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Abstract

The present work deals with the study of Wigner and Husimi function for quantum

systems. We have applied Wigner function to the Harmonic oscillator and represented

it in the phase space distribution. We have proposed two different methods to compute

the Wigner function using fourier transformation. We are applying these methods to

model quantum systems and later calculating the electron densities for atoms and

molecules.





Chapter 1

Wigner Distribution Function

1.1 Introduction

Wigner function (WF) was first introduced by Eugene P. Wigner in 1932. “Wigner

used these functions to find the quantum corrections to classical statistical mechanics

where the Boltzmann factor contains energy, which in turn are expressed as functions

of both position and momentum” [1]. Later it was used to study the relation between

the quantum mechanical quantities and their corresponding classical quantities. It is

also used in understanding semi-classical quantum mechanics [2].

Wigner distribution function is a quantum distribution function (QDF). It includes

functions that depend on both coordinate and momenta. It is real and can be nor-

malized to one. It can be positive as well as negative whereas a regular distibution

function is always positive. A necessary condition on wigner function, for it to be

strictly non negative is when the wavefunction of the considered system is a mini-

mum uncertainity wave function [3]. Negative region of the wigner distribution can

be smoothed out by averaging over a coarse graining function to obtain a Husimi

distribution function (HF), which is also a QDF [4].

WF and HF both are quasiprobability distribution. WF gives correct probability

densities but it is a quasiprobability distribution because it gives negative values at

some regions of the phase space whereas HF has non-negative distribution but its

1



Chapter 1 Wigner Distribution Function 2

not a true probability distribution because it does not produce correct probability

densities [5].

According to classical hamiltonian physics, a state for variables in position and mo-

mentum space is given by a point in a 6N dimensional phase space. The Uncertainty

principle is not valid in classical physics, thus it is possible to know a particle’s mo-

mentum and position simultaneously to an arbitrary precision, which is not possible

in quantum mechanics. Probability densities of the wavefunction in position basis and

in momentum basis are used in the standard formulation of quantum mechanics.

Non-relativistic quantum mechanics in phase space can be mathematically described

using wigner function. WF can be considered equivalent to the standard quantum

mechanics, if we only look at wavefunction and schrodinger equation in the case

of non-relativistic quantum mechanics. But, WF formulates quantum mechanics in

phase space same as hamiltonian mechanics, therefore is much more closely related to

the classical mechanics [3].

Due to the unique nature of WF, classical approach and entanglement in quantum

approach and observing deviation from classical behaviour becomes easy and inte-

serting. Information obtained from experimentally reconstructed WF exceeds the

information on the system by any other method. It is used in various field such as

quantum processing (as it is perfect to illustrate the quantum properties of entangle-

ment), quantum physics (to model the electron transport), quantum electronics and

also in quantum chemistry where it is used to calculate static and dynamic properties

of many body quantum system [6].

1.2 Formulation

Time dependent WF associated with a pure state Ψ(x, t) is:

W (x, p, t) =
1

2π~

∫
exp

(
ipq

~

)
Ψ∗
(
x+

q

2
, t

)
Ψ

(
x− q

2
, t

)
dq. (1.1)
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Time independent WF associated with a pure state Ψ(x) [2] is:

W (x, p) =

∫ (
dq

2π

)
exp

(
ipq

~

)
Ψ∗
(
x+

q

2

)
Ψ

(
x− q

2

)
, (1.2)

where integration limits are −∞, ∞.

WF has a proper marginal distribution i.e. the integral over one set of variables of

the wigner function gives the square modulus of the function in the representation

assoaciated with the remaining variable. marginal distribution for WF is given as:

∫
dpW (x, p) = |Ψ(x)|2 (1.3)∫
dxW (x, p) = |Φ(p)|2. (1.4)

Here, Φ(p) is the wavefunction in the momentum representation and Ψ(x) is the

wavefunction in the position representation.

