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Abstract

We recapitulate the basic group theory needed for GUTs. It include the weights, roots,

Dynkin diagrams, generalized Gell-Mann matrices for SU(N) and spinorial representations

of SO(10).

In the second chapter, we present a quick overview of SU(5) and SO(10) GUTs. For

both the GUTs, spontaneous symmetry breaking is discussed at length. In the case of

SU(5), exact B,L violating vertices and hence four-Fermi lagrangian is calculated. Then

we calculate the decompositions of SO(10) representations under two maximal subgroups

SU(5)× U(1) and GPS .

In third chapter, we present a quick overview of superspace formulation and supersym-

metry. It includes the details about how to construct a supersymmetric lagrangian and an

instructive example, MSSM (Minimal Supersymmetric Standard Model).

We present a few properties of adjoint type representations r× r; especially with totally

symmetric representations as the base (r) in Chapter 4. We note that the irreducible

representations appearing in this particular case have some neat properties. S2 for all such

representations is calculated in closed form. Using these bigger adjoint type multiplets,

symmetry breaking of toy models SU(2), SU(3) are presented. Since SU(5) → GSM also

preserves the rank, we can use any adjoint type multiplets for this. We present two non-

trivial ways to break this symmetry.

According to a recent work [Aulakh 20], gaugino condensates drive the creation of vevs

of chiral supermulitplet in AS gauge theories. This replaces the usual potential driven

symmetry breaking by dynamical symmetry breaking. We use this to calculate symmetry

breaking vevs for two cases: SU(2) → U(1) and SU(5) → GSM . Numerical calculations

were done to calculate vevs for these two cases. Later on we extend the given framework to

include the traceless fields also. The loop equations for such a field are derived from the GKA

equations. Numerical calculations were done to calculate vevs for three symmetry breaking

patterns: SU(2)→ U(1), SU(3)→ SU(2)× U(1) and SU(5)→ GSM using traceless 3× 3,

6× 6 and 10× 10 respectively.
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Introduction

The concept of symmetry is central in theoretical physics. All the properties of the funda-

mental particles are determined by the way they transform under various symmetries. The

spin of a particle is determined by the way it transforms under spacetime rotation, i.e., under

the Lorentz group. Our understanding of the interactions of fundamental particles is based

on gauge theories. The particles’ interactions are determined by the way they transform

under the concerned Lie group of the gauge theory. A good understanding of Lie groups

and their representations is crucial while studying SM and any Grand unified model. Thus

we start with a review of Lie groups and their representations in Chapter 1. We discuss

the usual tensor representations, weights, roots, and the spinor representations of SO(N).

Thus the representations of the Lorentz group are also covered.

The Standard Model is a gauge theory with gauge group SU(3) × SU(2) × U(1). But

it could not be the ultimate theory of everything. There are many things that it does not

explain, like neutrino masses, dark matter, etc. More over, inspite of many elegant features

like cancellation of gauge anomalies, it leaves a room for improvement from an aethetics

viewpoint, which are crucial for a theory of everything. So many models were built during

the 1970s and ’80s, which unify the SM into a gauge theory with a bigger gauge group with a

single coupling constant. They come under the broad term: Grand Unified Theories, GUTs.

Studying GUTs is mostly about studying group theories of bigger groups. After developing

the required group theoretical background in Chapter 1, we present an introductory review

of the SU(5) and SO(10) GUTs in Chapter 2.

In chapter 3, we present an introductory review of supersymmetry and superspace formu-

lation. Supersymmetry is a spacetime symmetry that can change the spin of a particle. In

the supersymmetric paradigm, a fermion and a boson are part of the same supermultiplet.

Supersymmetry provides a way out of the notorious hierarchy problem. Supersymmetric

gauge theories also play a key role in more exotic theories like string theory and supergravity.

Without supersymmetry, GUTs make no sense. We shall see that without supersymmetry,

the three couplings of SM do not unify. Also, without Supersymmetry, GUTs worsen the

hierarchy problem. GUTs bring with them another energy scale, generally of the order of

10∼16 GeV. So now the parameters in SM need to be fine-tuned up to an accuracy of one

part in 10∼16.
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2 CONTENTS

All the GUT gauge groups need to be broken down to the SM gauge group. Usually,

the symmetry breaking is achieved by introducing a potential for the Higgs fields. The

vacuum state or the ground state is the lowest energy state. So we minimize the potential,

and the minimal value of the field gives the vacuum expectation value (vev). This is a

purely classical analysis. It does not take into account any quantum loop corrections or

anything else. Even then, this concept is widely used for electroweak symmetry breaking in

SM and mostly even supersymmetric GUT breaking. Exaggerating it a little bit, this is like

having a nice Mercedes with wooden wheels. So it has been a longstanding dream to have

a mechanism to replace the potential driven symmetry breaking.

The minimal by parameter counting Susy GUT, generally referred as MSGUT (Minimal

Supersymmetric GUT ) [Aulakh 83], [Clark 82], turns out to be Asymptotically Strong (AS),

i.e., the gauge coupling has a Landau pole in UV. This is usually considered as a defect in

the GUT. However, recent work [Aulakh 20] provides a new interpretation of the same. It

suggests that the AS is not a defect, but rather a way for the model to create its own UV

cutoff. In the strongly coupled region, we expect the presence of chiral condensates. In this

new framework, the gauge-invariant gaugino condensates cause a chiral supermultiplet to

develop vev. This vev lead to the symmetry breaking of the GUT. This framework replaces

the usual potential driven mechanism. This is the reason that these gaugino condensates are

termed pleromal. They create the GUT scale, and they drive the symmetry breaking. Since

we can not do any perturbative calculations in the strong coupling region, we resort to the

constraints put by Generalized Konishi Anomalies (GKA). Using these, we can calculate

various quantities, including full loop corrections. Thus we can calculate the condensate

driven vevs.

Since we are interested in the AS case, bigger representations are used. So in chapter

4, we present some novel and interesting aspects of adjoint type representations, i.e., r × r
representations with arbitrary base r. We calculate S2 values for a few cases and see how to

separate out the irreps in it. We also try to use these bigger representations for a few cases

of symmetry breakings of SU(5).

In the last chapter, we summarise the details of pleromal condensate method intro-

duced in [Aulakh 20]. In the original work, a toy model symmetry breaking of SU(3) →
SU(2)×U(1) is investigated using the novel methods. Here we use the same model to study

two more similar symmetry breaking patterns: SU(2) → U(1) and SU(5) → GSM . We

calculate the vevs numerically. Then we extend the framework to include traceless adjoint

type representations, i.e., with the singlet removed. Again, we work out all the three cases

of symmetry breaking using the traceless representations. Our ultimate goal is to use ir-

reducible representations for the symmetry breaking, and we take one step forward in this

thesis.



Chapter 1

Representation of Lie Groups

1.1 Tensor Representations

”A Lie group is a continuously generated group, that contain elements arbitrarily close to

the identity, such that the general element can be reached by the repeated action of these

infinitesimal elements.” [Peskin 95]

A representation of a group is a map from the abstract space in which elements of the

group exists to vector space of finite-dimensional matrices.

Consider the transformation law: ϕa → Ua
b ϕb. Here ϕa is an object with one index.

When contracted with transformation matrix, U , we get the transformed ϕ. So it feels

natural to define objects with arbitrary number of indices. For example, consider a tensorial

object with two indices. It would transform by contracting it with product of two U matrices

as follows:

ψ′ab = Uabcdψcd = Ua
cUb

dψcd (1.1)

However, it turns out that this representation is reducible. The generators in this rep

commute with permutation of indices. This essentially means that a symmetric tensor must

transform into another symmetric tensor. Thus (anti)symmetric tensors form irreducible

representations. The generators in these representations would have the following form:1

Aabcd =
1

2
T[a

[cδb]
d] (1.2)

Sabcd =
1

2
T{a
{cδb}

d} (1.3)

This analysis can be extended to arbitrary number of indices.

ψ′a1a2...an = Ua1
b1Ua2

b2 . . . Uan
bn ψb1b2...bn (1.4)

1Ta always refer to the generators in fundamental.

3



4 CHAPTER 1. REPRESENTATION OF LIE GROUPS

Figure 1.1: A typ-

ical Young Tableaux:

{[ab}c]

These indices need to be symmetrized or antisymmetrized. A

representation can be denoted by Young Tableaux. It consists of

some blocks; each block represents an index. All the indices in a

column are antisymmetrized, and those in a row are symmetrized.

For example, rather than saying that representation is {[ab}c],
Figure 1.1 can be used.

For SU(N), a column can not have more than N blocks. A

column with N blocks is simply a singlet, because this represents

a totally antisymmetric tensor.

Upper and lower indices If ϕa transform as N, then an object

transforming as N̄ can be stated as ϕa

δϕa = −(T ∗)ab ϕ
b = −(T T )ab ϕ

b = −ϕb Tba (1.5)

With this, objects with both lower and upper indices can be created. Note that a lower

index can only be summed with an upper index (and vice-versa). Raising and lowering of

indices can be done with total antisymmetric invariant tensor.

ϕa = εa i1i2...iN−1ϕi1i2...iN−1 (1.6)

So an upper index is equivalent to (N-1) antisymmetrized lower indices.

C2(r) and S2(r)

Consider the quantity, TATA. It can be verified that it commute with all generators. For

irreducible representation, such thing must be proportional to identity (otherwise the com-

ponents with different eigenvalue won’t mix, i.e. the representation would be reducible.)

TATA = C2(r)I (1.7)

The constant is characteristic of the representation concerned.

Another such a quantity can be defined as follows:

tr(TATB) = S2(r)δAB (1.8)

For N of SU(N), S2(N) =
1

2
by convention.

It can be verified that,

d(r)C2(r) = d(G)S2(r) (1.9)

Here d(r) is dimension of representation and d(G) is the dimension of group.
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1.2 Cartan Subalgebra and Weights

The set of diagonal generators in a Lie group is called Cartan subalgebra. The number of

diagonal generators in a group is called the rank of the group. rank of SU(N) is N−1.

In general, we can choose any linearly independent set of matrices that satisfies the

required conditions. A very useful example would be that of U(N). Here we need N2

matrices for generators. Most convenient and naturally occuring such a set is:

(Tik)ab = δiaδkb (i, k, . . . , a, b, . . . ∈ [1, N ]) (1.10)

Even though they are not Hermitian, they are used as the generators of U(N) upon a

cost that the parameters are no longer real. Unitarity of the matrices is ensured by the

constraints on parameters of transformation rather than on generators.

From Eq 1.10, the commutation relations for U(N) turns out to be:

[Tij , Tkl] = Tilδjk − Tkjδil (1.11)

The point here is that we have the freedom to choose any convenient form of generators,

and for SU(N), such a commonly used basis is generalised Gell-Mann form.

Canonical form of generators for SU(N): Generalised Gell-Mann matrices Out

of total N2 − 1 generators of SU(N), N − 1 are diagonal. The off-diagonal generators come

in pairs with each pair being just σ1 or σ2 in a certain sector, i.e., a certain row and column.

There are NC2 such sectors possible. Thus 2×(NC2) off-diagonal generators just as expected.

These are just generalization of Pauli matrices.

The exact form of Cartan Subalgebra for Gell-Mann matrices is as follows: (Cartan

generators are denoted by Hm here)

H1 ≡T3 =
1

2
diag[1 −1 0 0 . . . 0]

H2 ≡T8 =
1

2
√

3
diag[1 1 −2 0 . . . 0]

...

H(N−1) ≡TN2−1 =
1√

2N(N − 1)
diag[1 1 1 1 . . . (1−N)]

The factors in front are chosen so as to have the correct normalisation for fundamental,

S2(N) =
1

2

[Hm]jj =
1√

2m(m+ 1)

[
m∑
k=1

δkj −m δj,m+1

]
(1.12)
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Weight The set of all the eigenvalues of diagonal generators corresponding to a basis

vector of the representation is the weight of that vector.

Thus each weight would be a tuple, a vector in Rrank(G). Total number of basis vectors is

the dimension of representation concerned. Thus there are total d(r) weight vectors in RN−1

for SU(N). Since we already have the general form of Cartan subalgebra for fundamental in

Eqn 1.12, we also have the weight vectors in fundamental: [νj ]m = [Hm]jj

Dynkin Indices Since different representations of SU(3) make different kinds of hexagons,

each representation can be denoted by Dynkin indices, which are the sizes of two adjacent

sides of the hexagon (A triangle is a special case of the hexagon with alternate sides of

dimension zero.) Note that the alternate sides would be equal to each other, thus specifying

only two adjacent sides for any vertex specifies the whole shape.

Figure 1.2: 3 ≡ (1, 0) Figure 1.3: 3̄ ≡ (0, 1) Figure 1.4: 8 ≡ (1, 1)

The concept of Dynkin indices can be extended for bigger groups as well. For example,

for SU(4), such indices would be the dimensions of 3 adjacent sides of football (the general

shape representation in SU(4) make; polyhedron with 20 equilateral triangles faces, look

below Eq 1.22 for details). A tetrahedron would be a special case of such a shape with two

sides zero. For SU(N), N − 1 such indices would be needed to depict any representation.

The interesting point is that indices for N would always be (1, 0, . . . , 0), and that for

adjoint would always be (1, 0, . . . , 0, 1). This is one of the things that makes the adjoint

special.

Weight Vectors of general irreps For any general tensor representation,

Ti1i2...inj1j2...jn ψj1j2...jn = µ(i1i2 . . . in)ψi1i2...in (1.13)

As any representation can be created by tensor products of fundamental representations,

weight vector of any representation can be related to weights in fundamental as follows,

µ(i1i2 . . . in) =

n∑
k=1

µN (ik) (1.14)

Note that even for antisymmetrized indices, weights add up. Another interesting prop-
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erty about weights would be that in any irrep, the sum of all weights is zero.∑
i1i2...in

µ(i1i2 . . . in) = 0 (1.15)

It follows from the tracelessness of the generator matrices in all the representations.

Since one upper index is equivalent to N-1 antisymmetrized indices, the weights for

conjugate representation would be

µ(k̄) = µ(i1 . . . ik−1ik+1 . . . in) =
∑

i1i2...in

µ(i1i2 . . . in)− µ(k) = −µ(k) (1.16)

Relation between SN and fundamental of SU(N)

As mentioned earlier, [Hm]jj = [νj ]m, from Eq 1.12, we have

[νj ]m = [Hm]jj =
1√

2m(m+ 1)

[
m∑
k=1

δkj −m δj,m+1

]
(1.17)

Now with some trouble, it can be shown that

νi.νj =
1

2

(
δij −

1

N

)
(1.18)

Hence i 6= j |νi − νj | = 1 (1.19)

What this implies is that distance between any two weight vectors is unity. In R2, only

an equilateral triangle has this property. In R3, only a regular tetrahedron has this property.

The commonality between these figures is that these shapes respect permutation symmetry

between any pair of points i.e., SN .

For all SU(N), weight diagram for N would be the figure corresponding to

SN group.

Since we have the general structure of weights of fundamental of SU(N) as Eq 1.17, this

implies that we have coordinates for all SN shapes.

A tetrahedron is 4 equilateral triangles joined in one extra dimension. The shape cor-

responding to S5 would be 5 regular tetrahedrons joined in one extra dimension. This also

follows from:

SN =

N⊗
i=1

SN−1 (1.20)

1.3 Roots and Dynkin Diagram

Weight vectors corresponding to the adjoint representation are called roots. Here is an

important property of root vectors: If α is a root vector, then nα is a root vector if and
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only if (n = 0,±1). [Georgi 82]

This implies that for every root vector α, −α is also a root. This is because of the fact

that the adjoint representation is real. Taking conjugate (of representation) change every α

into a −α and adjoint remains unchanged.

Adjoint representation is ψa
b with a constraint that ψa

a = 0. Now it follows from Eq

1.14 i.e. weights add up:

α(ψa
b) = νa − νb (1.21)

Here νi are the weights of fundamental. As proved earlier in totally different context, (Eq

1.19) that all the roots for all SU(N) would have either unit length or zero. Also it is clear

that for SU(N), N − 1 roots would be zero (corresponding to Cartan subalgebra).

