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Abstract

A quantum system interacting with a high intensity oscillating field can be de-

scribed by a time periodic semi-classical Hamiltonian. The Floquet theorem and

the (t,t′) formalism is employed with the objective to replace the time-dependent

Hamiltonian with a time-independent Hamiltonian represented by an infinite ma-

trix. This enables a solution of the time-dependent Schrödinger equation (TDSE)

for a quantum system and the time propagation has the advantage of bypassing the

complexity of time-ordering operator as chronological ordering is not required for

solving TDSE for time-independent Hamiltonians. However, the Floquet prescrip-

tion of solving the TDSE involves a very heavy diagonalization of Floquet matrix

at each time step. To address this problem, a memory and time saving computa-

tional scheme in the length gauge has already been suggested earlier which involves

the analytical diagonalization of uniform block tri-diagonal matrices. The current

work involves the proposition of a novel recursive algorithm in the acceleration

gauge, also called the Kramers-Henneberger (KH) frame in the high intensity field

regime, to study the quantum dynamics of the system in a linearly polarized laser.

The algorithm is tested for two test cases viz. the symmetric double well poten-

tial and the xenon model potential. The test calculation validates the proposed

recursive algorithm to perform quantum dynamics in the KH frame.



Chapter 1

Introduction

1.1 Light-Matter Interaction

The interaction of an atomic system with laser fields in the intense field regime

yields a semi-classical model [1] where the laser-atom interaction is treated classi-

cally, and the atom is considered to be a quantum system. The electromagnetic

radiation here comprises of time-periodic electric field, ~ε(~r, t), and magnetic field,

~B(~r, t), which can be described from classical scalar and vector potentials given

by Maxwell’s equations:

~ε(~r, t) = −∇φ(~r, t)− ∂

∂t
~A(~r, t) ~B(~r, t) = ∇× ~A(~r, t) (1.1)

Here ~A(~r, t) and φ(~r, t) are the vector and scalar potentials, respectively. The

dynamics of an atomic system, comprising of a single electron bound by an attrac-

tive Coulomb potential,[2] subject to an external classical electromagnetic field,

is described by solving the non-relativistic Time-Dependent Schrödinger Equation

(TDSE) within the fixed-nucleus (infinite nuclear mass) approximation:[3]

i~
∂ψ(~r, t)

∂t
= Ĥ(~r, t)ψ(~r, t). (1.2)

1
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The Hamiltonian, Ĥ(~r, t), consists of the field-free time-independent term, Ĥff (~r, t),

with the kinetic energy and potential energy for the electron, and the time-

dependent laser interaction component, Ĥ1(~r, t) of the form ~ε(t).~r, where ~ε is

the electric field component of the electromagnetic field, which is continuous wave

(CW) and linearly polarized in nature.

In this description it is important to fix and understand the gauge dependence of

the solution.

1.1.1 Gauge Transformation

A gauge transformation is defined as a unitary transformation that leads to a

formal, systematic transformation of the scalar and vector potentials without af-

fecting the physical fields, i.e., the fields should remain invariant under a gauge

transformation. According to the Maxwell’s equations, there is a vector potential

~A(~r, t) such that on addition of a gradient of arbitrary scalar field, χ(~r, t), the

magnetic field is unchanged.

∇ . ~B = 0 ∇× ~A = ~B ~A→ ~A+∇χ (1.3)

From Eq. [1.3], it is inferred that the magnetic field remains invariant upon

addition of the gradient of a scalar field χ(~r, t). Similarly from Eq. [1.4], adding a

time derivative of an arbitrary scalar field, χ(~r, t), to the scalar potential, φ(~r, t),

the electric field remains invariant, as can be seen from Eq. [1.4] (given below)

and Eq. [1.3].

∇× ~E = −∂
~B

∂t
−∇φ− ∂ ~A

∂t
= ~E φ→ φ− ∂χ

∂t
(1.4)

The TDSE should remain invariant upon a gauge transformation so that the mea-

surable atomic properties should not be affected by the transformation. Hence,

for the Schrödinger equation to remain unchanged upon the gauge transformation,



Chapter 1 Introduction 3

the wave function should transform according to the condition:

ψ′ = e−iχψ. (1.5)

In the forthcoming sections, a particular case, very similar to a gauge transfor-

mation, called the Kramers-Henneberger (KH) transformation is discussed and a

propagation algorithm for this KH is presented. The form of the Hamiltonian used

and given in Eq. [1.2] is in the length gauge, after the use of a dipole approxima-

tion.

1.1.2 The Dipole Approximation

Generally, the wavelength, λ, of the electromagnetic radiation is considerably

larger than the size of an atom.[4] The typical wavelength of the electromagnetic

radiation is in the range of few hundred nanometer (nm) and the diameter of an

atom ranges from 0.1 nm to 0.5 nm. Therefore, the spatial dependence of the

vector potential can be ignored. For a linearly polarized light, the general form of

the vector potential is:

~A(~r, t) = f(t) cos(~k.~r − ωt+ δω)~ε (1.6)

where ~ε is a unit vector along the direction of polarization of electromagnetic

radiation, ~k is the propagation vector with magnitude, |~k| = 2π
λ

, ω is the frequency

of the oscillating electric field, δω is the initial phase of the system, and f(t) is a

time-dependent wave-envelope term. Alternately,

~A(~r, t) = Re{f(t)ei
~k.~rei(ωt−δw)~ε}. (1.7)

A Taylor series expansion of ei
~k.~r yields:

ei
~k.~r = 1 + (i~k.~r) +

1

2
(i~k.~r)2 + . . . (1.8)
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The form of the vector potential on taking only the first two terms of the expansion:

~A(~r, t) ≈ 1

2
f(t)[(1 + i~k.~r)ei(ωt−δw) + (1− i~k.~r)e−i(ωt−δw)]~ε

≈ f(t)[cosωt+ ~k.~r sin(ωt)]~ε ; δw = 0

≈ ~A0(t) + ~A1(~r, t). (1.9)

Here, ~A0(t) is the spatially independent vector potential within the dipole approx-

imation and ~A1(~r, t) is the correction term. Since the size of an atom is very small

as compared to the wavelength of the electromagnetic radiation so the correction

term can be ignored. As a result, the vector potential is set to be:

~A(~r, t) = f(t). cosωt~ε. (1.10)

Since, the vector potential has only a temporal dependence within the dipole

approximation, the magnetic field ~B(~r, t) vanishes from Eq. [1.1] and the electric

field ~ε(t) is given by:

~ε(t) = −d
~A(t)

dt
(1.11)

For a CW laser, the time-dependent wave envelope function, f(t)=1. Hence, in the

Coulomb gauge, the TDSE for a single electron in an attractive Coulomb potential

V (~r) subject to an external oscillating electric field is:

i~
∂ψ(~r, t)

∂t
=

[
− ~2

2me

∇̂2 + ~ε(t).~r + V (~r)

]
ψ(~r, t) (1.12)

Having defined the Hamiltonian, the forthcoming sections will describe various

experiments and phenomenon related to light-matter interaction in the strong

field regimes.
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1.2 Electronic Response to Lasers

Atoms subject to ordinary light beams tend to ionize with a small probability.

From the quantum description of an atom, there is a discretization of the atomic

energy levels. When a photon of energy ~ω, interacts with the atom, the result

is ionization, provided ~ω is greater than the ionization potential of the atom. If

the intensity of the light beam is increased, the probability of ionization also rises

owing to the increased interactions between the photons and atoms resulting in

stripping off the outermost electron leading to ionization. A brief overview of the

basic phenomenology of ionization in the weak to strong intensity regimes of the

laser is presented in the following section.

1.2.1 Light induced Ionization Processes

1. Single photon ionization: The interaction of an atom with a photon

whose frequency matches with or exceeds the ionization energy (threshold

frequency) of the atom leads to its photoionization.[5, 6] The excess energy

above the threshold is imparted to the ejected electron in the form of kinetic

energy. This phenomenon is called single photon ionization.

2. Multiphoton ionization: In the weak field regime, ionization process pre-

dominantly takes place through single photon ionization phenomenon. How-

ever, as the intensity of laser field is increased, typically above 1013 W/cm2,

the frequency of laser need not be over the atom’s ionization potential and

the bound electron can absorb multiple photons leading to ionization of the

electron.[7–11] This process is termed as multiphoton ionization.

3. Above-threshold ionization: The above-threshold ionization (ATI) is an

unexpected phenomenon in multi-photon physics wherein the bound elec-

tron absorbs a larger number of photons than what is expected for its

ionization.[12] The simultaneous phase-coherence between the electron and

the parent ion along with the laser light for laser intensities above 1 TW/cm2

gives rise to ATI. This implies that the ionizing electron absorbs photons
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while still interacting with the parent ion which provides the necessary mo-

mentum transfer.[13]

4. Tunneling ionization: In the high intensity, low-frequency regime, the

bound valence electron experiences a quasi-static potential [14] created by

the superposition of the attractive Coulomb potential of the ionic core and

the instantaneous electric field potential VE = ~ε(t).~r. The strong laser field

intensity perturbs the binding potential to such an extent that allows the

electron to tunnel through a transformed barrier leading to ionization. This

phenomenon is known as tunnel ionization.

Both multiphoton ionization and tunneling ionization occur in the high-intensity

regime of the laser field. The multiphoton ionization process occurs at a high

frequency of laser field as the probability of ionization is higher with a fewer number

of high energy photons, since according to perturbation theory the absorption of

fewer photons is more likely as the probability of many photons interacting with

the atom at the same instant is very shallow.[15] However, for the bound electron

to tunnel through the barrier potential the tunneling time scale should be shorter

than the inverse frequency of the radiation. Therefore, for tunneling, the laser

frequency should be low.[16] Thus, the two ionization processes occur at different

regimes of the laser frequency spectrum.

Keldysh [14] gave a quantitative measure of the possibility of occurrence of the two

strong-field ionization mechanisms and proposed a general analytical expression,

known as the Keldysh parameter or the adiabaticity parameter,

γ = ω

√
2meVIE
eE

. (1.13)

Here ω is the angular frequency of the laser, VIE is the zero-field ionization energy

of the system, me and e are the mass and charge of the electron. For the electron

to tunnel through the potential barrier, the tunneling condition is such that the

Keldysh parameter, γ � 1 whereas for multiphoton ionization γ > 1.[17] Thus,

the Keldysh parameter, γ, is a measure of whether the electron may be able to

tunnel through the time-periodically created potential barrier or not.
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1.3 Atomic Stabilization by Super-Intense Lasers

Over the past few decades, it has been shown that when an atom is subject to high

values of laser frequency and laser intensity typically of the order of 1016 W/cm2,

there is an unexpected behavior in contrast to the ionization that is expected.[18]

In fact, the stripping rate of electron slows down dramatically [19] as the laser in-

tensity is increased above a critical point, and the atomic wave function assumes a

bi-lobal form. This bi-lobal form continues to exist as the laser intensity increases,

and hence, this new atomic configuration is referred to as stabilized. The process

has become known as atomic stabilization.

The interaction of super-intense laser fields with an atom can be analyzed in a

sense that the atom is supersaturated with photons which leads to modification

of both its bound and free states. Thus, the photo-initiated processes such as

ATI and high harmonic generation cease to be defined in terms of one or two or

any well-defined individual photons but rather are defined in terms of an effective

electric field of collective photons. Consequently, the atom in strong laser fields

is commonly referred to as laser-dressed atom. In this regime, highly coherent

and very high order momentum-transfer collisions contribute to the exchange of

energy between the field and the electron instead of photon absorption and thus,

shifts the energies of bound and free states of the atom by causing the electron

to oscillate with the field. Considering this reasoning, the super-intense laser is

better characterized as a light wave instead of a beam of bullet-like photons.

The dynamic electric force of the high-intensity laser renders the protons’ attrac-

tive force to be ineffective and compels the electron to move back and forth along

the straight line in the direction of laser polarization and thus very effectively traps

it in this new orbit. A key insight in understanding the detailed quantum dynamics

of stabilization was provided by Henneberger,[2] Mittleman,[19] and Gavrila,[18]

and the idea was based on even earlier work by Kramers [20] and by Pauli and

Fierz [21] in the 1930s on the fundamental theory of quantum electrodynamics.
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1.4 The Kramers-Henneberger Atom

Atomic systems in the presence of strong laser fields undergo distortion, along with

the ionization process as a result of the absorption of photons.[22] With an increase

in the laser field intensity, the distortion is accompanied with a decrease in the

ionization probability which amounts to increase in the stabilization of the atomic

system. The Coulomb binding potential of the atom is suppressed by the laser

field and with sufficiently high intensity, the electron, which was earlier confined

within the potential well, becomes nearly free to oscillate with the frequency of

the laser. The dynamics of such a system is more appropriately described if the

coordinate system is fixed on the moving electron. This moving coordinate frame

is generally called the Kramers-Henneberger (KH) frame of reference.

The spatial transformation to the KH frame is the first step to deal with laser-atom

interaction in the high-intensity and high-frequency regime. The instantaneous

velocity of the oscillating potential at the turning points is zero, and therefore,

those points are the most probable positions for the laser-driven electron. The

time-average of the oscillating potential yields a symmetric double-well potential

called the KH potential and the laser-dressed atom is called the KH atom. This

transformed KH potential is capable of supporting infinitely many bound states

of the KH atom.[23] The new basis obtained by this transformation into the KH

frame adequately describes most of the laser-atom interaction and the rest can be

implemented as perturbations.