The HF is given by,

H(x, p) =
1

b
√

2π
×
∣∣∣∣ ∫ dq√

2π~
Ψ(q) exp

(
−1

4b2
(x− q)2 +

ipq

~

)∣∣∣∣2 (1.5)

where parameter b is arbitrary and associated with the width of the gaussian. HF is

positive everywhere, but does not follow proper marginal distribution.

∫
dpW (x, p) 6= |Ψ(x)|2 (1.6)∫
dxW (x, p) 6= |Φ(p)|2 (1.7)

1.3 Properties of Wigner Function

Mathematical properties of WF [3]:



Chapter 1 Wigner Distribution Function 4

1. If the wavefunction ψ(x, t) is normalized to one then WF for the wavefunction

given by W (x, p, t) is also normalized to one.

∫ ∫
ψ(x, t)dpdx = 1 =⇒

∫ ∫
W (x, p, t)dpdx = 1 (1.8)

furthermore, the equation

∫
W (x, p, t)2dpdx =

1

2π~
(1.9)

holds for all pure states ψ(x, t).

2. Quantum Mechanical probability densities in position and momentum space

may be obtained from the marginals of the WF:

ρ(x, t) =

∫
dpW (x, p) = |Ψ(x)|2 (1.10)

ρ(p, t) =

∫
dxW (x, p) = |Φ(p)|2 (1.11)

3. The state overlap of two wave function ψ1(x, t) and ψ2(x, t) in terms of their

WF w1(x, p, t) and w2(x, p, t) is :

∫
ψ∗1(x, t)ψ∗2(x, t)dx = 2π~

∫
w1(x, p, t)w2(x, p, t)dpdx (1.12)

4. The WF obeys the reflection symmetries:

ψ(x, t)→ ψ∗(x, t) =⇒ w(x, p, t)→ w(x,−p, t) (1.13)

ψ(x, t)→ ψ(−x, t) =⇒ w(x, p, t)→ w(−x,−p, t) (1.14)

5. The WF is Galilei-covariant , i.e.

ψ(x, p, t)→ ψ(x+ y, p, t) =⇒ w(x, p, t)→ w(x+ y, p, t) (1.15)
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1.4 Plan of thesis

WF is capable of visualizing quantum mechanics in phase space representation for a

given system. Wigner and HF for the quartic oscillator in a double well potential was

done by Marcel Novaes [2]. We have tested the WF for Harmonic oscillator (HO) to

produce a phase space representation and studied its properties. WF basically does

the fourier transform of a function with a shift in the position coordinate. Our goal is

to find the phase space properties of atoms and molecules. Fourier transformation of

a function takes the function from position basis to momentum basis, vice-versa and

enables us to obtain electron density and electron momentum density of an atom or

a molecule.

For appplying WF on HO, we derive the HO wave function with the shift of ±q/2

and compute hermite polynomial with this shift. Where q is the shift in position

coordinate ‘x’ of HO. To solve WF for HO we have used subroutine for the ‘Gauss

Legendre’ method of integration. For the electron density [7], We propose the hy-

pothesis that ‘fourier transform with the Wigner shift can be estimated by taking a

matrix multiplication of a function with the kinetic energy eigenfunction matrix’.

In chapter 2, We discuss and understand the mathematical methods and calculations

used to compute the WF for the HO. In chapter 3, plots and discussion for the phase

space representation of WF for the HO and conclusion of above mentioned hypothesis

are mentioned.
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Chapter 2

Mathematical Methods

2.1 Double Well Potential

Double-well potentials have been extensively studied and used in the different fields

of physics and chemistry for the description of the motion of a particle under two

centers of force [1]. In classical mechanics, a particle with energy less than the central

potential barrier in any of the well (minima) can never leave the well whereas quantum

mechanics allows the particle to tunnel through the barrier and appear in the other

well, this phenomenon is known as the tunneling effect. WF and HF, associated with

the stationay states of double well potential show that the low energy states are highly

non-classical, due to the tunneling effect [2].