Shape of Root vectors in RN−1 Non-zero root vectors of SU(3) would be:

± (1, 0) ±

(
1

2
,

√
3

2

)
±

(
1

2
,−
√

3

2

)
(1.22)

The weight space diagram of root vectors for SU(3) form a hexagon, as shown in Fig

1.2.

For SU(4), the root vectors would form a ’football’ like polyhedron in R3 with all 20

faces begin equilateral triangles. Total 15 vertices would be arranged as follows: 3 forming a

triangle on a plane

(
z =

2√
6

)
, 6 forming a hexagon on a plane below the former one (z = 0),

3 more forming a triangle on a plane below the hexagon

(
z = − 2√

6

)
and remaining 3 at

the origin. Here are all the non-zero root vectors of SU(4):

±

(
1

2
,

√
3

2
, 0

)
±
(

1

2
,

1

2
√

3
,

2√
6

)
± (1, 0, 0)

±

(
1

2
,−
√

3

2
, 0

)
±
(

1

2
,
−1

2
√

3
,
−2√

6

)
±
(

0,
1√
3
,
−2√

6

)

For bigger SU(N), roots would form higher dimensional footballs. Again, just like the

shapes of SN , we have the coordinates for all of such shapes.

Positive Roots Out of all weight vectors, some can be called positive weights according

to some convention.

If the first non-zero component of the weight vector is positive, then it is termed a positive

weight.

Along the same lines, ordering can also be defined in weight vectors:

α > β ⇐⇒ α− β > 0 (1.23)
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Simple Roots Simple roots are those positive roots that can not be written as the sum of

other positive roots.

Picking out the simple roots is like defining the basis vectors. All the roots can be

written as the linear combination of simple roots.

Figure 1.5: Positive Roots

A Lie group with rank n would have weight vectors in Rn.

Thus we can expect n simple roots. This is clear for the simple

example of SU(3). As shown in the figure, there are three

positive roots: µ, ν, λ. Two of them are zero. Since λ = µ+ ν,

λ is not a simple root. Thus for SU(3), µ and ν are the simple

roots.

µ =

(
1

2
,

√
3

2

)
ν =

(
1

2
,−
√

3

2

)

Simple Roots for SU(N) in general Using the convention to define the ordering of

weight vectors of fundamental, we can find the positive roots as follows:

ν1 > ν2 > . . . > νN ⇒ Positive Roots: (νi − νj) i < j

(Note, however, that νi from Eqn 1.17 are not ordered like this, so we just need to relabel

them to fit this order.)

There are a total of N(N − 1)/2 positive roots. Out of them, we can identify the simple

roots:

νi − νi+1 i ∈ [1, N − 1] (1.24)

These can not be written as the sum of other positive roots.
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Dynkin Diagram

Figure 1.6: Dynkin Diagrams

Root vectors can determine all the properties of the

Lie group. Since the simple roots contain all the in-

formation about the roots, thus the set of simple roots

has all of the information about the group and its al-

gebra encoded in them.

Dynkin diagram is a short-hand notation for writ-

ing down the simple roots. Each simple root is de-

picted by a circle, and pairs of circles are connected

by the angle between the simple roots. Dynkin dia-

gram can be used to recreate the full algebra.

For SU(N), it follows from (1.18)

i < j (νi − νi+1).(νj − νj+1) =− 1

2
δi+1,j (1.25)

Since, |νi − νi+1| =1 (1.26)

⇒ For two neighboring simple roots, cos θ = 1200 (1.27)

Thus the Dynkin diagram for SU(N) would look like Figure 1.7 with N circles:

Figure 1.7: Dynkin Diagram for SU(N)

1.4 SO(N)

SO(N) is length preserving rotation in RN . SO(N) has total of NC2 generators i.e. all

possible ways in which a real plane can be chosen for rotation. Generators for SO(N) can

be obtained from simple rotation matrix:

(Lij)kl = −i(δikδjl − δilδjk) (1.28)

Note that two indices are used to indicate a generator, and the result is pure imaginary, so

that element of SO(N) would turn out to be real. The generators are mere σ2 in different

sectors.

The commutation relations are:

[Lij , Lkl] = i [δjlLik − δjkLil + δilLkj − δikLlj ] (1.29)
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None of the generators defined in Eq 1.28 are diagonal. Though the generators are

diagonalizable, we can choose any set to be Cartan subalgebra.

SO(2n)

Cartan Subalgebra For SO(2n), we can not simultaneously diagonlise more than n gen-

erators, this can be realized using this unitary transformation:

U = v2×2 ⊗ In where v2×2 =

[
1 1

i −i

]
(1.30)

However, the convenient form of Eqn 1.28 need not be discarded. We can keep that

same form and change the basis vectors from [1 0 . . .] to [1 ± I . . .].
Finally we have the Cartan Subalgebra for SO(2n):

[Hm]kl = −i(δ2m−1,kδ2m,l − δ2m−1,lδ2m,k) (1.31)

Weights and Roots Fundamental representation is 2n dimensional and rank is n. The

eigenvalues of Cartan subalgebra from Eqn 1.31 are ±1. The following eigenvalue equation

shows it explicitly.

| ± ek〉j = δj,2k−1 ± iδj,2k (1.32)

Hm| ± ek〉 = ±δkm| ± ek〉 (1.33)

Thus weights in fundamental are ± the unit vectors [ek]m = δkm (Total 2n vectors in

Rn)

Roots Just like SU(N) case, if µ(i) are the weights of fundamental, then since adjoint is

of the form φa
b, roots would be µ(a)−µ(b). So there would be n zero roots. Non zero roots

for SO(2n) would be of form, [±ei ± ej ] with i 6= j

Now its clear that:

[ek]m = δkm ⇒ ei > ek for i < k

Thus positive roots are : ei ± ek for i < k

And simple roots are: ej − ej+1 for j ∈ [1, n− 1]

and en−1 + en

Just to be expected, the number of simple roots is equal to rank i.e., n

Note here that the length of all root vectors is
√

2, unlike those of SU(N) (unit). Non-

zero roots of SO(2N) would sit on the vertices of squares on all possible planes centered at
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the origin. For example, for SO(6), there would be three roots at the origin, and four roots

per plane, total 15.

Dynkin Diagram With given simple roots, the angle between consecutive roots turn out

to be 1200. However, both eN−1−eN and eN−1 +eN share an angle 1200 with eN−2−eN−1.

Thus we have a more interesting Dynkin diagram than the boring SU(N) as shown in Fig 1.4.

Figure 1.8: Dynkin Diagram of SO(2N)

SO(2n+1)

Even in this case, there are still only n generators that can be simultaneously diagnolised,

hence rank n. Thus the weights in fundamental has one extra null weight than the usual

±em. Just as the earlier case, the roots would be all possible combination:

Roots : [±ei ± ej ] for i 6= j and ± ei
Positive Roots : [ei ± ej ] for i < j and ei

Thus Simple Roots: [ei − ei+1] for j ∈ [1, n− 1] and en

Again, there are a total of n simple roots (same as the rank).

Dynkin Diaram It is pretty straight forward from here. en share an angle of 1350 with

en−1 − en and rest of the consecutive ones share an angle of 1200 with each other. Thus we

have the diagram as shown in Fig 1.4

Figure 1.9: Dynkin Diagram of SO(2N+1)

Subgroups and Dynkin diagram If H is a subgroup of G, then Dynkin diagram of H

would be present as a part of G. For example, all SU(m) are part of SU(n) diagram for

n > m. Not just that, two Dynkin diagrams equal would mean that both the algebras are

identical. For example, diagrams for SO(3) and SU(2) are identical. Similarly, the algebra
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of SU(4) and SO(6) are identical, and their Dynkin diagrams are also identical. So they

hold great importance.

1.5 Clifford Algebra

Consider a set of 2n matrices of dimensions 2n called Γi, such that they follow a certain

anticommutation rule:

{Γi,Γj} = 2δij (1.34)

Now create another object Σij from these matrices:

Σij =
1

4i
[Γi,Γj ] (1.35)

Now for no reason lets find commutator of two such objects,

[Σij ,Σkl] = i [δjlΣik − δjkΣil + δilΣkj − δikΣlj ] (1.36)

This structure is called Clifford algebra.

Comparing Eq 1.36 result with that of Eq 1.29, we find that Σ form a representation of

SO(2n). The matrices Σ are 2n dimensional.

Relation with Clifford algebra of Lorentz group Note that the Clifford algebra for

Lorentz group is a special case of this formalism. The anticommutation relations for γ

matrices in Lorentz group is the modified metric for Lorentz group i.e. rather than δij , its

gµν i.e.

{γµ, γν} = 2gµν (1.37)

Just like this, the representation theory discussed so far can be extended for groups with

modified geometry, just like SO(1,3).

Irreducible? Analogous to the γ5, we can construct an object that anticommute with all

of predefined Γ:

ΓV = (−i)n
2n∏
i=1

Γi (1.38)

Again, analogous to the Lorentz group:

{ΓV ,Γi} = 0 ⇒ [Σij ,ΓV ] = 0 (1.39)

Since ΓV anticommute with other matrices, it can not be proportional to the identity ma-

trix. So there exists a matrix that commutes with all the generators and is not proportional

to the identity matrix implies that the representation concerned is reducible.
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The irreducible representations 2n−1 dimensional for SO(2n) can be can be seprated out

using the projection operators:

P± =
1± ΓV

2
(1.40)

This is again analogous to the Lorentz group; Dirac fermions are not the irreducible

representation, but the eigenvectors of γ5 i.e., left and right handed Weyl fermions are

irreducible.

Explicit forms Here is an explicit form for Γ.

Γ1 = σ1 ⊗ . . .⊗ σ1 ⊗ σ1 ⊗ σ1 n times for SO(2n)

Γ2 = σ1 ⊗ . . .⊗ σ1 ⊗ σ1 ⊗ σ2

Γ3 = σ1 ⊗ . . .⊗ σ1 ⊗ σ1 ⊗ σ3

Γ4 = σ1 ⊗ . . .⊗ σ1 ⊗ σ2 ⊗ I

Γ5 = σ1 ⊗ . . .⊗ σ1 ⊗ σ3 ⊗ I

Γ6 = σ1 ⊗ . . .⊗ σ2 ⊗ I⊗ I
...

Γ2n = σ2 ⊗ I⊗ . . .⊗ I⊗ I

⇒ ΓV = σ3 ⊗ I⊗ . . .⊗ I⊗ I

Here the upper (lower) half would have eigenvalues +1(-1). So the irreducible parts are

well separated in this. The upper half would not mix with the lower half.

Anyhow in general, Eigenvalue of ΓV is product of all the weights of that state:

ΓV = 2Σ12 2Σ34 . . . 2Σ2n−1,2n (1.41)

⇒ Eigenvalue(ΓV ) = ε1ε2 . . . εn (1.42)

SU(n) decomposition of SO(2n)

Subgroup SO(2n) has a subgroup U(n), this is clear from the fact that R2n ∼ Cn.

SO(2n) preserve
∑
ϕ2
i . U(n) that also preserves the same thing, but with a little less

freedom. (It can’t alter the phases of individual complex numbers).

To see how the SU(n) components are enscribed in the SO(2n) components, consider the

following objects:

bk =
1

2
(Γ2k−1 − iΓ2k) ; b†k =

1

2
(Γ2k−1 + iΓ2k) (1.43)
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Now these objects follow certain anticommutation rules:

{bj , bk} = 0 = {b†j , b
†
k} ; {bj , b†k} = δjk (1.44)

Looking at the anticommutation rules, these objects certainly are the creation and an-

nihilation operators of some n fermion fields. So the corresponding number operator should

be of some importance:

Nij = b†ibj (1.45)

⇒ {Nij , Nkl} = Nilδjk −Nkjδil (1.46)

This is exactly the algebra of U(N), i.e., Eq 1.11, So this is how the generators of U(n)

are placed somewhere in the SO(2n) structure.

Writing Γi into the number operators, the form of ΓV is:

ΓV = (−iΓ1Γ2)(−iΓ3Γ4) . . . (−iΓ2n−1Γ2n) (1.47)

ΓV = (2N1 − 1)(2N2 − 1) . . . (2Nn − 1) (1.48)

Ni ∈ [0, 1]⇒ (2Ni − 1) ∈ [−1,+1]. So it is pretty clear that for odd number of particle

states, ΓV = −1 and for even number particle states, ΓV = +1. Also it is simple exercise

in counting to see that all possible states possible with n fermions is 2n i.e. full reducible

spinor.

A very important example is that of SO(10). The full reducible spinor representation is

32 dimensional, which consists of 16 and 16. Now SU(5) ⊂ SO(10), and as both of these

are GUTs; it is very instructive to see which representations of SU(5) are embedded in 16

of SO(10) and how?

Lets say that 16 is the one with ΓV has eigenvalue +1. That would mean that only even

number of particles appear in 16:

|ψ〉16 ≡ |0〉+ ψij b
†
ib
†
j |0〉+ ψijkl b

†
ib
†
jb
†
kb
†
l |0〉 (1.49)

Thus we have:

16 = 1 + 5 + 10 (1.50)

16 = 1 + 5 + 10 (1.51)

Self Duality Using the totally antisymmetric tensor εi1...i2n , any object with a total m

vector indices can be converted into another object with 2n−m indices. Hence objects with

only n vector indices or lesser are linearly independent. An important thing happens when
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an object has n vector indices precisely. Such an object is dual to itself, so only half of its

components are independent. A useful example is that of an object with 5 vector indices

for SO(10). There are 10C5 components expected in it, but self-duality leaves only half of

them independent i.e., 126.

Product of Spinor Representations Consider the product of two left handed spinors.

What this essentially means is that we need to sum up the spinor degrees of freedom somehow

and create all possible and valid objects from them. The only way such an object can be

created if we place an odd number of Γi between the two spinors. Placing just one Γi means

the fundamental representation. This procedure is just like finding the bilinears for the

Lorentz group’s Clifford algebra.

For example, consider 16 ⊗ 16 for SO(10). The product would have an object with 5

vector indices (126) and an object with 3 vector indices (120), along with the fundamental.

16⊗ 16 = 10⊕ 120⊕ 126 (1.52)

Similarly, for the product of a right-handed spinor with that of left-handed, we need to

place an even number of Γi. Thus there is also a singlet in the product.

For example, consider 16⊗ 16 for SO(10). The product would have an object with two

vector indices (45) and an object with four vector indices (210), along with the singlet.

16⊗ 16 = 1⊕ 45⊕ 210 (1.53)



Chapter 2

Grand Unified Theories

The Standard Model of Particle Physics is the best available description of interactions of

the known elementary particles. It is a gauge theory with three gauge groups; U(1), SU(2),

and SU(3). It is a framework which works well and has provided order to a vast wealth

of phenomena, yet regarding some aspects require improvements. Another drawback would

be that the SM lacks in beauty and aesthetics, which are crucial for a theory of everything.

Thus new models were introduced, which unify the whole clutter of SM. This is the very

spirit of reductionism.

Before moving ahead, Table 2 summarises all observed particles of SM with their gauge

couplings.

Table 2.1: All SM particles and gauge couplings

qL uR dR lL eR H

SM couplings

(
3, 2,

1

6

) (
3, 1,

2

3

) (
3, 1,−1

3

) (
1, 2,−1

2

)
(1, 1,−1)

(
1, 2,

1

2

)
ul dL uR dR νL eL eR h1 h2

Y +1/6 +2/3 -1/3 -1/2 -1 1/2

T3L +1/2 -1/2 0 0 +1/2 -1/2 0 +1/2 -1/2

Q = T3L + Y +2/3 -1/3 +2/3 -1/3 0 -1 -1 +1 0

2.1 Gauge Couplings

All the gauge couplings can be rescaled. This is very clear for U(1):

Dµ = ∂µ + igY Y Bµ = ∂µ + i
(gY
x

)
(xY )Bµ

gi never appears alone. It is always accompanied by the generators of the group con-

17
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cerned (for U(1), Y is a generator). Thus there is still freedom to rescale gi with an appro-

priate change in the generator as well.

