entropy, but with the regular density matrix replaced by the reduced

10



one. When a system in a pure state can be divided into two subsystems A and B that are

entangled, the entanglement entropy can be expressed both in terms of ρA and ρB and is

given by

S = −Tr(ρA log ρA) = −Tr(ρB log ρB) (1.16)

It states that there can always be found a basis such that the reduced density matrices of

both subsystems are diagonal in this basis and have the same eigenvalues. The entanglement

entropy in terms of these eigenvalues λm simply reads

S = −
∞∑

m=0

λm logλm

Returning to the example, it has to be noted that reduced density matrix ρA is of the form

of the density matrix which corresponds to a maximally mixed state. It follows that the

entanglement entropy of singlet state is S = log 2 and we can infer that this is an example of

a maximally entangled state. In general, entanglement entropy is measure for the amount

of entanglement between two systems.

Now we are able to to derive the the entanglement entropy corresponding to a system of

two coupled LC oscillators.

As a measurement of entanglement, entropy provides one tool that can be used to quantify

entanglement, although other entanglement measures exist. Entanglement entropy measures

the quantum information content of a quantum state.

The density matrix ρ = |Ψ⟩ ⟨Ψ| is symmetric, and we can simply proceed to trace out any

one of the sub-systems to obtain the reduced density matrix of the other:

11



ρ00(Φ1,Φ
′
1) =

∫ +∞

−∞
dΦ2Ψ

∗
00(Φ

′
1,Φ2)Ψ00(Φ1,Φ2)

ρ00(Φ1,Φ
′
1) =

√
C

πbℏ
(ωXωY )

1
2 e−

C
2ℏ

[
(a− d2

8b
)(Φ2

1+Φ
′
1
2)− d2

4b
Φ1Φ

′
1

]

ρ00(Φ1,Φ
′
1) =

√
C

πbℏ
(ωXωY )

1
2 e−[(a1+a2)(Φ2

1+Φ
′
1
2)+2a2Φ1Φ

′
1]

Similarly,

ρ10(Φ1,Φ
′
1) =

2ωXC

ℏ

[
K2

1Φ1Φ
′
1 +

K2d

4b

(
K2d

4b
−K1

)
(Φ1 +Φ

′
1)

2

]
ρ00(Φ1,Φ

′
1)

where: a =
√

C1
C2

(ωX cos2 β + ωY sin2 β), b =
√

C2
C1

(ωX sin2 β + ωY cos2 β) and

d = (ωX − ωY ) sin(2β), a1 = Ca
2ℏ , a2 = − Cd2

16bℏ , K1 = (C1
C2

)
1
4 cosβ and K2 = (C2

C1
)
1
4 sinβ

The entanglement entropies of the system in the von Neumann description are given below:

S = −
∞∑

m=0

λm logλm

S00 = − log(1− ζ)− ζ

1− ζ
log ζ

S10 = −2 log
(
1− χ2

)
− 2χ2

1− χ2
logχ2− (1− χ2)2

∞∑
α=0

χ2α log(α+ 1)α+1

where: λm = (1− t)tm, ζ = a2
a1+a2+

√
(a1+a2)2−a22

, χ =
√
ωY cosβ−√

ωX sinβ√
ωY cosβ+√

ωX sinβ

12



Following are the plots of the ground state entropy with different values of ζ

Figure 1.4: S00 ζ → 0, 1

Figure 1.5: S00 ζ → 0.1, 1

Figure 1.6: S00 ζ → 0.2, 1
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Figure 1.7: S00 ζ → 0.3, 1

Figure 1.8: S00 ζ → 0.4, 1

Figure 1.9: S00 ζ → 0.5, 1
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Figure 1.10: S00 ζ → 0.6, 1

Figure 1.11: S00 ζ → 0.7, 1

Figure 1.12: S00 ζ → 0.8, 1

Similarly, first excited state entropies are plotted
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Figure 1.13: S10 χ2 → 0, 1

Figure 1.14: S10 χ2 → 0, 0.9

Figure 1.15: S10 χ2 → 0, 0.8

16



Figure 1.16: S10 χ2 → 0, 0.7

Plots of the result are shown in the above figure, where ground state is included and where

S is displayed as a function of ζ and χ2. It can be inferred that S increases for increasing χ2.

