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Abstract

In this thesis, we studied the bosonic BFSS and IKKT matrix models using Monte Carlo

simulations. First, we explored some toy models to check the validity of the numerical

simulations. Then we simulated the BFSS matrix model using Hamiltonian Monte Carlo

(HMC) algorithm. In the BFSS matrix model, we used the Polyakov loop as an order

parameter to investigate the large-N behaviour of this model at different temperatures. Our

simulations confirmed that the model exhibits a confinement-deconfinement phase transition

as the temperature of the system is varied. Besides the Polyakov loop, other observables

such as internal energy and extent of space were also computed. In the bosonic IKKT

model, we studied the spontaneous symmetry breaking (SSB) of SO(10) symmetry using

the moment of inertia tensor and found that there is no SSB of SO(10) symmetry in this

model. Besides the eigenvalues of the moment of inertia tensor, other observable such as

extent of spacetime was also computed. We also studied the simulation theory of the phase-

quenched IKKT model.
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Chapter 1

Introduction

String theory is believed to be a very promising candidate for the theory of everything.

It attempts to unify the theory of gravity with other three fundamental forces of nature:

Electromagnetism, Strong and Weak nuclear forces. It replaces the point like particles,

which is the fundamental assumption of the Standard Model of particle physics, by one-

dimensional objects called strings. All the matter particles as well as the force carrying

particles are made up of these strings and the theory explains how these strings propagate

in spacetime and interact with each other. In string theory, each of the fundamental particle

is represented by the unique vibrational frequency of the string.

Till today there are five consistent superstring theories: type I, type IIA, type IIB,

heterotic SO(32) and heterotic E8 × E8. These theories differ whether the strings are

open or closed, whether the strings are oriented or not and on how they treat electrical

charges. All of these theories are in 10-dimensional spacetime and all the calculations are

done perturbatively in terms of string length ls and string coupling gs.

It has been found that all of these different string theories are connected to each other

through some transformation (T-duality, S-duality etc.) and this led to the conjecture in

1995 by Edward Witten [Witten 95] that they are part of some bigger theory called M-

theory. M-theory is still undiscovered but it is known that it lives in 11 dimensions and it

is a non-perturbative theory. The M in M-theory is undefined and sometimes it is referred

to as “membrane” or “matrix.”

String theory was first studied in the late 1960s as a model of strong interaction and from

1974 onwards proper study of string theory started and since then it has been evolving. Even

today, there is a debate over its validity as no part of this theory has been experimentally

verified.
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1.1 BFSS Matrix Model

BFSS Model was conjectured in 1996 by T. Banks, W. Fischler, S. H. Shenker, and L.

Susskind [Banks 97]. This model is one dimensional supersymmetric Yang-Mills theory and

this theory acts as the low energy effective description of D0-branes of type IIA superstring

theory [Filev 16] and in the limit N → ∞ it is believed that this theory will represent M-

theory. One of the methods to obtain the action of this theory is by dimensionally reducing

the N = 1 super Yang-Mills theory in 9+1 dimensions with gauge group SU(N) to 0+1

dimensions (See Appendix A). The resulting action is given by

S =
1

2g2

∫
dt Tr

(
(DtXi)

2 +
1

2
[Xi, Xj ]

2 − iΨT
αC10γ

0
αβDtΨβ + ΨT

αC10γ
i
αβ[Xi,Ψβ]

)
. (1.1)

where Dt = ∂t − i[A(t), ·]; i, j = 1, 2, · · · , 9; α, β = 1, 2, · · · , 32; Xi are N × N trace-

less Hermitian matrices; g is the one-dimensional Yang-Mills coupling; A(t) is the one-

dimensional gauge field; Ψ is a 32-component Majorana-Weyl fermion with each component

of the fermion being an N × N traceless Hermitian matrix; C10 is the charge conjugation

matrix in the ten dimensions; and γi are the gamma matrices in ten dimensions. The action

is invariant under the following set of gauge transformations

Xi(t) −→ V (t)Xi(t)V †(t), (1.2)

A(t) −→ V (t) (A(t) + i∂t)V
†(t), (1.3)

Ψα(t) −→ V (t) Ψα(t)V †(t), (1.4)

where V (t) ∈ SU(N).

1.2 BFSS Model and Black Hole thermodynamics

One of the motivations to study the BFSS model is the connection of this model with the

black hole states. The finite temperature states of BFSS model is related to the black hole

states of type IIA supergravity [Klebanov 98] [Banks 98]. The connection between BFSS

matrix model and the black hole states has also been discussed in the Ref. [Kabat 01a]

[Kabat 01b]. In these two references, the authors calculated the entropy of a black hole in

strongly coupled quantum mechanics beginning with the Bekenstein-Hawking entropy of a

ten-dimensional non-extremal back hole. The free energy of the black hole in terms of the

parameters of the gauge theory (here the BFSS model) can be written as

F

T
= −4.115N2

(
T 3

g2
ymN

)3/5

. (1.5)

2



The above formula is of interest for a couple of reasons. First, its dependence on the ’t

Hooft coupling. The limit N → ∞ corresponds to the region where supergravity is valid

and therefore it is the appropriate limit to look for black holes in the BFSS model. Second

reason being that the free energy depends on N2, which is the expected behaviour of a gauge

theory in the deconfined phase.

It would be important to reproduce this formula from the matrix model. To get this

behaviour in the matrix model, one must look in the strong coupling, which is not accessible

in the perturbation theory. That is, in a regime where it is highly impossible to carry out an

analytical calculation to derive this expression. Thus we are left with numerical simulations

as these technique does not have any such restrictions.

1.3 Phase Transition

For a system with a density of states that grows exponentially,

ρ(E) ∼ eβHE (1.6)

there exist an upper limit to the temperature known as the Hagedorn temperature. Above

this temperature the partition function diverges [Furuuchi 03]

lim
T→T−H

Tr
(
e−βH

)
→∞. (1.7)

Above this cutoff temperature TH , partition function does not exist. However, it can be

made to exist if we keep N large but finite. Performing this breaks the exponential growth

in the asymptotic density of states at some large but finite energy value. For temperature

greater than TH , the entropy and the energy are dominated by the states at and above the

cutoff scale and the free energy jumps from O(1) to O(N2) [Hadizadeh 05]. Thus

lim
N→∞

F

N2
= 0 (Confined phase), (1.8)

lim
N→∞

F

N2
6= 0 (Deconfined phase). (1.9)

The transition from the confined phase to deconfined phase is known as confinement-

deconfinement phase transition or deconfinement phase transition. In the confined phase, the

quantum states of the Hamiltonian should be singlets under the gauge symmetry [SEMENOFF 04].

This condition fails as soon as the system reaches the Hagedorn temperature. This type of

transition is found in large-N gauge theories, such as weakly coupled Yang-Mills theory and

it is also expected to be found in the BFSS model [SEMENOFF 04].

This confinement-deconfinement phase transition in the matrix models is associated with

the breakdown of the center symmetry, i.e., A(t)→ A(t) +k1. The order parameter for this

3



symmetry breaking is the Polyakov loop [Polyakov 78]. Polyakov loop is defined as the trace

of the holonomy of the gauge field around the finite temperature Euclidean time circle

P =
1

N
Tr
(
P (ei

∮
dtA(t))

)
. (1.10)

This operator is gauge invariant as it is a special case of the Wilson line operator. The

expectation value of this operator is zero in confined phase and it jumps to a non-zero value

as we cross the phase transition point and enters the deconfined phase. This is simply

because Polyakov loop is a unitary matrix and its eigenvalues are uniformly distributed on

the unit circle in the confined phase and in the deconfined phase the eigenvalues clump

towards a single point. We have

〈P 〉 = 0 (Confined phase), (1.11)

〈P 〉 6= 0 (Deconfined phase). (1.12)

We use this as an order parameter for our simulations of the BFSS model.

1.4 IKKT Matrix Model

IKKT model was conjectured in 1997 by N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya

[Ishibashi 97]. This model was proposed as a non-perturbative formulation of superstring

theory. This model is also known as type IIB matrix model. The action of this model can be

obtained by dimensionally reducing the N = 1 super Yang-Mills theory in 9+1 dimensions

with gauge group SU(N) to 0 + 0 dimensions (See Appendix A). The resulting Euclidean

action is given by

SE = − 1

4g2
Tr
(
[Xi, Xj ]

2
)
− 1

2g2
Tr
(
ΨT
αC10γ

i
αβ[Xi,Ψβ]

)
, (1.13)

where i, j = 1, 2, · · · , 10; α, β = 1, 2, · · · , 32; Xi are N × N traceless Hermitian matri-

ces; g is the zero-dimensional Yang-Mills coupling; Ψ is a 32-component Majorana-Weyl

fermion with each component of the fermion being an N × N traceless Hermitian matrix;

C10 is the Euclidean charge conjugation matrix in ten dimensions; and γi are the Euclidean

gamma matrices in ten dimensions. The action is invariant under the following set of gauge

transformations

Xi −→ V Xi V
†, (1.14)

Ψα −→ V Ψα(x)V †. (1.15)
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1.5 Motivation for IKKT Model

One of the main motivations to study the IKKT model is that in the large-N limit, spacetime

emerges dynamically in this model from the eigenvalues of the ten bosonic matrices and this

tells us that dynamical compactification can be viewed as a purely non-perturbative effect

[Aoki 98]. The evidence for the same came from the simulations of the Lorentzian version

of the IKKT model [Nishimura 19, Nishimura 20]. In these simulations it has been found

that continuous time emerges dynamically and three-dimensional space undergoes expansion

after a critical time with the other six spatial dimensions remaining small. The expansion is

exponential at early times [Ito 14], which becomes a power law at later times [Ito 15]. These

two results provide evidence that a realistic cosmological scenario may also arise dynamically

from this model.

On the other hand, we can also look for dynamical compactification of extra dimensions

in the Euclidean model by spontaneous symmetry breaking (SSB) of the SO(10) due to the

fluctuations of the phase of the Pffafian for SO(d) symmetric configurations with larger d

[Nishimura 00]. It has been showed that SSB does not take place in phase-quenched model,

so SSB is attributed to the effect of the phase of the Pffafian [Ambjrn 00]. It was also shown

that in the IKKT model that the SO(3) symmetric vacuum has the lowest free energy, which

implies SSB to SO(3) [Nishimura 11]. Recent work on this model using complex Langevin

algorithm showed that there is SSB of SO(10) to SO(3) × SO(7) [Anagnostopoulos 20].

They further showed that the SO(7) symmetry is also broken into smaller groups.

1.6 Path Integral and Statistical Mechanics

In this section will introduce how the path integrals in quantum field theory and statistical

mechanics are connected. We will explain this using the example of a real scalar field.

Let us consider a theory containing a scalar field defined by the following action

S[φ(x)] =

t∫
0

dt′
∫
d3x

(
1

2
∂µφ∂

µφ− V (φ)

)
, (1.16)

where V (φ) is the potential functional. Then the probability amplitude to go from the field

configurations φ1(~x) to φ2(~x) in time t is given by the path integral G(φ2(~x), φ1(~x); t). We

have

G(φ2(~x), φ1(~x); t) = 〈φ2(~x)|e−iHt|φ1(~x)〉, (1.17)

G(φ2(~x), φ1(~x); t) =

φ(~x,t)=φ2(~x)∫
φ(~x,0)=φ1(~x)

Dφ eiS[φ(x)], (1.18)

5



where H is the Hamiltonian of this system. The partition function for the theory of scalar

field is given by

Z = Tr
(
e−βH

)
=

∫
Dφ(~x) 〈φ(~x)|e−βH |φ(~x)〉. (1.19)

If we perform a Wick rotation (see Appendix A), i.e., t = −itE , then we go to the

Euclidean signature from the Minkowski signature and we can use that to write

〈φ(~x)|e−βH |φ(~x)〉 =

φ(~x,β)=φ(~x)∫
φ(~x,0)=φ(~x)

Dφ e−SE [φ(x)] = G(φ(~x), φ(~x);−iβ), (1.20)

where

SE [φ(x)] =

β∫
0

dtE

∫
d3x

(
1

2
∂µφ∂µφ+ V (φ)

)
(1.21)

is the Euclidean action. If we substitute this in Eq. (1.19), the partition function becomes

Z =

∫
Dφ(~x) 〈φ(~x)|e−βH |φ(~x)〉

=

∫
Dφ(~x)

φ(~x,β)=φ(~x)∫
φ(~x,0)=φ(~x)

Dφ e−SE [φ(x)]

=

∮
PBC

Dφ e−SE [φ], (1.22)

where PBC stands for periodic boundary conditions, i.e., φ(~x, 0) = φ(~x, β). If we perform

the same calculation for fermionic fields we will get the same result but in place of pe-

riodic boundary conditions we will have anti-periodic boundary conditions, i.e., ψ(~x, 0) =

−ψ(~x, β). Using this formalism we can study the physics of finite temperature quantum field

theory. This formalism is also useful in exploring strongly coupled quantum field theories

using Monte Carlo simulations of the Euclidean model.

So a general result for fields in flat Minkowski spacetime follows from here: Euclidean

quantum field theory in (D + 1)-dimensional spacetime with 0 ≤ tE < β is the same as the

quantum statistical mechanics in D-dimensional space [Zee 10].

6



Chapter 2

Markov Chain Monte Carlo

Algorithms

This chapter introduces the computational techniques required to sample data from a prob-

ability distribution (PD) that is known up to some multiplicative constants. We will see

how to apply these algorithms to the Euclidean path integrals in this and later chapters. To

begin, consider a general partition function of a particle in one dimension in some potential

V (x), given by

Z =

∫
Dx(t) e−SE [x(t)], (2.1)

where the Euclidean action for a general potential V (x) is given by

SE [x(t)] =

β∫
0

dt

(
1

2
ẋ2 + V (x)

)
, (2.2)

with periodic boundary conditions x(t + β) = x(t) (for bosonic fields). Since we are using

the canonical ensemble, the system is at temperature given by T = β−1. Now if we were

able to calculate Z, then we can calculate thermodynamic quantities like free energy, energy,

and other quantities using Z and derivatives of it.

But for a general potential V (x) it cannot be solved exactly. So we need to resort to other

methods to calculate the expectation values. One method is to use perturbative calculations

using Feynman diagrams. But this method breaks down for strong-coupling terms present

in the potential function as the contribution of the higher order diagrams are comparable to

the previous diagrams. So we need to resort to non-perturbative methods for those cases.