So it would mean that we can just rescale all the gauge couplings so that they match at

some energy scales? We can do that, but that would be pointless because the GUT group

put constraints on the gauge couplings. As it would be clear later on, for SU(5) and SO(10),

the gauge couplings must follow the following constraint: [Nath 16], [Mohapatra 86]√
3

5
gY ≡ g1 = g2 = g3 (2.1)

The gauge couplings are scale dependent. In the usual MS renormalization scheme, the

coupling constants depend on the energy scale (in the leading one loop approximation) as

follows: [Srednicki 07], [Peskin 95]

µ
dαa
dµ

= ba
α2
a

2π
where

[
αa =

g2
a

4π

]
(2.2)

⇒ 1

αa(µ)
=

1

αa(Mz)
+
ba
2π

ln

[
Mz

µ

]
(2.3)

Here ba depends on the gauge group and the representations in which matter particles

are in: [Peskin 95], [Srednicki 07]

ba = −11

3
S2(Ga) +

2

3
S2(r) d(F ) +

1

3
S2(r) d(S) (2.4)

Where Tr (TATB) = S2(r)δAB (2.5)

d(F ) and d(S) are the dimensionality of (Weyl) fermion and scalar representations.

Now we just need to calculate ba for SM and see if the relation Eq 2.1 is satisfied at

some energy scale.

Generator for U(1) is the hypercharge, thus S2(Y ) = Y 2. So we need to sum up all the

hypercharge squared. Reading the values of Y from Table 2 and using the equation Eq 2.4,

bY = 41/6. Each quark is counted three times because of the color index. Since we are

interested in g1 rather than gY , all the hypercharges get rescaled by a factor of

√
3

5
and

thus the b get rescaled by 3/5. Thus we have b1 = 41/10.

For SU(N), S2(N) = 1/2 and S2(G) = N , thus leading to b2 = −19/6 and b3 = −7.

From SM, we have:

α1 =
α

cos2 θW
α2 =

α

sin2 θW
(2.6)

Figure 2.1 is the plot we get after plugging in values well known from experiments though

they do not intersect at any common point.

Fortunately, supersymmetry come to rescue. For the supersymmetric gauge theories, the

beta function is different. There are more particles in the loops, thus the beta functions are
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Figure 2.1: Running coupling constants of SM

larger. Avoiding the details, ba turns out to be

(
33

5
, 1,−3

)
for Minimal Supersymmetric

Standard Model (MSSM).[Martin 98], [Nath 16]. We have assumed that SuSy is exact at

Mz. But even this crude and oversimplified calculation gives stunning results as shown in

Figure 2.2. All three couplings match within experimental accuracy, around µ ∼ 5 × 1016

GeV. This can not be an accident. Note that putting in more information about SuSy

breaking and higher loop corrections only refine this. Figure 2.2 is proof that some sort of

GUT exists at high energies or nature has played a prank on us.

Figure 2.2: Running coupling constants of MSSM
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2.2 SU(5) GUT

The standard model group SU(3) × SU(2) × U(1) of rank 4, must be a subgroup of the

grand unifying group. Thus only Lie groups with rank ≥ 4 can be considered. Simplest

such a group is SU(5), therefore the simplest GUT [Georgi 74a].

2.2.1 Spontaneous Symmetry breaking

SU(5) spontaneously break into SU(3)× SU(2)× U(1). Rank is preserved in this.

A Higgs field in fundamental representation can not cause a rank preserving

symmetry breaking. This can be seen as the term responsible for masses of gauge bosons

would be:

∆L = −g
2

2
|AaµT a〈φ〉|2 (2.7)

For the unbroken generators, T a〈φ〉 = 0. Thus if all generators of Cartan subalgebra

have to stay unbroken, then 〈φ〉 = 0, and there is no symmetry breaking.

Consider a 24-plet Higgs field, that tranform under adjoint representation of SU(5). It

is natural to write adjoint in matrix of order N : [Φ = φaT a]. (T a are the generators in the

fundamental (5)). Adjoint, having one upper and one lower index transforms as:

Φ′ = UΦU † U = exp (−iθaT a) (2.8)

It can be shown that the mass term in terms of Φ is

∆L = −g2tr
[
[T a,Φ][T b,Φ]

]
AaµA

bµ (2.9)

Now it is clear that the generators that commute with 〈Φ〉 are unbroken. So it should

commute with upper left 3×3 block and lower right 2×2 block. So it must be proportional

to 3 × 3 identity matrix in the upper part and 2 × 2 in the lower two. The following form

of traceless diagonal 〈Φ〉 ensures all these properties.

〈Φ〉 = |Φ0| diag [−2 −2 −2 3 3] (2.10)

Thus a single mode of φ get a vev and breaks SU(5)→ GSM . [Mohapatra 86], [Nath 16]

The process of symmetry breaking is also evident from the branchings of adjoint, 24 of

SU(5) under GSM :

24 = (1, 1, 0) + (1, 3, 0) + (8, 1, 0) +

(
3, 2,−5

6

)
+

(
3, 2,

5

6

)
(2.11)

24 has a singlet of GSM , and when this singlet generates a vev, we have the desired

symmetry breaking.
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Eq 2.11 explicitly shows how gauge bosons of GSM are embedded in the SU(5). Thus out

of 24 gauge bosons of SU(5), (1, 1, 0) corresponds to U(1)Y , (1, 3, 0) corresponds to SU(2)

and (8, 1, 0) would be the ones related to color charge. The remaining 12 gauge bosons have

the quantum numbers of both leptons and quarks and are called lepto-quarks. These new

gauge bosons must be super-heavy.

The SM Higgs, corresponding to electroweak symmetry, can be put into a fundamental

representation of SU(5) with three new components. We demand that the new triplet gets

very high mass, so that it does not interfere with SM. So now there is a 24-plet Φ and a 5-plet

H. To achieve the symmetry breaking, we need a potential, which after minimisation gives

vev to both the fields. Here is the most general form of potential including both scalars:

[Mohapatra 86], [Nath 16]

V = M2trΦ2 +
λ1

2
tr Φ4 +

λ2

2
(tr Φ2)2 + µtrΦ3 +

λ3

2
H†HtrΦ2 +

λ4

2
H†Φ2H +

λ

4
(H†H)2

(2.12)

The mass of Higgs is well known to be of order 100 GeV. So vev for H should be of

the same order. However, we want the new lepto-quark gauge bosons to have masses of

order 1016 GeV. From the most general form of V, this would only be possible if, 10λ3 = λ4

[Nath 16]. These two arbitrary factors must follow this relation with an accuracy of one part

in 1016. This is not impossible but very improbable. This is called the hierarchy problem or

fine tuning problem. If two unrelated numbers can take just any value from the tiniest to the

largest, what forced them to be equal? Why is it that the highly improbable is happening?

There is another aspect to the problem as well. Including any GUT, there are now two

scales in this framework. Since H is bound to have gauge interaction, H can get an arbitrary

large correction to its mass because of the presence of the super-heavy gauge bosons and

super-heavy Higgs in the loops. So how is the Higgs able to manage such a low mass?

2.2.2 Generating the generators

We need to construct the generator for hypercharge from the canonical form of generators.

It should look like Eq 2.10. So by using trTaTb = δab/2, we have:

Y =
1

2
√

15
diag [−2, −2, −2, 3, 3] (2.13)

Forming Y out of canonical generators can be seen as rotating orthogonal vectors in some

hyperplane. The diagonal generators in the canonical form that can mix up and form Y are
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T15 and T24 (Eq 1.12)

T15 =
1

2
√

6
diag[1 1 1 −3 0]

T24 =
1

2
√

10
diag[1 1 1 1 −4]

Constructing Y from these two generators is like rotation in a plane. So we need to look

for the generator orthogonal to Y . It turns out to be T3L. −
√

5

8
−
√

3

8

−
√

3

8
+

√
5

8

 ·
[
T15

T24

]
=

[
Y

T3L

]
(2.14)

So we have the full gauge fields contracted with generators:[Mohapatra 86]

Ãµ ≡ T aAaµ =


(
TSU(3).Gµ +

√
3

5

(
−1

3

)
Bµ

)
αβ

1√
2
X̃−αiµ

1√
2
X̃+
jβµ

(
TSU(2).Wµ +

1

2

√
3

5
Bµ

)
ji

 (2.15)

i, j, k are the SU(2) indices. α, β, γ are the SU(3) indices for objects transforming as 3.

For objects transforming as 3, upper indices are used.

Relation among Couplings The eigenvalues of Y i.e. the diagonal elements would be

the value of Y for particles in fundamental. Thus it is convenient to express Y as:

Y =

√
3

5
diag

[
−1

3
− 1

3
− 1

3

1

2

1

2

]
(2.16)

Now just as explained earlier, we rescale the coupling constant g to absorb the factor of√
3

5
and call it gY . Here g5 is the coupling constant of SU(5). It is evident from Eq 2.15

that √
5

3
gY = g5 = g2 = g3 (2.17)

Weinberg Angle Weinberg angle θW is defined as follows:

tan θW =
gU(1)

gSU(2)
(2.18)
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From Eq 2.17, it turns out to be:

tan θW =

√
3

5
and sin2 θW =

3

8
(2.19)

2.2.3 Assigning particle content

Now we can write the decomposition of 5, the fundamental of SU(5) under GSM :

5 =

(
3, 1,−1

3

)
+

(
1, 2,

1

2

)
(2.20)

Comparing this with the SM particles from Table 2:

5a = [dαR liL
c] = [dα lci ]R (2.21)

Note that charge conjugation was used to match the correct values of Y .

10 ≡ 5× 5AS =

(
3, 1,−2

3

)
+ (1, 2,+1) +

(
3, 2,+

1

6

)
(2.22)

Comparing Eq 2.22 with the particles from Table 2, it is evident that,

10ab = [qαi ucαβ ecij ]L (2.23)

So all the particles of SM fit nicely in two irreducible representations of SU(5). However,

this combination 5 + 10 is not anomaly free. Though 5 + 10 is anomaly free. Note that

5 + 10 would have all the particles in the left-handed form.

Now since all the particles in 5+10 have the right quantum numbers, they give the same

SM couplings of all kinds. Since we have an antisymmetric representation, then there is

an overcounting during all summations. For example, both ψ12 and ψ21, contribute. Thus

being precise, we have:

10ab =
1√
2

[qαi ucαβ ecij ]L (2.24)

2.2.4 B,L Violating Sector

The standard Model conserves the baryon number and lepton number (flavor as well). But

these symmetries are merely accidental symmetries. However they suffer from quantum

anomalies and B−L is the only anomaly free symmetry. There is no good reason why they

should be conserved. As GUTs put baryons and leptons in a single representation, they give

rise to vertices that do not preserve baryon number or lepton number.
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There are 6 unusual, super-heavy lepto-quark gauge bosons in SU(5):

X̃+
αi =

[
X

+4/3
α

Y
+1/3
α

]
≡
(

3, 2,+
5

6

)
X̃−αi =

[
Y
−1/3
α X

−4/3
α

]
≡
(

3, 2,−5

6

)
(2.25)

Each vertex involving these violate baryon number and lepton number. Here are all such

vertices: [Mohapatra 86]

L∆B 6=0 =
g√
2
d
α
R

(
/X
−
α eL

c + /Y
−
α νL

c
)

+
g√
2

[
(ucL)δ ε

αβδ
(
/Y
−
αdLβ + /X

−
αuLβ

)
+
(
d
α
L /X
−
α − uαL /Y

−
α

)
ecL

]
+ h.c. (2.26)

(−ve sign in the last term is because of the presence of antisymmetric tensor: ψij = εij e
c
L).

L∆B 6=0 =
g√
2
X̃−αi

µ
[
d
α
R γµ(lL

c)i + εαβδ (ucL)δ γµ (qLβ)i + εij(qαL)jγµe
c
L

]
+ h.c. (2.27)

=
g√
2
X̃−αi

µJµ
αi + h.c. (2.28)

Eq 2.28 defines the Lepto-Quark current. Note that all the vertices conserve B − L

Eq 2.27 can be re-written neatly in supersymmetric notation i.e. Weyl fermion notation.

Here all the right handed particles are accompanied by a dagger †.. Details can be found in

[Martin 98]. In this notation, the B and L violating operators are:

L∆B 6=0 =
g√
2
X̃−αi

µ
[
−d†ασµl

i
+ εαβδu†δσµqβ

i + εijq†αjσµe
]

+ h.c. (2.29)

Effective theory, Four Fermi interactions Not even a single B or L violating process

has ever been observed. This should be the case since the lepto-quark gauge bosons are

supposed to be super-heavy. In such a case, effective four Fermi interactions would describe

the interactions very well at normal energy scales. To get an estimate, if mX ∼ 1016 GeV,

then from the uncertainty principle, it could borrow this huge energy from vacuum only for

a very tiny amount of time, in which it can travel at most up to ∼ 10−32m. This is not far

from the Planck’s scale. So at the electroweak energy scales, the new interactions are local.

To get the four Fermi Lagrangian, the momentum of gauge bosons is set to zero i.e.

propagator has only the inverse of mass term in it. Hence the gauge bosons completely

vanish from the lagrangian or get integrated out. What is left is a non-renormalizable

current-current interaction lagrangian. We can assume that both the bosons X,Y have

equal mass. Here Jµαi is the lepto-quark current defined in Eq 2.28.

Leff
∆B 6=0 = − g2

2M2
J†µ

αiJµαi (2.30)
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= − g2

2M2

[
−d†ασµl

i
+ εαβγu†γσµqβ

i + εijq†αjσµe
]
×[

dασ
µl
†
i − εαβγuγσµq†βi − εijqαjσµe†

]
(2.31)

There are total 9 terms possible. Only 4 terms out of these are B,L violating.

Leff
∆B 6=0 =

g2

2M2
εαβγ

[
−d†ασµl

i
+ εijq

†αjσµe
]
uγσµq†βi + h.c (2.32)

This expression can be simplified using the Fierz rearrangements: [Martin 98]

Leff
∆B 6=0 =

g2

M2
εαβγ

[
(d†αq†βi )(uγli) + εij(q

†αiq†βj)(uγe)
]

+ h.c. (2.33)

Proton Decay Proton is the lightest baryon, and hence in B, L conserving regime, it is

very stable. However, SU(5), with its baryon number violating operators, provides many

pathways for the proton to decay. Since in SU(5), B−L is conserved, a proton would decay

into an anti-lepton with an optional meson(s).

Exact calculations for proton decay are quite complicated because in IR, the strong force

condenses. Low energy physics can not be described using quarks and gluons. Though a

naive estimate can be made [Mohapatra 86] [Nath 16]:

Γ ∼
g4

5 m
5
p

8πM4
X

(2.34)

Plugging in some numbers to get an estimate: g5 ∼ 0.6,MX ∼ 1016GeV , the half-life

turns out to be of order 10∼30 yrs. This is far more than the age of the observed universe.

Getting a lower bound for the proton lifetime is the goal of a lot of experiments now.

Phenomenological Model: Chiral Lagrangian To handle the difficulty that we can

only observe colorless hadrons decaying and not the quarks like the model, a phenomeno-

logical approach is adopted. Chiral Lagrangian is one such phenomenological model that

treats (u d s) as a massless triplet. Hence qL and qR are uncoupled, and there is a bigger

symmetry group: SU(3)L×SU(3)R. Since it is known that this symmetry is badly broken,

mass terms for quarks would be introduced later on as explicit symmetry breaking terms.

For details, consult [Claudson 82]

There are 8 meson fields σa. An object Σ is created put of it such that:

Σ = exp (2iσaTa/f) Σ→ LΣR†
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M = σaTa =


√

1
2π

0 +
√

1
6η π+ K+

π− −
√

1
2π

0 +
√

1
6η K0

K− K
0 −

√
2
3η

 (2.35)

Note that these 8 meson fields transform as (adjoint) 8-plet in the chiral symmetry.

Similarly, 8 baryon fields (ba) are introduced. Now the lagrangian can be written in the

form of Σ and B, where B = baT a. Now to make it realistic, meson mass terms are

introduced as explicit symmetry breaking terms.

