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Abstract

With the advancement in technologies, miniaturization of machines, and using

waste energy as an input for heat engines or refrigerator is occurring at a tremen-

dous rate. In today’s world, a big challenge is to make these machines more

efficient, as even small heat leaks could bring a considerable change in its perfor-

mance. This thesis is dedicated to studying the power optimization of two kinds

of heat engines which operate in the steady-state regime, while being in contact

with two heat reservoirs at different temperatures:-

(i) TEG: Thermoelectric generator (TEG) is basically a heat engine that converts

heat flux (temperature differences) directly into electrical energy through a phe-

nomenon called the Seebeck effect. Generally, TEGs are quite inefficient and

expensive, but considerably less bulky than heat engines. In recent time a lot

of research is going on optimizing its power as it could be used in power plants

in order to convert waste heat into additional electrical power and in automo-

biles as automotive thermoelectric generators (ATGs) to increase fuel efficiency.

Another application is radioisotope thermoelectric generators which are used in

space probes, which has the same mechanism but use radioisotopes to generate

the required heat difference. In this report we are trying to optimize the power of

a thermoelectric generator (TEG) under a particular model, considering internal

and external irreversibilities. Then we find efficiency at maximum power (EMP)

and try to infer the series expansion of efficiency around Carnot efficiency.

(ii) Brownian heat engines: In recent times, Brownian microscopic heat engines

vii
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have drawn much attention for the utilization of energy resource available at the

microscopic scale for nanomachines. Brownian heat engines are spatially asym-

metric but periodic structures connected to the reservoirs at different temperatures.

The microscopic description of these machines could be given using the Langevin

equation. However, for our purposes, we only need a macroscopic description

of the system. Our work includes power optimization of the model consider-

ing irreversible heat flow due to kinetic energy exchange and infers its behavior

near equilibrium. Further, we would like to get a bound in efficiency and inves-

tigate conditions where it could achive well-known efficiencies such as Carnot or

Curzon-Ahlborn (C.A) efficiency. It may not be important for a practical purpose

but it would certainly give insight to the theoretical aspects.
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1 INTRODUCTION

1 Introduction

This thesis is divided into three sections that are, Theory, TEG (Thermoelectric
generator), and B.H.E (Brownian heat engine). The first section is devoted to
the study of the underlying theory and mathematical background needed for the
succeeding parts, and in the next two sections, we will examine the power opti-
mization of Thermoelectric generator and Brownian heat engine under a particular
model considering external and internal irreversibility in the system.

In the first section, we will discuss the early formalism of equilibrium thermody-
namics and its application to study theoretical details of heat engines. Further, we
will study how the thermodynamic ideas were generalized for the non-equilibrium
systems which led to the development of irreversible thermodynamics. At the end
of this section, we will discuss the general outline of the thermodynamics for a
Brownian particle connected to a heat bath.

In the second section, we will investigate the microscopic transport properties
which lead to thermoelectric effects. Then using the microscopic transport equa-
tions for thermoelectric material, we will derive the macroscopic heat flux equa-
tions for the T.E.G and ultimately use them to get the expression for power. Next,
we analytically optimize the power of T.E.G and try to infer it’s efficiency near
equilibrium.

In the third section will study the microscopic behavior of Brownian particles
under the action of periodic and asymmetric potential connected to two reservoirs
at different temperatures, and how this set up could be used as a microscopic heat
engine. However, we will not study the microscopic description of this model. In-
stead, we will model it using macroscopic picture analogous to Feynman Ratchet
model. Once we set up the model as a heat engine, we analytically optimize its
power and find efficiency at maximum power (E.M.P). Then we scrutinize its be-
havior near equilibrium and compare it to Feynman Ratchet model.
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2 THEORY

2 Theory

Thermodynamics is a phenomenological description of a macroscopic system. It’s
like working in a black box. We do not know the internal working of the system,
but we could write thermodynamic laws based on the observation, and that’s the
beauty of the subject. However, the thermodynamic results could be derived from
the fundamental laws of physics using a probabilistic approach, which we do in
statistical mechanics.

2.1 Equilibrium Thermodynamics

As the name suggests it is a phenomenological description of equilibrium proper-
ties of a system. But what is “equilibrium”?

Every system has a tendency to evolve towards a state in which the properties
are determined by intrinsic factors and not on previously applied external influ-
ence. Such terminal states are called Equilibrium state. These states do not change
with time.

For example, consider an ideal gas in adiabatic wall kept as shown in the Fig(2.1).
with initial pressure P1 and atmospheric pressure P2. Now as time evolves, it ex-
pands and comes in equilibrium state as shown in the figure. This state has no
memory of past and stays in this state unless otherwise disturbed. Now equilib-
rium thermodynamics does not comment on how it reaches equilibrium but on the
equilibrium properties. It provides an elegant theory to calculate thermodynamic
quantities such as heat, work, energy, entropy, etc when the system is in a well
defined “equilibrium state”.

Now once we define equilibrium state of system we have following laws —

• Zeroth law: If two systems A and B are separately in equilibrium with C,
then they are in equilibrium with each other. It implies that each system in
equilibrium could be specified entirely by its macroscopic parameters such
as Internal energy (U), Entropy(S), Volume(V), Temperature(T), etc.

2



2 THEORY

T1

A B

v2p2v1p1

T2

Movable wall

=T =T

Figure 2.1: Schematic diagram of two gases, at pressure P1 and P2 and volume
V1 and V2 at temperature T , connected to each other by a movable wall.

• First law: This law is the energy conservation equation for the system. It
states that change in internal energy of the system to go from one equilib-
rium state to another equals heat supplied to the system plus work done on
the system. In differential form it could be written as,

du = dq + dw.

By further considering the process to be quasi-static ( sufficiently slow, so
that system is always in an equilibrium state) and reversible we could write,

dq = Tds

dw =
∑
i

Jidxi.

Where Ji is generalized force and dxi is generalized displacement. For
example, if a system is in a magnetic field, then generalized force is the

3



2 THEORY

Types Of Works Generalized Force Generalized 
displacement

Work 
(F.dX)

Boundary (expansion or 
compression) Pressure (P) Volume (V) -P.dV

Spring Force F   Displacement (X) F.dX

Elastic Fe Displacement (é) Fe.dé

Torsion Ft Angle (ø) Fe.dø

Surface deformation Ś Area (a) Ś.da

Electromotive force E Charge (q) E.dq

Electric Polarization É P E.dP

Magnetic Polarization H M H.dM

Figure 2.2: Table containing list of different generalized forces, generalized dis-
placements and work done by them.

applied magnetic field (H) while generalized displacement is the magnetic
moment (M). List of different generalized force and generalized displace-
ment is given in the Fig(2.2).

So our final equation for firsr law of thermodynamics is,

du = Tds+
∑
i

Jidxi.

• Second law: Second law could be stated in different forms and all of them
are equivalent [10].

(i) The total entropy of an isolated system can never decrease over time.
(ii) Clausius statement: Heat cannot spontaneously flow from colder body
to hotter body.
(iii) Kelvin statement: It is impossible to devise a cyclically operating ther-
mal engine, the sole effect of which is to absorb energy in the form of heat
from a single thermal reservoir and to deliver an equivalent amount of work.