Moreover, it also increases for other levels. This can be explained by recalling the expression

for χ and noting that χ is small when ωX ≈ ωY . This is the case when M ≈ 0, hence when

the coupling between the two original oscillators is small. This should intuitively make

sense, since there is simply no entanglement between decoupled systems.
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Chapter 2

Coupled ground and coherent state

2.1 Coherent States

Coherent state is the specific quantum state of the quantum harmonic oscillator, often

described as a state which has dynamics most closely resembling the oscillatory behavior

of a classical harmonic oscillator. It describes the oscillating motion of a particle confined

in a quadratic potential well. The coherent state describes a state in a system for which

the ground-state wavepacket is displaced from the origin of the system. This state can be

related to classical solutions by a particle oscillating with an amplitude equivalent to the

displacement.

2.1.1 Quantum Mechanical Definition

Mathematically, a coherent state|α⟩ is defined to be the (unique) eigenstate of the annihi-

lation operator â associated to the eigenvalue α.

â |α⟩ = α |α⟩

Since â is not hermitian, α is, in general, a complex number. Writing α = |α|eiθ, |α| and θ
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are called the amplitude and phase of the state |α⟩. It means that a coherent state remains

unchanged by the annihilation of field excitation or, say, a particle.

2.2 Oscillators in different states

Two coupled LC oscillators constitute an ideally simple model of quantum/classical coupling.

First, the system separates into normal modes behaving as independent oscillators, so the

evolution of the system from any initial data can be followed exactly. Second, the classical

limit of a quantum oscillator is easily described by a coherent state, a Gaussian wave packet

of fixed width, the centroid of which follows a classical trajectory. In the present work

analysis of the behavior of coupled oscillators with one initially in its quantum ground

state, the other initially in such a coherent state is done.

If the system is started with one oscillator in its quantum ground state and the other in

a coherent state, for example, if the coupling between them is “turned on” at some initial

time, then subsequently the two normal modes evolve one in a coherent state, the other in

a modified state termed a displaced squeezed state, for example, in quantum optics. The

initially quantum oscillator acquires an oscillating position expectation value—a “beat”

between the normal modes.

The wave function for a state with one oscillator initially in its ground state, the other in a

coherent state is constructed. From this expectation values of charge and flux are obtained

for both the oscillators. Expectation values behave very like those in the identical-oscillator

(“symmetric”) case,. However, one simple case may be of particular physical importance:

that of oscillators with different masses, but equal (uncoupled) frequencies, i.e., that of

quantum and classical oscillators interacting “at resonance.”

Construct a quantum oscillator coupled to a classical oscillator by a different choice of state:
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envision oscillator 1 in its unperturbed ground state, and oscillator 2 in a coherent state

with classical amplitude q0, at time t = 0. Follow the subsequent evolution of this state,

and determine the probability distributions, expectation values, for both the oscillators. In

effect, oscillator 1 is in its ground state, oscillator 2 is behaving classically with oscillation

amplitude q0 , and the coupling “turns on” at time t = 0.

The Hamiltonian for this system can be written as

H =
Q2

1

2C1
+

(Q2 − q0)
2

2C2
+

Φ2
1

2L1
+

Φ2
2

2L2
+

MΦ1Φ2

L1L2
(2.1)

Using the following transformation to decouple the hamiltonian:

 Q̂X

Q̂Y

 =


(

C2
C1

) 1
4

cosβ
(

C1
C2

) 1
4

sinβ

−
(

C2
C1

) 1
4

sinβ

(
C1
C2

) 1
4

cosβ


 Q̂1

Q̂2

 (2.2)

 Φ̂X

Φ̂Y

 =


(

C1
C2

) 1
4

cosβ
(

C2
C1

) 1
4

sinβ

−
(

C1
C2

) 1
4

sinβ

(
C2
C1

) 1
4

cosβ


 Φ̂1

Φ̂2

 (2.3)