The associated stationary Schrödinger equation for double well quantum systems:

(
−1

2

(
d2

dx2

)
− β

2
x2 + x4

)
Ψn(x) = enΨn(x) (2.1)

is dimensionless and β controls the height of the barrier [5]. The classical analogue of

equation (2.1) is solvable analytically and given as:

(
1

2

(
dx

dt

)2

− β

2
x2 + x4

)
= E. (2.2)

9
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We have used discrete variable representation (DVR) method (Appendix A) to solve

for the double well potential. The double well potential and the eigen vectors are

produced and plotted figure 2.1 and figure 2.2.

In figure 2.1 the first four enegy levels of a quantum Harmonic oscillator are plotted

along with the potential for β = 0. In this case double well behaves as a single well

and therefore we observe an increase in the oscillations with each increasing value of

quantum number ‘n’.

In figure 2.2 we have plotted the first four energy levels of the double well potential

for β = 10. In this case, we observe the tunneling and tunnel splitting of the particle

in a double well potential. The degenracy between the first and second energy levels,

third and fourth energy levels are seen for β = 10.

Figure 2.1: First four enegry levels of Harmonic Oscillator visualised for a double
well potential for β=0.

2.2 Particle in a Box

The particle in a infinite box, is a quantum mechanical model, which consists of a

particle moving horizontally within an infinitely deep well (infinte potential at the

boundaries) from which it cannot escape. The potential energy in this model is given
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Figure 2.2: First four enegry levels of Harmonic Oscillator visualised for a double
well potential for β=10.

as:

V (x) =

0, xc − L
2
< x < xc + L

2

∞, otherwise

(2.3)

where L is the length of the box, xc lies at the center of the box and x is the position

of the particle in the box.

Particle in a box wave functions are given by:

ψn(x, t) =

√
2

L
sin(kx)e−iEnt/~ (2.4)

(2.5)

where k = nπ/L, En is the energy of the nth state and t is the time.

In figure 2.3 and 2.4, the real and imaginary part of the particle in box wave function

of length L = 20 a.u. for the ground state are plotted, along with the complete wave

function in the position and momentum basis, respectively.
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Figure 2.3: Particle in a box wave function in positon basis.

Figure 2.4: Particle in a box wave function in momentum basis.

2.3 Harmonic Oscillator

In classical physics a Harmonic oscillator is described as a physical system in which

when a particle is displaced from the equilibrium it experiences a restoring force

which is proportional to the displacement. At sufficiently small energies, the laws of

quantum mechanics govern the Harmonic oscillator, where the system is known as

quantum oscillator [3]. The energy of the classical Harmonic oscillator can take any

non-negative value whereas the quantum Harmonic oscillator has only discrete energy
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levels which are given by:

En = ~ω
(
n+

1

2

)
(2.6)

where ~ is the Planck’s constant, ω is a classical angular frequency and n is a positive

integer that determines the state. The Hamiltonian for the Harmonic oscillator is

given by:

Ĥ =
p̂2

2m
+
mw2

2
x̂2. (2.7)

where m is mass of the particle, p̂ is momentum operator and x̂ is position operator.

The Schrödinger equation for the stationary state of the Harmonic oscillator is:

(
p̂2

2m

)
Ψ +

1

2
mw2x̂2Ψ = EΨ. (2.8)

and its solution is the wave function:

Ψn(x) = A
1√
2nn!

Hn(x) exp(
−x2

2
) (2.9)

where n is the state, A is a normalization constant given by:

A =

(
mw

π~

)1/4

(2.10)

and Hn(x) is a Hermite Polynomial [4].

The Fourier transform of (2.8) takes the domain from position representation to the

momentum representation, which is given by:

ψn(p) =

(
1

π~mw

)1/4
1√
2nn!

Hn

(
p√
~mw

)
exp

(
− p2

2~mw

)
. (2.11)
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2.3.1 Hermite Polynomials

Hermite polynomials (HPs) are a set of orthogonal polynomials over the domain (-

∞,∞) with a weighting function. Solutions of the Hermite’s differential equation are

also known as the HPs [3], which are defined as:

Hn(x) = (−1)nex
2 dne−x

2

dxn
. (2.12)

The first few HPs are representated as:

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 49x2 + 12.