4



2 THEORY

This Law gives directionality to a physical process, i.e. nature allows only
those process which increase the total entropy of the universe. We will come
back to this point later.

• Third law: The entropy of a system approaches a constant value as its
temperature approaches absolute zero.

5



2 THEORY

2.2 Heat Engines

One of the early triumphs of thermodynamics was to give a limit on maximum
useful work that could be extracted from a system. Before the second law was
well established, people came up with all sort of theoretical model for the perpet-
ual machine or heat engine where all heat could be transformed into mechanical
work. These models followed all the physical laws, but still, never worked. Later
on, it was realized that they all violated the second law of thermodynamics and
that there is an intrinsic upper bound on the mechanical work that could be ex-
tracted from the system.

2.2.1 Carnot Engine:

It is an idealized heat engine which operates between two reservoir with tempera-
ture Th and Tc, with Th > Tc.It takes Qh amount of heat from hotter reservoir and
dumps Qc amount of heat in colder reservoir and does a work ”W”, as shown in
the Fig(2.3). Where W is,

W = Qh −Qc

Th
Qh Qc

W=Qh-Qc

Tc

Figure 2.3: Shematic diagram of an heat engine

6



2 THEORY

we define Efficiency(η) of engine as the ratio of work extracted from the en-
gine to heat taken by the engine.

ηc = 1−Qc/Qh

and
W = ηcQh

Carnot engine has following properties—–

• It is cyclic i.e. the working medium comes back to its initial state after one
cycle[10].

• It is reversible i.e., it could be run backward by reversing the input and
output.

• Its efficiency depends only on the ratio of operating temperatures.

Now any engine following this criteria is equivalent to a Carnot engine. Next we
prove that all such engines have same efficiency, which indeed is the maximum
efficiency that could be achieved by any heat engine.

Suppose we have an engine with efficiency greater than that of Carnot engine
i.e, η > ηc, where ηc is Carnot efficiency.

Now work extracted from this engine could be used to run the Carnot engine
reversibly as shown in the Fig(2.4).

Q′h= heat extracted by the engine from hotter reservoir.
W ′= Work done by the engine. Now by definition,

W ′ = ηQ′h (1)

and Q′c= heat dumped by the engine to colder reservoir.

Now this work is used to run the Carnot engine backwards therefore, Qh= heat

7



2 THEORY

Figure 2.4: Schematic diagram of an engine connected to Carnot engine

dumped by the Carnot engine to hotter reservoir, which is

Qh = W/η

, now using Eq.(1),
Qh = Q′hη/ηc. (2)

and Qc= heat taken from cold reservoir by Carnot engine, Now

Qc = (1− ηc)Qh

using equation 2,
Qc = (1− ηc)Q′hη/ηc. (3)

Now, looking at the combined engine of two we see that if

Qh −Q′h > 0

,i.e using Eq.(1) and Eq.(2).

Qh −Q′h > 0⇒ Q′h(η/ηc − 1)⇒ η > ηc. (4)

then it takes Qc − Q′c amount of heat from cold reservoir and dumps it to hot
reservoir. where

Qc −Q′c = Qh −Q′h

8



2 THEORY

but this violates Kelvin’s statement that, it is impossible to devise a cyclically
operating thermal engine, the sole effect of which is to absorb energy in the form
of heat from a single thermal reservoir and to deliver an equivalent amount of
work. Hence our initial assumption must be wrong, So we arrive at the conclu-
sion that Carnot engines have maximum efficiency. Similarly by connecting two
Carnot engines we could show that both must have same efficiency.

Next we try to find the upper bound of this efficiency and to do so we construct
a Carnot engine using ideal gas. It runs between two isotherms Th and Tc, joined
by adiabatic curve as shown in Fig(2.5)(P-V curve).

So it takes Qh heat from hot reservoir and expand isothermally a → b, then it
expands adiabatically from b→ c, then it compresses isothermally from c→ d and
dumps Qc heat to cold reservoir and then returns to its initial state adiabatically
via d→ as shown in Fig(2.5). and since the engine is reversible so total entropy

Figure 2.5: P-V diagram and S-T diagram of an Ideal gas Carnot engine.

production must be zero. Now entropy production due to gas is O, as it returns
back to its initial state and entropy production due to reservoir is,

Qc

Tc
− Qh

Th
= S

9



2 THEORY

where S=total entropy production and,

S = 0⇒ Qc/Tc = Qh/Th ⇒ Qc/Qh = Tc/Th ⇒ η < ηc. (5)

hence using Eq.(5),

ηc = 1− (Qc/Qh) = 1− (Tc/Th). (6)

Now, on surface it may seem that Carnot engine is the best choice for heat en-
gine as its efficiency is maximum that could be achived, but it is quite impractical
as it would take infinite time to run through one cycle.

2.2.2 Irreversible heat engines

As we looked earlier that Carnot engine put an upper bound on efficiency But
quite impractical as it takes infinite time to make one cycle. In more realistic situ-
ations heat engines must incorporate irreversibilities. We, will look more general
formalism to incorporate irreversibility in later section. For now we will try to
model irreversibility in a heat engine.Now, Irreversibility could either be external
or internal.

• Endoreversible model: Here we assume that there is no internal irreversibil-
ity, like friction, is present in the system and all the irreversibility is external.
That is for heat exchange between reservoir and engine, there must be some
temperature difference as shown figure.To incorporate external irreversibil-
ity we use Finite time thermodynamics(FTT). Here we take into account
that it takes finite time for heat to transfer from hotter medium to colder
one. This could be understood well using C-A model

Under C-A model [5], the heat engine operates between two intermediate
temperature as shown in the Fig(2.6(a)). Let it takes Q̇h heat from hot reser-
voir and dumps Q̇c heat to cold reservoir per second. We assume that engine
runs continuously and heat transfer follows Newton’s law of cooling.Then,

Q̇h = Kh(TH − Th) (7)

10



2 THEORY

Figure 2.6: (a)Schematic of heat engine with irreversibility at both end of the
reservoir and no internal irreversibility. (b) Schematic oh heat engine with irre-
versibility ony at hotter end of the reservoir

Q̇c = Kc(Tl − TL) (8)

where Kh and Kc is the heat conductance of the system. Now power ex-
tracted from the engine is ,

Ẇ = Q̇h − Q̇h ⇒ W = Kh(TH − Th)−Kc(Tl − TL) (9)

hence we see Work is a function of intermediate temperature and it could
be optimized according to them, but we need to take in consideration that
these temperatures are not independent. As the engine endoreversible so it
must follows that entropy production internally is 0, therefore using Eq.(7)
and Eq.(8),

Ṡ = 0⇒ Q̇c/Tl = Q̇h/Th ⇒ Tl/Th = (Kh(TH−Th)/Kc(Tl−TL)). (10)

Now using Eq.(10), power could we maximized and efficiency at maximum
power (EMP) could be found.

Doing so we get that

EMP = ηca = (1−
√

(TL/TH)) = 1−
√

1− ηc

11



2 THEORY

where ηc is Carnot efficieny. This is known as C.A efficiency and is ob-
served for different classes of systems having no internal heat leaks and
Left-right symmetry [7]. expanding it around it we get,

E.M.P =
ηc
2

+
η2c
8

+ 0(η3c ) (11)

Here the first term is a consequence of no internal heat leaks while the sec-
ond term is due to left right symmetry [7].