1.5 The Kramers-Henneberger Transformation

1.5.1 Transformation to the momentum gauge

This section comprises of the formal description of the transformation of the TDSE

from the length gauge to the acceleration gauge. The TDSE in the length gauge
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for an electron in the presence of an oscillating electric field is given as (~=1):

i
∂

∂t
ψ(~r, t) =

[
− ∇̂2/2 + V (~r) + ε0êz.~r cosωt

]
ψ(~r, t) (1.14)

Let ψ(~r, t) = Û Û †ψ(~r, t), where Û is the unitary operator which transforms the

wave function from the length gauge to the momentum gauge.

Now, ψ(~r, t) = Ûψ′(~r, t), where ψ′(~r, t) = Û †ψ(~r, t). Substituting it in the TDSE

in Eq.[1.14], we obtain:

i
∂Ûψ′(~r, t)

∂t
=

[
− ∇̂2/2 + V (~r) + ε0êz.~r cosωt

]
Ûψ′(~r, t)

iÛ
∂ψ′(~r, t)

∂t
+ i

∂Û

∂t
ψ′(~r, t) =

[
− ∇̂2/2 + V (~r) + ε0êz.~r cosωt

]
Ûψ′(~r, t) (1.15)

Therefore, on choosing the following form of the unitary operator:

Û = exp[−iε0êz.~r
ω

sinωt] (1.16)

the interaction can be modified. Since,

iÛ
∂ψ′(~r, t)

∂t
=

[
− ∇̂2/2 + V (~r)

]
Ûψ′(~r, t)

i
∂ψ′(~r, t)

∂t
= Û †

[
− ∇̂2/2 + V (~r)

]
Ûψ′(~r, t) (1.17)

From Baker-Campbell-Hausdroff formula, we have:

exp[Â]B̂ exp[−Â] = B̂ + [Â, B̂] + [Â, [Â, B̂]]/2! + . . . (1.18)

Calculating Û †
[
− ∇̂2/2 + V (r)

]
Û :

⇒ exp[−iε0êz.~r
ω

sinωt](−∇̂2/2) exp[i
ε0êz.~r

ω
sinωt]

+ exp[−iε0êz.~r
ω

sinωt](V (~r)) exp[i
ε0êz.~r

ω
sinωt]
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⇒ −∇̂2/2 + i
ε0
ω

sinωt[~r,−∇̂2/2] +
ε20
ω2

sin2 ωt[~r, [~r,−∇̂2/2]]/2! + . . .

+ V (~r) + i
ε0
ω

sinωt[~r, V (~r)] +
ε20
ω2

sin2 ωt[~r, [~r, V (~r)]]/2! + . . .

⇒ −∇̂2/2 + i
ε0
ω

sinωt(∇̂) +
ε20
ω2

sin2 ωt(k) + V (~r)

where k = [~r, [~r,−∇̂2/2]]/2! = constant and hence, the third term contribute only

to a phase factor and so, it can be ignored. Therefore,

Û †
[
− ∇̂2/2 + V (~r)

]
Û = −∇̂2/2 + i

ε0
ω

sinωt∇̂+ V (~r) (1.19)

Putting it in Eq. [1.17], we obtain:

i
∂ψ′(~r, t)

∂t
=

[
− ∇̂2/2 + i

ε0
ω

sinωt∇̂+ V (~r)

]
ψ′(~r, t) (1.20)

Thus the TDSE is transformed from the length gauge to the momentum gauge

and the next step is to further transform Eq. [1.20] to the acceleration gauge.

1.5.2 Transformation to the acceleration gauge

Let ψ′(~r, t) = Û Û †ψ′(~r, t), where Û is the unitary operator which transforms the

wave function from the momentum gauge to the acceleration gauge.

Now, ψ′(~r, t) = ÛψKH(~r, t), where ψKH(~r, t) = Û †ψ′(~r, t). Substituting it in Eq.

[1.20] gives:

i
∂ÛψKH(~r, t)

∂t
=

[
− ∇̂2/2 + i

ε0
ω

sinωt∇̂+ V (~r)

]
ÛψKH(~r, t)

iÛ
∂ψKH(~r, t)

∂t
+ i

∂Û

∂t
ψKH(~r, t) =

[
− ∇̂2/2 + i

ε0
ω

sinωt∇̂+ V (~r)

]
ÛψKH(~r, t)

Therefore, the following form of the unitary operator is obtained:

Û = exp[
ε0
ω2

cosωt∇] (1.21)
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Since,

iÛ
∂ψKH(~r, t)

∂t
=

[
− ∇̂2/2 + V (~r)

]
ÛψKH(~r, t)

i
∂ψKH(~r, t)

∂t
= Û †

[
− ∇̂2/2 + V (~r)

]
ÛψKH(~r, t) (1.22)

From Baker-Campbell-Hausdroff formula, calculating Û †
[
− ∇̂2/2 + V (~r)

]
Û :

⇒ expi
ε0
ω2

cosωt∇̂(−∇̂2/2) exp−i
ε0
ω2

cosωt∇̂+ expi
ε0
ω2

cosωt∇̂(V (~r))e−i
ε0
ω2

cosωt∇̂

⇒ −∇̂2/2 + i
ε0
ω2

cosωt[∇̂,−∇̂2/2] +
ε20
ω4

cos2 ωt[∇̂, [∇̂,−∇̂2/2]]/2! + . . .

+ V (~r) + i
ε0
ω2

cosωt[∇̂, V (~r)] +
ε20
ω4

) cos2 ωt[∇̂, [∇̂, V (~r)]]/2! + . . .

⇒ −∇̂2/2 + V (~r) +
ε0
ω2

cosωt∇̂V (~r) +
ε20

2!ω4
cos2 ωt∇̂2V (~r) + . . .

⇒ −∇̂2/2 + V (~r + α cosωt) ; α =
ε0
ω2

Therefore,

Û †
[
− ∇̂2/2 + V (~r)

]
U = −∇̂2/2 + V (~r + α cosωt) (1.23)

Substituting it in Eq. [1.22] gives:

i
∂ψKH(~r, t)

∂t
=

[
− ∇̂2/2 + V (~r + α cosωt)

]
ψKH(~r, t) (1.24)

Thus, the TDSE is transformed from the momentum gauge to the acceleration

gauge. This thesis deals with an algorithm for time evolution in the KH frame

given in Eq. [1.24]. The next set of sections review basic methodologies involved

in solving TDSE.
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1.6 Methods of solving TDSE with time-

dependent Hamiltonian

A comparative study of different propagation schemes for the TDSE in case of time-

independent Hamiltonians by Kosloff and co-workers [25] in 1990 demonstrates

the accuracy and efficiency of different methods on a numerical grid. The different

methods considered for studying the evolution of the system were: second-order

differencing,[26] split-operator propagation,[27] Chebyshev polynomial expansion

method.[28] A new method, based on low-order Lanczos technique [25] was also

introduced in the case of time-dependent potentials which proved to be an accu-

rate and flexible alternative to the existing techniques.

In 1993, a novel powerful computational tool, the (t, t′) method, was introduced by

Peskin and Moiseyev [32] for the solution of TDSE with time-dependent Hamil-

tonians. Their time propagation methodology included the conversion of time-

dependent Hamiltonian into a time-independent Hamiltonian by employing the

Floquet theorem and the (t, t′) formalism and thereby using the Chebyshev poly-

nomial expansion method for implementation of the method on a numerical grid.

The current thesis work incorporates the (t, t′) formalism for studying the dynam-

ics of wavepacket in the KH gauge.

A time-dependent potential emerges out of the interaction of laser fields with a

quantum system. There have been various methods of solving the TDSE for such

a system like the Time-Dependent Perturbation Theory (TDPT), the Magnus ex-

pansion method, etc.[24] In this section, a brief description of the TDPT, the

time-ordering operator and the Magnus expansion is provided along with a formal

elaborate description of the (t, t′) method which is employed in this thesis work to

solve the TDSE.

1.6.1 Time-Dependent Perturbation Theory

Let us consider a quantum system whose Hamiltonian is described by Ĥ = Ĥ0 +

Ĥ1(t), where Ĥ0 is time-independent, and Ĥ1 need not be. Also, it is assumed that



Chapter 1 Introduction 13

we can compute the time evolution of a wavepacket under consideration generated

by Ĥ0. Then, under the condition that Ĥ1 � Ĥ0, the TDPT can be applied to

study the time evolution of the quantum system.[24] An ordering parameter, λ, is

introduced to collect the terms that are in similar orders of the perturbation:

Ĥ = Ĥ0 + λĤ1 (1.25)

The wavepacket is then expanded in a power series of λ:

ψ(t) = ψ(0)(t) + λψ(1)(t) + λ2ψ(2)(t) + . . . =
∑
n

λnψ(n)(t) (1.26)

Substituting the expansion in the TDSE and equating the like power terms of λ,

a series of equations is obtained:[24]

i~
∂

∂t
ψ(0) = Ĥ0ψ

(0)

i~
∂

∂t
ψ(1) = Ĥ0ψ

(1) + Ĥ1ψ
(0)

i~
∂

∂t
ψ(2) = Ĥ0ψ

(2) + Ĥ1ψ
(1)

and so on. Solving these equations yields the correction terms:

ψ(0)(t) = e−
i
~ Ĥ0(t−t0)ψ(0)

ψ(1)(t) =
1

i~

∫ t

t0

e
i
~ Ĥ0t′Ĥ1(t′)ψ(0)(t′)dt′ + e

i
~ Ĥ0(t−t0)ψ(1)(t0)

ψ(2)(t) =
1

i~

∫ t

t0

e
i
~ Ĥ0t′Ĥ1(t′)ψ(1)(t′)dt′ + e

i
~ Ĥ0(t−t0)ψ(2)(t0)

Generally, for finite time perturbation, t0 = 0 defining the zero of time to be

before the perturbation takes effect and so it is assumed that ψ(t0) = ψ(0)(t0) and

ψ(1)(t0) = ψ(2)(t0) = 0. On substituting the correction terms in Eq. [1.26] the

wave function of the evolved quantum system is evaluated.



Chapter 1 Introduction 14

1.6.2 Time-ordering Operator and the Magnus Expansion

Solving of the TDSE yields the following solution for the time evolution of an

initial state ψ(x,0):

ψ(x, t) = e−iĤt/~ψ(x, 0) (1.27)

The above propagator operator is only valid when the Hamiltonian is time-independent.

In the case of time-dependent Hamiltonian, one might generalize the evaluation of

the propagator by integrating the Hamiltonian over time.

ψ(x, t) = e−i
∫ t
0 Ĥ(t′)dt′/~ψ(x, 0) (1.28)

However, the above assumption is not correct. Taking the Taylor series expansion

of the exponential gives:

ψ(x, t) = ψ(x, 0)− i

~

∫ t

0

Ĥ(t′)dt′ψ(x, 0)− 1

2~2

∫ t

0

∫ t

0

Ĥ(t′)Ĥ(t′′)dt′dt′′ψ(x, 0) + . . .

The above equation maintains that Ĥ(t′) always acts on ψ(x, 0) after Ĥ(t′′), re-

gardless of whether t′ > t′′ or not, whereas from the differential form of TDSE

the Hamiltonian at different times must act on the wave function in chronological

order. Thus, an operator is introduced to maintain this chronological ordering:

ψ(x, t) = T̂ e−iĤt/~ψ(x, 0) (1.29)

where T̂ is the time-ordering operator.[24] Since the Hamiltonian at different time

steps does not commute, there result error terms equivalent to the commutator of

the Hamiltonians at those time steps. Typically, one would want to express the

propagator in the form of an exponential function as:

Û(t, 0) = exp[Â(t)], Â(t) = Â1(t) + Â2(t) + Â3(t) + . . . (1.30)
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This is carried out by the Magnus expansion. The first few Â’s are of the form:

Â1 =
1

i~

∫ t

0

dt1Ĥ(t1)

Â2 = −1

2
(

1

i~
)2

∫ t

0

dt2

∫ t2

0

dt1[Ĥ(t1), Ĥ(t2)]

Â3 = −1

6
(

1

i~
)3

∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1[Ĥ(t1), [Ĥ(t2), Ĥ(t3)]]

+ [[Ĥ(t1), Ĥ(t2)], Ĥ(t3)]

The leading term, Â1, is of the form expected in Eq. [1.28]. The higher order

correction terms are consistent with the observation that the error term should

involve the commutator of Ĥ(t1) and Ĥ(t2), and so forth such that the operation

of the Hamiltonian on the wave function is correctly time-ordered.

In order to avoid the complexity of the time-ordering operator, another methodol-

ogy to solve the TDSE is to convert the time-dependent Hamiltonian into an infi-

nite dimensional time-independent Hamiltonian by employing the Floquet method.

Therefore, in the subsequent sections, the basics of the Floquet theorem is dis-

cussed along with its implementation on the KH atom. This is followed by a

formal description of the (t, t′) method which incorporates the Floquet description

of a Hamiltonian into its formalism.