After diagonalisation the hamiltonian will read:

Ĥ =
Q̂2

X

2C
+

CωXΦ̂2
X

2
+

Q̂2
Y

2C
+

CωY Φ̂
2
Y

2
(2.4)

Define annihilation and creation operator:

ak =
√

Cωk
2ℏ Φk + i

√
1

2CωkℏQk, a†k =
√

Cωk
2ℏ Φk −

√
1

2CωkℏQk

And then define the modified annihilation and creation operators a−, a†−, a+ and a†+ by the

equations:
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a± = 1√
2
(a1 ± ia2), a†± = 1√

2
(a†1 ∓ ia†2)

From the commutation relations among a1, a†1, a2 and a†2, it can be deduced that

[a+, a†+] = [a−, a†−] = 1

Coherent states in this case are the simultaneous eigen states of the two mutually commuting

annihilation operators a+ and a−. Such a state can be written as

|α+α−⟩ = |α+⟩ ⊗ |α+⟩

where

a+ |α+⟩ = α+ |α+⟩ and a− |α−⟩ = α− |α−⟩

Since a+ and a− are not Hermitian operators, the eigen values + and − are in general

complex numbers. Moreover, the eigen vector |α+⟩ is a vector in the space spanned by the

complete set of eigen vectors of N+ = a†+a+. So,

|α+⟩ =
∑∞

n+=0 cn+ |n+⟩

By applying the annihilation operator a + on both sides of the equation and using the fact

that

a+ |n+⟩ = √
n+ |n+ − 1⟩

it can be shown that

cn+ =
α
n+
+√
n+!

c0 and |n+⟩ =
(a†+)n+√

n+!

Assuming |α+⟩ is normalised,

c0 = e−
1
2
|α+|2

Now, in order to derive the state vector, assume that at t=0,

|Ψ(0)⟩ = |α+α−⟩

= e−
1
2
|α+|2eα+a+ |0+⟩ ⊗ |α−⟩
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= e−
1
2
|α+|2 ∑∞

n+=0
(α+a†+)n+

n+! |0+⟩ ⊗ |α−⟩

= e−
1
2
|α+|2 ∑∞

n+=0
α
n+
+

n+! |n+⟩ ⊗ |α−⟩

= e−
1
2
|α+|2eα+a+ |0+⟩ ⊗D−(α−) |0−⟩

So, it can be written as

|Ψ(0)⟩ = D+(α+) |0+⟩ ⊗D−(α−) |0−⟩

where

D+(α+) = eα+a†+−α∗
+a+ , D−(α−) = eα−a†−−α∗

−a−

Use the following equation in writimg displacement operator(D+, D−)

eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂]

The charge coordinate space representation of |Ψ(0)⟩ is given as

Ψ(Qx, Qy, 0) = ⟨QxQy|Ψ(0)⟩ = ⟨QxQy|eα+a†+−α∗
+a+−α−a†−−α∗

−a− |Ψ(0)⟩

After solving,

Ψ(Qx, Qy, 0) =

(
C2ω1ω2

π2ℏ2

) 1
4

e−
C
2ℏ

[
(ω1 cos2 β+ω2 sin2 β)Q2

x+(ω1 sin2 β+ω2 cos2 β)Q2
y+(ω2−ω1) sin(2β)QxQy−2ω2Q0(Qx sinβ+Qy cosβ)+ω2Q2

0

]

The time-dependent wave function for this state is again obtained by applying separate

harmonic oscillator propagators Gqx and Gqy for the two normal modes.
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GqxGqyΨ(Qx, Qy, 0) =

(
C2ω1ω2

π2ℏ2

) 1
4
(

C2ωqxωqy

4i2π2ℏ2 sin(ωqxt) sin
(
ωqyt

)) 1
2

e−
Cω2

2
2ℏ Q2

0e
iCωqx cot(ωqxt)

2ℏ q2xe
iCωqy cot(ωqy t)