• Exoreversible model: Contrary to endoreversible model, here we assume
that all irreversibility present in the system is internal, in form of heat leaks
or joule’s heating etc and heat conductance to be infinite.

Similar calculation as former one could be done for exoreversible heat en-
gine based on particular model, which we will see in later section.

12



2 THEORY

2.3 Irreversible Thermodynamics

2.3.1 Flux and Affinities

In the previous section, we mentioned that second law gives directionality to a
physical process, i.e. nature allows only those processes which increase the total
entropy of the universe. Indeed we see that most of the processes observed in
nature are irreversible and things go one way. But that’s not the case for system
in equilibrium, and at the heart of the equilibrium thermodynamics lies the as-
sumption that processes are reversible. Hence the above formalism is inadequate
in explaining such process and we need to modify the above theory to incorporate
irreversibilities.

To model irreversibilities in the system, Lars Onsager provided a general formal-
ism for irreversible thermodynamics. But Before moving to Onsager relation we
need to define certain terminology of flux and affinities. Suppose we have two
systems at temperature T1 and T2 connected to each other through the diathermal
wall such that they could only exchange energy and total energy(U) of the system
is conserved, as shown in Fig(2.7)

T1

A B

v2p2v1p1

T2

Fixed Diathermal 
wall

Figure 2.7: Two systems at temperature T1 and T2 connected to each other
through the diathermal wall such that they could only exchange energy and to-
tal energy(U) of the system is conserved

Now as it moves towards equilibrium its entropy increase and we could write

13



2 THEORY

the infinitesimal change in entropy as,

dStot = dS1 + dS2.

where,

dS1 =
∂S1

∂U1

dU1, (12)

dS2 =
∂S2

∂U2

dU1, (13)

Now we know ∂S
∂U

= 1
T

Hence, using it

dStot = dS1 + dS2 =
1

T1
dU1 +

1

T2
dU2, (14)

but as total energy is conserved, therefore

dU = dU1 + dU2 = 0⇒ dU1 = −dU2.

now using the above equation we could write,

dStot =

(
1

T1
− 1

T2

)
dU1, (15)

Here dU1 is flux and ( 1
T1
− 1

T2
) is difference of intensive parameters.

Similarly if we would have another degree of freedom, say if wall could move
such that total volume is conserved then Eq.(15) would be modified accordingly
as,

dS1 =
∂S1

∂U1

dU1 +
∂S1

∂V1
dV1.

and
dS1 =

∂S2

∂U1

dU2 +
∂S2

∂V2
dV2

and following the previous method and using the fact that ∂S
∂v

= P
T

we could write,

dStot =

(
1

T1
− 1

T2

)
dU1 +

(
P1

T1
− P2

T2

)
dV1. (16)

14



2 THEORY

and if we also allow particle flow, where total particle number is conserved, then
we could write

dStot =

(
1

T1
− 1

T2

)
dU1 +

(
P1

T1
− P2

T2

)
dV1 −

(
µ1

T1
− µ2

T2

)
µ1. (17)

Similarly for different degree of freedom we could write,

dS =
∑

fkdXk (18)

where fk is ∂S
∂Xk

and Xk are different extentensive parameters of the system. also,

dStot =
∑

FkdXk (19)

where by defnition Fk = affnity and dXk = flux. For dicrete system affinities are
diffrence of fk of two system. for examaple F0 = 1

T1
− 1

T2
, F1 = P1

T1
− P2

T2
etc.

From above results we see that as affinities vanishes infinitesimal change in en-
tropy turns to zero and equilibrium is attained, and consequently all the fluxes
vanishes. Hence as affinities vanish, fluxes also vanish.

2.3.2 Onsager Formalism

In previous section we found how infiitesimal change in entropy is dependent on
flux and affinities for a discrete system. Now we want to extend this idea to a
continuous system [4]. For this we consider a small volume element(dv) in a con-
tinuous system and examine it, as shown in Fig(2.8). We assume that this small
volume element is locally in equilibrium.

We define s = S/v, which is entropy per unit volume. Now using equation 18
we could write,

ds =
∑

fkdxk (20)

where xk = Xk/v. Now dividing Eq.(20) by area of the element and associating

15



2 THEORY

Figure 2.8: particle or energy current passing through infinitesimal volume in a
contineous system

an unit vector along the area to it, we could define.

~Js =
∑

fk ~Jk (21)

where ~Js is entropy current density and ~Jk is current density of xk extensive vari-
able. for example ~Jux is energy current density along x-axis, ~JNy is particle cur-
rent density along Y-axis and so on. Now, using equation of continuity we could
write,

ṡ =
ds

dt
=
∂s

∂t
+∇. ~Js (22)

also using Eq.(20), we could write

∂s

∂t
=
∑

fk
∂xk
∂t

(23)

also we consider system to be in local equilibrium so,

ṡ =
dxk
dt

=
∂xk
∂t

+∇. ~Jk = 0 (24)

therefore,
∂xk
∂t

= −∇. ~Jk (25)

16
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Now, putting equation 20 and 23 on equation 22,

ṡ =
∑

fk
∂xk
∂t

+∇.
∑

fk ~Jk (26)

ṡ =
∑

fk
∂xk
∂t

+
∑

fk∇. ~Jk +
∑

~Jk.∇Fk (27)

Now, putting equation 25 on equation 27 we get,

ṡ =
∑
∇fk. ~Jk. (28)

Hence we observe that, same as discrete system we could also write entropy pro-
duction rate as sum of the product of affinities and fluxes. Here flux turn out to be
gradient of intensive parameter in entropy representation.
So here ~Fk = ~∇.fk. For eg.

~Fu = ~∇
(
∂s

∂u

)
⇒ ~Fu = ~∇

(
1

T

)
.

Now, It is phenomenologically it is found that fluxes depend on all the affinities
present. It should be noted that a flux tends to depend most strongly on its own
affinity, but the dependence on other affinities could not be ignored. Hence,

~Jk = ~Jk(F0, F1, F2.....Fn).

Now we know flux vanishes when affinities vanishes hence we could write,

~Jk =
∑

Lij ~Fj +
∑

Lijl ~Fj ~Fl + ... (29)

Where Lij ,Lijl etc all are coefficients obtained from Taylor expansion of the above
funtion. i.e,

Lij =
∂~Ji(F0, F1, F2.....Fn)

∂ ~Fj

Lij ,Lijl, etc are called kinetic coefficients. They are funtions of intensive vari-
ables.
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Next onsager theorem sates that, if a system is in presence of ~B then Lij( ~B) =

Lji( ~−B). That is, value of kinetic coefficient Lij measured at magnetic field ~B is
same as Lji measured at magnetic field ~−B. This result becomes very important
for linear system, where second order and higher degree dependence on flux could
be ignored.

This result is a consequence of a very deep physical law, which tells that Laws
of physics remain same when time ”t” is replaced by ”-t” and ” ~B” by ” ~−B”.