1.7 Basic Floquet Theory

Objective: To address the problem of the form:[29]

x′ = A(t)x (1.31)

where A(t) is periodic with period T and is of the form f(t) cosωt, where f(t) is

a time-dependent wave-envelope function. The interaction of an atomic system

in the presence of laser fields yields a time-periodic Hamiltonian whose TDSE is

representative of the above differential equation, so it is imperative to address the

methodology of solving such an equation.
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According to Floquet theorem, the solution x of the above differential equation

need not be periodic and is of the form:

eµtP (t) (1.32)

Here P(t) is periodic with period T. The n solutions of the differential equation

has n such µj and together they satisfy:

eµ1T eµ2T . . . eµnT = exp

(∫ T

0

tr(A(s))ds

)
. (1.33)

Definition (Fundamental Matrix): Let x1(t), . . . , xn(t) be n solutions of x′ =

A(t)x. Let

X(t) =

[[
x1

]
. . .

[
xn
]]

(1.34)

so that X(t) is an n ∗ n matrix solution of X ′ = AX.

X(t) is non-singular for linearly dependent x1(t), . . . , xn(t) and is called funda-

mental matrix. X(t) is the principal fundamental matrix for X(t0) = I.

Lemma 1: If X(t) is a fundamental matrix then so is Y (t) = X(t)B for any

non-singular constant matrix B.

Proof: Since X(t) and B are non-singular then the inverse of Y (t) is B−1X−1(t)

and so Y (t) is non-singular. Also,

Y ′ = X ′B = AXB = AY (1.35)

so that Y ′(t) = AY (t).

Lemma 2: Let the Wronskian W(t) of X(t) be the determinant of X(t). Then:[29]

W (t) = W (t0)exp

(∫ t

t0

tr(A(s))ds

)
. (1.36)



Chapter 1 Introduction 17

Proof: Let t0 be some time. Expanding in Taylor series,

X(t) = X(t0) + (t− t0)X ′(t0) +O((t− t0)2)

= X(t0) + (t− t0)A(t0)X(t0) +O((t− t0)2)

= [I + (t− t0)A(t0)]X(t0) +O((t− t0)2) (1.37)

so that

det(X(t)) = det[I + (t− t0)A(t0)]det(X(t0)

W (t) = det[I + (t− t0)A(t0)]W (t0). (1.38)

Now since

det(I + εC) = 1 + εtr(C) +O(ε2), (1.39)

we have that

W (t) = W (t0)(1 + (t− t0)tr(A(t0). (1.40)

Now by expanding W(t) in a Taylor series, we obtain that

W (t) = W (t0) + (t− t0)W ′(t0) +O((t− t0)2) (1.41)

so that

W ′(t0) = W (t0)tr(A(t0)). (1.42)

Since we have not made any assumptions about t0), we can then write

W ′(t) = W (t)tr(A(t)). (1.43)
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We know the solution to this equation is

W (t) = W (t0)exp

(∫ t

t0

tr(A(s))ds

)
(1.44)

Theorem: Let A(t) be a T -periodic matrix. If X(t) is a fundamental matrix then

so is X(t+ T ) and there exist a non-singular constant matrix B such that:

(1) X(t+T) = X(t)B for all t

(2) det(B) = exp

(∫ T
0
tr(A(s))ds

)
Proof: The first step is to show that X(t + T ) is also a fundamental matrix. Let

Y (t) = X(t+ T ). Then

Y ′(t) = X ′(t+ T ) = A(t+ T )X(t+ T ) = A(t)X(t+ T ) = A(t)Y (t) (1.45)

and so X(t+ T ) is also a fundamental matrix.

(1) Let B(t) = X−1(t)Y (t). Then

Y (t) = X(t)X−1(t)Y (t)

= X(t)B(t) (1.46)

Let B0 = B(t0). From lemma 1 Y0(t) = X(t)B0 is a fundamental matrix, where,

by definition, Y0(t0) = Y (t0). Since these are both solutions to X ′ = AX, by the

uniqueness of the solution, we must then have Y0(t) = Y (t) for all time. As a

result, B0 = B(t) and so B is time-independent. (2) From Lemma 2, we have that

W (t) = W (t0)exp

(∫ t

t0

tr(A(s))ds

)
W (t+ T ) = W (t0)exp

(∫ t

t0

tr(A(s))ds+

∫ t+T

t

tr(A(s))ds

)
(1.47)

W (t+ T ) = W (t)exp

(∫ t+T

t

tr(A(s))ds

)
W (t+ T ) = W (t)exp

(∫ T

0

tr(A(s))ds

)
(1.48)
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We also know that

X(t+ T ) = X(t)B

det(X(t+ T )) = det(X(t))det(B)

W (t+ T ) = W (t)det(B) (1.49)

and so

det(B) = exp

(∫ T

0

tr(A(s))ds

)
(1.50)

Since B is time-independent, it can be computed by setting t = 0, so that B =

X−1(0)X(T ). If we take the initial conditions X(0) = I, then B = X(T ).

1.8 The Floquet Method for the Kramers-

Henneberger Atom

The Floquet method to solve the TDSE for time-periodic Hamiltonian is carried

out by extending the Hilbert space such that it comprises of a complete basis in

both position and time.

To get an insight into the dynamics of a quantum system, it is important to

solve the TDSE in matrix form for the time-periodic Hamiltonian Ĥ with period

T(ωT = 2π)(~ = 1).

i
∂ψ(~r, t)

∂t
= Ĥ(~r, t)ψ(~r, t) (1.51)

The solution of the above equation is expressed in terms of basis functions:

ψ(~r, t) =
∑

ckψk(~r, t) (1.52)



Chapter 1 Introduction 20

The form of the basis functions using the Floquet’s theorem is given by:[2]

ψk(~r, t) = e−iEktφk(~r, t) (1.53)

Here, φ is a matrix of periodic functions of t and E is a constant diagonal matrix

whose elements are called the characteristic exponents. φk is expanded in the basis

of the Fourier series to obtain the following expression of the solution:

ψk(~r, t) =
∞∑

n=−∞

∞∑
j=1

e−iEkteinωtχj(r) (1.54)

Substituting this solution in the TDSE gives(~ = 1):

{Ĥ(~r, t)− i ∂
∂t
}φk(~r, t) = Ekφk(~r, t) (1.55)

φk(~r,t) are called the Floquet eigenstates and {Ĥ(~r, t)− i ∂
∂t
} is the Floquet Hamil-

tonian represented by ĤF (~r,t).

Let us now consider a quantum system, whose Hamiltonian operator is Ĥ, which

is perturbed using an oscillating electric field such that the Floquet Hamiltonian

is given by hatHF = Ĥ − i ∂
∂t

+ ε0xcosωt. The Floquet Hamiltonian is expanded

in matrix notation using the basis given in Eq. [1.54]:

〈〈ψα|ĤF |ψβ〉〉 = 〈〈
∞∑
n=1

∞∑
j=1

e−iEαteinωtφj(r)|Ĥ − i
∂

∂t
+ ε0xcosωt|

∞∑
n′=1

∞∑
j′=1

e−iEβtein
′ωtφj′(r)〉〉

= δn,n′Hαβ + δj,j′δn,n′nω + δn,n′±1D (1.56)

The elements of the Floquet matrix are defined as :

Hαβ =
1

T

∫ T

0

〈α|Ĥ(~r, t)|β〉dt = 〈α|H(~r)|β〉 (1.57)
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where H(~r) is the time averaged Hamiltonian.

Dαβ =
1

T

∫ T

0

〈αeinωt|x|βein′ωt〉ε0 cosωtdt (1.58)

The integral vanishes for |α− β| > 1. The form of the Hamiltonian matrix is:

HF =



. . . . . . . . .

. . . . . . . . .

. . H0 + 2ω D 0 0 0 . .

. . D H0 + ω D 0 0 . .

. . 0 D H0 D 0 . .

. . 0 0 D H0 − ω D . .

. . 0 0 0 D H0 − 2ω . .

. . . . . . . . .

. . . . . . . . .


To set up the Floquet Hamiltonian for a KH atom, it is imperative to first define

the KH Hamiltonian for a given Hamiltonian in laboratory frame:

Ĥ(~r, t) = −∇
2

2
+ V (~r) + ε0 cosωt~ez.~r (1.59)

A well known unitary transformation[30] transforms the above Hamiltonian into

the KH Hamiltonian by employing the classical variable substitution given by:

rKH = r − α(t)eZ ,

Ĥ(~r, t) = −∇
2

2
+ V (rKH + α(t)eZ) (1.60)

Therefore, the Floquet Hamiltonian for the KH atom is given by:

ĤF (~r, t) = −∇
2

2
− i ∂

∂t
+ V (rKH + α(t)eZ) (1.61)
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Writing the above equation in matrix notation :

〈ψα|ĤF |ψβ〉 = 〈〈
∞∑
n=1

∞∑
j=1

e−iEαteinωtφj(r)|
∇2

2
− i ∂

∂t
+ V (rKH + α(t)eZ)|

∞∑
n′=1

∞∑
j′=1

e−iEβtein
′ωtφj′(r)〉〉

= δn,n′Hαβ + δj,j′δn,n′nω +

1

2π

∫ 2π

0

ei(n−n
′)ωt〈φj(~r)|V (rKH + α(t)eZ |φj′(~r)〉 (1.62)

In the KH frame of reference, the potential V (rKH +α(t)eZ) is a periodic function
oscillating with the frequency of laser field. Thereby, the Fourier series expansion
of the potential function is taken. Therefore, substituting V (rKH + α(t)eZ) =

V0(rKH) +
∞∑
n=1

Vn(rKH)cos(nωt), the following matrix form is obtained for the

Floquet Hamiltonian of the KH atom:

HF =



. . . . . . . . .

. . . . . . . . .

. . HKH
0 + 2ω V1 V2 V3 V4 . .

. . V1 HKH
0 + ω V1 V2 V3 . .

. . V2 V1 HKH
0 V1 V2 .

. . V3 V2 V1 HKH
0 − ω V1 . .

. . V4 V3 V2 V1 HKH
0 − 2ω . .

. . . . . . . . .

. . . . . . . . .



where

Vn(rKH) =
1

2π

∫ 2π

0

V (rKH + α0cos(φ)eZ)cos(nφ)dφ (1.63)

The Fourier components, Vn(rKH), are also referred to as the KH harmonics of

the quantum system in super-intense laser field and are pivotal in defining the

dynamics of stabilization. The zeroth-order time-independent term constitute the

effective binding potential for the electron whereas the higher harmonics are re-

sponsible for its ionization. However, with sufficiently high intensity of the laser,

the higher order time-dependent terms die off and therefore, only the dominating

stabilizing zeroth-order potential term survives.
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1.9 The (t,t′) formalism

In 1993, Peskin and Moiseyev [32] gave a novel computational method for the

solution of time-dependent Schrödinger equation with time-dependent Hamiltoni-

ans. They introduced a new coordinate called t′ in the time domain over which

the basis of the Floquet Hamiltonian is expanded whereas the propagation of the

wavepacket is carried over the t co-ordinate. The space is now constituted of a com-

plete set of basis functions in both the space coordinate r and the time-coordinate

t′. This expansion of Hilbert space allows the time-dependent Hamiltonian to be

written as an infinite dimensional time-independent Hamiltonian. Therefore, the

time evolution operator can then be written without requiring the time-ordering

operator as chronological ordering is not required when the Hamiltonian is time-

independent.

The (t, t′) formalism: Solving the TDSE yields the following solution:[32]

ψ̃(x, t) = ψ(x, t′, t)|t=t′ (1.64)

where

ψ(x, t′, t) = e−(i/~)ĤF (x,t′)(t−t0)ψ(x, t′, t0) (1.65)

and ĤF (x,t′) is the Floquet-type operator

ĤF (x, t′) = Ĥ(x, t′)− i~ ∂

∂t′
(1.66)

In order to obtain the TDSE from Eq. [1.65], the partial derivative of ψ(x,t′,t) is

taken with respect to t :

i~
∂

∂t
ψ(x, t′, t) = ĤF (x, t′)e−iĤF (x,t′)(t−t0)/~ψ(x, t′, t0)

= −i~ ∂

∂t′
ψ(x, t′, t) + Ĥ(x, t′)ψ(x, t′, t) (1.67)
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Therefore,

i~(
∂

∂t
+

∂

∂t′
)ψ(x, t′, t) = Ĥ(x, t′)ψ(x, t′, t) (1.68)

Over the contour when t = t′, we have ∂t′

∂t
= 1 and therefore,

∂ψ(x, t′, t)

∂t′
|t′=t +

∂ψ(x, t′, t)

∂t
|t′=t =

∂ψ̃(x, t)

∂t
|t′=t (1.69)

Substituting it in Eq. [1.68], the general form of TDSE is obtained:

i~
∂ψ(x, t)

∂t
= Ĥ(x, t)ψ(x, t)

To carry out time propagation, the initial wavepacket is expanded in the Fourier

basis functions over the t′ coordinate:

ψ(x, t′, t0) =
∞∑

n=−∞

einωt
′
φ(x)

Now, the time evolution of the system can be evaluated such that propagation of

wavepacket over n=0 Floquet channel needs to be studied only. The t′ coordinate

is eventually eliminated by averaging the Floquet matrix over the t′ coordinate in

the Fourier basis expansion.