In figure 2.5 we have shown the first five Hermite polynomials against the position

coordinate.

Recurrence Relation: A Hermite polynomials at one point can be obtained by neigh-

boring HP at the same point. HPs recurrence relation is given as:

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (2.13)

and its differential form is:

∂Hn(x)

∂x
= 2nHn−1(x). (2.14)
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Figure 2.5: First five Hermite polynomial scaled down by a factor of n2 in order
to fit on the same plot.

2.4 Wigner Function for the Harmonic Oscillator

In this section, we have done the calculation to compute Wigner Function for the

Harmonic oscillator. The Wigner Function is represented as:

W (x, p) =
1

2π

∫ ∞
−∞

exp

(
ipq

~

)
Ψ∗
(
x+

q

2

)
Ψ

(
x− q

2

)
dq, (2.15)

where Ψ is a wave function of a pure state and Ψ∗ is a complex conjugate wave function

of Ψ.

As the wave functions for the Harmonic oscillator are real, the complex conjugate

ψ∗(x) is equal to ψ(x). The form of the wave function is:

Ψn(x) = Ψ∗n(x) = A
1√
2nn!

Hn(x) exp(
−x2

2
). (2.16)

According to the definition of the WF, to compute the WF for the HO the x co-

ordinate of the HO wave functions [ψn(x)]∞n=0, is shifted by ±q/2. The modified HO



Chapter 2 Mathematical Methods 16

wave functions are given as:

Ψ∗n

(
x+

q

2

)
= A

1√
2nn!

Hn

(
x+

q

2

)
exp

(−(x+ q
2
)2

2

)
(2.17)

Ψn

(
x− q

2

)
= A

1√
2nn!

Hn

(
x− q

2

)
exp

(−(x− q
2
)2

2

)
. (2.18)

The product of the equation (2.17) and equation (2.18) is:

Ψ∗(x+
q

2
)Ψ(x− q

2
) = A2 1

2nn!
Hn

(
x+

q

2

)
Hn

(
x− q

2

)
exp

(
− (x+ q/2)2

2

)
exp

(
− (x− q/2)2

2

)
. (2.19)

The first part of the equation (2.19) A 1√
2nn!

is the normalization constant, where

A = (mw/π~)1/4. The second part of the equation (Hn(x+ q/2) Hn(x− q/2)) are the

shifted Hermite polynomials and the third part is exponential part of the HO wave

function with a shift of ±q/2. To compute the first part we need to calculate A2. In

atomic units (m = w = ~ = 1), A becomes (1/π)1/4 and therefore A2 = (1/π)1/2.

Puting the value of A2 back in equation (2.19), we get:

Ψ∗(x+
q

2
)Ψ(x− q

2
) =

1√
π

1

2nn!
Hn

(
x+

q

2

)
Hn

(
x− q

2

)
exp

(
− (x+ q/2)2

2

)
exp

(
− (x− q/2)2

2

)
.(2.20)

The exponential part is solved, using the fundamental multiplicative identity for ex-

ponentials (eaeb = ea+b). We obtain the following equation:

Ψ∗(x+
q

2
)Ψ(x− q

2
) =

1√
π

1

2nn!
Hn

(
x+

q

2

)
Hn

(
x− q

2

)
exp

(
− (x+ q/2)2

2
− (x− q/2)2

2

)
.

(2.21)

After simplifying:

Ψ∗(x+
q

2
)Ψ(x− q

2
) =

1√
π

1

2nn!
Hn

(
x+

q

2

)
Hn

(
x− q

2

)
exp

(
− x2 − q2

4

)
. (2.22)



Chapter 2 Mathematical Methods 17

To solve the second part of the equation we need to compute Hn(x+q/2) and Hn(x−

q/2), which are the shifted Hermite Polynomials. The Hermite Polynomials reccurence

relation now takes the form:

Hn+1

(
x+

q

2

)
= 2
(
x+

q

2

)
Hn

(
x+

q

2

)
− 2nHn−1

(
x+

q

2

)
(2.23)