18
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f

V(x)

x

Temperature=T

Figure 2.9: Schematic diagram of a Brownian particle at temperature ’T,’ under
the action of a Potential well (V(x)) and a load force ’f’.

2.4 Thermodynamics of Brownian Particle

Till now we have looked at the microscopic behavior of equilibrium and non-
equilibrium system. In this section, we will model the behavior a single Brownian
particle connected to a heat bath and try to associate thermodynamic quantities
such as heat, work, and entropy production to it. We won’t look at these things
in much detail as it would not be necessary to study the equilibrium behavior of
Brownian heat engine. However its always better to know how the equilibrium
properties arise.

Suppose a Brownian particle is under the action of a potential 1-D potential V(x,t)
and a force ’f’ and is connected to a reservoir at temperature ’T,’ as shown in the
Fig(2.9).

The microscopic description of the particle could be given using Langevin

19



2 THEORY

dynamics [15],[17]. The equation of motion for the particle is,

mẍ+ µẋ = −∂V̇ (x, t)

∂x
+ f + ζ(t). (30)

Where, m= mass of the particle.
µ=friction coefficient.
ζ(t)= Random fluctuation.

Now this Random fluctuation is Gaussian in nature, i.e its average over time is
0.

〈ζ(t1)ζ(t2)〉 = 2kbTδ(t1 − t2) (31)

Since the Brownian particle is under the action of a random force, we don’t have a
deterministic trajectory. Instead we have a probability distribution (ρ(v, t)) which
is given by Fokker Plank equation. The corresponding fokker plank equation for
the above mentioned Langevin equation (Eq.30) is,

∂ρ

∂t
= µ

∂ρv

∂v
+

1

2m2

∂ρ

∂v2
. (32)

So solution of this equation gives a probability distribution ρ(v, t) for different
trajectories. where, v= velocity of the particle.

For a particular trajectory heat (q) and work (w) could be defined as [15],[17],

q =

∫
∂V̇ (x, t)

∂x
ẋdt−m

∫
vv̇dt (33)

w =

∫
∂V̇ (x, t)

∂t
dt+

∫
fv̇dt (34)

The equation for ρ obtained in equation finally tends to Maxwellian distribu-
tion at equilibrium, which we will use for our work.

Further, entropy production could be defined using Eq.(33) and ρ. For such a small
system, fluctuations become quite relevant and give rise to essential concepts such
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as “Jarzynski work relation,” ”Crooks fluctuation theorems,” etc [17,16,10]. Dis-
cussion on entropy production and F.T (fluctuation theorems) are outside the scope
of this thesis as it requires prior knowledge of ”Stochastic Thermodynamics”[17].
However, we would not need it for our purposes.
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3 THERMOELECTRIC GENERATORS

3 Thermoelectric Generators
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3.1 Thermoelectric material:

Now as a consequence of Onsager formulation we see that one affinity could affect
the other flux. This gives rise to interesting phenomena, known as ”Thermoelec-
tric effects,” which include direct conversion of temperature difference to electric
current or vice versa and such materials are thermoelectric material [14].

In thermoelectric materials, heat transfer could be done by through two medium,
temperature difference, and electrochemical potential. We define Ju and Jn as en-
ergy flux and particle flux respectively. Now using Onsager formalism we could
write J and Jn as a function of different affinities [3]. For simplicity we assume
a 1-D flow of energy and matter along X-axis, so we may not worry about vector
components. So using Eq.(21) could write,

Js =
∑

fkJk

or,
Js =

1

T
Ju −

µ

T
Jn (35)

and using Eq.(28),

ṡ = ∇ 1

T
Ju +∇µ

T
Jn (36)

where,
−Jn = L′11∇µ

T
+ L′12∇ 1

T
. (37)

Ju = L′12∇µ
T

+ L′22∇ 1

T
. (38)

Here we used the fact that Lij = Lji

working in terms of heat flux is easier than that of energy flux, so we would
change the variable. we use,

TJs = Jq

therefore,

Jq = Ju − µJn (39)
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Now using this equation, we eliminate Ju in Eq.(36) to get,

ṡ = ∇ 1

T
(Jq + µJn) +∇µ

T
Jn

ṡ = ∇ 1

T
Jq +

∇µ
T
Jn (40)

and the flux affinity relation becomes,

−Jn = L11
∇µ
T

+ L12∇ 1

T
. (41)

Jq = L12
∇µ
T

+ L22∇ 1

T
. (42)

Now, these kinetic coefficients could be brought in terms of known quantities like
electrical conductivity(σ), heat conductivity(k) etc.

3.1.1 Conductivities

Before moving forward we need to understand what does different quantities in
our equation mean physically.

Jn=particle flux, could be equated to current density J .

J = eJn. (43)

similarly, µ is sum of two parts electrochemical potential and electrical potential(eφ)
ie

µ = µe + µc

for our case, µc = 0. hence
µ = µe = eφ. (44)

also∇µ = e∇φ = −eE, where E = electric field.

Now by defnition,at∇T = 0

J = σE
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or
σ = eJn/∇φ⇒ σ = −e2 Jn

∇µ
(45)

Now, putting∇T = 0 in Eq.(41),

−Jn = L11
∇µ
T
⇒ −e Jn

∇φ
= e2

L11

T

Now using Eq.(45),

σ = e2
L11

T
⇒ L11 =

Tσ

e2
(46)

Similarly heat conductivity ”k” is defined as ratio of heat current and gradient
of temperature at atJn = 0

k =
−Jq
∇T

. (47)

using Eq.(41),for Jn = 0

∇µ =
−T∇(1/T )L12

L11

putting it on Eq.(47), we get

k =
−Jq
∇T

=
L11L22 − L2

11

T 2L11

(48)

Next we define Seebeck coffecient as ratio∇φ and ∇T at Jn = 0. i.e

ε =
∇µ
e∇T

now puttiing Eq.(41) to be 0, we get

ε =
∇µ
e∇T

= − L12

eTL11

(49)

Now putting Eq.(46) on Eq.(49) we get,

L12 = −T
2σε

e
(50)
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now putting expression of L12 and L11 in Eq.(48) to get expression for L22

L22 = KT 2 + T 3ε2σ (51)

Now, knowing expression of kinetic coefficients in terms of known quantities
we could rewrite equations for current densities as:

−Jn =
Tσ

e2
∇µ
T

+−T
2σε

e
∇ 1

T
. (52)

Jq = −T
2σε

e

∇µ
T

+KT 2 + T 3ε2σ∇ 1

T
. (53)

3.1.2 Macroscopic Equation for flux

In this section, we will derive macroscopic equation of flux inside thermoelectric
material from the microscopic equations [1,6].

For the derivation we assume that flow of energy and particle is one dimensional
and cross sectional area of thermoelectric material is ’A’ and flow is perpendicular
to it, as shown in Fig(3.1). For simplicity we take variation of temperature with
length is quadratic. Its two end is connected to reservoir with and total length is
’L’.