ψ(x, t) =
∞∑

n=−∞

einωt[e−iĤF (x)(t−t0)ψ(x, t0)]n=0 (1.70)

1.10 Computational Tools

The objective of the thesis is to perform quantum dynamics for time-periodic

Hamiltonian by transforming it into an infinite dimensional time-independent

Hamiltonian and thereby employing the computational techniques developed for

solving TDSE for time-independent Hamiltonian. To carry out time propagation
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of wavepackets for time-independent Hamiltonian, the split operator method is

one of the simplest and most popular methods.[24]

1.10.1 The Split Operator Method

The interesting feature of the Split-operator method is that the leading order

corrections scale as O(4t3).[24] The time evolution operator over the global time

interval [0,t) is expressed as a product of propagators over a short time interval,

4t, where N4t = t.. Thus,

U(t, 0) = e−iHt/~ = e−iH4t/~e−iH4t/~ . . . e−iH4t/~︸ ︷︷ ︸
N times

(1.71)

The methodology is then to split the Hamiltonian operator into kinetic and poten-

tial terms and thereby approximate each short time propagator as their product.

e−iH4t~ = e−i(p̂
2/2m+V (x̂))/4t/~

≈ e−i(T4t/~)e−i(V4t/~) +O(4t2) (1.72)

where T = p̂2/2m. The above splitting would be exact if the operators T and

V commuted, otherwise an error is introduced proportional to the commutator

[T,V] which is O(4t2). However, the leading order error term (∼ 4t
2

~2
) can be

eliminated by formulating the split such that it results in a symmetrizing product

of kinetic and potential factors :

e−iH4t/~ ≈ e−i(V4t/2~)e−i(T4t/2~)e−i(T4t/2~)e−i(V4t/2~)

= e−i(V4t/2~)e−i(T4t/~)e−i(V4t/2~) +O(4t3) (1.73)
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Proof:

e−i(T+V )4t/~ = 1− i(T + V )
4t
~

+
(−i)2(T + V )24 t2

2~2
+

(−i)3(T + V )34 t3

3!~3
+ . . .

= 1− i(T + V )
4t
~
− (T 2 + V 2TV + V T )4 t2

2~2

+ i
(T 3 + TV T + T 2V + TV 2 + V T 2 + V 2T + V TV + V 3)

3!~3
+ . . .

e−i(V4t/2~)e−i(T4t/~)e−i(V4t/2~) =

[
1− iV 4t

2~
+

(−iV 4 t)2

8~2
+ . . .

]
×[

1− iT4t
~

+
(−iT 4 t)2

2~2
+ . . .

]
×[

1− iV 4t
2~

+
(−iV 4 t)2

8~2
+ . . .

]
= 1− i(T + V )

4t
~
− (T 2 + V 2TV + V T )4 t2

2~2

+ i(
V 3

6
+
T 3

6
+
V TV

4
+
V 2T

8

+
V T 2

4
+
T 2V

4
+
TV 2

8
)
4t3

~3
+ . . .

Comparing the above two equations, the error term of O(4t2) vanishes and the

leading order error term corresponds to O(4t3):

Error = i
4t3

~3

(
T [V, T ]

12
+

[T, V ]T

12
+

[T, V ]V

24
+
V [V, T ]

24

)
= i

4t3

~3

(
[T, [V, T ]

12
+

[V, [V, T ]

24

)
(1.74)

1.11 Plan of the thesis

1. The implementation of the Floquet theorem served to provide the basis for

the expansion of the initial wavepacket; the (t,t′)-method is employed to

carry out time-propagation of the wavepacket for time-dependent Hamil-

tonian (not necessarily time-periodic) by transforming it into an infinite

dimensional time-independent Hamiltonian and thereby eschewing the use

of time-ordering operator. However, within the (t,t′), the storage space for
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the Floquet matrix of infinite order is enormous and the computational cost

to calculate the propagator matrix’s exponential is also huge. Therefore,

a memory and time saving algorithm in length gauge was suggested by

Prashant et. al. to reduce the complexity of the problem.[33] Thereby, a

recursive algorithm in the (t,t′) formalism is constructed to carry out time

propagation in the KH frame which is presented in Chapter 2. Also, the

recursive subroutine is elaborately discussed along with the implementation

scheme of the algorithm. The operation count of the algorithm is also dis-

cussed to show the effectiveness of the code.

2. In Chapter 3, the implementation of the recursive algorithm is carried out

for two test cases, viz. the symmetric double well potential and the xenon

model potential for the numerical validation of the proposed algorithm in the

KH gauge. The wavepacket dynamics is carried out along with other modes

of testing such as the convergence of the propagated wavepacket with respect

to the number of Floquet channels and with time step. Further in Chapter 3,

using an analogous recursive algorithm, the quantum dynamics calculation

is performed for the Xenon model potential system. The complex absorbing

potential methodology is also applied to absorb the artificial reflection of

the wavepacket near the edges of the numerical grid. Also, time evolution

of the energy expectation value of the propagated wavepacket is computed

and discussed.
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Chapter 2

A Recursive Algorithm in (t,t′)

for quantum dynamics in the

Kramers-Henneberger frame

2.1 A Memory and Time Saving Algorithm for

(t,t′) method in length gauge

The algorithm presented here is the work by Prashant et al.[1] Considering a

quantum system in an oscillating electric field linearly polarized along the z di-

rection such that the Hamiltonian of the system is (in a.u.): Ĥ = −O2

2
+ V (~r) +

ε0êz.~r cosωt, where V(~r) is the time-independent potential and ε0êz.~r cosωt is the

time-dependent electric field component. The TDSE for such a system is given as:

i
∂ψ(~r, t)

∂t
=

[
− ∇̂

2

2
+ V (~r) + ε0.êz~r cosωt

]
ψ(~r, t) (2.1)

The Floquet Hamiltonian for such a system from Eq. [1.55] is then:

Ĥf = −∇̂
2

2
+ V (~r)− i ∂

∂t
+ ε0êz.~r cosωt (2.2)

30
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Let Ĥ0 = − ∇̂2

2
+ V (~r) and D = ε0êz .~r

2
be the dipole term. Therefore, from Eq.

[1.56], the Floquet Hamiltonian in block tridiagonal form [2] for n Floquet channels

is represented as:

[Hf ] = [H0 + nω]n,n′ + [D]n,n′±1 (2.3)

In an expanded form the Floquet matrix has the form (here, for 2 Floquet chan-

nels):

[Hf ] =



[H0 + 2ω] [D] 0 0 0

[D] [H0 + ω] [D] 0 0

0 [D] [H0] [D] 0

0 0 [D] [H0 − ω] [D]

0 0 0 [D] [H0 − 2ω]


(nf×nx,nf×nx)

Here, nf is the number of Floquet channels and nx is the numerical grid size. Once

the Floquet Hamiltonian matrix is constructed, the following steps are involved

in the proposed memory and time saving algorithm for time-propagation of the

wavepacket:

Step 1: [Hf ] = [HD] + [Hnum]; this involves a separation of the number matrix

giving [HD] a uniform block tridiagonal form.

[Hf ] =



[H0] [D] 0 0 0

[D] [H0] [D] 0 0

0 [D] [H0] [D] 0

0 0 [D] [H0] [D]

0 0 0 [D] [H0]


+



[2ω][I] 0 0 0 0

0 [ω][I] 0 0 0

0 0 0 0 0

0 0 0 [−ω][I] 0

0 0 0 0 [−2ω][I]


Step 2: The symmetry of the [HD] matrix is used to analytically block-diagonalize

it using Chebyshev polynomials of the second kind. [3] Therefore, HD = U †HdU ,

where Hd in the block diagonal form is: [H0] + ~r.~ε δnn′ .

[Hd] =



[H0 + ~r.~ε cos(τ1)] 0 0 0 0

0 [H0 + ~r.~ε cos(τ2)] 0 0 0

0 0 [H0 + ~r.~ε cos(τ3)] 0 0

0 0 0 [H0 + ~r.~ε cos(τ4)] 0

0 0 0 0 [H0 + ~r.~ε cos(τ5)]
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where τk = kπ
nf+1

. The unitary matrix form of stacked up eigenvectors is:

Uij =

√
2

nf + 1
sin(iτj) (2.4)

Here i index runs from 1 to 2 ∗ nf + 1 (nf is the number of Floquet channels.)

This effectively reduces the storage space to (nx × nx) order matrices, where nx

is the grid size in the spatial representation of Ĥ0, which is the physical field-free

Hamiltonian. The unitary matrix over the full Floquet dimensions is constructed

as: (nf=2 here shown as an example.)

[U ] =



U11[I] U12[I] U13[I] U14[I] U15[I]

U21[I] U22[I] U23[I] U24[I] U25[I]

U31[I] U32[I] U33[I] U34[I] U35[I]

U41[I] U42[I] U43[I] U44[I] U45[I]

U51[I] U52[I] U53[I] U54[I] U55[I]


where [I] is the identity matrix with dimensions (nx × nx). This unitary matrix

need not be constructed or stored at all in the algorithm. It can be generated as

and when required because of its analytical form.

Step 3: The next step is to calculate the propagator. Since HD and Hnum do

not commute so the propagator operator is calculated by employing the split. [4]

Thus,

e−iHf t = e−i(HD+Hnum)t

e−iHf t = e−iHnumt/2eiUHdU
†te−iHnumt/2

e−iHf t = e−iHnumt/2UeiHdtU †e−iHnumt/2 (2.5)

Full Algorithm: By the (t,t′) formalism, the propagation of wavepacket cor-

responding to the zeroth Floquet channel needs to studied only. The physical

solution, ψ(~r, t) is then obtained from the full solution ψ(~r, t, t′) by setting t=t′.

The time propagation of an initial wavepacket ψ(~r, t0)n, by employing the pro-

posed memory and time saving algorithm with one Floquet channel, is carried out
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as follows:

ψ(~r, t) = e
−inω4t

2 U


e−i(Hd)14t 0 0

0 e−i(Hd)24t 0

0 0 e−i(Hd)34t

U †e− inω4t2 (ψ(~r, t0)n)

Following the (t,t′) formalism [5] of time propagation, when using the Floquet

basis, the exponential of the Floquet matrix needs to be evaluated which amounts

to being computationally very expensive along with huge storage space. Therefore,

the proposed memory and time saving algorithm is employed to solve the TDSE

within the (t,t′) framework as the number of operations is drastically reduced in

the current scheme.

2.2 Quantum Dynamics in the Kramers-

Henneberger Frame

The time propagation of an initial state ψ(r; t) is carried forth using a propagator

operator:

ψ(r; t) = Û(t; t0)ψ(r; t0) (2.6)

Here, Û(t; t0) is the propagator operator [6] given by:

Û(t; t0) = e
−
i

~
∫ t
t0
ĤF dt

(2.7)

The unitary transformation of the TDSE from the length gauge to the KH gauge

yields a time-periodic potential, V(~rKH+α(t)ez), whose KH harmonics are given

by:

V (~rKH + α(t)eZ) = V0(~rKH) +
∞∑
n=1

Vn(~rKH)cos(nωt) (2.8)
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Once the harmonics of the potential in the KH frame are generated, the time

propagator operator can then be constructed by block-diagonalizing the Floquet

Hamiltonian at each time step and compute the propagator using the split:

Û(t, 0) = e−iĤt/~ = e−iĤ4t/~e−iĤ4t/~ . . . e−iĤ4t/~︸ ︷︷ ︸
N times

(2.9)

Since the complexity of the diagonalization of a matrix is of the order of O(N3)

so this computation will be very expensive as it involves the diagonalization of the

Floquet matrix whose dimensions are [(nx*fch)×(nx*fch)], where nx = the number

of grid points on x, and fch = 2*nf+1 where nf is the number of Floquet channels.

Hence, the memory and time saving algorithm for the (t,t′) method is employed

in the KH frame to efficaciously calculate the propagator operator and carry out

the time propagation. The algorithm is constructed in a recursive manner so that

it is valid for any number of KH harmonics and Floquet channels.