One of the methods to evaluate these expectation values is through numerical simula-

tions. But our system is continuous, and so the partition function is to be integrated over

dynamical variables at all times. The standard way to do this is to divide the time variable

7



into slices and evaluate each spatial integral at a fixed time [Peskin 95]. First we discretize

the time variable by dividing the time variable into a lattice of T points with uniform lattice

spacing a with β = aT . Now the dynamical variable x(t) is no longer continuous and exists

only on the discrete lattice points xt. So our partition function on the lattice becomes

Z =

∫ ( T∏
t=1

dxt

)
e−Slat(xt), (2.3)

where Slat is the lattice action. We can construct this action by discretizing SE . For this,

we need to replace integrals with finite sums and derivatives with finite differences. The

prescription to do this is as follows

x(t) −→ xt, (2.4)

∂x

∂t
−→ xt − xt−1

a
, (2.5)

β∫
0

−→ a
T∑
t=1

, (2.6)

V (x(t)) −→ V (xt). (2.7)

This prescription works well only for bosonic fields. The description to put gauge fields

and fermionic fields on the lattice will be discussed in the later chapters. Since bosonic fields

follow periodic boundary conditions we also need to maintain that condition on the lattice.

On the lattice, periodic boundary condition becomes xt = xt+T . So with this prescription

lattice action Slat is given by

Slat = a
T∑
t=1

[
1

2

(
xt − xt−1

a

)2

+ V (xt)

]
, (2.8)

with x0 = xT . The above method describes the behaviour of the partition function up to

some multiplicative constant provided that enough number of lattice sites are used so that

system behaves as if it is a continuous system.

Now we can use the above form of the partition function to calculate the expectation

values of observables. For some observable O, the expectation value 〈O〉 is given by

〈O〉 =

∫ ( T∏
t=1

dxt

)
O(xt) e

−Slat(xt)

∫ ( T∏
t=1

dxt

)
e−Slat(xt)

. (2.9)
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Now we can evaluate this expression numerically. But if we use simple numerical inte-

gration techniques (e.g., Gauss’ quadrature, Simpson’s rule), evaluating the above integral

becomes a computationally heavy task. We can understand this using a simple argument.

For one-dimensional integral, we need to divide the integration region into grids, let us say,

N grids. If we now consider a d-dimensional integral then we would require Nd grids to

evaluate the integral numerically. For better accuracy we need N to be large, so the com-

plexity of the algorithm is O(Nd). For example, if we take 20 lattice points and the number

of grids to be 100, then we need to sum 10020 = 1040 terms, which is a huge number. Apart

from this, there will be regions in the integration domain where the contribution to integral

will be negligible as the weight factor here is e−Slat(xt). This way, we are going to waste

computational resources on these integration regions. So we require more clever methods to

evaluate the above integral. Such methods may give more importance to the volume of the

integration region that contributes the most to the integral.

2.1 Importance Sampling

In any Monte Carlo integration, the error is proportional to the standard deviation of the

integrand and inversely proportional to the sample size. One way to reduce the error is to

reduce the standard deviation as it does not cost more computational power. This is done

by sampling the important region of the integral.

Let us say we have an integral

I =

b∫
a

f(x)dx, (2.10)

and we have a probability distribution p(x) over this domain. That is,

b∫
a

p(x)dx = 1. (2.11)

Then we can write the integral in this form

I =

b∫
a

f(x)

p(x)
p(x) dx. (2.12)
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Now if we sample N data points from probability distribution p(x), then we can approx-

imate the above integral as

I ≈ 1

N

N∑
i=1

f(xi)

p(xi)
, I = lim

N→∞

1

N

N∑
i=1

f(xi)

p(xi)
. (2.13)

Now we need to choose the probability distribution p(x) such that the above term varies

slowly as this will decrease the standard deviation. Right choice of p(x) will give a good

result even for small number of data points. For example, if we have f(x) sharply peaked

at some point then choosing the probability distribution p(x) which is also sharply peaked

near that point will give a nice estimate of the integral as compared to the probability

distribution which has vanishing tail in that region.

2.2 Metropolis Algorithm

Our main aim is to evaluate the expectation values of observables like Eq. (2.9). Since these

are all infinite-dimensional integrals for the continuous case, so to evaluate these, we put

the system on the lattice and get a finite-dimensional integral to solve. As already discussed

in the introduction of this Chapter, the dimension of the integral is large, and we need

numerical techniques to evaluate it. So we replace the integral with sum and try to get the

estimate of it. Then the quantity in Eq.(2.9) becomes

〈O〉 ' 〈O〉n =

n∑
s=1

O({xt}s)e
−Slat({xt}s)

n∑
s=1

e−Slat({xt}s)

, (2.14)

where {xt}s is one of the microstates allowed to the system and n is the total number of

microstates. For our case, the number of microstates are infinite and we are estimating

the integral with only finite number of terms. So we require some method to sample the

important region of the integral.

We will use importance sampling to get the field configurations which contribute largely

to the integral. So we need to introduce a probability distribution ps, which denotes the

probability of getting microstate {xt}s and the above average value can be written as

〈O〉 =

∑
s

O ({xt}s)
ps

ps e
−Slat({xt}s)

∑
s

e−Slat({xt}s)

ps
ps

. (2.15)
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Now we generate the microstate s with probability ps and approximate 〈O〉 with 〈O〉n
as

〈O〉n =

n∑
s=1

O ({xt}s)
ps

e−Slat({xt}s)

n∑
s=1

e−Slat({xt}s)

ps

. (2.16)

If we look back at Eq.(2.15) then we can clearly see that the sum will be dominated

by those terms whose exponential term is large as the function e−x decays very fast. So

we can choose the probability distribution ps ∝ e−Slat({xt}s) as the required probability

distribution. The exact probability distribution ps is given by

ps =
e−Slat({xt}s)

n∑
s=1

e−Slat({xt}s)
. (2.17)

Now if we substitute this in Eq. (2.16), the average value 〈O〉n just becomes the arith-

metic average

〈O〉n =
1

n

n∑
s=1

O ({xt}s) . (2.18)

Now we require some method to sample data according to probability distribution ps.

Once we get the means of generating field configurations according to probability distribution

ps, we can calculate expectation value of any observable using Eq. (2.18).

Metropolis algorithm [Metropolis 53] is one of the algorithms to sample data from prob-

ability distributions which are known up to some multiplicative constant. Metropolis algo-

rithm uses Markov chain to generate these configurations and in the limit of Markov chain

length going to infinity, it converges to the exact probability distribution. During this pro-

cess the system passes through the region of configuration space which contains most of the

values contributing to the expectation value.

Now let us describe the algorithm. Suppose the probability distribution we want to

sample data from is P (~x = {x1, x2, . . . , xn}), where P (~x) depends on n variables.

• Step 1: Choose an initial state say ~x0 =
{
x0

1, x
0
2, . . . , x

0
n

}
.

• Step 2: Then we choose a distribution Q(~y2|~y1) to generate a small random change in

the previously accepted state. The distribution Q(~y2|~y1) is symmetric, i.e., Q(~y2|~y1) =

Q(~y1|~y2). The new proposed state is ~xpro = ~xn+∆~x where ∆~x is distributed according

to Q(~xpro|~xn).
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• Step 3: Let A(~xpro, ~xn) = min

{
1,
P (~xpro)

P (~xn)

}
. A(~xpro, ~xn) is the probability of ac-

cepting the state ~xpro starting from ~xn. We accept the state ~xpro with probability

A(~xpro, ~xn). If the state is accepted then ~xn+1 = ~xpro otherwise ~xn+1 = ~xn.

• Step 4: Repeat Steps 2 and 3.

This algorithm makes a random walk in the configuration space sometimes accepting the

state and sometimes remaining in the same place. Intuitively this algorithm accepts the more

probable states by making use of A(~xpro, ~xn). So states with relatively larger probability

will always be accepted but states with relatively smaller probability will be accepted with

probability A(~xpro, ~xn). So more points are sampled from high-density regions of P (~x), while

visiting low-density region for very less number of times.

Computationally Step 3 is implemented by choosing a random number α ∈ [0, 1] from a

uniform random number generator. We used ran3 function from the text Numerical Recipes

[Vetterling 02] for this purpose. If α ≤ A(~xpro, ~xn) then we accept the proposed state and

otherwise reject the proposed state and keep the original state.

Necessary and sufficient conditions for this algorithm to converge are the detailed balanced

condition and ergodicity [Robert 04]. Ergodicity simply means that the system should be

able to reach from one state to another state in finite number of steps. Detailed balance

condition is that the probability to reach from ~x1 to ~x2 is same as the probability to reach

from ~x2 to ~x1, i.e., P (~x1)Q(~x2|~x1)A(~x2, ~x1) = P (~x2)Q(~x1|~x2)A(~x1, ~x2). To prove this, first

note that for Metropolis algorithm Q(~x2|~x1) = Q(~x1|~x2) and A(~x2, ~x1) = min

{
1,
P (~x2)

P (~x1)

}
.

If P (~x2) > P (~x1) ⇒ A(~x2, ~x1) = 1 and A(~x1, ~x2) =
P (~x1)

P (~x2)
(2.19)

P (~x1)A(~x2, ~x1) = P (~x1) (2.20)

P (~x2)A(~x1, ~x2) = P (~x2)
P (~x1)

P (~x2)
= P (~x1) (2.21)

So, P (~x1)Q(~x2|~x1)A(~x2, ~x1) = P (~x2)Q(~x1|~x2)A(~x1, ~x2) (2.22)

The proof of ergodicity condition is given in Ref. [Robert 04].

2.3 Hamiltonian Monte Carlo (HMC) Algorithm

Metropolis algorithm is very old and it has some drawbacks. First, the convergence rate

is slow and second, it has high autocorrelation in the generated states. To overcome these

problems, many algorithms had been developed - e.g., heat bath algorithm. But these

algorithms also have some problems; they cannot be applied to all the models. So to rescue

us from this HMC comes into play.
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Metropolis algorithm uses random walk to move through the configuration space but

HMC uses directed paths to move through the configuration space while sampling. It makes

use of Hamilton’s equations for this purpose.

For this algorithm, first we need to introduce conjugate momentum variable for each

degree of freedom i.e., field variables and a fictitious time τ to evolve the field and conjugate

momentum variables using Hamilton’s equations. Let us say the probability distribution we

want to sample data from is P (~x = {x1, x2, . . . , xn}). We can also write this probability

distribution as P (~x) = e−{− log(P (~x))}. Now for each variable xi we introduce a conjugate

momentum pi and defines the Hamiltonian of the system as

H(~x, ~p) =
1

2

n∑
i=1

p2
i − log(P (~x)). (2.23)

The joint probability distribution is given by π(~x, ~p) = e−H(~x,~p). If we integrate out the

momentum variables pi from this joint probability distribution π(~x, ~p) we get the original

probability distribution P (~x). Hamilton’s equations are as follows

d~x

dτ
=
∂H

∂~p
,

d~p

dτ
= −∂H

∂~x
. (2.24)

Hamilton’s equations are used to evolve these field variables and their conjugate momenta

in the fictitious time τ numerically. This is done using symplectic integrators i.e., those

numerical algorithms for solving Hamilton’s equation which preserves the time reversibility

and volume of phase space property. The simplest symplectic integrator is the leapfrog

integrator/algorithm.

The steps involved in the leapfrog algorithm are

pi

(
τ +

ε

2

)
= pi(τ)− ε

2

∂H

∂qi
(~q(τ)), (2.25)

qi(τ + ε) = qi(τ) + εpi

(
τ +

ε

2

)
, (2.26)

pi(τ + ε) = pi

(
τ +

ε

2

)
− ε

2

∂H

∂qi
(~q(τ + ε)). (2.27)

Now let us describe the algorithm. Suppose the probability distribution we want to

sample data from is P (~x = {x1, x2, . . . , xn}), where P (~x) depends on n variables.

• Step 1: First we form the Hamiltonian as given in Eq. (2.23). Then we choose some

initial state say ~x0 =
{
x0

1, x
0
2, . . . , x

0
n

}
= ~x0(0).

• Step 2: Then we choose each pi = pi(0) randomly from N (0, 1) i.e., normal distribu-

tion with µ = 0 and σ = 1. Then we calculate Hi = H(~x0(0), ~p(0)).
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• Step 3: Now we evolve the ~xi and ~p using leapfrog algorithm for n time steps with ε

being the time resolution parameter. The ~x0(nε) is the new proposed state. Then we

calculate Hf = H(~xi(nε), ~p(nε)).

• Step 4: Now we apply the Metropolis test. A(~xi(nε), ~xi(0)) = min

{
1,
π(~xi(nε), ~p(nε))

π(~xi(0), ~p(0))

}
=

e−(Hf−Hi). We accept the state ~xi(nε) with the probability A(~xi(nε), ~xi(0)). If the

state is accepted then ~xi+1 = ~xi(nε), otherwise ~xi+1 = ~xi(0).

• Step 5: Repeat Steps 2 to 4.

We know that Hamilton’s equations are time-reversible if H(p, q) = H(−p, q) so we build

the Hamiltonian Eq. (2.23), which follows this property. This property is required for the

detailed balance condition [Neal 11]. The volume of phase space also remains conserved

in Hamiltonian dynamics. We need this because the joint probability distribution π(~q, ~p)

remains covariant under the Hamiltonian dynamics as the Jacobian of the transformation

is 1. Since HMC uses Metropolis test for the Markov chain formation so both the suffi-

cient and necessary conditions are satisfied. The proofs are given in Refs. [Neal 11] and

[Betancourt 17].

One of the tests to check whether the HMC is implemented properly is to look for the

expectation value of e−∆H [Ydri 17]. The value of this is given by

〈
e−∆H

〉
=
〈
e−(H(~x′,~p′)−H(~x,~p))

〉
=

1

Z

∫
d~p d~x e−H(~x,~p) e−(H(~x′,~p′)−H(~x,~p)) (2.28)

=
1

Z

∫
d~p d~x e−H(~x′,~p′) (2.29)

=
1

Z

∫
d~p′ d~x′ e−H(~x′,~p′) as

∂(~p′, ~x′)

∂(~p, ~x)
= 1 (2.30)〈

e−∆H
〉

=
1

Z
Z = 1. (2.31)

Eq. (2.31) acts as one of the tests for the HMC algorithm. If the value of e−∆H fluctuates

away from 1 then it is clear indication that the algorithm is not implemented correctly.