This phenomenological model can be used to explain strong interactions at low energy

scales. Yukawa type interaction terms can be written between baryons and mesons. For

example, the free baryons and meson Lagrangian would be of the following form:

L0 =
1

8
f2 Tr (∂µΣ)

(
∂µΣ†

)
+ TrB

(
i/∂ −MB

)
B (2.36)

The B, L violating lagrangian from Eq 2.33 can be re-written with baryons and mesons

in it rather than quarks by comparing how each one transforms under the chiral symmetry.

2.3 SO(10) GUT

In the last section, we saw how all the standard model particles fit nicely in two repre-

sentations of SU(5): 5 + 10. A reductionist would not see it as a true unification. There

should be only one representation that fits in all the particles. SO(10) do this job nicely

[Fritzsch 75][Nath 16][Mohapatra 86]. As it was mentioned in Section 1.6, decomposition of

the spinor representation of SO(10) under SU(5) is:

16 = 1 + 5 + 10 (2.37)

All the particles of SM with an additional singlet fits in nicely in 16 of SO(10).

2.3.1 Pati-Salam Unification

It is an experimentally verified fact that nature does not treat left and right-handed particles

equally. Left-right symmetric models postulate that the Lagrangian is parity symmetric, but

it is the vacuum that does not respect parity. What it essentially means is that the parity-

violating standard Model is the left-over of a spontaneously broken parity invariant gauge

theory. Such models were one of the first attempts at grand unification.

Parity symmetry would mean the introduction of a right-handed neutrino. Such a field

would be a standard model singlet. At the electroweak scale, it would not participate in

any process, thus avoiding all attempts of detection. Even if a standard model singlet is

produced in some process at some particle accelerator, it would only appear as missing
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energy. However, in recent times, neutrino oscillations have been observed, which implies

that neutrinos are not massless. So either we have to resort to Majorana type mass terms

for neutrinos, or we admit the existence of an SM singlet right-handed neutrino. With this,

the left-right models were revived. Now neutrino masses find a natural home in SO(10)

through the see-saw mechanism.

The Pati-Salam group is a well-known parity symmetric model [Pati 74]. Just like an

SU(2)L for all the left-handed particles, there is an SU(2)R for the right-handed particles.

This means that (νR, eR) ; (uR, dR) also form an SU(2) doublet, just like their left-handed

counterparts.

One of the many drawbacks of SM is the arbitrary nature of the relation: Q = T3L + Y .

There is no reasonable justification for the values of Y for all the particles. All the Y of

SM, and hence Q are just arbitrary.

The Pati-Salam Model replaces this randomness with a very neat explanation. This is an

excellent feature of the Pati-Salam Model. It unifies quarks and leptons in the fundamental

representation of SU(4). Leptons are the fourth color. The full gauge group is SU(4) ×
SU(2)L × SU(2)R. Note that the T15 of SU(4) would have eigenvalues proportional to

B − L. This is the only anomaly free non-gauged conserved quantity of SM. The gauge

coupling is scaled just so that the eigenvalues of T15 are (B − L)/2.

The hypercharge generator is formed from the T15 of SU(4) and the T3R of SU(2)R:

Y = T3R +
B − L

2
(2.38)

Q = T3L + T3R +
B − L

2
(2.39)

This relation can be checked explicitly by looking closely at Table 2.

In this framework, the lepton number and baryon number are not conserved. But B−L
is conserved, a result of a gauge symmetry. The quantum number B − L is gauged and

hence conserved now.

Decompostion under GSM : Consider (4, 2, 1). For all the particles in it, T3R = 0. After

SU(4) is broken, quarks and leptons separate out with Y = (B − l)/2:

(4, 2, 1) =

(
3, 2,+

1

6

)
+

(
1, 2,−1

2

)
(2.40)

Consider (4, 1, 2). After the symmetry break back toGSM , the particles with T3R = +1/2

separate with Y = (B−L+1)/2 from the particles with T3R = −1/2 and Y = (B−L−1)/2.
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Since the SU(2) is broken, there are total 4 components:

(4, 1, 2) =

(
3, 1,+

2

3

)
+

(
3, 1,−1

3

)
+ (1, 1, 0) + (1, 1,−1) (2.41)

(4, 1, 2) =

(
3, 1,−2

3

)
+

(
3, 1,+

1

3

)
+ (1, 1, 0) + (1, 1,+1) (2.42)

All the particles of standard model and the right handed neutrino find a natural place

in the following two representations:

(4, 2, 1) =

(
u1 u2 u3 ν

d1 d2 d3 e−

)
L

(2.43)

(4, 1, 2) =

(
dc1 dc2 dc3 ec

uc1 uc2 uc3 νc

)
L

(2.44)

Symmetry Breaking The rank of GPS is 5, while that of GSM is 4. Thus spontaneous

symmetry breaking also needs to reduce the rank. Here is the general rule for symmetry

breaking.

Consider a symmetry breaking, G → H. This can be realized when a singlet of H that

is not a singlet of G develops a vev.

(4, 1, 2) contains a singlet of SM. So when it develops a vev, the required symmetry

breaking happens, GPS → GSM .

2.3.2 Ammunition for model building

SU(5)×U(1) and SU(4)×SU(2)L×SU(2)R ≡ GPS are two interesting maximal subgroups

of SO(10). Since both SU(5) and GPS are grand unifying groups, SO(10) is a natural

extension of both the models.

Before getting into various symmetry breaking models, we need to gather some ammuni-

tion. We need to find decompositions of SO(10) representations under both of the maximal

subgroups.

Decompositions under SU(5)×U(1) : Vector 10 of SO(10) is composed of 5 + 5 under

SU(5). We need to find the U(1) charges for both. U(1) generator is constructed by addition

of all the diagonal generators. So it follows from Eq 1.31, that 5 has U(1) charge +2. Note

that once we diagonalise the Cartan subalgebra in Eq 1.30, 5 and 5 of U(5) appears explicitly.

U(1) for spinor representation is also formed by adding all the diagonal generators. The

singlet in 16, with all (2Ni − 1 = −1), gives U(1) charge -5. Similarly, For 10, we have -1,

and for 5, we have +3.

Once we have these decompositions of basic representations, we can find decompositions
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of all others from the following tensor prodcuts:

10× 10 = 1 + 45s + 54 (2.45)

16× 10 = 16 + 144 (2.46)

16× 16 = 10 + 120s + 126 (2.47)

16× 16 = 1 + 45 + 210 (2.48)

The last two are already mentioned earlier. Eq 2.46 is the new one. 144 is formed by

a product of a spinor and a vector. This is equivalent to a product of spin 1/2 and spin 1.

The product is a spinor, equivalent to spin 3/2 of the Lorentz group.

Table 2.3.2 contains the decompositions of some relevant representations.

Table 2.2: Decompositions of SO(10) reps under SU(5)× U(1)

10 = 5[+2] + 5[−2]

16 = 1[−5] + 5[+3] + 10[−1]

45 = 1[0] + 10[+4] + 10[−4] + 24[0]

54 = 15[+4] + 15[−4] + 24[0]

120 = 5[+2] + 5[−2] + 10[−6] + 10[+6] + 45[+2] + 45[−2]

126 = 1[−10] + 5[−2] + 10[−6] + 15[+6] + 45[+2] + 50[−2]

144 = 5[+7] + 5[+3] + 10[−1] + 15[−1] + 24[−5] + 40[−1] + 45[+3]

210 = 1[0] + 5[−8] + 5[+8] + 10[+4] + 10[−4] + 24[0] + 40[+4] + 40[−4] + 75[0]

Decompositions under GPS : SU(4) is isomorphic to SO(6). They have same Dynkin

diagrams and hence identical algebra. SU(2)× SU(2) is identical to SO(4). One can recall

this from the representations of the Lorentz group. Dynkin diagrams of both these groups

are identical: two disconnected blobs. So GPS = SO(6) × SO(4). Now decompositions of

SO(10) representations under GPS are straight forward.

Vector 10 of SO(10), decomposes trivially to vector 6 of SO(6) and vector 4 of SO(4).

Now the vector 6 of SO(6) is the antisymmetric representation 6 of SU(4). Vector 4 of SO(4)

translate to (2,2).

Spinor 16 of SO(10), decomposes to spinors of SO(6), 4 and 4. As for SO(4), the two

spinors translate to (1,2) and (2,1). So even here, all the particles of SM along with a singlet

fit nicely in 16.

Again, using the same tensor products and separating the (anti)symmetric parts, we can

find decompositions of SO(10) under SU(4)× SU(2)L × SU(2)R, given in Table 2.3.2.

For even bigger representations, their products and decompositions, look at [Slansky 81],
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Table 2.3: Decompositions of SO(10) reps under Pati-Salam group

10 = (6, 1, 1) + (1, 2, 2)

16 = (4, 2, 1) + (4, 1, 2)

45 = (1, 1, 3) + (1, 3, 1) + (6, 2, 2) + (15, 1, 1)

54 = (1, 1, 1) + (1, 3, 3) + (6, 2, 2) + (20, 1, 1)

120 = (1, 2, 2) + (6, 3, 1) + (6, 1, 3) + (10, 1, 1) + (10, 1, 1) + (15, 2, 2)

126 = (6, 1, 1) + (10, 3, 1) + (10, 1, 3) + (15, 2, 2)

144 = (4, 2, 1) + (4, 1, 2) + (4, 2, 3) + (4, 3, 2) + (20, 1, 2) + (20, 2, 1)

210 = (1, 1, 1) + (10, 2, 2) + (10, 2, 2) + (6, 2, 2) + (15, 1, 1) + (15, 1, 3) + (15, 3, 1)

[Aulakh 05].

2.3.3 Spontaneous Symmetry Breaking

There are two schools of thought. SO(10) can either break into SU(5) and then to GSM , or

it can break into GPS and then into GSM . Since in both these models, rank also has to be

reduced, the symmetry breaking becomes complicated with intermediate energy scales.

Via SU(5)

SO(10)→ SU(5)→ SU(3)× SU(2)× U(1)

To break SO(10) down to SU(5), a representation of SO(10) is needed that contains

a singlet of SU(5) with a U(1) charge. This follows from the general symmetry breaking

argument mentioned earlier.

An adjoint type multiplet (multiplets of form r×r) can not result in the rank reduction.

The singlet in r × r would be a singlet of the GUT group itself.

For Table 2.3.2, we can see that 16 and 126 contain singlets of SU(5) with U(1) charge.

Hence if they get a vev, the rank is reduced, and we have only SU(5) symmetry left.

To further break SU(5) to GSM , we need adjoint of SU(5), 24, just as discussed earlier.

Looking back at Table 2.3.2, 54 or 210 of SO(10) can be used. These are tensor represen-

tations. In general, tensor representations or adjoint type multiplets preserve rank, and the

spinor type or vector type representations break rank.

Thus

SO(10)→〈16〉 or 〈126〉→ SU(5)→〈54〉 or 〈210〉→ GSM (2.49)

For electroweak symmetry breaking, we need a Higgs in 5 of SU(5). So any representation

can be used for this purpose that contains 5, for example, 10.

Look at the decompositions of 144 in Table 2.3.2. It contains a 24[−5]. 24 contains an
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SM singlet as seen earlier; it also has the extra U(1) charge. This would mean that it can

break the rank as well. Thus instead of so many different representations, only 144 can

break SO(10) directly to GSM . It also has 5, that can be used for electroweak symmetry

breaking.

Via Pati-Salam Group

SO(10)→ SU(4)× SU(2)L × SU(2)R → SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)Q

Just like the earlier case, we can use any adjoint type multiplet for the first part that

preserves rank. For example, 54 and 210 contain singlet of GPS . Note that both are a result

of the tensor product. So if singlet in either one of them develops a vev, SO(10) breaks

down to GPS .

To obtain further GSM , one needs to reduce the rank. This has already been discussed.

Any representation that contain (4, 1, 2) can be used to break GPS down to GSM . 16 can

be used for this purpose. There are also other representations that can be used for this

symmetry breaking. The full supersymmetric theory using 126 + 126 representation for

GPS → GSM has the least number of real parameters in it, thus making it the minimal

supersymmetric GUT. [Aulakh 04]

For electroweak symmetry breaking, again, 10 can be used.

Thus the full symmetry breaking pattern is:

SO(10)→〈210〉→ GPS →〈126〉+〈126〉→ GSM →〈10〉 SU(3)c × U(1)Q (2.50)
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Chapter 3

Supersymmetry

3.1 Introduction

Consider a fermion f having Yukawa coupling with a scalar H : −λfHf †f and an another

scalar S with ϕ4 type interaction: −λS |H|2|S|2. The one loop corrections to the mass

squared of H will be:

∆m2
H = −

|λf |2

16π2
Λ2
UV +

λS
16π2

Λ2
UV + . . . (3.1)

Shifting the mass of Higgs would mean a shift in the vev of Higgs, and hence the

whole mass spectrum of SM would be affected. This is the infamous hierarchy problem

[Georgi 74b].

Looking closely at Eq 3.1, if the couplings are the same for scalar and fermion, then their

contribution cancels. Thus corresponding to each complex scalar, there is a Weyl fermion

with the same couplings. This is the central idea of supersymmetry.

Supersymmetry is the symmetry between fermions and bosons. Supersymmetry gener-

ators can change a boson into a fermion and vice-versa. It gives a possible way out of the

hierarchy problem since once established hierarchies are protected from destabilization by

supersymmetric non-renormalizable theorems. So it is natural to make the GUTs super-

symmetric. Since the spin of a particle is determined by the representation of the Lorentz

group in which the particle lies. Since supersymmetry changes the spin of a particle, it is

spacetime symmetry. No internal symmetry can change the spin.[Haag 75]

3.2 Superspace

The notation and other details can be found in [Martin 98].

Points in superspace are labeled by coordinates: xµ, θα, θ†α̇

A Weyl spinor is a doublet of anticommuting numbers (Grassmann variables). Anticom-

33
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muting numbers follow the following relations:

f(η) = f0 + ηf1 ⇒ df

dη
= f1 and

∫
dηf(η) = f1 (3.2)

Any general function of η would have only two terms in its power series. It follows from

η2 = 0. Thus the power series in θα would have three terms in it. A general superfield would

be a function of (xµ, θα, θ†α̇) and would have the following expansion:

S(x, θ, θ†) = a+ θξ + θ†χ† + θθb+ θ†θ†c+ θ†σµθvµ + θ†θ†θη + θθθ†ζ† + θθθ†θ†d (3.3)

This follows from:

θαθβ =
1

2
εαβθθ, θ†αθ

†
β =

1

2
εβ̇α̇θ

†θ†, θαθ
†
β̇

=
1

2
σµ
αβ̇

(
θ†σµθ

)
(3.4)

Note that there are equal number of fermionic and bosonic degrees of freedom in most

general superfield. Now integration over the fermionic coordinates can be defined as follows:

d2θ = −1

4
dθαdθβεαβ, d2θ† = −1

4
dθ†α̇dθ

†
β̇
εα̇β̇ (3.5)∫

d2θθθ = 1,

∫
d2θ†θ†θ† = 1 (3.6)

Now the different components of the superfield can be separated by integrating out the

θs.

3.2.1 Supersymmetry as translation in superspace

Supersymmetric generators can be written in the following form:

Q̂α = i
∂

∂θα
−
(
σµθ†

)
α
∂µ, Q̂α = −i ∂

∂θα
+
(
θ†σµ

)α
∂µ

Q̂†α̇ = i
∂

∂θ†α̇
− (σµθ)α̇ ∂µ, Q̂†α̇ = −i ∂

∂θ†α̇
+ (θσµ)α̇ ∂µ

(3.7)

From the general form of generators, they follow the anticommutation identites:{
Q̂α, Q̂

†
β̇

}
= 2iσµ

αβ̇
∂µ = −2σµ

αβ̇
P̂µ (3.8){

Q̂α, Q̂β

}
= 0,

{
Q̂†α̇, Q̂

†
β̇

}
= 0 (3.9)

The Anticommutator of the supersymmetry generators gives the generator of translation

in spacetime, P̂µ. This explicitly shows that supersymmetry is spacetime symmetry.
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The general suersymmetric transformation can be realized as:

√
2δεS = −i

(
εQ̂+ ε†Q̂†

)
S =

(
εα

∂

∂θα
+ ε†α̇

∂

∂θ†α̇
+ i
[
εσµθ† + ε†σµθ

]
∂µ

)
S

= S
(
xµ + iεσµθ† + iε†σµθ, θ + ε, θ† + ε†

)
− S

(
xµ, θ, θ†

) (3.10)

Thus the general supersymmetric transformation is just translation in superspace:

θα → θα + εα (3.11)

θ†α̇ → θ†α̇ + ε†α̇ (3.12)

xµ → xµ + iεσµθ† + iε†σµθ (3.13)

3.2.2 Chiral, Vector Superfields

Covariant Derivative ∂S/∂θα do not transform appropriately under the supersymmetric

transformations. So we need to define a derivative that is covariant under supersymmetry.