Hn+1

(
x− q

2

)
= 2
(
x− q

2

)
Hn

(
x− q

2

)
− 2nHn−1

(
x− q

2

)
. (2.24)

We have assigned the following values to the initial hermite polynomials with the shift

of ±q/2,

H0

(
x+ q

2

)
= 1

H0

(
x− q

2

)
= 1

H1

(
x+ q

2

)
= 2
(
x+ q

2

)
H1

(
x− q

2

)
= 2
(
x− q

2

)
and used the reccurence relation given in (2.23) and (2.24) to the find the rest of

Hermite Polynomials. After putting equation (2.22) in equation (2.15) we get:

W (x, p) =
1

π1/2

1

2nn!

1

2π

∫ ∞
−∞

eipq exp
(
− x2 − q2

4

)
Hn

(
x+

q

2

)
Hn

(
x− q

2

)
dq. (2.25)

Now we have an integral equation over -∞ to ∞. To solve this integral we have

written a code in fortran based on ‘Gauss Legendre’ method for integration. We have

also used a simple integration technique to solve equation (2.25). After successfully

computing the WF for HO, we plot it for two cases (p=0 and p 6= 0) which we will

discuss in chapter 3.

2.5 Electron Density

The electron density (ED), is the probability of an electron being present at a spe-

cific location. In quantum calculations ED ρ(~r) is a function that depends on the

coordinates ~r. It is defined so ρ(~r)dr is the number of electrons present in th volume
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dr. The charge density ρ(~r) is defined in terms of the many-particle wave function,

Ψ(~r1, ~r2, ~r3, .., ~rN) as:

ρ(~r) = N

∫ ∣∣∣∣Ψ(~r1, ~r2, ~r3, .., ~rN)

∣∣∣∣2d3r2d3r3....d3rN . (2.26)

The electron momentum density (EMD), γ(~p) is a single particle charge denstiy in the

momentum space. The momentum space wave function, Φ(~p1, ~p2, ~p3, .., ~pN) is obtained

by a Fourier transform of the position space wave function, Ψ(~r1, ~r2, ~r3, .., ~rN). EMD

is given as:

γ(~p) = N

∫ ∣∣∣∣Φ(~p1, ~p2, ~p3, .., ~pN)

∣∣∣∣2d3p2d3p3....d3pN . (2.27)

The densities ρ(~r) and γ(~p) are positive semi-definite and normalize to the number of

electrons present in the system [5]:

∫
ρ(~r)d3r =

∫
γ(~p)d3p = N. (2.28)

2.5.1 Fourier Transform

Fourirer Transform (FT) is defined as a mathematical tool, which is used to construct

a given function into the sum of simple sinusoidal functions.

The quantum phenomenon can be considered in the position domain ‘f(x)’ or the

momentum domain ‘F (p)’ and it is possible to go from f(x) to F (p) by the means of

a Fourier transform which is given by the relation [6]:

F (p) =

∫ ∞
−∞

f(x)e−ipxdx. (2.29)

Whereas, inverse Fourier transform takes the domain from F(p) to f(x), which is given

as:

f(x) =
1

2π

∫ ∞
−∞

F (p)eipxdp. (2.30)
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2.5.2 Fourier Transform of the Gaussian basis

A general gaussian type orbital is given by:

χ(~r) = Nr(x− xa)lx(y − ya)ly(z − za)lz (2.31)

exp
[
− α

(
(x− xa)2 + (y − ya)2 + (z − za)2

) ]
(2.32)

Nr = (2πα)3/4
(

(4α)
lx+ly+lz

2

(2lx − 1)!!(2ly − 1)!!(2lz − 1)!!