2.4 Statistical Error in MCMC Algorithms

After thermalization, we can use the field configurations to calculate the expectation values

of observables using Eq.(2.18). But the error in the expectation value depends on whether

the states used to calculate the expectation are correlated or not. If the states ~x1, ~x2, . . . , ~xN

are not correlated, then error in the expectation of f is given by [Gattringer 09]

δf =
σ√
N
, (2.32)
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where σ is the standard deviation in the expectation value of f . We can get the uncorrelated

states by finding the autocorrelation length and taking the states for expectation values after

the autocorrelation length. Autocorrelation length is where autocorrelation becomes nearly

zero.

2.5 Simulation Details

For all Monte Carlo simulations certain features remain common. We will discuss some of

these basic features here and additional features will be discussed in the later chapters.

2.5.1 Thermalization and Initial Condition

We can initialize our simulation with any field configuration for both the algorithms, and

we will get the same result from any starting point as the algorithm respects the ergodic

property. But sometimes the algorithm may take longer time to converge to the desired

probability distribution for some starting points. So, if we have some a priori information

regrading the probability distribution then we can use that for selecting the initial condition.

But mostly we do not have a priori information so we mostly make a cold start for the

simulation. A cold start is the initial configuration in which all the field configurations are

set to zero (for bosonic fields only). If we start with a random field configuration, then we

call it a hot start. Sometimes people use cold start for some fields and hot start for some

fields, this is known as mixed-field configuration. Mostly in our simulations, we used cold

start but for some simulations we used mixed-field configurations as well.

After choosing the initial field configurations, we run the simulation to allow the dis-

tribution to reach the equilibrium distribution and after that we use it to generate/sample

data. This process is known as thermalization. Thermalization is achieved when the value

of the observable starts to oscillate about some value. Then we can use the data after

thermalization to calculate the expectation values. Thermalization occurs faster in HMC as

compared to Metropolis algorithm. We will see this in the later chapters.

2.5.2 Sweeps and Updating

On the lattice we choose to update only one field variable at one lattice site at a time and

repeat this for other lattice sites. For Metropolis algorithm it is better to update the field

variable at one lattice site multiple times before moving to the next field variable. This is

done so that the system converges to the required distribution faster. For HMC it does not

give any better result by making multiple changes at one lattice site. So we update the field

variables only once at each lattice site for HMC.

When we have updated the whole lattice with the new configuration it is known as a

sweep. We collect all the information of the observables after each sweep and store this data
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in a file. Every thermalization plots are ploted against the sweep number. To prevent any

data loss we store the field configurations after every 1000 sweeps. This way we did not

need to thermalize the system again and again and we can restart the simulation with this

previous stored configuration.

2.5.3 Autocorrelation

It is important to note that field configurations generated by the Markov process are not

independent, each configuration is dependent on the previous configuration. So we cannot

directly evaluate our observable from these correlated field configurations as this will increase

error bars and it would require more field configurations to reduce this error bars. So what

we do is that we run the simulation for enough number of times and store the values of

observables. Then we calculate the normalized autocorrelation to get to know how many

sweeps are required to generate statistically independent field configuration. Autocorrelation

and normalized autocorrelation are defined as

Γτ =
1

N − τ

N−τ∑
i=1

(fi − 〈f〉)(fi+τ − 〈f〉) Autocorrelation, (2.33)

ρτ =
Γτ
Γ0

Normalized Autocorrelation, (2.34)

where N is the number of data points after the thermalization, τ is the number of sweeps

for which we are checking the correlation. Γ0 is simply the variance. Autocorrelation length

is defined as the minimum number of sweeps required to get the uncorrelated field config-

uration. So we find the autocorrelation length by looking at the values of the normalized

autocorrelation where it crosses 0 or just near 0. After getting the autocorrelation length

we calculate the expectation value of the observable and error bars from these uncorrelated

field configurations. From now on we will use the term autocorrelation for the normalized

autocorrelation.
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Chapter 3

Harmonic Oscillator and Harmonic

Oscillator with Commutator

Potential

In this chapter, we are going to simulate two models, one using Metropolis algorithm and the

other one using HMC algorithm. From these simulations we will see that the HMC algorithm

converges to the required distribution faster compared to the Metropolis algorithm.

We start this chapter with a simple model: a collection of N2 uncoupled-harmonic

oscillators. The Euclidean action for this model is

SE =
1

2

β∫
0

dt Tr
(
Ẋ2 +m2X2

)
, (3.1)

where X is a N ×N Hermitian matrix with periodic boundary condition X(t) = X(t+ β),

with β being the period of the system. We can easily see, by expanding the trace, that it

is indeed the Euclidean action of N2 uncoupled-harmonic oscillators. This model is exactly

solvable, but our aim here is to simulate this using Metropolis algorithm and verify the

simulation results with the analytical results. Now, using the discretization procedure from

the previous chapter, Eqs. (2.4) - 2.7, the Euclidean action on the lattice takes the form

Slat =
a

2

T∑
t=1

Tr

[(
Xt −Xt−1

a

)2

+m2Xt
2

]
, (3.2)

where X0 = XT . Our aim is to generate the field configurations whose probability distri-

bution is proportional to e−Slat . We will use Metropolis algorithm to sample data from this

probability distribution.
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3.1 Metropolis Algorithm for Harmonic Oscillator

This section introduces us on how to apply Metropolis algorithm to generate field config-

urations according to the given probability distribution. The idea is to propose a random

change in the field configurations and then compare it with the previous field configurations.

We can either propose a change in the field configuration at one lattice site or we can pro-

pose the change in all the field configurations. It is easier to make a change in a single field

configuration at a time as each time we need to calculate the difference in the action. That

is,

∆S = S(Xpro
t )− S(Xold

t ). (3.3)

To calculate this, we can see from Eq. (3.2) that the terms which contribute to this difference

only contains terms with Xt and we do not need to calculate the whole action to calculate

this change.

We can separate the terms containing Xt from the action and we get the local part of

the action Sloc containing Xt

Sloc =
a

2
Tr

[(
2

a2
+m2

)
X2
t −

2Xt

a2
(Xt−1 +Xt+1)

]
. (3.4)

Now we need to propose a random change from a probability distribution which is symmetric

i.e., Q(x|y) = Q(y|x). We can use any distribution with this property but the easiest one is

the uniform distribution. Thus the random change proposed to the field configuration has

the form

Xpro
t = Xold

t + δYt, (3.5)

where Yt is a random Hermitian matrix with each element, both real and complex, taken

from a uniform probability distribution between (−1, 1), and δ is a configurable parameter

which will allow us to set the acceptance rate for this algorithm. Now we need to compare the

proposed state with the old state. For that we need to calculate the acceptance probability,

which is just e−∆S here. Thus the acceptance probability is

e−∆S = e−(Sloc(Xpro
t )−Sloc(Xold

t )). (3.6)

We accept the proposed state with the probability e−∆S . For that we take a random number

α from a uniform random number generator between (0, 1). If e−∆S ≥ α, then we accept

the proposed state otherwise we reject the proposed state and propose a new state. We

continue this procedure until we have enough data to calculate the expectation values of

observables.

In the above the parameter δ controls the efficiency of the algorithm. It is known as the
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jump parameter. We look at the effectiveness of the algorithm by looking at the acceptance

rate. Acceptance rate is defined as the ratio of the total number of accepted states to the

total number of proposed states. If δ is small, then the acceptance rate will be high, and it

will take small steps in the configuration space. This way we need to run the simulation for

longer time to get enough uncorrelated data for the expectation value of the observable. If δ

is large, then it will take large steps in the configuration space, and the acceptance rate will

be low. Again we need to simulate for a longer time to get the desired result. So we need

some value in between these large and small values to get the acceptance between 65-85%.

Acceptance rate between this range is good enough to get the data sampled according to

the probability distribution.

3.2 Simulation Details and Results

In this section, we will discuss the important quantities which are needed to monitor the

reliability of simulations and to compare the simulation data with the analytical results.

In simulation everything is measured in unit of a length a0. Since action needs to be

dimensionless in natural units, so X has a dimension of [L3/2], mass m has a dimension

of [L−1]. So a is measured in units of a0, X is measured in units of a
3/2
0 and mass m is

measured in units of a−1
0 . We use the following parameters for the simulations: N = 16,

a = 1, m = 1, T = 50 and β = 50.

3.2.1 Thermalization

Let us discuss the initial conditions for the simulations first. For this model, we started our

simulation with a cold start, i.e., all the field configurations are set to zero matrices. We

also need to choose the value of the parameter δ so that we get the acceptance rate between

65% and 85%. In Fig. 3.1 we show the acceptance rate for this simulation.

After that, we update the field configurations at a single lattice site for multiple times

(in our case we updated field at each site 50 times) to make the system thermalize faster.

We stored the value of the observables after every sweep. Now we need to decide whether

the system has been thermalized or not. For that what we do is to simulate the system for

large number of sweeps, say 10000. Then we plot one of the observables against the number

of sweeps to see whether the system has been thermalized or not. When the value of the

observable starts to oscillate about some value, then we are sure that the system has been

thermalized. Let us look at the run time history of the observable O1 defined as

O1 ≡
1

N2β

β∫
0

dt Tr
(
X2
)

=
1

N2T

T∑
t=1

Tr
(
X2
t

)
(Discretized version). (3.7)
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Now we collected the data for this observable after the system has been thermalized. We

can see in Fig. 3.2 that the value of O1 is oscillating about 0.45. This observation leads us

to the conclusion that the system has been thermalized and now we can collect the data for

our calculation purpose.
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Figure 3.1: Acceptance rate against Monte Carlo sweep number. We can see that most of
the values of the acceptance rate lies between 70% and 85%, which is good enough to get
the desired results.

3.2.2 Autocorrelation

After thermalization, we collected data for the calculation purpose. It is clear from Fig.

3.2 that the value of O1 after every sweep is not statistically independent and it takes

multiple sweeps to get a statistically independent value of the observable. We use the

autocorrelation to get to know after how many sweeps the value of the observable are

statistically independent.

Fig. 3.3 shows the plot of normalized autocorrelation of the observable O1. We can see

that the plot decreases exponentially and after that, it just oscillates about zero. The point

where the plot crosses the zero in the graph, we defined that thing as the autocorrelation

length. So from this autocorrelation plot, we can see that the autocorrelation length for

observable O1 is 158. Autocorrelation is an observable dependent quantity. It will be

different for other observables. Hence the autocorrelation length will also be different for

other observables.
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Figure 3.2: Run-time history of observable O1 against Monte Carlo sweep number. Here
we only plotted the run-time history after the system has been thermalized and discarded
all the previous values. We can clearly see that the value of the observable O1 is oscillating
around 0.45.

For calculating any expectation value using Eq. 2.18, we need to take a gap of at least

the autocorrelation length so that we only take the average of the uncorrelated data.

3.2.3 Two-point Correlation Function

One of the observables which we want to look at is the two-point correlation function. It is

defined as

O2(t) ≡ 1

N2
Tr(X(0)X(t)) =

1

N2
Tr(X0Xt) (Discretized form). (3.8)

The theoretical result for the expectation value of O2 is

〈O2(t)〉 =
e−mt + e−m(β−t)

2m(1− e−βm)
. (3.9)

Fig. 3.4 shows the simulated result along with the theoretical result. We can see that it

matches the theoretical result at most of the points but at some points it lies inside the error

range. This result is convincing enough to believe that the algorithm is in working order.
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Figure 3.3: Normalized autocorrelation against Monte Carlo sweep number for observable
O1. It starts from 1 and decreases exponentially towards 0 and then oscillates about 0. It
crosses 0 value after 158 sweeps, so the autocorrelation length is 158 for O1.

3.3 HMC for Harmonic Oscillator with Commutator Poten-

tial

Now we introduce more complexity into the harmonic oscillator potential by adding a com-

mutator square term into the action. The Euclidean action is given by

SE =
N

2λ

β∫
0

dt Tr

Ẋi
2
−

d∑
i,j=1
i<j

[Xi, Xj ]2 +m2Xi2

 , (3.10)

where i, j varies from 1 to d, Xi are N ×N Hermitian matrices, λ is the ’t Hooft coupling

defined as λ = Ng2
YM where gYM is the one-dimensional Yang-Mills coupling, m is the mass.

We are also using Einstein’s summation convention that the repeated indices are summed

over. In the above d is the number of spatial dimensions we want in our system. Right now

we are just studying how to implement the algorithm properly so we stick to three spatial

dimensions for this simulation. That is, d = 3 in our simulations. (Note that this theory can

be considered as the one obtained by dimensional reduction of a four-dimensional mother

theory down to one dimension.)

Ideally, we need to simulate this model without mass term, but the model possesses flat

22



-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50

O
2

Lattice site t

O2 against lattice site t

Analytical value
data
error

Figure 3.4: 〈O2(t)〉 against lattice site t. We simulated this on a lattice with 50 sites with
lattice spacing a = 1. We can see that the simulated result agrees with the theoretical result.

directions. If we have a commutator potential square term Tr
(
[Xi, Xj ]2

)
then the system has

flat directions associated with it [Joseph 15]. Flat directions are those field configurations

which mutually commute with each other, i.e., [Xi, Xj ] = 0 but the value of Tr
(
X2
i

)
keeps

on increasing without an upper bound. This makes the simulation unstable, and we need to

remove this to get the appropriate results. We can remove the flat directions in two ways.

One way is to set the zero mode of the system. This is done by setting the global trace of

the fields to zero.

T∑
t=1

Tr
(
Xi
t

)
= 0 for each i. (3.11)

But for simulations it is much easier to set the local trace to zero i.e., Tr
(
Xi
t

)
= 0 for each

t and i. This will automatically satisfy the global trace condition Eq. (3.11).

Another way is to add a mass term in the Euclidean action itself as we have added in Eq.

(3.10). Then we simulate the model for different mass values and extrapolate it towards zero

mass limit to get the value of the observable at zero-mass value. We will simulate this model

by applying both the methods to remove the flat directions and compare the extrapolated

results with the exact zero-mass result.
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Using the discretization procedure mentioned in Eqs. (2.4) - (2.7), the Euclidean action

becomes

Slat =
Na

2λ

T∑
t=1

Tr

(Xi
t −Xi

t−1

a

)2

−
d∑

i,j=1
i<j

[Xi
t , X

j
t ]2 +m2Xi

t
2

 (3.12)

with Xi
0 = Xi

T .