This is just like defining a covariant derivative for gravity, or the gauge theories. In each

case, there is some non-trivial manifold associated and the connection term cancels the

inhomogenous terms created by the simple derivative.

Dα =
∂

∂θα
− i
(
σµθ†

)
α
∂µ, Dα = − ∂

∂θα
+ i
(
θ†σµ

)α
∂µ (3.14)

D
α̇

=
∂

∂θ†α̇
− i (σµθ)α̇ ∂µ, Dα̇ = − ∂

∂θ†α̇
+ i (θσµ)α̇ ∂µ (3.15)

A superfield with the following constraint is called left-chiral.

D
α̇
Φ = 0 (3.16)

Similarly a right-chiral field can be defined as follows:

DαΦ = 0 (3.17)

The following redefinition is very convenient:

yµ ≡ xµ + iθ†σµθ (3.18)
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In terms of (yµ, θ, θ†), the covariant derivative take the following form:

Dα =
∂

∂θα
− 2i

(
σµθ†

)
α

∂

∂yµ
, Dα = − ∂

∂θα
+ 2i

(
θ†σ̄µ

)α ∂

∂yµ
(3.19)

D̄α̇ =
∂

∂θ†α̇
, D̄α̇ = − ∂

∂θ†α̇
(3.20)

Chiral Superfield Thus the left chiral field takes a neat form:

Φ = φ(y) +
√

2θψ(y) + θθF (y) (3.21)

Φ =φ(x) + iθ†σ̄µθ∂µφ(x) +
1

4
θθθ†θ†∂µ∂

µφ(x) +
√

2θψ(x)

− i√
2
θθθ†σ̄µ∂µψ(x) + θθF (x)

(3.22)

So a chiral superfield contains a chiral Weyl fermion, a complex scalar, and an auxiliary

field F . Note that the number of bosonic degrees of freedom is the same as that of fermionic.

Vector superfield Vector superfield is obtained by imposing the condition V = V ∗.

Hence a general vector superfield can be written as:

V
(
x, θ, θ†

)
=a+ θξ + θ†ξ† + θθb+ θ†θ†b∗ + θ†σ̄µθAµ + θ†θ†θ

(
λ− i

2
σµ∂µξ

†
)

+ θθθ†
(
λ† − i

2
σ̄µ∂µξ

)
+ θθθ†θ†

(
1

2
D +

1

4
∂µ∂

µa

) (3.23)

However, most of the fields in it can be supergauged away. Leaving only a vector field,

a Weyl fermion, and an auxiliary field D. Even here, a total of fermionic degrees of freedom

is the same as bosonic ones. In a specific gauge choice,

VWZ gauge = θ†σ̄µθAµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D (3.24)

Auxiliary fields Da and F are the auxiliary fields. They do not have any kinetic term

in lagrangian. This implies that they can not move in spacetime. Without any interactions,

imposing equations of motion would remove them completely. So they exist merely as

quantum fluctuations. However, if they have some couplings with the real fields, they

become important. Removing them by using their equations of motion impose new types of

interactions for the real particles.

3.2.3 Supersymmetric Lagrangian

Since a supersymmetric transformation is merely a translation in superspace, a supersym-

metrically invariant action can be generated by integrating over full superspace.
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D term Integrating over full superspace give a supersymmetrically invariant quantity.

Since imaginary action is ruled out, we need to add the complex conjugate with it to make

the L real.

δεA = 0, for A =

∫
d4x

∫
d2θ d2θ† V (x, θ, θ†) (3.25)

L =

∫
d2θ d2θ† V (x, θ, θ†) ≡ [V ]D (3.26)

F term Since a (left) chiral superfield do not have (θ†) dependence, integrating over θ is

enough to create an invariant quantity. Any superfield can be made a chiral one by setting

θ† in it to 0.

[Φ]F ≡ Φ|θθ =

∫
d2θΦ

∣∣∣∣
θ†=0

=

∫
d2θd2θ†δ(2)(θ†)Φ = F (3.27)

These two types of terms are related as follows:

[V ]D = −1

4
[DDV ]F (3.28)

Simplest SuSy theory: Wess-Zumino model Consider only a chiral superfield Φ with

nothing else. Now a vector multiplet can be generated from it as Φ∗Φ

[Φ∗Φ]D =

∫
d2θd2θ†Φ∗Φ = −∂µφ∗∂µφ+ iψ†σ̄µ∂µψ + F ∗F (3.29)

The terms are the usual kinetic lagrangian for scalar and fermions. Note that the aux-

iliary field F has no kinetic term and, without any interaction, gives an equation of motion

F = 0.

Interactions Interactions between chiral supermultiplets can be included using superpo-

tential, W [Φ]. In general, it can be any holomorphic function of chiral superfields (treated

as complex variables). For renormalizable interactions, terms beyond cubic are not allowed.

Here is most general renormalizable superpotential for a few chiral superfields:

W (Φi) = µiΦ
i +

1

2
MijΦ

iΦj +
1

6
yijkΦ

iΦjΦk (3.30)

Expanding it up in its component fields and integrating out the auxiliary fields F , one

has all possible renormalizable interactions among a collection of Weyl fermions and complex

scalars.

3.3 Supersymmetric Gauge theories

The chiral superfields Φ transform as follows under a local gauge symmetry:
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Φi →
(
e2igaΩaTa)

i
jΦj , Φ∗i → Φ∗j

(
e−2igaΩaTa)

j
i (3.31)

The parameters for gauge transformation, Ωa are chiral superfields and ga are the gauge

couplings. Note that such transformation properties are inspired by the way component

fields of Φ transform. The gauge bosons are a part of some vector superfield V . Under the

gauge transformation, V transforms as follows:

eV → eiΩ
†
eV e−iΩ (3.32)

Where the group indices are summed up with generators to make the expressions neat:

V j
i = 2gaT

aj
i V a, Ωj

i = 2gaT
aj
i Ωa (3.33)

For abelian gauge theory, U(1), this simplifies just to

V → V + i(Ω∗ − Ω) (3.34)

These are supergauge transformations. The usual gauge transformations are merely a

subset of these. So we can partially fix the supergauge, leaving the usual gauge transforma-

tions intact. This is what was done to get V in Eq 3.24. This is evident in Eq 3.34. Certain

components of Ω can be chosen to get Eq 3.24

Now to construct the lagrangian, [Φ∗Φ]D can not be used, since this quantity is not

gauge invariant. Here is the the supergauge invariant lagrangian:

L =
[
Φ∗i

(
eV
)
i
jΦj

]
D

(3.35)

Expanding it out and integrating out the auxiliary fields, we get the gauge interaction

lagrangian for all the fermions and scalars:[
Φ∗i

(
eV
)j
i

Φj

]
D

=F ∗iFi −∇µφ∗i∇µφi + iψ†iσ̄µ∇µψi −
√

2ga (φ∗T aψ)λa −
√

2gaλ
†
(
ψ†T aφ

)
+ ga (φ∗T aφ)Da

(3.36)

Here, ∇µ is the gauge covariant derivative to avoid confusion, since Dα is supersymmetric

covariant derivative.

Note that the supersymmetric partner of gauge bosons, Weyl fermion gaugino λa has

interactions with the fermions and bosons as well. This is equivalent to say that the gauge

interactions have been supersymmetrized.

A crucial part of the story is still misssing. Something equivalent to field strength Fµν

is missing and hence the kinetic term of V is missing. A superfield corresponding to field

strength can be defined as follows:
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Wα =
1

4
DD

(
e−VDαe

V
)

(3.37)

Note that this is a superfield with a spinor index. In the WZ gauge, it takes the following

form:

(Wa
α)WZ gauge = λaα + θαD

a +
i

2
(σµσ̄νθ)α F

a
µν + iθθ

(
σµ∇µλ†a

)
α

(3.38)

Note that Wα is a matrix and is obtained by contracting group indices with the gener-

ators: Wα = 2gaTaWa
α

Now the kinetic terms for (gauge) vector superfields can be written using Wa:

[WaαWa
α]F = DaDa + 2iλaσµ∇µλ†a −

1

2
F aµνF aµν +

i

4
εµνρσF aµνF

a
ρσ (3.39)

Gauginos transform as adjoint under the gauge group. The last term would vanish only

in the case of the abelian gauge theory. For non-abelian gauge theory, such a term is sensitive

to the gauge manifold’s non-trivial geometry and is non-trivial in the presence of instanton

backgrounds

Finally all the components can be assembled. Lagrangian for a supersymmetric gauge

theory with particles, both scalars and fermions in some representation r with generators

Ta, along with any general superpotential interactions among them would be:

L =
1

4
[WaαWa

α]F + c.c.+
[
Φ∗i

(
e2gaTaV a)j

i
Φj

]
D

+ ([W (Φi)]F + c.c.) (3.40)

This lagrangian can be extended in the case of different particles in various representa-

tions.

3.4 Minimal Supersymmetric Standard Model

The standard model is the gauge theory with gauge group SU(3)c × SU(2)L ×U(1)Y , with

a SU(2) doublet Higgs that is used for breaking electroweak symmetry from SU(2)L ×
U(1)Y → U(1)Q.

Superpartners To make this supersymmetric, we need to introduce a superpartner for

each of the particles from Table 2. The superpartner of quarks and leptons are called squarks

and sleptons. They have the same quantum numbers as quarks and leptons. The gauginos

corresponding to SU(3), SU(2), and U(1) are called gluinos, winos, and bino, respectively.

2 Higgs doublets Superpartner of Higgs is called Higgsino. However, corresponding to

a Higgs doublet, the Higgsinos would only be left-handed, which leads to non-zero chiral

anomalies. Thus for anomalies cancellation, in addition to

(
1, 2,

1

2

)
Higgs superfield, a new
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Higgs doublet superfield is introduced with quantum numbers:

(
1, 2,−1

2

)
. The latter one

with couplings

(
1, 2,−1

2

)
is called Hd to tell them apart.

Superpotential There is a need to specify the form of W . The superpotential has to be

a polynomial in chiral superfields, should be renormalizable and gauge invariant. The form

of W that satisfies all these conditions is (assuming R-parity):

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd (3.41)

yi are matrices in the family basis. So if they are not diagonal, they cause the mixing of

flavor states. Note that the complex conjugate of any superfield is not allowed in W . This

is another reason for having a second Higgs doublet. Without it, the mass terms can not be

written for all matter particles, since a term like uyuQHu can not be replaced by uyuQH
∗
d

Supersymmetry breaking

If the Susy was exact and unbroken at the electroweak scale, then sleptons and squarks

should have been observed by now. They would have exactly the same mass and couplings.

Since that is not the case, supersymmetry must be broken at some scale higher than elec-

troweak. There are a lot of postulated ways in which supersymmetry can break, but there

is no consensus on the matter yet.



Chapter 4

General r × r type representations

4.1 Introduction

Adjoint type (r × r) multiplets hold special significance in the gauge theories, as they

are used for rank preserving symmetry breaking. Usually, only true adjoint is used (r

being the fundamental here). This is because an adjoint type multiplet, r × r, with bigger

base representation r has S2(r × r) = 2S2(r)d(r), which rapidly increases beyond 3S2(Adj)

with d(r). This would make the one loop beta function: b0 = −3S2(Adj) + S2(r × r)

positive resulting in Asymptotic Strength (AS). Success of AF QCD paradigm has functioned

as a taboo against the AS field theories. So in all the rank preserving cases, the Higgs

representation with small enough S2(rH) to preserve AF are used. If we allow the theories

to be asymptotically strong, we have many more possibilities for the scalar for symmetry

breaking. Note that all of the following analysis is in the context of SU(N). A recent work

[Aulakh 20] presents a way in which asymptotically strong theories can find a dynamical

way of GUT symmetry breaking as a result of gaugino condensation in UV. Hence a better

understanding of r × r for bigger representations as the base would be helpful.

The true adjoint of SU(N) can be written as a matrix of order N as Φ = ϕaTa. Such a

matrix would transform as follows: [Georgi 82].

Φ′i
k = Ui

m Φm
n U †n

k (4.1)

Ui
m = δi

m + Ti
m +O(T 2) ⇒ δΦ = [T,Φ] +O(T 2) (4.2)

The generators of fundamental here can be replaced with generators of any representation,

transformations would still be the same. However, to achieve that, we would have to write

the generators as matrices of d(r). So there is a need to introduce new indices to replace the

fundamental indices. For example, object with two symmetric indices φij can be labelled

with only one new index: φI . To have the correct index contraction patterns, the new

indices must have multiplicity factors associated with them. This is clear from the following

41
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example of two index symmetric objects:

ψikϕik = ψ11ϕ11 + ψ12ϕ12 + ψ21ϕ21 + ψ22ϕ22 = ψ11ϕ11 + 2ψ12ϕ12 + ψ22ϕ22 (4.3)

ψIϕI = ψ1ϕ1 + ψ2ϕ2 + ψ3ϕ3 (4.4)

ϕ1 ≡ ϕ11 ϕ3 ≡ ϕ22 (4.5)

ψ2ϕ2 = 2ψ12ϕ12 ⇒ ψ2 ≡
√

2ψ12 and ϕ2 ≡
√

2ϕ12 (4.6)

⇒ ψI =
√
m(I) ψi1i2...

j1j2... where m(I) : Multiplicity of index I (4.7)

Using the new indices, any object with abritrary numbers of indices can be written as a

vector and thus all r × r objects can be written as matrices of order d(r). Such objects

would have an upper index (new one) and one lower, just like the adjoint. It is easy to

see that such objects also transform as Eq 4.2. The only difference would be that the

fundamental indices are replaced by the new indices that run from 1 to d(r). [Aulakh 20]

The full matrix r×r would have total d(r)2 components. The full matrix can be separated

into various irreducible parts. Each irreducible part would also be a matrix of order d(r),

but with fewer independent components and all the group transformations would preserve

its respective forms. For example, there would always be a singlet in all r×r. Singlet would

be the trace of the matrix times the identity matrix. Similarly, there would always be a

true adjoint in all the r × r products. It would always have the form ϕaTa, where T are

the generators in r. It can be realized that all the irreps in r × r transform just as the full

reducible part i.e., commutator with the generators Eq 4.2. This is obvious for the singlet

and the true adjoint.

4.2 Totally symmetric representations as base

Let us denote totally symmetric representations with m indices for SU(N) as Rm[N ]. It

follows from simple counting or Young Tableux that,

dim (Rm[N ]) =

(
N +m− 1

m

)
(4.8)

Note that R1[N ] is fundamental.

The full reducible representation Rm(= ϕi1i2...im)×Rm(= ψj1j2...jm) would have objects

with m upper indices and m lower indices. Irreducible parts can be formed by contracting

one pair at a time. Hence there will be irreps with m upper and lower indices denoted by

Am; m − 1 upper and lower indices denoted by Am−1 and so on. All the irreducible parts
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Figure 4.1: Young Tableux of Ai representation of SU(N)

would be objects with equal numbers of upper and lower fundemental indices.

Rm ×Rm =
m⊕
i=0

Ai (4.9)

Note that A0 is singlet and A1 corresponds to the true adjoint. All the Ai[N ] are real

representations.