)1/2

(2.33)

Discrete Fourier transform (DFT) on the Guassian basis results in the Fourier trans-

formed momentum space representation, which is given by:

χ(~p) = Np

lx/2∑
k1=0

(−1)k1(px/
√
α)lx−2k1

k1!(lx − 2k1)!

ly/2∑
k2=0

(−1)k2(py/
√
α)ly−2k2

k2!(ly − 2k2)!
(2.34)

lz/2∑
k1=0

(−1)k3(pz/
√
α)lz−2k3

k3!(lz − 2k3)!
(2.35)

Np =
ilx+ly+lz

(2πα)3/4

(
(4α)

lx+ly+lz
2

(2lx − 1)!!(2ly − 1)!!(2lz − 1)!!

)−1/2
(2.36)

lx!ly!lz! exp(
~−p2
4α

+ i~p. ~A) (2.37)

where α is exponent for a gaussian.lx, ly, lz are the components of angular momentum

and xa, ya, za are position of atoms in three dimensional space [5].

2.5.3 WF calculations using Fourier Transform

Wigner function provides us the Fourier transform of a wave function with the shift

of ±q/2. To compute this transform we have to do an integratration on q for each

and every value of x, which is rather complicated. Irrespective of what wave function

we use, we have to accompy the shift on ‘x’ co-ordinate for integration on ‘q’ over

(−∞,∞).
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The WF associated with a state ψ(x) resembles a Fourier transform of the state ψ(x)

and is given as:

W (x, p) =
1

2π

∫ +∞

−∞
exp

(
ipq

~

)
Ψ∗
(
x+

q

2

)
Ψ

(
x− q

2

)
dq. (2.38)

DFT of a wave function ψn(x± q/2) is given as:

F (p) =

∫ +∞

−∞
e−ipqF (q) (2.39)

where F (q) = ψ∗n(x+ q/2)ψn(x− q/2). It can also be writen as:

F (p) =
∞∑
n=0

F (q) (2.40)

From above, we can find the values of momentum coordinate (p) for fixed a value of

position coordinate (x). This transformation should be equivalent to the transforma-

tion produced by the WF.

We propose two different ways in which we can compute the Fourier transform with

the shift given for the WF of ±q/2. One way to achieve the transformation is by

multiplying the wave function with the eigen vectors of the kinetic energy matrix

generated using DVR (Appendix A) method [7]. Second method is to multiply the

wave function with the Fourier grid hamiltonian matrix which is given as:

M =



1 1 1 1 . . . 1

1 W W 2 W 3 . . . WN−1

1 W 2 W 4 W 6 . . . WN−2

1 W 3 W 6 W 9 . . . WN−3

...

1 WN−1 WN−2 WN−3 . . . W


where W = exp(−i2π/N).

To acheive the Fourier transform with the shift similar to that of WF, we followed the

following procedure :
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1. First step is to write the HO wave function with the shift of ±/2q.

2. In first method, we multiply the eigen vectors of the kinetic energy matrix to a

HO wave wave function and then we compare the result with WF for the HO.

3. In second method, Fourier grid hamiltonian matrix is multiplied with the HO

wave function and then we compare the result with WF for the HO.

4. A code is written in fortran to accomplish the matrix multiplication and test

the hypothesis mentioned above.

Results and conclusions are discussed in the chapter 3.
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Chapter 3

Results and Discussions

In the previous chapter we have shown how to compute the WF for the HO and

described two methods by which we can compute WF using Fourier transform. In

this chapter we will discuss the results and conclusions for the work done so far.

3.1 Visualizing Wigner Distribution Function for

the Harmonic oscillator

The final form of the WF for the HO is given as:

W (x, p) =
1

π1/2

1

2nn!

1

2π

∫ ∞
−∞

eipq exp
(
− x2 − q2

4

)
Hn

(
x+

q

2

)
Hn

(
x− q

2

)
dq. (3.1)

It can also be written in the submission form as:

W (x, p) =
1

π1/2

1

2nn!

1

2π

n∑
j=1

eipq exp
(
− x2j −

q2

4

)
Hn

(
xj +

q

2

)
Hn

(
xj −

q

2

)
ωj (3.2)

where xi and ωi are gaussion quadrature roots and weights, respectively. To plot the

WF for the HO, we wrote a code in fortran using two differnt methods. In one we used

a ‘Gauss Legendre’ method to solve for the integral and in other we used a ‘simple

25
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integration technique’. Both methods produce the same output, which we used to

plot the phase space distribution of WF for the HO.