Now we need to setup the HMC algorithm for this model. First we need to introduce

the momentum variable for each field variable Xi
t . We introduce the momentum matrix P it

for each Xi
t matrix. Note that both Xi

t and P it are Hermitian matrices. Now we introduce

the Hamiltonian for this system. The Hamiltonian for this system is given by

H =
T∑
t=1

1

2
Tr
(
P it

2
)

+ Slat, (3.13)

H =
T∑
t=1

Tr

1

2
P it

2
+
Na

2λ


(
Xi
t −Xi

t−1

a

)2

−
d∑

i,j=1
i<j

[Xi
t , X

j
t ]2 +m2Xi

t
2


 . (3.14)

Our next task is to set the initial conditions for the field variables and take the momen-

tum value randomly from the N (0, 1) distribution. Details about how to generate random

numbers distributed as Gaussian distribution can be found in Ref. [Ydri 17]. After that we

need to evolve the field and momentum variables according to the Hamilton’s equations.

We need to find the forces for each momentum variable. We have

(Ẋi
t)rs =

∂H

∂(P it )sr
and (Ṗ it )rs = − ∂H

∂(Xi
t)sr

, (3.15)

where the dot on the field and momentum variables are time derivatives with respect to the

fictitious time τ . We then have the equation of motion

(Ẋi
t)rs = (P it )rs, (3.16)

(Ṗ it )rs = −Na
λ

[(
2

a2
+m2

)
(Xi

t)rs −
1

a2

[
(Xi

t−1)
rs

+ (Xi
t+1)

rs

]
−

d∑
j=1
j 6=i

[Xj
t , [X

i
t , X

j
t ]]rs

]
. (3.17)
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In matrix form these equations simply become

Ẋi
t =P it , (3.18)

Ṗ it =− Na

λ

[(
2

a2
+m2

)
Xi
t −

1

a2

(
Xi
t−1 +Xi

t+1

)
−

d∑
j=1
j 6=i

[Xj
t , [X

i
t , X

j
t ]]

]
. (3.19)

We will evolve the above equations using the leapfrog algorithm described in the previous

chapter, Eq. (2.25) - (2.27). The equations are simply

P it

(
τ +

ε

2

)
= P it (τ)− ε

2

∂H

∂Xi
t

(Xt(τ)), (3.20)

Xi
t(τ + ε) = Xi

t(τ) + εP it

(
τ +

ε

2

)
, (3.21)

P it (τ + ε) = P it

(
τ +

ε

2

)
− ε

2

∂H

∂Xi
t

(Xt(τ + ε)), (3.22)

where ε is a tunable parameter. We also have one more tunable parameter here which is the

number of times we evolve the fields using the leapfrog algorithm. We call this parameter

n. So we evolve the fields for n times and for nε amount of fictitious time. Both ε and n

must be tuned to get the desirable acceptance rate in the simulations.

After evolving the fields and their conjugate momenta, we need to compare it with

the initial field and their momenta. For that, we need to calculate the acceptance prob-

ability for this algorithm. Acceptance probability for this algorithm is simply e−∆H =

exp
{
−(H(Xi(nε), P i(nε))−H(Xi(0), P i(0)))

}
. We accept the proposed state with the

probability e−∆H . For that, we take a random number α from a uniform random num-

ber distribution between (0, 1). If α ≤ e−∆H , then we accept the proposed state, otherwise

we reject the proposed state and propose a new state and continue this procedure until we

have enough data to calculate the expectation value of the observable.

For this algorithm also we require the acceptance rate between 65-85% to move through

the configuration space optimally. This acceptance rate can be achieved by tuning ε and n

parameters appropriately.

3.4 Simulation Details and Results

Similar to the Metropolis algorithm, we need to monitor some of the important things for

the HMC algorithm also. We will discuss these in this section and later will show some

results for this model.

In this simulation each variable and parameter has been measured in the unit of ’t Hooft

coupling λ0. Since the Yang-Mills coupling g2
YM has a dimension of [L−3] in one dimension,

so X can be measured in the unit of λ
1/3
0 , a can be measured in units of λ

−1/3
0 and mass
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m can be measured in units of λ
1/3
0 . Thus, every variable and parameter appearing in Eq.

(3.10) are dimensionless. Values of the parameter used for this simulations are: N = 8,

a = 0.5, T = 10, β = 5, d = 3 and λ = 1. We have taken m = 0.01 for the results of the

next two sub-sections.

3.4.1 Initial Conditions, Acceptance Rate and Thermalization

We started the simulation with a cold start, i.e., all the field configurations are set to zero

matrices initially. To explore the configuration space more efficiently, we choose our tunable

parameter ε and n so that we get the acceptance rate between 65-85%. Fig. 3.5 shows the

acceptance rate against Monte Carlo sweeps for this simulation. Tuning these parameters is

a very crucial step for the HMC algorithm. Sometimes a slight change in these parameters

can make the simulation unstable.

After tuning these parameters, we monitor the quantity e−∆H . As mentioned in the

previous chapter, this is one of the tests to check whether the HMC has been implemented

properly or not. Fig. 3.6 shows the plot of e−∆H against number of accepted states. We

can clearly see that the data points oscillate about 1 in this plot. The average value of the

e−∆H comes out to be 1.10195 ± 0.29467, which clearly shows that the expected value, 1,

lies within the error range. This is enough to show that the algorithm is working fine.

Since this is also a Monte Carlo simulation and uses Markov chain to converge to the

desired distribution so we will expect that the value of the observable first start from some

value and after some sweeps it will thermalize and then oscillate about some value. The

feature appears here also but the system thermalizes much faster for this algorithm as

compared to the Metropolis algorithm. In Fig. 3.7 we show Monte Carlo time history of

the observable O3 defined as

O3 ≡
1

Nβ

β∫
0

dt Tr
(
Xi2

)
=

1

NT

T∑
t=1

Tr
(
Xi
t
2
)

(Discretized form). (3.23)

3.4.2 Autocorrelation

Looking at the plot of the run-time history of the observable O3, it is clear that the data

points are correlated with each other, and we need to skip a certain number of consecutive

steps to get uncorrelated data. Fig. 3.8 shows the plot of normalized autocorrelation against

the number of sweeps for the observable O3. Autocorrelation quickly decays and oscillate

about zero after about 15-16 sweeps, which shows that the autocorrelation between the data

points is quite less. Autocorrelation length of this observable comes out to be 15.
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Figure 3.5: Acceptance rate against Monte Carlo sweep number. We can see that most
of the data points are concentrated between 75 to 85%, which is what we want for good
simulation results.
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Figure 3.6: The plot of e−∆H against the number of accepted states. In this plot we can
see that most of the values are concentrated near 1 which is a clear indication that HMC
algorithm has been implemented correctly.
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Figure 3.7: Run-time history of observable O3 against Monte Carlo sweep number. The
data tell us that it took only about 10-12 sweeps for the system to thermalize.
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Figure 3.8: Normalized autocorrelation against Monte Carlo sweep number. If we compare it
with Fig. 3.3 we see that the data obtained through HMC algorithm are not that correlated
compared to the data obtained through the Metropolis algorithm.
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m O3

0.0 1.34458(303)
0.01 1.34794(315)
0.1 1.33892(291)
0.5 1.24151(258)
1.0 1.02051(145)
1.5 0.81008(106)
2.0 0.63752(81)

Table 3.1: The value of observable O3 for different m values.

3.4.3 Result

We simulated this model by removing the flat directions in two ways. First, we simulated

the model at m = 0 by applying the local trace condition. We calculated the value of the

observable O3 from this simulation. Then we simulated this model by adding different mass

terms and then linearly extrapolated it towards zero mass limit. Table 3.1 shows the value

of O3 for different mass m. Fig. 3.9 shows the plot of O3 against mass m. The straight line

is the linear fit to the data.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.5  1  1.5  2

Tr
(X

i2
)/

N
T

Mass

Tr(Xi
2)/NT vs Mass

Linear Fit
Data
Error

Figure 3.9: The observable O3 against m. The plot also contains the linear fit to the data.

Equation of the linear fit is given by

O3 = −0.3630(151) m+ 1.3709(156). (3.24)
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From the linear fit we get the value of O3 at m = 0 to be 1.3709(156), which clearly

differs from the simulation at m = 0 case given in Table 3.1. This may be because the linear

extrapolation is only the first-order correction and we need to know how the observable

behaves for different mass values. If we have some idea on how the observable behaves with

different mass, then we can use that information for extrapolation.

3.5 Remarks

In this chapter, we simulated two different models, harmonic oscillator and harmonic oscil-

lator with commutator potential, using two different algorithms. The second model is more

complicated as compared to the first one. We have observed that using HMC algorithm

on the second model not only made the system to thermalize much faster but also the au-

tocorrelation between the data is quite less as compared to the simulation done using the

Metropolis algorithm. Although we have not simulated the same model with both the algo-

rithms but the second model is more complicated as compared to the first one. So from here,

we conclude that HMC algorithm is more efficient as compared to the Metropolis algorithm.

From the next chapter onwards, we will use the HMC algorithm for the simulations.
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Chapter 4

Bosonic D = 4 and BFSS Matrix

Models

In this chapter, we are first going to discuss how to implement gauge fields on the lattice

and then apply these techniques to simulate the bosonic D = 4 and bosonic BFSS models.

Simulations including fermions will be discussed in the next chapter.

4.1 Gauge Theory on a Lattice

Most of the contents of this section can be found in Ref. [Gattringer 09]. They have

performed these calculations for lattice QCD but we will do it for more general gauge group

SU(N).

In this section we try to describe how to implement gauge fields on a lattice by using an

example of Yang-Mills theory coupled to a complex scalar field in four spacetime dimensions.

We take the gauge group of the gauge field to be SU(N). The scalar field transforms in

the fundamental representation of this gauge group. The metric of the four-dimensional

spacetime is ηµν = diag(1,−1,−1,−1).

The action of this theory is given by

S =

∫
d4x

{
− 1

2g2
Tr(FµνF

µν) + (DµΦ)†DµΦ−m2Φ†Φ

}
, (4.1)

where

Dµ = ∂µ + iAµ, (4.2)

Fµν = ∂[µAν] + i[Aµ, Aν ]. (4.3)
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The path integral for this model is given by

Z =

∫
DAµ DΦ exp{iS}. (4.4)

After performing the Wick rotation we will get the Euclidean action for this model.

The details of this is given in Appendix A. The metric after Wick rotation becomes ηµν =

diag(1, 1, 1, 1). The Euclidean action is given by

SE =

∫
d4xE

{
1

2g2
Tr
(
F 2
µν

)
E

+ (DµΦ)†DµΦ +m2Φ†Φ

}
, (4.5)

where

FµνE = ∂[µAν] + i[Aµ, Aν ], (4.6)

Dµ = ∂µ + iAµ. (4.7)

While working in Euclidean spacetime we note that we do not need to change the sign

when we go from lower index to upper index and vice-versa. Let us represent all tensor

quantities using only the lower indices. Another item that has changed is that now both µ

and ν will run from 1 to 4 instead of 0 to 3. As both the fields are bosonic type they will

satisfy periodic boundary conditions in Euclidean time tE , i.e.,

A(~x, tE + β) = A(~x, tE), (4.8)

Φ(~x, tE + β) = Φ(~x, tE). (4.9)

From now on we will suppress the subscript E on the expressions and we will get to know

the distinction between the Euclidean and Minkowski terms from the context.

Now we can discretize the above action to put the theory on the lattice. We cannot

discretize this theory using a naive lattice discretization as this theory is locally gauge

invariant under the gauge transformation

Φ(x) −→ V (x)Φ(x), (4.10)

Aµ(x) −→ V (x)Aµ(x)V †(x) + i∂µV (x)V †(x). (4.11)

In the above equations we have V (x) = exp(−iΛ(x)) with Λ(x) belonging to the Lie algebra

su(N), x ∈ R4 and V †(x) = V −1(x).

Our aim is to make the lattice action locally gauge invariant such that in the limit of

lattice spacing a going to zero we get back the action of the continuum theory. To do this

let us first forget about the gauge field for now and focus on the free scalar field whose
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Euclidean action is given by

S =

∫
d4x

{
∂µΦ†∂µΦ +m2Φ†Φ

}
. (4.12)

As no gauge field is present we can simply discretize the action to get the lattice action

Slat = a4
∑
n∈Λ

 4∑
µ=1

(
Φ†n+µ̂ − Φ†n

)
(Φn+µ̂ − Φn)

a2
+m2Φ†nΦn

 , (4.13)

where Λ = {n = (n1, n2, n3, n4)| n1, n2, n3 = 1, 2, · · · , Ns; n4 = 1, 2, · · · , T and x = na}, µ̂
is the basis vector on the lattice; 1̂ = (1, 0, 0, 0) and similarly for 2̂, 3̂ and 4̂. We also apply

periodic boundary conditions in all the four directions. It is easy to see that the term

Φ†nΦn is gauge invariant as both of these belong to the same lattice point and the gauge

transformation cancels each other leaving this term invariant. Now we need to check whether

the term Φ†n+µ̂Φn remains invariant or not. We do the required calculation by transforming

the field at both of these lattice points by appropriate transformations

Φn −→ V (n)Φn, (4.14)

Φ†n+µ̂ −→ Φ†n+µ̂V
†(n+ µ̂), (4.15)

Φ†n+µ̂Φn −→ Φ†n+µ̂V
†(n+ µ̂)V (n)Φn, (4.16)

where both V †(n + µ̂) and V (n) belong to SU(N). We note that V (n + µ̂) and V (n) can

be different in general. Thus the above term is not locally gauge invariant and this is the

only term (and a complex conjugate term also) in the action Eq. (4.13) which is not locally

gauge invariant. We need to add something in between Φ†n+µ̂ and Φn which cancels these

gauge transformations. We know one such object which transforms in the opposite direction

to that of the scalar field. It is the path ordering of the exponential of the line integral of

gauge field along some curve γ connecting points from x to y. It is called the Wilson line

integral or the gauge transporter. The expression of the operator and the transformation

properties are given by

U(x, y) = P

exp

i∫
γ

dzµAµ(z)

 , (4.17)

U(x, y) −→ V (x)U(x, y)V †(y), (4.18)

where P stands for path ordering. If we have an analog of this for the lattice then we can use

that to make Φ†n+µ̂Φn locally gauge invariant. If we replace x with n and y with n+ µ̂ and

approximate the line integral with iaAµ(n) then to the lowest order of approximation we

do not need any path ordering and only higher order terms will have path ordering terms.
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Thus we get

U(n, n+ µ̂) = exp{iaAµ(n)} = Uµ(n), (4.19)

Uµ(n) −→ V (n)Uµ(n)V †(n+ µ̂). (4.20)

This operator Uµ(n) is known as the link field. Also note that U−µ(n) = U(n, n− µ̂) =

exp{−iaAµ(n)} = U †µ(n − µ̂). We note that Uµ(n) has a directional nature, i.e., Uµ(n)

connects n to n+µ̂ and U−µ(n) connects n to n−µ̂. So if we add U(n+µ̂, n) = U−µ(n+µ̂) =

U †µ(n) in between Φ†n+µ̂ and Φn we get Φ†n+µ̂U
†
µ(n)Φn. We can easily check that it is locally

gauge invariant. The calculations are provided below

Φ†n+µ̂U
†
µ(n)Φn −→ Φ†n+µ̂V

†(n+ µ̂)V (n+ µ̂)U †µ(n)V †(n)V (n)Φn = Φ†n+µ̂U
†
µ(n)Φn. (4.21)

Now we are left with our last task to check whether in the limit a −→ 0 we get the

correct continuum action or not. So let us insert the required link fields in the action Eq.