Now using Eq.(52), Eq.(53)

Jq = TεJn −K∇T

Jq = TαJ −K∇T. (54)

where α = ε
e
. Also

T = aX2 + bX + c (55)

For X = 0, T = Th, Therefore using Eq.(55), c = Th.
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Hot Side

Cool Side

-

-

-

+

+

+

X=0

X=L

Figure 3.1: Schematic diagram of a 1-D model of Thermoelectric meterial con-
nected to reservoir

Also, T (L) = Tc

⇒ aL2 + bL = Tc − Th (56)

taking divergence of Eq.(54), and putting divergence of Jn = 0 for condition of
local equilibrium.

∇Jq = −k∇2T (57)

Also, taking divergence of Eq.(39), and putting divergence of Jn = 0 and
Ju = 0 for condition of local equilibrium we get,

∇Jq = J.E = J2/σ (58)

Now equating Eq.(57) and Eq.(58) we get,

k
d2T

dx2
=
J2

σ
(59)

Now, using Eq.(55),
d2T

dx2
= 2a
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Putting it on Eq.(59) we get,

a = − J2

2kσ
(60)

Putting value of a to get b in Eq.(56),

b =
Tc − Th
L

+
J2L

2kσ
(61)

putting values of a,b,c in Eq.(55) we get,

T = − J2

2kσ
X2 +X + c (62)

Now, taking gradient of equation 57, we get

∇T =
Th − Tc
L

+
J2(L− 2X)

2σk
. (63)

putting ∇T from above equation to Eq.(54) we get an expresion for heat cur-
rent density.

Jq = TαJ −+k
Th − Tc
L

− J2(L− 2X)

2σ
. (64)

Now heat flux is AJq, hence we multiply Eq.(64), with area

AJq = TAαJ + Ak
Th − Tc
L

− AJ
2(L− 2X)

2σ
.

Now using the fact, I = AJ, where I is current flowing through the system.

⇒ Q = TαI +
Ak

L
(Th − Tc)− I2

L(L− 2X)

2σAL
.

Now again renaming the coefficients in known quantities.

K =
Ak

L

R =
L

σA
.
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Putting these in equation for heat flux we get,

Q = TαI +K(Th − Tc)−
I2R(1− 2X/L)

2
. (65)

Now for X=0 and X=L we have heat flux Qh and Qc respectively. where

Qh = ThαI +K(Th − Tc)−
I2R

2
. (66)

Qc = TcαI +K(Th − Tc) +
I2R

2
. (67)

Here the first term signifies Seebeck term. Second term signifies heat leaks
and third term signifies joule heating. Here we see heat is dumped to both the
reservoir in equal proportion. In general this is not the case, if they dump different
fractions of Joule heat in each reservoir, then the flux equations are:

Qh = ThαI +K(Th − Tc)− γI2R. (68)

Qc = TcαI +K(Th − Tc) + (1− γ)I2R. (69)
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3.2 Thermoelectric Generators

3.2.1 Different Models

In previous section we saw that, when temperature gradient is applied to a ther-
moelectric device, it creates a potential difference, which in turn sets up a current
in the circuit. This effect is known as ’Seebeck effect’. Now, this current could
be used to do work, and the whole system works as a thermoelectric generator
as shown in Fig(3.2). Once we set up a TEG, we could optimize its power and
observe the trend of efficiency under different models.

=𝛾I  R

=(1-𝛾)I  R2

2

Figure 3.2: Schematic diagram of a thermoelectric generator with external and
internal irreversibility and ’γ’ fraction of joule heating dumped to the hotter side

The most general model of a thermoelectric generator (TEG), should include
all the irreversibilities present in the system [12,6]. To encompass external ir-
reversibility, it should operate between some intermediate temperature. Now the
internal irreversibility should consist of Joule heating due to the internal resistance
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of the device and heat leakage in the device. So the equations for fluxes are,

Qh = Kh(Th − Tw) = αTwI − γI2R +Kin(Tw − Tw′) (70)

Qc = Kc(Tw′ − Tc) = αTw′I + (1− γ)I2R +Kin(Tw − Tw′) (71)

Here γ quantifies the fraction of Joule heating going to either side. Power op-
timization or calculating efficiency at maximum power(EMP) for such a model
becomes quite complex, so to reduce the complexity instead of solving the most
general model we solve a certain class of models—

• Exoreversible model: As defined earlier, for this model we take external
irreversibility to be absent, K → ∞. Hence Tw and Tw′ approaches Th
and Tc respsetively, Also for simplicity we take heat leaks to be absent and
γ = 1. So using Eq.(71) , flux equation for this case is

Qh = αThI − I2R (72)

Qc = αTcI (73)

Using it,
P = Qh −Qc ⇒ P = αI(Th − Tc)− I2R

Now maximizing,
dP

dI
= 0⇒ I =

α(Th − Tc)
2R

(74)

Now, calculating EMP, we get

ηexo =
1− θ
1 + θ

(75)

here θ is Tc/Th.

• Endoreversible model: Again as defined previously, for this model there
are no internal irreversibility i.e. heat leaks and Joule’s heating is absent.
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Also for simplicity we take γ = 1 and Kh = Kc = K. Hence flux equation
for this model is,

Qh = K(Th − Tw) = αTwI (76)

Qc = K(Tw′ − Tc) = αTw′I (77)

Now using these equation Tw = and Tw′ = could be written in terms of I,

Tw =
KTh

K + αI

Tw′ =
KTc

K − αI
and equation for power is,

P = αI

(
KTh

K + αI
− KTc
K − αI

)
(78)

Again similar to previous problem, this equation could be maximized in
terms of current and then we calculate EMP. Which turns out to be same as
C-A model.

ηendo = 1−
√
θ (79)

For other models reference[12] could be seen.

3.2.2 Model for my case

In our model we use γ =1, i.e all heat is dumped to hotter side, Kc = Kh = K

and assume heat leakage to be absent ie Kin = 0 as shown in Fig(3.3). So for our
purpose, the flux equation turns out to be:

K(Th − Tw) = αTwI − I2R (80)

K(Tw′ − Tc) = αTw′I (81)
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Figure 3.3: Schematic of Thermoelectric Generator with external reversibil-
ity(finite K) and internal irreversibility(due to Joule heating, dumped on hot side
i.e. γ=1)

now, eliminating Tw and Tw′ we could write power in terms of current,

P =
kRαI3 −K(α2(Th + Tc) +RK)I2 +K2(Th − Tc)αI

k2 − α2I2
. (82)

Now to optimize power we differentiate the above eqn w.r.t ”I”. Doing so, we
get a quartic equation

I4 −K
(

3K

α2
+

∆T

αR

)
I2 + 2K2

(
K

α3
+

Γ

αR

)
I − K3∆T

Rα2
= 0 (83)

where ∆T = Th − Tc and Γ = Th + Tc

It has 4 roots and we need to find a physical relevant root(i.e I > 0) out of
these [2,9], to do so, we are going to use geometrical approach using ”Pencil”.
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3.3 Pencil

Pencil is a family of curve given by [2],

ay2 − by + cx+ d+ λ(y − x2) = 0. (84)

It has a unique property, that every curve passes through 4, 2 or 0 points depending
on the root of the quartic equation,

ax4 − bx2 + cx+ d = 0. (85)

These points are called base points. Other than base point for every value of λ we
get a unique point in co-rdinate space. for eg. consider a particular pencil.

y2 − 7y + 6x+ λ(y − x2) = 0, (86)

So for different values of λ we get different curves, all of which pass through
4 points. These base points are solutions of the quartic:

x4 − 7x2 + 6x = 0. (87)

From the Fig(3.4) we could see that base points are nothing but intersection of
pair of straight line and parabola.