2.2.1 The Recursive Algorithm in the Kramers-

Henneberger Frame

For two Floquet channels and five KH harmonics, the Floquet Hamiltonian in the

Kramers-Henneberger frame of reference is:

[HF ] =



[HKH
0 + 2ω] [V KH

1 ] [V KH
2 ] [V KH

3 ] [V KH
4 ]

[V KH
1 ] [HKH

0 + ω] [V KH
1 ] [V KH

2 ] [V KH
3 ]

[V KH
2 ] [V KH

1 ] [HKH
0 ] [V KH

1 ] [V KH
2 ]

[V KH
3 ] [V KH

2 ] [V KH
1 ] [HKH

0 − ω] [V KH
1 ]

[V KH
4 ] [V KH

3 ] [V KH
2 ] [V KH

1 ] [HKH
0 − 2ω]



〈ψα|ĤF |ψβ〉 = δn,n′H
KH
0 + δj,j′δn,n′nω + δj,j′δn,n′±nV

KH
n (~rKH)

Vn(rKH) = 1
2π

∫ 2π

0
V (rKH + α0cos(ωt)eZ)cos(nωt)dt ; HKH

0 = −∇2

2
+ V KH

0
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Step 1: Separation of the number matrix and the Fourier components:

[HF ] =



[HKH
0 ] 0 0 0 0

0 [HKH
0 ] 0 0 0

0 0 [HKH
0 ] 0 0

0 0 0 [H0]KH 0

0 0 0 0 [HKH
0 ]


+



0 [V KH1 ] 0 0 0

[V KH1 ] 0 [V KH1 ] 0 0

0 [V KH1 ] 0 [V KH1 ] 0

0 0 [V KH1 ] 0 [V KH1 ]

0 0 0 [V KH1 ] 0



+



0 0 [V KH2 ] 0 0

0 0 0 [V KH2 ] 0

[V KH2 ] 0 0 0 [V KH2 ]

0 [V KH2 ] 0 0 0

0 0 [V KH2 ] 0 0


+



0 0 0 [V KH3 ] 0

0 0 0 0 [V KH3 ]

0 0 0 0 0

[V KH3 ] 0 0 0 0

0 [V KH3 ] 0 0 0



+



0 0 0 0 [V KH4 ]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

[V KH4 ] 0 0 0 0


+



[2ω][I] 0 0 0 0

0 [ω][I] 0 0 0

0 0 0 0 0

0 0 0 [−ω][I] 0

0 0 0 0 [−2ω][I]



Step 2: After the separation of the number matrix and the matrices of the Fourier

components from the Floquet matrix, the next step is carry out analytical block-

diagonalization of the matrices of KH harmonics. This is carried out in the fol-

lowing way:

Consider the matrix of first KH harmonic which needs to be diagonalized:

V KH
1 =



0 [V KH
1 ] 0 0 0

[V KH
1 ] 0 [V KH

1 ] 0 0

0 [V KH
1 ] 0 [V KH

1 ] 0

0 0 [V KH
1 ] 0 [V KH

1 ]

0 0 0 [V KH
1 ] 0


[(2nf+1)∗nx,(2nf+1)∗nx]

Diagonalization of the above matrix is performed by using the eigenvalues and

eigenvectors of the following matrix:
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0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


[2nf+1,2nf+1]

Let a1
i (i = 1, 2, . . . , 2∗nf +1) be the eigenvalues and U1 be the eigenvector matrix

of the above matrix. Then, the block-diagonalization of the VKH
1 is simply:

V d1 =



[V KH1 ∗ a11] 0 0 0 0

0 [V KH1 ∗ a12] 0 0 0

0 0 [V KH1 ∗ a13] 0 0

0 0 0 [V KH1 ∗ a14] 0

0 0 0 0 [V KH1 ∗ a15]


[(2nf+1)∗nx,(2nf+1)∗nx]

In the diagonal form, the exponential of a matrix is just the exponential of its

eigenvalues. And, V KH
1 = U1V

d
1 U
†
1 . Therefore, the computation of diagonalizing

the matrix of dimensions [(2nf + 1) ∗ nx, (2nf + 1) ∗ nx] is avoided by performing

the above analytical block-diagonalization.

Step 3: To evaluate the propagator operator, the exponential of the Floquet

Hamiltonian is carried out using the split operator approximation [9] in the fol-

lowing way:

e−iHF4t = e−
iHnum4t

2 U4e
− iV

KH
4 4t

2 U †4U3e
− iV

KH
3 4t

2 U †3U2e
− iV

KH
2 4t

2 U †2U1e
− iV

KH
1 4t

2 U †1

U0e
−iHKH

0 4tU †0U1e
− iV

KH
1 4t

2 U †1U2e
− iV

KH
2 4t

2 U †2U3e
− iV

KH
3 4t

2 U †3U4e
− iV

KH
4 4t

2 U †4e
− iHnum4t

2 (2.10)

Here, Û1, Û2, Û3, Û4 are the eigenvectors which are used for block-diagonalizing

the exponential of the KH harmonic matrices. The eigenvalues and eigenvectors

for block-diagonalization along with the general diagonalization scheme is given

in Appendix 1.
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Step 4: If ψ(~r, t0) is the initial wavepacket then the full algorithm to carry out

time propagation is given by:

ψ(~r, t) =
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ψ(~r, t0)

The implementation of the above algorithm is done recursively so that the code

works for any potential, provided the Fourier components of the potential are cal-

culated externally and fed into the recursive subroutine as an input. The recursive

subroutine also reduces the size of the code substantially.

2.3 Code Description

The complete code is provided in Appendix 2. The key sections of the code and

the recursive subroutine are elaborately described in the forthcoming sections.
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CODE SCHEME

1: LIBRARIES USED: LAPACK [7], BLAS

2: Input:

3: T ← Kinetic energy matrix constructed from Fourier grid Hamiltonian method.

4: V ← The KH harmonics matrix of the potential. The expression for the Fourier

components of potential is evaluated using Wolfram Mathematica [8].

5: H0 ← Kinetic energy and zeroth KH component matrix.

6: V eval,V U← Eigenvalues and eigenvector matrices for analytical diagonalization.

7: fch, fld, omega, alpha, Nf ← Floquet variables.

8: evec fl ← Initial wavepacket.

9: Output:

10: psi ← Propagated wavepacket.

11: nrm ← Norm of the propagated wavepacket.

12: Subroutines:

13: recur1 ← Recursive subroutine to evaluate right half of the split expression in eqn

(2.6) ahead of U0e
−iHKH

0 ∆tU †0 .

14: recur2 ← Recursive subroutine to evaluate left half of the split expression in eqn

(2.6) before U0e
−iHKH

0 ∆tU †0 .

15: DSYEV WT EIGVECS ← Subroutine to diagonalize a real matrix using LA-

PACK library.

The schematic description of the code consists of the following key segments. The initial

section of the code comprises of defining the kinetic energy matrix, the KH harmon-

ics matrix and the initial wavepacket along with all the variables that is used for time

propagation. Two recursive subroutines recur1 and recur2 are constructed that are

responsible for the analytical block-diagonalization of the KH harmonic matrices and

evaluation of the split. In both these subroutines, the operations that are performed

correspond to matrix vector multiplication. Also, LAPACK and BLAS libraries are used

for the diagonalization of matrices when required. In the following section, the recur-

sive subroutine is presented along with the flowchart of the algorithm which effectively

describes its implementation to carry out time propagation in the KH gauge.



Chapter 2 A Recursive Algorithm in (t,t′) in the KH frame 39

THE RECURSIVE SUBROUTINE

1: do i ← 1 to fch

2: do j ← 1 to fch

3: U j(i,j)=V U((N-1)*fch+i,(N-1)*fch+j) ← Analytical block-diagonalization.

4: enddo

5: enddo

6: U jt = transpose(U j)

7: do j ← 1 to fch

8: do i ← 1 to num

9: s = (0.0d0,0.0d0)

10: do k ← 1 to fch

11: s = s + (U jt(j,k)*P fl((k-1)*num+i)) ← Operation count = num*fch2

12: enddo

13: PU((j-1)*num+i) = s ← PU = U†nψ(x, t)

14: enddo

15: enddo

16: do i ← 1 to fch Construction of e−iVKH
n ∆t/2 matrix.

17: do j ← 1 to num

18: V exp((i-1)*num+j,(i-1)*num+j) = exp(-0.5d0*ci*dt*(V(j,N+1)*

19: V eval((N-1)*fch+i))) ← Operation count = num*fch

20: enddo

21: enddo

22: PV(:) = V exp(:) * PU(:) ← PV = e−iVKH
n ∆t/2 ∗U†nψ(x, t)

23: PU2 = (0.0d0,0.0d0)

24: do i ← 1 to fch

25: do j ← 1 to num

26: s = (0.0d0,0.0d0)

27: do k ← 1 to fch

28: s = s + ( U j(j,k) * PV((k-1)*num+i) ) ← Operation count = num*fch2

29: enddo

30: PU2((j-1)*num+i) = s

31: enddo

32: enddo

33: P fl = PU2 ← P fl = Un ∗ e−iVKH
n ∆t/2 ∗U†nψ(x, t)
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34: if ( N ≥ 2 ) then

35: call recur1( P fl, N-1, fch, fch, fld, num, V U, V eval, V, dt )← The Recursion

36: endif

The analytical block-diagonalization of the exponential of the KH harmonic ma-

trices is performed using the above recursive subroutine. The mathematical flow

that is maintained throughout the subroutine is that of a matrix vector multipli-

cation. Also, the time propagation algorithm is implemented in such a fashion

that multiplication with zeroes of the sparse matrices is avoided so that it does

not account for more operations.

As shown in the recursive algorithm flowchart in [Fig.2.1], the subroutine recur1

is called until N=1, following which the program flow goes to the main body of the

code where e−iH
KH
0 ∆tψ∗(x, t) is evaluated which is followed by calling the recursive

subroutine recur2 which evaluates the rest of terms of the split. (ψ∗(x, t) is the

wavepacket obtained upon the action of recur1.)

if ( N ≥ 2 ) then

call recur1( P fl, N-1, fch, fch, fld, num, V U, V eval, V, dt )

endif

The Recursion: The concluding section of the recursive subroutine accounts

for the recursion. As can be seen in the above snippet of the code, the value of

N gets updated each time the recursive subroutine is called. Consider again the

dynamics for 2 Floquet channels for which N=5. With update in the value of N ,

the unitary matrices, which are used for analytical block-diagonalization, also gets

updated and thereby, using those matrices, the exponential of the KH harmonic

matrix is constructed for the corresponding value of N . The following snippet

explains the recursion in a precise way:
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Figure 2.1: The dynamics algorithm flowchart: the time propagation scheme
is implemented in a recursive manner. The separation of the number matrix
and all the KH harmonic matrices is done initially following which the flow
transfers to the recursive subroutine where analytical block-diagonalization and
split is evaluated. This is performed at each time step till propagation needs to
be carried out.

Recursion 1: ψ4(~r, t) = Û4e
−iV KH4 ∆t/2Û †4ψi(~r, t)

Recursion 2: ψ3(~r, t) = Û3e
−iV KH3 ∆t/2Û †3ψ4(~r, t)

Recursion 3: ψ2(~r, t) = Û2e
−iV KH2 ∆t/2Û †2ψ3(~r, t)

Recursion 4: ψ1(~r, t) = Û1e
−iV KH1 ∆t/2Û †1ψ2(~r, t)

The most interesting feature of the recursion is that it can be called any number of

times, i.e., the algorithm is valid for any number of Fourier components of the KH

potential. Therefore, the systems whose Fourier components are not analytically

calculable can have infinite number of numerically calculated components and

so, the recursive subroutine can then be easily implemented to carry out time

propagation in the KH gauge without being computationally expensive.
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2.3.1 Operation Count

The operation count for the implementation of the Split-operator method into the

algorithm is given as:

1. e−
iHnum4t

2 in the matrix form is a diagonal matrix. So, the evaluation of

e−
iHnum4t

2 ψ(x, t) requires the following number of operations: (fch*num),

where fch = 2*Nf+1 and num is the grid size.

2. Each time the recursive subroutine is called, it evaluates Une
− iV

KH
1 4t

2 U †nψ
∗(x, t)

for which the operation count is (num*fch2 + fch + num*fch2). There-

fore, the total operation count for Nf number of Floquet channels is: 2(fch-

1)*(2*num*fch2 + fch)

3. For the evaluation of U0e
−iHKH

0 4tU †0ψ
∗(x, t) the number of operations which

are required is: (fch*num2 + fch2*num2)

4. The total operation count in each time step to carry out wavepacket dynam-

ics by employing the recursive algorithm is: num2*(fch2 + fch) + num*(4*fch3

- 4*fch2 + fch) + 2*fch(fch-1) ≈ O(num2)

Hence, the current time propagation scheme in the KH gauge scales to O(num2)

which saves a lot of computational cost for studying time evolution of a quantum

system in the presence of laser. In the following chapter, the recursive algorithm

is tested and validated to carry out quantum dynamics for two test cases: the

symmetric double well potential and the xenon model potential.
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Chapter 3

Numerical Validation and Testing

The model potentials chosen for the validation and testing of the recursive al-

gorithm in (t,t′) in the KH gauge are the symmetric double well and the xenon

model potential. The wavepacket dynamics is carried out along with other modes

of testing like convergence over the number of Floquet channels and time steps,

conservation of norm, etc. The time-independent KH calculation is performed for

both systems and the expected result is verified with the wavepacket dynamics

calculation.

3.1 Case 1: Symmetric Double Well Potential:

Ax4 - Bx2

The last few decades have witnessed immense research interests in understand-

ing the detailed dynamics of quantum systems that are exposed to strong time-

dependent external fields. One such quantum system is the double well potentials

which are associated with the prototype model of coherence effect, namely quan-

tum tunneling. [1–4] The double-well potentials have also been extensively studied

for various other systems such as proton transfer in DNA, [5] inversion doubling

in ammonia, [6] hydrogen bonding, [7] etc.