(4.13) and take the limit a −→ 0. This is done by first replacing Φ†n+µ̂ with Φ†n+µ̂U
†
µ(n).

Then the action becomes

Ssc = a4
∑
n∈Λ

 4∑
µ=1

(
Φ†n+µ̂U

†
µ(n)− Φ†n

)(
Uµ(n)Φn+µ̂ − Φn

)
a2

+m2Φ†nΦn

 . (4.22)

From Eq. (4.19) it is clear that Uµ(n) = 1+ iaAµ(n)+O(a2) and U †µ(n) = 1− iaAµ(n)+

O(a2) as Aµ(n) ∈ su(N). Substituting this in Eq. (4.22) and collecting the terms we get

Ssc = a4
∑
n∈Λ

[
4∑

µ=1

(
Φ†n+µ̂

{
1− iaAµ(n) +O(a2)

}
− Φ†n

a

)

×

({
1 + iaAµ(n) +O(a2)

}
Φn+µ̂ − Φn

a

)
+m2Φ†nΦn

]

= a4
∑
n∈Λ

[
4∑

µ=1

(
Φ†n+µ̂ − Φ†n

a
− iΦ†n+µ̂Aµ(n)

)(
Φn+µ̂ − Φn

a
+ iAµ(n)Φn+µ̂

)

+m2Φ†nΦn +O(a)

]
. (4.23)
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Simplifying further we get

S = lim
a→ 0

a4
∑
n∈Λ

[
4∑

µ=1

(
Φ†n+µ̂ − Φ†n

a
− iΦ†n+µ̂Aµ(n)

)

×
(

Φn+µ̂ − Φn

a
+ iAµ(n)Φn+µ̂

)
+m2Φ†nΦn +O(a)

]

=

∫
d4x

{(
∂µΦ†(x)− iΦ†(x)Aµ(x)

)
(∂µΦ(x) + iAµ(x)Φ(x)) +m2Φ†(x)Φ(x)

}
=

∫
d4x

{
(DµΦ(x))†DµΦ(x) +m2Φ†(x)Φ(x)

}
. (4.24)

If we compare Eq. (4.24) with Eq. (4.5) we can see that we have got all the parts of

the action apart from the kinetic term for the gauge field. For the kinetic term we need

to introduce one more operator, which is a combination of four link fields, known as the

plaquette. It has the form

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν)

= Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n). (4.25)

Pictorially we can understand Uµν(n) with the help of Fig. 4.1. The trace of Uµν(n) is

a gauge invariant object. We can see this easily

Tr(Uµν(n)) −→ Tr
(
V (n)Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n)V †(n)

)
−→ Tr

(
V †(n)V (n)Uµν(n)

)
= Tr(Uµν(n)). (4.26)

Using the plaquette we can form the kinetic term for the gauge field. This lattice action

was first introduced by K. G. Wilson [Wilson 74] in 1974. Wilson gauge action is given by

SG =
2

g2

∑
n∈Λ

∑
µ<ν

Re [Tr(1− Uµν(n))] , (4.27)

where we need to consider all the plaquettes with only one orientation. Now our task is

to show that this converges to the continuum action in the limit a → 0. For that we need

to use Baker-Campbell-Hausdorff formula to evaluate the value of the plaquette. Baker-

Campbell-Hausdorff formula is given by

exp(X) exp(Y ) = exp

(
X + Y +

1

2
[X,Y ] + · · ·

)
. (4.28)
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Uμ(n + ̂ν)

Uν(n + ̂μ)Uν(n)

n n + ̂μ

n + ̂μ + ̂νn + ̂ν

Figure 4.1: The link variables form the plaquette Uµν . The circle indicates the direction we
need to follow to form the plaquette. This figure is taken from Ref. [Joseph 20].

Then using this

Uµν(n) = exp(iaAµ(n)) exp(iaAν(n+ µ̂)) exp(−iaAµ(n+ ν̂)) exp(−iaAν(n))

= exp
{
ia(Aµ(n) +Aν(n+ µ̂))− a2

2
[Aµ(n), Aν(n+ µ̂)]

}
× exp

{
− ia(Aµ(n+ ν̂) +Aν(n))− a2

2
[Aµ(n+ ν̂), Aν(n)]

}
. (4.29)

Expanding the terms

Uµν(n) = exp

{
ia(Aν(n+ µ̂)−Aν(n) + (Aµ(n+ ν̂)−Aµ(n)))

+
a2

2
([Aµ(n), Aµ(n+ ν̂)]

+ [Aν(n+ µ̂), Aν(n)] + [Aµ(n), Aν(n)] + [Aν(n+ µ̂), Aµ(n+ ν̂)]

−[Aµ(n), Aν(n+ µ̂)]− [Aµ(n+ ν̂), Aν(n)])

}
. (4.30)
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In the limit a→ 0, Uµν(n) takes the form

Uµν(n) = exp
{
ia2(∂µAν(n)− ∂νAµ(n) + i[Aµ(n), Aν(n)])

}
= exp{ia2Fµν(n)}. (4.31)

Expanding Uµν(n) up to order a4 we get

Uµν(n) = 1 + ia2Fµν(n)− a4

2
F 2
µν(n). (4.32)

Substituting the value of Uµν(n) in Eq 4.27 we get

SG =
2

g2

∑
n∈Λ

∑
µ<ν

Re

[
Tr

(
ia2Fµν(n)− a4

2
F 2
µν(n)

)]

=
1

g2

∑
n∈Λ

∑
µ<ν

Re

[
Tr

(
ia2Fµν(n)− a4

2
F 2
µν(n)− ia2Fµν(n)− a4

2
F 2
µν(n)

)]
.(4.33)

That is,

SG =
a4

g2

∑
n∈Λ

∑
µ<ν

Tr
(
F 2
µν(n)

)
,

=
a4

2g2

∑
n∈Λ

∑
µ,ν

Tr
(
F 2
µν(n)

)
. (4.34)

(4.35)

Taking a→ 0 limit

S = lim
a→0

SG = lim
a→0

a4

2g2

∑
n∈Λ

∑
µ,ν

Tr
(
F 2
µν(n)

)
=

1

2g2

∫
d4xTr

(
F 2
µν(x)

)
. (4.36)

Thus, in the limit a→ 0, Wilson gauge action converges to the correct continuum gauge

action. The full action of the theory on the lattice is the sum of the Eq. (4.22) and Eq.

(4.34). That is,

SFull = Ssc + SG. (4.37)

Apart from the lattice action we also need to take care of the measure for the integral

in the partition function. In the continuum theory we have gauge fields in the measure of

the partition function but on the lattice we have link fields, which belong to the Lie group

SU(N), as compared to the gauge fields, which belong to the Lie algebra su(N). So, for
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the invariance of the measure on the lattice we need to choose that measure which remains

invariant under both the left and right multiplication by the group element. One such

measure for evaluating integral on the group manifold SU(N) is the Haar measure. More

details of this measure can be found in Ref. [Gattringer 09]. One important property of the

Haar measure is

DUµ(n) = D(V (n)Uµ(n)) = D(Uµ(n)V †(n+ µ̂)) = D(V (n)Uµ(n)V †(n+ µ̂)). (4.38)

4.2 D = 4 Model

In this section we will discuss the bosonic D = 4 model. It is obtained by dimensionally

reducing the 3 + 1-dimensional Yang-Mills model with gauge group SU(N) to 0 + 1 dimen-

sions. The details on these are provided in Appendix A. The Euclidean action of the model

is given by

SE =
N

λ

β∫
0

dtTr

{
1

2
(DtX

i)2 − 1

4
[Xi, Xj ]2

}
, (4.39)

where DtX
i = ∂tX

i − i[A(t), Xi] is the covariant derivative. As always repeated indices

are summed over, i, j = 1, 2, · · · , d, λ = Ng2 where λ is the ’t Hooft coupling and g is the

one-dimensional Yang-Mills coupling, Xi are N × N traceless Hermitian matrices, A(t) is

the gauge field. We also have periodic boundary conditions for both the scalar and gauge

field, i.e., Xi(t+β) = Xi(t) and A(t+β) = A(t). For this model, d = 3 since we have three

scalar fields for the D = 4 model but we retained d because BFSS model action is also given

by Eq. (4.39) but in BFSS model we have d = 9, i.e., nine scalar fields. The action Eq.

(4.39) remains invariant under the following gauge transformation

Xi(t) −→ V (t)Xi(t)V †(t), (4.40)

A(t) −→ V (t) (A(t) + i∂t)V
†(t), (4.41)

where V (t) ∈ SU(N).

The partition function is given by

Z =

∫
DADX exp{−SE}. (4.42)

Now we need to put this theory on the lattice. The whole procedure is described in Ref.

[Filev 16]. We will use the same arguments here also. First, note that here we only have

temporal direction and so we will have a one-dimensional lattice and that lattice is given by

Λ = {n|n = 0, 1, · · · , T −1; t = na} and imposing boundary conditions implies that we need

to identify 0 with T and β = aT . To discretize the covariant derivate we need to introduce
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the link fields given by

Un,n+1 = P

exp

i (n+1)a∫
na

dtA(t)


 = exp{iaA(t)}. (4.43)

If we discretize the ordinary derivate we get

∂tX
i
n −→

Xi
n+1 −Xi

n

a
. (4.44)

We need to bring the field at tn+1 back to tn and for that we use the link field Un,n+1.

Then the discretized ordinary derivative becomes the discretized covariant derivative. It is

given by

DtXi
n −→

Un,n+1X
i
n+1U

†
n,n+1 −Xi

n

a
. (4.45)

Substituting this back in the discretized action we get

S =
Na

2λ

T−1∑
n=0

Tr


(
Un,n+1X

i
n+1U

†
n,n+1 −Xi

n

a

)2

− 1

2
[Xi

n, X
j
n]

 . (4.46)

Simplifying the above equation we get

S =
N

λ

T−1∑
n=0

Tr

{
−1

a
Un,n+1X

i
n+1U

†
n,n+1X

i
n +

1

a
(Xi

n)2 − a

4
[Xi

n, X
j
n]

}
. (4.47)

Now we use the SU(N) symmetry to simply the action further. If we change the fields

by the following set of transformations

Xi
0 −→ Xi

0, (4.48)

Xi
1 −→ U †0,1X

i
1U0,1,

Xi
2 −→ (U0,1U1,2)†Xi

2(U0,1U1,2),

...

Xi
T−1 −→ (U0,1U1,2 · · ·UT−2,T−1)†Xi

T−1(U0,1U1,2 · · ·UT−2,T−1),

and also if we define

W = (U0,1U1,2 · · ·UT−2,T−1UT−1,0), (4.49)
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we can express the action in the following way

S = −N
aλ

Tr

{
T−2∑
n=0

Xi
n+1X

i
n +WXi

0W
†Xi

T−1

}

+
N

λ

T−1∑
n=0

Tr

{
1

a
(Xi

n)2 − a

4
[Xi

n, X
j
n]

}
. (4.50)

Upon using the result that every (finite-dimensional) Hermitian matrix can be diagonal-

ized, we can diagonalize the W matrix by using the gauge symmetry of the field Xi
n. Let

W diagonlized by V matrix then

W = V DV † (4.51)

where

D = diag{eiθ1 , eiθ2 , · · · , eθN }. (4.52)

If we transform Xi
n −→ V Xi

nV
† then the action becomes

S = −N
aλ

Tr

{
T−2∑
n=0

Xi
n+1X

i
n +DXi

0D
†Xi

T−1

}
+
N

λ

T−1∑
n=0

Tr

{
1

a
(Xi

n)2 − a

4
[Xi

n, X
j
n]

}
. (4.53)

We will use the action Eq. (4.53) for the simulation purpose. Now let us take a look

at the integration measure for this system. The integration measure for the scalar fields

will remain the same but we will see that the integration measure for the link fields will get

much simplified. The integration measure for the link fields is given by

T−1∏
n=0

DUn,n+1 =

T−1∏
n=1

DUn,n+1DU0,1. (4.54)

Now using the property of the Haar measure, Eq. 4.38, and

U0,1 = W (U1,2 · · ·UT−2,T−1UT−1,0)†, (4.55)

we get DU0,1 = DW . If we look at Eq. (4.53), the action only depends on the diagonal

matrix D which is the diagonalized form of W . So we can integrate the extra variables out
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and the integration measure simplifies to

Z =

∫ T−1∏
n=0

DUn,n+1DX e−S[X,D]

=

∫ T−1∏
n=1

DUn,n+1DWDX e−S[X,D]

= (Vol(SU(N)))T−1
∫
DWDX e−S[X,D]

∝
∫ N∏

i=1

dθi

N∏
j>k

∣∣∣eiθj − eiθk ∣∣∣2DXe−S[X,D]

∝
∫ N∏

i=1

dθi

N∏
j>k

sin2

(
θj − θk

2

)
DXe−S[X,D]

∝
∫ N∏

i=1

dθiDXe−S[X,D(θ)]−SFP[θ], (4.56)

where SFP[θ] is known as Faddeev-Popov term and it is given by

SFP[θ] = −2
N∑
j<k

ln

∣∣∣∣sin(θj − θk2

)∣∣∣∣ = −
N∑
j 6=k

ln

∣∣∣∣sin(θj − θk2

)∣∣∣∣ . (4.57)

The proportionality constant in Eq. (4.56) does not bother us because the proportionality

constant cancels out from the numerator and denominator when we calculate the values of

the observables.