3.3.1 Roots of quartic using Pencil

So for a general quartic equation ax4 − bx2 + cx + d = 0 the desired pencil is
ay2 − by + cx + d + λ(y − x2) = 0 and It’s base points i.e roots of the quartic
equation is given by intersection of pair of straight line and parabola.

The equation of pair of straight line is given by

y +
b+ λ

2
= ±
√
λ

(
x− c

2λ

)
(88)

34



3 THERMOELECTRIC GENERATORS

λ=-2 λ→ ∞

λ=2

λ=1

X -axis

Y

-6 -4 -2 0 2 4 6

-5

0

5

10

Figure 3.4: plotting Eq.(86) for different values of λ

where λ is root of equation

λ3 + 2bλ2 + (b2 − 4d)λ− C2 = 0

Now our equation,

I4 −K
(

3K

α2
+

∆T

αR

)
I2 + 2K2

(
K

α3
+

Γ

αR

)
I − K3∆T

Rα2
= 0 (89)

b < 0, c > 0 and d < 0. Since we expect a physical solution of this model hence√
λ must be real. Therefore λ > 0, hence c/λ > 0. So from Eq.(88) we know that

intersection pair of straight line is along positive x-axis.

Now if this point of intersection is in first co-ordinate we get a physically rele-
vant solution irrespective of the slopes of the straight line and solution would be
intersection of parabola y − x2 = 0 and line,

y +
b+ λ

2
=
√
λ

(
x− c

2λ

)
(90)
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Doing so we get our physically relevant root as,

I = −αTh
2R

√
2(3v2 − vηc)

3
+

21/3v2(3v − ηc)2

3(D2
1 +

√
4D3

2 +D2
1)

1/3
+

(D2
1 +

√
4D3

2 +D2
1)

1/3

321/3

+
αTh
2R

√[
2(3v2 − vηc)

3
− 21/3v2(3v − ηc)2

3(D2
1 +

√
4D3

2 +D2
1)

1/3
− (D2

1 +
√

4D3
2 +D2

1)
1/3

321/3

+
4(v3 + v2η̌c)√

2(3v2−vηc)
3

+ 21/3v2(3v−ηc)2

3(D2
1+
√

4D3
2+D

2
1)

1/3
+

(D2
1+
√

4D3
2+D

2
1)

1/3

321/3

]
(91)

where, η̌c = 1 + θ and v = KR
α2Th

and

D1 = [108(v3 + v2η̌c)
2 − 72v3ηc(3v

2 − vηc)− 2(3v2 − vηc)3]

D2 = [12v3ηc − (3v2 − vηc)2]

also, EMP(ηmp)

ηmp =
f 2 − 2(η̌c + v)f + 4vηc

(2− f)(2v − f)
(92)

where f is

f = −

√
2(3v2 − vηc)

3
+

21/3v2(3v − ηc)2

3(D2
1 +

√
4D3

2 +D2
1)

1/3
+

(D2
1 +

√
4D3

2 +D2
1)

1/3

321/3

+

√[
2(3v2 − vηc)

3
− 21/3v2(3v − ηc)2

3(D2
1 +

√
4D3

2 +D2
1)

1/3
− (D2

1 +
√

4D3
2 +D2

1)
1/3

321/3

+
4(v3 + v2η̌c)√

2(3v2−vηc)
3

+ 21/3v2(3v−ηc)2

3(D2
1+
√

4D3
2+D

2
1)

1/3
+

(D2
1+
√

4D3
2+D

2
1)

1/3

321/3

]
(93)
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3.4 Result

Once the root is selected, we calculate EMP and plot it w.r.t a dimensionless quan-
tity ′v = KR

Thα2

′ for a given θ and then match it with two special cases:

• Endoreversible model: For this case R→ 0 and EMP → ηendo = 1−
√
θ.

• Exoreversible model: For this case K →∞ and EMP → ηendo = 1−θ
1+θ

.

We find EMP at θ = 0.5, and the value matches for two special cases. Hence
we conclude that our selected root is physically relevant one.

Figure 3.5: Plot of E.M.P vs ’v’ for θ = 0.5
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3.5 Conclusion

The basic idea of our work was to optimize the power of the given model, then
calculate analatycal expression for EMP. To check our expression for EMP (ηmp)
we match the result with two special cases i.e. endoreversible model (R → 0)
and exoreversible model (K → ∞). As the result for our ηmp matches with the
special cases, we conclude that our selected root was correct and expression for
ηmp is true expression for EMP

Further we tried to expand the expression of ηmp in terms of ηc at Kex

Kin
= 1, where

Kex = k
2

and Kin = KR
2α2Tc

using Mathematica. But the expression was quite com-
plicated and we couldn’t infer the efficiency term further. However we could infer
the ηmp term numerically.
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4 Brownian heat engine
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4.1 Feynman ratchet

The model of Feynman’s ratchet [8,20] consists of a vane, immersed in a hot
reservoir at temperature Th, and connected through an axle with a ratchet in con-
tact with a cold reservoir at Tc. The ratchet has a preferable direction to move due
to a pawl, which, in turn, is connected to a spring. We Assume the direction of
rotation when weight moves upward to be positive (forward) and vice versa.

W=zø 

E1=Energy needed to turn the vaneE2=Energy needed to turn the ratchet

Figure 4.1: Schematic diagram of Feynman ratchet model.

Let E2 be the amount of energy to overcome the elastic energy of the spring to
rotate forward by one step. Also, let Z is the torque induced by weight. Hence for
every rotation, it requires an extra +Zθ energy to rotate forward, where θ is the
angle rotated in one forward rotation. Therefore it takes E1 = E2 +Zθ amount of
energy for each forward rotation. So, for forward rotation E1 amount of energy is
extracted from the hot reservoir and E2 amount of energy is dumped into the cold
reservoir and meanwhile a work (w = zθ) is extracted. Mathematically it could
be written as,

qforc = E2. (94)

qforh = E1 = E2 + Zθ. (95)
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Similarly when wheel rotates backward it takes E2 amount of energy from the
cold reservoir, a work (w = −zθ) is done by the system (as weight falls down)
and E1 = E2 +Zθ amount of energy is dumped into the hot reservoir. So for this
case,

qbacc = −E2. (96)

qbach = −E1 = −(E2 + Zθ). (97)

Now assuming the particles to be in equilibrium with reservoirs, the number of
forward and backward jumps will be proportional to the corresponding Arrhenius
factor. Hence,

Rf = e−E1/kbTh . (98)

Rb = e−E2/kbTc . (99)

and Heat flux equation for the system is,

Qh = E1(e
−E1/kbTh − e−E2/kbTc). (100)

Qh = E2(e
−E1/kbTh − e−E2/kbTc). (101)

W = Qh −Qc = (E1 − E2)(e
−E1/kbTh − e−E2/kbTc). (102)

For it to operate as a heat engine Rf should be greater than Rb, which implies,

eE1/kbTh > eE2/kbTc ⇒ E2/E1 > Tc/Th (103)

Using this equation we could show that efficiency of this engine is always less
than Carnot efficiency.