The symmetric double well potential chosen for the test calculation is of the form

44
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Ax4−Bx2, where A = 0.0052248 and B = 0.0139753 in atomic units. The param-

eters chosen correspond to the double well potential of the umbrella type inversion

of ammonia molecule. Following the KH transformation, the first task at hand is

to evaluate the harmonics of the KH potential. Substituting xKH = x−α(t)eZ ,

the form of the model potential transforms to V (x) = A(x−α cosωt)4−B(x−

α cosωt)2. Now, the KH harmonics are evaluated as: Vn(xKH) = 1
2π

∫ 2π

0
V (xKH +

α0cos(ωt)eZ)cos(nωt)dt. The Wolfram Mathematica [8] computing system is uti-

lized for calculating the integrals i.e. the harmonics of the KH potential depicted

in [Fig.3.1], given by:

V0(x)=
1

2π

∫ 2π

0

A(x−α cosφ)4−B(x−α cosφ)2dφ

=
1

2
π(−Bπ(α2 + 2x2) +A(

3α4π

4
+ 6α2πx2 + 2πx4) (3.1)

V1(x)=
1

2π

∫ 2π

0

(A(x−α cosφ)4−B(x−α cosφ)2) cos(φ)dφ

=−1

2
απ2x(3Aα2− 2B+ 4Ax2) (3.2)

V2(x)=
1

2π

∫ 2π

0

(A(x−α cosφ)4−B(x−α cosφ)2) cos(2φ)dφ

=
1

4
α2π2(−B+A(α2 + 6x2)) (3.3)

V3(x)=
1

2π

∫ 2π

0

(A(x−α cosφ)4−B(x−α cosφ)2) cos(3φ)dφ

=−1

2
Aα3π2x (3.4)

V4(x)=
1

2π

∫ 2π

0

(A(x−α cosφ)4−B(x−α cosφ)2) cos(4φ)dφ

=
1

16
Aα4π2 (3.5)

V5(x)=
1

2π

∫ 2π

0

(A(x−α cosφ)4−B(x−α cosφ)2) cos(5φ)dφ

=0 (3.6)

Similarly V6(x)=V7(x) = V8(x) . . . = Vn(x) = 0;n >= 5 (3.7)

As shown in [Fig.3.1], the classical variable substitution makes the potential func-

tion to be parametrically dependent on α(t) and therefore as α changes with time

the potential as well as its corresponding wavepacket also changes adiabatically.
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Figure 3.1: (a)Adiabatic change in symmetric double well potential as a
function of α(t) upon KH transformation. (b)The KH harmonics of the double
well potential at α0=1.80. For this potential the KH harmonics above VKH

4 are
zero.

3.1.1 Laser Form

To carry out dynamics of the wavepacket on the model potential, the oscillating

electric field used is:

~α(t) =

α0 sin2
[
π
2

t
ton

]
cosωt, 0 ≤ t ≤ ton

α0 cosωt, ton < t

(3.8)

where α0 is the laser parameter defined as α0 = ε0
ω2 , ε0 is the peak field strength,

ω is the field frequency and t0 is the rise time of the laser pulse. The form of

the pulse is shown in [Fig.3.2]. The frequency of the laser pulse is 2.434×1014 Hz

(1231 nm) which is the off-resonant frequency so that the laser does not lead to

excitation of the wavepacket. The peak intensity is of the order of 1013 W/cm2

which is not too high to avoid the various modes of ionization. The pulse rises

smoothly as the peak intensity is obtained after twenty optical cycles which gives

sufficient time for the wavepacket to adjust itself to the oscillating electric field.

3.1.2 Wavepacket Dynamics using Recursive KH (t,t′)

For the chosen symmetric double well potential, there are only four eigenstates

below the barrier as shown in [Fig. 3.3a]. Because of the symmetry of the double
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Figure 3.2: The oscillating electric field used to carry out wavepacket propa-
gation in the case of symmetric double well. The peak intensity of the field is ob-
tained after 20 optical cycles which gives sufficient time for the wavepacket to ad-
just itself to the oscillating electric field. The offresonant frequency (2.434×1014

Hz) of the pulse is chosen so that the laser does not lead to the excitation of
wavepacket.
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Figure 3.3: (a)Quantum tunneling in the eigenstates of the symmetric double
well below the potential barrier. (b)The corresponding groundstate eigenvector
of the double well potential for laser parameters: α0 = 0.0 a.u. and α0 = 1.9
a.u.

well, the two wells share an equal probability to hold the electron. The symmetric

double well is a prototype model of quantum tunneling which implies that the

electron can tunnel through the barrier and can be in either well.[1] Hence, the

first two eigenstates of the system are also nearly degenerate.

Before performing the time-dependent dynamics calculation, it is essential to

discuss the results of time-independent KH calculation so that the expected result

from the dynamics is known. The initial wavepacket as shown in [Fig.3.3b] is
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the ground state eigenvector of the Hamiltonian comprising of the kinetic energy

matrix, set up using the Fourier Grid Method, [9] and the double well potential

along the diagonal of the Hamiltonian matrix. The dimension of the Hamiltonian

matrix on the numerical grid is (100× 100). As the potential adiabatically changes

from double well to single well as a function of the laser parameter α(t), the

wavepacket also gets transformed. The time-independent KH calculations reveal

that the bi-lobal wavepacket should converge and stabilize exactly at the position

of the barrier of the symmetric double well. This is expected from the time-

dependent wavepacket propagation in the presence of the driving laser pulse.

The propagation of the wavepacket, which is the ground state eigenvector of the

symmetric double well potential, is carried out in the KH gauge in the presence of

the oscillating electric field as mentioned in [section 3.1.1]. The laser pulse reaches

its peak intensity after 20 optical cycles which gives a rise time of about 3400

a.u. which implies that the rise of the field is slow enough so that the wavepacket

can adjust itself to the external field. The aim of the dynamics calculation is to

stabilize the wavepacket on top of the potential barrier of the symmetric double

well as revealed from the time-independent KH calculation. This is eventually

achieved as the laser field rises and the dichotomous wavepacket evolves into the

monotomic wavepacket exactly at the position of the barrier in the laboratory

frame as shown in [Fig.3.4].

3.1.3 Convergence on the number of Floquet channels

The test for the convergence of the propagated wavepacket with respect to the

number of Floquet channels is carried out when the laser field reaches its peak

intensity. To perform the convergence calculation, wavepacket the dynamics is

carried out by increasing the number of Floquet channels in each calculation. A

difference vector is defined as the difference of wavepackets obtained as the pulse

reaches its peak intensity for two consecutive dynamics calculation. The Hilbert

norm of the difference vector is calculated as a measure of convergence over the

Floquet channels. The Hilbert norm of a complex vector x = { x1,x2,. . . ,xn} is
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Figure 3.4: Time evolution of the wavepacket in presence of the oscillating
electric field. The laser pulse reaches its peak intensity near 3400 a.u., i.e.,
the pulse is allowed to rise for 20 optical cycles. The dimension of field free
Hamiltonian on the numerical grid is taken to be (100× 100). As the laser
intensity increases, the dichotomous wavepacket gets transformed to monotomic
wavepacket at peak intensity and gets stabilized at top of the barrier of the
symmetric double well potential.

defined as:

‖x‖ =

√√√√ n∑
k=1

xk.xk (3.9)

The Hilbert norm is tabulated alongside the number of Floquet channels in [Table

3.1]. The propagation of the wavepacket is performed in the presence of the

oscillating electric field as mentioned in section 3.1.1 for time-step of 0.05 a.u.

The decreasing values of the Hilbert norm with increase in the number of Floquet

channels shows good convergence of the wavepacket.
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Table 3.1: Hilbert norm of the difference vector as a measure of test for
convergence over the number of Floquet channels.

NF Hilbert Norm

2 2.8832× 10−2

3 1.6664× 10−2

4 6.5267× 10−3

5 1.9323× 10−3

6 7.3401× 10−4

7 3.0985× 10−4

8 1.2853× 10−4

9 5.0726× 10−5

10 2.1750× 10−5

11 9.8341× 10−6

12 4.7071× 10−6

24 2.4918× 10−9

Table 3.2: Hilbert norm of the difference vector as a measure of test for
convergence over time step.

4t Hilbert Norm

0.50-0.25 2.6277× 10−2

0.25-0.10 2.1869× 10−2

0.10-0.05 3.8232× 10−3

0.05-0.01 4.7926× 10−4

3.1.4 Convergence on time-step

The initial wavepacket is propagated in the presence of intense laser field till the

peak intensity of field is reached. The propagation is carried out for different

time-steps and the Hilbert norm of the difference wave vector, as mentioned in

[section 3.1.3] is calculated as a measure of the convergence. The calculation is

performed for 5 Floquet channels in the presence of the oscillating electric field.

With decreasing time step, better convergence of the propagated wavepacket is

obtained which is depicted by the decreasing values of the Hilbert norm of the

difference vector [see Table 3.2].
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Figure 3.5: (a)Adiabatic change in the Xenon model potential as a function
of α(t) upon the KH transformation. (b)The groundstate eigenvector of the po-
tential resulting from the time-independent KH calculation for laser parameters:
α0 = 0.0a.u. and α0 = 7.0 a.u. It is obtained by diagonalizing the Hamiltonian
comprising of kinetic energy matrix constructed using Fourier Grid method and
the time averaged potential in the diagonal.

3.2 Case 2: The Xenon Model Potential

The dynamics calculation performed for the symmetric double well potential sys-

tem validates the application of the recursive algorithm in (t,t′) formalism for an

oscillating electric field. Further testing is done by the application of the recursive

algorithm for the Xenon model potential system where the objective is to observe

the dichotomy of wavepacket in intense laser fields in the KH frame of reference.

Also, to avoid the reflection of wavepacket near the edges of the finite grid, the

complex absorbing potential method is employed.[10]

The functional form of the Xenon model potential is V (x) = −0.63e−0.1424x2 and

following the KH transformation, the parametric dependence of the potential on

the laser parameter i.e. α(t) yields a double well potential for its peak value and

its corresponding eigenvector also gets splitted into a dichotomous wavepacket [see

Fig. 3.5].

The harmonics of the KH potential i.e. the Fourier components of the Xenon

model potential, given by Vn(x) = 1
2π

∫ 2π

0
V (xKH +α0 cos(nωt)) cos(nωt)dt are

not analytically calculable. So, numerical integration is performed using Gauss-

Legendre integration scheme to evaluate the KH harmonics. Since, in the KH

frame a classical variable substitution xKH = x−α(t)eZ is made which makes
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Figure 3.6: Time evolution of the KH harmonics of the Xenon model potential.
The magnitude of the higher KH harmonics increases with time. As Vn(x) =
1

2π

∫ 2π
0 V (xKH +α0 cos(nωt)) cos(nωt)dt, so, apart from the zeroth harmonic all

other harmonics diminishes to zero because of the rapidly oscillating cos(nωt)
term.

the KH harmonics parametrically dependent on the laser parameter α(t). As the

intensity of the continuous wave laser rises, the magnitude of the higher order KH

harmonics inflates as shown in [Fig.3.6]. However, the zeroth order KH harmonic

is still dominant over the other higher order harmonics. These higher KH harmon-

ics, responsible for ionization, diminishes to zero because of the rapidly oscillating

cos(nωt) term.

Not only the higher order KH harmonics diminishes to zero but also the magni-

tude of the higher KH harmonics is also nearly zero which is depicted in [Fig.3.7]

for a fixed value of α0 = 5.5a.u. So, to save upon the computational cost only first

nine Fourier components are included in the dynamics calculation.
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Figure 3.7: The Fourier components of Xenon model potential for a fixed
value of α0 = 5.5a.u. The magnitude of the higher KH harmonics is nearly zero
and so can be avoided in the computational calculation while contructing the
Floquet Hamiltonian.

3.3 Complex Absorbing Potential (CAP)

To study the dynamics of wavepacket in a time-dependent field, a CAP was first

introduced in 1986 by Kosloff and Kosloff. [11] Because of the finite size of the

numerical grid, artificial reflection of the wavepacket takes place near the edges

and as a result the quality of the computed results is hampered. Application of a

CAP results in suppression of the reflection by absorbing the asymptotic part of

the outgoing wavepacket. [10] Therefore, in the time-dependent picture, the CAP

serves to save upon the computational cost by avoiding the use of large grids.

To address the problem at hand, a quadratic CAP of the form, Vcap = -0.01i|x-

x0|2, is used beyond the classical turning points of the oscillating xenon model

potential as shown in [Fig.3.8] in the presence of laser field. In the KH frame,

the CAP is employed only at the zeroth block for computational feasibility. The

CAP is not used for other blocks because for the analytical block-diagonalization
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Figure 3.8: The imaginary part of the complex absorbing potential is plotted
outside the classical turning point of the xenon model potential in laser. The
functional form of the CAP is quadratic Vcap = −λ|x−x0|2 in the imaginary
plane. λ is the CAP strength parameter which is 0.01 in this case.

of the exponential of the KH harmonic matrices the eigenvalues of representative

matrices, given in Appendix 1, are used. These eigenvalues are both positive

and negative. Now, because the CAP employed is a negative quadratic so, its

multiplication with negative eigenvalues gives a positive value whose exponential

diverges. And hence, the CAP is only applied at the zeroth block only.

3.4 Wavepacket Dynamics using Recursive

KH (t,t′)

In quantum mechanics the points at which the potential energy of the system

equals the total energy are referred as classical turning points. In the accelerated

frame of reference, the application of high intensity laser field results in periodic

oscillations of the potential. The dynamics of the wavepacket is carried out in the

presence of oscillating laser field as mentioned in section 3.1.1 with peak inten-

sity of the order of 1015 W/cm2 and frequency of 6.58×1014 Hz (455.6 nm). At

peak intensity, the objective of the dynamics calculation is to stabilize the initial

wavepacket at the classical turning points of laser interacted xenon model poten-

tial system.