For all SU(N), the weight diagram for N would be the figure corresponding to the SN

(permutation) group. Such a shape would be symmetrical upon the exchange of any two

vertices. For example, an equilateral triangle in R2, a regular tetrahedron in R3 etc. N has

Dynkin labels: (1, 0, . . .). Rm has the Dynkin labels (m, 0, . . . , 0)[Cheng 84][Slansky 81]. In

the weight space, totally symmetric representation has the same shape as the fundamen-

tal, though the size is bigger. For example, in SU(3), totally symmetric representations:

3, 6, 10, 15, . . . form equilateral triangles in weight space with sides 1, 2, 3, 4, . . . respectively.

Dynkin labels for Ai would be:

(m, 0, . . . , 0)︸ ︷︷ ︸
Rm

× (0, . . . , 0,m)︸ ︷︷ ︸
Rm

=
i=m∑
i=0

(i, 0, . . . , i)︸ ︷︷ ︸
Ai

(4.10)

Thus it is clear that the Ai would have the same shape as the true adjoint in weight space,

though bigger in size. Because of this similarity in Dynkin labels, Ai can be called the

adjoint type irreps.

Young Tableux corresponding toAi is shown in Figure 4.1. Using hook-length formula[Cheng 84]
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Figure 4.2: 6× 6 for SU(3)

and some ugly algebra, the dimensions of general Ai representation can be calculated:

dim(Ai) =

(
N + i− 2

i

)2
N + 2i− 1

N − 1
(4.11)

Here

(
j

k

)
corresponds to the combinations jCk.

Special case: SU(3) A pretty neat thing happens if we put N = 3 in Eq 4.11:

dim(Ai[3]) = (i+ 1)2 2 + 2i

2
= (i+ 1)3 (4.12)

Dimensions of Ai would be perfect cubes. Recall that 6, 10, 15 are a few symmetric represen-

tation of SU(3). Here are a few explicit r× r tensor products for symmetric representations

as base:

3× 3 = 1 + 8 (4.13)

6× 6 = 1 + 8 + 27 (4.14)

10× 10 = 1 + 8 + 27 + 64 (4.15)

15× 15 = 1 + 8 + 27 + 64 + 125 (4.16)

Thus all these perfect cube representations of SU(3) form regular hexagons in weight

space. Figure 4.2 shows an explicit example of R2[3]×R2[3]
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4.3 S2 values

It is sufficient to know the exact form of any one generator to calculate the S2. For all

the representations of SU(N), T3 is the most convenient generator for this purpose. The

diagonal entries of T3 corresponds to the weight components. It is sufficient to find the

decompositions under SU(2) of any representation and then adding the S2 values of all the

components. Here is an example of R3[3]. The SU(2) representations are depicted with a

hat : [ˆ]

4̂︷ ︸︸ ︷
(111) (112) (122) (122)

3/2 1/2 −1/2 −3/2

3̂︷ ︸︸ ︷
(113) (123) (223)

1 0 −1

2̂︷ ︸︸ ︷
(133) (233)

1/2 −1/2

1̂︷ ︸︸ ︷
(333)

0
(4.17)

It follows that

S2(R3[3]) = S2(4̂) + S2(3̂) + S2(2̂) + S2(1̂) (4.18)

Note that it is trivial to find S2(m̂) for all the representations of SU(2):

S2(m̂) =
1

12
m(m2 − 1) =

1

2

(
m+ 1

3

)
(4.19)

This follows from the known general form of T3 of SU(2). We just need to find the decom-

positions of Rm[N ] under SU(2).

Working out a few examples just like Eq 4.17, we find a recursion relation and two

terminating conditions as follows:

Rm[N ] = Rm[N − 1]⊕Rm−1[N ] (4.20)

Rm[2] = m̂+ 1 R1[N ] = 2̂ + (N − 2)× 1̂ (4.21)

Figure 4.3: 64 of SU(3) with Dynkin labels (3,3)
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Now the problem has condensed merely to a problem of counting. Here is the final result:

Rm[N ] =
m⊕
k=0

Rk[2] (×Θm−k(N)) (4.22)

Θk(N) also has the neat recursion properties as follows:

Θk(N) =
N∑
i1=3

i1∑
i2=3

. . .

ik−1∑
ik=3

1 ⇒
n∑
j=3

Θk(j) = Θk+1(n); Θ0(j) = 1 (4.23)

Θk(N) =

(
N + k − 3

k

)
(4.24)

Now it is straight forward to find S2(Rm[N ]). As we stated earlier that S2 of full

irreducible representation is sum of S2 of all the SU(2) components.

Rm[N ] =

m+1⊕
k=1

k̂ (×Θm−k+1(N)) (4.25)

⇒ S2(Rm[N ]) =
1

2

(
N +m

m− 1

)
(4.26)

Table 4.1 contains a few values of S2(Rm[N ]), for further reference.

Now from the elemetary group theory, the relation between S2 values for tensor prodcuts:

m∑
i=0

C2(Ai) d(Ai) = 2C2(Rm) d(Rm)2 = 2S2(Rm) d(Rm) d(G) (4.27)

Using relation Eq 4.8, Eq 4.11 and Eq 4.26, after some manipulation, we get the neat

result:

C2(Ai[N ]) = i(N + i− 1) (4.28)

Table 4.2 contains a few Ai representations with their S2 values.

4.4 Separating out Ai from R2 ×R2

R2[N ] is a widely used representation as it is among the first few non-trivial tensor repre-

sentations. R2×R2 contains a singlet, a true adjoint and a A2. Now we aim to identify the

three components explicitly.

Note that a, b, c, d, . . . ∈ [1, N ] are the fundamental indices and I, J,K, . . . ∈ [1, d(R2)]

refer to the new R2 base indices.
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Table 4.1: S2(Rm[N ]) (Rm[N ]: totally symmetric irreps with m indices for SU(N)

SU(2) SU(3) SU(4) SU(5) SU(6)

R1 S2(2) = 1/2 S2(3) = 1/2 S2(4) = 1/2 S2(5) = 1/2 S2(6) = 1/2

R2 S2(3) = 2 S2(6) = 5/2 S2(10) = 3 S2(15) = 7/2 S2(21) = 4

R3 S2(4) = 5 S2(10) = 15/2 S2(20) = 21/2 S2(35) = 14 S2(56) = 18

R4 S2(5) = 10 S2(15) = 35/2 S2(35) = 28 S2(70) = 42 S2(126) = 60

R5 S2(6) = 35/2 S2(21) = 35 S2(56) = 63 S2(126) = 105 S2(252) = 115

Table 4.2: S2(Ai[N ]) (Ai[N ]: adjoint type irreps in Rm ×Rm for SU(N)

SU(2) SU(3) SU(4) SU(5) SU(6)

A1 S2(3) = 2 S2(8) = 3 S2(15) = 4 S2(24) = 5 S2(35) = 6

A2 S2(5) = 10 S2(27) = 27 S2(84) = 56 S2(200) = 100 S2(405) = 162

A3 S2(7) = 28 S2(64) = 120 S2(300) = 360 S2(1000) = 875 S2(2695) = 1848

A4 S2(9) = 60 S2(125) = 375 S2(825) = 1540 S2(3675) = 4900 S2(12740) = 13104

Singlet is trivially:

SI
J = φK

K δI
J ⇐⇒ Sab

cd = φmn
mn 1

2
δ(c
a δ

d)
b (4.29)

The true adjoint is an object that transforms with an upper and a lower index. One pair

of indices must be contracted while keeping the final object still symmetric in indices:

A1ab
cd ∼ φ(am

(cm δ
d)
b) (4.30)

However this object still contains a singlet part. Subtracting singlet from it and de-

manding that the final product is traceless, we have:

A1ab
cd = φ(am

(cm δ
d)
b) −

2

N
φmn

mn δ(c
a δ

d)
b (4.31)

Note that the above expression has fundamental indices. To write it as matrix of order d(r),

we need to convert back to new indices.

Now we can separate out A2 by subtracting adjoint and singlet from the full reducible.

The factors are fixed by demanding that A2 has no singlet (A2mn
mn = 0) and no adjoint
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(A2mi
mk = 0):

A2ab
cd = φab

cd − 1

N + 2
A1ab

cd − 2

N(N + 1)
Sab

cd (4.32)

This method can easily be generalized for bigger representations: Rm ×Rm.

Alternatively, we anyways know that the adjoint would have the form: ϕaTa, Ta being

the generators of R2. The remaining A2 can be separated by demanding that there are

no modes along the adjoint or singlet i.e., we demand that A2 modes are perpendicular to

adjoint and singlet. This will be clear with explicit examples later on.

4.4.1 Example: SU(2)

R2[2] = 3. Note that 3 is also the adjoint of SU(2) and defining a real vector of SO(3).

3× 3 = 1 + 3 + 5 (4.33)

As we stated earlier that such adjoint type multiplets would be useful for symmetry breaking.

Since the only smaller group than SU(2) is U(1), we are interested in this rank preserving

symmetry breaking. The Higgs field used for this purpose: Φ must be diagonal to achieve

this symmetry breaking. So here we only consider diagonal Φ. It also makes the calculations

much simpler.

We start with an object Φ transforming reducibly as 3× 3:

Φ = diag [ϕ1, ϕ2, ϕ3] (4.34)

Singlet is (using Eq 4.29):

SI
J = 1I

J = (ϕ1 + ϕ2 + ϕ3)IIJ (4.35)

Adjoint is (using Eq 4.31):

(A1)I
J = 3I

J = 2(ϕ1 − ϕ3) diag
[
+1 0 −1

]
(4.36)

Note that this is proportional to T3, just as expected.

One way to find the A2[2] = 5 is simply using Eq 4.32, which gives:

(A2)I
J = 5I

J =
1

6
(ϕ1 − 2ϕ2 + ϕ3) diag

[
+1 −2 +1

]
(4.37)

Alternatively, we can demand that the modes of 5 would have no overlap with those of

3 and 1 i.e. β.
[
+1 0 −1

]
= 0 and β.I = 0. Thus we get: β =

[
+1 −2 +1

]
, which is

just same as Eq 4.37.

If any of these 3 modes develops a vev somehow, we get the required symmetry breaking:
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SU(2) → U(1). Note that S2(5) = 10 (Table 4.1, Table 4.2) and since for supersymmetric

gauge theories, b0 = S2(r)− 3C2(G), presence of a 5 would make the full theory asymptoti-

cally strong.

4.4.2 Example: SU(3)

R2[3] = 6 and 6× 6 = 1 + 8 + 27 (Figure 4.2)

For now, we are interested only in the diagonal Φ:

ΦI
J = diag [ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6] (4.38)

11 12 22 13 23 33

Fundamental indices associated with each state vector are mentioned. We have arranged

the state vectors in this particular order because this would be convenient for symmetry

breaking: SU(3)→ SU(2)× U(1).

Singlet trivial and hence can be skipped. The adjoint (A1) can be found either by using

Eq 4.31 or by simply contracting a field with the generators: χaTa. SU(3) has rank 2. Thus

there would be 2 modes of adjoint on diagonal of Φ out of total 6. It can be verified that in

general adjoint would take the following form:

A1 = diag



α1

α2

−α1 + 2α2

+1
2α1 − α2

−1
2α1

−2α2


(4.39)

Similarly the general form of A2[N ] can either be calculated from Eq 4.32 or by simply

demanding that our diagonal elements of 27, are perpendicular to those of 8 in R6, just like

in case of SU(2). Thus we get:

A2 = diag



β1

β2

β3

−2β1 − β2

−β2 − 2β3

β1 + β2 + β3


(4.40)
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Note that out of 6 diagonal modes in 6× 6, 1 corresponds to the singlet, 2 corresponds

to the adjoint, and 3 corresponds to A2 = 27.

During symmetry breaking of SU(3), we want to preserve H ≡ SU(2) × U(1). This

can be achieved when the structure of H is not tampered with at all. Now look at the

decomposition of 6SU(3) under H:

6 = 3̂[+2] + 2̂[−1] + 1̂[−4] (4.41)

Thus the symmetry breaking can only be achieved if Φ transforming as 6× 6 (or any irrep

in it) develops a vev as follows:

Φ = diag [ϕ1 ϕ1 ϕ1 ϕ2 ϕ2 ϕ3] (4.42)

It is clear that there are total of 3 modes. It can be seen that one corresponds to adjoint,

one corresponds to 27 and last one is a singlet even of SU(3). The last one does not lead to

any symmetry breaking. Since we are looking for bigger representations, we want to know

the form of 27 that can break SU(3)→ H. Comparing Eq 4.42 and Eq 4.40:

φ = ϕ diag
[
+1 +1 +1 −3 −3 +3

]
(4.43)

This is the singlet mode of SU(2)× U(1) in 27 of SU(3).

4.5 Non-trivial symmetry breaking of SU(5) GUT

Here we move ahead from the toy models and onto an actual GUT. SU(5)→ GSM preserves

the rank. Details of SU(5) GUT can be found in [Nath 16][Mohapatra 86]. Hence the

formalism developed so far can be used here.

S2(200) = 100 (Table 4.2) would be a large positive contribution to the beta function.

So the full GUT becomes asymptotically strong.

4.5.1 Using A2[5] : 200

R2[5] = 15 and 15× 15 = 1 + 24 + 200.

15 = (5× 5)S =

(
6, 1,−2

3

)
+ (1, 3,+1) +

(
3, 2,+

1

6

)
(4.44)

We are interested in using 200 for the symmetry breaking. 200 has only one Standard Model

singlet in it. This can be seen by using Eq 4.44 into 15 × 15. [Slansky 81] contains all the

relevant decompositions.

Looking at Eq 4.44, we need to identify which state vectors of 15 corresponds to which

of the decompositions of 15 under GSM . This can be easily realized by following the same



4.5. NON-TRIVIAL SYMMETRY BREAKING OF SU(5) GUT 51

pattern as the standard SU(5). We assign α, β, . . . ∈ [1, 2, 3] out of the 5 fundamental

indices (a, b, . . . ∈ [1, 5]) to color indices of SU(3)C . i, j, . . . ∈ [4, 5] were assigned to SU(2)L.

α, β . . . indices are associated with −1/3 U(1)Y hypercharge and i, j, . . . have +1/2 U(1)Y

hypercharge. Thus, along these lines we can identify the correlation:

ψ(ab)

15
=

ψ(αβ)(
6, 1,−2

3

)⊕ ψ(αi)(
3, 2,+

1

6

)⊕ ψ(ik)

(1, 3,+1)
(4.45)

Now we want to preserve GSM while breaking SU(5), we can not tamper with the SM

structure inside 15×15 of SU(5). Looking at the Eq 4.45 and Eq 4.44, the diagonal elements

of Φ15×15 must have the following form:

φ15×15 = diag [β1I6 β2I6 β3I3] (4.46)

Now we want to separate 200; we need to find the explicit form of adjoint (24) embedded

in 15 × 15. This can be achieved by Eq 4.31 or by contracting 4 (=rankSU(5)) fields with

the Cartan generators of SU(5). Then we need to find the pattern in these 15 expressions.

The explicit calculations are skipped here. We are only interested in expressions of the form

of Eq 4.46. Proceeding just like the toy models, we demand that the modes of 200 have

no overlap with that of 24 and that it is traceless. Upon all these constraints, we find the

explicit form of GSM singlet in 200 of SU(5):

φ200 = βdiag [I6 − 2I6 2I3] (4.47)

Note that there is only one SM singlet in 200. If by some mechanism, this mode generates

a vev, SU(5) GUT breaks down into GSM .

4.5.2 Using 75

The formalism of this chapter is not confined to be used on symmetric representations only.

Here we use it on an antisymmetric two indices representation of SU(5).

In general, the irreducible representations in tensor product r × r for antisymmetric

representations are not that interesting. They do not have interesting Dynkin indices or so.