2ℏ q2y

exp
[
− C

2ℏ
[
(ω1 cos2 β+ω2 sin2 β− iωqx cotωqxt)Q

2
x+(ω1 sin2 β+ω2 cos2 β− iωqy cotωqy t)Q

2
y

+(ω2 − ω1) sin(2β)QxQy − 2
(
ω2Q0 sinβ − iωqx

qx
sin(ωqx t)

)
− 2

(
ω2Q0 cosβ − iωqy

qy
sin(ωqy t)

)]]

GqxGqyΨ(Qx, Qy, 0) =

(
C2ω1ω2
π2ℏ2

) 1
4
(

C2ωqxωqy

4i2π2ℏ2 sin(ωqxt) sin(ωqyt)

) 1
2

e−
Cω2

2
2ℏ Q2

0e
iC
2ℏ [Y

TWY ]e−
C
2ℏ [X

TBX−ATX−XTA]

where

X =

Qx

Qy

 Y =

qx

qy

 W =

ωqx cot(ωqxt) 0

0 ωqy cot
(
ωqy t

)
 A =

ω2Q0 sinβ − iωqx
qx

sin(ωqx t)

ω2Q0 cosβ − iωqy
qy

sin(ωqy t)



B =

ω1 cos2 β + ω2 sin2 β − iωqx cotωqxt
1
2(ω2 − ω1) sin 2β

1
2(ω2 − ω1) sin 2β ω1 sin2 β + ω2 cos2 β − iωqy cotωqy t


Hence, the propagation integral over Qx and Qy is a two-dimensional Gaussian integral of

the form

I =

∫
e−

C
2ℏ [X

TBX−ATX−XTA]d2Q

Let X = Z +B−1A

=

∫
e−

C
2ℏ [Z

TBZ−ATB−1A]d2Z

= e
C
2ℏ [A

TB−1A]

∫
e−

C
2ℏ [Z

TBZ]d2Z

=
2πℏ
C|B|

e
C
2ℏ [A

TB−1A]
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The wave function is then

Ψ(Y, t) =

(
C2ω1ω2

π2ℏ2

) 1
4
(

ωqxωqy

i2 sin(ωqxt) sin
(
ωqyt

)
|B|

) 1
2

e−
Cω2

2
2ℏ Q2

0e
C
2ℏ [A

TB−1A+iY TWY ]

A can also be written as

A = −iJ(Y+iK) where J =


ωqx

sin(ωqx t)
0

0
ωqy

sin(ωqy t)

 and K =

 ω2
ωqx

Q0 sin(β) sin(ωqxt)

ω2
ωqy

Q0 cos(β) sin
(
ωqy t

)


Hence,

Ψ(Y, t) =

(
C2ω1ω2

π2ℏ2

) 1
4
(

ωqxωqy

i2 sin(ωqxt) sin
(
ωqyt

)
|B|

) 1
2

e−
Cω2

2
2ℏ Q2

0e−
C
2ℏ [(Y

T+iKT )JB−1J(Y+iK)−iY TWY ]

To detemine the expectation values, separate the argument of Ψ into real and imaginary

parts:

Let JB−1J = M + iN

Ψ(Y, t) =

(
C2ω1ω2

π2ℏ2

) 1
4
(

ωqxωqy

i2 sin(ωqxt) sin
(
ωqyt

)
|B|

) 1
2

e−
Cω2

2
2ℏ Q2

0e−
C
2ℏ [Y

TMY−KTNY−Y TNK−KTMK+iY T (N−W )Y+i(KTMY+Y TMK)−iKTNK]

Since the matrix M contains no dependence on the classical amplitude Q0, normalization

of the wave function implies

ω2
2Q

2
0 = KT (NM−1N +M)K and |M | =

ω1ω2ω
2
qxω

2
qy

sin2(ωqxt) sin2
(
ωqy t

)
|B|2

It reduces the wavefunction to the form
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Ψ(Y, t) =

(
C2ω1ω2

π2ℏ2

) 1
4
(

ωqxωqy

i2 sin(ωqxt) sin
(
ωqyt

)
|B|

) 1
2

e
iC
2ℏ [K

TNK−(KTMY+YMKT )−Y T (N−W )Y ] e
C
2ℏ [(Y

T−KTNM−1)M(Y−M−1NK)]

The wave function is finite or regular for all Y and t�0; the components of M , M−1 ,

(V −W ) , and NK contain no vanishing denominators or divergent circular functions.