From [Fig.3.9], the dynamics calculation reveals the splitting of wavepacket in
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Figure 3.9: Time evolution of the wavepacket in the presence of oscillating
electric field. As the intensity of the laser field rises, the wavepacket gets splitted
into a dichotomous wavepacket with the two lobes stabilized at the classical
turning points of the xenon model potential in the length gauge in the presence
of laser.

the intense laser field and as the field reaches its peak intensity, there is no further

splitting of the wavepacket, with the dichotomous lobes stabilizing at the exact

positions of the classical turning points of the xenon model potential system in

the length gauge in the laser field. From the time-independent KH calculation

[see Fig. 3.5], it was expected that the initial wavepacket gets splitted into a di-

chotomous wavepacket with the localization of the two lobes over the two wells of

the transformed KH potential. This is confirmed and validated from the dynamics

calculation as well.
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Figure 3.10: (a)The time-dependent Hamiltonian is diagonalized at each time
step to obtain the plot of ground state eigenvalue as a function of α(t). An
analogous dichotomy is obtained at peak intensity similar to the dichotomy
of wavepacket. (b)A comparison is made between the expectation values of
wavepacket corresponding to the Hamiltonian comprising of all KH components
to that of Hamiltonian comprising of just the zeroth KH harmonic. The former
expectation value curve oscillates through the latter which implies that the
dynamics is mostly driven by the zeroth KH harmonic.

3.5 Energy Expectation value of the propagated

wavepacket

As the initial wavepacket is evolved in the presence of intense laser field, the

ground state eigenvalue of the time-dependent Hamiltonian is evaluated at each

time step till stabilization is achieved. As the field interacts with the potential

system, the eigenvalue increases in an oscillatory manner. The dynamics calcu-

lation revealed that the dichotomy of wavepacket starts around time=1000 a.u.

In a similar manner, amidst the oscillatory incrementation of the eigenvalue with

time, it is observed that an analogous dichotomy in the eigenvalue value plot starts

around time=1000 a.u. [see Fig.3.10].

The expectation value of the propagated wavepacket is plotted in [Fig. 3.11b].

A comparison is made between the expectation values of the wavepacket for the

Hamiltonian consisting of all the KH components and for the Hamiltonian con-

sisting only of the zeroth Fourier component. The expectation values of the

wavepacket corresponding to the former Hamiltonian oscillates through the other

curve which validates the fact that the dynamics is mostly driven by the zeroth
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Figure 3.11: The ground state eigenvalue of the time-dependent Hamiltonian
is plotted for various values of α0. Just as the dichotomy in wavepacket ap-
pears only above a certain threshold value of α0, similarly the dichotomy in the
eigenvalue curve appears only above the same α0.

KH harmonic. Also, the expectation value of the wavepacket is nearly equal to

the ground state eigenvalue which signifies that the dynamics calculation is clean.

To consolidate the point about the dichotomy arising in the ground state eigen-

value of the time-dependent Hamiltonian with rise in the intensity of laser, the

calculation is run for various values of α0. The results reveal that just as the

splitting of the wavepacket takes place only after a threshold value of α0, a similar

splitting is obtained in the eigenvalue value plot only after α0 value is incremented

after a certain threshold. As can be seen in [Fig.3.10], that threshold α0 is 6.0 a.u.

when the dichotomy starts appearing.

Therefore, the recursive algorithm in (t,t′) for quantum dynamics in the Kramers-

Henneberger frame of reference is implemented for any number of Floquet channels

and KH harmonics. The test calculations on symmetric double well and xenon

model potential validates the proposed recursive algorithm for time-propagation

in the KH gauge.

3.6 Future Work

We are interested in the extension of the developed (t,t′) recursive algorithm. Some

of the plans for future work are:
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1. A recursive implementation of (t,t′,t′′) method for time propagation in the

presence of a Gaussian pulse.

2. Carry out quantum dynamics of wavepacket for a real atomic system.
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Appendix A

Analytical Block Diagonalization

The propagator for time propagation is evaluated by using the split in which

the exponential of the block matrices needs to be computed. The first step to

compute the exponential is to block-diagonalize the KH harmonic matrices. The

KH harmonic matrices can be constructed for any number of Floquet channels.

For 2 Floquet channels and 5 KH harmonics, the off-diagonal block matrices which

need to be diagonalize are:



0 [V KH
1 ] 0 0 0

[V KH
1 ] 0 [V KH

1 ] 0 0

0 [V KH
1 ] 0 [V KH

1 ] 0

0 0 [V KH
1 ] 0 [V KH

1 ]

0 0 0 [V KH
1 ] 0





0 0 [V KH
2 ] 0 0

0 0 0 [V KH
2 ] 0

[V KH
2 ] 0 0 0 [V KH

2 ]

0 [V KH
2 ] 0 0 0

0 0 [V KH
2 ] 0 0





0 0 0[V KH
3 ] 0

0 0 0 0 [V KH
3 ]

0 0 0 0 0

[V KH
3 ] 0 0 0 0

0 [V KH
3 ]0 0 0





0 000[V KH
4 ]

0 000 0

0 000 0

0 000 0

[V KH
4 ]000 0



The dimensions of all these matrices are ((2 ∗Nf + 1) ∗nx× (2 ∗Nf + 1) ∗nx), where

Nf is the number of Floquet channels and nx is the grid size. Since the complexity

of diagonalization amounts to O(N3). So numerical diagonalization of these ma-

trices is computationally very expensive. Hence, analytical block-diagonalization
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is carried out by using the eigenvalues and eigenvectors of the following symmetric

matrices: 

01000

10100

01010

00101

00010





00100

00010

10001

01000

00100





00010

00001

00000

10000

01000





00001

00000

00000

00000

10000


For Nf number of Floquet channels, the dimension of the above symmetric ma-

trices is ((2 ∗Nf + 1)× (2 ∗Nf + 1)). The analytical block-diagonalization of the

first KH harmonic matrix is shown as a prototype. Let a1
i (i = 1, 2, 3, 4, 5) be the

eigenvalues and U1 contains the eigenvectors of the matrix whose elements are

δn,n′±1. Then, the block-diagonalization of the VKH
1 is given by:

V d
1 =



[V KH
1 ∗ a11] 0 0 0 0

0 [V KH
1 ∗ a12] 0 0 0

0 0 [V KH
1 ∗ a13] 0 0

0 0 0 [V KH
1 ∗ a14] 0

0 0 0 0 [V KH
1 ∗ a15]


[(2Nf+1)∗nx,(2Nf+1)∗nx]

In the diagonal form, the exponential of a matrix is just the exponential of its

eigenvalues. And, V KH
1 = U1V

d
1 U
†
1 . Likewise, all the KH harmonic matrices are

analytically block-diagonalize and hence, the propagator is evaluated.

There is still a need to compute the eigenvalues and eigenvectors of the represen-

tative symmetric matrices. For δn,n′±1 matrix, the analytical expression for the

eigenvalues is cos( kπ
Nf+1

) (k=1,2,. . . ,2*Nf+1).[1] And, the unitary matrix form of

stacked up eigenvectors is:

Uij =

√
2

Nf + 1
sin(iτj) (A.1)

where τj = jπ
Nf+1

(j=1,2,. . . ,2*Nf+1). However, for rest of the symmetric matri-

ces the analytical expression for the eigenvalues and eigenvectors still needs to be

derived. If the analytical expression is derived, there won’t be any need to numer-

ically compute and store the eigenvalues and eigenvectors. [Fig. A.1] shows a plot

for the eigenvalues of the symmetric matrices on varying the number of Floquet
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Figure A.1: Eigenvalues of the symmetric matrices on varying the number of
Floquet channels. The elements of the symmetric matrices are given by δn,n′±n.
The analytical expression for the eigenvalues of the matrix with δn,n′±1 is known.
For the other matrices, the expression still needs to be derived.
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Figure A.2: The first eigenvector of the symmetric matrices on varying the
number of Floquet channels. Similar to [Fig. A.1], the analytical expression for
the eigenvectors of the matrix with δn,n′±1 is known. For the other matrices,
the expression still needs to be derived.

channels. For δn,n′±1, the analytical expression for the eigenvectors is given in Eq.

[A.1]. The plot of first eigenvector for each unitary matrix is given in [Fig. A.2]

and its analytical expression is still a problem to address.
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Appendix B

Codes

The following code is written in Fortran90 [1] programming language to carry

out time propagation of the test cases described in Chapter 3. The test system

taken up in this code is the symmetric double well potential system.

B.1 Packages Used

LAPACK [2] (Linear Algebra PACKage): Used for diagonalization of the matrices.

B.2 Compilers Used

gfortran (the GNU Fortran compiler)

B.3 Compilation Instruction

Use the following command on terminal: gfortran codefile.f90 -llapack -lblas

codefile.f90 is the only input file consisting of the subroutines: recur1, recur2 and

DSYEV WT EIGVECS

64



Appendix B Codes 65

B.4 Code

!Code to perform time propagation of wavepacket for symmetric double well po-

tential system.

!Author :: Rishabh Gupta

!Date :: 15/1/2019

program ttprime method

implicit none

!*****************Variables declaration***********************!

integer ( kind = 4 ), parameter :: num = 100

real ( kind = 8 ), parameter :: pi = acos(-1.0d0)

complex ( kind = 8 ), parameter :: ci = (0.0d0,1.0d0)

integer ( kind = 4 ) :: i, i1, j, j1, c, c1, k

real ( kind = 8 ) :: A, B, x, xmax, xmin, dx, m, n, dk

complex ( kind = 8 ) :: s, z, w

real ( kind = 8 ), allocatable :: T(:,:), H0(:,:), H1(:,:)

real ( kind = 8 ), allocatable :: V(:,:), V U(:,:), V J(:,:), V eval(:,:)

real ( kind = 8 ), allocatable :: eval(:), eigvals(:), evecs(:,:), eigvecs(:,:)

real ( kind = 8 ), allocatable :: psi(:,:)

complex ( kind = 8 ), allocatable :: H0 exp(:,:), H0 U(:,:), H0 sm(:,:)

complex ( kind = 8 ), allocatable :: U(:,:), UT(:,:), pro(:,:), H0 UUT(:,:)

!*****************Floquet variables**************************!

integer ( kind = 8 ), parameter :: Nf = 6

integer ( kind = 8 ) :: fch, fld

real ( kind = 8 ) :: omega, alpha, a0, n

complex ( kind = 8 ), allocatable :: evec fl(:)

complex ( kind = 8 ), allocatable :: M nw(:), P fl(:), PU(:)

!*****************Time variables*****************************!

integer ( kind = 4 ), parameter :: tsteps = 30000

integer ( kind = 4 ) :: t1

real ( kind = 8 ) :: dt, time, ton

!*****************Constants**********************************!

A = 0.005224862d0 ; B = 0.0139753572d0
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a0 = 1.80d0 ; omega = 0.037d0

ton = 20.0d0*(2.0d0*pi/omega)

fch = 2*Nf+1 ; fld = fch*num

xmax = 10.0d0 ; xmin = -10.0d0

dx = (xmax-xmin)/float(num-1)

dk = 2.0d0*pi/(num*dx)

dt = 0.1d0

w = exp((2.0d0*pi*ci)/num)

m = 1822.888d0

!*****************Matrix allocation**************************!

allocate( T(num,num), H0(num,num), H1(num,num) )

allocate( V(num,fch), V U(fch*(fch-1),fch*(fch-1)) )

allocate( V J(fch,fch), eigvals(fch), eigvecs(fch,fch) )

allocate( V eval((fch-1)*fch) )

allocate( eval(num), evecs(num,num) )

allocate( U(num,num), UT(num,num) )

allocate( H0 exp(fld,fld), pro(num,num) )

allocate( evec fl(fld), psi(fld,tsteps) )

allocate( M nw(fld), PU(fld) )

allocate( H0 sm(num,num), H0 U(num,num), H0 uut(num,num) )

allocate( P fl(fld), P uut(fld) )

!*****************Fourier grid Hamiltonian*******************!

T = 0.0d0

do k = 0, num/2

T(k+1,k+1) = (0.5d0/m)*(k*dk)**2

enddo

c = (num/2)+2

do k = -(num/2)+1,-1

T(c,c) = (0.5d0/m)*(k*dk)**2

c = c + 1

enddo

U = (0.0d0,0.0d0) ; UT = (0.0d0,0.0d0)

do i = 0, num-1
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do j = 0, num-1

U(i+1,j+1) = w**(i*j)

UT(i+1,j+1) = w**(-i*j)

enddo

enddo

H0 = 0.0d0 ; H1 = 0.0d0

pro = (0.0d0,0.0d0)

pro = matmul(T,UT)

H0 = (1.0d0/num)*matmul(U,pro)

H1 = H0

deallocate( T,pro,U,UT )

!******************Initial wavepacket*************************!

do i = 1, num

x = xmax - (i-1)*dx

H0(i,i) = H0(i,i) + A*x**4 - B*x**2

enddo

call DSYEV WT EIGVECS(H0,num,eval,evecs)

evec fl = 0.0d0 ; c1 = 0

do j1 = -Nf , Nf

do i1 = 1,num

evec fl(c1*num+i1) = evecs(i1,1)

enddo

c1 = c1 + 1

enddo

!******************Exponential of number matrix***************!