For r being representation with 2 antisymmetric indices, r× r has a singlet, an adjoint and

one bigger representation. For SU(5):

10× 10 = 1 + 24 + 75 (4.48)

ψ[ab]

10
=

ψ[αβ](
3, 1,−2

3

)⊕ ψ[αi](
3, 2,+

1

6

)⊕ ψ[ik]

(1, 1,+1)
(4.49)
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We can label the state vectors of 10 just according to this decomposition. Now if we

want to preserve the GSM during the symmetry breaking, then the SU(3), SU(2) structures

should be intact and the the field φ should have the following structure:

φ10×10 = diag [β1I3 β2I6 β3I1] (4.50)

Again, we need to write adjoint as a diagonal matrix of order 10, which, just like the

earlier case, can be done by contracting 4 fields with 4 diagonal generators. The only

difference would be that the state vectors with fundamental indices (11), (22), . . . will be

missing. Now to separate 75, we demand that it is perpendicular to the adjoint. Since we

are interested in the form of 75 that can be used for symmetry breaking, we find the scalar

product of Eq 4.50 with the adjoint and set it to zero, just like the 200 case and find certain

constraints and the SM singlet in 75 of SU(5) written as 10 × 10 matrix would have the

following form:

φ75 = ϕdiag [I3 − I6 + 3I1] (4.51)

Note that even here S2(75) = 25 and thus the full GUT would be asymptotically strong.

Matter Couplings

In the usual SU(5) GUT with 24 as the GUT breaking Higgs [Georgi 74a], the following

matter couplings are possible (Note that SM matter particles fit in 5 + 10):

5
a
24a

b5b 10
ab

24b
c10ca (4.52)

If we have a 75, a few possible matter couplings would be:

5
a
5
b
75ab

cd10cd 10
ab

75ab
cd10cd (4.53)

Though the possible superpotential with the first term would be quartic and hence

non-renormalizable. In the usual SU(5) with 24, the parts of 5 and 10 never mix. There

is no gauge-invariant term like the quartic term mentioned here. Also the latter term

10
ab

75ab
cd10cd give more possible interactions than the 24 one. For example, in case of 24,

there is no such term as 10
αβ

75αβ
ik10ik, where α, β ∈ [1, 3] are SU(3)C color indices and

i, k ∈ [4, 5] are SU(2)L indices.

Note that the case of 200 would not be that convenient since it has symmetric pairs of

fundamental indices, and coupling the antisymmetric 10 would give zero.



Chapter 5

Dynamical Symmetry breakings in

AS GUTs

5.1 Introduction

The success of AS GUTs as a theory of strong interactions has made AF a generally un-

questioned requirement for GUT models. On the other hand, the need to incorporate

renormalizable seesaw mechanisms in the context of SO(10) models [Aulakh 83], [Clark 82],

which are best suited to describe neutrino mass, led to the emergence of models with UV

strong gauge coupling as the Minimal SuSy GUT. So it was proposed that AS is not a

defect, but rather the model generates its own UV cutoff in the form of Landau pole ΛUV

[Aulakh 20].

Note that for all the gauge theories, there exists a natural scale at which the gauge

coupling diverge. This phenomenon of formation of a natural scale in otherwise scale-

invariant gauge theories is called dimensional transmutation. In AF gauge theories, the

physical degrees of freedom condense in the IR as the RG flow into the IR has a Landau

pole. Similarly, AS theories has a Landau pole in UV and one expects condensates in UV. A

recent work introduces a novel interpretation and calculational framework that shows that

the symmetry breaking of any AS gauge theory may be driven by gaugino condensates in

UV. [Aulakh 20]

Exact calculations in the strong coupling region need lattice calculations. However, there

are certain constraints that the system has to follow even in the strong region. Generalized

Konishi Anomalies (GKA) are such constraints that all the SuSy gauge theories follow

[Konishi 85], [Cachazo 02]. Using these, we can calculate the vacuum expectation values of

fields transforming just like adjoint. Note that such calculations include the loop corrections

and are thus exact. We’ll use certain forms of superpotential such that classically, the vevs

of Φ vanish. Only because of the loop effects, Φ develops a vev and cause spontaneous

symmetry breaking. The method can be applied to the symmetry breaking of a large class

53
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of AS SuSy GUT models. We discuss three examples, which include symmetry breaking in

a toy Susy GUT, SU(5)→ GSM .

In [Aulakh 20], the GKA analysis of pure adjoint Susy YMH is generalized to the case

where Φ is in a large adjoint type, i.e. r × r representation. As we saw in the last chapter,

the transformation properties of such representations are the same as the true adjoint.

[Aulakh 20] contains a detailed framework for rank preserving symmetry breaking using full

reducible r× r representation. Here we present an extension to that by using traceless r× r
(without singlet in it).

5.2 Generalized Konishi Anomalies (GKA)

Chiral Ring

A Chiral Ring, loosely speaking, is a set of all gauge invariant chiral operators in SYMH

theory. Products of these operators in a Susy vacuum factorize and are position independent.

In the chiral ring, we have:

[Wα,Φ] = 0 mod D (5.1)

SinceWα are two component spinorial superfields, it can be shown that product of more

than two Wα is zero. So the only independent chiral operators are:

trΦk trWαΦk trWαWαΦk (5.2)

Wα is the gauge field strength superfield (Wα =Wα
aT a) and Φ is a chiral superfield trans-

forming as r × r. Let us define the following convenient objects:

R(z) = κ tr

[
WαWα

z − Φ

]
T (z) = tr

1

z − Φ
(5.3)

When expanded as a power series in z, we get all the relevant chiral operators. Note that

not much attention is given to trWαΦk, because this is fermionic in nature and thus its

vaccum expectation value vanishes.

R(z) = κ
∞∑
n=0

1

zn+1
trWαWαΦn = κ

∞∑
n=0

Rn
zn+1

⇒ Rn = trWαWαΦn (5.4)

T (z) =

∞∑
n=0

1

zn+1
trΦn =

∞∑
n=0

Tn
zn+1

⇒ Tn = trΦn (5.5)

Note that κ is merely a number −1/(32π2) placed here for later convenience.

Rn and Tn can be calculated from R(z) and T (z) respectively by contour integrals as



5.3. LOOP EQUATIONS 55

follows:

Rn =
1

2πi

∮
c∞

dz znR(z) Tn =
1

2πi

∮
c∞

dz znT (z) (5.6)

GKA

Konishi Anomalies are Ward identities of chiral symmetry associated with each individual

supermulitplet in SYMH. They relate the tree and loop level chiral anomaly contributions.

They were intitally introduced by Konishi and Shizuya in [Konishi 85] and generalized by

CDSW in [Cachazo 02]. We’ll need only the expectation values:〈
fI
∂W

∂Φ

〉
=

〈
κWαaWb

αMaJ
IMbK

J

∂f(Φ,Wα)K
∂ΦI

〉
κ = − 1

32π2
(5.7)

Note that the indices I,K are R = r × r representation indices. We can write the same

equation in r representation indices, i, k, as follows:〈
trf(Φ,Wα)

∂W

∂Φ

〉
= κ

〈
WaαWb

α

∑
i,k

[
T a(r),

[
T b(r),

∂f(Φ,Wα)

∂Φik

]]
ik

〉
(5.8)

Here W (Φ) is the superpotential and f(Φ,Wα) is the general variation in the chiral ring.

5.3 Loop Equations

5.3.1 Φ transforming as traceful r × r

We can use different sort of variations f(Wα,Φ) ≡ δΦ, substitute it back in Eq 5.8 and find

specific equations.

Justification for using the same equation as adjoint Note that Eq 5.8 was written

only for Φ transforming under pure adjoint. We have extended this to any general r × r
representation. We saw in the last chapter that general r× r representations transform just

like pure adjoint. Here i, k,m, n, . . . are r representation indices.

Φ′i
k = Ui

mΦm
nUn

k ⇒ δΦ = [T(r),Φ] (5.9)

So we can use the same equation 5.8 with nested commutators using the generators and

indices of representation r.
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a: f(Wα,Φ)ik =

(
1

z − Φ

)
ik

d

dΦik

(
1

z − Φ

)
mn

=

(
1

z − Φ

)
mi

(
1

z − Φ

)
kn

(5.10)

Thus the RHS of Eq 5.8 gives us: (Note the extra −ve sign in last two terms because the

positions of two fermionic operators got exchanged.)

κ(WαWα)im

(
1

z − Φ

)
mi

(
1

z − Φ

)
kk

− κ(Wα)im

(
1

z − Φ

)
mi

(
1

z − Φ

)
kn

(Wα)nk

+ κ(Wα)im

(
1

z − Φ

)
mi

(
1

z − Φ

)
kn

(Wα)nk − κ
(

1

z − Φ

)
ii

(
1

z − Φ

)
km

(WαWα)mk

(5.11)

Middle two terms vanish upon taking vev because fermionic fields can not have vev. First

and last term add up because WαWα = −WαWα and we have 2R(z)T (z) on RHS.

tr
[
f(Φ,Wα)W ′(Φ)

]
= tr

[
f(Φ,Wα)W ′(z)

]
+ tr

[
f(Φ,Wα)(W ′(Φ)−W ′(z))

]
= T (z)W ′(z) +

1

4
c(z)

1

4
c(z) ≡ tr

[
1

z − Φ
[W ′(Φ)−W ′(z)]

]
(5.12)

Thus we have finally:

2R(z)T (z)− T (z)W ′(z)− 1

4
c(z) = 0 (5.13)

b: f(Φ,Wα)ik =

(
WαWα

z − Φ

)
ik

d

dΦik

(
WαWα

z − Φ

)
mn

=

(
WαWα

z − Φ

)
mi

(
1

z − Φ

)
kn

(5.14)

Thus RHS gives us: (again taking care of extra −ve sign in last two terms)

κ(WαWα)im

(
WβWβ

z − Φ

)
mi

(
1

z − Φ

)
kk

− κ(Wα)im

(
WβWβ

z − Φ

)
mi

(
1

z − Φ

)
kn

(Wα)nk

+ κ(Wα)im

(
WβWβ

z − Φ

)
mi

(
1

z − Φ

)
kn

(Wα)nk − κ
(
WβWβ

z − Φ

)
ii

(
1

z − Φ

)
km

(WαWα)mk

(5.15)

Here the first three terms vanish, because they involve traces of more than two Wαs.
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The last term upon using WαWα = −WαWα gives R2(z)/κ.

As for the LHS, just like the earlier case, we have:

tr
[
f(Φ,Wα)W ′(Φ)

]
= tr

[
f(Φ,Wα)W ′(z)

]
+ tr

[
f(Φ,Wα)(W ′(Φ)−W ′(z))

]
=

1

κ
R(z)W ′(z) +

1

4κ
f(z)

f(z)

4
≡ κtr

[
WαWα

z − Φ
[W ′(Φ)−W ′(z)]

]
(5.16)

Thus we have,

R2(z)−R(z)W ′(z)− 1

4
f(z) = 0 (5.17)

Solving for T (z)

From Eq 5.17 and Eq 5.13, we have:

R(z) =
1

2

[
W ′(z)−

√
W ′(z)2 + f(z)

]
≡ 1

2
(W ′(z)− y(z)) (5.18)

y2(z) = W ′(z)2 + f(z) (5.19)

T (z) =
c(z)

4(2R(z)−W ′(z))
= − c(z)

4y(z)
(5.20)

If superpotential W (z) is of order n, from Eq 5.17, we can conclude that f(z) is polyno-

mial of order n− 2. Thus for the usual cubic superpotenial, f(z) is linear in z. Comparing

the coefficients of z−n, we get relation between Rn>1. In Eq 5.17, we can compare the

coefficients of zn to find the relation between fi and Rn.

W ′(z) = λz2 +mz + µ (5.21)

⇒ f(z) = f0 + f1z = −4λ(R1 + zR0)− 4mR0 (5.22)

Similarly, from Eq 5.13, we can infer that c(z) is of order n− 2.

c(z) = −4 (λT1 +md(r))− 4λzd(r) (5.23)

From the definition of y(z), Eq 5.19, it is clear that for superpotential of order n, y2(z)

is polynomial of order (2n − 2). Now if we consider a contour integral of T (z), since y(z)

appears in the denominator, there are total (2n− 2) branch points or n− 1 branch cuts.

Once we have T (z), we can integrate zT (z) and find the vevs as proposed in [Aulakh 20]

υi =
1

Ni

1

2πi

∮
Ai

dz zT (z) (5.24)
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Classical Analysis

The usual way of finding vacuum expectation values is by minimizing the potential (W ′(Φ) =

0). Higgs mechanism in SM stands on the usual semi-classical way of finding vevs by

minimizing the potential (or superpotential). In this method, loop effects can not be taken

into consideration since we use a simple tree level (super)potential.

The classical case would be the absence of gaugino condensate and hence, R(z) → 0.

In such a case, y(z) → W ′(z). There aren’t any branch cuts. But rather there are poles.

So essentially, upon switching on the loop effects, the classical poles have bifurcated into

branch points. One can check that upon setting R(z) → 0, we get the classical vevs back

(the ones we get by setting W ′(Φ) = 0).

5.3.2 Φ transforming as traceless r × r

r×r always contains a singlet and an adjoint, as we saw in the earlier chapter. For example,

for SU(3), 6×6 = 1+8+27. For the traceful case, Φ transforms as a full 1+8+27 reducible

representation. The next step would be to make Φ traceless, i.e., taking out the singlet

(which is the trace of Φ). So in this section, we consider traceless Φ, i.e., retaining only

8+27 with r = 6 for SU(3) case. We need to see how does the loop equations change if Φ

is traceless rather than traceful.

The crucial point is that the f(Φ,Wα) needs to be changed. Since it is a variation of Φ

in the chiral ring, it must also follow all the constraints that Φ follows. Now that our Φ is

traceless, f(Φ,Wα) also must be traceless. So we just impose tracelessness on the f(Φ,Wα)

used earlier as follows:

a: f(Wα,Φ)ik =

(
1

z − Φ

)
ik

− δik
d(r)

tr

(
1

z − Φ

)
Note that if we substitute it back in Eq 5.8, RHS would be exactly the same as earlier.

This is because the new term in f(Wα,Φ) is proportional to identity, which commutes with

everything. So RHS is still 2T (z)R(z).

Alternatively, we can use Eq 5.7. The extra term in f(Φ,Wα) is singlet and when the

generator M acts on it, we get zero.

As for the LHS, we have:

tr
[
f(Φ,Wα)W ′(Φ)

]
= tr

(
1

z − Φ
W ′(Φ)

)
− tr

(
1

z − Φ

)
1

d(r)
tr(I.W ′(Φ)) (5.25)

= T (z)

[
W ′(z)− 1

d(r)
trW ′(Φ)

]
+
c(z)

4
(5.26)

≡ T (z)ω(z) +
c(z)

4
(5.27)
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Here we introduced a new ω(z). c(z) is the same as earlier:

ω(z) ≡W ′(z)− 1

d(r)
trW ′(Φ) (5.28)

Thus we have finally have the new equation to replace Eq 5.13. Note that the only change

is that W ′(z) is replaced by ω(z). Eq 5.28 looks like the tracelessness condition imposed

on W ′(z). Since traceless Φ does not ensure traceless W ′(Φ), it appears as if it also got

stripped off of its privilage of having a trace.

2R(z)T (z)− T (z)ω(z)− 1

4
c(z) = 0 (5.29)

b: f(Wα,Φ)ik =

(
WαWα

z − Φ

)
ik

− δik
d(r)

tr

(
WαWα

z − Φ

)

Again, the extra term in f(Wα,Φ) does not contribute to the RHS of Eq 5.8. RHS still

remains, just like the earlier case, R2(z).

LHS also follows just like the other traceless case:

tr
[
f(Φ,Wα)W ′(Φ)

]
= tr

(
WβWβ

z − Φ
W ′(Φ)

)
− tr

(
WβWβ

z − Φ

)
1

d(r)
tr(I.W ′(Φ)) (5.30)

= R(z)W ′(z) +
f(z)

4
− 1

d(r)
R(z)trW ′(Φ) (5.31)

≡ R(z)ω(z) +
f(z)

4
(5.32)

So we have another equation to replace Eq 5.17 for traceless case:

R2(z)−R(z)ω(z)− 1

4
f(z) = 0 (5.33)

Solving for T(z)

Just like the earlier case, we get: (This result appears in [Alday 03] for Φ transforming as

pure adjoint)

T (z) = − c(z)

4χ(z)
χ2(z) = ω2(z) + f(z) (5.34)
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For the usual cubic superpotential, we have: (Note, T1 = 0; T0 = d(r))

trW ′(Φ) = λT2 +mT1 + µd(r) = λT2 + µd(r) (5.35)

⇒ ω(z) = W ′(z)− 1

d(r)
trW ′(Φ) (5.36)

= λz2 +mz + µ− 1

d(r)
(λT2 + µd(r)) (5.37)

⇒ ω(z) = λz2 +mz − λ

d(r)
T2 (5.38)

Note that µ has vanished, because its coefficient in W (Φ) is T1.