The probability distribution is given by:

P (Y, t) = |Ψ(Y, t)|2

=

(
C2|M |
π2ℏ2

) 1
2

e
−C
ℏ [(Y−M−1NK)TM(Y−M−1NK)]

To obtain the reduced probability distribution for the single oscillator coosdinate Q1, the

inverse transformation is needed:

Let = OQ

Y =


(

C2
C1

) 1
4

cosβ
(

C1
C2

) 1
4

sinβ

−
(

C2
C1

) 1
4

sinβ

(
C1
C2

) 1
4

cosβ


 Q1

Q2



Probability distribution now can be expressed as:

P (Q, t) =

(
C2|M |
π2ℏ2

) 1
2

e
−C
ℏ [(Q−O−1M−1NK)T (OTMO)(Q−O−1M−1NK)]

Reduction to P (Q1, t):

P (Q1, t) =

(
C2|M |
π2ℏ2

) 1
2
∫ ∞

−∞
e

−C
ℏ [(Q−O−1M−1NK)T (OTMO)(Q−O−1M−1NK)]dQ2
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Hence integrating P (Q, t) over Q2 yields

P (Q1, t) =

(
C2|M |
π2ℏ2

) 1
2

e
− C|M|

ℏ(OtMO)
[Q1−(O−1M−1NK)2]

Moreover, the above distribution is normalized and gaussian distribution for Q1.

The expectation value for the position of oscillator 1 in this state can be read off of P (Q1, t).

⟨Q1⟩ =
(
C2|M |
π2ℏ2

) 1
2
∫ ∞

−∞
e
− C|M|

ℏ(OtMO)
[Q1−(O−1M−1NK)2]

we know that ∫ ∞

∞
xe−(x−a)2dx =

∫ ∞

∞
(a+ t)e−t2dt

where x− a = t

= a

∫ ∞

∞
e−t2dt+

∫ ∞

∞
te−t2dt

= a
√
π

After solving:

⟨Q1⟩ = (O−1M−1NK)

⟨Q1⟩ = Q0 sin(β) cos(β)[cos(ωxt)− cos(ωyt)]

Similarly, it can be solved for oscillator 2

⟨Q2⟩ = Q0[sin2(β) cos(ωxt) + cos2(β) cos(ωyt)]
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Hence, the charge and flux coordinates are given by

⟨Q⟩ =

 Q0 sin(β) cos(β)[cos(ωxt)− cos(ωyt)]

Q0[sin2(β) cos(ωxt) + cos2(β) cos(ωyt)]



⟨Φ⟩ =


−Q2

0

2L1ω2
1

sin(2β)[ωx sin(ωxt)− ωy sin(ωyt)]

−Q2
0

2L2ω2
2
[ωx sin2(β) sin(ωxt)− ωy cos2(β) sin(ωyt)]



Following are the plots of the expectation values:

Figure 2.1: ⟨Q1⟩
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Figure 2.2: ⟨Φ1⟩

Figure 2.3: ⟨Q2⟩
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Figure 2.4: ⟨Φ2⟩

2.3 Realization of these circuits

Coupling qubits is essential for implementing 2-qubit gates. Coupling two qubits may be

achieved by connecting them to an intermediate electrical coupling circuit. The circuit might

be a fixed element, such as a capacitor, or controllable, such as a DC-SQUID. In the first

case, decoupling the qubits (during the time the gate is off) is achieved by tuning the qubits

out of resonance one from another, i.e. making the energy gaps between their computational

states different. This approach is inherently limited to allow nearest-neighbor coupling only,

as a physical electrical circuit is to be lay out in between the connected qubits. Another

method of coupling two or more qubits is by coupling them to an intermediate quantum

bus. The quantum bus is often implemented as a microwave cavity, modeled by a quantum

harmonic oscillator. Coupled qubits may be brought in and out of resonance with the bus

and one with the other, hence eliminating the nearest-neighbor limitation. The formalism

29



used to describe this coupling is cavity quantum electrodynamics, where qubits are analogous

to atoms interacting with optical photon cavity, with the difference of GHz rather than THz

regime of the electromagnetic radiation.