3.1.1 WF for HO in position Basis

Wigner distribution function for the HO is plotted against the position coordinate

keeping the momentum coordinate p = 0, corresponding to the stationary state of

harmonic oscillator. In figure 3.1, we see a cut through the plane p = 0 of the ground

Figure 3.1: WF for the HO is plotted agaist the position coordinate for ground
state and first excited state, fourth and fifth excited state, eighth and ninth excited

state for p = 0.
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state and first excited state WF for the HO. Next plots represents fourth, fifth, eighth

and ninth excited state WF for the HO. In ground state the function is positive ev-

erywhere. Whereas, through first and ninth excited state we find the distribution to

be psoitive as well as negative.

3.1.2 Phase Space Representation of WF for HO

Phase space representation of WF for the HO (real W (x, p)) are shown for the case

where, momentum p 6= 0.

Figure 3.2: phase space representation of ground state and first excited state,
fourth and fifth excited state WF for the HO.

In figure 3.2, phase space representation for a ground state (n = 0) and the first

excited state (n = 1) WF for the HO are plotted. Next plots represents fourth

and fifth excited state WF for the HO. For ground state the distribution is positive
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Figure 3.3: phase space representation of eighth and ninth excited state WF for
the HO.

everywhere but for first excited state the distribution is not strictly positive. Real

part of W (x, p) is plotted in all the cases.

In figure 3.3, eighth and ninth excited state WF for the HO are shown. In ground

state (n=0), WF is positive everywhere. Whereas, through first and ninth excited

state (n 6= 0), we find the distribution to be positive as well as negative and the

difference between the peaks decreases as n increases. Real part of W (x, p) is plotted

in all the cases.

3.1.3 Result and Discussion

• The point where exponential decay goes to zero indicates the ‘classical turning

point’, beyond this point lies the classically forbidden region. The area under

the exponentially decaying line is quasiprobability of the non-classical quantum

tunneling behaviour.

Classical turning point is a point at which the systems total energy (E) is equal

to the potential energy (V ) of the system. If we go past this point, i.e. when

V > E , such cases are said to be classically forbidden regions, because from

purely classical point of view the probability for the system to be in a state where

its potential energy is larger that its total energy (alternatively, for system to

have negative energy.) is zero.
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• Our calculations are not based on WKB approximations. Therefore the outer-

most peak of the WF for the HO of the stationary states do not coincide with

the classical trajectory [1].

• WF offers a formalism equivalent to the formalism offered by the Schrödinger

picture of quantum mechanics. At limits (~→ 0) WF behaves as the probability

distribution does in classical physics. This describes a correlation between the

classical and quantum mechanics.

• WF helps in visualization of quantum mechanics in phase space distribution.

Quantum mechanics in phase space according to the WF resembles classical

Hamiltonian mechanics of non-interacting calssical particles [2].

• WF is primarily used to investigate the spectra of molecules and atoms, tunnel-

ing effect, and certain quantum correlations. The Quantum mechanical evolu-

tion of the WF for a particle in a Harmonic oscillator follows the same dynamics

law as the probability density of an ensembles of classical particles in the same

potential.

3.2 Wigner Function Calculations using Fourier

Transformation

We propose two different ways in which we can compute the Fourier transform

with the shift given for the WF of ±q/2. One way to achieve the transformation

is by multiplying the HO wavefunction with the diagonalised eigen vectors of

the kinetic energy matrix generated using DVR (Appendix A) method [3]. Sec-

ond method is to multiply the wavefunction with the Fourier grid hamiltonian

matrix.

The kinetic energy matrix, denoted by K, generated using the DVR method is

in the position basis. When we diagonalize this kinetic energy matrix,

K = U†EU (3.3)



Chapter 3 Results and discussion 30

The resultant eigenvalue matrix, E, is in the momentum basis. Now, when we

multiply a wave function which is in the position basis with the unitary matrix

U , we get a vector which is in the momentum basis. Thus, the unitary matrices

U † and U act similar to a fourier transform. So, based on this idea we are using

the DVR kinetic energy eigenvectors for calculating the Wigner Function.