The central point here is that again, there are 2n − 2 branch points in the integral of

T (z). f(z) (Eq 5.22), c(z) (Eq 5.23) remains same.

Earlier there was a relation between R2 and T1. But since this time T1 = 0, we have no

such relation and R2 appears as an independent dynamical parameter determined only by

the calculations in the strong region. Instead we find a relation between T2 and Rn:

R2 +
m

λ
R1 =

1

d(r)
T2R0 (5.39)

Classical Analysis

Classically, we can find the vevs of the traceless Φ by minimizing the superpotential with an

additional constraint that trΦ = 0. We can use the Lagrange multiplier method or anything

else. The final result would be:

Φ = v
[
N2IN1 −N1IN2

] 1

N2 −N1
(5.40)

Note that any permutation of the diagonal elements shown is acceptable and results in

the same subgroup.

Again, if we turn off the loop corrections, the branch cuts merge back into poles, and

we get the classical vevs (Eq 5.40).

5.4 Numerical Analysis for Traceful case

We are interested in finding the full quantum corrected vevs of Φ. [Aulakh 20] proposes the

following expressions for quantum corrected vevs:

υi =
1

Ni

1

2πi

∮
Ai

dz zT (z) = − 1

8πiNi

∮
Ai

dz z
c(z)

y(z)
(5.41)

Note that Ai encircles the branch cut that resulted from the bifurcation of critical point

ai. Note that as R(z)→ 0 and thus y(z)→W ′(z), we recover vi = ai.
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We wish to perform this integral numerically. y(z) depends only on the W ′(z) and the

strong parameters R(z). We can not calculate the latter quantities, so Ri are the input

parameters.

We are interested in a simplified case with W ′(z) = λz2. The most interesting point

regarding this superpotential is that the classical vevs for this are zero. So without loop

effects, the symmetry breaking is not possible. For this case, Eq 5.19,Eq 5.23 follow:

y2(z) = λ2z4 − 4λ(R1 + zR0) (5.42)

c(z) = −4λT1 − 4λzd(r) (5.43)

We can make all these expressions dimensionless (denoted by a hat,[ˆ ]) using the scale

provided by gaugino condensate:

R0 = 2S2(r)Λ3 (5.44)

⇒ R̂1 =
R1

R0
4/3

; f̂(z) =
f(z)

R0
4/3

; ẑ =
z

R0
1/3

; ŷ(z) =
y(z)

R0
2/3

; . . . (5.45)

Hence, we have:

ŷ(z) =
[
λ2ẑ4 − 4λ(R̂1 + ẑ)

]1/2
(5.46)

We want to eliminate T1 in favour of R1, R0. This can be realized as follows:

Ni =
1

2πi

∮
Ai

dzT (z) = − 1

8πi

∮
Ai

dz
c(z)

y(z)

=
1

2πi

∮
Ai

dz
λ [T1 + zd(r)]

y(z)

= λT1

[
1

2πi

∮
Ai

dz y(z)−1

]
+ λd(r)

[
1

2πi

∮
Ai

dz zy(z)−1

] (5.47)

Since Ni is dimensionless, RHS is also dimensionless. So we define a set of dimensionless

loop integrals as follows:

Yn =
1

2πi

∮
A1

dẑ ẑn ŷ(ẑ)−1 (5.48)

Now using Eq 5.47, we can write T1 in terms of y(z) as follows:

N1 = λT̂1 Y0 + λd(r)Y1 (5.49)

⇒ T̂1 =
N1/λ− d(r)Y1

Y0
(5.50)
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Now, we have:

υ̂1 =
1

2πiN1

∮
A1

dz λ
[
T̂1ẑ ŷ

−1(ẑ) + d(r) ẑ2 ŷ−1(ẑ)
]

(5.51)

=
1

N1

[
λ T̂1Y1 + λ d(r)Y2

]
(5.52)

Since T1 is the trΦ, υ2 also follows from Eq 5.52:

T1 = N1υ1 +N2υ2 ⇒ υ̂2 =
T̂1 −N1υ̂1

N2
(5.53)

It is clear that we just need to calculate the integrals Yn to find vevs. To find the exact

branch cuts, we need to find the zeroes of y2(z). y(z) can be rewritten in a convenient form

using the branch points:

y(z) ≡ λ
2n∏
i=1

|z − zi|
1
2

n∏
i=1

exp

[
i

2

[
θ

(
z − z2i−1

z2i − z2i−1

)
+ θ

(
z − z2i

z2i − z2i−1

)]]
(5.54)

Finally the contour integrals around the branch cut Ai running from z2i → z2i−1 is achieved

by: ∮
Ai

dz g(z) = 2

∫ 1

0
dx (z2i−1 − z2i) g(x(z2i−1 − z2i) + z2i) (5.55)

Yn =
1

πi

∫ 1

0
dx (ẑ1 − ẑ2)[(ẑ1 − ẑ2)x+ ẑ2]n ŷ((ẑ1 − ẑ2)x+ ẑ2) (5.56)

This follows since the semicircles at the end points of radius ε do not contribute to the

integral as ε→ 0 and thus the contour integral equals sum of two line integrals.

Using Eq 5.55, vevs can be calculated numerically for various values of λ, R̂1.

R0i = − 1

4πi

∮
Ai

dz y(z) (5.57)

Solutions such that R1 ∼
∑
R0jυj may be good candidates for quasi-semiclassical vac-

uum. [Aulakh 20] proposes the Semi-classical parameter as a measure of semi-classicality:

δSC =
∣∣∣R1 −

∑
j R0jυj

R1

∣∣∣2 (5.58)

Eq 5.55 can be used to calculate R0i, and hence δSC can be calculated.

One case SU(3) → SU(2) × U(1) has been studied extensively in recent work. So here

we study another two symmetry breaking cases using the same mechanism.
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5.4.1 Numerical Investigation SU(2)→U(1)

Φ transforms as 3 × 3. Any diagonal vev of Φ would break SU(2) → U(1). An interesting

obervation would be that final υi and δSC depends on the ratio N1/d(r). Table 5.1 contains

a few points in parameter space with δSC << 1. Occurance of such points supports the

idea that Φ develops vevs purely from loop corrections driven by gaugino condensate in

UV. Note that we are using W ′(z) = λz2 with minimas z = 0. Hence the vevs are purely

from quantum loop corrections. All dimensionful quantities are in units of R0
1/3 = 42/3Λ

(S2(3) = 2).

Table 5.1: SU(2)→U(1): Illustrive values obtained by searching λ, R̂1 such that δSC << 1.

N1 d(r) λ R̂1 T̂1 υ̂1 υ̂2 R̂0
(0) R̂0

(1) δSC

2 3 −1.582 0.247 −0.014 −0.220 0.425 0.772 0.228 7× 10−6

−0.295i +0.374i +0.222i +0.630i −1.037i −0.193i +0.193i

1 3 0.456 0.595 −1.705 0.162 −0.933 0.572 0.428 0.0004

+0.012i +0.995i +2.010i +2.600i −0.295i −0.317i +0.317i

1 3 0.456 0.595 −1.721 0.038 −0.880 0.556 0.444 0.0009

+0.012i −1.005i −2.030i −2.630i +0.299i +0.340i −0.340

1 3 1.350 0.550 −1.439 −0.733 −0.353 0.282 0.718 0.018

−0.710i +0.698i +1.465i +1.817i −0.176i −0.532i +0.532i

Numerical Investigation SU(5)→SU(3)× SU(2)× U(1)

Here we use two indices antisymmetric representation: ψ[ab], 10 as the base representation.

From the decomposition of 10 under GSM , it is evident that Φ of the following form would

break SU(5)→ GSM :

φ10×10 = diag [β1I3 β2I6 β3I1] (5.59)

Since in a cubic superpotential, only two vevs would appear, either two of βi have to be

equal. we take a specific case, β3 = β1 and hence N1,2 = 4, 6 and calculate a few vevs. Other

cases will also be similar just with different values of Ni. We again look for solutions with

δSC � 1. For now, Table 5.2 contains a few such cases.

5.5 Numerical Analysis for Traceless case

Just like the traceful case, we are interested in finding the vevs for traceless case:

vi =
1

Ni

1

2πi

∮
Ai

dz zT (z) = − 1

8πiNi

∮
Ai

dz z
c(z)

χ(z)
(5.60)
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Table 5.2: SU(5)→ GSM : Illustrive values obtained by searching λ, R̂1 such that δSC << 1.

N1 d(r) λ R̂1 T̂1 υ̂1 υ̂2 R̂0
(0) R̂0

(1) δSC

6 10 −0.500 0.871 1.259 −0.013 0.334 0.792 0.208 10−17

−0.325i +0.570i +0.291i +0.878i −1.244i −0.383i +0.383i

6 10 −1.515 0.275 0.594 −0.175 0.410 0.768 0.232 0.008

−0.310i +0.378i −0.461i 0.581i −0.987i −0.210i +0.210i

4 10 0.500 0.585 −4.957 −0.944 −0.197 0.292 0.708 0.0007

−0.350i +1.005i +7.869i +1.848i +0.080i −0.548i 0.548i

4 10 0.500 1.200 −3.893 −1.171 0.132 −0.199 +1.199 0.001

+0.650i −0.995i −7.514i −1.405i −0.316i +0.722i −0.722i

We are interested in a simple calculation: W ′(z) = λz2. Note that µ are anyway missing

this time. So we have just set m→ 0. For this case, we have:

c(z) = −4λzd(r) (5.61)

ω(z) = λz2 − λ

d(r)
T2 (5.62)

⇒ χ2(z) = λ2

(
z2 − T2

d(r)

)2

− 4λ(R1 + zR0) (5.63)

Again we make the expressions dimensionless by using R0 = 2S2(r)Λ3 as the scale. For

m→ 0 case, Eq 5.39 reads (dimensionless):

d(r)R̂2 = T̂2 (5.64)

Thus we have:

χ̂2(z) = λ2
(
ẑ2 − R̂2

)2
− 4λ(R̂1 + ẑ) (5.65)

The contour integral for N1 is:

Ni =
1

2πi

∮
Ai

dẑT̂ (ˆ̂z) = − 1

8πi

∮
Ai

dz
ĉ(ẑ)

χ̂(ẑ)
(5.66)

Though unlike the earlier case, we can not eliminate R2 in favour of R0,1. The branch

points themselves depend on R2. Since R2 can not be eliminated, it acts as a dynamical

variable and thus an input parameter for our numerical investigations. We eliminate T2 in

favour of R2 from the expression of χ(z). The result is Eq 5.65. Now we choose appropriate

R2 such that we get the exact values of Ni upon integrating T (z) around the branch cuts.

We write the principle value of χ(z) just like Eq 5.54, with the branch cuts determined by

Eq 5.65 and integrate it numerically, following Eq 5.55.

Just like the vevs, we can calculate T2 by integrating around both the branch cuts
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separately and adding up the result. Since R2 would also be known to us, we can check if

the results follow Eq 5.64. We can quantify the error as follows:

δR2T2 =

∣∣∣∣d(r)R2 −
∑
T2i

d(r)R2

∣∣∣∣2 (5.67)

5.5.1 SU(2)→U(1)

Earlier, we calculated numerically vevs for Φ, transforming as 3 × 3 of SU(2). So now for

traceless Φ, we only have 3+5. We can set N1 = 2 without loss of generality. Thus we

expect the vev pattern to be as follows (follows from Eq 5.40):

Φ = v[−I2 2I1] = [−v − v + 2v] (5.68)

Note that all three permutations are possible and are equally valid.

Table 5.3: SU(2)→U(1): The vevs of Traceless matrix 3× 3 containing only 3+5. d(r) = 3

λ R̂1 R̂2 N1 N2 v̂ T̂1 T̂2 δT2R2

0.7 + i −0.664 −0.0736 2.0000 1.0000 0.326 0.0000 −0.220 8E−5

−0.986i +1.325i +0.189i +3.976i

0.7 −3.945 −47.711 2.0000 1.0000 −7.059 0.0000 −143.133 2E−7

+0.5i −0.0265i −0.0265i −0.0001i +0.0001i −1.021i −0.079i

0.3 + I −6.979 0.0032 2.0001 0.9999 0.0788 0.0000 0.0103 4E−5

−23.157i +4.823i +0.0236i 14.469i

0.5 −3.510 −38.123 2.0000 1.0000 −5.528 0.0000 −114.369 5E−6

+0.5i −0.0426i −0.0426i −1.155i −0.127i

0.9 −0.539 −1.863 2.0000 1.0000 0.154 0.0000 −5.588 1E−6

5.5.2 SU(3)→SU(2)×U(1)

Here we consider the symmetry breaking of SU(3) using the traceless 6×6. Thus Φ contains

adjoint and 27. We saw earlier that for it to break down to SU(2)×U(1), Φ must have the

following form

φ6×6 = diag [β1I3 β2I2 β3I1] (5.69)

For the traceless case, either two must be equal. Let us consider β1 = β3. So we can

demand N1 = 4 and N2 = 2. There are two other cases possible: β1 = β2 with N1 = 5 and

β2 = β3 with N1 = 3. The whole analysis can be done for these cases as well.

With N1 = 4 and N2 = 2, Eq 5.40 reads:

Φ8+27 = v[−1 − 1 − 1 + 2 + 2 − 1]
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Table 5.4: SU(3)→SU(2)×U(1): The vevs of Traceless matrix 6× 6 containing 8+27

λ R̂1 R̂2 N1 N2 v̂ T̂1 T̂2 δT2R2

0.7 −3.945 −47.711 4.0000 2.0000 −7.059 0.0000 −286.27 9E−7

+0.5i −0.025i −0.026i −1.021i −0.159i

0.9 −0.5397 −1.863 4.0000 2.0000 0.154 0.0000 −11.176 7E−6

+0.001i −0.001i −0.001i

0.9 + I −4.166 −52.675 4.0000 2.0000 −8.445 0.0000 −316.05 4E−6

−0.021i −0.022i −1.451i −0.131i

0.1 −29.925 0.0026 4.0001 2.0001 0.0459 0.0000 0.0143 1E−5

+0.5i −149.52i +17.295i +0.0092i 103.77i

0.5 −0.383 −1.440 4.0000 2.0000 0.436 0.0000 −8.649 1E−7

All possible permutations are equally valid. Table 5.5 contains a points in parameter

space which gives the appropriate results.

5.5.3 SU(5)→SU(3)×SU(2)×U(1)

Here we consider Φ to be in traceless 10 × 10 representation having 24+75. Φ of the form

given in Eq 4.50 would break SU(5)→ GSM .

We consider a case with β1 = β3, so that N1 = 6 and N2 = 4. There are two other cases

possible. With N1 = 6 and N2 = 4, Eq 5.40 reads:

Φ24+75 = [+3vI3 − 2vI6 + 3vI1] (5.70)

Again, all possible permutations are equally valid. Table 5.5 contains a points in param-

eter space which gives the appropriate results.

Table 5.5: SU(5)→ GSM : The vevs of Traceless matrix 10× 10 containing 24+75

λ R̂1 R̂2 N1 N2 v̂ T̂1 T̂2 δT2R2

0.1 −1.663 −1.135 6.0000 4.0000 0.658 0.0000 −11.345 1E−6

0.5 −1.299 −1.084 6.0000 4.0000 0.321 0.0000 −10.839 2E−6

+0.001i −0.001i −0.003i

0.5 −21.449 −243.422 6.0000 4.0000 −12.702 0.0000 −2434.22 6E−6

+0.5i −0.023i −0.079i −1.626i −0.804i

0.7 −4.397 −11.365 6.0000 4.0000 −0.716 0.0000 −113.653 2E−6

0.003i +0.005i +0.009i +0.001i

0.9 −5.079 −14.622 6.0000 4.0000 −1.119 0.0000 −146.22 1E−6
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