M nw = 0.0d0 ; n = -Nf*1.0d0

do j = 1, fch

do i = 1, num

M nw((j-1)*num+1) = exp(-0.50d0*ci*n*omega*dt)

enddo

n = n + 1.0d0

enddo

!**********Unitary matrices for analytical diagonalization*******!
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V U = 0.0d0 ; V eval = 0.0D0

do j = 1, fch-1

V J = 0.0d0

do i = 1, fch-j

V J(i,i+j) = 1.0d0

V J(i+j,i) = 1.0d0

enddo

eigvals = 0.0d0

eigvecs = 0.0d0

call DSYEV WT EIGVECS(V J,fch,eigvals,eigvecs)

do i = 1, fch

do k = 1, fch

V U((j-1)*fch+i,(j-1)*fch+k) = eigvecs(i,k)

enddo

V eval((j-1)*fch+i) = eigvals(i)

enddo

enddo

!**************Time Propagation starts****************************!

do t1 = 1, tsteps

time = (t1-1)*dt

if (time < ton) then

alpha = a0*(sin(pi*time/(2*ton))**2)

else

alpha = a0

endif

!****KH harmonics construction****!

V = 0.0d0 ; H0 = 0.0d0

do i = 1,num

x=xmax-(i-1)*dx

V(i,1) = A*( x**4 + 3.0d0*(alpha**2)*x**2 + &

(3.0d0/8.0d0)*alpha**4 ) - B*(x**2 + 0.5d0*alpha**2)

V(i,2) = -0.5d0*0.5D0*alpha*x*( 3.0d0*A*alpha**2 - &

2.0d0*B + 4.0d0*A*x**2 )
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V(i,3) = 0.5d0*0.25d0*(alpha**2)*( -B + A*(alpha**2 + 6.0d0*x**2) )

V(i,4) = -0.5d0*0.50d0*A*(alpha**3)*x

H0(i,i) = H0(i,i) + V(i,1)

enddo

V(:,5) = 0.5d0*(1.0d0/16.0d0)*A*alpha**4

!***********************!

P fl = (0.0d0,0.0d0)

P fl(:) = M nw(:) * evec fl(:)

!****Recursive subroutine-1****!

CALL recur1( P fl, fch-1, fch, fch, fld, num, V U, V eval, V, dt)

!*************************!

H0 exp = (0.0d0,0.0d0)

eval = 0.0d0 ; evecs = 0.0d0

call DSYEV WT EIGVECS(H0,num,eval,evecs)

do i = 1, num

H0 sm(i,i) = exp(-ci*dt*eval(i))

enddo

H0 U = matmul(evecs,H0 sm)

H0 uut = matmul(H0 U,transpose(evecs))

P uut = (0.0d0, 0.0d0)

do i = 1, fch

do j = 1, num

s = (0.0d0, 0.0d0)

do k = 1, num

s = s + (H0 uut(j,k)*P fl((i-1)*num+k))

enddo

P uut((i-1)*num+j) = s

enddo

enddo

P uut = (0.0d0,0.0d0)

do i = 1, fld

s = (0.0d0,0.0d0)

do j = 1, fld
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s = s + H0 exp(i,j) * P fl(j)

enddo

P uut(i) = s

enddo

P fl = (0.0d0,0.0d0)

P fl = P uut

!****Recursive subroutine-2******!

CALL recur2( P fl, 1, fch, fch, fld, num, V U, V eval, V, dt )

!********************************!

evec fl = (0.0d0,0.0d0)

evec fl(:) = M nw(:) * P nw(:)

psi(:,t1) = abs(evec fl(:))

c2 = 0

do j1 = -Nf,Nf

do i1 = 1,num

evec fl(c2*num+i1) = exp(ci*j1*omega*time)*evec fl(c2*num+i1)

enddo

c2 = c2 + 1

enddo

enddo

!*************Time Propagation Ends***********************!

open(10,file=”tprop.dat”)

do i = Nf*num+1,(Nf+1)*num

write(10,*)(psi(i,j),j=1,tsteps)

enddo

deallocate( H0,H1,eval,evecs )

deallocate( evec fl,psi, P uut, H0 exp )

deallocate( M nw, P fl, V U, V eval )

end

!********************************************************!

recursive subroutine recur1 ( P fl, N, fch, fch, fld, num, V U, V eval, V, dt )

implicit none

integer ( kind = 4 ) :: N, num, fch, fld
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complex ( kind = 8 ), parameter :: ci = (0.0d0,1.0d0)

complex ( kind = 8 ) :: s

integer ( kind = 8 ) :: i, j, k

real ( kind = 8 ) :: dt real ( kind = 8 ), allocatable :: U j(:,:), U jt(:,:)

complex( kind = 8 ), allocatable :: PU(:), PU2(:), PV(:), V exp(:,:)

complex ( kind = 8 ) :: P fl(fld)

real ( kind = 8 ) :: V eval((fch-1)*fch), V(num,fch)

real ( kind = 8 ) :: V U(fch*(fch-1),fch*(fch-1))

!*************************!

allocate( U j(fch,fch), U jt(fch,fch) )

allocate( V exp(fld,fld), PU(fld), PU2(fld), PV(fld) )

!*******Unitary matrix construction************!

U j = 0.0d0 ; U jt = 0.0d0

do i = 1, fch

do j = 1, fch

U j(i,j) = V U((N-1)*fch+i,(N-1)*fch+j)

enddo

enddo

U jt = transpose(U j)

!***********************************!

PU = (0.0d0,0.0d0)

do j = 1, fch

do i = 1, num

s = (0.0d0,0.0d0)

do k = 1, fch

s = s + ( U jt(j,k) * P fl((k-1)*num+i) )

enddo

PU((j-1)*num+i) = s

enddo

enddo

V exp = (0.0d0,0.0d0)

do i = 1, fch

do j = 1, num
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V exp((i-1)*num+j,(i-1)*num+j) = exp(-0.5d0*ci*dt* &

( V(j,N+1)*V eval((N-1)*fch+i)) )

enddo

enddo

PV = (0.0d0,0.0d0)

do i = 1, fld

PV(i) = V exp(i,i) * PU(i)

enddo

PU2 = (0.0d0,0.0d0)

do j = 1, fch

do i = 1, num

s = (0.0d0,0.0d0)

do k = 1, fch

s = s + ( U j(j,k) * PV((k-1)*num+i) )

enddo

PU2((j-1)*num+i) = s

enddo

enddo

P fl = PU2

!*******call recur1 until N≥2************!

if ( N ≥ 2) then

call recur1( P fl, N-1, fch, fch, fld, num, V U, V eval, V, dt )

endif

end subroutine

!*********************************************!

recursive subroutine recur2( P fl, N, fch, fch, fld, num, V U, V eval, V, dt )

implicit none

integer ( kind = 4 ) :: N, num, fch, fld

complex ( kind = 8 ), parameter :: ci = (0.0d0,1.0d0)

complex ( kind = 8 ) :: s

integer ( kind = 8 ) :: i, j, k

real ( kind = 8 ) :: dt real ( kind = 8 ), allocatable :: U j(:,:), U jt(:,:)

complex( kind = 8 ), allocatable :: PU(:), PU2(:), PV(:), V exp(:,:)
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complex ( kind = 8 ) :: P fl(fld)

real ( kind = 8 ) :: V eval((fch-1)*fch), V(num,fch)

real ( kind = 8 ) :: V U(fch*(fch-1),fch*(fch-1))

!*************************!

allocate( U j(fch,fch), U jt(fch,fch) )

allocate( V exp(fld,fld), PU(fld), PU2(fld), PV(fld) )

!*******Unitary matrix construction************!

U j = 0.0d0 ; U jt = 0.0d0

do i = 1, fch

do j = 1, fch

U j(i,j) = V U((N-1)*fch+i,(N-1)*fch+j)

enddo

enddo

U jt = transpose(U j)

!***********************************!

PU = (0.0d0,0.0d0)

do j = 1, fch

do i = 1, num

s = (0.0d0,0.0d0)

do k = 1, fch

s = s + ( U jt(j,k) * P fl((k-1)*num+i) )

enddo

PU((j-1)*num+i) = s

enddo

enddo

V exp = (0.0d0,0.0d0)

do i = 1, fch

do j = 1, num

V exp((i-1)*num+j,(i-1)*num+j) = exp(-0.5d0*ci*dt* &

( V(j,N+1)*V eval((N-1)*fch+i)) )

enddo

enddo

PV = (0.0d0,0.0d0)
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do i = 1, fld

PV(i) = V exp(i,i) * PU(i)

enddo

PU2 = (0.0d0,0.0d0)

do j = 1, fch

do i = 1, num

s = (0.0d0,0.0d0)

do k = 1, fch

s = s + ( U j(j,k) * PV((k-1)*num+i) )

enddo

PU2((j-1)*num+i) = s

enddo

enddo

P fl = PU2

!*******call recur2 until N≤fch-2************!

if ( N ≤ fch-2) then

call recur2( P fl, N+1, fch, fch, fld, num, V U, V eval, V, dt )

endif

end subroutine

!*********************************************!

subroutine DSYEV WT EIGVECS( H, ndim, eigvals, eigvecs )

implicit none

integer ( kind = 4 ) :: ndim

real ( kind = 8 ) :: H(ndim,ndim), eigvals(ndim), eigvecs(ndim,ndim)

character ( len = 1 ), parameter :: JOBZ=”V”

character ( len = 1 ), parameter :: UPLO=”L”

integer ( kind = 4 ) :: LDA, LDWORK, INFO

real ( kind = 8 ), allocatable :: WORK(:)

LDA = ndim

LDWORK = 3*ndim-1

allocate( WORK(LDWORK) )

call DSYEV( JOBZ, UPLO, ndim, H, LDA, eigvals, WORK, LDWORK, INFO )

deallocate( WORK )



Appendix B Codes 75

eigvecs = H

end subroutine

!**********************************************************************!

B.5 Sample Input File

The input file comprises of the main code with the recursive subroutines and the sub-

routine for the diagonalization of a matrix through LAPACK. A sample of the code file

is given below:

program ttprime method

implicit none

!*****************Variables declaration***********************!

integer ( kind = 4 ), parameter :: num = 100

real ( kind = 8 ), parameter :: pi = acos(-1.0d0)

complex ( kind = 8 ), parameter :: ci = (0.0d0,1.0d0)

integer ( kind = 4 ) :: i, i1, j, j1, c, c1, k

real ( kind = 8 ), allocatable :: T(:,:), H0(:,:), H1(:,:)

. . .

. . .

!**************Time Propagation starts****************************!

do t1 = 1, tsteps

time = (t1-1)*dt

if (time < ton) then

alpha = a0*(sin(pi*time/(2*ton))**2)

else

alpha = a0

endif

. . .

. . .

!*******call recur2 until N≤fch-2************!

if ( N ≤ fch-2) then

call recur2( P fl, N+1, fch, fch, fld, num, V U, V eval, V, dt )

endif

end subroutine
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B.6 Sample Output File

The output file consists of the absolute value of the propagated wavepacket at each time

step. A sample output file is given below:

4.9109028781043885E-013 4.9107163327034147E-013 4.9115365068186922E-013

4.9118780077010322E-013 4.9087521029809780E-013 4.9023301804270620E-013

4.9299528864298955E-013 4.8791034754664045E-013 4.9428754267612438E-013

4.8852203424381249E-013 4.9368382703051147E-013 4.8831621823662732E-013

4.9383539572111971E-013 4.8805069801907139E-013 4.9392138769267964E-013

4.8832754796886164E-013 4.9391408775914684E-013 4.8826026495041950E-013

4.9411551257246923E-013 4.8836529408321331E-013 4.9420840524846185E-013

4.8747310741388454E-013 4.9305435406340439E-013 4.8984378287075310E-013

4.9630428171283700E-013 4.8213488415743078E-013 4.7763838249688960E-013

4.3270360720013091E-013 5.3786977555049605E-013 4.5415199478922443E-013

5.3704635004198409E-013 4.5878353591278663E-013 5.3559776413255472E-013

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

4.8039684703802249E-013 5.2860623605878718E-013 5.1383718465251682E-013

5.4350730667712987E-013 5.1833737141194172E-013 5.7294181564914557E-013

5.2510989550484147E-013 4.5405735540370621E-013 7.2719187918391087E-013

5.4835967713254201E-013 7.4677153651523405E-013 5.6983384369558097E-013

7.3705268684215626E-013 6.0599347737544604E-013 7.2417501860889694E-013

6.2982611491556472E-013 7.1425990705449986E-013 6.3581089660082558E-013

6.9851982260008594E-013 6.3720118936763108E-013 6.8207052753756166E-013

B.7 Running Instructions

For performing the dynamics calculation in the KH frame for a potential system, the

first task is to make the potential in the diagonal form, calculate its Fourier components

and input it in the recursive subroutine. Following the compilation of the code using

the compilation instructions in section B.3, the following command is used to run the

code: ./a.out > & abc.out &
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Appendix C

Atomic units

Length a0 = ~2
mee2

= 5.29 × 10−11 m (α0 has a unit of length)

Charge e = 1.602 × 10−19 C

Energy Eh = 27.21 eV = 1 Hartree

Frequency ν0 = v0
a0

= 4.13 × 1016 s−1 (v0 = atomic unit of velocity)

Angular frequency ω = 2πν0 = 1.51976 × 10−16 rad/s

Electric field E0 = e
4πε0a20

= 5.14 × 109 V/cm

Electric field intensity =
ε0cE2

0
2 = 3.51 × 1016 W/cm2 for peak E0 field
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