4.2.1 HMC for D = 4 Model

Now we will introduce the conjugate momenta for every field variables. Momentum conju-

gate to Xi
n is P in, where P in is an N × N traceless Hermitian matrix and the momentum

conjugate to θk is Pk. The Hamiltonian for the molecular dynamics part of the HMC is

H =
T−1∑
n=0

1

2
Tr
{
Pni

2
}

+
N∑
j=1

1

2
P 2
j + S[X,D(θ)] + SFP[θ]. (4.58)

The Hamilton’s equations are given by

Ẋi
n,rs =

∂H

∂P in,sr
= P in,rs, Ṗ in,rs = − ∂H

∂Xi
n,sr

, (4.59)

θ̇j =
∂H

∂Pj
= Pj , Ṗj = −∂H

∂θj
, (4.60)
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where the dot represents time derivative with respect to the fictitious time τ . These forces

can be calculated using the Hamiltonian, Eq. (4.58), and are given by

− ∂H

∂Xi
0,sr

=
N

aλ

(
Xi

1 − 2Xi
0 +D†Xi

T−1D
)
rs

+
Na

λ
[Xj

0 , [X
i
0, X

j
0 ]]rs,

− ∂H

∂Xi
n,sr

=
N

aλ

(
Xi
n+1 − 2Xi

n +Xi
n−1

)
rs

+
Na

λ
[Xj

n, [X
i
n, X

j
n]]rs for n = 1, 2, · · · , T − 2,

− ∂H

∂Xi
T−1,sr

=
N

aλ

(
DXi

0D
† − 2Xi

T−1 +Xi
T−2

)
rs

+
Na

λ
[Xj

T−1, [X
i
T−1, X

j
T−1]]rs,

−∂H
∂θj

=
2N

aλ

N∑
k=1

Re
(
iXi

T−1,kjX
i
0,jke

i(θj−θk)
)

+
N∑
k=1
k 6=j

cot

(
θj − θk

2

)
. (4.61)

Since D ∈ SU(N), all the θ variables will not be independent and is constrained by the

equation
N∑
i=1

θi = 0 (4.62)

as det(D) = 1.

4.2.2 Observables

The observables we are interested in the D = 4 model are the Polyakov loop |P |, the extent

of space R2, and the internal energy E. The definition and the discretized forms of these

observables are given below

• Polyakov loop |P |

〈|P |〉 ≡ 1

N

〈∣∣∣P (ei
∮
dtA(t))

∣∣∣〉 =

〈∣∣∣∣Tr(D)

N

∣∣∣∣〉 (On lattice) (4.63)

• Extent of space R2

〈
R2
〉
≡

〈
λ

Nβ

β∫
0

dt Tr
(
Xi2

)〉

=

〈
λ

NT

T−1∑
n=0

Tr
(
Xi
n

2
)〉

(Discretized form) (4.64)
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• Internal energy E

〈
E

N2

〉
≡

〈
− 3λ

4Nβ

β∫
0

dt Tr
(
[Xi, Xj ]2

)〉

=

〈
− 3λ

4NT

T−1∑
n=0

Tr
(
[Xi

n, X
j
n]2
)〉

(Discretized form) (4.65)

4.2.3 Simulation Details

In the simulations each variable and parameter has been measured in the unit of ’t Hooft

coupling λ0. Since the Yang-Mills coupling g2
YM has a dimension of [L−3] in one dimension,

so Xi
n and A(n) can be measured in the unit of λ

1/3
0 and a can be measured in units of λ

−1/3
0 .

Thus, every variable and parameter appearing in Eq. (4.53) are dimensionless. Value of the

parameters used in the simulations are: N = 4, T = 20, d = 3 and λ = 1.

The simulations can be performed in two ways. On way is to fix the lattice spacing a

and then perform the simulation for different temperatures. However, for large temperature

values lattice size becomes large and thus it takes quite a lot of time to simulate the model.

Another way is to fix the lattice size T and vary the lattice spacing a. In this method, the

lattice size remains constant which ensures that it will take the same amount of simulation

time for different temperatures but the lattice spacing will increases with increasing tem-

perature so we need to choose T such that a remains small enough for the simulation. We

performed the simulation by fixing T = 20 and got pretty good results.

The simulations which we are performing can be quite heavy. It takes a lot of time so

we cannot risk to run it in a single go without saving the data and field configurations in

between. Incidents such as power loss or system crash may happen resulting in a loss of the

final field configuration forcing us to rerun the whole simulation again. In order to overcome

this we have written a script in bash to stop the code after every 100 sweeps and then save

the data and field configurations and then rerun again. In this way we will not face any loss

of data.

As we have already mentioned, the simulations of this model is quite heavy; so we run the

simulations for each temperature on a single core of the computer. We run the simulations

for all temperatures simultaneously using multiple cores at the same time. This procedure

saves us quite a lot of time. (Another method for saving simulation time is to write a code

suitable for parallel computing.)

We run the simulations for 17 different temperature values and for each temperature

we run it for 1600K sweeps. The results are provided below. Our results are in excellent

agreement with the results given in Ref. [Hanada 07].
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Polyakov Loop |P |

We have already mentioned in the Chapter 1 that Polyakov loop |P | acts as an order

parameter for the confinement/deconfinement phase transition. Fig. 4.2 shows the plot of

the Polyakov loop against temperature T . The dotted and the bold black curves show the

leading and next-to-leading terms of the high temperature expansion (HTE) given in Ref.

[Kawahara 07a]. The system remains in the confined phase for small temperature and after

crossing the critical temperature Tc, the system moves to the deconfined phase. In the limit

N →∞ the plot will be given by the Heaviside step function with the discontinuity at the

critical temperature Tc. So for a finite system we fit our plot of the Polyakov loop with a

suitable function that in the limit should converge to the step function. Our fitting function

is given by

f(T ) = A tan−1(B(T − Tc)) +D, (4.66)

where A,B, Tc and D are the fit parameters. If we choose A =
1

π
, D = 0.5 and take the

limit B →∞ then

lim
B→∞

1

π
tan−1(B(T − Tc)) + 0.5 = Θ(T − Tc) (4.67)

We see that it does converge to the required limit; so the function f(T ) is the correct choice.

The values of fit parameters obtained after the fit are provided in Table 4.1. From this we

conclude that the critical temperature Tc = 1.116(13).

Parameter Fit Value

A 0.3000712(9052)
B 1.92222(11280)
Tc 1.11612(1320)
D 0.53172(485)

Table 4.1: Values of the fitting parameters A, B, Tc and D.

Fig. 4.3 shows the distribution of the eigenvalues of the Polyakov loop operator in the

confined and deconfined phase. In the confined phase, the eigenvalues spread uniformly on

the unit circle, whereas they tend to cluster near one point in the deconfined phase.

Internal Energy E and Extend of Space R2

Fig. 4.4 shows the plot of the scaled internal energy E
N2 against temperature T . If we had

simulated this for larger N then we would clearly see a kink near the critical temperature,

which would directly show that the system undergoes a phase transition. But for smaller
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Figure 4.2: Polyakov loop against temperature T . The dotted and bold black curves show
the leading order and the next-to-leading order terms of the high temperature expansion
(HTE). The blue curve is the fitted curve to the plot. The phase transition occurs at
Tc ≈ 1.11.
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(a) Confined phase T = 0.25.
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(b) Deconfined phase T = 2.5.

Figure 4.3: Distribution of the eigenvalues of the Polyakov loop operator in the confined
and deconfined phases.

N this feature is not visible in the plot. The plot agrees well with the high temperature

expansion (HTE). In Fig. 4.5 we show the plot of the extent of space R2 against temp T .
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N2 against temperature T . The dotted and bold black curves show the leading

order and the next-to-leading order terms of the high temperature expansion (HTE).

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5

R
2

T

R2 against T

Data

Figure 4.5: Plot of R2 against temperature T .
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4.3 BFSS Matrix Model

The action of this model can be obtained by dimensionally reducing the 9 + 1-dimensional

N = 1 Super Yang-Mills theory to 0 + 1 dimensions. The details of this model are given in

Appendix A. The Euclidean action of the BFSS model is given by

SE =
N

2λ

β∫
0

dt Tr

{
(DtX

i)2 − 1

2
[Xi, Xj ]2 + ψTC9Dtψ − ψTC9γ

i[Xi, ψ]

}
, (4.68)

where Dt = ∂t− i[A(t), ·]; i, j = 1, 2, · · · , 9; Xi are N ×N traceless Hermitian matrices; λ is

the ’t Hooft coupling; ψ is a sixteen component Majorana fermion and each component of

the fermion is an N ×N traceless Hermitian matrix; C9 is the Euclidean charge conjugation

matrix in the nine dimensions; and γi are the Euclidean gamma matrices in nine dimensions.

Fermionic part of the action is obtained by taking a particular choice for the Majorana-Weyl

fermion and the gamma matrices. The details are given in Ref. [Filev 16].

In this section we will simulate the quenched BFSS model, i.e., we will remove the

fermions from the theory and we just simulate the bosonic part of this model. The Euclidean

action of the bosonic part is given by

SE =
N

2λ

β∫
0

dt Tr

{
(DtX

i)2 − 1

2
[Xi, Xj ]2

}
. (4.69)

We see that the bosonic action is same as of the D = 4 model but here we have nine

scalar fields instead of three scalar fields. So the set of procedures from discretizing the

action to applying the HMC remains the same. However, we discuss the important points

below.

4.3.1 HMC for Bosonic BFSS Matrix Model

We introduce the momentum conjugate to Xi
n to be P in, where P in is an N × N traceless

Hermitian matrix and momentum conjugate to θk is Pk. The Hamiltonian for the molecular

dynamics part of HMC is

H =

T−1∑
n=0

1

2
Tr
{
Pni

2
}

+
N∑
j=1

1

2
P 2
j + S[X,D(θ)] + SFP [θ]. (4.70)
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The Hamilton’s equations are given by

Ẋi
n,rs =

∂H

∂P in,sr
= P in,rs, Ṗ in,rs = − ∂H

∂Xi
n,sr

, (4.71)

θ̇j =
∂H

∂Pj
= Pj , Ṗj = −∂H

∂θj
, (4.72)

where the dot represents time derivative with respect to the fictitious time τ .

The forces can be calculated using the Hamiltonian, Eq. (4.70), and are given by

− ∂H

∂Xi
0,sr

=
N

aλ

(
Xi

1 − 2Xi
0 +D†Xi

T−1D
)
rs

+
Na

λ
[Xj

0 , [X
i
0, X

j
0 ]]rs,

− ∂H

∂Xi
n,sr

=
N

aλ

(
Xi
n+1 − 2Xi

n +Xi
n−1

)
rs

+
Na

λ
[Xj

n, [X
i
n, X

j
n]]rs for n = 1, 2, · · · , T − 2,

− ∂H

∂Xi
T−1,sr

=
N

aλ

(
DXi

0D
† − 2Xi

T−1 +Xi
T−2

)
rs

+
Na

λ
[Xj

T−1, [X
i
T−1, X

j
T−1]]rs,

−∂H
∂θj

=
2N

aλ

N∑
k=1

Re
(
iXi

T−1,kjX
i
0,jke

i(θj−θk)
)

+

N∑
k=1
k 6=j

cot

(
θj − θk

2

)
. (4.73)

Since D ∈ SU(N), all the θ variables will not be independent and is constrained by the

equation
N∑
i=1

θi = 0

as det(D) = 1.

4.3.2 Observables

The observables we are interested in the bosonic BFSS model are the Polyakov loop |P |, the

extent of space R2 and the internal energy E. The definitions and the discretized forms of

the observables are given below

• Polyakov loop |P |

〈|P |〉 ≡ 1

N

〈∣∣∣P (ei
∮
dtA(t))

∣∣∣〉 =

〈∣∣∣∣Tr(D)

N

∣∣∣∣〉 (On lattice) (4.74)

• Extent of space R2

〈
R2
〉
≡

〈
λ

Nβ

β∫
0

dt Tr
(
Xi2

)〉
=

〈
λ

NT

T−1∑
n=0

Tr
(
Xi
n

2
)〉

(Discretized form) (4.75)
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• Internal energy E

〈
E

N2

〉
≡

〈
− 3λ

4Nβ

β∫
0

dt Tr
(
[Xi, Xj ]2

)〉

=

〈
− 3λ

4NT

T−1∑
n=0

Tr
(
[Xi

n, X
j
n]2
)〉

(Discretized form) (4.76)

4.3.3 Simulation Details

In simulations each variable and parameter has been measured in the unit of the ’t Hooft

coupling λ0. Since the Yang-Mills coupling g2
YM has a dimension of [L−3] in one dimension,

we can measure Xi
n and A(n) in the unit of λ

1/3
0 , and a can be measured in units of λ

−1/3
0 .

Thus, each variable and parameter appearing in Eq. (4.53) is dimensionless. The values of

the parameters used for this simulations are: N = 4, T = 10, d = 9 and λ = 1. All the

other details of the simulations are the same as the D = 4 model. (See Sec. 4.2.3 for those

details.)

We performed the simulations for 31 different temperature values each running for 800K

Monte Carlo sweeps. The critical temperature Tc comes out to be 0.9054(20). Our results

are in excellent agreement with those given in Refs. [Kawahara 07b] and [Filev 16].

Polyakov Loop |P |

Fig. 4.6 shows the plot of the Polyakov loop |P | against temperature T . The values of

the parameters for the fitted curve are given in Table 4.2. From this we conclude that the

critical temperature Tc = 0.9054(20).