η = 1− Qc

Qh

= 1− E2

E1

< 1− Tc
Th
. (104)

hence η < ηc.

We could optimize Eq.(102) to find maximum power [21] and further calculate Ef-
ficiency at maximum power and infer its behavior near equilibrium (Tc/Th → 1)
[18,21].
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4.1.1 Power Optimization

Before optimizing Eq.(102) analytically, we should study its behavior at low en-
ergy limit. Expanding the Eq.(102) linearly,

• Case 1: Expanding the Eq.(102) linearly

The equation for work is,

W = (E1 − E2)

(
E2

kbTc
− E1

kbTh

)
. (105)

Now optimizing this equation w.r.t E1 and E2, we get E1 = 0 and E2 = 0.
This suggests that in linear limit it can’t be optimized simultaneously w.r.t
E1 and E2.

• Case 2: Expanding the Eq.(102) quadratically [18].

The equation for work in this case is,

W = (E1 − E2)

(
E2

kbTc
− E1

kbTh
+

E2
1

2kbTh
− E2

2

2kbTc

)
(106)

Now optimizing this equation with respect to ε,µ and x as we get,

E∗q1 =
1 + 3τ

3(1 + τ)
(107)

E∗q2 =
(3 + τ)τ

3(1 + τ)
(108)

Putting the values of E∗1 and E∗2 to find efficiency at max power (E.M.P) we
get,

ηqmp = 1− (3 + τ)τ

1 + 3τ
(109)

expanding it around carnot efficiency (ηc),

ηqmp =
ηc
2

+
η2c
8

+O(η3c ) (110)
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• Case 3: General case:

Optimizing the power w.r.t E1 and E2 and calculating E.M.P as done in
previous cases [20,21], we get,

E∗1 =
τ − τ 2 − τ lnτ
τ(1− τ)

− lnτ. (111)

E∗2 =
τ − τ 2 − τ lnτ

(1− τ)
. (112)

Calculating E.M.P using E∗1 and E∗2 and expanding it around Carnot effi-
ciency we get,

ηmp =
ηc
2

+
η2c
8

+O(η3c ) (113)

Optimizing the power w.r.tE∗q1 andE∗q2 and calculating E.M.P in low energy limit
and expanding it around Carnot efficiency we get,

ηqmp =
ηc
2

+
η2c
8

+O(η3c ) (114)

Here we see that result for general case matches with low energy limit.
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4.2 Thermally driven Brownian microscopic heat engine

In a crude way, we could define microscopic Brownian heat engine as a micro-
scopic setup where work could be extracted due to the transportation of Brownian
particles via some nonequilibrium processes [15,13]. Typical examples are ex-
ternal modulation of an underlying potential, an activation of an external force,
a non-equilibrium chemical reaction coupled to a change of the potential. The
method we are using is a contact with the reservoirs at different temperatures,
hence it is called thermally Brownian microscopic heat engine [22].

The model of the thermally driven Brownian microscopic heat engine is as
shown in Fig(4.2). The Brownian particles are under the action of a spatially
periodic and asymmetric potential V (x) with a constant external force f . Two
different regions, shown in the figure, are connected to two reservoirs at different
temperatures Th and Tc. The Brownian Particles could move from the region I to
region II due to thermal fluctuations and while doing so they do external work and
the whole setup works as a heat engine.

ThTh Tc Tc

f
E

X1 X2X2
X1

N+

N-

Figure 4.2: The Brownian particles are under the action of a spatially periodic
and asymmetric potential V (x) with a constant external force.
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Now our next task is to define thermodynamic quantities such as heat and
work for the system. These definitions are analogous to Feynman Rachet model.
Suppose N+ particles move from the region I to region II, It takes qh amount of
heat from hot reservoir, does a work w and dumps qc amount of heat to the cold
reservoir. Similarly, when N− particles move from the region II to region I, it
takes qc amount of heat from cold reservoir, uses a work w and dumps qh amount
of heat to hot reservoir.

Where, qh = energy needed to go uphill in the region I, qc= energy needed to go
from uphill in region II and by energy conservation w = qh− qc. Mathematically,

qh = E + fL1 (115)

qc = E − f(L− L1) (116)

Where L1 + L2 = L. It is assumed that Brownian particles are in equilibrium
with the reservoirs, hence the rates of both forward(moving from region I to II)
and backward jumps((moving from region II to I)) are proportional to the corre-
sponding Arrhenius factor.

Ṅ+ =
e−(E+fL1)/kBTh

t
. (117)

Ṅ− =
e−(E−f(L−L1))/kBTh

t
. (118)

Where t is a constant. Using the above equations we could write the heat exchange
due to potential energy as,

Q̇pot
h = [E + fL1][Ṅ+ − Ṅ−]. (119)

Q̇pot
c = [E − f(L− L1)][Ṅ+ − Ṅ−]. (120)

Till here we have considered only the contribution of potential energy term, how-
ever as the particles move from I to II, their kinetic energy also changes. To take
it into consideration we move one step further. suppose a particle moves from I to
II, therefore the change in its K.E is,4k.E = KB(Th−Tc)

2
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Now this energy is supplied by hot reservoir (Th) and dumped in cold reservoir
(Tc). Similarly, if the particle moves from II to I, then also the energy needed to
increase its K.E is supplied by the hot reservoir. Hence whether particle moves
from I to II or II to I there is an irreversible transfer of heat from the hot reservoir
to cold reservoir, which is proportional to the total number of particles transferred.
Using this logic,

Q̇kin
h = Q̇kin

c =
kB(Th − Tc)

2
[Ṅ+ + Ṅ−]. (121)

So the complete equation for heat flux and power(Ẇ ) are,

Q̇h = Q̇pot
h + Q̇kin

h = (E + fL1)(Ṅ+ − Ṅ−] +
kB(Th − Tc)

2
[Ṅ+ + Ṅ−]. (122)

Q̇c = Q̇pot
c +Q̇kin

c = (E+f(L−L1))[Ṅ+−Ṅ−]+
kB(Th − Tc)

2
[Ṅ++Ṅ−]. (123)

Ẇ = Q̇h − Q̇c = fL[Ṅ+ − Ṅ−] (124)

η =
Ẇ

Q̇h

(125)

4.2.1 Power Optimization.

Now before moving forward its better to write the expression for power in terms
of dimensionless quantities,

Ẇ

KBTh
= x[e−(ε+xµ) − e−(ε−x+xµ)/τ ] (126)

Where ε = E/kBTh, x = fL/kBTh, and µ = L1/L.

Initially, it may appear that we have three different parameters for optimization( ε,
µ and x). However, looking closely to the equation we find that effectively there
is only two energy scale in the system namely ε+ xµ and x, and this restricts the

46



4 BROWNIAN HEAT ENGINE

system to two independent parameters optimization. It will be evident from the
equation of optimization. Now we optimize our system for two cases first the gen-
eral situation and second in the limit where ε and x are small, i.e., in low energy
scale.