The conclusion to our proposed hypothesis came out to be negative. We were

able to produce the shape of the distribution similar to that of the WF but the

amplilude of the distrbution did not match the WF for the HO. The reason for

the failure of our assumptions is that in the code written for both the cases,

there is a dependece on q. Which results in variation in the amplitude with

respect to the variation in the grid size of q.

In figure 3.4 we have plotted the wavefunction generated by multiplying the HO

wavefunction with the diagonalised eigen vectors of the kinetic energy matrix

generated using DVR method w.r.t. position coordinate. We have shown the

dependence of the wavefunction on grid size of q. The wavefunction produced

using our first method is plotted for the ground state and ninth excited state

for q = 500, q = 1000 and q = 2000. We got the similar results when we apply

the second method.

Figure 3.4: Ground state and ninth excited state of Wavefunction produced using
method one for q=500, q=1000 and q=2000
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Appendix A

Discrete Variable Representation

DVR is a powerful method mostly employed in solving the time-independent Schrödinger

equation for a given potential. It is one of the grid-based methods used for obtaining

eigenvalues and eigenvectors for a Hamiltonian. In this representation, the associated

basis functions are localized about the discrete values of the variables and also the

coordinate operators are assumed to be diagonal. DVR has become a versatile tool

owing to its simplicity in evaluating kinetic energy matrix elements and the poten-

tial operator which requires no integral evaluations and its applications in molecular

ro-vibrational spectroscopy and quantum dynamics. Following form of a simple one-

dimensional DVR was given by Colbert and Miller1.

The Kinetic energy operator in one-dimension is given by:

T̂ = − ~2

2m

d

dx2
(A.1)

The coordinate ‘x’ is restricted on the interval (a, b) and the wavefunctions should

vanish at the endpoints of the given interval. The grid points {xi} is calculated as:

xi = a+ i
(b− a)

N
i = 0, 1, 2...., N − 1 (A.2)

where ‘N ’ is the number of grid points.

The functions associated with a uniform grid as given above are particle-in-a-box

1D.T. Colbert and W.H. Miller, J. Chem. Phys. 96, 1982 (1991).
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eigenfunctions:

φn(x) =

√
2

b− a
sin

[
nπ(x− a)

b− a

]
(A.3)

where n = 1, 2, ...., N − 1. There are only N − 1 points in the interval and N − 1

functions as it goes to ‘0’ at the endpoints.

The kinetic energy thus can be represented in its DVR form as given below:

Tij =
~2

2m
δx

N−1∑
n=1

φn(xi)φ
′′
n(xj) (A.4)

=
~2

2m

(
π

b− a

)2
2

N

N−1∑
n=1

n2 sin

(
nπi

N

)
sin

(
nπj

N

)
(A.5)

By summing over all the terms, the reduced form of the kinetic energy term can be

written as:

Tij =
~2

2m

(−1)i−j

(b− a)2
π2

2

{
1

sin2 [π(i− j)/2N ]
− 1

sin2 [π(i+ j)/2N ]

}
, i 6= j (A.6)

Tij =
~2

2m

1

(b− a)2
π2

2

{
(2N2 + 1)

3
− 1

sin2 (πi/N)

}
, i = j (A.7)

In the interval (−∞,∞), the grid spacing ‘δx’ requires that N −→ ∞. The final

matrix representation in this interval is:

Tij =
~2

2mδx2
(−1)i−j

π
2/3 , i = j

2/(i− j)2, i 6= j

where i = 0,±1,±2,±3, . . ..

A sample calculation was done on a model potential of the form:

V (x) = e−0.1x
2

(
x2

2
− 0.8

)
(A.8)

This potential holds only one bound state with E = −0.2979596 Hartrees. Given in

Figure ?? is a plot of the potential with the bound state.
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