Under some approximations coupled rf-Squid collapses to coupled LC oscillators, it can be

deduced that coupled LC oscillators is a particualr case of coupled rf-Squid.

In superconducting quantum computing, flux qubits are loops of superconducting metal in-

terrupted by a number of Josephson junctions, functioning as quantum bits. The junction

parameters are engineered during fabrication so that a persistent current will flow continu-

ously when an external magnetic flux is applied. As only an integer number of flux quanta

are allowed to penetrate the superconducting ring, clockwise or counter-clockwise currents

are developed in the loop to compensate (screen or enhance) a non-integer external flux

bias. When the applied flux through the loop area is close to a half integer number of

flux quanta, the two lowest energy eigenstates of the loop will be a quantum superposition

of the clockwise and counter-clockwise currents. The two lowest energy eigenstates differ

only by the relative quantum phase between the composing current-direction states. Higher

energy eigenstates correspond to much larger persistent currents, that induce an additional

flux quantum to the qubit loop, thus are well separated energetically from the lowest two

eigenstates. This separation, known as the ”qubit non linearity” criteria, allows operations

with the two lowest eigenstates only, effectively creating a two level system.
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Chapter 3

Summary & Conclusions

3.1 Concluding Remarks

In chapter 1 entanglement entropy in a system of coupled harmonic oscillators is examined.

After reviewing the phenomenon of quantum entanglement and the associated entangle-

ment entropy within a quantum mechanical framework, it has been shown that how the

entanglement entropy between the oscillators in the ground state of the composite system

could be derived by integrating the density matrix over the position coordinates of one of

the oscillators and determining the eigenvalues of the resulting reduced density matrix. The

entanglement entropy S is expressed as a function of the parameter ζ and χ, which, in turn,

solely depended on the ratio between the two eigenfrequencies of the system in such a way

that it increased for larger coupling between the two original oscillators.

The obtained expression for the ground state is such that it could be acted on by creation

operators to form excited states. Excited states are considered that are linear combinations

of the Hamiltonian eigenstates, for these turned out to have an interesting and elegant form

in the basis which were studied. More precisely, acted with a creation operator that caused
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only the states forming the basis in one of the two subspaces, to be excited to the next level.

The corresponding reduced density matrix could be evaluated analytically in diagonal form,

from entanglement entropy S is evaluated in the first excited state. S turned out to increase

with χ and its curve depicting the χ , hence on the coupling strength, remained of the same

form.

In chapter 2, the interaction of two quantum LC oscillators are studied with one oscillator

initially in its unperturbed ground state, the other initially in a coherent state incorporat-

ing classical behavior. The subsequent evolution of the wave function is calculated exactly,

using ordinary harmonic-oscillator propagators for the normal modes of the system. The

reduced probability distribution for the charge of the initially quantum oscillator—a Gaus-

sian distribution with time-dependent expectation value, its charge and flux expectation

values, all follow from this wave function. The expectation values can be characterized as

a “beat” amplitude between the normal modes. The quantum character of the oscillator,

can be quite complicated, for oscillators with equal unperturbed frequencies, for example,

at resonance, this behavior can be described as a time-dependent quantum squeezing.

3.2 Future Outlook

In this thesis entanglement entropy(ground, first excited state), oscillators in two different

states are explored but there are other physical factors which could be explored exactly

and analytically such as entanglement entropy for different states, decoherence etc. The

corresponding reduced density matrix could be evaluated analytically in diagonal form, from

which we numerically evaluated entanglement entropy S in the excited states. Further work

could examine how entanglement entropy S would behave for excited eigenstates. How the

derivation of the entanglement entropy in charge(momentum) space seems to be less tedious
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than that in Fock space. How the loss in the system can lead to the decoherence? how the

derivation of the entanglement entropy in position space seems to be less tedious than that

in Fock space.
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