• Case 1: Here we optimize the general equation for power(Ẇ with respect
to ε,µ and x.

∂Ẇ

∂ε
= 0⇒ x(e−(ε+xµ) − e−(ε+xµ−x)/τ ) = 0 (127)

∂Ẇ

∂µ
= 0⇒ x2(e−(ε+xµ) − e−(ε+xµ−x)/τ ) = 0 (128)

∂Ẇ

∂x
= 0⇒ x2(e−(ε+xµ) − e−(ε+xµ−x)/τ ) = 0 (129)

Solving the above equations to get optimal values of parameters(x∗,ε∗ and
µ∗) we get,

x∗ = 1− τ (130)

ε∗ =
1− τ − τ lnτ

1− τ
− (1− τ)µ. (131)

Here we may note that Eq.(24) and Eq.(25) are essentially same. This sug-
gest optimizing w.r.t ε automatically optimizes w.r.t µ. Hence instead of
getting particular value for ε∗ and µ∗ we get a set of ε∗ and µ∗ for which
ε∗ + µ∗ = constant and this constant optimizes the power. Physically it
reflects the two energy scales, we mentioned above.

• Case 2: Here we optimize in limit where ε and x are small, such that we
could expand the expression for power(Eq.) quadratically. Therefore,

Ẇ

kbTh
= x

(
ε− x+ xµ

τ
− (ε+xµ)− (ε− x+ xµ)2

2τ 2
+

(ε+ xµ)2

2

)
(132)
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Now optimizing this equation with respect to ε,µ and x as done in earlier
we get,

x∗q =
1− τ

3
(133)

ε∗q =
−1− 2τ + 3τ 2

3(τ 2 − 1)
− (1− τ)µ

3
. (134)
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4.3 Comparison of Results.

In this section we would compare the efficiency at maximum power (E.M.P) for
two different cases near equilibrium (i.e τ → 1).

Using Eq.(125), we calculate the efficiency at maximum power (E.M.P) by putting
the optimal values of ε and x for two cases. Then expand it around Carnot effi-
ciency and infer the coefficient of linear term.

• Case 1: For this case,

ηmp =
2(1− τ)2

3− 2τ(1 + lnτ)− τ 2
(135)

expanding the above expression in term of Carnot efficiency we get [19],

ηmp =
ηc
3

+
η2c
9

+O(η3c ) (136)

Near equilibrium,

ε∗ → 2, x∗ → 0 and ηmp → ηc
3

• Case 2: For this case,

ηqmp =
4(2− ηc)ηc

136− 33ηc(4− ηc)
(137)

expanding it around Carnot efficiency,

ηqmp =
ηc
17

+
8η2c
289

+O(η3c ) (138)

Near equilibrium,

ε∗q → 2/3, x∗q → 0 and ηqmp →
ηc
17

.
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Now this may seem absurd at first. Our model is completely analogous to Feyn-
man Ratchet model discussed in previous section except for the fact that we have
included irreversible heat flow due to kinetic energy contribution. In Feynman
Ratchet results for both the cases were same, then what’s fishy out here?

Our first guess may be, that for quadratic variation ε∗q and ∗q are not really maxima.
But further checking the higher derivative, we found

∂2Ẇ

∂ε2

∣∣∣∣∣
ε=ε∗,x=x∗

< 0. (139)

∂2Ẇ

∂x2

∣∣∣∣∣
ε=ε∗,x=x∗

< 0. (140)

[
∂2Ẇ

∂ε2

∣∣∣∣∣
ε=ε∗,x=x∗

∂2Ẇ

∂x2

∣∣∣∣∣
ε=ε∗,x=x∗

−
(
∂Ẇ

∂x

∂Ẇ

∂ε

∣∣∣∣∣
ε=ε∗,x=x∗

)2]
> 0. (141)

The problem lies in the fact that the behavior of Eq.(126) and Eq.(132) are entirely
different near the true optimal values of the engine. Hence quadratic expansion
doesn’t give the correct optimal value. This ambiguity could be explained using
an analog situation for a function of one variable.

Suppose a function f(x) as defined,

f(x) = e−ax − ex2 . (142)

expanding the above function linearly we get,

g(x) = −ax+ x2. (143)

Now plotting the function f(x) and g(x) simultaneously for different values of
’a’, as shown in Fig(4.3), we see that the minima of both functions coincide for
small values of ’a.’ But for large values of ’a’ the behavior of g(x) (linear expan-
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Figure 4.3: plot of f(x) and g(x) simultaneously for for different values of ’a’
(near minima).

sion) is completely different from f(x) (initial function) near its minima.

The situation for our case is analogous to the case where ’a’ is large. Plotting
Eq.(126) (expression for power) and Eq.(132) (expanding power quadratic-ally)
as a function of x for different values of ε near equilibrium, as shown in fig(4.4),
we could see that the behavior of Eq.(132) changes quite drastically from Eq.(126)
for large values of ε. The optimal value of ε for Eq.(132) tends to 2

3
. However, the

true optimal value of ε tends to 2. Hence the result of efficiencies for two cases
is considerably different. Also note that the efficiency calculated for ε → 2/3

doesn’t correspond to E.M.P for our system.
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Figure 4.4: plot of Eq.(126) (expression for power, orange colour) and Eq.(132)
(expanding power quadratic-ally, blue colour) as a function of x for different val-
ues of ε near equilibrium, for µ = 0.5 and τ = 0.5. Here the negative power
implies that heat engine do not operates in following zone.
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4.3.1 Revisiting Feynman Rachet:

Now, the next the obvious question arises, why the result of E.M.P matches for
quadratic expansion and general case near equilibrium, even though the maxima
in two cases are quite far apart? The reason lies in the fact that there is no dissipa-
tion term, so efficiency depends only on the ratio E1 and E2 and in both case this
ratio is almost the same at equilibrium.

Here, we must note that E∗q1 and E∗q1 does not give efficiency at maximum power
for Feynman ratchet. It is given by E∗1 and E∗1 . However, efficiency for both cases
is the same at equilibrium.
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4.4 Results:

1. The efficiency of the heat engine could never approach to Carnot efficiency
as the system has an intrinsic scource of irreversibility due to kinetic energy
exhange.

2. At low energy limit power could not be optimized near equilibrium.

3. E.M.P (efficiency at maximum power) tends to ηc
3

near equilibrium. In gen-
eral, ηmp = ηc

3
+ η2c

9
+O(η3c ).
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4.5 Conclusion:

In this section, we optimized the power of thermally driven Brownian microscopic
heat engine and calculated E.M.P and inferred its behavior near equilibrium. Next,
we tried to do the same analysis at low energy scale by expanding the expression
of power in quadratic limit and expected the same results for both the cases. How-
ever, the result didn’t match and the reason being that the behavior quadratic limit
is quite different from the complete equation near optimal values of ε∗ and x∗ .

Even when the result for E.M.P matches near equilibrium for Feynman ratchet
model, the optimization in quadratic limit was not giving the true optimal value
of ε∗ and x∗.

At last, I would like to conclude that while analytically optimizing the power
at low energy limit (by approximating to an easily solvable function ) we should
always check (maybe numerically) the behavior of power at the low energy limit
to find if the approximation is good enough.
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