Parameter Fit Value

A 0.273982(1569)
B 5.37305(8625)
Tc 0.905404(2010)
D 0.560378(1439)

Table 4.2: Values of the fitting parameters A, B, Tc and D.

Internal Energy E and Extent of Space R2

In Fig. 4.7 we show the plot of the normalized internal energy E
N2 against temperature T .

Our plot shows a smooth transition of E
N2 across different phases but there should be a kink

at Tc. This kink becomes visible for larger N , which is a clear indication of a second-order

phase transition. In Ref. [Filev 16], the authors simulated the same model for N = 16 and

there we can clearly see a kink in the E
N2 plot at Tc. In Fig. 4.8 we show the plot of the
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Figure 4.6: The Polyakov loop against temperature T . The dotted and the bold black curves
show the leading and the next-to-leading terms of the high temperature expansion (HTE)
given in Ref. [Kawahara 07a]. The blue curve is the fitted curve to the data. The phase
transition occurs at Tc ≈ 0.905.

extent of space R2 against temperature T . We can see that all our plots are in excellent

agreement with the high temperature expansion (HTE) predictions.
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Figure 4.7: The plot of E
N2 against temperature T . The dotted and bold black curves show

the leading and the next-to-leading order terms of the high temperature expansion (HTE).
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Figure 4.8: The plot of extent of space R2 against temperature T . The dotted and bold
black curves show the leading and the next-to-leading order terms of the high temperature
expansion (HTE).

51



52



Chapter 5

IKKT Matrix Model

In this chapter we discuss the numerical simulations of the bosonic IKKT Model. We also

discuss the simulations of the model after the inclusion of fermions. We also discuss the

simulations of the full IKKT Model.

5.1 Bosonic IKKT Matrix Model

This model is obtained by dimensionally reducing the Euclidean Yang-Mills action with

gauge group SU(N) from 9 + 1 dimensions to 0 + 0 dimensions. The Euclidean action of

the model is given by

SE = − 1

4g2
Tr
(
[Xi, Xj ]2

)
, (5.1)

where Xi are N ×N traceless Hermitian matrices, i, j varies from 1, 2, · · · , 10 and g is the

Yang-Mills coupling in 0 + 0 dimensions. We can replace g with λ the ’t Hooft coupling,

which follows the relation λ = Ng2. The action then takes the form

SE = −N
4λ

Tr
(
[Xi, Xj ]2

)
. (5.2)

Now by rescaling the fields we can absorb λ into the field variables. If we rescale the

fields by Xi → λ1/4Xi, then λ will be absorbed in the field variables and the action simplifies

to

SE = −N
4

Tr
(
[Xi, Xj ]2

)
. (5.3)

In the above action all the field variables are dimensionless. The action is gauge invariant

under the following gauge transformation

Xi −→ V XiV †, (5.4)
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where V ∈ SU(N). The partition function of this model is given by

Z =

∫
DX exp{−SE}. (5.5)

Apart from this gauge symmetry, the action Eq. (5.3) also has SO(10) symmetry. That

is, if we change Xi by the transformation

Xi −→ OikX
k, (5.6)

where O ∈ SO(10), the action remains invariant. Changing the fields with this transforma-

tion, the action becomes

SE = −N
4

Tr
(

[OikX
k, OjlX

l][OimX
m, OjnX

n]
)

= −N
4
OikOimOjlOjn Tr

(
[Xk, X l][Xm, Xn]

)
= −N

4
δkmδln Tr

(
[Xk, X l][Xm, Xn]

)
using OikOim = δkm

= −N
4

Tr
(

[Xk, X l]2
)
. (5.7)

Thus the action remains invariant under this transformation telling us that SO(10) is a

symmetry of this system. Putting this theory on the lattice is a trivial task as this model

is 0-dimensional, and thus everything is happening on a single lattice site. The action Eq.

(5.3) itself represents the action of the continuum theory as well as of the lattice theory.

5.1.1 HMC for Bosonic IKKT Matrix Model

We will now introduce conjugate momenta for each of the field variable. The momenta

conjugate to Xi is P i, where P i is an N ×N traceless Hermitian matrix. The Hamiltonian

for the molecular dynamics part of the HMC is given by

H =
1

2

10∑
i=1

Tr
(
P i

2
)
− N

4

10∑
i,j=1

Tr
(
[Xi, Xj ]2

)
. (5.8)

Hamilton’s equations are given by

Ẋi
rs =

∂H

∂P isr
= P irs, Ṗ irs = − ∂H

∂Xi
sr

, (5.9)

where the dot represents time derivative with respect to the fictitious time τ .
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The forces can be calculated using the Hamiltonian, Eq. (5.8), and are given by

− ∂H

∂Xi
sr

= N
10∑
j=1
j 6=i

[Xj , [Xi, Xj ]]rs. (5.10)

5.1.2 Observables

The observables we are interested in the IKKT model are the extent of spacetime R2 and

eigenvalues of the moment of inertia tensor Iµν . The definitions of the observables are given

below

• Extent of spacetime R2

〈
R2
〉

=

〈
1

N
Tr
(
Xi2

)〉
. (5.11)

• Eigenvalues of moment of inertia tensor Iµν

Iµν =
1

N
Tr(XµXν). (5.12)

Eigenvalues of the moment of inertia tensor are λi, i = 1, 2, · · · , 10.

5.1.3 Simulation Details and Results

We simulated this model for different values of N . Simulating this model is quite easy

compared to the BFSS model. Again to save time, we run the simulation for each N on

a single core of the computer. This way, we were able to run the simulations for all the

values of N simultaneously using multiple cores at the same time. Here we can see that the

simulation depends on N itself, so it will take different time for each N .

We performed the simulations for 10 different values of N each running for 110K Monte

Carlo sweeps. The results are provided below. Basically, our aim is to study how the system

behaves at large N .

Eigenvalues of Iµν

Figure 5.1 shows the plot of the eigenvalues of Iµν against 1
N . We can see in the plot that

the eigenvalues are converging towards a single point. This shows that we do not encounter

SO(10) spontaneous symmetry breaking (SSB) in the limit N →∞. This same conclusion

was also drawn in the Ref. [Hotta 99]. However, they used different criteria to arrive at this

conclusion.
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Figure 5.1: Plot of the eigenvalues of Iµν against 1
N . We can see that the eigenvalues are

converging towards a single point for large N .

Extent of spacetime R2

In Fig. 5.2 we show the plot of the extent of spacetime R2 against 1
N .

We can also arrive at the same conclusion using the extent of spacetime. But here we

calculate R2
i = 1

N Tr
(
Xi2

)
and this time we do not have a sum over repeated indices. If we

plot these Ri’s, then we will see that all of them converges to the same value in the limit

N → ∞. This will also indicate that there is no SSB of SO(10) in the limit N → ∞. If

there is SSB of SO(10), then some d values of Ri will have smaller values as compared to

the remaining ones in the limit N → ∞. This way we will conclude that the SO(10) will

spontaneously break to SO(d)× SO(10− d).

5.2 Full IKKT Matrix Model

We will now add fermions in our theory and study the full IKKT matrix model. This model

is obtained by dimensionally reducing the N = 1 super Yang-Mills model in 9+1 dimensions

to 0 + 0 dimensions or dimensionally reducing the BFSS model to 0 + 0 dimensions. The

Euclidean action is given by

SE = −N
4λ

Tr
(
[Xi, Xj ]2

)
− N

2λ
ψα(C9γ

i)αβ[Xi, ψβ], (5.13)
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Figure 5.2: Extent of spacetime R2 against 1
N .

where i, j = 1, 2, · · · , 10; α, β = 1, 2, · · · , 16; Xi are N ×N traceless Hermitian matrices; λ

is the ’t Hooft coupling; ψ is a sixteen component Majorana fermion with each component

of the fermion being an N × N traceless Hermitian matrix; C9 is the Euclidean charge

conjugation matrix in the nine dimensions; and γi are the Euclidean gamma matrices in

nine dimensions. Fermionic part of the action is obtained by taking a particular choice

for the Majorana-Weyl fermion. The details are given in Ref. [Filev 16]. The choice of

gamma matrices are such that the charge conjugation matrix becomes identity matrix in

this representation. The details of the choice of gamma matrices are given in the Ref.

[Ambjrn 00]. In this representation of gamma matrices the action simplifies to

SE = −N
4λ

Tr
(
[Xi, Xj ]2

)
− N

2λ
Tr
(
ψαγ

i
αβ[Xi, ψβ]

)
. (5.14)

The action is invariant under the following gauge transformation

Xi −→V XiV †,

ψα −→V ψαV †, (5.15)

where V ∈ SU(N). Apart from the gauge symmetry, the action also remains invariant under

SO(10) symmetry as Xi transforms as a vector and ψ transforms as a Majorana-Weyl spinor
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under this transformation. The partition function of this model is given by

Z =

∫
DX Dψ exp{−SE}. (5.16)

We can integrate out the fermions from this partition function. For that, we first need

to form the fermion matrix. We can simplify the fermionic part of the action to get the

fermion matrix. First, we will decompose the fields with the help of the SU(N) generators.

Xi =Xi
aTa,

ψα =ψaαTa. (5.17)

Substituting this in the fermionic part of the action, we get

Sf =− N

2λ
Tr
(
ψaαTaγ

j
αβ[Xj

bTb, ψ
c
βTc]

)
=− N

2λ
ψaαγ

j
αβX

j
bψ

c
β Tr(Ta[Tb, Tc])

=− N

2λ
ψaαγ

j
αβX

j
bψ

c
β(ifbcd) Tr(TaTd) using [Tb, Tc] = ifbcdTd

=
iN

2λ
ψaαγ

j
αβX

j
bψ

c
βfbca using Tr(TaTb) = −δab

= ψaα

(
− iN

2λ
γjαβX

j
cfabc

)
ψbβ using totally antisymmetric property of fabc

= ψaα Mαa,βb ψ
b
β, (5.18)

where

Mαa,βb = − iN
2λ
γjαβX

j
cfabc =

N

2λ
γjαβ Tr

(
Xj [Ta, Tb]

)
, (5.19)

with a, b, c = 1, 2, · · · , N2 − 1 and α, β = 1, 2, · · · , 16. The fermion matrix Mαa,βb is a

16(N2 − 1)× 16(N2 − 1) size matrix. Now using the result that∫
dψ exp

{
−ψTAψ

}
= Pf(A) = det(A)1/2 where A is an antisymmetric matrix

(5.20)

we can integrate out the fermions from the partition function Eq. (5.16). Integrating out

the fermions from the partition function we get

Z =

∫
DX exp{−Sb} Pf(M), (5.21)

where Sb is the bosonic part of the action. Pf(M) for this model comes to be a complex

number. Since Pf(M) is a complex number so we cannot treat exp{−SE} as the probability
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distribution. This is known as the sign problem. There are methods to deal with this prob-

lem by using other techniques like Lefschetz thimbles and complex Langevin with stochastic

quantization.

One another technique is to consider only the absolute part of the Pfaffian in the partition

function and monitor the phase of the Pfaffian during the simulations. If the phase of the

Pfaffian does not vary much, then the Monte Carlo simulations can be trusted, but if it

varies too much than we cannot trust the Monte Carlo simulations. We are going to use

this technique for our simulation. So our partition function becomes

Z =

∫
DX exp{−Sb} |Pf(M)| . (5.22)

For calculation of Pf(M) = det(M)1/2 our best algorithm provides the time complexity

of O(N6). So calculating this determinant is quite a computationally heavy task. So we

do not calculate this determinant directly, rather we use a rational approximation to ap-

proximate this determinant within certain error for our simulation purpose. The details are

provided in the next section.

5.2.1 RHMC and Fermionic Forces

We can write the absolute value of the Pfaffian as

|Pf(M)| = det
(
M†M

)1/4
, (5.23)

and using the result∫
dψ dψ† exp

{
−ψ†Aψ

}
∝ 1

det(A)
where A = A† (5.24)

we can write

det
(
M†M

)1/4
∝
∫
dξ dξ† exp

{
−ξ† (M†M)−1/4 ξ

}
. (5.25)

So the partition function becomes

Z ∝
∫
DX dξ dξ† exp{−Sb[X]− Spsf}, (5.26)

where

Sps f = ξ† (M†M)−1/4 ξ, (5.27)
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with ξ being a 16(N2 − 1)-dimensional complex vector known as the pseudo-fermion fields.

Sps f is known as the pseudo-fermion action. First we note that if we define

η = (M†M)−1/8ξ (5.28)

then the pseudo-fermion action becomes Sps f = η† η. Then we can simply take η randomly

from the Gaussian distribution and using Eq. (5.28) we get the value of ξ. But the main

question is how to calculate (M†M)−1/8. For this we use the rational approximation to

approximate this and after that we can calculate ξ. The idea is to approximate the rational

exponent of the M†M with the partial sum

(M†M)d = α0 +

p∑
i=1

αi(M†M+ βi 1)−1, (5.29)

where d is the rational exponent, which we require for our calculation purpose and p depends

on the accuracy of the approximation. If we want more accurate results then we will use a

large value for p. Remez algorithm is used to obtain α0, αi and βi. The detailed theory of

rational approximation is given in Ref. [Ydri 17] and the program of the Remez algorithm

is on Github as an open source code - see Ref. [Clark 05]. To calculate ξ we require d = 1/8.

Then, we use the rational approximation to calculate ξ from η. We call this algorithm the

RHMC algorithm since the rational approximation is used to approximate (M†M)d, and

HMC is used to generate the states distributed according to the probability distribution.

The momentum conjugate to Xi is P i, where P i is an N × N traceless Hermitian

matrix. We do not introduce momentum variable for pseudo-fermion fields as they are

already distributed according to the required probability distribution. So the Hamiltonian

of the system is given by

H =
1

2
Tr
(
P i

2
)
− N

4λ
Tr
(
[Xi, Xj ]2

)
+ ξ† (M†M)−1/4 ξ. (5.30)

Thus we require two rational approximations, one for d = 1/8 and other for d = −1/4.

So

(M†M)1/8 = α0 +

p∑
i=1

αi(M†M+ βi 1)−1 (5.31)

(M†M)−1/4 = a0 +

q∑
i=1

ai(M†M+ bi 1)−1. (5.32)
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Substituting the value of (M†M)−1/4 back in Eq. (5.30) we get

H =
1

2
Tr
(
P i

2
)
− N

4λ
Tr
(
[Xi, Xj ]2

)
+ ξ†

(
a0ξ +

q∑
i=1

ai(M†M+ bi 1)−1ξ

)
. (5.33)

Hamilton’s equations are given by

Ẋi
rs =

∂H

∂P isr
= P irs, Ṗ irs = − ∂H

∂Xi
sr

(5.34)

where the dot represents time derivative with respect to the fictitious time τ .

The forces can be calculated using the Hamiltonian, Eq. (5.33), and are given by

− ∂H

∂Xi
sr

= N
10∑
j=1
j 6=i

[Xj , [Xi, Xj ]]rs −
∂Sps f

∂Xi
sr

, (5.35)

where

−
∂Sps f

∂Xi
sr

=

q∑
i=1

ai ξ
†(M†M+ bi 1)−1 ∂(M†M)

∂Xi
sr

(M†M+ bi 1)−1ξ. (5.36)

We can calculate
∂(M†M)

∂Xi
sr

using the expression ofM. This expression turns out to be

∂(M†M)aα,bβ
∂Xi

sr

=

(
N

2λ

)2
[{

(γiµα)[Tc, Ta]sr

}∗
(γjµβ) Tr

(
Xj [Tc, Tb]

)
+
{

(γjµα) Tr
(
Xj [Tc, Ta]

)}∗
(γiµβ)[Tc, Tb]rs

]
. (5.37)

Previously we mentioned that we can obtain ξ from η. Calculations leading to this

statement are provided below.

ξ =(M†M)1/8η,

ξ =

(
α0 +

p∑
i=1

αi(M†M+ βi 1)−1

)
η. (5.38)

Now (M†M+ βi 1)−1η = fi can be evaluated using the Multimass Conjugate Gradient

(CG) method. The details of this is given in Ref. [Ydri 17]. As we have obtained ξ so we

can now evaluate the Hamiltonian and forces using ξ.

Below we briefly summarize the whole algorithm.

Step 1: Take η randomly from a Gaussian distribution N (0, 1). Since η is a complex

valued 16(N2 − 1) dimensional vector both the real and imaginary parts of each
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Figure 5.3: Plot of the eigenvalues of Iµν against 1/N for the phase quenched IKKT model.
From the figure it is clear that all the eigenvalues converge to a single point. This figure is
taken from the Ref. [Anagnostopoulos 15].

component will be taken from this Gaussian distribution.

Step 2: Evaluate ξ using Eq. (5.38), and use Multimass CG for evaluating (M†M +

βi 1)−1η = fi.

Step 3: Apply HMC to this system. Whenever we need to evaluate equations like (M†M+

bi 1)−1ξ = hi use Multimass CG. We can see that we require this for both the

Hamiltonian and force evaluations.

Step 4: Accept/reject the state according to the Metropolis test. Repeat Steps 1 to 4 until

we have enough data for evaluating the observables. We also need to monitor the

phase of the Pfaffian along this.

5.2.2 Observables

The observables we are interested in are the same observables we computed in the bosonic

IKKT model. (See Sec. 5.1.2 for details.)
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5.2.3 Results

Due to lack of time during the final phase of the project, we were not able to produce

the results for the full IKKT model. We are expecting the results provided in the Ref.

[Anagnostopoulos 15]. Fig. 5.3 shows the result given in the Ref. [Anagnostopoulos 15]. In

the limit N → ∞ eigenvalues converge to a single point, which clearly shows that there is

no SO(10) SSB in the phase quenched IKKT model.

Recent work on this model using complex Langevin algorithm showed that there is SSB

of SO(10) to SO(3)×SO(7). (See Ref. [Anagnostopoulos 20].) In their paper, they further

concluded that SO(7) symmetry is also broken.
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Chapter 6

Conclusion and Future Work

The goal of this thesis is to study the bosonic BFSS model and the IKKT model using

Monte Carlo simulations.

In the BFSS model we used Polyakov loop as an order parameter to investigate the large-

N behaviour of this model at different temperatures. We clearly observed the confinement-

deconfinement phase transition in the quenched form of this model. From the energy vs

temperature plot given in Ref. [Filev 16] it is clear that the phase transition is of second

order. All our results are in excellent agreement with the results produced by other authors.

In the bosonic IKKT model we studied the spontaneous symmetry breaking (SSB) of

SO(10) symmetry using the eigenvalues of the moment of inertia tensor and found that the

system does not undergo SSB in the bosonic model. This directly suggests that dynamical

compactification of extra dimensions is not possible in the bosonic IKKT model. We also

tried to study the phase-quenched IKKT model but did not get enough time simulate it.

In the future, we can study the phase-quenched IKKT model using RHMC algorithm and

full IKKT model using complex Langevin with stochastic quantization. These studies have

been carried out in Refs. [Ambjrn 00, Anagnostopoulos 20].
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Appendix A

Dimensional Reduction

This appendix provides an introduction on how to obtain the action of certain theories

by dimensionally reducing from higher dimensions to lower dimensions using Kaluza-Klein

compactification. We will also talk about Wick rotation, using which one can go from the

Lorentzian field theory to the Euclidean one and vice-versa.

We will discuss how to dimensionally reduce the N = 1 super Yang-Mills theory in 9 + 1

dimensions to 0 + 1 dimensions and to 0 + 0 dimension. In between we will also discuss the

process of Wick rotation. The metric is given by ηµν = diag(1,−1,−1, · · · ,−1). The action

of the N = 1 super Yang-Mills theory in 9 + 1 dimensions with gauge group SU(N) is

S =

∫
d10x

{
− 1

2g2
10

Tr
(
FµνF

µν + 2iΨ̄αγ
µ
αβDµΨβ

)}
, (A.1)

where the integral for the temporal direction is from 0 to t0. We have

DµΨβ =∂µΨ− i[Aµ,Ψβ], (A.2)

Fµν =∂[µAν] − i[Aµ, Aν ], (A.3)

where µ, ν = 0, 1, 2, · · · , 9; α, β = 1, 2, · · · , 32; g10 is the coupling constant in 9 + 1 dimen-

sions; Ψ is the Majorana-Weyl fermion in 9 + 1 dimensions with 32 components and each

component is an N × N traceless Hermitian matrix. Ψ is in the adjoint representation of

SU(N), which is clear from the form of the covariant derivative Dµ. The above action, Eq.

A.1, is invariant under the following gauge transformations

Aµ(x)→V (x) (Aµ(x) + i∂µ)V †(x), (A.4)

Ψα(x)→V (x) Ψα(x)V †(x). (A.5)
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The path integral for this system is given by

Z =

∫
DAµ DΨ exp{iS}. (A.6)

Now we will apply the Kaluza-Klein compactification to dimensionally reduce this the-

ory to lower dimensions. The idea of the Kaluza-Klein compactification is not to treat the

dimension as of infinite length but rather compactify the dimension on the circle by intro-

ducing periodicity in this length dimension. For example, suppose there is only one spatial

dimension and the objects repeat in this dimension after every 2πR distance. So it is clear

that if we are close enough we will not be able to distinguish it from a line of infinite length

but if we move far enough than we can clearly see that it is a circle of finite circumference.

So if we want to compactify one dimension then we need to identify points after every 2πR

distance and then take the limit R → 0. In the limit R → 0 with finite energy system, all

the fields become independent of the coordinate of that dimension - see Ref. [Zwiebach 04].

The derivative in that direction no longer makes sense and all the derivative terms from the

action disappears and component of the vector along that direction becomes a scalar.

Let us summarize how things change after compactification. Let us say we want to

compactify along direction x9. Then

φ(x0, x1, · · · , x9)→ φ(x0, x1, · · · , x8), (A.7)

∂9φ(x)→ 0, (A.8)

A9(x0, x1, · · · , x9)→ X9(x0, x1, · · · , x8) (Scalar field). (A.9)

Now let us compactify the direction x9 on S1 of radius R for the action Eq. A.1. So

A9(x) will be changed to X9(x) (Scalar field) and ∂9· will vanish. So F9ν and D9Ψβ will

become

F9ν =∂νX9 + i[X9, Aν ] where ν = 0, 1, · · · , 8,

F9ν =DνX9, F 9ν = −DνX9, (A.10)

D9Ψβ =i[X9,Ψβ]. (A.11)
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Substituting these back into the action we get

S =

∫
dx9

∫
d9x

{
− 1

2g2
10

Tr
(
FµνF

µν + 2F9νF
9ν + 2iΨ̄αγ

µ
αβDµΨβ

− 2Ψ̄αγ
9
αβ[X9,Ψβ]

)}
=

∫
dx9

∫
d9x

{
− 1

2g2
10

Tr
(
FµνF

µν − 2DµX9D
µX9 + 2iΨ̄αγ

µ
αβDµΨβ

− 2Ψ̄αγ
9
αβ[X9,Ψβ])

}
=2πR

∫
d9x

{
− 1

2g2
10

Tr
(
FµνF

µν − 2DµX9D
µX9 + 2iΨ̄αγ

µ
αβDµΨβ

− 2Ψ̄αγ
9
αβ[X9,Ψβ]

)}
. (A.12)

This gives

S9 =

∫
d9x

{
− 1

2g2
9

Tr
(
FµνF

µν − 2DµX9D
µX9 + 2iΨ̄αγ

µ
αβDµΨβ

− 2Ψ̄αγ
9
αβ[X9,Ψβ]

)}
, (A.13)

where
1

2g2
9

=
πR

g2
10

, (A.14)

and µ, ν = 0, 1, · · · , 8. Equation (A.13) is the action of the theory after compactifying

x9 direction. Further, we notice that the coupling constant also changes. Now we will

compactify the x8 direction on S1 of radius R. The following changes take place in the

action

F8ν =DνX8, F 8ν = −DνX8 where ν = 0, 1, · · · , 7, (A.15)

D8X9D
8X9 =[X8, X9]2, (A.16)

D8Ψβ =i[X8,Ψβ], (A.17)

1

2g2
8

=
πR

g2
9

. (A.18)

The action becomes

S8 =

∫
d8x

{
− 1

2g2
8

Tr

(
FµνF

µν − 2

9∑
i=8

DµXiD
µXi − 2

9∑
i,j=8
j>i

[Xi, Xj ]
2

+ 2iΨ̄αγ
µ
αβDµΨβ − 2

9∑
i=8

Ψ̄αγ
i
αβ[Xi,Ψβ]

)}
, (A.19)
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where µ, ν = 0, 1, · · · , 7. Now we can clearly see the pattern here. If we compactify one

more spatial direction, say x7, then we have

9∑
i=8

DµXiD
µXi →

9∑
i=7

DµXiD
µXi, (A.20)

9∑
i,j=8
j>i

[Xi, Xj ]
2 →

9∑
i,j=7
j>i

[Xi, Xj ]
2, (A.21)

9∑
i=8

Ψ̄αγ
i
αβ[Xi,Ψβ]→

9∑
i=7

Ψ̄αγ
i
αβ[Xi,Ψβ]. (A.22)

Applying this till we reach 0 + 1 dimensions, the theory gets dimensionally reduced to a

theory in 0 + 1 dimensions. The action of this theory is given by

S1 =− 1

2g2
1

t0∫
0

dt Tr

(
− 2(DtXi)

2 − [Xi, Xj ]
2 + 2iΨ̄αγ

0
αβDtΨβ − 2Ψ̄αγ

i
αβ[Xi,Ψβ]

)

=
1

g2

t0∫
0

dt Tr

(
1

2
(DtXi)

2 +
1

4
[Xi, Xj ]

2 − i

2
Ψ̄αγ

0
αβDtΨβ +

1

2
Ψ̄αγ

i
αβ[Xi,Ψβ]

)
, (A.23)

where 2
g21

= 1
g2

, i, j = 1, 2, · · · , 9 and repeated indices are summed over. Since Ψ is a

Majorana fermion so we can use Ψ̄ = ΨTC10. Then the action becomes

S =
1

2g2

t0∫
0

dt Tr

(
(DtXi)

2 +
1

2
[Xi, Xj ]

2 − iΨT
αC10γ

0
αβDtΨβ + ΨT

αC10γ
i
αβ[Xi,Ψβ]

)
. (A.24)

Equation (A.24) represents the action of the BFSS matrix model (see Ref. [Filev 16]).

Now we use Wick rotation to go from the Lorentzian action to the Euclidean action.

Under Wick rotation the following changes take place

t→ τ = it, (A.25)

dt→ dτ = idt, (A.26)

∂t → ∂τ = −i∂t, (A.27)

A(t)→A(τ) = −iA(t). (A.28)

Path integral changes to the partition function with β = it0 and the action changes to

the Euclidean action. We take the representation of gamma matrices and C10 apart from γ0

given in Ref. [Filev 16]. We take the following choice for the Majorana-Weyl fermion and
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γ0

Ψ =ψ ⊗

(
1

0

)
, (A.29)

γ0 =Γ10 ⊗ σ2. (A.30)

Taking these things in account, the action and the path integral becomes

Z =

∫
DAτ DX DΨ exp{−SE}. (A.31)

SE =
1

2g2

β∫
0

dτ Tr

(
(DτXi)

2 − 1

2
[Xi, Xj ]

2 − iψTαC9Γ10
αβDτψβ − ψTαC9Γiαβ[Xi, ψβ]

)
, (A.32)

where Dτ = ∂τ − i[A(τ), ·]; α, β = 1, 2, · · · , 16; i, j = 1, 2, · · · , 9; C9 is the 9-dimensional

Euclidean charge conjugation matrix; Γi are the Euclidean gamma matrices in 9 dimensions.

Bosonic fields follow periodic boundary conditions, i.e., A(τ + β) = A(τ) and Xi(τ + β) =

Xi(τ), and fermionic fields follow anti-periodic boundary conditions, i.e., ψ(τ +β) = −ψ(τ).

Eq. (A.32) represents the Euclidean action of the BFSS matrix model. This equation is

used in Chapter 4.

If we dimensionally reduce the above model to 0 + 0 dimensions, we will get the IKKT

matrix model. The Euclidean action of IKKT matrix model is given by

SE = − 1

4g2
0

Tr
(
[Xi, Xj ]

2
)
− 1

2g2
0

Tr
(
ψTαC9Γiαβ[Xi, ψβ]

)
, (A.33)

where g0 is the 0-dimensional Yang-Mills coupling,i , j = 1, 2, · · · , 10. This equation is used

in Chapter 5.
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